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Introduction

The main goal of this work is to give an introduction to (Tangle) Heegaard Floer
Homology computed via nice Heegaard diagrams and to provide a software able to
compute such invariant.

Heegaard Floer Homology was first developed by Peter Ozsváth and Zoltán Szabó
as a variant of Floer Homology. They were able to compute this new invariant, later
proved to be isomorphic to Seiberg–Witten Floer Homology and Embedded Contact
Homology, with the use of Heegaard diagrams. Heegaard diagrams are a powerful
tool of 3-dimensional topology: they are a way to represent a 3-manifold with a
genus g surface along with the data of some curves embedded on the surface. The
main technical issue is the computation of the proper boundary maps of ˆ︂CF, the
chain complex built from a Heegaard diagram on which the hat version of Heegaard
Floer Homology ˆ︂HF is computed. In 2006, Sarkar and Wang were able to find a
way around this problem, publishing "An algorithm for computing some Heegaard
Floer homologies" ([SW10]). In this article, they proved that there exists a family of
diagrams for which the computations of Heegaard Floer Homology can be done in a
completely combinatorial way: it is sufficient to count the bigons and rectangles of
such special diagrams. These were called nice Heegaard diagrams, and it was further
proved that any 3-dimensional manifold admits such a diagram. The construction
of a nice Heegaard diagram is possible through an algorithm called Nicefication
Algorithm; this takes any Heegaard diagram and makes it nice using the Heegaard
moves, some operations on the embedded curves which do not change the manifold
represented by the diagram. This algorithm was implemented in the course of this
Master Thesis project, and can be found in [nicepy]. Some changes were done in
order to optimise the final nice Heegaard diagram obtained with it; these are going
to be discussed in Section 4.5.

The focus on the work then shifted on the study of tangles: roughly, a tangle is
obtained from a knot by cutting it in n points and pulling apart the endpoints of
the n strands created. For tangles, another version of Heegaard Floer Homology was
developed: Tangle Floer Homology, denoted by HFT. Tangle Floer Homology is also
called multicurve invariant, as the topological invariant yielded by it is a collection
of loops on the four punctured sphere S2

4 . See Figure 1 for an example.
To be able to nimbly compute nice Heegaard diagrams for general 4-ended tangles,

two pieces of software were developed and can be found inside the [nicepy] Package:
a first one capable of generating a Heegaard diagram for any rational tangle Qp/q

1



2 INTRODUCTION

Figure 1: Examples of loops on the four punctured sphere S2
4 : from the left

s2(0; 1, 4), s2(0; 2, 3) and r(−2).

for p, q ∈ Z coprime and a second one able to glue together such diagrams. In this
setting, it is possible to take any 4-ended tangle, cut it in a sum of n rational tangles
and easily generate a Heegaard diagram of genus n for the initial tangle: in fact, it
is sufficient to give as input the values of p and q for every tangle, the data of how
they are glued together and the Alexander grading of the whole tangle. Of course, as
the number of rational tangles needed to obtain the initial tangle grows, the number
of generators of the nice Heegaard diagram that we obtain will grow as well; this
is something important to keep in mind when trying to compute HFT as a higher
number of generators will require more time to do the computations.

With the [nicepy] Package and the [PQM.m] Mathematica Software developed by
Claudius Zibrowius, it was possible to compute several invariants for some families
of tangles, obtaining some promising results in the search for some general patterns.

The families of tangles that were mostly investigated are:

• the "natural" gluing of a rational tangle and its mirror image, i.e. Qp/q +Q−p/q

for q odd;

• the family of tangles of the form Qp/q +Q1/(2n) for q odd.

See Figure 2 to see two examples of elements of the families described.

Figure 2: The tangle Q3/7 glued with its mirror image Q−3/7 (on the left) and the
tangle Q1/3 glued with Q1/2 (on the right).

In Chapter 5, it is possible to see the results obtained and the possible patterns
that arise from these initial computations. Among these possible formulas devel-
oped, one stands out for its generality and for being in agreement with the known
multicurve invariants of Pretzel tangles; we report it here.



INTRODUCTION 3

Conjecture 0.1 (Conjecture 5.11). Let Sp/q(2n) be the 4-ended tangle obtained as
Sp/q(2n) = Qp/q +Q1/2n, where p/q ∈ QP1, q an odd integer and 0 < 2n · p < q.

Then,

HFT
(︁
Sp/q(2n)

)︁
= (q − 2n · p) · r (1/(2n)) + p ·

(︄
n−1∑︂
i=0

s4 (1/(2i+ 1))

)︄
.

Outline of the thesis

We present here the structure of the thesis.

Chapter 1 is devoted to the introductions of all the topological objects that we
will need through the developing of this thesis. It begins with a brief discussion about
n-manifolds and presents some basic properties that will be needed throughout the
rest of the thesis. We then explore handle decompositions and Heegaard splittings,
which serve as the fundamental concepts for the subsequent development of Heegaard
diagrams and Heegaard Floer Homology. We then shift our interest to knots and
tangles, focusing in particular on 4-ended tangles. Following the basic definitions, we
establish a covering space for the 4-punctured sphere (the ambient space in which we
embed 4-ended tangles), which allows us to define a highly significant and practical
family of tangles, known as rational tangles. We moreover give the foundations of
an arithmetic for 4-ended tangles. To conclude the first chapter, we provide a brief
overview of the theory of sutured, bordered, and sutured bordered manifolds. These
are extensions of the concept of manifolds and, like manifolds, have associated a
falvor of Heegaard Floer Homology.

Chapter 2 details the construction of Heegaard diagrams for all the objects pre-
sented in Chapter 1. We begin by constructing Heegaard diagrams for closed 3-
manifolds and introducing Heegaard moves and pointed Heegaard diagrams. We
also explore the relationship between Morse theory and closed Heegaard diagrams,
understanding how a Morse function on a 3-manifold can define a diagram. We then
move on to constructing Heegaard diagrams for sutured, bordered, and sutured bor-
dered manifolds, highlighting both similarities and differences from the closed case.
Additionally, we present explicit algorithms for constructing Heegaard diagrams for
knots and discuss how they can be regarded as a special case of sutured diagrams.
Lastly, we construct Heegaard diagrams for tangles and focus on those for rational
tangles; we also show how these diagrams can be interpreted as a special case of
bordered sutured diagrams.

Chapter 3 explores the construction of various types of Heegaard Floer Homol-
ogy, following the framework established in Chapter 2. We begin by developing in
detail the hat version ˆ︂HF for closed 3-manifolds, providing a comprehensive overview
of the machinery needed to compute the chain complex ˆ︂CF. Additionally, we include
a concrete example: ˆ︂HF(L(p, q)). Next, we turn our attention to Sutured Floer Ho-
mology SHF and Knot Floer Homology HFK, seeing how the latter can be viewed as
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a special case of the former. Finally, we construct Tangle Heegaard Floer Homology,
the primary focus of the chapter, and provide a detailed examination of the invariant
produced by this theory.

Chapter 4 introduces the central notion of nice Heegaard diagrams, understanding
how it simplifies the computation of Heegaard Floer Homology for closed 3-manifolds.
We begin by examining the Nicefication Algorithm for closed Heegaard diagrams
in detail, which allows us to construct a nice Heegaard diagram from a generic
one without affecting its admissibility. We then generalise the algorithm to other
settings, including bordered diagrams, sutured diagrams, bordered sutured diagrams,
and peculiar diagrams. Finally, we discuss some modifications made to the original
algorithm while implementing [nicepy] to optimise the final result.

In Chapter 5, we discuss the results obtained by applying HFT to the families
of tangles Qp/q + Q−p/q for q odd and Qp/q + Q1/(2n) for q odd. These results were
obtained with the use of the Python software [nicepy] and the Mathematica package
[PQM.m]: the former computed a nice Heegaard diagram for the investigated tangles,
which was then passed to the latter software to obtain their peculiar modules CFT∂ .
These modules were then expressed as multicurves and collected in tables, presented
in this chapter. We then discuss possible patterns that HFT seems to follow for some
sub-families of tangles and conjecture more general formulas.

Appendix A is a manual for the [nicepy] Python package. It contains instructions
for setting the input (for closed, bordered, sutured, and tangle Heegaard diagrams)
and additional parameters that can be set for a run, along with examples. Examples
of outputs and a description of the different stages of a run are also provided.



Chapter 1

Topologist’s toolbox

This first chapter is intended to provide a brief overview of all the topological objects
that we will need throughout the thesis. Each section also includes one or more
references for further reading.

1.1 Basics on 3-manifolds

In the first section, we provide an introduction to the concept of a manifold and its
properties.

In rough terms, an n-manifold is a topological space that looks locally like the
Euclidean space Rn. To make this idea precise, we introduce the concept of charts,
which are homeomorphisms from a subset of the manifold to an open subset of
Rn that provide a local coordinate system. Using charts, we can define important
concepts such as the tangent space, differentiability and orientation.

The main reference used for this section is [Bar22].

Definition 1.1 (n-dimensional chart). Let Y be a topological space. An n-dimensional
chart for Y at a point y ∈ Y is a homeomorphism

Y Rn

U V,

⊃ ⊃

Φ

where U is an open neighbourhood of y and one of the following holds:

(i) V is an open subset of Rn, or

(ii) V is an open subset of the upper half-space Hn = {(x1, . . . , xn) ∈ Rn | xn ≥ 0}.

We distinguish between charts of type (i), when case (i) occurs, and charts of type
(ii), when case (ii) occurs.

5



6 CHAPTER 1. TOPOLOGIST’S TOOLBOX

Definition 1.2 (n-dimensional atlas, transition maps). An n-dimensional atlas A
for a topological space Y is a family of n-dimensional charts A = {Φi : Ui → Vi}i∈I
such that "they chart all Y ", i.e. ∪i∈IUi = Y .

The transition maps of A are the maps that allow us to go from one chart to
another, i.e. the maps of the form

Rn Rn

ϕi (Ui ∩ Uj) ϕj (Ui ∩ Uj)

⊃ ⊃
Φj◦Φ−1

i

for i, j ∈ I.

Definition 1.3 (n-manifold). A topological space Y is said to be an n-dimensional
topological manifold (or n-manifold), if

1. it is second-countable (i.e. its topology has a countable basis),

2. it is Hausdorff (i.e. open subsets separate points),

3. for every y ∈ Y there exists an n-dimensional chart of type (i) at y.

Moreover, we introduce the notion of closedness for a manifold, which we will
require for the construction of the hat version of Heegaard Floer Homology.

Definition 1.4 (Closed n-manifold). An n-manifold Y is said to be closed if it is
compact.

We now generalise to the case in which we admit also charts of type (ii), obtaining
n-manifolds with boundary.

Definition 1.5 (n-manifold with boundary). A topological space Y is said to be an
n-dimensional topological manifold with boundary (or n-manifold with boundary), if

1. it is second-countable (i.e. its topology has a countable basis),

2. it is Hausdorff (i.e. open subsets separate points),

3. for every y ∈ Y there exists an n-dimensional chart of type (ii) at y.

Remark 1.6. Let Y be an n-manifold with boundary. The boundary of Y , denoted
by ∂Y , is the set of all boundary points of Y , described in charts as

∂Y =
⋃︂
i∈I

Φ−1
i ({xn = 0} ∩ ImΦi).

Roughly, a point y ∈ Y is a boundary point if it does not admit a chart of type (i).

Another property of manifolds that we will request for Heegaard Floer homolo-
gies, is orientability. In order to define this new property, we need to restrict ourselves
to smooth manifolds.
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Definition 1.7 (Smooth atlas, smooth n-manifold (with boundary)). An atlas is
smooth if all the transition maps are smooth (i.e., C∞).

A smooth n-manifold (with boundary) is an n-manifold (with boundary) together
with a smooth atlas. This is also sometime called a differentiable manifold (with
boundary) of class C∞.

We also need to define a relation between atlases.

Definition 1.8 (Compatible atlases, maximal atlas). Two smooth atlases A =
{Φi}i∈I and A′ = {Φ′

j}j∈J are said compatible if every change of chart is smooth,
i.e., if the union A ∪ A′ is still a smooth atlas. A smooth atlas is called maximal if
it is not contained in any strictly larger compatible smooth atlas.

Furthermore it is possible to see that the following proposition holds.

Proposition 1.9 ([Bar22, Proposition 1.9]). Let Y be a smooth manifold. Then
every smooth atlas is contained in a unique maximal smooth atlas and two atlases
are contained in the same maximal atlas if and only if they are compatible.

In what follows, we then assume that each atlas describing a smooth manifold is
maximal.

Example 1.10. We can see some basic examples of smooth n-manifolds and n-
manifolds with boundary.

1. Rn is a smooth n-manifold. As charts, we can take identity maps on some
covering; therefore it is also smooth. Notice that it is not closed: it has no
boundary, but it is not compact.

2. Analogously, an open set U ⊂ Rn is an n-manifold, not closed for the same
argument as above.

3. A closed set C ⊂ Rn is a smooth n-manifold with boundary.

4. The sphere Sn is a smooth, closed n-manifold.

Consider the sphere as the following subset of Rn+1, with the topology induced
by Rn+1

Sn =
{︁
x = (x1, . . . , xn+1) ∈ Rn+1 | |x|Rn = 1

}︁
⊂ Rn+1.

Then consider the two open subsets UN = Sn∖{N} and US = Sn∖{S}, where
N = (0, . . . , 0, 1) is the north pole and S = (0, . . . , 0,−1) is the south pole. We
want to construct an atlas with only two charts, defined on these open subsets
that cover the sphere. Notice that this is the minimum number of charts that
we can use for an atlas of Sn: if we could construct an atlas with only one
chart, then it would mean that Sn is homeomorphic to an open subset of Rn,
which is false since Sn is compact.

We define the charts ΦN : UN → Rn and ΦS : US → Rn to be the stereographic
projections (from N and S respectively); in coordinates this is expressed as
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UN Rn US Rn

x 1
1−xn+1

(x1, . . . , xn) x 1
1+xn+1

(x1, . . . , xn).

ΦN ΦS

The transition map ΦS ◦ Φ−1
N is described as

Rn ∖ {0} Rn ∖ {0} x x

|x|2Rn
.

ΦS◦Φ−1
N

Therefore, Sn is a smooth, closed n-manifold.

We now want to define an orientation on Y using the charts. This is done using
a smooth atlas and the Jacobian matrices1 of the transition maps.

Definition 1.11 (Equioriented charts, oriented atlas). Two smooth charts Φ1 :
U1 → V1 and Φ2 : U2 → V2 of some manifold Y are said to be equioriented if
det Jf (x0)(Φ2 ◦ Φ−1

1 ) > 0 for any x0 ∈ Φ1(U1 ∩ U2), where J(f) is the Jacobian
matrix of f .

An atlas is oriented if every pair of charts are equioriented.

We can now define oriented manifolds.

Definition 1.12 (Oriented n-manifold (with boundary)). A smooth n-manifold Y
is said to be orientable if it admits an oriented atlas. An orientation of Y is a choice
of an oriented atlas of Y .

Example 1.13 (Sn is orientable for any n ≥ 1). We can easily prove that Sn is
orientable for any n ≥ 1.

The case n = 1 is done by hand. To prove the case n ≥ 2, one uses the fact that
local diffeomorphisms do not change sign on connected sets and have sign different
than zero. Therefore, the signs of the Jacobians (which are local diffeomorphisms)
of the only transition map are different than zero and they all agree because the
intersection UN ∩ US is connected. If the sign is positive, then we are done. If it is
negative, we just to post-compose the second chart to a map that swaps the last two
coordinates, obtaining the following new chart

US Rn

x 1
1+xn+1

(x1, . . . , xn−2, xn, xn−1).

Φ′
S

1Let f be a map f : U ⊂ Rn → Rm, defined by x = (x1, . . . , xn) ↦→ (f1(x), . . . , fm(x)). Recall
that the Jacobian of f in x0 ∈ U is defined to be

Jf (x0) =

⎛⎜⎜⎜⎜⎝
∂f1
∂x1

(x0) · · · ∂f1
∂xn

(x0)

...
. . .

...
∂fm
∂x1

(x0) · · · ∂fm
∂xn

(x0)

⎞⎟⎟⎟⎟⎠ .
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Figure 1.1: Handlebody of genus 1.

1.2 Handle decomposition and Heegaard splittings

The underlying idea of Heegaard splittings (also called Heegaard decompositions) is
to decompose a 3-manifold into simpler pieces, called handlebodies. Intuitively, we
carve out some holes in the 3-manifold, for example g holes, obtaining a handlebody
of genus g. Then, we consider the complement of this handlebody in our 3-manifold,
obtaining another handlebody of genus g that shares a boundary with the previous
handlebody. This forms a Heegaard splitting.

The main references for this section are [OS06a] and [Hom19].

We are going to always assume that 3-manifolds are closed and oriented and that
homeomorphisms are orientation-preserving (unless otherwise stated).

Definition 1.14 (n-dimensional k-handle). Consider 0 ≤ k ≤ n. We call a n-
dimensional k-handle a copy of Bk × Bn−k, attached to the boundary of a smooth
n-manifold Y along

(︁
∂Bk

)︁
× Bn−k by an embedding ϕ :

(︁
∂Bk

)︁
× Bn−k ↪→ ∂Y . As

there is a canonical way to smooth corners, we think of Y with the attached handle
as a smooth n-manifold.

Often, we think about an n-dimensional k-handle as a k-cell that we thicken-up
until it become n-dimensional.

Definition 1.15 (Handlebody of genus g). We define an handlebody of genus g to
be a 3-dimensional ball to which we attach g 3-dimensional 1-handles to it.

We can clearly see that the boundary of a handlebody of genus g is a surface of
genus g.

Definition 1.16 (Heegaard splitting of genus g). Let Y be a closed and oriented 3-
manifold. An Heegaard splitting of Y of genus g (also called Heegaard decomposition)
is a decomposition

Y = H1 ∪Σ H2

in which H1 and H2 are handlebodies of genus g such that ∂H1 ≃ ∂H2 (they are
homeomorphic via an orientation-reversing homeomorphism).

Example 1.17 (First examples). We see now some examples that can help to visu-
alise the above definition.
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Figure 1.2: Heegaard splitting for S3 ≃ R3 ∪ {∞}.

1. Heegaard splitting of genus 0 of S3

Consider the sphere S3, and cut it in half into two hemispheres H1 and H2,
namely H1 = {(x, y, z, w) ∈ S3 ⊂ R4 | w ≥ 0} and H2 = {(x, y, z, w) ∈ S3 ⊂
R4 | w ≤ 0}. We have that Hi ≃ B3, i.e., they are diffeomorphic to the
3-dimensional ball, and that ∂H1 = ∂H2 ≃ S2. Therefore, this is a genus 0
Heegaard decomposition of S3.

2. Heegaard splitting of genus 1 of S3

Regard S3 as the compactification of R3 with a point to the infinite. Consider
a closed tubular neighbourhood of the circle given by the z-axis and the point
to the infinite, this is the first genus-1 handlebody H1. Let H2 be the closure
of the complement of H1; this is another handlebody of genus 1. Therefore we
have constructed a genus 1 Heegaard splitting of S3.

3. Heegaard splitting of genus g of S3

Starting from the 0-genus splitting, we can obtain a g-genus splitting for any
g in the following way. Take the two 3-balls H1, H2, in H1 "drill" g unknotted
holes (they have to be disjoint) and in H2 attach g disjoint handles on the
outside; call H ′

1, H
′
2 the two new handlebodies obtained. Now we need to

identify each handle of H ′
2 with a hole in H ′

1. Therefore, the boundary Σ′ of
the handlebodies has genus g and we have that S3 = H ′

1 ∪Σ′ H ′
2.

4. Heegaard splitting of genus 1 of lens spaces L(p, q)

We begin by giving the definition of such space. Let p, q be coprime integers
and consider the 4-dimensional sphere embedded in C2

S3 =
{︂
(z, w) ∈ C2

⃓⃓
|z|2 + |w|2 = 1

}︂
⊂ C2.

Consider now the following Z/pZ action on S3
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Z
pZ × S3 S3

(k + pZ, (z, w))
(︂
e

2πik
p z, e

2πikq
p w

)︂
.

We define L(p, q) as the quotient of this action.

We can also see that L(p, q) is a closed, 3-dimensional, oriented, smooth man-
ifold, whose orientation is given by the initial orientation of S3. In fact, since
the Z/pZ action acts freely, properly and continuously, we have that L(p, q) is
a closed 3-manifold and that the projection p : S3 → L(p, q) is a local homeo-
morphism; moreover, since the action is smooth (i.e., for every ā ∈ Z/pZ the
map S3 → S3 defined by x ↦→ ā · x is smooth), we also have that L(p, q) has a
unique smooth structure that makes the projection p a local diffeomorphism.

We want to construct now a genus 1 Heegaard splitting. Consider the following
two subsets of S3

X =

{︃
(z, w) ∈ C2

⃓⃓
|z|2 + |w|2 = 1 and |z|2 ≥ 1

2

}︃
,

Y =

{︃
(z, w) ∈ C2

⃓⃓
|z|2 + |w|2 = 1 and |w|2 ≥ 1

2

}︃
.

These are both diffeomorphic to the solid 1-torus, S1×B2 and their intersection
is exactly the boundary of a torus S1 ×S2. We can now notice that the action
of Z/pZ on S3 = X ∪ Y preserves these two tori set-wise. More precisely, the
quotients X/Zp and Y/Zp are again diffeomorphic to the solid torus. To see
this, we pick r ∈ N with r · q ≡ −1 mod p; it is straightforward to see that the
maps

X
Z/pZ S1 ×B2

[(z, w)]
(︂
zp

|zp| ,
z−qw
|z1−q |

)︂
Φ Y

Z/pZ S1 ×B2

[(z, w)]
(︂
wp

|wp| ,
zwr

|w1+r |

)︂
Ψ

are well-defined diffeomorphisms and that Φ is orientation-preserving: to see
the latter, it suffices to show that Φ is orientation-preserving at a single point;
using that p > 0, one can calculate explicitly that Φ is orientation-preserving
at the point [(1, 0)] ∈ X/Z/pZ and hence the statement follows.

This shows that
L(p, q) = X/Zp ∪ Y/Zp

is a genus 1 Heegaard decomposition of the lens space L(p, q).

At first glance, it may seem that admitting a Heegaard splitting is a quite special
property. This is in reality not true, as any closed 3-manifold admits a Heegaard
splitting; a proof of this fact was given by Singer in [Sin33].
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Theorem 1.18 (Existence of Heegaard splitting). Let Y be a closed, orientable
3-manifold. Then it admits a Heegaard splitting.

Proof ([Hom19]). Cairns and Whitehead proved that to every smooth manifold can
be given a simplicial structure, i.e. a triangulation.

Consider now the 1-skeleton of a triangulation of Y (vertices and edges); this
is a graph embedded in Y . Let H1 be a small regular closed neighbourhood of the
1-skeleton: to visualise this think of replacing each vertex with a closed ball and
each edge with a solid cylinder between the two balls at the extremities. It is clear
that H1 is a handlebody of some genus g. If we now call H2 the closure of Y ∖H1,
we see that this is another handlebody of genus g given by a regular neighbourhood
of a graph which vertices stay in the centre of the triangles and tetrahedrons of the
1-skeleton above.

As ∂H1 = ∂H2, we have a Heegaard splitting of Y .

Another way to construct a Heegaard splitting for a generic 3-manifold is to ex-
ploit a self-indexing Morse function on it. We will explore this particular construction
briefly in Section 2.3.

As we have seen in the examples above, there could be different choices of Hee-
gaard splittings for the same 3-manifold. We are now going to see some definitions
which will give us a clearer idea of how these choices are related one to another.

Definition 1.19 (Homeomorphic Heegaard splittings). Given two Heegaard split-
tings of Y , namely

Y = H1 ∪Σ H2 = H ′
1 ∪Σ′ H ′

2,

we say that they are homeomorphic if there exists a homeomorphism Y Y
ϕ

such that ϕ(Hi) = H ′
i for i = 1, 2.

There is also a stricter relation between Heegaard splittings that we can consider.

Definition 1.20 (Isotopic Heegaard splittings). Given two Heegaard splittings of
Y , namely

Y = H1 ∪Σ H2 = H ′
1 ∪Σ′ H ′

2,

we say that they are isotopic if there exists a map Y × [0, 1] Y
ψ such that

1. ψ|Y×{0} = idY ;

2. ψ|Y×{t} is a homeomorphism for any t;

3. ψ|Y×{1} sends Hi to H ′
i for i = 1, 2.

Remark that if two splittings are isotopic, then are also homeomorphic: we can
use ψ|Y×{1} as homeomorphism.
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Definition 1.21 (Stabilisation). Let Y = H1∪ΣH2 be a Heegaard splitting of genus
g. A stabilisation (or 1-fold stabilisation) of H1 ∪Σ H2 is a genus g + 1 Heegaard
splitting of Y obtained by adding one more handle to the existing splitting. More
precisely, it is constructed in the following way. Choose two point on Σ and connect
them with two arcs γ1 and γ2 with the following properties:

• γ1 is embedded in Σ;

• γ2 is embedded in H1;

• the closed curve obtained by γ1 ∪ γ2 bounds an embedded disc D⋆ completely
in H1.

Let N be a small tubular neighbourhood of γ2; define then H ′
1 = H1 \N , and H ′

2

as the union H2 ∪N . We call an n-fold stabilisation a sequence of n stabilisations.

Remark 1.22. Notice that the isotopy type of a stabilisation of a Heegaard splitting
does not depend by the choice of γ1 and γ2. In fact, performing a stabilisation
means to choose a disc D⋆ ⊂ H1 as above described. Since D⋆ is contractible in the
handlebody H1, the stabilisation does not depend on its position.

Therefore we can talk of the stabilisation of a Heegaard splitting.

Example 1.23. As an example, we can see that in Example 1.17, the genus 1
decomposition of S3 is the stabilisation of the Heegaard decomposition of genus 0.

We have a theorem of Reidemeister and Singer, which shows us that any two
splittings of a 3-manifold can be connected via stabilisations. A proof can be found
in [Rei33] and [Sin33].

Proposition 1.24. Let Y be a 3-manifold with two different Heegaard splittings
Y = H1 ∪Σ H2 = H ′

1 ∪Σ′ H ′
2 of genus g and g′ respectively. Then, for k large

enough, the (k − g′)-fold stabilisation of the first decomposition is diffeomorphic to
the (k − g)-fold stabilisation of the second decomposition.

1.3 Knots and tangles

In this section, we will introduce the concepts of knots and tangles and explain how
we can work with them. As main reference, one can look at Section I.1 of [Zib17].
Another reference which can be very helpful for visualising this notions, is [Ada94].

We first introduce the notion of knot.

Definition 1.25 (Knot). A knot K is an embedding of S1 into the closed 3-ball B3

K : S1 B3 ⊂ R3,

i.e. a simple, closed curve in the 3-dimensional space.



14 CHAPTER 1. TOPOLOGIST’S TOOLBOX

In a similar fashion, we introduce tangles.

Definition 1.26 (Tangle). A tangle T is an embedding of a disjoint union of intervals
and circles into the closed 3-ball B3

T :
(︂
(
⨆︁n
i=1 I) ⊔

(︂⨆︁m
j=1 S1

)︂
, ∂
)︂ (︁

B3, S ⊂ ∂B3
)︁

such that the endpoints of the interval lie on a fixed, oriented circle S ∼= S1 contained
in the boundary of B3, together with a labelling of the arcs of S ∖ im(T ). We call a
tangle 2n-ended if the number of intervals is n. Moreover, the images of the intervals
are called open components, the images of the circles are called closed components;
these components are usually labelled by variables t1, t2, . . . , which we call colours
of T.

Remark 1.27. We will mainly focus on 4-ended tangles without any closed compo-
nents, that is, tangles of the form

T : (I1 ⊔ I2, ∂)
(︁
B3, S ⊂ ∂B3

)︁
.

However, we will discuss tangles in general, including 4-ended tangles that admit
closed components. We will make it clear when we are restricting ourselves to the
family of 4-ended tangles without closed components.

We will consider knots and tangles up to ambient isotopy, defined as follows.

Definition 1.28 (Ambient isotopy). Let K and L be two knots B3 ⊂ R3. An
ambient isotopy from K to L is a continuous map ϕ : B3 × [0, 1] → B3 such that:

1. for each t ∈ [0, 1], ϕt : B3 → B3 is a homeomorphism;

2. ϕ0 = id, the identity map on B3;

3. ϕ1 ◦K = L.

Note that the orientation must be preserved by any ambient isotopy.
The definition for the tangle case is analogous, with the only difference being

that we require ϕt to keep the boundary of B3 fixed, for any t ∈ [0, 1].
When we want to say that two tangles (or knots) A1 and A2 are isotopic, we

write A1 ≃ A2.

Remark 1.29 (On the definition of ambient isotopy). We can visualise a knot as a
string in the 3-dimensional ball, and a 2n-ended tangle as a collection of n strings
and m circles in the 3-dimensional ball, with the endpoints of the strings laying
on the fixed circle S. An ambient isotopy is the act of rearranging these strings
in 3-dimensional space (hence the word ambient) without allowing any string to
pass through any other string (including itself) and allowing any deformation of the
strings (hence the word isotopy). Moreover, for a tangle, we do not allow moving
the endpoints of the strings or modifying the orientation of the fixed circle S.

Notice that in an ambient isotopy, we are not allowed to erase some part of the
knot or tangle by shrinking any part of it down to a point.
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Remark 1.30 (On the definition of ambient isotopy for tangles). The definition of
ambient isotopy given above is something in the middle between allowing all the
isotopies and allowing only isotopies that fix the whole boundary sphere. In this
way, we construct equivalence classes in a reasonable way, differentiating between
the right tangles. For instance, if the classes were obtained by quotienting for all the
isotopies, all the rational tangles (for the reader that do not knows what a rational
tangle is, we will define them in Section 1.5) would fall in the same class. In the
same way, fixing all the boundary would be a too rigid requirement.

To represent knots and tangles on paper, we define their diagrams.

Definition 1.31 (Knot diagram). A knot diagram E is immersion of S1 into the
closed 2-disc

E : S1 D2 ⊂ R2,↫→

where all the self-intersections are transverse.
Moreover, we require that the image is a graph with the following properties:

1. vertices can only have valence 4;

2. every vertex carries the under/over information.

We call regions the connected components of D2 ∖ im(E).

Definition 1.32 (Tangle diagram). A tangle diagram D is an immersion of intervals
and circles into the closed 2-disc,

D :
(︂
(
⨆︁n
i=1 I) ⊔

(︂⨆︁m
j=1 S1

)︂
, ∂
)︂ (︁

D2, ∂D2
)︁
,↫→

where all the self-intersections are transverse.
Moreover, we require that the image is a graph with the following properties:

1. vertices can only have valence 1 or 4;

2. every 4-valent vertex carries the under/over information;

3. we have a labelling with some index set {a, b, c, . . . } of the arcs on the border
of D2 minus the image of D, i.e ∂D2 ∖D(∂ (⊔ni=1I)).

We call regions the connected components of D2∖ im(D); the ones that intersect
∂D2 are called open regions, the others closed regions. We say that a diagram is
connected if for any open regions we have that its intersection with ∂D2 is connected.

From here, unless specified otherwise, diagrams are assumed to be connected and
have at least one crossing.
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Remark 1.33 (Knots, tangles and their diagrams). We want to understand how
loose we can be with the notation when speaking of a knot or a tangle and one of its
diagrams. We claim that it is always possible to pass from one to the other without
troubles. We prove that it is possible to so for tangles and tangles diagrams, the
knot case is done analogously.

We start with a tangle diagram D for some tangle T , we want to reconstruct the
tangle starting from D. Let us consider the image of D to stay in the plane {z = 0},
i.e. Im(D) ⊂ D2 = B3 ∩{z = 0}. We can construct T by pushing the components of
the singularities of the immersion D into {z < 0} and {z > 0}, deciding which one
goes where using the under/over data of the crossing.

We now see how to construct a diagram starting from a tangle. Let T be a tangle,
consider an embedded disc D2 ⊂ B3 bounding the fixed circle S ∼= S1. Then we can
generate a well-defined tangle diagram D for the tangle by simply projecting B3 onto
this disc D2.

Therefore, when we will talk about a tangle (respectively, knot) diagram, it will
be clear which unique tangle (respectively, knot) is represented by it.

Clearly there are multiple ways to represent the same knot or the same tangle
with a diagram, and by moving the perspective to the 3-dimensional context and
operating some ambient isotopy it is clear when two diagrams represent the same
object. To express ambient isotopies in a diagram, we use Reidemeister moves, which
help us to to move between diagrams representing the same knot or tangle without
having to work in the 3-dimensional space. We now define these moves, more details
can be found in [Ada94], Section 1.3.

Definition 1.34 (Reidemeister moves). We call Reidemeister moves the following
three operations that we can do on a knot or a tangle diagram. In each of these move,
we are assuming to change the diagram only locally in the section stated, leaving all
the rest unchanged.

• The first Reidemeister move is called twist move; it allows us to put in or take
out a twist in the diagram.

Figure 1.3: The first Reidemeister move.

• The second Reidemeister move is called poke move; it allows us to either add
two crossings or remove two crossings.
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Figure 1.4: The second Reidemeister move.

• the third Reidemeister move is called slide move; it allows us to slide a strand
of the diagram from one side of a crossing to the other side of the crossing.

Figure 1.5: The third Reidemeister move.

In 1926, Reidemeister proved the following result.

Theorem 1.35 (Reidemeister, 1926). If we have two distinct projections of the same
knot, we can get from the one to the other via a series of Reidemeister moves and
planar isotopies.

It is possible to generalise such result in the case of tangles, as follows.

Proposition 1.36 ([Zib17]). Let T1 and T2 be two oriented connected tangle dia-
grams that represent the same tangle. Then it is possible to obtain T2 operating a
sequence of Reidemeister moves T1, obtaining connected diagrams as intermediate
steps.

Proof ([Zib17]). By Reidemeister’s theorem (Theorem 1.35), it follows that we can
always find a sequence of Reidemeister moves connecting the two diagrams.

We want now to ensure that all intermediate diagrams are connected. Let t1 be
one open strand of the tangle that is near the boundary; before starting the sequence
of Reidemeister moves, we deform t1 following the boundary of the disk, so that it
goes once around the whole diagram, using the second Reidemeister move when we
find another strand in our way, "isolating" the border regions of the diagram. We
now apply the sequence of Reidemeister moves and we undo the move done on t1
once we have arrived at T2.

1.4 A covering space for S2
4

To proceed with our discussion on tangles and to define rational tangles, we need
to define a covering space for the 4-punctured sphere S2

4 . This will be necessary on
multiple occasions, such as when we talk about the invariants yielded by HFT.
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As main reference for this section, one can see Section 2.2 of [Aub22].

Recall that we defined a 4-ended tangle as an embedding

T :
(︂
(I ⊔ I) ⊔

(︂⨆︁m
j=1 S1

)︂
, {v1, v2, u1, u2}

)︂ (︁
B3,S ⊂ ∂B3

)︁
,

where we denoted by v1, v2, u1, u2 the endpoints of the two open strings, which are
mapped to T (v1), T (v2), T (u1), T (u2) ⊂ S, where S ∼= S1 is the fixed circle on ∂B3.

Definition 1.37 (S2
4 ). We define the 4-punctured sphere to be S2

4 = ∂
(︁
B3
)︁
∖

(∂(ImT )). We are going to refer to the 4 punctures as north-west, south-west, south-
east and north-east.

Hence, the images of the strings’ ends T (v1), T (v2), T (u1), T (u2) divide S into
four components, which we call α-arc sites (or simply sites), denoted by the let-
ters a, b, c, d starting from the component between the north-west and south-west
punctures and going counter-clockwise. We will use colours to identify the different
sites: red for a, blue for b, green for c and yellow for d (see Figure 1.6). Notice
that these arcs divide S2

4 in two components, that we can distinguish thanks to the
orientation of S: the back component and the front component. The back component
is the one whose boundary orientation agrees with the orientation of S (using the
right-hand rule and a normal vector field pointing into B3), the other one is the front
component.

Figure 1.6: The 4-punctured sphere S2
4 with colours on the sites.

We can now construct a covering space for S2
4 , namely

R2 ∖ Z2 S2
4 .

η

To prove that this is a covering space, we see how we can regard the 4-punctured
sphere as a quotient of R2 ∖Z2. Let G be the subgroup of the isometries of R2 ∖Z2

generated by sv and ρ, where sv is the translation for a vector v ∈ (2Z)2 (we take
"even vectors" so that that translations of the front is mapped to the front and
translations of the back to the back) and ρ is the rotation (x, y) ↦→ (−x,−y); we
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then obtain S2
4
∼=
(︁
R2 ∖ Z2

)︁
/G. Therefore, we obtain the covering space induced by

the projection

R2 ∖ Z2
(︁
R2 ∖ Z2

)︁
/G ∼= S2

4 .
η

See Figure 1.7 for a visualisation of the covering space.

Figure 1.7: Covering space for S2
4 .

Lemma 1.38. Let G = ⟨sv, ρ | v ∈ (2Z)2⟩, with ρ, sv as above defined. Then,
G ∼= (Z/2)⋉ (2Z)2.

Sketch of proof. Notice that

• ρ2 = id;

• ρ ◦ sv = s−v ◦ ρ for any v ∈ (2Z)2;

• sv ◦ sw = sv+w for any v, w ∈ (2Z)2.

We then have the following bijection of sets

(Z/2)⋉ (2Z)2 G

(r, v) ρr ◦ sv.

∼=

At the level of groups, we obtain G ∼= (Z/2) ⋉ (2Z)2 as we wanted, where the
multiplication in the semi-direct product has to be read from right to left (since it
is a composition of functions) and it is given by

(r2, v2) ◦ (r1, v1) = (r1 + r2, v1 + (−1)r1v2) .

We now see how the action of SL2(Z) in R2 ∖ Z2 induces an action on the 4-
punctured sphere, namely the generation of half-twists. The group of 2× 2 matrices
with entries in Z is generate by τ1 and τ2, where

τ1 =

(︃
1 1
0 1

)︃
τ2 =

(︃
1 0
1 1

)︃
.

Observe now that for any τ ∈ SL2(Z) we have that
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Figure 1.8: Action of SL2(Z) on S2
4 .

• τ ◦ sv = sτ(v) ◦ τ for any v ∈ (2Z)2;

• τ ◦ ρ = ρ ◦ τ .

Therefore, the action of SL2(Z) on R2 ∖ Z2 induces an action on the quotient S2
4
∼=(︁

R2 ∖ Z2
)︁
/G; we still denote the generators of this action by τi for i = 1, 2. We

can visualise this action on S2
4 as done in Figure 1.8. It is then clear that τ1 is a

horizontal half-twist, i.e. the addition of a crossing on the right and that τ2 is a
vertical half-twist, i.e. the addition of a crossing on the bottom.

Remark 1.39 (Action of SL2(Z) on some lines in R2). It is worth to spend a couple
of words about the action of SL2(Z) on some lines in the plane passing through the
origin, as we will need this notion to discuss HFT. Consider the line of slope p/q, for

p, q ∈ Z coprime, namely X =

{︃
t ·
(︃
q
p

)︃ ⃓⃓
t ∈ R

}︃
. Then, for any n ∈ Z∖{0} we have

that

τn1 (X) =

{︃
t ·
(︃

q
p+ n · q

)︃ ⃓⃓
t ∈ R

}︃
which is the line of slope (p+ nq)/q = n+ p/q and

τn2 (X) =

{︃
t ·
(︃
n · p+ q

p

)︃ ⃓⃓
t ∈ R

}︃
which is the line of slope p/(np+ q) = 1/(n+ q/p).

1.5 Rational tangles

We will now focus on the family of rational tangles. This type of tangle will prove
useful later on when constructing Heegaard diagrams for general tangles. Specifically,
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we will often cut a tangle into rational pieces, construct diagrams for each piece, and
then glue them back together to obtain a Heegaard diagram for the initial tangle.

For this section, we mainly follow [Aub22], Sections 2.2 and 2.3.

Rational tangles are a special type of 4-ended tangles with a unique property:
they can be fully described using a fraction of the form p/q, where p and q are coprime
integers and q is positive. We will usually write that p/q ∈ QP1, where QP1 is the
rational projective line, represented as QP1 ∼= Q∪{∞}. One can think of elements of
QP1 as the reduced slopes of lines in Q2, where ∞ = 1/0 corresponds to the vertical
line.

We start by defining the 0 rational tangle and the ∞ rational tangle.

Definition 1.40 (0 rational tangle and ∞ rational tangle). We call 0 rational tangle
(or 0 tangle) the unknot tangle with two horizontal strings; it is denote by Q0.

We call ∞ rational tangle (or ∞ tangle) the unknot tangle with two vertical
strings; it is denote by Q∞.

Figure 1.9: 0 rational tangle (on the left) and ∞ rational tangle (on the right).

To define all rational tangles, we need the notion of continued fraction.

Definition 1.41 (Continued fraction). Let n ∈ Z>0, a1, . . . , an ∈ Z and ai ̸= 0 for
i = 2, . . . , n. We define the continued fraction [a1, a2, . . . , an] as

[a1, a2, . . . , an] := a1 + [a2, . . . , an]
−1,

with the convention that [ ] = ∞.

Remark 1.42 (On the name "continued fraction"). The name "continued fraction"
is justified by the behaviour of these objects. In fact, given a continued fraction
A = [a1, a2, . . . , an], it behaves as the fraction

[a1, a2, . . . , an] ≈ a1 +
1

a2 +
1

a3 +
1

. . . +
1

an
.
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Figure 1.10: Two rational tangles that come from different continued fractions but
are equivalent.

We have therefore a map that sends a continued fraction to an element of QP1. This
map is evidently not injective; for instance, A1 = [2, 3,−2] and A2 = [3,−2, 3] have
the same image:

A1 ↦→ 2 +
1

+3− 1
2

= −2 +
2

5
=

12

5

A2 ↦→ 3 +
1

−2 + 1
3

= 3− 3

5
=

12

5
.

We therefore write A1 ≡ A2 ∈ QP1 if two continued fractions A1, A2 are sent to the
same element of QP1 by this map.

We can now link this notion of continued fraction with the construction of some
particular tangles. Recall the operators τ1 and τ2, defined in Section 1.4, which add
half-twists to a tangle. When we talk about (half-) twists, we distinguish between
positive twists and negative twists: these are defined by the slope of the over-strand:
it that is positive, then the twist is positive, otherwise it is a negative twist. Hence,
we will write τni for n ∈ Z to indicate the operation of adding n half-twists, positive
if n > 0 and negative otherwise.

We can now define rational tangles.

Definition 1.43 (Rational tangles). Rational tangles are 4-ended tangles without
any closed components that are obtained from attaching twists to the bottom and
to the right of the 0 tangle or the ∞ tangle.

Given a continued fraction A = [a1, a2, . . . , an], we define the rational tangle QA

as

QA =

{︄
τa11 τa22 . . . τan2 Q∞ if n is even;
τa11 τa22 . . . τan1 Q0 if n is odd.

An intuitive way to describe rational tangles is to give a succession of half-twist
to attach to one of the trivial tangles.

This notation is quite intuitive, but unfortunately it is not very effective if we
want to have substantially different tangles from different inputs: for instance, the
tangles defined by [2, 3,−2] and [3,−2, 3] are actually equivalent (Figure 1.10).
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In 1970, John H. Conway proved the following theorem, for which a combinatorial
proof was given in [KL04]. Thanks to this result, it is fairly easy to check whether
or not two rational tangles are equivalent.

Theorem 1.44 (Conway, [Con70]). Let A1 and A2 be two continued fractions. The
rational tangles QA1 and QA2 are isotopic if and only if A1 ≡ A2 ∈ QP1.

Hence, using continued fractions it is possible to see when two rational tangles are
actually equivalent. We can try to see it in the previous example with T1 = Q[2,3,−2]

and T2 = Q[3,−2,3]: as seen in Remark 1.42, the continued fractions are sent to the
same element of QP1. Therefore T1 and T2 are indeed the same rational tangle and
we are going to denote it by Q12/5.

In general, given the cleaned continued fraction p/q for p, q ∈ Z coprime, we
denote the associated rational tangle by Qp/q.

1.6 Arithmetic of 4-ended tangles

One characteristic of 4-ended tangles that we will exploit in Chapter 5 is that we
can define arithmetic operations on them. This arithmetic of tangles will help us
simplify the notation and gain a deeper understanding of why the class of rational
tangles is so special. The operations that we are going to define are:

• addition,

• multiplication,

• rotation,

• mirroring,

• inversion,

• flipping.

All of these are well-defined up to isotopy; therefore we can consider them as opera-
tions between classes of tangles.

For this section we mainly follow Section 2 of [KL04] and we assume all the
tangles to be 4-ended tangles.

We begin with the two operations that involve a pair of tangles.

Definition 1.45 (Addition, multiplication). Let T and S be two tangles, which we
represent as a circle (inside which the tangle has all its twists) with four strings that
come out from the angles, the ends of the 2 strings of it.

We define the sum T +S and the multiplication T ∗S of the tangles as it is shown
in Figure 1.11.
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Figure 1.11: Sum and multiplication of two 4-ended tangles.

The remaining operation are defined on a single tangle, as follows.

Definition 1.46 (Rotation). We define the rotation of a tangle T∗, denoted by r(T∗),
to be a counter-clockwise rotation of the tangle by π/2.

Figure 1.12: Rotation of a tangle T∗.

Definition 1.47 (Mirror image). We define the mirror image of a tangle T , denoted
by m(T ), to be the tangle obtained by swapping all the crossings of T .

Figure 1.13: Mirror image of a tangle.

Definition 1.48 (Inverse). We define the inverse of a tangle T , denoted by i(T ), to
be the tangle m(r(T )).

Figure 1.14: Inverse of a tangle.
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Remark 1.49. There are several properties that one could prove that explain better
of how these operations behave when composed. For instance, one can prove that
m(T + S) = m(T ) + m(S), m(T ∗ S) = m(T ) ∗ m(S) or that for rational tangles
holds m(Qp/q) = Q−p/q.

Another operation that will be very useful is the flip of a tangle.

Definition 1.50 (Flip). Let T∗ be a tangle. A flip is a rotation in the third dimension
by π around some axis. We define the horizontal flip of T∗, denoted by T hflip∗ , as its
rotation around the horizontal axis and the vertical flip of T∗, denoted by T vflip∗ , as
its rotation around the vertical axis.

Figure 1.15: Horizontal flip (on top) and vertical flip (on bottom).

Lastly, we define a particular isotopy obtained with a composition of the above
operations. This isotopy will be essential to prove an important result of stability
result for rational tangles under certain operations. Consider a tangle T∗ and apply
the following isotopy: fix the four ends of the tangle and flip only the inner box
either horizontally or vertically. A graphical representation of this operation can be
found in Figure 1.16

The fact that this is an isotopy comes straight from the definition, as we are just
re-arranging the inner part of the tangle in the 3-dimensional space without moving
the endpoints. using the newly acquired vocabulary, we can say that we proved

T∗ ≃ Q1 ∗ T vflip∗ ∗Q−1

T∗ ≃ Q1 + T hflip∗ +Q−1.

Hence, using the fact that the operations are well-defined between classes of isotopy,
we can add Q−1 to both sides of both equations and obtain

Q−1 ∗ T∗ ≃ T vflip∗ ∗Q−1

Q−1 + T∗ ≃ T hflip∗ +Q−1,

since for the second Reidemeister move Q−1 + Q1 ≃ Q0 ≃ Q−1 ∗ Q1. Similarly, it
also holds

Q1 ∗ T∗ ≃ T vflip∗ ∗Q1

Q1 + T∗ ≃ T hflip∗ +Q1.
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Figure 1.16: Flipping of the inner box with the ends fixed, horizontally (on top) and
vertically (on bottom).

Definition 1.51 (Flype). We call flypes the isotopies of the above form. We distin-
guish between horizontal flypes and vertical flypes according with the above definition
of flips.

Figure 1.17: Flype isotopies for a tangle T∗: horizontal flype (on top) and vertical
flype (on bottom).

We are now able to prove a Lemma which states three distinctive properties of
rational tangles, which will be of use in Chapter 5.

Lemma 1.52 (Flipping Lemma, [KL04]). Let R be a rational tangle. Then

1. R ≃ Rvflip;

2. R ≃ Rhflip;
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3. R ≃ i(i(R)) = r(r(R)).

Proof ([KL04]). The proof of the first two isotopies is done by induction on the
number of crossings. It is clear that the statement holds in the base case, i.e. when
R isQ∞, Q1 orQ−1. Suppose it to be true for all the rational tangles with n crossings.
Let R be a rational tangle with n+ 1 crossings; we have then eight possible cases:

(a) R = L+Q±1,

(b) R = Q±1 + L,

(c) R = L ∗Q±1,

(d) R = Q±1 ∗ L,

where L is a suitable rational tangle with n crossings. We then prove case (a) as in
Figure 1.18 and (d) as in Figure 1.19. The other cases are done analogously.

Figure 1.18: Inductive proof of the Flipping Lemma, case (a).

Figure 1.19: Inductive proof of the Flipping Lemma, case (d). The isotopy comes
from a vertical flype and the equality comes from applying induction two times.

Lastly, the proof of the third isotopy follows from the first two, as we have
i(i(R)) =

(︁
Rhflip

)︁vflip
= r(r(R)).

Apply the Flipping Lemma to the definition of flype, we obtain the following
corollary.

Corollary 1.53. For R a rational tangle holds

Q±1 +R ≃R+Q±1

Q±1 ∗R ≃R ∗Q±1.
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Therefore, more generally, we have that the rational tangles of the form Q±n commute
with any other rational tangle under addition and that Q±1/n commute with any other
rational tangle under multiplication.

Remark 1.54. The above corollary justify the definition of rational tangle gave in
Section 1.5: in fact, one could define a rational tangle to be a tangle obtained from
Q0 or Q∞ by a succession of twists operate on any two adjacent ends of the tangle
(not only on the right or on the bottom as we did). But then, with Corollary 1.53, we
are able to take a rational tangle constructed with this other definition and "push"
all the twists on the right and on the bottom of the tangle, obtaining a rational
tangle according to the definition that we gave.

1.7 Bordered and sutured manifolds

The focus of this thesis is on 4-ended tangles and Tangle Floer Homology HFT.
In [Zib17], the author established a close correlation between HFT, Sutured Floer
Homology SHF (developed by Andreas Juhász in [Juh06]) and Bordered Sutured
Floer Homology (developed by Rumen Zarev in [Zar11]). Therefore, we briefly re-
view bordered manifolds from the perspective of Bordered Heegaard Floer Homology
and discuss sutured manifolds and bordered sutured manifolds to provide a better
understanding of the context in which we are working.

The interest in the theory of bordered sutured manifolds stems from the pos-
sibility of gluing such manifolds together and the good behavior of this gluing at
the level of invariants, which is described by a useful gluing formula for Bordered
Sutured Floer Homology ([Zar11]). This gluing property was then adapted to the
tangle case by utilizing arguments from Bordered Sutured Floer Homology; further
details can be found in Section II.3 of [Zib17].

1.7.1 Bordered manifolds

For this subsection, one can use Sections 3.2 and 4.1 of [LOT18] as reference.

In Section 1.1, we introduced the classical notion of 3-manifolds with a boundary.
However, to use this concept in the context of Bordered Heegaard Floer Homology,
we need to briefly review it with the help of the notion of pointed matched circles.

Definition 1.55 ((Pointed) Matched circle). A matched circle is a triple (Z,a,M),
where

1. Z is of an oriented circle,

2. a = {a1, . . . , a4k} ⊂ Z is a set of 4k distinct points (which we regard as 0-
spheres),

3. M is a matching (i.e. a 2-to-1 map a → {1, . . . , 2k}).



1.7. BORDERED AND SUTURED MANIFOLDS 29

Moreover, we require the following property

4. if we perform surgery along the 2k pairs of points in Z, we obtain a single circle
and not several disjoint circles.

A pointed matched circle Z is a matched circle together with a basepoint z ∈ Z∖a.

Remark 1.56 (Order on a). For a pointed matched circle, there is an order in a
induced by the orientation of Z, with the minimum that is the first point encountered
starting from the basepoint.

Remark 1.57. We will represent a pointed matched circle either as a circle or as a
segment, whose endpoints are identified and are the basepoint z. See Figure 1.20

Given a pointed matched circle Z, we can construct a unique genus k surface
F (Z), called the surface associated to Z, in the following way. We take a disc with
boundary, whose boundary is Z, and we attach oriented 2-dimensional 1-handles
along the pairs specified by M . Then, for condition 4 in the definition, we obtain
one boundary component homeomorphic to a circle and we fill it with another disc.

Example 1.58. If we take the pointed circle in Figure 1.20, then the surface repre-
sented is the torus.

Figure 1.20: Pointed matched circle representing the torus: as a circle (left) and as
a segment with identified endpoints (right).

We can now define bordered manifolds in this context, a subclass of 3-manifolds
with boundary characterised by having the boundary parametrised by a pointed
matched circle.

Definition 1.59 (Bordered 3-manifold). A bordered 3-manifold is s triple (Y,Z, ϕ),
where

• Y is a compact, oriented 3-manifold with connected boundary ∂Y ,

• Z is a pointed matched circle,

• ϕ : F (Z) → ∂Y is an orientation-preserving homeomorphism.

We say that two bordered 3-manifolds (Y,Z, ϕ) and (Y ′,Z ′, ϕ′) are equivalent,
if there exists an orientation-preserving homeomorphism ψ : Y → Y such that
ϕ′ = ψ ◦ ϕ.
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Remark 1.60. To simplify notation, we will often just refer to (Y,Z, ϕ) as Y .
Additionally, we will be considering the equivalence class of bordered 3-manifolds
that are equivalent to (Y,Z, ϕ).

1.7.2 Sutured manifolds

For this subsection, we mainly follow Sections 2.1 and 3.1 of [Zar09].

We first build our way to sutured manifolds; we do this via divided surfaces.

Definition 1.61 (Divided surface). A divided surface (S,Γ) is the data of

• a closed and oriented surface S,

• a set of pairwise disjoint, simple, closed, oriented curves Γ = {γ1, . . . , γn} on
S, which we call sutures.

We then define R(Γ) = S∖Γ, where every connected component A has the boundary
∂A ⊂ Γ, i.e. ∂A = ∪i∈Iγi for some subset I ⊂ {1, . . . , n}. Moreover, we impose the
following conditions: let A be a connected component of R(Γ), then

• A has non-empty boundary,

• the orientation on ∂A induced from the orientation of S either agrees with the
orientation of the suture γi on each component of ∂A, or disagrees on every
component. If they agree, we say that A is a positive region; otherwise, we say
that it is a negative region.

We then divide R(Γ) in two pieces: we call R+(Γ) (or R+) and R−(Γ) (or R−) the
sets

R+(Γ) :=
⋃︂

A s.t. is
positive region

A R−(Γ) :=
⋃︂

A s.t. is
negative region

A,

where the line above indicate the topological closure of the set below.

Remark 1.62. We do not require S to be connected, but since each connected
component of R(Γ) has a non-empty boundary, we are ensuring that each component
has at least one suture.

We then define the notion of balancedness for a divided surface.

Definition 1.63 ((Un-)Balanced divided surface). We say that a divided surface
(S,Γ) is balanced if χ(R+) = χ(R−). We say that it is k-unbalanced if χ(R+) =
χ(R−) + 2k for some k non-zero integer.

Remark 1.64. The last definition is well posed, since it is possible to prove that
χ(R+)−χ(R−) is always even. This follows from the facts that S is closed and that
χ(S) = χ(R+) + χ(R−).

We can define balanced and unbalanced sutured manifolds.
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Definition 1.65 ((Un-)Balanced sutured manifold). We say that (Y,Γ) is a balanced
sutured manifold if Y is a 3-manifold without closed components such that (∂Y,Γ)
is a balanced divided surface.

We say that (Y,Γ) is a k-unbalanced sutured manifold if Y is a 3-manifold without
closed components such that (∂Y,Γ) is a k-unbalanced divided surface.

Remark 1.66 (Sutured manifold associated to a knot). Following what is done in
Section 9 of [Juh06], we see how it is possible to regard knots as particular sutured
manifolds.

Consider a knot K ⊂ S3. Then, we call (YK , {s1, s2}) the sutured manifold
associated to K, where

• YK is the manifold with boundary YK = S3 ∖ ν(K), with ν(K) a tubular
neighbourhood of K,

• the sutures s1 and s2 are two oppositely oriented meridional circles in some
part of ∂YK .

1.7.3 Bordered sutured manifolds

We want to discuss a more general class of manifolds, called bordered sutured man-
ifolds, which contain both bordered manifolds and sutured manifolds. To do this,
we introduce the concept of arc diagram, which is a generalisation of the pointed
matched circle used to parametrise the boundary of a bordered manifold.

As reference, one can look at Section 3.2 of [Zar09].

Definition 1.67 ((Degenerate) Arc diagram). An arc diagram Z = (Z,a,M) is a
triple consisting of

• a collection Z = {Z1, . . . , Zl} of oriented, open line segments for some l ≥ 0,

• a collection a = {a1, . . . , a2k} of distinct points in Z for some k ≥ 0; we denote
by |Zi| the cardinality of Zi ∩ a,

• a matching M of a, i.e. a 2–to–1 function a {1, . . . , k},M

Additionally, we require that the arc diagram satisfies the non-degeneracy condition,
which means that after performing surgery on the 1-manifold Z at each M−1(i),
which are homeomorphic to S0, the resulting 1-manifold cannot contain any closed
components. An arc diagram that violates this condition is called degenerate.

We put on a the following order: ai < aj if ai ∈ Zhi , aj ∈ Zhj and hi < hj ; if two
points are on the same line segment, we use the order induced by the orientation of
the segment.

Given an arc diagram, we can define its graph.
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Figure 1.21: Graph of arc diagram.

Definition 1.68 (Graph of an arc diagram). Consider an arc diagram Z = (Z,a,M).
We define its graph G(Z) as the graph obtained by connecting the endpoints of each
pair of matched points in a with a line segment (hence, an edge is added for each
pair of matched points). We denote such edges by e1, . . . , ek, where ei is the edge
associated to the matched points M−1(i). See Figure 1.21 for an example.

We can now define bordered sutured manifolds, the class of sutured manifolds on
which is defined Bordered Sutured Floer Homology.

Definition 1.69 (Bordered sutured manifold). A bordered sutured manifold is a
tuple (Y,Γ,Z, ϕ), where

• (Y,Γ) is a sutured manifold,

• Z is an arc diagram,

• ϕ : G(Z) ↪→ ∂Y is an orientation-preserving embedding such that

– ϕ|Z is an orientation preserving embedding into Γ,

– ϕ(G(Z)∖ Z) ∩ Γ = ∅.

Remark 1.70. From the definition of bordered sutured manifold, it follows that
each edge ei of G(Z) embeds in R−.

To better prepare us for the construction of Heegaard diagrams for bordered
sutured manifolds, we also define bordered sutured manifolds with α- and β-arcs,
following the approach presented in Section 3.1 of [Zib20]. To achieve this, we first
introduce the concept of arc diagrams of rank k.

Definition 1.71 (Arc diagram of rank k). We define an arc diagram of rank k to
be an arc diagram Z = (Z,a,M) such that a contains 2k points and requiring also
a type between "α" and "β". We usually write Zα if it is of type α and Zβ if it is of
type β.

Definition 1.72 (Bordered sutured manifold with α- and β-arcs). A bordered su-
tured manifold with α- and β-arcs is a tuple (Y,Γ,Zα, ϕα,Zβ, ϕβ), where

• (Y,Γ) is a sutured manifold,
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• Zα = (Zα,aα,Mα) and Zβ = (Zβ,aβ,Mβ) are (possibly degenerate) arc dia-
grams,

• ϕα : G(Zα) ↪→ R− is an embedding such that ϕα(Zα) ⊂ Γ,

• ϕβ : G(Zβ) ↪→ R+ is an embedding such that ϕβ(Zβ) ⊂ Γ,

• ϕα(Zα) ∩ ϕβ(Zβ) = ∅,

• the two arc diagrams are homologically linear independent, i.e. the map

π0 (Γ∖ ϕα(Zα) ∪ ϕβ(Zβ)) π0 (∂Y ∖ (Imϕα ∪ Imϕβ))

is surjective. This condition guarantees that the Bordered Sutured Heegaard
Floer Homology is well-defined. It can be shown that this property follows
from the others if the arc diagrams are non-degenerate (see Proposition 3.6 of
[Zar09]).

Remark 1.73 (Tangles as particular bordered sutured manifolds). We see how we
can consider a tangle as a bordered sutured manifold. Recall that we defined the
α-arc sites of a tangle with n open components to be the connected segments of the
fixed circle S minus the images of the endpoints of the n strings.

Let T be a tangle with n open components and m closed components. We can
associate to T a bordered sutured 3-manifold with α-arcs (XT ,Γ,Zα, ϕα) in the
following way:

• the underlying 3-manifold with boundary is XT = B3 ∖ ν(T ), where ν(T ) is a
tubular neighbourhood of T in B3;

• we place two oppositely oriented meridional circles around each closed compo-
nents,

• we place around each tangle end a single suture, where the orientation is chosen
such that the boundary of B3 minus a neighbourhood of the tangle ends lies
in R−,

• on each one of the four sutures around the tangle ends, we place two "ticks",
distant from the end points of the α-arcs and such that there is one tick in
each of the connected component of the suture obtained by removing the α-arcs
endpoints,

• we define the arc diagram G(Zα) via the α-arc sites, defining the line segments
Z as the suture opened in correspondence of the ticks.
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Chapter 2

Heegaard diagrams

In this chapter, we will develop Heegaard diagrams for all the objects defined in Chap-
ter 1. We will start by defining Heegaard diagrams for closed 3-manifolds, which was
the first theory historically developed; the construction of these diagrams naturally
follows from Heegaard splittings, defined in Section 1.2. However, the construction
of the hat version of Heegaard Floer Homology ˆ︂HF that we will see in Section 3.1
heavily relies on the notion of pointed Heegaard diagrams; we define them in Section
2.2 as diagrams to which we add a basepoint. This notion of basepoint may seem to
appear out of thin air, it is only in the more general context of sutured manifolds
that the role of the basepoint becomes better understood. In fact, in Section 2.4, we
will see how Heegaard diagrams of closed 3-manifolds can be considered as a special
case of Heegaard diagrams of sutured manifolds (Remark 2.35).

2.1 Heegaard diagrams for closed 3-manifolds

We are now ready to discuss Heegaard diagrams for closed 3-manifolds, which allow
us to simplify the representation of a Heegaard splitting, "forgetting" about the
handlebodies and focus solely on the common surface Σ. This makes Heegaard
diagrams a powerful tool for studying 3-manifolds.

The main references for this section are [OS06a] and [Hom19].

We first need to define an object which allows us to retrieve in some way the
handlebodies structures from their common boundary Σ.

Definition 2.1 (Set of attaching circles). Let H be a genus g handlebody and let
Σg be its boundary. A set of attaching circles Γ = {γ1, . . . , γg} for H is a collection
of closed embedded curves in Σg with the following properties:

1. the curves γi are all disjoint from each other;

2. Σg \ Γ is connected;

3. the curves γi bound disjoint embedded discs in H.

35
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γ1 γ2

Figure 2.1: Set of attaching circles for a genus 1 (left) and a genus 2 (right) handle-
bodies.

Remark 2.2. The second property given above is actually equivalent to say that
{[γ1], . . . , [γ1]} are linearly independent in H1(Σ,Z).

Definition 2.3 (Compatible Heegaard diagram). Consider a genus g Heegaard split-
ting Y = H1 ∪Σg H2 for Y . A compatible Heegaard diagram is given by (Σg,α,β),
where α = {α1, . . . αg} is a set of attaching circles for H1, β = {β1, . . . , βg} is a
set of attaching circles for H2 and the intersections between α- and β-circles are
transverse. We are going to draw the α-circles in red and the β-circles in blue.

It is worth noting that a Heegaard splitting of genus > 1 can admit a multitude of
compatible Heegaard diagrams. In contrast, given a Heegaard diagram, there exists
a unique Heegaard splitting for which it is compatible. Henceforth, we will primarily
work with Heegaard diagrams in our discussions.

Example 2.4 (Some examples). We now show some Heegaard diagrams starting
from the decompositions given in Example 1.17.

1. Heegaard diagram of genus 1 of S3

The genus 1 Heegaard splitting of S3 that we saw in Example 1.17 corresponds
to a diagram (Σ, α, β), where the two curves meet transversely at one point x;
see Figure 2.2.

2. Heegaard diagram of genus 1 of L(p, q)

The genus 1 Heegaard splitting of L(p, q) corresponds to a genus 1 Heegaard
diagram (Σ, α, β). Denote by s and t the generators of H1(Σ) = Z2, as in
Figure 2.3; with this notation, the curves of the diagram are given by [α] = s
and [β] = qs+ pt, and they intersect at p points.

3. Heegaard diagram of genus 1 of L(3, 1)

Let us make a more explicit example with L(3, 1): we have a diagram (Σ, α, β)
where [α] = s and [β] = s+ 3t.

Remark 2.5 (Retrieve manifold from its Heegaard diagram). How can we retrieve
the original manifold Y from its Heegaard diagram (Σg,α,β)? We can construct it
in the following way: thicken Σg to Σg × [0, 1] and glue thickened discs along the
αi × {0} and along the βj × {1}; the resulting space has two boundary components,
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Figure 2.2: Sets of attaching circles for the Heegaard splitting of S3 ≃ R3∪{∞} pre-
sented in Example 1.17 (on top) and the respective Heegaard diagram (on bottom).

s

t

Figure 2.3: Generators of the first homology group of a torus.

α

β

x

y

z

Figure 2.4: Heegaard Diagram of genus 1 for L(3, 1).
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one "on top" and one "on bottom", each homeomorphic to S2 and we cap each with
a three–ball.

In symbols:

Y = H1 ∪Σg H2

=

⎛⎜⎝(Σg × [0, 1]) ⊔α×I
(︁
D2 × I

)︁⏞ ⏟⏟ ⏞
att. circles for H1

⊔β×I
(︁
D2 × I

)︁⏞ ⏟⏟ ⏞
att. circles for H2

⎞⎟⎠ ⊔0

(︁
B3
)︁⏞ ⏟⏟ ⏞

3-ball
attached

"on bottom"

⊔1

(︁
B3
)︁⏞ ⏟⏟ ⏞

3-ball
attached
"on top"

. (1)

To conclude this section, we prove the following useful Lemma.

Lemma 2.6. Let (Σg,α,β) be a genus g Heegaard diagram for Y . Then we have
the following isomorphism of homology groups

H1(Y ) ∼=
H1(Σg)

⟨[α1], . . . , [αg], [β1], . . . , [βg]⟩
. (⋆)

Proof. We consider the genus g Heegaard diagram (Σg,α,β) for Y . Recall the
construction from the diagram to the manifold given in Remark 2.5 and notice that,
if we call ˜︁Y the space obtained without attaching the two final balls "on top" and
"on bottom", we have that H1(Y ) ∼= H1(˜︁Y ).

Therefore, we only need to prove H1(˜︁Y ) ∼= H1(Σg)/⟨[α1], . . . , [αg], [β1], . . . , [βg]⟩;
in order to do so, we use Mayer-Vietoris on the decomposition

˜︁Y = (Σg × [0, 1]) ∪
(︁
⊔α×I

(︁
D2 × I

)︁
⊔β×I

(︁
D2 × I

)︁)︁
= (Σg × [0, 1]) ∪ A.

If we write down the last terms of the Mayer-Vietoris exact sequence, we obtain

· · · H1(Σg × [0, 1] ∩A) H1(Σg × [0, 1])⊕H1(A) H1(˜︁Y )

H0(Σg × [0, 1] ∩A) H0(Σg × [0, 1])⊕H0(A) H0(˜︁Y ) 0,

(i1∗ ,i2∗ ) g∗−j∗

d

(i1∗ ,i2∗ ) g∗−j∗

where d is the connecting morphism given by Mayer-Vietoris and the other maps are
the ones induced by the inclusions

Σg × [0, 1]

Σg × [0, 1] ∩A ˜︁Y .
A

gi1

i2
j
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We start by proving that d ≡ 0, i.e. that the map (i1∗ , i2∗) at level zero

H0(Σg × [0, 1] ∩A) H0(Σg × [0, 1])⊕H0(A),
(i1∗ ,i2∗ ) is injective. This is true: in

fact, the connected components of Σg × [0, 1] ∩A are exactly the connected compo-
nents of A, hence they are sent injectively by (i1∗ , i2∗). Hence, we have proven that
d ≡ 0 and we obtained the exact sequence

· · · · · · H1(Σg × [0, 1] ∩A) H1(Σg × [0, 1])⊕H1(A) H1(˜︁Y ) 0.
(i1∗ ,i2∗ ) g∗−j∗

To conclude the proof, we need the following observations:

• g∗ − j∗ is surjective;

• H1(Σg × [0, 1]) ∼= H1(Σg);

• H1(A) = H1

(︁
⊔α×I

(︁
D2 × I

)︁
⊔β×I

(︁
D2 × I

)︁)︁
= 0 (since it is contractible);

• (Σg × [0, 1]) ∩
(︁
⊔α×I

(︁
D2 × I

)︁
⊔β×I

(︁
D2 × I

)︁)︁
= (α× [0, 1]) ⊔ (β × [0, 1]);

• Hi(α× [0, 1]) ⊔ (β × [0, 1]) = Hi(α ⊔ β) for any i;

• the map H1(Σg × [0, 1] ∩A) H1(Σg × [0, 1])⊕H1(A)
(i1∗ ,i2∗ ) is the map that

sends any circle to its equivalence class in Σg × [0, 1].

Therefore, using the first isomorphism theorem, we get the isomorphism

H1(˜︁Y ) ∼=
H1(Σg)

Ker(g∗ − j∗)
∼=

H1(Σg)

Im(i1∗ , i2∗)
∼=

H1(Σg)

⟨[α1], . . . , [αg], [β1], . . . , [βg]⟩
,

as we wanted.

2.2 Heegaard moves

We once again encounter the same problem as with Heegaard splittings: given a
Heegaard diagram (Σ,α,β), we can construct a unique manifold Y , but the same
manifold admits many Heegaard diagrams. As we did with stabilisation, we will
define three "moves" that we can perform on the sets of attaching circles α and β
that do not change the manifold represented by the diagram.

Again, we mainly follow [OS06a] and [Hom19] for this section.

Let {γ1, . . . γg} be a set of attaching circles for a genus g handlebody H, let Σ be
the border of H.

Definition 2.7 (Isotopy). An isotopy moves γ1, . . . γg in a one parameter family in
such way that the curves remain disjoint.



40 CHAPTER 2. HEEGAARD DIAGRAMS

Definition 2.8 (Finger move). When modifying a Heegaard diagram, we often use
a specific type of isotopy called finger move. A finger move is constructed as follows:
let β1 be a β-circle and c an arc with one endpoint on β1, which does not intersect
any other β-circle; we then push "with our finger" β1 up along c, drawing a small
neighbourhood of c that does not touch any β-circle and leaving all the rest of β1
unaffected. See Figure 2.5 for an example.

Figure 2.5: Example of a finger move (showed locally).

Definition 2.9 (Handleslide). Without loss of generality, choose two of the curves,
say γ1, γ2. To perform a handleslide, we replace γ1 with γ′1, where this is a simple
closed curve disjoint from any γi such that γ1, γ2, and γ′1 bound an embedded pair
of pants in Σ \ γ3 \ · · · \ γg.

We also have an equivalent definition of handleslide. Suppose that γ1 and γ2 can
be connected by an arc δ in Σ \ γ3 \ · · · \ γg. Let γ′1 be the connected sum of γ1 with
a parallel copy of γ2, where the connected sum is taken along a neighbourhood of δ;
we then replace γ1 with γ′1. See the figure below for the graphic idea.

γ1 γ2

γ′1

Figure 2.6: Handleslide as embedded pair of pants.

Figure 2.7: Handleslide using the connecting arc.
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Lastly we define the stabilisation also for Heegaard diagrams. Consider a genus
g Heegaard diagram (Σ,α,β).

Definition 2.10 (Stabilisation). We define the stabilisation as follows. Take a genus
1 surface E and consider the connect sum Σ′ = Σ#E, which is a genus g+1 surface.
As sets of attaching circles, take α′ = α ∪ αg+1 and β′ = β ∪ βg+1, where αg+1 and
βg+1 are embedded on E and meet transversely in one point.

Figure 2.8: Stabilisation of the Heegaard Diagram of L(3, 1).

Notice that, if (Σ,α,β) is compatible with the decomposition Y = H1∪ΣH2, then
the Heegaard diagram obtained by stabilisation is compatible with the decomposition
obtained by stabilisation.

Remark 2.11. In accordance with what we requested in Definition 3.7, we also ask
that these moves generate only transverse intersections between α- and β-curves.

As we had Theorem 1.24 for Heegaard splittings, we also have the following
Theorem for diagrams (see [Rei33] and [Sin33] for a proof).

Theorem 2.12. Let Y be a closed and oriented 3-manifold, let (Σg,α,β) be a Hee-
gaard diagram of genus g for Y and (Σg′ ,α

′,β′) be a Heegaard diagram of genus g′

for Y . Then, by applying a sequence of stabilisations, isotopies and handleslides, we
can change the above diagrams in a way that the new diagrams are diffeomorphic to
each other.

To actually compute ˆ︂HF, we will need pointed Heegaard diagrams, i.e. Heegaard
diagrams with a basepoint.

Definition 2.13 (Basepoint, pointed Heegaard diagrams). A basepoint on a Hee-
gaard diagram (Σ,α,β) is a point z that stays on the complement of the curves, i.e.
z ∈ Σ \ (α ∪ β).

We define a pointed Heegaard diagram to be a Heegaard diagram with a basepoint
z; this is denoted by (Σ,α,β, z).

Since we are going to work with pointed diagrams, we need to define pointed
Heegaard moves. These are obtained as a generalisation of the Heegaard moves
above presented.

Definition 2.14 (Pointed isotopy). A pointed isotopy is a type of isotopy where we
require the basepoint to be disjoint from the curves.
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Definition 2.15 (Pointed handleslide). A pointed handleslide, is a handleslide in
which we require that the basepoint is not in the pair of pants region where the
handleslide take place.

For the stabilisations there are no differences. As we had Theorem 2.12, we have
now the following proposition whose proof can be found in [OS04b].

Proposition 2.16. Consider two pointed Heegaard diagrams for a closed and ori-
ented 3-manifold Y , (Σ,α,β, z1) and (Σ,α,β, z2) which differ only for the base-
points. Then, the two diagrams can be connected by a sequence of pointed isotopies
and pointed handleslides.

We then have the following corollary of Propositions 2.12 and 2.16.

Corollary 2.17. Consider two different pointed Heegaard diagrams of genus g for
a closed and oriented 3-manifold Y , namely (Σ,α,β, z) and (Σ,α′,β′, z′). Assume
moreover that z ∈ Σ \ (α′ ∪β′) and z′ ∈ Σ \ (α∪β). Then, the two diagrams can be
connected by a sequence of pointed isotopies and pointed handleslides.

2.3 Heegaard diagrams rise from Morse functions

In Morse theory, one studies a particular class of smooth functions on n-dimensional
manifolds. In this section, we see how we can construct Heegaard diagrams starting
from Morse functions; as a reference for Morse theory, one can see [Mil63]. Even
though this point of view is not exploited for the most part of this thesis, it is widely
used in external literature and hence it is worth to briefly look into it.

For this section, we follow Section 3 of [OS06a].

Definition 2.18 (Critical point, non degenerate point). Let f be a smooth function
on an n-manifold Y , f : Y → R. A point P ∈ Y is a critical point of f if ∂f/∂xi = 0
for i = 1, . . . , n. At a critical point, the Hessian matrix H(P ) is given by the second
partial derivatives Hij = ∂2f/∂xi∂xj. A critical point P is called non-degenerate if
H(P ) is non-singular.

Definition 2.19 (Morse function). The function f : Y → R is called a Morse
function if all the critical points are non-degenerate.

Definition 2.20 (Index of a critical point). Let f be a Morse function and P a
critical point of f . Since H(P ) is symmetric, it induces an inner product on the
tangent space. We call the index of P the dimension of a maximal negative definite
subspace.

In other words, if we diagonaliseH(P ) over the real numbers, and define index(P )
to be the number of negative entries in the diagonal.
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Notice that a local minimum of f has index 0 and that a local maximum has
index n.

We are only interested in a special class of Morse function, the self-indexing Morse
functions.

Definition 2.21 (Self-indexing Morse function). A Morse function f is called self-
indexing if for each critical point P we have f(P ) = index(P ).

We have the following result, whose proof can be found in [Mil63].

Proposition 2.22. Every smooth n-dimensional manifold Y admits a self-indexing
Morse function. Furthermore, if Y is connected and has no boundary, then we can
choose f so that it has unique index 0 and index n critical points.

By studying how the level sets f−1((∞, t]) change when t goes through a critical
value, it is possible to prove the following two facts:

• If f : Y −→ [0, 3] is a self-indexing Morse function on Y with one minimum
and one maximum, then f induces a Heegaard splitting with Heegaard surface
Σ = f−1 (3/2), and handlebodies U0 = f−1 [0, 3/2] , U1 = f−1 [3/2, 3].

• If Σ has genus g, then f has g index one and g index two critical points. We
denote the index 1 critical points of f by P1, . . . , Pg and the ones of index 2 by
Q1, . . . , Qg.

Moreover, from the Morse function is possible to define a Heegaard diagram on
the manifold compatible with the splitting that we found above, as we can see in the
next result.

Proposition 2.23. The Morse function and a Riemannian metric on Y induce a
Heegaard diagram for Y .

Sketch of proof. Consider the gradient vector field ∇f of the Morse function. For
each point x ∈ Σ = f−1 (3/2) we can look at the gradient trajectory of ±∇f that
goes through x. Consider the critical point Pi and call αi the set of points that flow
down to it; symmetrically, for the critical point Qj we call βj the set of points that
flow up to it.

In [Mil63], is proven the following theorem that studies the local behavior of a
Morse function f around a critical point:

Let P be an index i critical point of f . Then there is a diffeomorphism h
between a neighbourhood U of 0 ∈ Rn and a neighbourhood U ′ of P ∈ Y
so that

h ◦ f = −
i∑︂

j=1

x2j +
n∑︂

j=i+1

x2j .

It follows from the above result and the fact that f is self indexing that αi, βi are
simple closed curves in Σ. Furthermore, it is also possible to see that α1, . . . , αg and
β1, . . . , βg are set of attaching circles for U0 and U1 respectively; therefore this is a
Heegaard diagram of Y compatible with the given Heegaard splitting.
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2.4 Heegaard diagrams for bordered and sutured mani-
folds

In this section, we construct Heegaard diagrams for bordered, sutured, and bordered
sutured manifolds. Although one could define diagrams for bordered sutured mani-
folds and see the ones for bordered manifolds and sutured manifolds as a particular
case, we will build the pieces step by step. This decision is motivated by the fact that
in later chapters we will mainly work with bordered diagrams and sutured diagrams.

2.4.1 Heegaard diagrams for bordered manifolds

For this subsection, one can use Section 4.1 of [LOT18] as reference.

Definition 2.24 (Bordered Heegaard diagram). A bordered Heegaard diagram is a
quadruple (Σ,α = αa ∪αc,β, z), where

• Σ is a genus g, oriented surface with one boundary component,

• β = {β1, . . . , βg} are g pairwise disjoint circles in the interior of Σ,

• αc = {αcg−k, . . . , αcg−k} are g − k circles in the interior of Σ,

• αa = {αa1, . . . , αa2k} are 2k arcs in Σ with boundary on ∂Σ, transverse to ∂Σ,

• all the curves of α are pairwise disjoint,

• z is a point in ∂Σ∖ (α ∩ ∂Σ).

Moreover, we request as in the closed case that the intersections are transverse
and that Σ∖α and Σ∖β are connected (or, equivalently, that α is an independent
set in H1(Σ, ∂Σ) and that β is an independent set in H1(Σ)).

We want to see now how we can construct a bordered manifold starting from a
bordered Heegaard diagram. For this, we first need to understand how to define a
pointed matched circle structure on the boundary of Σ.

Lemma 2.25 ([LOT18, Lemma 4.4]). Consider (Σ,α,β, z), a bordered Heegaard
diagram. Define Z = ∂Σ and a = αa ∩ ∂Σ. We define a matching M on a by

M (αai ∩ ∂Σ) = i.

Then, Z = (Z,a,M, z) is a pointed matched circle.

Proof ([LOT18]). We only need to check that if we perform surgery along the 2k
pairs of points in Z, we obtain a single circle. This follows from the connectivity of
Σ∖α.

Call Z ′ the circle obtained from Z after the surgery and Σ′ the manifold obtained
from Σ after deleting a tubular neighbourhood of each α-circle and gluing two discs
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to the result. It is clear by the definitions that Z ′ is homeomorphic to the boundary of
a tubular neighbourhood of ∂Σ∪(∪2k

i=1α
a
i ) and this is homeomorphic to the boundary

of Σ′ ∖ ν(α), where ν(α) is a tubular neighbourhood of all the curves of α. But
then, because of the connectivity of Σ∖α, this a circle.

Definition 2.26 (Boundary of a bordered Heegaard diagram). We are going to call
the boundary of a bordered Heegaard diagram H = (Σ,α,β, z) the pointed matched
circle above defined, and we will denote it by ∂H.

Given a bordered Heegaard diagram H = (Σ,α,β, z), we can construct an unique
bordered 3-manifold (Y,Z, ϕ) in the following way. We thicken the Heegaard surface
to Σ × [0, 1], and we attach 3-dimensional 2-handles to each αci × {0} and to each
βj × {1}. Then, we take Z = ∂H and the boundary of the manifold that we get as
result of the above construction is then naturally identified with F (Z).

As in the case of closed 3-manifolds, it is possible to prove that any bordered
3-manifolds is represented by some bordered diagram.

Proposition 2.27 ([LOT18, Lemma 4.9]). Any bordered 3-manifold (Y,Z, ϕ) is
represented by some bordered Heegaard diagram.

A proof of this done via Morse theory can be found in [LOT18].
Furthermore, it is possible to use Heegaard moves to transform one bordered

Heegaard diagram representing a bordered 3-manifold into another diagram repre-
senting the same manifold. However, the allowable moves are restricted to the types
presented in the next result.

Proposition 2.28 ([LOT18, Lemma 4.10]). Any pair of bordered Heegaard diagrams
for the same bordered 3-manifolds can be made diffeomorphic after a sequence of

• isotopies of the α-curves and β-circles, not crossing ∂Σ;

• handleslides of β-circles over β-circles,

• handleslides of α-curves over α-circles,

• stabilisations in the interior of Σ.

2.4.2 Heegaard diagrams for sutured manifolds

Next, we develop Heegaard diagrams for sutured manifolds. For this purpose, we
mainly follow Section 4.2 of [Alt13].

Traditionally, the approach used to develop Sutured Heegaard Floer Homology
is to define sutured Heegaard diagrams, a special class of diagrams with few re-
quirements on the α- and β-circles: we do not ask them to be independent in first
homology and we do not ask them to be equal in quantity. Namely, one define this
object as follows.
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Definition 2.29 (Sutured Heegaard diagram). We define a sutured Heegaard dia-
gram to be a tuple (Σ,α,β), where Σ is a compact and oriented 2-manifold with
border and α = {α1, . . . , αm},β = {β1, . . . , βn} are two sets of pairwise disjoint
simple closed curves in the interior of Σ.

Then, it was discovered that certain constraints were necessary in the construc-
tion of Heegaard Floer Homology using Whitney discs, leading to the introduction of
balanced sutured Heegaard diagrams. For the reader that is familiar to such approach
for the construction of Floer Homology, the primary reason for this constraint is that
we need |α| = |β| and their independence in first homology for the theory to be well-
defined on the tori Tα and Tβ of the symmetric product Symg(Σ). Since we are using
Lipshitz’s cylindrical reformulation to construct Heegaard Floer Homology, we can
directly define sutured Heegaard diagrams that satisfy these requirements without
further justification. For more information on this construction, see Section 4.2 of
[Alt13].

Definition 2.30 (Sutured Heegaard diagrams). We define a sutured Heegaard dia-
gram (also called balanced sutured Heegaard diagram) to be a tuple (Σ,α,β), where
Σ is a compact and oriented 2-manifold with border and α = {α1, . . . , αn},β =
{β1, . . . , βn} are two sets of pairwise disjoint simple closed curves in the interior of
Σ, such that {[α1], . . . , [αn]} and {[β1], . . . , [βn]} are independent sets in H1(Σ,Q).

Given a sutured Heegaard diagram, we can construct an unique sutured manifold
(Y,Γ) in a similar fashion of what we saw for 3-manifolds: we thicken up Σ to Σ× I
and smoothly attach 3-dimensional 2-handles along the circles αi×{0} and βj×{1};
we then obtain a 3-manifold with boundary and we take Γ = ∂Σ× {1/2}.

The result (Y,Γ) is indeed a sutured manifold, as it holds the following result.

Lemma 2.31 ([Alt13, Lemma 4.16]). Let (Σ,α,β) be a sutured Heegaard diagram
and let (Y,Γ) be the object obtained with the above construction. Since the circles in
α and the circles in β are independent in H1(Σ), every connected component A of
R(Γ) = Σ∖ Γ has non-empty boundary. Hence, (Y,Γ) is a sutured manifold.

Moreover, it is possible to prove the following result, from which it follows that
we are going to work with balanced sutured manifolds.

Lemma 2.32 ([Alt13, Lemma 4.17 and 4.18]). Let (Σ,α,β) be a sutured Heegaard
diagram and let (Y,Γ) be the sutured manifold represented by it. Then (Y,Γ) is a
balanced sutured manifold.

Moreover, we can see that that (almost) any balanced sutured manifolds admits
a sutured Heegaard diagram.

Proposition 2.33 ([Juh06, Proposition 2.14]). Let (Y,Γ) be a balanced sutured man-
ifold. Then, there exists a sutured Heegaard diagram (Σ,α,β) that represents it.

As we saw in the case of 3-manifolds, also here all the definitions are well-posed
as the next result explains.
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Figure 2.9: An example of a bordered sutured Heegaard diagrams for a bordered
sutured manifold with no β-arcs.

Proposition 2.34 ([Alt13, Proposition 4.20]). Two balanced diagrams represent
the same balanced sutured manifold if and only if the diagrams are connected by
a sequence of Heegaard moves.

Remark 2.35 (Re-visitation of Heegaard diagrams for closed manifolds). As antic-
ipated, we can see how we can re-visit Heegaard diagrams for closed 3-manifolds as
a special case of sutured Heegaard diagrams.

Let Y be a closed, connected and oriented 3–manifold. We construct a sutured
3-manifold as follows: consider a 3–ball B1 ⊂ Y and choose an oriented simple curve
s1 ⊂ ∂B1; we can then define a sutured manifold (Y ′, {s1}), where Y ′ = Y ∖ Int(B1).

Therefore, enlarging our point of view to the sutured language, we can now think
of the basepoint introduced for pointed Heegaard diagrams as the suture s1 once we
shrunk the ball B1 down to a point.

We will see in Section 3.3 that indeed ˆ︂HF agrees with SHF in the sense above
presented, obtaining ˆ︂HF(Y ) ≡ SFH(Y ′, {s1}).

2.4.3 Heegaard diagrams for bordered sutured manifolds

We now construct Heegaard diagrams for bordered sutured manifold with α- and
β-arcs, following Section 3.1 of [Zib20].

Definition 2.36 (Bordered sutured Heegaard diagram). Let (Y,Γ,Zα, ϕα,Zβ, ϕβ) be
a bordered sutured manifold with α- and β-arcs and considered the sutured Heegaard
diagram (Σ,α,β) of the underlying sutured manifold. Then, a bordered sutured Hee-
gaard diagram for the bordered sutured manifold is obtained by (Σ,α,β) by adding
the graphs of the arc diagrams to it, and we denote it by (Σ,α,β,Zα, ϕα,Zβ, ϕβ).

See Figure 2.9 for an example.

We can explain in more details what the above definition means. Recall that
ϕα : G(Zα) ↪→ R−(Γ) is an embedding such that ϕα(Zα) ⊂ Γ; we can consider
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the embedding ϕα to be such that ϕα(G(Zα)) misses the 3-dimensional 2-handles
corresponding to the α-circles: it suffices to slide them off S0 × D2 ⊂ R−(Γ). We
do the same for G(Zβ). Therefore, we have that the line segments are embedded in
the border of Y (which corresponds to the sutures), and we have some α-segments
(namely ϕα(G(Zα) ∖ Z)) and β-segments (namely ϕβ(G(Zβ) ∖ Z)) between the
sutures. We call them respectively α-arcs and β-arcs. Moreover, we put a basepoint
(i.e. a marked point), in every open component of the boundary minus the image of
Z. We usually draw the sutures in green.

As in the previous cases, we have the following result.

Proposition 2.37 ([Zar09, Proposition 4.5]). Any sutured bordered manifold has a
compatible bordered sutured Heegaard diagram.

Moreover, given any two diagrams which represent the same bordered sutured
manifolds, we can connect them with a sequence of

• isotopies of α-circles and β-circles and isotopies of α-arcs that do not move
the endpoints,

• handleslides of a β-circle over another β-circle,

• handleslides of any α-curve over an α-circle

• stabilisations in the interior of Σ.

2.5 Heegaard diagrams for knots

In Section 3.4, we will explore a version of Heegaard Floer Homology, known as
Knot Floer Homology, which is used to study knots embedded in S3. This homology
theory is denoted by ˆ︁HFK(S3,K), where K is the knot of interest. To introduce
Knot Floer Homology, we first need to understand Heegaard diagrams for knots. In
this regard, we follow Section 1.3 of [Hom19].

For HFK, we will need doubly pointed Heegaard diagrams, i.e. diagrams with
two basepoints that we will denote by z and w. The need for two basepoints may
seem arbitrary at first glance, but it will be justified from the sutured perspective in
Remark 2.42.

Definition 2.38 (Doubly pointed Heegaard diagram). A doubly pointed Heegaard
diagram for a knot K ⊂ S3 is a tuple (Σ,α,β, w, z) where w, z are basepoints in
Σ∖ (α ∪ β), such that

1. (Σ,α,β) is a Heegaard diagram for S3;

2. K is the union of arcs a and b, where

• a is an arc in Σ∖α connecting w to z, pushed slightly into H1,
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• b is an arc in Σ∖ β connecting z to w, pushed slightly into H2.

Example 2.39 (Trefoil). The following is an example for the lef-handed trefoil.

Figure 2.10: Genus 1 doubly pointed Heegaard diagram for the left-handed trefoil

Lemma 2.40. Every knot K ⊂ S3 admits a doubly pointed Heegaard diagram.

Proof ([Hom19]). There is an explicit way to construct such a diagram for a generic
knot K. Let D be a knot diagram for K (i.e., a projection of K on the plane with
the information of "over"/"under" on the crossings); let nc be the number of crossing
of D. If we ignore the over/under data of the crossings, we can consider the knot
diagram as a closed non-simple curve that divides the plane into nc+2 regions, nc+1
of which are bounded and one that is unbounded (the "external region"). Let Σ be
the surface obtained by taking a tubular neighborhood of this curve in R3; then, Σ
is a surface of genus nc+1 that looks like a thickened knot. For each of the bounded
regions in the complement of the knot diagram, we put a β-circle on Σ that goes
around the corresponding hole of the surface. See Figure 2.11 for an example of this
construction done for the left-handed trefoil.

Figure 2.11: Construction of a genus 4 doubly pointed Heegaard diagram for the
left-handed trefoil: Σ and β-circles.

We need now a way to encode the crossings’ data on Σ. Recalling how α-circles
give instruction for the gluing of discs on the Heegaard surface, it is natural to encode
such data with the α-circles as indicated in Figure 2.12.

We have now a genus nc + 1 surface with nc + 1 circles around the holes, the
β-circles, and nc circles around the crossings, the α-circles. We then add the last
α-circle, corresponding to a meridian of K and we place the basepoint w on one side
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Figure 2.12: How the α-circles hold the crossing data.

Figure 2.13: Genus 4 doubly pointed Heegaard diagram for the left-handed trefoil.

of it and the basepoint z on the other side. Notice that the choice of the side on
which we put w determines the orientation of K.

See Figure 2.13 for the result of this construction for the left-handed trefoil.

We can now define doubly pointed isotopies and doubly pointed handleslides just
as we defined the pointed ones: isotopies are required to miss both w and z and
neither w nor z is allowed to be in the pair of pants involved in the handleslide. We
then have an analogue of Corollary 2.17, which is proven in [OS04a].

Proposition 2.41 ([OS04a, Proposition 3.5]). Let (Σ,α,β, w, z) and (Σ′,α′,β′, w′, z′)
be two doubly pointed Heegaard diagrams for a knot K ⊂ S3. Then, it exists a finite
sequence of doubly pointed isotopies, doubly pointed handleslides and stabilisations
that connects the two diagrams.

Remark 2.42 (Heegaard diagrams for knots as particular case of sutured Heegaard
diagrams). We can provide further motivation for the construction described above
by connecting it to the theory of sutured manifolds. For reference, one can consult
Section 9 of [Juh06].

Recall the sutured manifold (YK , s1, s2) associated to a knot K, as defined in
Remark 1.66. The two basepoints in the construction of doubly pointed Heegaard
diagrams can then be thought of as the two sutures s1 and s2, which are shrunk
down to a point. In Section 3.4, we will see that this construction of Knot Heegaard
Floer Homology agrees with Sutured Floer Homology.
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2.6 Heegaard diagrams for tangles

We are now going to see how we can construct a Heegaard diagram for tangles,
following Chapter II.2 of [Zib17].

We begin by defining what a Heegaard diagram is in this context. As we did in
Section 2.5, we can justify this construction with the bordered sutured point of view,
which we will discuss in more detail in Subsection 2.6.2.

Definition 2.43 (Heegaard diagram for a tangle). Consider a tangle T with n open
components and m closed components. A Heegaard diagram for the tangle T consists
of a tuple (Σ,α = αc ∪αa,β), where:

• Σ is an oriented surface of genus g with 2(n + m) border components. We
denote the collection of these border components by Z, which are partitioned
into (n+m) pairs;

• αc is a set of (g +m) pairwise disjoint circles α1, . . . , αg+m on Σ. These are
called α-circles;

• αa is a set of 2n pairwise disjoint arcs αa1, . . . , αa2n on Σ which are disjoint from
αc and whose endpoints lie on Z. These are called α-arcs;

• β is a set of (g +m + n − 1) pairwise disjoint circles β1, . . . , βg+m+n−1 on Σ.
These are called β-circles.

We write α := αc ∪ αa to indicate all the α-curves. Moreover, we impose the
following conditions on the data above:

1. contracting all boundary components turns αa into a single circle. This means
that on each component of Z, we could either have no or exactly two endpoints
of αa;

2. define the surface Sαc (Σ) as the surface obtained by surgery along the curves
in αc. We want it to be a disjoint union of m anuli, each of whose boundary is
a pair in Z, and a 2-sphere with 2n boundary components. We denote by Zα

the set of circles in Z which meet the α-curves;

3. define the surface Sβ (Σ) as the surface obtained by surgery along the curves in
β. We want it to be a disjoint union of (n+m) anuli, each of whose boundary
is a pair in Z.

Remark 2.44 (Boundary components in a Heegaard diagram for a tangle). Recall
the bordered sutured structure given to a tangle in Remark 1.73. We can then
interpret the 2(n + m) boundary components of a Heegaard diagram for a tangle
in the same way, i.e. two oppositely oriented meridional circles around each closed
components and a single suture around each tangle end.
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In our work, we are going to focus on 4-ended tangles without any closed compo-
nent. It could be useful to see the definition of a Heegaard diagram in this particular
case.

Definition 2.45 (Heegaard diagram for a 4-ended tangle without closed compo-
nents). A Heegaard diagram for a 4-ended tangle without closed components consists
of a tuple (Σ,α = αc ∪αa,β), where:

• Σ is an oriented surface of genus g with 4 boundary components. We denote
the collection of these border components by Z, which are partitioned into 2
pairs;

• αc is a set of g pairwise disjoint circles α1, . . . , αg on Σ. These are called
α-circles;

• αa is a set of 4 pairwise disjoint arcs on Σ, denoted by a, b, c, d, which are
disjoint from αc and whose endpoints lie on Z. These are called α-arcs;

• β is a set of (g+1) pairwise disjoint circles β1, . . . , βg+1 on Σ. These are called
β-circles.

We write α := αc ∪ αa to indicate all the α-curves. Moreover, we impose the
following conditions on the data above:

1. contracting all boundary components turns αa into a single circle. This means
that on each component of Z, we could either have no or exactly two endpoints
of αa;

2. define the surface Sαc (Σ) as the surface obtained by surgery along the curves
in αc. We want it to be a 2-sphere with 4 boundary components. We denote
by Zα the set of circles in Z which meet the α-curves;

3. define the surface Sβ (Σ) as the surface obtained by surgery along the curves
in β. We want it to be a disjoint union of 2 anuli, each of whose boundary is
a pair in Z.

Example 2.46 (Heegaard diagram for the 1-crossing tangle). Let T be the 1-crossing
tangle Q1; we can draw a genus 0 Heegaard diagram as it is shown in Figure 2.14.

There is a more intuitive way to think about the construction of this genus 0
Heegaard diagram. We start by considering our tangle embedded in B3. Our goal
is to encode all the information of the tangle on the surface of the ball. To do this,
we consider a tubular neighbourhood of our tangle, denoted ν(T ), and drill it out of
B3. This leaves us with B3 ∖ ν(T ), which can be thought of as a ball with a cave
system that clearly encodes the data of the tangle.

Next, we consider ∂B3 ∖ ν(T ), which is a sphere with 4 punctures on it, known
as the four-punctured sphere S2

4 . We can think of the punctures as the entrances
to our previous cave system, but we do not know which entrance is linked to which.
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Figure 2.14: Heegaard diagram for the 1-crossing tangle.

This information is given by the β-circle that we embed on S2
4 . The β-circle specifies

that the north-east suture is linked with the south-west sutures in a "straight way".
Specifically, if we embed the disc which has the β-circle as its boundary, we obtain
a separation of the inside of the sphere that agrees with the initial cave system we
wanted to encode on S2

4 . We will see in Subsection 2.6.1 how the construction of the
β-circle works for more intricate tangles.

Finally, we add four α-arcs to the Heegaard diagram, which represent the fixed
circle S on which the tangle ends sit.

As we had Corollary 2.17 for pointed Heegaard diagrams, we have the following
result in the tangle case.

Proposition 2.47. Let T be a tangle. Given any two Heegaard diagrams for the same
tangle, one can be obtained from the other by a sequence of the following moves:

• isotopies of α- or β-circles and isotopies of α-arcs that leave the endpoints
fixed;

• handleslides of a β-circle over another β-circle;

• handleslides of an α-curve over an α-circle;

• stabilisations in the interior of Σ.

Furthermore, exploiting the construction from Example 2.46, we can obtain the
following lemma.

Lemma 2.48. Let T be a tangle without closed components, then it exists a Heegaard
diagram that represents it.

The above lemma has a version for tangles with closed components as well, and
in that case, we have to use ladybugs to obtain the correct final diagram. For further
details, one can refer to Example 2.5 in [Zib17].

Proof ([Zib17]). To prove the statement, we will first show how Heegaard diagrams
for different tangles can be glued together. Then, we can cut our original tangle into
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Figure 2.15: How to glue Heegaard diagrams of tangles.

4-ended tangles with a single crossing each and use the bordered sutured structures
to glue the corresponding diagrams together, obtaining the complete diagram.

The way to combine Heegaard diagrams is quite straightforward: when we want
to reconnect two endpoints of the tangles represented, we glue together the two
corresponding sutures of the diagrams. We must be careful of the α-arcs that have
endpoints on those sutures, which we must pair and glue as indicated in Figure 2.15
for the case of a tangle with two crossings.

Further details for the gluing can be found in Section 4.6 of [Zar11].

Remark 2.49. • If we apply the above construction to a 4-ended tangle with
n crossings, we can notice that by gluing the α-arcs we are going to obtain
n − 1 α-circles and 4 α-arcs. Therefore, the final result is a proper Heegaard
diagram of genus n − 1 for a 4-ended tangle. This makes this construction
not very useful in practice, as many tangles actually admit some lower genus
diagram (for instance, any rational tangle admits a genus 0 diagram) that are
more practical in the actual computations of Tangle Floer Homology.

• In Subsection 2.6.1, we will explore how to cut the tangle into less pieces, by
focusing on the largest "rational pieces". This is something that will also help
with the input of [nicepy], as one can read in Appendix A.

In order to compute combinatorially the invariant HFT, we will need peculiar
Heegaard diagrams, a slight modification of the diagrams above defined. We define
this new notion of diagram for 4-ended tangles with eventually closed components,
in agreement with Definition 2.4 of [Zib20].

Definition 2.50 (Peculiar Heegaard diagram). Let T be a 4-ended tangle with m
closed components and (Σ,α = αc ∪ αa,β) be a Heegaard diagram that represents
it. A peculiar Heegaard diagram for T , denoted by

(Σ′,αc ∪ {S},β, {pi}4i=1, {qj}4j=1, {zk}mk=1, {wl}ml=1),

is the diagram obtained from (Σ,α = αc ∪αa,β) after the following local modifica-
tion around the sutures:

• we collapse the four sutures of S2
4 , obtaining a α-circle which is the the union

of the four α-arcs (isotopic to the fixed circle S), hence obtaining as α-circles
αc ∪ {S};
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Figure 2.16: Collapsing of a suture and placing of the linked pi and qj .

• we add two marked points for every collapsed sutured on the two sides of S,
denoting by pi’s the ones placed on the front of the sphere and by qj ’s the ones
placed on the back of the sphere, for i, j = 1, . . . , 4;

• for each of the four collapsed sutures, we connect the respective pi and qj with
an arc that intersects only the α-circle S in exactly one point (see Figure 2.16);

• we contract all the other boundary components (i.e. them couples representing
the closed components of T ) to points, and we call them zk, wl for k, l =
1, . . . ,m in a way that zk and wk correspond to the two sutures of the same
closed components.

The pi’s, the qj ’s, the zk’s, and the wl’s are referred to as the basepoints of the
diagram, and their significance will become clear in Subsection 4.4.4.

Peculiar Heegaard diagrams have a key advantage over general Heegaard dia-
grams for 4-ended tangles: they allow us to work with closed surfaces instead of
bordered ones, which simplifies the theory considerably. Additionally, the number of
α-circles and β-circles in a peculiar diagram are always the same.

We need to adapt Heegaard moves for peculiar diagrams.

Definition 2.51 (Peculiar Heegaard moves). The allowed Heegaard moves for pe-
culiar diagrams are:

1. isotopies of the α- and β-circles that do not touch the basepoints and the arcs
that connect these,

2. handleslides of β-circles over β-circles and handleslides of α-circles over α-
circles different than S,

3. stabilisations.

2.6.1 Heegaard diagrams for rational tangles

Starting from the diagram of the 1-crossing, it is possible to construct the diagram for
any rational tangle with the use of Dehn twists. In this way, we can draw Heegaard
diagrams of genus 0 for rational tangles.

Let us take a look at the tangle Q2, which is Q1 with an extra twist on the right.
To add this twist to the Heegaard diagram for Q1 (shown in Figure 2.14), we follow
the twist in the tangle that happens between the north-east and the south-east ends,
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Figure 2.17: Q2 and a Heegaard diagram for it.

with the south-east end going over the north-east end. We replicate this on the
diagram, by linking the south-west suture with the south-east suture, resulting in a
β-circle that connects these two sutures. Additionally, since the south-east end goes
over the north-east end in the tangle, we need to let the β-circle pass behind the
north-east suture (i.e., on the back of S2

4 ), giving us the modified diagram as shown
in Figure 2.17.

Remark 2.52 (Genus 0 Heegaard diagrams for rational tangles). We can immedi-
ately notice that, as a consequence of the above construction, every rational tangle
admits a genus 0 Heegaard diagram.

In fact, it actually holds that a 4-ended tangle is rational if and only if it has a
genus 0 Heegaard diagram. Indeed, if we consider a genus 0 Heegaard diagram for a
4-ended tangle, it has no α-circles and just a single β-circle. By definition, we know
that performing surgery along this β-circle gives us two cylinders, so it separates
two punctures from the other two. Therefore the tangle represented is rational. The
other direction is proven by the above construction.

The previous construction can be applied to any added twist on a tangle, but it
can become challenging when dealing with a larger number of twists. To overcome
this, an alternative construction method (which is also implemented in [nicepy]) is
more convenient and it is here presented.

Suppose we want to construct a genus 0 diagram for a rational tangle Qp/q. We
start by placing four sutures and four α-arcs between them on the plane; the sites
are labeled as a, b, c, d, starting from the site between the north-west and south-west
sutures and moving counter-clockwise. Then, we place the intersection points on the
α-arcs by putting p points on sites b and d and q points on sites a and c.

To lay down the β-circle, we need to take the sign of p/q into account.

• If p/q > 0, we start from the north-west suture and find the first intersection
point the d site (i.e. the first point "on the right" of the suture) and the first
point on the a site (i.e. the first point "below" the suture). We then link them
with a straight blue edge, which stays on the front component of S2

4 .

We continue this process by linking the second intersection point on the d
site with the second point on the a site, and so on. After linking the first p
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Figure 2.18: The construction for a genus 0 Heegaard diagram for the rational tangle
Qp/q with p/q > 0 (on the right) and with p/q > 0 (on the left).

Figure 2.19: Final diagrams for Q1/3 (left) and Q−1/3 (right).

couples, we have finished the points on site d and move on to the points on
site c, scanning them from the top to the bottom. Similarly, after q couples,
we move on to the points on site b as the points on site a will be finished and
we scan them from the right to the left. The last couple to link will be the one
"around" the south-east suture.

Finally, we need to link the points on the back of the sphere, outside of the
rectangle, in a similar fashion as before, starting from the north-east suture
and moving around to the south-west suture.

• If p/q < 0, the procedure is almost the same, but we start from different sutures:
for the edges on the front we start from the north-east suture and for the edges
on the back we start from the north-west suture.

It is possible to visualise the general construction in Figure 2.18 and in Figure
2.19 it is possible to see the examples for Q±1/3.

Remark 2.53. • In order to remember which one is the right construction, we
can notice that if p/q > 0 the edges on the front have positive slopes and that
if p/q < 0 they have negative slope.
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Figure 2.20: Two bordered sutured structures on the tangle Heegaard diagram of
Q1: a trivial one (on the left) and a more interesting one (on the right).

• The coprimality of p and q guarantees that that we will have an unique β-circle
in the final result of the construction.

2.6.2 Heegaard diagrams for tangles as particular case of sutured
Heegaard diagrams

As we did in Remark 2.42, we are going to motivate the construction of Heegaard
diagrams for tangles with the bordered sutured perspective.

As a reference, one can see Section II.2 of [Zib17].

Starting from a Heegaard diagram for a tangle, we can construct a bordered
sutured Heegaard diagram. In fact, the α-arcs on the boundary almost define th
arc diagram structure, we just need to decide where to "open up" the sutures, i.e.
which are the segments of the arc diagram Zα. We indicate with a green tick the
spot on which we cut a suture, we need to put at least one on each suture in order
to have a well-defined bordered sutured diagram. In particular, remark that these
ticks are going to have the role of basepoints in Bordered Sutured Floer Homology
(more details in 4.4.3).

We can see an explicit example of the construction explained above.

Example 2.54. Consider the Heegaard diagram for the 1-crossing tangle presented
in Figure 2.14.

One possible choice to make it into a bordered sutured Heegaard diagram is to
put two ticks for suture, one on the back and one on the front. This choice would
yield the diagram in the left part of Figure 2.20.

By removing some of these ticks, we can obtain a more interesting bordered
sutured structure, as shown in the right part of Figure 2.20.

Moreover, we will see in Subsection 3.5.4 how HFT inherits a useful gluing prop-
erty from Bordered Sutured Floer Homology.



Chapter 3

Heegaard Floer homologies

Now that we have defined Heegaard diagrams for all the topological objects that we
are interested in, we can build our way to Heegaard Floer homologies. We see in
details the construction of ˆ︂HF, the one for the closed 3-manifold case, which we then
adapt to the more general context of sutured 3-manifolds and to the case of 4-ended
tangles. After defining the chain complex ˆ︂CF on which we compute ˆ︂HF, it will be
clear that the difficulty of this homology lies in the construction of the boundary
map: this is the main motivation for our interest in nice Heegaard diagrams, that
will be discussed in extension in Chapter 4. In the last section, we construct tangle
Heegaard Floer Homology, the main focus of this thesis work. The description of
the invariant yielded by it is going to be of use in Chapter 5, where we will see the
invariants obtained from the computation of HFT for some families of tangles.

3.1 Hat version of Heegaard Floer Homology ˆ︂HF
We start the construction of the hat version of Heegaard Floer Homology for closed
3-manifolds, denoted by ˆ︂HF. Traditionally, this was done with the use of symmetric
products, i.e. products in which the order of the elements in a tuple does not mat-
ter. However, following closely what is done in [SW10], we are going to use Robert
Lipshitz’s cylindrical reformulation of ˆ︂HF, which allows us to completely avoid the
discussion on symmetric products. This reformulation is presented in [Lip06], where
further details can be found. Details on the construction of ˆ︂HF via symmetric prod-
ucts can be found in [OS06a], Sections from 4 to 8, or in [Hom19], Section 2.2.

For this section, one can use Section 2 of [SW10] as reference.

We start with the construction of the chain complex ˆ︂CF (Σ,α,β, z), the complex
with coefficients in F2 = Z/2Z on which ˆ︂HF is computed. For the entirety of this
section, let (Σ,α,β, z) be a genus g pointed Heegaard diagram for some closed 3-
manifold Y .

Definition 3.1 (Generator). A generator x in (Σ,α,β, z) is a collection of g points
of Σ, denoted by x = {x1, . . . , xg}, such that for any 1 ≤ i ≤ g we have that

59
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• xi ∈ αi;

• exists an unique j such that xi ∈ βj .

We are therefore asking that we have one (and only one) point on each α-curve and
on each β-curve. Remark that this implies xi ̸= z for any i.

This name comes to the fact that they are going to be the generators of the chain
complex ˆ︂CF(Σ,α,β, z), as explained in the next definition.

Definition 3.2 (ˆ︂CF(Σ,α,β, z)). Let (Σ,α,β, z) be a Heegaard diagram. We defineˆ︂CF(Σ,α,β, z) to be the vector space over F2 generated by all the generators x of
the diagram.

Now that we have defined ˆ︂CF, we are going to focus on the construction of the
main ingredient that we are missing: the boundary map

∂ : ˆ︂CF −→ ˆ︂CF.
The construction of the boundary map turns out to be the difficult part of this
construction, as it involves counting the number of points in certain moduli spaces
of holomorphic embeddings of domains in our diagram. Once we reduce ourselves to
the nice Heegaard diagram case, we will see that this differential can be computed
completely in a combinatorial way; however, we first review the general case.

3.1.1 Domains

The first step is to define domains in Heegaard diagrams, i.e. linear combinations of
regions delimited by the intersections of α-curves and β-curves on Σ.

Definition 3.3 (Region, 2-chain). A region is a connected component of Σ\(α∪β).
A formal sum of region with integer coefficients is called a 2-chain.

In general, for a 2-chain ϕ =
∑︁

i ai · ϕi we will denote by ∂ϕ its boundary

∂ϕ =
∑︂
i

ai · ∂ϕi.

Moreover, we denote by ∂(ϕ)|α = ∂(ϕ) ∩ α the α-edges on the boundary of ϕ and
by ∂(ϕ)|β = ∂(ϕ) ∩ β the β-edges.

Definition 3.4 (Domains and π2(x,y)). Let now x,y be two generators. We are
going to denote by π2(x,y) the collection of all 2-chains ϕ such that ∂(∂(ϕ)|α) = y−x,
all the elements of this set are called domains. We also say that ∂ϕ connects x to y
when ϕ ∈ π2(x,y).
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Figure 3.1: An example of a non-admissible diagram and how it is possible to make
it admissible.

We can define an additive structure on the set X = {π2(x,y) | x,y generators}
in the following way: let ϕ, ϕ′ be two domains such that ϕ =

∑︁
i ai ·ϕi connects x to

y and ϕ′ =
∑︁

j a
′
j ·ϕ′j connects y to z; then we can sum them to get a domain which

connects x to z as

ϕ+ ϕ′ :=
∑︂
i

ai · ϕi +
∑︂
j

a′j · ϕ′j ∈ π2(x, z).

This operation results in an addition

π2(x,y)× π2(y, z) π2(x, z).
+

Given a point p ∈ Σ \ (α ∪ β), we define the algebraic intersection number of p
in ϕ, denoted np(ϕ), to be the coefficient of the region containing p in ϕ; we say that
a domain ϕ is positive if np(ϕ) ≥ 0 for all points p ∈ Σ \ (α ∪ β).

Moreover, we define π0
2(x,y) to be the collection of domains such that have

algebraic intersection number 0 on the basepoint z (i.e. the collection of domains
that do not contain the basepoint). In symbols,

π0
2(x,y) = {ϕ ∈ π2(x,y) | nz(ϕ) = 0}.

Remark 3.5. The addition of domains is also well-defined in this last case, i.e.

π0
2(x,y)× π0

2(y, z) π0
2(x, z).

+

Definition 3.6 (Periodic domains). Let x be a generator. We call ϕ ∈ π0
2(x,x) a

periodic domain if, for each i, the segments of αi appear with the same multiplicity
on ∂ϕ and the same happens for any βi.

More informally, we are asking that ∂ϕ can be expressed as a sum of the α-circles
and β-circles.

Definition 3.7 (Admissible Heegaard diagram). We say that a Heegaard diagram
is admissible if, for any generator x and any non-zero periodic domain ϕ ∈ π0

2(x,x),
we have that ϕ has positive and negative coefficients. This property is sometimes
also called weak admissibility.

It is possible to see an example of a non-admissible diagram in Figure 3.1.
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The condition of being admissible for Heegaard diagrams is necessary when the
first Betti number b1(Y ) of the 3-manifold Y is greater than zero.

There may not be a domain that connects two given generators x and y. De-
termining whether or not π2(x,y) is empty can be challenging from a graphical
perspective, but we can use an algebraic method to check this more easily.

Definition 3.8 (ε(x,y)). Let x,y be two generators, explicitly written as x =
{x1, . . . , xg} and y = {y1, . . . , yg}. We are now going to construct two paths from x
to y, such that one is composed only by α-arcs and one only by β-arcs. We define
the path a as a union of g arcs in α1 ∪ · · · ∪ αg, say a = γ1 ∪ · · · ∪ γg, such that
∂a = y1+ · · ·+yg−x1−· · ·−xg. In the same way, let b = δ1∪· · ·∪ δg ⊂ β1∪· · ·∪βg
be a path with ∂b = y1 + · · ·+ yg − x1 − · · · − xg. Therefore, the difference a− b is
a closed 1-cycle in Σ and we define

ε(x,y) := [a− b] ∈ H1(Y,Z).

Notice that ε(x,y) is independent of the choice of the paths a and b.

As anticipated before, the following criterion explains how we can use ε(x,y) to
determine whether we have or not a domain connecting x and y; this is going to be
quite useful for the study of Heegaard diagrams.

Proposition 3.9 (Criterion for existence of connecting domain ([Lip06, Lemma
2.2])). Let x,y be two generators of a genus g Heegaard diagram (Σ,α,β) of a 3-
manifold Y . Consider two paths a, b as described above; then

ε(x,y) = 0 ⇐⇒ π2(x,y) ̸= ∅.

We observe that the generators of a Heegaard diagram can be naturally classified
into equivalence classes, with each class corresponding to an element in an affine
space over H1(Y ;Z).

This shows that the set of generators of a Heegaard diagram naturally falls into
equivalence classes labelled by elements in an affine space over H1(Y ;Z).

Sketch of proof ([Lip06]). (⇒) The main idea to prove this direction is to exploit
the fact that a 2-chain ϕ ∈ H2(Y ) can be thought as a domain in π2(x,y) as
well. When g ≥ 2, we have to exploit the following isomorphism

H2(Y ) ∼=
H2

(︁
(Σ× I) ∪ ⊔α×I

(︁
D2 × I

)︁
⊔β×I

(︁
D2 × I

)︁ )︁
⟨e1 + · · ·+ en⟩

,

where e1, . . . , en are the regions of the diagram. To see this, one can use Mayer-
Vietoris on the decomposition

Y =

(︃
(Σ× I) ∪ ⊔α×I

(︁
D2 × I

)︁
⊔β×I

(︁
D2 × I

)︁)︃
⊔
(︃
⊔0 B

3 ⊔1 B
3

)︃
,

exploiting similar arguments to the ones used proving Lemma 2.6.

Since ε(x,y) = 0 = [a−b] ∈ H1(Y ), we have a−b = ∂ϕ for some ϕ. Such ϕ can
be pushed on Σ (via the isomorphism above indicated), obtaining a domain in
π2(x,y) as we wanted.
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(⇐) For the converse, assume that π2(x,y) ̸= 0. This means that we have a domain
ϕ such that ∂(∂(ϕ)|α) = y − x and ∂(∂(ϕ)|β) = y − x; we define

ε(x,y) =
[︁
∂(∂(ϕ)|α)− ∂(∂(ϕ)|β)

]︁
∈ H1(Y ).

Hence, we clearly have ε(x,y) = [∂ϕ] = 0.

Remark 3.10. The notion of ε(x,y) involves additional details, including the notion
of SpinC-structure. However, since we do not require it for our current purpose, we
will not discuss it in detail and simply refer readers to Section 6 of [OS06a] for further
information.

3.1.2 The Maslov index

We now define the Maslov index, a central notion in the construction of the boundary
map of ˆ︂CF.

For this, we follow Lipshitz cylindrical reformulation presented in [Lip06], as it
is done in [SW10].

Fix a domain ϕ and two generators x,y such that ϕ ∈ π0
2(x,y). We want to

define what a holomorphic embedding of ϕ is. Let S be a surface with boundary,
with 2g marked points (X1, . . . , Xg, Y1, . . . , Yg) on ∂S, such that the X-points and
the Y -points alternate. The 2g arcs on ∂S in the complement of the marked points
are divided into two groups, call them A and B, each containing g arcs, such that
the A-arcs and the B-arcs alternate.

Let p1 and p2 be the projection maps from Σ × D2 onto the two factors of the
product; we consider D2 ⊂ C2 and we call e1 ⊂ ∂D2 the arc that connects −i to i
and e2 ⊂ ∂D2 the one from i to −i.

Let u : S → Σ× D2 be the map in the following diagram

Σ

S Σ× D2

D2

u

p1

p2

such that the following properties are satisfied:

• p1 ◦ u is equal to ϕ in H2(Σ);

• in the second homology group H2(D2, ∂D2), [p2 ◦ u] ≡ gD2;

• p1 ◦ u ({X1, . . . Xg}) = {x1, . . . , xg} and p2 ◦ u ({X1, . . . Xg}) = {−i};

• p1 ◦ u ({Y1, . . . Yg}) = {y1, . . . , yg} and p2 ◦ u ({Y1, . . . Yg}) = {i};

• p1 ◦ u (A) ⊂ α (more precisely, every A-arc is sent to some α-arc) and p2 ◦
u (Ai) ⊂ e1 for any A-arc Ai;
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• p1 ◦ u (B) ⊂ β (more precisely, every B-arc is sent to some β-arc) and p2 ◦
u (Bi) ⊂ e2 for any B-arc Bi.

Definition 3.11 (Holomorphic embedding for a domain). For a domain ϕ and two
generators x,y such that ϕ ∈ π0

2(x,y), we call a map that satisfies the properties of
the map u described above a holomorphic embedding of ϕ, sometimes also referred to
as a holomorphic representative. Remark that the existence of such map for a given
domain is not guaranteed.

Remark 3.12 (On the definition of S). In the construction of ˆ︂HF done via Whitney
discs, the surface with boundary S is generated starting from a representation f of
some domain ϕ, where f : D2 → Symg(Σ), as

S =
{︁
(c, d) ∈ D2 × Σ | d ∈ f(c)

}︁
.

Therefore, the projection p2 : S → D2 is a g-fold branched covering map and the
projection p1 : S → Σ defines a 2–chain in Σ. Then, we proceed by taking two points
a, b on ∂D2 which map to x and y and the 2g marked points (X1, . . . , Xg, Y1, . . . , Yg)
on ∂S are obtained as the inverse images of a, b under p2. The construction then
continues as we presented above.

Definition 3.13 (Trivial disc). We call a trivial disc a component of S that is
mapped to a point by p1 ◦ u.

Now fix complex structures on Σ and D2 and take the product complex structure
on Σ× D2.

Remark 3.14. To do things properly, now we would have to talk about almost-
complex structures and perturbations. However, for the main topic of this thesis,
these are not needed and we will gloss over these details. However, as one can see in
[Lip06] or in Theorem 3.4 of [SW10], the hypothesis needed for our work are satisfied
once a choice of a generic perturbation on the α-circles and on the β-circles is made.

Consider now all the holomorphic embeddings u described above for a fixed do-
main ϕ. They form a moduli space, denoted by M(ϕ), that we claim to be a finitely
dimensional, smooth manifold. We will not prove such properties of M(ϕ), however
one can find in [OS04b], Proposition 3.9, a proof of the smoothness.

Definition 3.15 (Maslov index). We can now define the Maslov index for a domain
ϕ. It is denoted by µ(ϕ), and it is defined to be the expected dimension of M(ϕ).

At first glance, this index seems to be quite difficult to compute. However, it
turns out that it can be computed combinatorially in terms of the Euler measure
and the point measures, which are defined as follows.

Definition 3.16 (Point measure). For a generator x =
∑︁

i xi and a domain ϕ, the
point measure on a single xi, denoted µxi(ϕ), is defined to be the average of the
coefficients of the four regions around xi in ϕ (see Figure 3.2).
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Figure 3.2: Point measure µxi(ϕ) (the shadowed part of the drawing represents ϕ).

The point measure µx(ϕ) is defined as

µx(ϕ) =

g∑︂
i=1

µxi(ϕ).

Definition 3.17 (Euler measure). If we fix a metric on Σ which makes all the α and
β circles geodesic, intersecting each other with right angles, then the Euler measure
e(ϕ) is defined to be 1/2π of the integral of the curvature on ϕ.

Remark 3.18 (Combinatorial formula for Euler measure). As shown by Lipshitz in
[Lip06] (Corollary 4.10), the Euler measure can be computed combinatorially in the
following way. Let us consider a region ϕ; then we have that

e(ϕ) = χ(ϕ)− 1

4
# {acute corners}+ 1

4
# {obtuse corners},

where χ(ϕ) is the Euler characteristic of ϕ (this number can be computed as χ(ϕ) =
k0 − k1 + k2 − k3 + . . . , where ki is the number of i-cells in ϕ as a CW-complex).
To better explicit what we mean by "acute corners" and "obtuse corners", look at
Figure 3.3.

Figure 3.3: Acute and obtuse corners and their contribute for Euler measure, where
the shadowed part of the drawing represents ϕ.

Remark now that the Euler measure is additive. Therefore, if we consider a
domain ϕ =

∑︁
i riϕi, we can compute its Euler measure as

e(ϕ) =
∑︂
i

ri

(︃
χ(ϕi)−

1

4
# {acute corners}+ 1

4
# {obtuse corners}

)︃
.

Remark 3.19. If ϕ is a 2n-gon region, then it is topologically a disk and hence
χ(ϕ) = 1. Therefore, e(ϕ) = 1− (2n)/4 = 1− n/2.

We have then the following formula, proven by Lipshitz in [Lip06], that explain
exactly how to compute the Maslov index in terms of the point measure and the
Euler measure.
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Proposition 3.20 (Lipshitz Formula ([Lip06])). For a domain ϕ ∈ π2(x,y), the
Maslov index is given by

µ(ϕ) = e(ϕ) + µx(ϕ) + µy(ϕ).

Remark 3.21 (Additivity of Maslov index ([Lip06])). It is possible to prove that
the Maslov index is additive, i.e.

µ(ϕ1 + ϕ2) = µ(ϕ1) + µ(ϕ2).

This can be seen with some analytical arguments, see for instance [Lip06], or with
some combinatorial arguments closer to the setting presented here, see Theorem 3.3
of [Sar11].

3.1.3 Hat version of Heegaard Floer Homology

We can almost define the boundary map in the chain complex ˆ︂CF. The last piece
that is missing, which is also the only non-combinatorial part of ˆ︂HF, is a count
function that counts the points of a manifold constructed starting from M(ϕ).

Definition 3.22 (R-action on M(ϕ)). If ϕ is non-trivial, then M(ϕ) admits a free
R-action coming from the one-parameter family of holomorphic automorphisms of
D2 which preserves ±i and the boundary arcs e1, e2.

One way to see this R-action is to use the Riemann mapping theorem to change
the unit disc to the infinite strip [0, 1] × iR ⊂ C, where e1 corresponds to {1} × iR
and e2 to {0} × iR. Then the R-action corresponds to vertical translations.

We let ˜︂M(ϕ) = M(ϕ)/R. If µ(ϕ) = 1, then ˜︂M(ϕ) is a compact zero dimensional
manifold (see [OS04b], Theorem 3.18).

Therefore, when µ(ϕ) = 1, we can then define a count function that counts the
points of ˜︂M(ϕ).

Definition 3.23 (Count function c(ϕ)). Let ϕ ∈ π0
2(x,y) be a domain such that

µ(ϕ) = 1. We define the count function c(ϕ) to be the number of points in ˜︂M(ϕ),
counted modulo 2.

Remark 3.24 (On the relation of µ(ϕ) and c(ϕ)). As we stated above, µ(ϕ) is the
expected dimension of M(ϕ). In particular, even if µ(ϕ) = 1, we cannot say for sure
that ϕ has some holomorphic embeddings and that ˜︂M(ϕ) has at least one point;
M(ϕ) can be empty even if µ(ϕ) = 1. On the other hand, if ϕ does not have any
holomorphic embedding and µ(ϕ) = 1, then c(ϕ) = 0.

Thanks to this count function, we can define the boundary map of ˆ︂CF.

Definition 3.25 (Boundary map of ˆ︂CF). The boundary map ∂ in the chain complexˆ︂CF is defined as

x ↦→ ∂x =
∑︂
y

⎛⎜⎜⎜⎝ ∑︂
ϕ∈π02(x,y)
s.t. µ(ϕ)=1

c(ϕ) · y

⎞⎟⎟⎟⎠ .
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It is shown in [Lip06] (Lemma 8.1) that indeed this is a chain complex. Therefore,
we can then define hat Heegaard Floer Homology for a Heegaard diagram.

Definition 3.26 (ˆ︂HF(Σ,α,β, z)). Given a Heegaard diagram (Σ,α,β, z), we define
the Floer Homology group of the diagram to be the Homology group of the chain
complex

(︂ˆ︂CF(Σ,α,β, z), ∂)︂, which is denoted by ˆ︂HF(Σ,α,β, z).
As one can read in Section 8 of [OS06a], the following result holds.

Theorem 3.27 ([OS06a, Theorem 1]). Let (Σ,α,β, z) and (Σ′,α′,β′, z′) be two
Heegaard diagrams representing the same closed 3-manifold Y . Then ˆ︂HF (Σ,α,β, z)

and ˆ︂HF (Σ′,α′,β′, z′) are isomorphic.

Therefore, we can define Heegaard Floer Homology for closed 3-manifolds.

Definition 3.28 (ˆ︂HF(Y )). We define ˆ︂HF(Y ) = ˆ︂HF(Σ,α,β, z), for some choice of
Heegaard diagram of Y .

In fact, in [Lip06] is proved that the chain complex ˆ︂CF(Σ,α,β, z) that we con-
structed is indeed an invariant for the closed 3-manifold Y .

Remark 3.29. All the theory developed so far is quite combinatorial (in the sense
that it could be easily handled by a calculator) except for this count function above
defined.

The problem can be solved using nice Heegaard diagrams. In fact, if a diagram
has the property of being nice (a notion that will be defined in Chapter 4), we
can make also this final piece of the theory combinatorial, and the invariant can be
computed using a calculator.

3.2 A first example: ˆ︂HF(L(p, q))
In this section, we will demonstrate how to compute Heegaard Floer Homology
through a simple example. While we will not need to calculate the complex bound-
ary map of the chain complex in this case, this example will still serve to illustrate
how these objects can be manipulated and provide insight into working with them.

We compute the Heegaard Floer Homology of the general Lens space L(p, q).
Recall the definition of L(p, q), given already in Example 1.17 as the quotient of S3

by the action of Z/pZ previously defined.
Our goal is to prove that

ˆ︂HF(L(p, q)) = (F2)
p.

We begin by constructing a Heegaard diagram for L(p, q). As mentioned earlier,
it is known that L(p, q) has a genus 1 Heegaard diagram (Σ, α, β). Let s and t denote
the generators of H1(Σ) = Z2, as shown in Figure 3.4.
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s

t

Figure 3.4: Generators of the first homology group of the torus.

With this notation, the curves of the Heegaard diagram are described as [α] = s
and [β] = qs + pt; the curves intersect at p points, hence there are p generators ofˆ︂CF.

3.2.1 Particular case: ˆ︂HF(L(3, 1))
Let us start with a more specific example, where p = 3 and q = 1. This gives us
[α] = s and [β] = s+ 3t, with three generators of ˆ︂CF denoted as x, y, and z.

There are different ways to visualise this Heegaard diagram, but not all of them
are useful for computing ˆ︂HF. For instance, the torus embedded in R3 as shown in
Figure 3.5 is not particularly helpful.

α

β

x

y

z

Figure 3.5: Representation of the Heegaard diagram of L(3, 1) on an embedded torus.

We could also use the planar representation in Figure 3.6, where we represent
the torus as the plane in which we cut out two discs and connect the two boundary
components with a handle in the third dimension. However, for the general case of
L(p, q), even this representation becomes less helpful.
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Figure 3.6: Representation of the Heegaard diagram of L(3, 1) on a plane with an
handle.

A more convenient representation of the Heegaard diagram for L(p, q) is a 2-
dimensional rectangle with identified borders, displayed in Figure 3.7. This repre-
sentation makes it easy to understand the regions obtained and is particularly useful
for dealing with the general case of L(p, q).

Figure 3.7: Representation of the Heegaard diagram of L(3, 1) on a rectangle with
identified borders.

There are three regions in this Heegaard diagram, each with all three generators as
vertices, with one generator repeated twice. We want to understand the differentials
of ˆ︂CF for this diagram. As a first step, we investigate whether there are any regions
that connect two generators. To do so, we use Proposition 3.9 to show that π0

2 is
empty for all pairs of generators. For example, we compute ε(x, y).

First of all, we need to compute H1(L(3, 1)); for (⋆) we have that

H1(L(3, 1)) ∼=
H1(Σ)

⟨[α], [β]⟩
∼=

⟨s, t⟩
⟨s, s+ 3t⟩

∼=
Z
3Z
.

We need now two paths, a ⊂ Tα and b ⊂ Tβ that link x to y; we choose them as in
Figure 3.8.
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Figure 3.8: The paths a and b that connect x and y: the thickened vertical red edge
is a, the thickened blue diagonal edges compose b.

It is clear that [a − b] = [t] = 1 ∈ H1(L(3, 1)), therefore ε(x, y) ̸= 0. We can
conclude that there are not domains that connect x and y, i.e. π2(x, y) = ∅. The same
reasoning works for all the combinations of generators; henceforth the differential
map in ˆ︂CF is trivial. Since we have three generators for our chain complex, we
conclude that ˆ︂HF(L(3, 1)) is a 3-dimensional space over F2, hence

ˆ︂HF(L(3, 1)) ∼= (F2)
3 .

3.2.2 General case

Now let us consider the general case of L(p, q). To draw its Heegaard diagram,
we start by taking the 2-dimensional torus representation and dividing it into p
horizontal stripes and q vertical stripes. Then we draw the α circle on the vertical
edges of the rectangles (i.e., on the s edge), and the β circle along the diagonals of
the rectangles given by the stripes-subdivision.

It is worth noting that we have exactly p regions. Starting from the left, these
regions can only go "strictly" to the right, and they are path-connected since they
are connected by hypothesis and the torus is path-connected. To count them, we
only need to count how many starting points of paths there are immediately on the
right of the curve α drawn on the left, which are exactly p.

Now we want to understand how the differential behaves in this case. As before,
we will use Proposition 3.9.

We first compute H1(L(p, q)):

H1(L(p, q)) ∼=
H1(Σ)

⟨[α], [β]⟩
∼=

⟨s, t⟩
⟨s, qs+ pt⟩

∼=
⟨s, t⟩
⟨s, pt⟩

∼=
Z
pZ
.

Take now two distinct generators xi, xj . Clearly any path b ⊂ β that links them
goes from left to right completely at least one time and strictly less than p times
(as xi ̸= xj); therefore 0 ̸= ε(xi, xj) = k ∈ Z/pZ and π2(xi, xj) = ∅ for any pair of
generators.

As in the particular case, we have found that the differential map is trivial inˆ︂CF. Since we have p generators, the Heegaard Floer Homology is a p-dimensional
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vector space over F2. We have then proved

ˆ︂HF(L(p, q)) ∼= (F2)
p .

3.3 Sutured Floer Homology SHF

In this section we introduce sutured Floer Homology, a generalisation of ˆ︂HF con-
structed for sutured manifolds.

As reference, one can look at Section 9 of [Juh06] and Section 6 of [Juh13].

The construction of the chain complex for sutured Floer Homology is similar to
that of ˆ︂HF for closed manifolds, with the same definitions for generators, domains,
π2(x,y), admissible diagrams, and the Maslov index. However, we require sutured
diagrams to be admissible. Nonetheless, this is not a limitation since the following
lemma holds.

Lemma 3.30 ([Juh06, Proposition 3.15]). Every sutured Heegaard diagram is iso-
topic to an admissible one.

Let (Σ,α,β) be an admissible sutured Heegaard diagram for some balanced
sutured manifold (Y,Γ).

We then define CF(Σ,α,β) to be the vector space over F2 generated by all the
generators x of (Σ,α,β).

To construct the boundary map, we first notice that each border component of Σ
has only one region in Σ∖(α∪β) that contains it (recall that we do not allow α-arcs
in the sutured context). This allows us to regard the sutured diagram as a multi-
pointed Heegaard diagram, where we place a basepoint zi in any region containing
a border component.

We define the boundary map in a similar fashion to the closed case, posing

x ↦→ ∂x =
∑︂
y

⎛⎜⎜⎜⎜⎜⎝
∑︂

ϕ∈π2(x,y)
s.t. nzi (ϕ)=0 ∀i

and µ(ϕ)=1

c(ϕ) · y

⎞⎟⎟⎟⎟⎟⎠ .

Thanks to Theorem 7.2 of [Juh06], we can see that the one defined is indeed a chain
complex.

Proposition 3.31 ([Juh06, Theorem 7.2]). (CF(Σ,α,β), ∂) is a chain complex.

Definition 3.32 (SHF(Σ,α,β)). Let (Σ,α,β) be an admissible sutured Heegaard
diagram. We define the Sutured Floer Homology group for the diagram to be the ho-
mology group of the chain complex (CF(Σ,α,β), ∂) and we denote it by SHF(Σ,α,β).
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Moreover, we can see that this definition leads us to an invariant of the balanced
sutured manifold (Y,Γ).

Proposition 3.33 ([Juh06, Theorem 7.5]). Let (Σ,α,β) and (Σ′,α′,β′) be two
admissible sutured Heegaard diagrams for the same balanced sutured manifold. Then
holds

SHF(Σ,α,β) ∼= SHF(Σ′,α′,β′).

Therefore, we can define sutured Floer Homology for a generic balanced sutured
manifold.

Definition 3.34 (SHF(Y,Γ)). Let (Y,Γ) be a balanced sutured manifold. We de-
fine SHF(Y,Γ) = SHF(Σ,α,β), where (Σ,α,β) is an admissible sutured Heegaard
diagram for (Y,Γ).

Remark 3.35 (ˆ︂HF in terms of SHF). As anticipated, we can re-visit ˆ︂HF in terms
of SHF. Let Y be a closed 3-manifold. Recall the construction for (Y ′, {s1}) done
in Remark 2.35. Then, as it is proven in Proposition 9.1 of [Juh06], it holds

ˆ︂HF(Y ) ∼= SHF(Y ′, {s1}).

Therefore, we can see ˆ︂HF as a special case of SHF.

3.4 Knot Floer Homology HFK

We can naturally extend the construction we did for ˆ︂CF to the case of knots in S3.
This theory can be further generalised to knots in any 3-manifold, and references for
this include [OS04a] and [Ras03].

As reference for this section, one can look at Section 10 of [OS06a].

Definition 3.36 (Knot chain complex (C(K), ∂K)). Let K ⊂ S3 be a knot and
(Σ,α,β, w, z) be a compatible doubly pointed Heegaard diagram for K.

We define C(K) to be the vector space over F2 generated by the generators x of
the diagram. We let

∂K : C(K) −→ C(K)

to be given by

x ↦→ ∂K(x) =
∑︂
y

⎛⎜⎜⎝ ∑︂
ϕ∈π2(x,y) s.t. µ(ϕ)=1
and nz(ϕ)=nw(ϕ)=0

c(ϕ) · y

⎞⎟⎟⎠ .

We then have the following result, whose proof can be found in [OS04a].
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Theorem 3.37 ([OS04a]). (C(K), ∂K) is a chain complex.
Moreover, its homology ˆ︁HFK(C(K), ∂K) is the same given any choice of doubly

pointed Heegaard diagrams representing the knot K.

Therefore, we can define the Knot Floer Homology of a knot in S3.

Definition 3.38 (ˆ︁HFK(S3,K)). Let K ⊂ S3 be a knot. We define its Knot Floer
Homology as

ˆ︁HFK(S3,K) := ˆ︁HFK(C(K), ∂K)

for some choice of Heegaard diagrams representing K.

Remark 3.39. With the above description, it is clear how ˆ︁HFK is a special case of
Sutured Floer Homology, in the sense of what said in Remark 2.42.

3.5 Tangle Floer Homology HFT

In this section, we build the invariant HFT for 4-ended tangles.
To understand the construction of Tangle Floer Homology presented by Claudius

Zibrowius in [Zib17] and [Zib20], it would be necessary to discuss a specific type of
A∞-category: the wrapped Fukaya category for the 4-punctured sphere, denoted
by Fuk(S2

4 ). For readers already familiar with the algebraic fundamentals, we can
provide a rough idea of this object: Fuk(S2

4 ) is an A∞-category where the objects
are Lagrangians on a 4-punctured sphere equipped with a certain 1-form, and the
morphisms correspond to intersection points between these Lagrangians. The higher
composition maps are defined by "counting some polygons" drawn by these La-
grangians on S2

4 . For more information on this topic, readers may refer to [Abo08],
[Abo+13], and [Fuk93], in addition to Zibrowius’ articles.

The master thesis excludes the discussion of the construction of HFT through
the wrapped Fukaya category for the 4-punctured sphere, as it suffices to consider
curves on S2

4 without delving into that theory. Nonetheless, the thesis acknowledges
the use of arguments involving Fuk(S2

4 ) in proving some results.
As general reference, one can use Chapter III of [Zib17].

As first step, we adapt the notion of generator to the case of tangle Heegaard
diagrams (non peculiar).

Definition 3.40 (Generator in a tangle Heegaard diagram). Let T be a tangle with
n open components and m closed components and let (Σ,α = αc∪αa,β) be a genus
g Heegaard diagram representing T .

A generator in (Σ,α = αc ∪ αa,β) is a tuple x = (x1, . . . , xg+m+n−1), of points
x1, . . . , xg+m+n−1 ∈ α ∩ β with the properties that:

• there is exactly one point on each α- and β-circle,

• there is at most one point on each α-arc.
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We denote by T the set of all the generators of the tangle Heegaard diagram.

We now focus on the case of 4-ended tangles without closed components. Here,
generators are of the form x = {x}, where x is an intersection point of the β-circle
and one α-arc. For any generator x, we can identify the unique site s(x) of the tangle
Heegaard diagram on which x is located. We denote by Ts the set of all generators
that lay on the site s. Therefore, we have a partition

T =
⨆︂

s site of T

Ts.

Domains, sets π2(x,y), and periodic domains are defined as in the closed 3-
manifold case, and admissible tangle Heegaard diagrams are consequentially defined.
Without loss of generality, we restrict ourselves to admissible diagrams, as Lemma
II.2.8 of [Zib17] shows that any non-admissible diagram can be made admissible.
The Maslov index µ(ϕ) for a domain and the count function c(·) are defined in the
same way as in the closed case.

We move now to the setting of peculiar Heegaard diagrams. Here, given a domain
ϕ, we define ny(ϕ) to be the multiplicity of it at a basepoint y = pi, qj , zk, wl. We
set moreover

np(ϕ) =
4∑︂
i=1

npi(ϕ),

nq(ϕ) =
4∑︂
j=1

nqj (ϕ).

We now have all the necessary components to define a grading on the domains of
a peculiar Heegaard diagram, known as the Alexander grading. It should be noted
that this grading, along with others, is required for defining the peculiar module of
a 4-ended tangle T , denoted CFT∂(T ). While we will not delve into these gradings,
it is worth briefly discussing this one, as it is required as input in [nicepy] when
working with tangles.

Definition 3.41 (Alexander grading). Let T be a 4-ended tangle withm closed com-
ponents and consider an admissible peculiar Heegaard diagram for T . Call t1, t2 the
open components and t3, . . . , tm+2 the closed components and assign an orientation
to the open components.

Moreover, let {(i1, o1), (i2, o2)} be an ordered partition of {1, 2, 3, 4} into pairs,
constructed as follows. We associate numbers from 1 to 4 to the tangle ends (starting
from north-west and going counter-clockwise); then i1 is the number corresponding
to the inward pointing end of the string t1 and o1 the number of the outward pointed
end. The same for the second couple and the open component t2.

Let ϕ ∈ π2(x,y) for two generators x,y. We define the Alexander grading relative
to the open components of ϕ, denoted by Atk(ϕ) for k = 1, 2, as

Atk(ϕ) := npok (ϕ) + nqok (ϕ)− npik (ϕ)− nqik (ϕ).
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We define the Alexander grading relative to the closed components of ϕ, denoted by
Ath(ϕ) for h = 3, . . . ,m+ 2 as

Ath(ϕ) := nwh
(ϕ)− nzk(ϕ).

3.5.1 Peculiar modules for 4-ended tangles

This subsection presents an intermediate step in the construction of HFT, specifically,
the peculiar module for a 4-ended tangle T , denoted by CFT∂(T ).

As a reference, see Section III.1 of [Zib17].

Definition 3.42 (Quiver). We call a quiver an oriented graph that allows loops and
multiple arrows between two vertices.

We are going to work with the following quiver, which we denote by Q.

d

a c

b

p4

q1

q2

p1

p3

q4

q3

p2

Definition 3.43 (Peculiar algebra A∂). We define the peculiar algebra A∂ to be
F2[Q], the path algebra (also called quiver algebra) over Q, with relations piqi = 0 =
qipi. Namely, this is described as

A∂ =
F2 [Q]

piqi = 0 = qipi
.

This is the vector space F2 generated by all paths in Q, where the multiplication
µA∂ is defined as the bilinear extension of the concatenation of paths to the entire
vector space. By "concatenating", we mean that given two paths v1, v2, then

µA∂ (v1, v2) =

= v2 · v1

=

{︄
v2 concatenated v1 if the head of v1 coincides with the tail of v2
0 otherwise.

Remark in particular that there exists a constant path on any of the vertices,
which we denote by the letter ι; for instance

a .ιa



76 CHAPTER 3. HEEGAARD FLOER HOMOLOGIES

We call I∂ the ring of idempotents of A∂ , generated by the idempotent elements
of A∂ , i.e.

I∂ = F2⟨ιa, ιb, ιc, ιd⟩
To simplify the notation a bit, we can denote the product in A∂ as follows

pi · pi+1 · · · · · pi+n = pi(i+1)...(i+n)

qj · qj−1 · · · · · qj−m = qj(j−1)...(j−m)

where we take the indices modulo 4 and with an offset of 1.
Moreover, we set

p = p1 + p2 + p3 + p4

q = q1 + q2 + q3 + q4.

With this new notation, the relations pq = 0 = qp hold, and we have p2 = p12 +
p23 + p34 + p41, as an example. Furthermore, we can now omit the indices 1, 2, 3, 4

and write, for instance, a b,
p3 which means "the only composition of 3 p-maps

that links a and b, i.e. p341.

Definition 3.44 (Curved chain complex over A∂). A curved chain complex over A∂

is defined by a pair (X, ∂), where

• X is a left I∂-module, and

• ∂ is a morphism X A∂ ⊗I∂ X
∂ such that ∂2 =

(︁
p4 + q4

)︁
⊗ idX , where

we define ∂2 as the following composition of maps

X A∂ ⊗I∂ X A∂ ⊗I∂ A∂ ⊗I∂ X A∂ ⊗I∂ X.

∂2

∂ idA∂⊗ ∂ µA∂⊗ idX

We denote by ModA
∂

p4+q4 the category of all the curved chain complexes over A∂ :
the objects are curved chain complexes and, given two curved chain complexes
(X1, ∂1), (X2, ∂2) the morphisms between them are chain maps, i.e. maps f : X1 →
X2 that commute with the differentials (meaning ∂2 ◦ f = f ◦ ∂1).

Example 3.45 (A first curved chain complex). We can see a first example of a
curved chain complex (X, ∂), where X is

d

a c

b

q3

p3

q

p

p

q

p3

q3
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We can see that it is a curved chain complex. Firstly, we have that for all vertices
x ̸= y holds ∑︂

z

(x→ z → y) = 0 :

in fact, either we have x z y
pm qn or x z y;

qn pm hence the com-
position is zero. Secondly, we have that for any vertex x holds∑︂

z

(x→ z → x) = p4 + q4 :

in fact, for any vertex we have one arrow pair whose composition is p4 and one whose
composition is q4.

We can still slim the notation a bit without adding confusion. Let n,m be positive
integers such that n+m = 4; then for any two generators x, y we denote

x y ≡ x y
pn

pm

and

x y ≡ x y.
qn

qm

With this notation, the last example is represented as

d

a c.

b

Example 3.46. Using similar arguments to above, one can prove that another ex-
ample of curved chain complex is the following

d1 b2

a c

b1 d2
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We have two main results that help us to work with curved chain complex:
the Cancellation Lemma and the Clean-Up Lemma. This two lemmas allow us to
"simplify" curved chain complexes. The proof of both can be found in [Zib20],
Lemma 1.22 and Lemma 1.24.

Lemma 3.47 (Cancellation Lemma ([Zib20, Lemma 1.22])). Let (X, ∂) be a curved
chain complex of the following form

(Z, ζ)

(Y1, ε1) (Y2, ε2)

a c

b

f

e

d

where (Z, ζ), (Y1, ε1) and (Y2, ε2) are pre-curved chain complexes, i.e. a curved chain
complex for which we do not require that ∂2 = (p4+ q4) · id, and f is an isomorphism
with inverse g.

Then (X, ∂) is chain homotopic to the curved chain complex (Z, ζ + bgc).

Lemma 3.48 (Clean-Up Lemma ([Zib20, Lemma 1.24])). Let (X, ∂) be a curved
chain complex. Then, for any morphism h ∈ Mor ((X, ∂), (X, ∂)) with the properties
that

• h2 = 0,

• h(h∂ + ∂h) = 0,

• (h∂ + ∂h)h = 0,

it holds that (X, ∂) is chain isomorphic to (X, ∂ + (h∂ + ∂h)).

In Definition III.1.11 of [Zib17], the author introduced the peculiar module of a
tangle T . The construction of this module involves three different gradings, including
the Alexander grading presented in Definition 3.41. With these gradings, one can de-
fine a class of curved chain complexes called peculiar modules that are endowed with
additional structures given by the gradings. However, since we are only presenting
this topic in broad terms to highlight its Floer Homology structure, we will refer to
peculiar modules and curved chain complexes interchangeably, without going into
the details of the construction of the former.

Definition 3.49 (The peculiar module CFT∂(T )). et T be a 4-ended tangle without
closed components, and let H be an admissible peculiar Heegaard diagram for T . Let
T be the set of generators of the diagram.

We define CFT∂(T ) to be the vector space over F2 generated by elements in T.
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We can turn CFT∂(T ) into a left I∂-module by defining for any x ∈ T the
following multiplication

ιi · x =

{︄
x if s(x) = i,

0 otherwise .

Moreover, we need to define a boundary map on CFT∂(T ); this is done in similar
fashion to the closed case.

Definition 3.50 (Boundary map for CFT∂(T )). Given a generator x, we define

x ↦→ ∂x =
∑︂
y

⎛⎜⎜⎜⎜⎜⎝
∑︂

ϕ∈π2(x,y)
s.t. np(ϕ),nq(ϕ)≥0

and µ(ϕ)=1

c(ϕ) · ιs(x) · pnp(ϕ)qnq(ϕ) · ιs(y) ⊗I∂ y

⎞⎟⎟⎟⎟⎟⎠ .

The following result states that we have indeed defined a peculiar module in the
sense above presented and that it is an invariant for the tangle T .

Theorem 3.51 ([Zib17, Theorem III.1.12]). CFT∂(T ) is indeed a well-defined pe-
culiar module. Furthermore, its chain homotopy type is an invariant of the tangle
T .

3.5.2 The multicurve invariant HFT

We now link the algebraic theory developed around ModA
∂

p4+q4 and CFT∂ and the
more geometric perspective of curves in S2

4 . To do so, we need to talk about multic-
urves on S2

4 .
We discuss this according to what is done in Section 1.2 of [Zib19] and in Section

4.2 of [Aub22].

Definition 3.52 (Loop or immersed curved with local system). A loop or immersed
curve with local system on the 4-punctured sphere S2

4 is defined as a pair (γ,A),
where

• γ is an immersion of an oriented circle into S2
4 , which represents a non-trivial

primitive element1 of π1(S2
4 );

• A ∈ GLn(F2) for some integer n.

We consider γ up to isotopy, A up to matrix similarity and (γ,A) up to simultaneous
orientation reversal of γ and inversion of the matrix A. Given a loop (γ,A), we say
that γ is the underlying curve of the loop and that A is its local system.

1Recall that an element h of a group G is said to be primitive if it does not exists g ∈ G such
that for some n ∈ N≥2 holds h = gn.
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Definition 3.53 (Multicurve). We define a multicurve on S2
4 to be an unordered

set of loops with local systems L = {(γi, Ai)}ki=1. Given a multicurve L and a loop
γ, we define AL(γ) as the direct sum2 of the following matrices

AL(γ) =
⨁︂
γ=γi

Ai ⊕
⨁︂

−γ=γi

A−1
i ,

where with γ = γi we mean that they are isotopic and −γ is γ with the orientation
reversed. We then say that two multicurves L = {(γi, Ai)}ki=1 and L = {(γ′j , A′

j)}lj=1

are isotopic if for any loop γ the matrices AL(γ) and AL′(γ) are similar.

Remark 3.54. It is clear from the definition how it is possible to go from a multi-
curve to a collection of immersed curves and vice versa. Hence, we can freely talk
about collection of immersed curves instead of multicurve if it is advantageous.

Theorem 3.55 ([Zib19, Theorem 1.11]). We can associate a multicurve L(X, ∂) =
{(γi, Ai)}i∈I to any peculiar module (X, ∂) in such a way that if another peculiar
module (X ′, ∂′) is given with L(X ′, ∂′) = {(γ′j , A′

j)}j∈J , then (X, ∂) and (X ′, ∂′) are
homotopic if and only if their respective multicurves are the same.

In other words, we have a 1-to-1 correspondence

{︂
Multicurves on S2

4

}︂
homotopy

{︃
Objects inModA

∂

p4+q4

}︃
chain homotopy .1:1

An expanded version of Theorem 3.55 is a key result in [Zib20], as described in its
Section 0.2. The theorem establishes an equivalence between the category of peculiar
modules and the compact portion of the wrapped Fukaya category of S2

4 . This is
a central result for HFT, as it allows peculiar modules to be classified in terms of
multicurves.

We can see explicitly how this correspondence works with some illustrative ex-
amples; a more detailed explanation can be found in Definition 1.10 of [Zib19].

Let (X, ∂) ∈ ModA
∂

p4+q4 be a curved chain complex, and consider the 4-punctured
sphere S2

4 with the sites a, b, c, d as previously defined. We have that every generator
in X corresponds to an intersection point on some site: a red generator (labeled "a")
is a point on the site a, a blue one is on the site b, and so on. Then we have that a
solid line that connects two generators is a segment on the front of S2

4 , and a dashed
line is a segment on the back of it. See Figure 3.9 for two examples.

2Recall that the direct sum of matrices is defined as

⊕n
i=1Ai =

⎛⎜⎜⎜⎜⎜⎝
A1 0 . . . 0 0
0 A2 . . . 0 0
0 0 . . . 0 0
...

...
. . .

...
...

0 0 . . . 0 An

⎞⎟⎟⎟⎟⎟⎠ .
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Figure 3.9: Examples of the correspondence between multicurves and curved chain
complexes.

We can finally define the invariant HFT in terms of CFT∂(T ).

Definition 3.56 (HFT). Given an oriented 4-ended tangle T, we define HFT(T ) as
the multicurve associated to CFT∂(T ).

Surprisingly, we can classify the multicurves yielded by HFT with only two fam-
ilies: the rational curves and the special curves (sometimes also called irrational
curves in older literature). For this classification, we use the covering space of S2

4

presented in Section 1.4: given a closed curve γ : S1 → S2
4 , we can lift it to a curve˜︁γ in R2/Z2 as

I R2/Z2

S1 S2
4 .

˜︁γ
0≡1 η

γ

Definition 3.57 (Rational and special curves). Let p/q be an element of QP1. We
define the rational curve of slope p/q to be the primitive loop r(p/q) ⊂ S2

4 that, under
the covering map η, lifts (up to homotopy) to a straight line of slope p/q. We denote
it by rA(p/q) if we equip it with the local system A.

Now, let i1 and i2 be two distinct tangle ends that lie on a line of slope p/q ∈ QP1

in R2 with the lattice given by Z2. We can divide this line into intervals of equal
length with the points of the lattice, and we mark every (2n)-th interval of the line
for a fixed integer n > 0. We consider a small push-off of this line, done in a way
that the result intersects only the marked intervals and each of them exactly once.
We can define the special curve of slope p/q of length n through the punctures i1 and
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Figure 3.10: Three linear loops. Starting from the left: s2(0; 1, 4), s2(0; 2, 3) and
r(−2).

i2 to be the primitive loop sn(p/q; i1, i2) ⊂ S2
4 that, under the covering map η, lifts

(up to homotopy) to the curve described above.
If a primitive loop in S2

4 is either rational or special, we call it linear with slope
p/q.

The following theorem explains how the multicurves obtained via HFT can be
classified by these two families.

Theorem 3.58 ([Zib19, Theorem 0.5]). For a 4-ended tangle T , the underlying curve
of each component of HFT(T ) is either rational or special. Moreover, if it is special,
its local system is equal to an identity matrix.

We can simplify the notation of the rational and special curves even further.
First, we can ignore the data of the local system. In fact, by the above theorem, for
special curves the local system is always going to be trivial. For rational curves, it
could potentially be non-trivial, but to the author’s knowledge, no computation of
HFT has yielded a rational curve with a non-trivial local system up to today.

We can simplify the notation even further with the help of the following result:
notice that, for each slope p/q and a fixed n > 0, there are exactly two choices for the
pair of punctures (i1, i2). The following theorem tells us that, given any HFT(T ),
the number of such components is the same.

Theorem 3.59 ([LMZ20, Theorem 3.9]). Let i, j, k, l = 1, 2, 3, 4, p/q ∈ QP1 and
n ∈ N. Then, for any 4-ended tangle T , the number of components of the form
sn(p/q; i, j) and sn(p/q; k, l) in HFT(T ) agree.

We can therefore introduce the following notations for special curves: we denote
by s2n(p/q) the data of the presence of sn(p/q; i, j) and sn(p/q; k, l).

Furthermore, by recalling the definition of the mirror image m(·) of a tangle, we
can explain how it affects the Tangle Floer Homology of a given tangle.

Proposition 3.60 ([Zib20, Proposition 5.4]). Let T be a tangle with Tangle Floer
Homology

HFT(T ) =

n∑︂
i=1

r(pi/qi) +

m∑︂
j=1

s2n(pj/qj).
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Then, it holds

HFT(m(T )) = m (HFT(T )) =
n∑︂
i=1

r(−pi/qi) +
m∑︂
j=1

s2n(−pj/qj).

3.5.3 Naturality on rational tangles

We can focus on rational tangles in particular, as the HFT invariant exhibits espe-
cially nice behavior on them and can even detect them.

In [Zib20], Zibrowius proved the following result.

Theorem 3.61 ([Zib20, Theorem 6.2]). A 4-ended tangle T is rational if and only if
HFT(T ) consists of single rational component carrying the unique one-dimensional
local system. Moreover, HFT(Qp/q) = r(p/q).

Remark 3.62. This result, justify once more our choice to lose the data of the local
system for rational curves.

Moreover, in [Zib19], the author was able to prove a stronger version of the above
result, which allows us to know how adding vertical or horizontal (half-) twists to
any 4-ended tangle affects HFT. Recall the definition of the two operators τ1 and τ2
given in Section 1.4.

Theorem 3.63 ([Zib19, Theorem 2.1]). Let T be a 4-ended tangle and τ ∈ ⟨τ1, τ2⟩.
Then

HFT(τT ) = τ HFT(T ).

Recalling Remark 1.39, we can see a practical example of this last result, as it is
going to be a useful argument in Chapter 5. Let T be a tangle and denote its Tangle
Floer Homology as

HFT(T ) =
n∑︂
i=1

r(pi/qi) +

m∑︂
j=1

s2n(pj/qj).

Assume that we want to add a horizontal or vertical half-twists to it. Denote the
resulting tangle as T ′; if the half-twist is horizontal, then

T ′ = T +Q±1

and if it is vertical, then
T ′ = T ∗Q±1.

In the horizontal case, we obtain

HFT (T ′) = HFT(T +Q±1) =

n∑︂
i=1

r(pi/qi ± 1) +
m∑︂
j=1

s2n(pj/qj ± 1).

In the vertical case, we obtain

HFT (T ′) = HFT(T ∗Q±1) =
n∑︂
i=1

r(pi/(qi ± 1)) +
m∑︂
j=1

s2n(pj/(qj ± 1)).
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Figure 3.11: Knot obtained as the gluing of two 4-ended tangles.

3.5.4 Motivations from bordered sutured point of view

The construction of this version of Heegaard Floer Homology is based on the theory
of Bordered Sutured Floer Homology. While we do not delve into this theory in detail,
we can use it to motivate our presentation for HFT. As mentioned in Section 1.7,
one of the main interesting properties of Bordered Sutured Floer Homology is its
gluing property, which is also inherited by HFT. To understand this better, we can
consider a particular case of Theorem 0.2 of [Zib20].

Theorem 3.64 ([Zib20, Theorem 0.2]). Let T1 and T2 be two 4-ended tangles without
closed components and let K be the knot obtained by their gluing as showed in Figure
3.11.

Then the Knot Floer Homology ˆ︁HFK(S3,K) can be computed from CFT∂(T1)
and CFT∂(T2).

Further details can be found in the Introduction of [Zib20].



Chapter 4

The Nicefication Algorithm

n this chapter, we will introduce the concept of nice Heegaard diagrams, a useful tool
for computing Heegaard Floer Homology. The notion of nice Heegaard diagrams was
first introduced by Sarkar and Wang in [SW10], and we will adopt their approach in
our presentation.

Definition 4.1 (Nice Heegaard diagram). We say that a pointed Heegaard diagram
H = (Σ,α,β, z) for a closed 3-manifold Y is nice if any region that does not contain
z is either a bigon or a rectangle.

The main motivation behind our interest in nice Heegaard diagrams is captured
by the following two theorems, originally proven by Sarkar and Wang in [SW10]. This
chapter aims to prove and generalise these theorems for the cases we are interested
in.

Theorem 4.2 (Sarkar-Wang, 2006 ([SW10, Theorem 1.1])). Given a nice Heegaard
diagram of a closed oriented three-manifold Y , we have that its Heegaard Floer Ho-
mology ˆ︂HF(Y ) can be computed combinatorially.

Similarly, for a knot K ⊂ S3, we have that its Knot Floer Homology ˆ︁HFK(S3,K)
can be computed combinatorially in a nice Heegaard diagram.

Theorem 4.3 (Sarkar-Wang, 2006 ([SW10, Theorem 1.2])). Every closed oriented
3-manifold Y admits a nice Heegaard diagram.

Every knot K in S3 admits a nice Heegaard diagram.

The proof of Theorem 4.3 relies on the Nicefication Algorithm, which is capable
of transforming any pointed Heegaard diagram into a nice Heegaard diagram using
isotopies and handleslides. This algorithm was originally developed by Sarkar and
Wang in [SW10] and has been implemented inside [nicepy] by the author during the
course of this thesis work.

4.1 Holomorphic discs in nice Heegaard diagrams

In this section, we present a proof of Theorem 4.2. The key idea is to consider the
count function c(·) in the nice case and show that it is nontrivial only when the

85
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domain ϕ is a special type of empty embedded n-gon.
As a reference, one can look at Section 3 of [SW10].

Let H = (Σ,α,β, z) be a nice admissible Heegaard diagram of genus g for a
closed 3-manifold Y ; choose a product complex structure on Σ× D2.

Definition 4.4 (Empty embedded 2n-gon). Let x = {x1, . . . , xg} and y = {y1, . . . , yg}
be generators in H. A domain ϕ ∈ π0

2(x,y) is called an empty embedded 2n-gon if it
has the following properties:

1. it only has 0 and 1 as coefficients;

2. it is topologically an embedded disc with 2n vertices on its boundary;

3. for each vertex v holds µv(ϕ) = 1/4 (meaning that, if ϕ1, . . . , ϕ4 are the region
around v, only one of them has 1 as coefficient in ϕ);

4. for any i, it does not contain xi or yi in its interior.

Remark 4.5 (µ(ϕ) = 1) for any empty embedded 2n-gon ϕ). Any empty embedded
2n-gon ϕ ∈ π0

2(x,y) is taken into account by the boundary map of ˆ︂CF. In fact, by
Remark 3.19 we have that e(ϕ) = 1− n/2. Moreover, each of the corners has to be an
xi or an yi and at every other xj and yj the point measure is zero, i.e. µxj (ϕ) = 0 =
µyj (ϕ). Therefore µx(ϕ)+µy(ϕ) = (2n)/4 = n/2 and µ(ϕ) = e(ϕ)+µx(ϕ)+µy(ϕ) = 1.

To prove Theorem 4.2, we exploit two other results proven in [SW10]. The first
theorem states that in a nice Heegaard diagram, only empty embedded bigons and
squares contribute to the boundary map of ˆ︂CF.

Theorem 4.6 ([SW10, Theorem 3.3]). Let ϕ ∈ π0
2(x,y) be a domain in a nice

Heegaard diagram such that µ(ϕ) = 1. If ϕ has a holomorphic embedding (i.e. ˜︂M(ϕ)
as at least one point and c(ϕ) may be 1), then ϕ is an empty embedded bigon or an
empty embedded square.

The second theorem we present in this section, which differs slightly from the
presentation in [SW10], states that every empty embedded bigon and every empty
embedded square in a nice Heegaard diagram has a nontrivial count function.

Theorem 4.7 ([SW10, Theorem 3.4]). If ϕ ∈ π0
2(x,y) is an empty embedded bigon

or an empty embedded square, then µ(ϕ) = c(ϕ) = 1.

Therefore, we can already prove Theorem 4.2 as a consequence of Theorems 4.6
and 4.7.

Proof of Theorem 4.2 ([SW10]). Let ϕ be a domain in a nice Heegaard diagram with
µ(ϕ) = 1. If ϕ does not have a holomorphic embedding, then c(ϕ) = 0 and ϕ is not
detected by the boundary map of ˆ︂CF. If ϕ has some holomorphic embedding, then
by Theorem 4.6 we obtain that ϕ is either an empty embedded bigon or an empty
embedded square and by Theorem 4.7 we get c(ϕ) = 1.
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Therefore, in a nice Heegaard diagram, the count function is combinatorial, and
consequently, the computation of ˆ︂HF can also be done combinatorially: it is sufficient
to count the empty embedded bigons and empty embedded squares present in the
diagram.

We devote the rest of this section to the proofs of Theorems 4.6 and 4.7.

In order to prove Theorem 4.6, we need to discuss the consequences for a domain
ϕ to have at least one holomorphic embedding u. We have the following proposition,
whose proof can be found in [SW10].

Proposition 4.8 ([SW10, Proposition 2.4]). Let ϕ be a domain in π0
2(x,y) for some

generators x and y. If ϕ has a holomorphic embedding, then ϕ is a positive domain.
In particular, if c(ϕ) ̸= 0, then ϕ is a positive domain.

Moreover, as one can read in Section 2.3 of [SW10], also the following lemma
holds.

Lemma 4.9 ([SW10]). If ϕ has a holomorphic embedding u, then the number of
branch points of p2 ◦ u is given by µx(ϕ) + µy(ϕ)− e(ϕ).

In such situation, the Maslov index can be computed in a more practical way.
In fact, as one can deduce by manipulating the formula given in the statement of
Proposition 4.2 of [Lip06] and the formulas deducted in its proof, it holds

µ(ϕ) = 2e(ϕ) + g − χ(S)

= e(ϕ) + b+
1

2
(g − t),

(◊)

where

• g is the genus of the Heegaard diagram;

• b denotes the number of branch points of p1 ◦ u;

• t denotes the number of trivial discs (Definition 3.13); notice that they corre-
spond to the coordinates xi of x with µxi(ϕ) = 0.

With this acquired knowledge, we can prove Theorem 4.6.

Proof of Theorem 4.6 ([SW10]). Let ϕ =
∑︁

i aiϕi be a domain, where the ϕi’s are
regions that do not contain the basepoint. Let u be one holomorphic embedding for
ϕ; then for Proposition 4.8, we have that ai ≥ 0, for any i. Moreover, by the niceness
of the diagram, we have that each ϕi is a bigon or a square; therefore for Remark
3.19 we have e (ϕi) ≥ 0 and hence e(ϕ) =

∑︁
i ai · e(ϕi) ≥ 0. So, by Lipshitz’s formula

1 = µ(ϕ) = e(ϕ) + µx(ϕ) + µy(ϕ),
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we obtain that 0 ≤ µx(ϕ) + µy(ϕ) ≤ 1. We are now going to see that there are
only two possibilities for the values of µx(ϕ) and µy(ϕ): either µx(ϕ) = µy(ϕ) =
1/2 or µx(ϕ) = µy(ϕ) = 1/4. After proving this, we will use Lipshitz’s cylindrical
reformulation to understand what bordered surface maps into Σ×D2 and represents
ϕ, proving that it is either a "bigon" or a "square".

We need the following definition in order to proceed with the proof.

Definition 4.10. We say that ϕ hits the α-circle αi if ∂ϕ is non-zero on some part
of αi.

We have the following observations.

Observation 4.11. 1. For any xi ∈ x and yi ∈ y, we can assume that xi, yi ∈ αi.

2. Since ϕ ̸= Σ (because ϕ does not contain the basepoint z), it has to hit at least
one α-circle; without loss of generality, assume that ϕ hits α1. Therefore, we
can deduce that µx1(ϕ), µy1(ϕ) ≥ 1/4: in fact, by definition, if ϕ ∈ π0

2(x,y),
then ∂

(︁
∂ϕ|α

)︁
= y − x; since ∂ϕ|α1

̸= 0, we have that x1 and y1 are vertices of
ϕ and that µx1(ϕ), µy1(ϕ) ≥ 1/4 (they are vertices at least one time for ϕ).

3. Assume that ϕ does not hit αi, for some i ≥ 2. Then xi = yi, otherwise it
would not be true that ∂

(︁
∂ϕ|α

)︁
= y − x.

Moreover, xi = yi must lie outside the domain ϕ. In fact, if it were to lie on
the boundary of ϕ, we would have µxi(ϕ) = µyi(ϕ) ≥ 1/2. Similarly, if xi = yi
were to lie in the interior of ϕ, we would have µxi(ϕ) = µyi(ϕ) = 1. In both
cases, we would have µxi(ϕ) = µyi(ϕ) ≥ 1/2 and hence

1 < µx(ϕ) + µy(ϕ) = µx1(ϕ) + µy1(ϕ) + µxi(ϕ) + µyi(ϕ),

which is an absurd.

4. ϕ can hit at most two α-circles: if it were to hit more than 2, we would have
that µx(ϕ), µy(ϕ) ≥ 3/4.

5. Remark also that e(ϕ) ∈ 1/2N (since Euler measure is additive and e(ϕ) = 1/2
for ϕ a bigon and e(ϕ) = 0 for ϕ a square, see Remark 3.19).

Therefore, we can only have the following cases regarding ϕ.

• Case 1: ϕ hits two α-circles; without loss of generality we assume ϕ to hit α1

and α2. In such case, we have that the following properties hold:

– µx1(ϕ) = µx2(ϕ) = µy1(ϕ) = µy2(ϕ) = 1/4;
– ϕ consists of squares, since for Lipshitz’s formula e(ϕ) = 0;
– there are (g − 2) trivial discs (corresponding to x3 = y3, . . . , xg = yg).

• Case 2: ϕ hits only one α-circle; without loss of generality we assume ϕ to
hit α1. In such case, we have two possible sub-cases, distinguishing on the sum
µx(ϕ) + µy(ϕ).



4.1. HOLOMORPHIC DISCS IN NICE HEEGAARD DIAGRAMS 89

∗ Sub-case 2a: µx(ϕ) + µy(ϕ) = 1/2. In this case, we have that:

– µx1(ϕ) = µy1(ϕ) = 1/4;
– ϕ consists of squares and exactly one bigon (since for Lipshitz’s for-

mula e(ϕ) = 1/2);
– there are (g−1) trivial discs (corresponding to x2 = y2, . . . , xg = yg).

∗ Sub-case 2b: µx(ϕ) + µy(ϕ) = 1. In this case, we have that:

– µx1(ϕ) = µy1(ϕ) = 1;
– ϕ consists of squares (since for Lipshitz’s formula e(ϕ) = 0);
– there are (g−1) trivial discs (corresponding to x2 = y2, . . . , xg = yg).

Our aim will now be to understand the surface S which maps to Σ × D2 (using
the cylindrical reformulation by Lipshitz) in these three cases.

Observation 4.12. We can make some observations on the three cases found, re-
ducing ourselves to look at only the first two of them.

• Let us consider the first case. This corresponds to a map from S to Σ, where
S has g − 2 trivial disc components and, using (◊), χ(S) = g − 1 (recall that
e(ϕ) = 0).

Let F = S∖{ trivial discs }. Then F is a double branched cover over D2, and we
claim that χ(F ) = 1 and it has one branch point. To see that χ(F ) = 1, one can
prove that "to remove a disc" from some surface makes the Euler characteristic
of the surface to go down by one (using the Inclusion-Exclusion principle for
χ(·) ); since we are removing one disc for every trivial disc component, we
get that χ(F ) = (g − 1) − (g − 2) = 1. To see that F has 1 branch point,
recall that for Lemma 4.9 we have that the number of branch points is given
by µx(ϕ) + µy(ϕ)− e(ϕ) = 1.

Therefore F is a disc with 4 marked points on its boundary (which correspond
to x1, y1, x2, y2). We then say that F is a square and we call the marked points
corners of F.

• Consider now the other two cases. In both, S has (g−1) trivial disc components
and we call again F = S∖ { trivial discs }. In this case, F is just a single cover
over D2 and the number of branch points has to be 0.

Consider Sub-case 2b. If this case were possible, we could use Lemma 4.9 to
conclude that the number of branch points would be 1, which is impossible.
Therefore, the third case is not possible.

Consider then Sub-case 2a. Here, F is a disc with 2 marked points on its
boundary (corresponding to x1 and y1). We then say that F is a bigon and we
call the marked points corners of F.

We have then proven that only Case 1 and 2a can occur, we will refer to them as
Case 1 and Case 2.
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Figure 4.1: Pre-image of α-edges and β-edges for a square.

We want now to study the map f = p1 ◦ u|F : F → Σ. In both the cases, ϕ is
the image of F via f and the trivial discs are mapped to x3 = y3, . . . , xg = yg (and
also x2 = y2 for the second case), that are outside of ϕ. Notice that, for both cases,
f has no branch points; therefore, it is a local diffeomorphism even at the boundary
of F . We can also establish that every corner v of F has exactly one preimage under
f . To see this, note that in the non-trivial xi’s we have µxi(ϕ) = µyi(ϕ) = 1/4, which
implies that the preimages of each corner under f are uniquely determined.

All is left to prove is that f is an embedding, i.e. that is not only a local
diffeomorphism but an actual diffeomorphism. Once we establish this, we will also
be able to conclude that ϕ is an embedded square (in Case 1) or an embedded bigon
(in Case 2). We will proceed to prove this by examining each case separately.

Case 1. Here we have a map f : F → Σ, where F is a square (i.e. a disc with 4
marked points on the boundary), and we denote the corners by v1, v2, v3, v4.

In order to prove that f is an embedding, i.e., not only a local diffeomorphism
but an actual diffeomorphism, we first study the preimage of the α- and β-edges of
the boundary and the interior of ϕ under f . Exploiting the fact that f is a local
diffeomorphism, we see that these preimages are 1-manifolds with boundary; we can
therefore still call them α- and β-edges. Furthermore, also in the preimage the α-
edges are only allowed to intersect β-edges and vice versa. Moreover, at any corner
vi, there is an intersection between an α-edge and a β-edge.

Note that any preimage of a square region is still a square region. Therefore,
the α- and β-edges cut F into squares. In particular, this means that no edge can
form a closed loop γ: if that were the case, we would have that the Euler measure
of A = F ∖ {region enclosed by γ} is negative and hence A could not be tiled by
squares.

Similarly, no edge can intersect an edge of the same colour more than once in
the preimage. This holds in particular on the border of F , meaning that an edge
cannot "start" and "finish" on the same edge. Therefore, we have that the edges
are straight lines inside F ; we can consider the α-edges to be vertical edges that cut
F into vertical rectangles and the β-edges to be horizontal edges that cut F into
horizontal rectangles, as shown in Figure 4.1.
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Figure 4.2: Points found with the "walk" on βi, finishing in the wrong case (we reach
the border first starting from s) in yellow and in the right case (we reach the border
first starting from r) in green.

Let us call vertices the intersection points between α- and β-edges, including the
corners. Based on the observations made above, we can reduce our proof to showing
that distinct vertices are mapped to distinct points by f , which would imply that f
is an embedding.

Suppose r, s ∈ F are distinct vertices and assume, for the sake of contradiction,
that f(r) = f(s). We consider the following two cases:

(a) At least one of r or s lies on ∂F .

(b) Both r and s lie in the interior of F .

We only prove the contradiction in case (a), as case (b) can be reduced to case
(a).

Suppose that r ∈ br ⊂ ∂F and bs is the β-edge on which s lies. The case where
r ∈ ar ⊂ ∂F for ar an α-arc can be proven similarly. Let βi be the β-circle in Σ
containing f(r) = f(s), and we select an orientation for βi and explore it until we
reach an intersection point with some α-circle. We examine the preimages of that
point via f , which are at least 2 since we are virtually moving from both r and s
on the β-edges br, bs in F . If at least one of them is situated in an α-edge a ⊂ ∂F ,
we stop; otherwise, we proceed to explore the intersection points on βi following the
orientation. At some point, we will encounter such a point, and we call t, u to be two
preimages of such an intersection point on βi such that t ∈ a ⊂ ∂F . We have two
cases: t ∈ br or t ∈ bs. If the second one is the case, we can repeat the walk on βi
by reversing the chosen orientation. Notably, t ∈ br is a corner; therefore, we have
found f(t) = f(u) for two distinct vertices, one of which is a corner. This contradicts
the embedding assumption near the corners. E

See Figure 4.2 for a visual illustration.
We still need to show how to reduce case (b) to case (a). Assume both r and s

are in the interior of F . Let ar and as be the α-edges on which they lie, respectively,
and let αi be the α-circle in Σ that contains f(r) = f(s). As before, we choose an
orientation and examine successive points of intersection with β-circles. For each
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Figure 4.3: Pre-image of α-edges and β-edges for a bigon.

intersection point, we have at least two preimages in F : one on ar and one on as.
We explore αi until one of the preimages of some intersection point falls on ∂F , then
we proceed as in case (a).

Case 2.
In this case, we consider a map f : F → Σ, where F is a bigon (i.e., a disk with

two marked points on the boundary), and we refer to the corners as v1 and v2.
As before, we establish the setup in which the preimages of α and β-edges are

1-manifolds with borders, and the edges of different colours can intersect only each
other. The points of intersection are referred to as vertices, and each corner vi we
have an intersection between an α-edge and a β-edge. Similarly, we still cannot have
any closed loops, and the tiling on ϕ ⊂ Σ induces a tiling with squares and a single
bigon on F .

Differing from the previous case, the boundary of F consists of one α-edge ā
and one β-edge b̄, and the remaining edges must "start" and "end" F on the same
border edge of the other colour. However, their entry and exit points are nested.
For example, the α-edges of F that are not ā: if we look at the connected regions
of F ∖ {a | a is a α-edge different than ā}, then only one region can be a bigon, the
closest to b̄. Thus, the tiling of F is as shown in Figure 4.3, with a bigon in the
centre and squares surrounding it.

As in the previous case, to show that f is an embedding it is enough to show that
it is an embedding restricted to vertices; this is done in the same fashion of Case 1.

Hence, both in Case 1 and Case 2, f is an embedding and the theorem is proved.

Proof of Theorem 4.7 ([SW10]). Let ϕ ∈ π0
2(x,y) be an empty embedded square;

then by Remark 4.5 it holds µ(ϕ) = 1. We want to prove that ϕ admits a unique
holomorphic embedding u, which would imply that c(ϕ) = 1.

To begin with, we construct a branched cover F of D2 that is mapped diffeomor-
phically onto ϕ. We start by considering a disc F with four marked points on its
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boundary. Given a complex structure on Σ, we can then induce a holomorphic struc-
ture on F . The cross-ratio of the four marked points on the boundary determines
a unique one-parameter family of branch points in D2 that gives that cross-ratio.
Hence, there is a holomorphic branched cover g : F → D2 satisfying the boundary
conditions, which is unique up to re-parametrisation: therefore, we proved that ϕ has
a holomorphic representative u. Additionally, as shown in the proof of Theorem 4.6,
we have established that u uniquely determines the topological type of F . Hence, u
is the unique holomorphic embedding of ϕ.

The case for ϕ ∈ π0
2(x,y) an empty embedded bigon is done analogously with F

a disc with two marked points on its boundary.

4.2 The nicefication algorithm

We see now how we can construct a nice Heegaard diagram starting from a generic
admissible one. For this purpose, we only need to use isotopies and handleslides
on the β-curves. The algorithm presented was developed by Sarkar and Wang in
Section 4 of their paper [SW10], and we are going to follow their exposition closely.
Some changes were made to the algorithm for implementation purposes, and these
will be discussed in Section 4.5.

From here on, we call good regions bigons and squares and bad regions all the
others. Schematically, the algorithm is the following:

Step 1: killing all non-disc regions;

Step 2: making all but one region to be bigons and squares.

Let H = (Σ,α,β, z) be a pointed Heegaard diagram. In this section, following
the notation adopted in [SW10], we will denote with D and Di the regions of the
diagram.

4.2.1 Step 1: killing all non-disc regions

We want to only have disc regions in our diagram. We divide this first step in two
sub-steps.

Sub-step 1.1: making any circle intersects some other circle

First of all, we want to ensure that any α-circle intersects at least one β-circle and
that any β-circle intersects at least one α-circle.

Let αi be an α-circle that does not intersect any β-circle. We can then find an
arc c that connects αi to some βj , satisfying the following requests:

1. c intersects βj only at its end;

2. c does not intersect any other β-circle.
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Figure 4.4: Making all the α-circles intersect some β-circle.

Figure 4.5: Making all the β-circles intersect some α-circle.

Then, we perform a finger move on βj along c to make itαi intersect it. See Figure
4.4 for a visual representation.

Let now βi be a β-circle that does not intersect any α-circle. We find an arc c
that connects βi to some αj , satisfying the following requests:

1. c intersects αj only at its end;

2. c does not intersect any other α-circle.

Let βk1 , . . . , βkn be the others β-circles intersected by c, in addition to βi. Then, we
perform n+1 "nested" finger moves along c, to make βi intersect αj : one on βi and
the others on the βk’s. See Figure 4.5 for a visual idea.

performing these two moves for all the circles that do not intersect any other
circle ensures that every α-circle intersects at least one β-circle and every β-circle
intersects at least one α-circle.

Sub-step 1.2: making all the regions discs

We can observe that since Σ ∖ α is a punctured sphere, all the regions are planar
surfaces. Let D be a non-disc region, i.e. a region that has more than one bound-
ary component. Since we already executed the previous sub-step, every boundary
component has to contain both α and β-edges (if not, there would be a circle that
does not intersect any other circle). To eliminate the excess boundary components,
we perform some finger moves on β-circles, as shown in Figure 4.6.

After sufficiently many iterations, we obtain a Heegaard diagram with only disc
regions.
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Figure 4.6: Killing the non-disc regions. The dotted arcs indicate the finger moves
that we need to do on the β-circles.

4.2.2 Step 2: making all but one region bigons or squares

Let now H = (Σ,α,β, z) be a pointed Heegaard diagram with only disc regions; we
are now going to make all the regions but one bigons or squares, using finger moves
and handleslides. It is important to remark that with the following algorithm we
generate only disc regions in our diagram.

We are going to need some definitions for this step of the algorithm.

Definition 4.13 (Distance of a region). Given a region D of H, let z′ ∈ D be a
point in its interior. We define the distance of D, denoted by d(D), to be the smallest
number of intersection points between the β-circles and an arc connecting z and z′

in the complement of the α-circles.
In particular, we call D0 the region that contains the basepoint z; this is the only

region of distance 0.

Remark that the definition of distance is well posed, as by the definition of
Heegaard diagram we have that Σ∖α is connected.

Definition 4.14 (Badness of a region). For a 2n-gon disc region D, we define the
badness of D, denoted by b(D), to be b(D) = max{n− 2, 0}.

Definition 4.15 (Distance of H). We define the distance of the diagram to be the
maximum distance of a bad region in the diagram. We denote it by d(H).

Definition 4.16 (Distance d∗ complexity). Consider a distance d∗, 0 < d∗ ≤ d(H).
We define the distance d∗ complexity of H, denoted by cd∗(H) to be the tuple

cd∗(H) =

(︄
m∑︂
i=1

b(Di),−b(D1),−b(D2), . . . ,−b(Dm)

)︄
,
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Figure 4.7: Initial finger move done on b∗, exiting from Dm through a2.

where D1, . . . , Dm are all the bad regions of distance d∗, ordered such that b(D1) ≥
b(D2) ≥ · · · ≥ b(Dm)

We call the first term the total badness of distance d∗ of H and we denote it by
bd∗(H). If there are no distance d∗ bad regions, then cd∗(H) = (0). We order the set
of distance d∗ complexities lexicographically.

The algorithm is based on the following result, which states in details how we can
simplify our diagram to a nicefied version of it only by finger moves and handleslides.

Theorem 4.17. For a distance d pointed Heegaard diagram H with only disc regions,
if cd(H) ̸= (0), we can modify H by isotopies and handleslides to get a new Heegaard
diagram H′ with only disc regions, satisfying d (H′) ≤ d(H) and cd (H′) < cd(H).

To prove the above theorem, we demonstrate how a full cycle of the algorithm
operate, showing that indeed we can get a new diagram H′ such that cd (H′) < cd(H).

We order the bad regions of distance d as in the definition of cd(H). Now we look
at the worst region of the diagram, i.e. the region of distance d with the smallest
badness, which we denote by Dm. Since it is a bad region, it is a (2n)-gon with
n ≥ 3.

Pick an adjacent region D∗ with distance d − 1 having a common β-edge with
Dm (remark that by how the assignment of the distance is done, we can only have
that regions that are neighbours via a β-edge can only have distance d − 1, d or
d + 1). Let b∗ be (one of) their common β-edge(s). We order the α-edges of Dm

counterclockwise starting at b∗ and we denote them by a1, a2, . . . , an. We try now to
make a finger move on b∗ into the Dm and out of Dm through a2, as demonstrated
in Figure 4.7 for Dm an octagon.

If we reach a square region of distance ≥ d, we push through with our finger,
going outside of this region via the opposite α-edge, as in Figure 4.8. Note that
doing a finger move through regions of distance ≥ d does not change the distance
of any of the bad regions, since they all have distance ≤ d: therefore the minimal
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path connecting the basepoint of the diagram to a bad regions cannot pass through
this square region, otherwise we would have that the distance of such bad region is
strictly greater than d.

Figure 4.8: When a square region of distance ≥ d is reached (figure on the left), we
push through it (figure on the right).

We continue to push up our finger through all the squares of distance ≥ d, until
we reach one of the following four cases:

1. a bigon region is reached;

2. a region with distance ≤ d− 1 is reached;

3. a bad region with distance d other than Dm, i.e., Di with i < m, is reached;

4. we come back to Dm.

We now study each case, proving how we can obtain a new diagram H′ such that
the statement of Theorem 4.17 holds for each one of them. It is important to remark
that the above cases are all the possible cases that we can encounter.

Case 1: a bigon region is reached

This is the case in which we reached a bigon that can have any distance. Remark
that all regions in between Dm and this bigon are square regions with distance ≥ d.
We stop the finger move inside the bigon region, dividing it into a square and a new
bigon, as illustrated in Figure 4.9.

Figure 4.9: A bigon is reached by the finger move.

Denote the new Heegaard diagram obtained by H′. We have b (Dm,1) = b (Dm)−1
andDm,1 is still a region of distance d. SinceDm,2 is a square (which is a good region),
we get bd (H′) = bd(H) − 1. We have also increased the badness of D∗, but it is a
distance d − 1 region and hence is not a problem. Notice that we did not increase
the distance of any other bad region since we did not pass through any region of
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Figure 4.10: A smaller distance region is reached.

distance ≤ d− 1 and all bad regions has distance ≤ d. Therefore d (H′) ≤ d(H) and
cd (H′) < cd(H); hence the theorem is proved in this case.

Case 2: a region with distance ≤ d− 1 is reached

Let D′ be the region with distance < d that we have reached with our finger; denote
d (D′) = d′. Notice that D′ might be a bigon or also a square region. Let H′ be the
new Heegaard diagram obtained by performing the finger move. We call the new
generated regions as in Figure 4.10.

As in the previous case, we have that b (Dm,1) = b (Dm) − 1 and that Dm,2 is a
good region. Our finger move splits D′ into two regions: the bigon region D′

1 and
the other region D′

2. The latter is going to be a bad region if D′ was not a bigon;
hence, when D′ is a square or a bad region, D′

2 will be a bad region of distance
d′ < d. We have increased the badness of D∗ (which is a distance d− 1 region) and
we might have increased the distance d′ complexity (as we replaced D′ with a worse
region, and hence the total badness of distance d′ may be increased), but we have
d (H′) ≤ d(H) and cd (H′) < cd(H). Therefore, Theorem 4.17 is proved also in this
second case.

Case 3: a bad region with distance d other than Dm is reached

The third case is the most challenging of the four because it does not reduce the total
badness of distance d but merely shifts it to another region with a larger badness,
which will then appear first in cd(H′) with respect to cd(H). The process can be
similar to the second case; however, we need to be more careful in proving the
theorem.

Let Di be the distance d bad region that we have reached, with i < m. Denote
by Di,1 and Di,2 the two parts of Di separated by our finger move as in Figure 4.11.
Di,1 is a bigon and hence a good region, while Di,2 is a bad region of distance d.
We have b (Di,2) = b (Di) + 1 and b (Dm,1) = b (Dm) − 1, thus the total badness of
distance d remains the same. But we are decreasing the distance d complexity since
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Figure 4.11: Another distance d bad region is reached.

we are moving the badness from a later bad region to an earlier one:

cd(H′) = (bd(H),−b(D1), . . . ,−b(Di)− 1, . . . ,−b(Dm) + 1)

< (bd(H),−b(D1), . . . ,−b(Di), . . . ,−b(Dm)) = cd(H).

Remark that the position of Di inside cd(H) may have changed since the badness
increased, but it could only may have moved more "to the left" of the tuple. We
have also increased the badness of D∗, but it is a distance d − 1 region and hence
it is not a problem. For the new Heegaard diagram H′, we have d (H′) = d(H) and
cd (H′) < cd(H) and therefore the Theorem’s statement is proved.

Case 4: we come back to Dm

This case is very different from the previous three. We divide it into two sub-cases,
according to which edge the finger move is coming back through.
Sub-case 4.1: we come back through an adjacent edge

This sub-case is drawn in Figure 4.12. Without loss of generality, we assume that
the finger comes back via a1.

Figure 4.12: Coming back via an adjacent edge with the finger. The finger path is
denoted by the dotted arc.

In this case, we see the full copy of some β-circle, say βi, one the right side along
our long finger: in fact, we have pushed through linked squares and doing this it is
not possible to "change" the β-circle that we have on the right, as it would mean
that we passed through an hexagon (or a region with more edges). Suppose b∗ ⊂ βj .



100 CHAPTER 4. THE NICEFICATION ALGORITHM

Figure 4.13: Coming back via an adjacent edge, performing the handleslide. The
dotted arc denotes βi after the handleslide.

Note that i ̸= j: otherwise we would have had b∗ ⊂ βi and we would have reached
either Dm or D∗ at an earlier time as we would have passed by the entirety of βi.
Now, instead of doing the finger move, we perform a handleslide of βj over βi, as it
is displayed in Figure 4.13.

Notice that after the handleslide, we are not increasing the distance of any bad
region. In fact, that would happen only if the basepoint was "inside" of βi, but this
is not possible: if this was to be true, then we would find that D∗ was inside of βi,
but this is a contradiction.

As in the previous cases, we have increased the badness of D∗; this is not a
problem since it is a distance d − 1 region. Moreover, Dm,2 is a bigon region and
b (Dm,1) = b (Dm)−1. Thus, for the new Heegaard diagram H′ after the handleslide,
the total badness of distance d is decreased by 1; we have d (H′) ≤ d(H) and cd (H′) <
cd(H). Hence, the theorem is proved also in this case.
Sub-case 4.2: we come back through a non-adjacent edge

Suppose that we return through ak with 3 < k ≤ n (recall that Dm is a (2n)-gon).
Then, instead of the finger move through a2, we do a finger move on b∗ through a3
as it is drawn in Figure 4.14.

Figure 4.14: Finger move done on b∗, exiting from Dm through a3.
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If we reach one of the first three cases, we can do the finger move and we are still
decreasing the distance d complexity. In fact, we have that b(Dm,1) = b(Dm)−2 and
b(Dm,2) = 1, therefore the total complexity of distance d is going down by a factor
of 1; we are increasing the badness of D∗, but it is a distance d− 1 region.

Suppose instead that we come back to Dm via some α-edge ai. We claim that
3 < i < k. Certainly we can not come back via a3, as we only push through squares
and we go out from them via the only other α-edge that they have. The finger can
not come back via ak since the chain of squares from ak is connected to a2. The last
possibility to discard is that either i > k or i < 3. If that was the case, we could get
two simple closed curves c1 and c2, as shown in Figure 4.15.

Figure 4.15: There are no crossing fingers. The fingers are not showed here. Instead,
the two dotted green circles denote the cores of the two fingers.

Then c1 and c2 intersect transversely at exactly one point and they are in the
complement of the β-circles. The complement of the β-circles is a punctured sphere,
attach discs to the holes to get a sphere: then, as homology classes, we get [c1] · [c2] =
1. But H1

(︁
S2
)︁ ∼= 0: this is a contradiction E. Thus we must have 3 < i < k.

Now, instead of the finger move through a3, we do another finger move through
a4. Iterating the same arguments as above, we see that we either end up with a
finger which does not come back, or we get some finger that starts at aj and comes
back via aj+1. Then:

• if the finger does not come back, we reduce it to the previous cases and the
theorem follows;

• if there is a finger which starts at aj and comes back at aj+1, we went around
a full β-circle and we can do a handleslide similar to the one in Sub-case
4.1. In this case, we have that b (Dm,1) = max{n − j − 1, 0} and b (Dm,2) =
max{j − 2, 0}; hence b (Dm,1) + b (Dm,2) ≤ (n − j − 1) + (j − 2) = n − 3 and
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we decreased the total badness of distance d. We increased the badness of D∗,
but it is a distance d−1 region. Thus, the new Heegaard diagram H′ obtained
with the handleslide, is such that d (H′) ≤ d(H) and cd (H′) < cd(H).

Thus, Theorem 4.17 was proved.

4.3 Admissibility of the nicefied diagram

We now show that if we start with an admissible Heegaard diagram, then the algo-
rithm yields an admissible nice Heegaard diagram. The algorithm uses isotopies and
handleslides, therefore it is sufficient to show that they leave the admissible property
unaltered.

As a reference, one can look at section 4.2 of [SW10].

We start by proving that isotopies do not affect the admissibility. Let H and
H′ be the Heegaard diagrams before and after the isotopy; we denote the regions
modified by the isotopy as in Figure 4.16.

Figure 4.16: Isotopy of a β-circle.

Suppose H is admissible. Consider a periodic domain ϕ′ in H′, described as

ϕ′ = c1D
′
1 + c2D

′
2 + c3D

′
3 + c4D

′
4 + c5D

′
5 + · · · .

Our goal is to prove that ϕ′ has both positive and negative coefficients. We have the
following properties.

• c2 − c1 = c4 − c3 = c2 − c5. To see this, we think of the α-circle as if it goes
from top to down; we can divide it in three pieces, the first between D′

1 and
D′

2, the second between D′
3 and D′

4 and the third between D′
5 and D′

2. Since
ϕ′ is a periodic domain, we have that the coefficients of this particular α-circle
has to be the same on the border of ϕ′, hence we obtain exactly the relations
stated above;

• repeating the same argument on the β-circle, we obtain c1 − c3 = c2 − c4 =
c5 − c3.

Hence c1 = c5 and c4 = c2 + c3 − c1. Notice that the regions are all the same before
and after the isotopy except for those in Figure 4.16; therefore,
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ϕ = c1D1 + c2D2 + c3D3 + · · ·

is a periodic domain for H. In fact, the if a is the multiplicity of the α-circle in all
ϕ, then we need that a = c2 − c1, and this is true since we have that a = c2 − c1 =
c4 − c3 = c2 − c5 in ϕ′. Same goes for the β-circle.

Since H is admissible, ϕ has both positive and negative coefficients, and so does
ϕ′ as we only added coefficient with respect to ϕ. Hence H′ is admissible.

We now want to prove the same thing for a handleslide; let us consider the one
indicated in Figure 4.17.

Figure 4.17: Handleslide of a β-circle: before (on the left) and after (right).

Suppose that H is admissible. Let the following be a periodic domain in H′

ϕ′ = c∗D
′
∗ + c1D

′
m,1 + c2D

′
m,2 + c1,1S

′
1,1 + c1,2S

′
1,2 + · · ·+ ck,1S

′
k,1 + ck,2S

′
k,2 + · · ·

By looking at the coefficients for the β-circle that we modified, we get

c1 − c∗ = c1,1 − c1,2 = · · · = ck,1 − ck,2 = c2 − c∗.

Denote c0 = c1 − c∗, then we have the relations ci,1 = ci,2 + c0 and c1 = c2. We can
then claim that

ϕ = c∗D∗ + c1Dm + c1,1S1 + · · ·+ ck,1Sk + · · ·

is a periodic domain for H. To see this, we just need to check the relations on the
α-edges that we modify with the handleslide. Indeed we have that the differences
c1 − c1,1 and c1 − ck,1 are correct because we have them also in H′ (since c1 = c2).
Checking the same for ci,1 − cj,1 and c1 − c∗ is immediate.

Since H is admissible, ϕ has both positive and negative coefficients. Hence ϕ′ has
both positive and negative coefficients, so H′ is admissible.

Remark 4.18. A stronger statement actually holds: in fact, it can be shown that
nice Heegaard diagrams are always admissible (as reference, one can see [LMW08],
Corollary 3.2).
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4.4 Generalisations of the algorithm

The Nicefication Algorithm presented in Section 4.2 is designed specifically for closed
Heegaard diagrams. However, we can extend it to work with different types of
Heegaard diagrams by introducing some generalisations. In the following subsections,
we will explore these generalisations one by one, ultimately arriving at a version of
the Nicefication Algorithm that is tailored to peculiar Heegaard, our main interest.

4.4.1 Algorithm for bordered Heegaard diagrams

In this subsection, we see how the algorithm can be adapted to the case of bordered
Heegaard diagrams. As reference, one can look at Chapter 8 of [LOT18].

Recall that in the bordered setting, we allow Heegaard diagrams to have one
border component on which we put a basepoint z: let Dz be the region with the
basepoint on its boundary.

We need to generalise the notion of nice Heegaard diagram for this setting.

Definition 4.19 (Nice bordered Heegaard diagram). We call a bordered Heegaard
diagram (Σ,α = αc∪αa,β, z) nice if every region in Σ except for Dz is a bigon or a
square. For a boundary region A, this means that it has two α-arcs, one β-arc and
one arc of ∂Σ as boundary.

Remark 4.20 (No bigons on the boundary). We do not allow boundary regions to
have one α-arc and one arc of ∂Σ as boundary (i.e. to be "bigons"), as it would
mean that there is an α-arc whose does not intersect any β-circle.

Then we have a similar result to Theorem 4.3.

Proposition 4.21 ([LOT18, Proposition 8.2]). Let (Σ,α,β, z) be a bordered Hee-
gaard diagram. Then, it can be turned into a nice bordered Heegaard diagram via

• isotopies of the β-circles not crossing ∂Σ,

• handleslides of β-circles over other β-circles.

Proof. It is clear that, if we are able to fix the bordered diagram around the boundary,
then we can simply apply the nicefication algorithm as it is done in the closed case
in order to obtain a nice bordered Heegaard diagram.

We then introduce what we could call a "initial finger move around the border",
done as follows. Denote the endpoints of the α-arcs as in Figure 4.18, with the indices
increasing if you go around the border counter-clockwise and with the basepoint z
between a1 and a4k. Observe now the boundary of Dz; we start from the endpoint a1
and move along the α-arc, going away from ∂Σ, until we reach the first β-edge of Dz

and we call it b. We now operate the following finger move on b: we push it staying
close to the border through the α-arc ending in a1, then through the one ending in a2
and so on, up to intersecting the one ending in a4k. Then, in the resulting diagram,
the boundary regions other than Dz are all rectangles.
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Figure 4.18: Initial finger move around the boundary to make all the boundary
regions (except Dz) squares.

We can now apply the Nicefication Algorithm, obtaining a nice bordered Hee-
gaard diagram.

Additionally, it is worth noting that the resulting diagram satisfies the conditions
of Corollary 3.2 of [LMW08], which implies that it is admissible.

4.4.2 Algorithm for sutured Heegaard diagrams

To generalise the algorithm to the sutured case, we need to adapt it to allow multiple
basepoints. This can be achieved quite easily. In this case, we still define the distance
of a region D as the smallest number of intersection points between the β-circles and
an arc c ⊂ Σ∖α connecting a point in the interior of D and a region containing one
of the basepoints zi. We can then define the distance complexities in the same way
as before, and they will still be well-defined.

We can then apply the algorithm as presented in Section 4.2; in particular, we
can prove that the distance complexity is strictly decreasing in the same way as for
the closed case. Therefore, the algorithm works as before.

4.4.3 Algorithm for bordered sutured Heegaard diagrams

We can combine the generalisations we saw for the bordered and sutured cases to ob-
tain a generalised version of the algorithm for bordered sutured Heegaard diagrams.

As reference, one can look at Section 4.7 of [Zar11].

We first need to define nice Heegaard diagrams in this setting.

Definition 4.22 (Nice bordered sutured Heegaard diagrams). A bordered sutured
Heegaard diagram (Σ,α,β,Zα, ϕα,Zβ, ϕβ) is called nice if every region in Σ is either:

• a multiplicity zero region, which is defined as a region adjacent to ∂Σ∖(ϕα(Zα)∪
ϕβ(Zβ)) (i.e. it has inside one "tick" as we defined them in Subsection 2.6.2),

• a bigon, none of whose sides are in ϕα(Zα) ∪ ϕβ(Zβ),

• a square, whose at most one of the sides is in ϕα(Zα) ∪ ϕβ(Zβ).
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Moreover, we request that every connected component of Σ∖α contains at least one
multiplicity zero region.

Then, we can generalise the Nicefication Algorithm as we did for the last two
cases.

Proposition 4.23 ([Zar11, Proposition 4.7.2]). Any bordered sutured Heegaard dia-
gram can be nicefied via

• isotopies of the β-circles not crossing ∂Σ,

• isotopies of β-arcs that do not move the endpoints and do not cross ∂Σ,

• handleslides of any β-curve over a β-circle,

• stabilisations.

Proof. We start by applying stabilisations, in order to ensure that any connected
component of Σ has both α- and β-curves.

Then, for any boundary component, we apply to some β-curve the "initial finger
move around the border" that we described in Subsection 4.4.1.

Now we can apply the Nicefication Algorithm as first presented, obtaining a nice
bordered sutured Heegaard diagram. In particular, the distance of a region D is
defined as the smallest number of intersection points between the β-circles and an
arc c ⊂ Σ∖α connecting a point in the interior of D and one multiplicity zero region;
since we required that every connected component of Σ ∖ α contains at least one
multiplicity zero region, this notion is well-defined also in this case.

4.4.4 Algorithm for peculiar Heegaard diagrams

We conclude this section with the generalisation of the Nicefication Algorithm to the
case of 4-ended tangles, i.e. the case of peculiar Heegaard diagrams.

As a reference, one can see Section 5.1 of [Zib20].

We first need to define nice Heegaard diagrams in this setting. Recall that we
denote by (Σ,α = αc∪{S},β, {pi}4i=1, {qj}4j=1, {zk}mk=1, {wl}ml=1) a peculiar Heegaard
diagram for a 4-ended tangle with m closed components.

Definition 4.24 (Nice peculiar Heegaard diagram). Consider a peculiar Heegaard
diagram (Σ,α,β, {pi}4i=1, {qj}4j=1, {zk}mk=1, {wl}ml=1) for some 4-ended tangle T with
m closed components. We need to pick some special basepoints: one pi and one qj
for some i, j ∈ {1, 2, 3, 4} and one between zk and wk for each closed component of
T . We call a region that does contain a special basepoint a multiplicity zero region.

We say that a peculiar Heegaard diagram is nice with respect to the choice of the
special basepoints above if any region that is not a multiplicity zero region is either
a square or a bigon.

Remark 4.25. It should be noted that, based on the definition just provided, there
exists at least one multiplicity zero region within each connected component of Σ∖α.
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Thus, this can be considered a special instance of a multi-pointed closed Heegaard
diagram. As previously mentioned, the Nicefication Algorithm can be adapted to
this scenario, resulting in the following outcomes.

Proposition 4.26. Every 4-ended tangle T admits a nice peculiar Heegaard diagram
for any choice of special basepoints.

In particular, any peculiar Heegaard diagram with a choice of special basepoints
can be made nice with a series of

• isotopies of the β-circles,

• handleslides of β-circles over other β-circles.

In particular, as we proved for closed Heegaard diagrams with Theorem 4.2, also
in this case the Heegaard Floer invariant can be computed combinatorially.

Theorem 4.27 ([Zib20, Corollary 5.7]). Let T be a 4-ended tangle and let H be a
nice peculiar Heegaard diagram with some choice of special basepoints for T .

Then, HFT(T ) can be computed combinatorially via H.

The above theorem has been proved in [Zib20] and the Mathematica Software
[PQM.m] is an implementation of the algorithm that proves the theorem.

4.5 Modifications done to the algorithm

When we have a nice Heegaard diagram, we can compute the needed flavor of Hee-
gaard Floer Homology combinatorially. In the case of 4-ended tangles, presented
in Section 3.5, it exists the [PQM.m] Mathematica Software, developed by Claudius
Zibrowius in 2017, of which the up-to-date version can be found on his personal
website. This software takes as input a nice Heegaard diagram for a 4-ended tangle
with some other data related to the tangle (the α-arcs sites, the Alexander grading
of the tangle and the multiplicity zero regions of the diagram) and computes the
peculiar module CFT∂ of the tangle.

During the implementation of the Nicefication Algorithm, some changes were
done with the goal to optimise the final result in the sense of the [PQM.m] Software,
i.e. aiming to minimise the number of generators of the final result and therefore
the running time required to compute the CFT∂ . The main changes done are the
following two:

1. introduction of general handleslides as a move done by the algorithm;

2. exploration of all the possible moves that we can do on the worst region Dm,
comparison of them and choice of the best one to do.

We now discuss these changes in details.

https://cbz20.raspberryip.com/#code
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Figure 4.19: (2,−3) Pretzel tangle.

Figure 4.20: Tangle Heegaard diagram for the (2,−3) Pretzel tangle.

4.5.1 General handleslides

With "general handleslides", we mean handleslides as defined in Section 2.2; in fact,
these are not considered by the algorithm as it was presented in Section 4.2. This
move was introduced in the software during its validation via computation of nice
diagrams for Pretzel tangles (whose HFT are known) for the reasons that are now
explained.

We define the (2n,−2m−1)-Pretzel tangle to be the sum of two rational tangles:
Q1/(2n) + Q−1/(2m + 1) for m,n ∈ Z>0. Consider, for instance, the (2,−3) Pretzel
tangle shown in Figure 4.20. The construction of its Heegaard diagram as explained
in Section 2.6 results in the diagram shown in Figure 4.20.

Then, we transform the diagram into a peculiar one by removing the sutures as
described in Section 2.6, obtaining the diagram shown in Figure 4.21.

We then place the two special basepoints, making e1 and e3 the two multiplicity
zero regions. There are two bad regions in the diagram, e5 and e6, which are two
octagons of distance 1.

Applying the algorithm as presented in [SW10], we can nicefy the diagram in
four cycles, requiring a finger move and a handleslide for each bad region. The final
result has a total of 126 generators. However, if we allow general handleslides, we
can nicefy the diagram with only two cycles using two general handleslides, resulting
in a total of 82 generators.
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Figure 4.21: Peculiar Heegaard diagram for the (2,−3) Pretzel tangle (the double
crosses in a darker green colour denote the special basepoints).

The advantage of using general handleslides was also observed in more complex
cases where the difference in the number of generators of the final result had a greater
impact on the running time required by the [PQM.m] package.

We can further appreciate the efficiency of the general handleslides by observing
how they can affect the distance complexities of a diagram. Note that for the diagram
H in Figure 4.21, the distance 1 complexity (which is the only non-trivial complexity)
is

c1(H) = (4, (−2, Region 5), (−2, Region 6)) .

After the first general handleslide, we obtain the diagram H′, with complexity

c1(H′) = (2, (−2, Region 5)) ;

and after the second handleslide we obtain the nice diagram H′′, whose has only
trivial distance complexities. Therefore, using a general handleslide allows us to
reduce the maximum distance badness by a factor of 2, which was not achievable
with any of the moves in the original algorithm.

Remark 4.28 (Effect of a general handleslide on the "overall niceness" of the dia-
gram). Let H be a Heegaard diagram of distance d∗. We want to understand how a
general handleslide modifies in general H from the point of view of its niceness, i.e.
how it modifies the complexities cd(H) for all the possible d’s.

The first thing to note is that a general handleslide does not generate any bad
regions. This is because a handleslide only generates squares near the β-circle that
we are sliding on, and it leaves the badness of the regions that it cuts through
unchanged.

The critical point is the distance of the regions that the handleslide cuts through.
If their distance is determined by arcs that are cut by the handleslide, then they may
increase by 1. This may also increase the distance of other regions of the diagram
with analogous arguments. However, we need not worry about this case as we will
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introduce a new algorithm in the next subsection for comparing different Heegaard
diagrams which will avoid this scenario.

Therefore, the general handleslides were included in the pool of possible moves
of the algorithm.

4.5.2 Comparison of possible moves

We now have all the possible moves that we can make: finger moves, handleslides and
general handleslides. Our goal is to obtain the best possible nice Heegaard diagram,
i.e. the one with the fewest generators, using these moves. As mentioned above,
at every iteration of the algorithm, we try to perform all the possible moves on the
worst region of the diagram and generate all the corresponding Heegaard diagrams.

The best choice would be to try all the possible threads generated by the different
moves at every cycle and then compare all the final nice diagrams obtained. However,
this would not be computationally feasible, and we need to compromise. In this first
version of the [nicepy] software, the decision is to try to get the best possible diagram
after every iteration of the algorithm.

We could adopt two different points of view: on the one hand, we could decide
to minimise the number of generators, hence choosing to continue to execute the
algorithm on the diagram that has the fewest generators; on the other hand, we
could choose to minimise the number of cycles needed by the algorithm to get a
nice Heegaard diagram, thereby reducing the number of moves that are done on the
initial diagram.

It is unclear at the moment which of the two perspectives is better or what a
good balance between them would be. Therefore, for now, the choice made is to
minimise the number of cycles of the nicefication algorithm. However, this is still an
open question that will be analysed in the future.

Therefore, before running the algorithm, we need a tool that helps us compare
all these moves and understand which one is better in the sense described above.

Definition 4.29 (Total complexity). Consider a Heegaard diagram H of distance
d∗. We define its total complexity as

tc(H) =
d∗∑︂
d=1

3d · bd(H),

where bd(H) is the total badness of distance d defined in Section 4.2.

The total complexity is convenient when we want to compare multiple Heegaard
diagrams obtained by applying some move to a common initial diagram and it is a
more direct way to compare the effectiveness of these different moves in the attempt
to nicefy the diagram.

We quickly describe how the total complexity is affected in the various scenarios
that occur in the algorithm. We use the same notation used when presenting the
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algorithm, i.e. H is the diagram before applying the move, H′ is the diagram obtained
after the move is done, Dm is the worst region of distance d∗ that we want to modify,
Dm,1 and Dm,2 are the two regions in which Dm is split by the move, D∗ is the
neighbour region of distance d∗ − 1 and D′

∗ is this same region after the move is
done.

• In Case 1 (finger move ending in a bigon), we have b(Dm,1)+b(Dm,2) ≤ b(Dm)−
1 and b(D′

∗) = b(D∗) + 1; hence

tc(H′) ≤ tc(H)− 3d∗ + 3d∗−1.

Therefore, in this case holds tc(H′) < tc(H).

• In Case 2 (finger move ending in a region D′ of smaller distance d′ < d∗), we
have b(Dm,1)+ b(Dm,2) ≤ b(Dm)−1, b(D′) = b(D′)+1 and b(D′

∗) = b(D∗)+1;
hence

tc(H′) = tc(H)− 3d∗ + 3d∗−1 + 3d
′ ≤ tc(H)− 3d∗ + 2 · 3d∗−1.

Therefore, in this case holds tc(H′) < tc(H).

• In Case 3 (finger move ending in another bad region D′ of distance d∗), we
have b(Dm,1)+ b(Dm,2) ≤ b(Dm)−1, b(D′) = b(D′)+1 and b(D′

∗) = b(D∗)+1;
hence

tc(H′) ≤ tc(H)− 3d∗ + 3d∗ + 3d∗−1 = tc(H) + 3d∗−1.

This is the worst case in terms of the total complexity, as it is the only case
among the ones of the algorithm in which it could increase.

• In Case 4.1 (handleslide), we have b(Dm,1)+ b(Dm,2) ≤ b(Dm)−1 and b(D′) =
b(D′) + 2; hence

tc(H′) ≤ tc(H)− 3d∗ + 2 · 3d∗−1.

Therefore, in this case holds tc(H′) < tc(H).

Remark 4.30. We do not discuss how tc changes after a general handleslide, as we
will only need the knowledge of the above cases to guarantee that the implementation
of the algorithm is going to terminate after a finite number of cycles.

We are now ready to execute the algorithm on a Heegaard diagram H with
distance d∗.

The first step of the algorithm is to identify the worst regionDm, which we assume
to be a 2n-gon. Then, the program selects a blue edge b∗ that neighbors Dm with a
d∗−1 region; let β∗ be the β-circle on which b∗ lies. Next, the algorithm attempts to
perform a general handleslide on each β-edge of Dm that is not on β∗, resulting in k
new diagrams H1, . . . ,Hk for some 0 ≤ k ≤ n−1. After this, the algorithm attempts
finger moves on the α-edges of Dm that are labeled a2, . . . , an− 1 as described in
the original Nicefication Algorithm, generating s new diagrams Hk + 1, . . . ,Hk+s

for some 0 ≤ s ≤ n − 2. If a handleslide is successful, it is not considered as a



112 CHAPTER 4. THE NICEFICATION ALGORITHM

separate move since it has already been taken into account as a general handleslide.
Additionally, the algorithm does not attempt finger moves on a1 and an since the
only way to decrease the badness of the region by using these edges would be to
perform a handleslide (a finger move would leave Dm as a 2n-gon).

Remark 4.31. Among all the diagrams H1, . . . ,Hk+s there is also the diagram that
we would obtain by applying the Nicefication Algorithm as presented originally; we
denote it by H⋆.

We now have k+s possible Heegaard diagrams that we need to compare in order
to understand which one is the better one. For the comparison, we consider three
factors:

• the total complexity of the diagrams tc(Hi),

• the number of generators of the diagrams,

• the distance d∗ complexity cd∗ .

The algorithm to compare the different Heegaard diagrams is the following.

– Step 1. As first step of the comparison, we exploit the total complexity. We
call by tcmin the minimum of all the total complexities, i.e.

tcmin = min {tc (H1) , . . . , tc (Hk+s)} .

We call Hi1 , . . . ,Hit the diagrams with minimal total complexity, i.e.

tcmin = tc (Hi1) = · · · = tc (Hit) .

– Step 2. We then extract from these diagrams the ones with the minimal
number of generators. Let #genmin be this number, we call the diagrams
which minimise the number of generators Hij1

, . . . ,Hijs
.

– Step 3. Among these diagrams, we take the ones that have the smaller distance
d∗ complexities, we call

cd∗min
= min

{︂
cd∗(Hij1

), . . . , cd∗(Hijs
)
}︂

and let Hijk1
, . . . ,Hijkr

be these diagrams.

– Step 4. Two different cases can occur:

(a) cd∗min
< cd∗(H) and there are not bad regions of distance greater than d∗

in at least one among Hijk1
, . . . ,Hijkr

.
If this is the case, any diagram among Hijk1

, . . . ,Hijkr
which does not

have any bad region of distance greater than d∗ is nearer to be a nice
Heegaard diagram in the sense of the Nicefication Algorithm as presented
in Section 4.2. Thus, we can choose any one among them to continue the
nicefication process.
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(b) cd∗min
≥ cd∗(H) or there is at least one bad region of distance greater than

d∗ in every diagram Hijk1
, . . . ,Hijkr

. In this case, we cannot conclude as
above but we need to take some extra precautions.

We first go back to Step 3: we call cd∗min,2
the second lowest distance

d∗ complexity and we consider the diagrams among Hij1
, . . . ,Hijs

which
have distance d∗ complexity cd∗min,2

. We move to Step 4. If we end in
case (a), we obtain a Heegaard diagram which we can feed to the next
cycle of the Nicefication Algorithm. If we still end in case (b), we consider
cd∗min,3

, and so on.

If we end in case (b) for all Hij1
, . . . ,Hijs

, we go back to Step 2. We
call #genmin,2 the second lowest number of generators and we consider
the diagrams among Hi1 , . . . ,Hit which have such number of generators.
Then we move to Step 3 and Step 4. If we end in case (a), we obtain a
Heegaard diagram which we can feed to the next cycle of the Nicefication
Algorithm. If also in this case we always end in case (b), then we consider
#genmin,3, and so on.

If we end in case (b) for all Hi1 , . . . ,Hit , we go back to step 1. We call
tcmin,2 the second lowest total complexity and we consider the diagrams
among H1, . . . ,Hk+s which have such total complexity. Then we move to
Step 2, Step 3 and Step 4. If we end in case (a), we obtain a Heegaard
diagram with which we can feed to the next cycle of the Nicefication
Algorithm. If we always end in case (b), then we consider tcmin,3, and so
on.

Notice that we are going to end in case (a) at some point, as among the
H1, . . . ,Hk+s there is also H⋆ for which the hypothesis of case (a) are satisfied.

We call H′ the diagram obtained with the above algorithm and we continue to
run the nicefication process on it.

Remark 4.32. Going back to what we said in Remark 4.28, it is now clear that if
the chosen diagram H′ is one obtained via a general handleslide, then the above dis-
cussion guarantees that we are indeed proceeding towards a nice Heegaard diagram.

Therefore, we have proven the following proposition.

Proposition 4.33. The [nicepy] Software, implemented starting from the Nicefi-
cation Algorithm and modified as described above, terminates in a finite number of
steps.

Remark 4.34 (On the usefulness of the total complexity). The primary advantage of
the total complexity is the ability to compare different Heegaard diagrams generated
in one cycle of the algorithm better. It allows us to understand to some extent where
and how the badness is redistributed by the modification made.
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To better visualise this, consider the diagram locally shown in Figure 4.22. We
have that the worst region is an octagon Dm of distance d∗, and we let D∗ be the
neighbouring region of distance d∗ − 1.

Figure 4.22: Initial situation to study the effectiveness of the total complexity.

Then, we compare two possible moves: one finger move ending in a bigon adjacent
toDm (on the left in Figure 4.23) and one (general) handleslide (on the right in Figure
4.23).

Figure 4.23: Two moves that modify cd∗ in the same way but are not equally effective
overall.

Then, the difference between these two moves is not detected by cd∗": in fact, in
both cases we have that the contribution of the badness of Dm is reduced by one (in
one case Dm,2 is a bigon, in the other it is a square and b(Dm,1) = b(Dm)− 1). But
the difference is clear if we observe cd∗−1: in one case, the badness of D∗ increases
by one and in the other it increases by two. Hence, in this particular case, we prefer
the finger move to the handleslide since it allows us to skip an additional cycle later
in the algorithm when we will have to make D∗ a good region. The total complexity
clearly chooses the right move in this sense, allowing us to reduce the number of
cycles that the algorithm needs to end.



Chapter 5

Computations

In the course of this master thesis project, certain families of tangles were studied in
order to find patterns in the invariants they yielded. This investigation was meant
to be a step towards a more general formula for understanding how HFT behaves
under the sum of tangles.

Two families were chosen for this research: the family of the sum of a rational
tangle with its mirror image, i.e. Qp/q + Q−p/q, and the family of the sum of a
rational tangle with a number of full vertical twists, i.e. Qp/q + Q1/(2n). The latter
family yielded promising results in terms of a possible pattern that HFT seems to
follow, which was presented in the Introduction as Conjecture 0.1. It would be nice
to prove this regularity at a theoretical level, which could lead to an explanation of
the behaviour of the rational part of HFT under the sum of tangles.

Let us now see the results obtained in detail.

5.1 HFT of Qp/q +Q−p/q

We consider a rational tangle Qp/q and its mirror image Q−p/q, obtained by swapping
all the crossings.

We define the tangle Tp/q as the sum Qp/q + Q−p/q for p/q ∈ QP1 and q odd;
see Figure 5.1 for an example. The condition on q ensures that there are no closed
components in Tp/q.
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Figure 5.1: T3/7 = Q3/7 +Q−3/7.

We now claim that we can reduce ourselves to the computation of HFT for the
set F = {Tp/q | 0 < 2p < q}, in the sense that HFT(Tp/q) for a generic Tp/q can be
deduced from HFT(F ) for some F ∈ F .

To prove this, consider the following intermediate remarks.

Remark 5.1 (We can assume p/q > 0). We can assume p/q > 0 without loss of
generality. To prove this, we just have to notice that m(Tp/q) ≃ T−p/q. Then, for
Proposition 3.60, we have that we can obtain HFT(T−p/q) from HFT(Tp/q).

Remark 5.2 (We can assume |p| < q). We can assume |p| < q without loss of
generality. To prove this, we show that Tp/q ≃ T(p/q)+n for any n ∈ Z.

In fact, we can easily see this in terms of continued fractions. Let [a1, . . . , am] be
a continued fractions corresponding to p/q. Then, adding n ∈ Z means to consider
the continued fraction [a1+n, a2, . . . , am], i.e. we are adding half-twists on the right
of the tangle. Hence we found that

T(p/q)+n = Qp/q +Qn +m(Qp/q +Qn) = Qp/q +Qn +Q−p/q +Q−n.

Using Corollary 1.53 and the second Reidemeister move, we then obtain that

T(p/q)+n = Qp/q +Qn +m(Qp/q +Qn)

= Qp/q +Qn +Q−p/q +Q−n

(Corollary 1.53) ≃ Qp/q +Qn +Q−n +Q−p/q

(II Reidemeister move) ≃ Qp/q +Q−p/q

= Tp/q.

Remark 5.3 (We can assume 0 < 2p < q). We can now see that, without loss of
generality, we can indeed consider only the tangles in the family F . By Remarks
5.1 and 5.2 we can assume 0 < p < q. Let p, q be such that 0 < q < 2p (i.e.
0 < 1/2 < p/q); then, for same argument exploited in Remark 5.2, holds

Tp/q ≃ T(p/q)−1 = T(p − q)/q.
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Figure 5.2: Adding n to p/q, we have 2n half-twists in the middle of T(p/q)+n that
cancel out: example with T1/3 and T7/3.

Now, as we saw in Remark 5.1, we have

T(p − q)/q ≃ m
(︁
T(q − p)/q

)︁
and since

0 <
q − p

q
<

1

2
,

we can obtain HFT(Tp/q) from T(q − p)/q ∈ F .

Therefore, by studying the results obtained applying HFT to tangles in the family
F , we are studying all the tangles of the form Tp/q = Qp/q +Q−p/q.

We obtained the computations showed in Table 5.1 for the tangle in F . There are
three patterns that seem to be followed, which can be summed up in the following
three conjectures.

Conjecture 5.4. Let T1/q = Q1/q +Q−1/q for q odd. Then,

HFT
(︁
T1/q

)︁
= r(0) + 2 ·

⎛⎝(q − 1)/2∑︂
i=1

s2i(0)

⎞⎠ .

The idea for this conjecture comes by a direct observation of the first column of
Table 5.1.

Conjecture 5.5. Let Tp/q = Qp/q + Q−p/q for p/q ∈ QP1, 0 < p and q = 2p + 1.
Then,

HFT
(︁
T1/q

)︁
= r(0) + (p2 + p) · s4(0).

We can explain this conjecture by looking at the diagonal q = 2p+1 in Table 5.1.
We can see that every time that we move to the next value of p, we are increasing
the number of special components of length 4 and slope 0 by 2p. Hence, the number
of s4(0) for Tp/q is 2 (

∑︁p
i=1 i) = 2 · (p(p+ 1))/2 = p2 + p.

With a similar observation on the diagonal q = 2p + 3, the following pattern
seems to occur.

Conjecture 5.6. Let Tp/q = Qp/q + Q−p/q for p/q ∈ QP1, 0 < p and q = 2p + 3.
Then,

HFT
(︁
T1/q

)︁
= r(0) + (p2 + 3p− 4) · s4(0) + 2 · s8(0).
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Figure 5.3: The tangle S1/3(2).

To motivate this conjecture, we look at the diagonal q = 2p+3 in Table 5.1. We
can see that, taking p = 1 as starting point, every time that we move to the next
value of p, we are increasing the number of special components of length 4 and slope
0 by 2(p + 1). This means that the number of s4(0) for Tp/q is 2 + 2

(︂∑︁p+1
i=3 i

)︂
=

2 + 2 · ((p+ 1)(p+ 2))/2 − 6 = p2 + 3p− 4.

The author was not able to see any other promising pattern in Table 5.1.

5.2 HFT of Qp/q +Q1/(2n)

We compute now HFT on tangles of the form

Sp/q(2n) := Qp/q +Q1/(2n)

for p/q ∈ QP1, q odd and n ∈ Z>0, i.e. rational tangles that we sum to a number of
full vertical twists. See Figure 5.3 for the example S1/3(2).

As p, q and n grow, the computations require more time, therefore most of them
were done for n = 1, 2.

Similar to Section 5.1, we can find some symmetries among this class of tangles.
This allows us to restrict ourselves to the investigation of a subset of {Sp/q(2n) |
p/q ∈ QP1, q odd and n ∈ Z>0}: namely, we just need to compute HFT on the
family G(2n) = {Sp/q(2n) | 0 < p < q}. We prove this in the following two remarks.

Remark 5.7 (We can assume p/q > 0). Consider Sp/q(2n), where p/q < 0 and let
h ∈ Z>0 be such that p/q + h > 0. Then, it holds

Sp/q(2n) = Qp/q +Q1/(2n)

(II Reidemeister move) ≃ Qp/q +Q1/(2n) +Qh +Q−h

(Corollary 1.53) ≃ Qp/q +Qh +Q1/(2n) +Q−h

= Q(p/q)+h +Q1/(2n) +Q−h

= S(p/q)+h(2n) +Q−h.

By Theorem 3.63, we can deduce HFT(Sp/q(2n)) for p/q < 0 from HFT(S(p/q)+h(2n)),
where 0 < p/q + h.
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Remark 5.8 (We can assume 0 < p < q). This follows again from Corollary 1.53:
if we consider the tangle S(p/q)+m(2n) for m ∈ Z, then it holds

S(p/q)+m(2n) = Qp/q +Qm +Q1/(2n)

= Qp/q +Q1/(2n) +Qm

= Sp/q(2n) +Qm,

and since we know by Theorem 3.63 how the addition of some horizontal twists af-
fects HFT of a given tangle, we can recover HFT(S(p/q)+m(2n)) from HFT(Sp/q(2n)).
Therefore, without loss of generality, we can assume that 0 < p < q.

5.2.1 Computations for Sp/q(2)

We begin by looking at the tangles obtained by adding a single full twist. Here, we
can actually restrict ourselves to a smaller pool of tangles: we only need to compute
the invariants of the family G′(2) = {Sp/q(2) | 0 < 2p < q} ⊂ G(2). Once again, the
key to prove this is to use Corollary 1.53. Let 0 < p < q and consider a tangle Sp/q(2)
where 0 < 1/2 < p/q; then the following holds:

Sp/q(2) = Qp/q +Q1/2

≃ m
(︂
Q−p/q +Q−1/2

)︂
≃ m

(︂
Q−p/q +Q−1 +Q1/2

)︂
≃ m

(︂
Q(−p/q)−1 +Q1/2

)︂
(II Reidemeister move) ≃ m

(︂
Q(−p/q)+1 +Q−2 +Q1/2

)︂
(Corollary 1.53) ≃ m

(︂
Q(−p/q)+1 +Q1/2 +Q−2

)︂
= m

(︂
S(−p/q)+1(2) +Q−2

)︂
= m

(︂
S(−p/q)+1(2)

)︂
+m (Q−2)

= m
(︂
S(−p/q)+1(2)

)︂
+Q2.

The combination of Proposition 3.60 and Theorem 3.63 allows us to show that
HFT(Sp/q(2)) can be obtained from HFT(S(−p/q)+1(2)), where

0 < −p
q
+ 1 <

1

2
.

The computations obtained for Sp/q(2) with 0 < 2p < q are collected in Table
5.2.

There seems to be a very regular pattern in the computations, which is presented
in the following conjecture.
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Conjecture 5.9. Let Sp/q(2) = Qp/q +Q1/2 with p/q ∈ QP1, q odd and 0 < 2p < q.
Then,

HFT
(︂
Sp/q(2)

)︂
= (q − 2p) · r(1/2) + p · s4(1).

5.2.2 Computations for Sp/q(4)

Next, we focus on tangles obtained by adding two complete vertical twists to a
rational tangles, i.e., tangles of the form Sp/q(4). Unfortunately, we could not find
any symmetries that would allow us to reduce the set of tangles we need to compute
HFT on. Therefore, we performed the computations for tangles of the form Sp/q(4),
where p/q ∈ QP1, 0 < p < q, and q is odd.

The computations obtained for these tangles are collected in in Table 5.3.
By looking at these new computations, the pattern presented in Conjecture 5.9

seems to generalise to the following conjecture.

Conjecture 5.10. Let Sp/q(4) = Qp/q +Q1/4 with p/q ∈ QP1, q odd and 0 < 4p < q.
Then,

HFT
(︂
Sp/q(4)

)︂
= (q − 4p) · r(1/4) + p · (s4(1) + s4(1/3)) .

The author did not identify any particular pattern in the computations with
p < q < 4p. However, a behavior like this seems reasonable: also in other cases
(e.g. Pretzel tangles) the tangles split into two sub-families within which there are
substantially different patterns followed.

5.2.3 Conjecture for HFT(Sp/q(2n))

With the hints given by Sp/q(2) and Sp/q(4), also computations for some basic cases
of Sp/q(6) and Sp/q(8) where p/q ∈ QP1, q odd and 0 < 2n · p < q were done, with
n = 3, 4 respectively. These are collected in Tables 5.4 and 5.5.

p/q 1 2

7 1 · r(1/6) + 1 · s4(1) +
1 · s4(1/3) + 1 · s4(1/5)

8

9 3 · r(1/6) + 1 · s4(1) +
1 · s4(1/3) + 1 · s4(1/5)

10
11
12

13 1 · r(1/6) + 2 · s4(1) +
2 · s4(1/3) + 2 · s4(1/5)

Table 5.4: HFT for tangles of the form Sp/q(6) with p/q ∈ QP1, q odd and 0 < 6p < q.
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p/q 1

9 1 · r(1/8) + 1 · s4(1) + 1 · s4(1/3) +
1 · s4(1/5) + 1 · s4(1/7)

10

11 3 · r(1/8) + 1 · s4(1) + 1 · s4(1/3) +
1 · s4(1/5) + 1 · s4(1/7)

Table 5.5: HFT for tangles of the form Sp/q(8) with p/q ∈ QP1, q odd and 0 < 8p < q.

All these computations, seem to point to a more general pattern followed by HFT
for tangles of the form Sp/q(2n) with p/q ∈ QP1, q odd and 0 < 2n · p < q, which is
presented in the next conjecture.

Conjecture 5.11. Let Sp/q(2n) be the tangle Sp/q(2n) = Qp/q+Q1/2n with p/q ∈ QP1,
q odd and 0 < 2n · p < q. Then,

HFT
(︂
Sp/q(2n)

)︂
= (q − 2n · p) · r (1/(2n)) + p ·

(︄
n−1∑︂
i=0

s4 (1/(2i+ 1))

)︄
.

Remark 5.12 (A confirmation from the Pretzel tangles). As anticipated in the
Introduction, Conjecture 5.11 seems to be in part confirmed by the know multicurves
of the Pretzel tangles.

In fact, the (2r,−2s−1)-Pretzel tangle is defined as Q1/(2r) +Q−1/(2s + 1), which is
clearly a subfamily of the tangles of the form Sp/q(2n). For these tangles, the Tangle
Floer Homology is known (see Theorem 6.9 of [Zib20]) and it agrees with what is
stated in Conjecture 5.11.



Appendix A

Manual for nicepy, version 1.0

This appendix is a manual for version 1.0 of the [nicepy] Python Package, an im-
plementation of the Nicefication Algorithm for Python 3.10.2.

A.1 Input preparation

The input is a text file, call it input.txt , with a certain number of lines. The first
line, saved under type_of_diagram , states the type of input; it can be one of the
following:

a. "normal", which means that we are giving a (bordered sutured) Heegaard
diagram as input;

b. "tangle", which means that we are giving a 4-ended tangle diagram as input;

c. "rational", which means that we are giving a (list of) rational tangle(s) of the
form Qp/q.

Depending on the type of input.txt , the successive lines change.

Input of type "normal"

Let H = (Σ,α = αc∪αa,β) be the Heegaard diagram that we want to give as input.
This diagram can be of the following types: a closed Heegaard diagram (in which
αa = ∅ and we have a basepoint z), a bordered Heegaard diagram (in which we have
one basepoint z in one of the regions on the border), or, more generally, a bordered
sutured Heegaard diagram with α-arcs (β-arcs are not allowed in this version of the
[nicepy]) with some basepoints on it such that every connected component of Σ∖α
contains at least one multiplicity zero regions.

We require the following three properties on H:

• every α-curve intersects at least one β-circle and that every β-circle intersects
at least one α-curves,

125



126 APPENDIX A. MANUAL FOR NICEPY, VERSION 1.0

• every region of H is a disc,

• every α- and β-circle has at least three intersection points on it.

The first two properties can be obtained by applying Step 1 of the Nicefication Algo-
rithm, as explained in Subsection 4.2.1. The third property is crucial for the program.
This is because edges obtained from a circle with only one or two intersection points
are not uniquely identified by their endpoints. To ensure uniqueness, it is necessary
to perform one or more finger moves to achieve this property.

The procedure to write the input starts by drawing the diagram of interest and
labeling the regions from 1 tom. These regions are referred to as e1, . . . , em. The next
step involves labeling the intersection points obtained by α∩β and αa∩∂Σ, starting
from the ones on the border, if there are any. The labels are denoted by 1, . . . , k, . . . n,
where points 1, . . . , k represent the points in αa ∩ ∂Σ. Furthermore, the labels for
the border points must be placed in an increasing order going counter-clockwise. For
example, if there are h1 points on the first border component, their labels should be
1, . . . , h1 in an increasing order going counter-clockwise. Similarly, if there are h2
points on the second border component, their labels should be h1+1, . . . , h1+h2 in
an increasing order going counter-clockwise, and so on.

We need the following lines in input.txt in the presented order.

1. number_border_points . This is the number of border points, i.e. the number
of intersection points αa ∩ ∂Σ (it can be 0). In the notation adopted above,
this is k.

2. number_intersection_points . This is the total number of intersection points
of the diagram (including the border points), i.e. all the points α ∩ β and
αa ∩ ∂Σ. In the notation above, it is n.

3. regions_input . This is the essential data of the diagram, constructed as a
list L . Given any region ei, we construct a list L_i with the labels of the
corners of ei, such that

• the labels are given reading them from the region going counter-clockwise,

• the first two labels are the endpoints of an α-edge of ei.

Then L is the list containing the lists L_i in order. Notice in particular that,
if a region has a corner whose label is less or equal to k, then it is a boundary
region of the diagram.

4. multiplicity_zero_regions . This is the list of the labels of multiplicity
zero regions, i.e. regions that have a basepoint. This is a list of labels, i.e. only
numbers.
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Input of type "tangle"

Let T be a 4-ended tangle without closed components. Let H = (Σ,α = αc∪αa,β)
be the tangle Heegaard diagram that we want to give as input (not peculiar).

We require the following three properties on H:

• every α-curve intersects at least one β-circle and that every β-circle intersects
at least one α-curves,

• every region of H is a disc,

• every α- and β-circle has at least three intersection points on it.

The first two properties can be obtained by applying Step 1 of the Nicefication Algo-
rithm, as explained in Subsection 4.2.1. The third property is crucial for the program.
This is because edges obtained from a circle with only one or two intersection points
are not uniquely identified by their endpoints. To ensure uniqueness, it is necessary
to perform one or more finger moves to achieve this property.

The procedure to write the input starts by drawing the diagram of interest and
labeling the regions from 1 to m. These regions are referred to as e1, . . . , em. The
next step involves labeling the intersection points obtained by α ∩ β and αa ∩ ∂Σ,
starting from the ones on the punctures, and we denote them by 1, . . . n, where the
points 1, . . . , 8 are the endpoints of the α-arcs.

We need the following lines in input.txt in the presented order.

1. number_border_points . This is the number of border points, i.e. it is 8.

2. number_intersection_points . This is the total number of intersection points
of the diagram (including the border points), i.e. all the points α ∩ β and
αa ∩ ∂Σ. In the notation above, it is n.

3. regions_input . This is the essential data of the diagram, constructed as a
list L . Given any region ei, we construct a list L_i with the labels of the
corners of ei, such that

• the labels are given reading them from the region going counter-clockwise,

• the first two labels are the endpoints of an α-edge of ei.

Then L is the list containing the lists L_i in order. Notice in particular that
if a region has a corner whose label is less or equal to k, then it is a boundary
region of the diagram.

4. multiplicity_zero_regions . Recall that, once we convert the tangle Hee-
gaard diagram to a peculiar Heegaard diagram, we have to choose two special
basepoints: one among the pi’s and one among the qj ’s. Therefore, we give
here a list of the form [[i, 0], [j, 1]] as input, where ei is the multiplicity
zero region on the front and ej is a region on the back. The program is able to
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try to nicefy all the 16 possible combinations of multiplicity zero regions (see
Section A.3), however it needs an initial input to understand which regions
stay on the back of S2

4 and which stay on the front. Thus this line is required
in any case.

5. alpha_arcs_sites . This list is needed in order to understand which α-arc
corresponds to which site. We give a list of four labels, each one corresponding
to a border point of the diagram, ordered with respect to the α-arc sites. For
instance, consider the list [i,j,k,l] . This list encodes the information that
the border point labeled i is one endpoint of the α-arc associated with site a,
the border point labeled j is one endpoint of the α-arc associated with site b,
the border point labeled k is one endpoint of the α-arc associated with site c,
and the border point labeled l is one endpoint of the α-arc associated with site
d.

6. alexander_grading . This list encodes the data of the Alexander grading of
the border regions. It is a list of 4 elements, where each element is an endpoint
of a vertical α-arc and such points are in the following order with respect to
Alexander grading: [(1,0), (-1,0), (0,1), (0,-1)] .

Input of type "rational"

Let T be a 4-ended tangle without closed components. We can cut T so that it
can be reconstructed by gluing together some rational tangles R1, . . . , Rh, each of
which is also a 4-ended tangle. However, it is not allowed to decompose T in such
a way that we have retrieve it by adding or multiplying some Q±1’s. While there
may be multiple Q±1 tangles present among the Ri’s, it is not allowed to glue them
together via the sum or multiplication of 4-ended tangles (for the definition of these
operations, refer to Section 1.6).

Given any Ri, we label the endpoints of its strings as follows: 1 corresponds to
the end in the north-west puncture, 2 to the end in the south-west puncture, 3 to
the end in the south-east puncture and 4 to the end in the north-east puncture; we
label the endpoints of the strings of T in the same way. Moreover, we also label the
2h− 2 gluing points and we refer to them as g1, . . . , g2h−2.

We need the following lines in input.txt in the presented order.

1. number_of_tangles . This is the number of tangles; in the setting above it is
h.

2. tangles_input . This is a list L with the data of the single rational tangles.
For any Ri = Qpi/qi

, we construct a list L_i , where the first element is 0 if
pi/qi < 0 and 1 if pi/qi > 0, the second is p_i and the third is q_i . Then,
L is the list where the i-th element is L_i .

3. gluing_instructions . This is a list G with the instruction for the gluing
of the tangles Ri. Let gj the gluing point between the tangles Ri1 and Ri2 ,



A.2. EXAMPLES OF INPUT 129

along end1 (one string’s end for Ri1) and end2 (one string’s end for Ri2). We
construct the list G_j corresponding to gj as [i_1, end_1, i_2, end_2] .

Then G is the list where the j-th element is G_j . If there is only one tangle
in tangles_input , G is an empty list.

4. alexander_grading_tangle . This list encode the data of the Alexander grad-
ings of the border regions. It is a list of the numbers from 1 to 4, indicating
the endpoint of the string of T , where the order of them is given with respect
to Alexander grading: [(1,0), (-1,0), (0,1), (0,-1)] .

In this case, we do not need the information about the α-arc sites for the diagram
of T , as it is automatically interpreted as follows:

• the site a is from the string’s endpoint 1 to the string’s endpoint 2,

• the site b is from the string’s endpoint 2 to the string’s endpoint 3,

• the site c is from the string’s endpoint 3 to the string’s endpoint 4,

• the site d is from the string’s endpoint 4 to the string’s endpoint 1.

Placing the input

Once the input file is ready, it needs to be provided as input to the program.
We save the path to input.txt in the variable input_path which can be found

in the top part of main_run.py . input_path is a tuple, where the first entry is
a string containing the (possibly relative to the path of main_run.py ) path to the
folder in which input.txt is and the second entry is a string containing the name
of the input file itself.

1 input_path = ("C:/Users/user1/Documents/", "input.txt")

Listing A.1: Example of input_path if the path to the input file is
C:/Users/user1/Documents/input.txt.

1 input_path = ("./ inputs/", "input.txt")

Listing A.2: Example of input_path if the input file is in a subfolder called inputs
of the folder in which main_run.py is.

A.2 Examples of input

We see some examples of Heegaard diagrams and their inputs.
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Figure A.1: Closed Heegaard diagram for L(3, 1).

Closed Heegaard diagram

This is an example of an input where the first line is "normal".
Suppose to have the closed Heegaard diagram for the lens space L(1, 3) as rep-

resented in Figure A.1. Then, input.txt is the following.

1 normal
2 0
3 3
4 [[1,2,1,3],[2,3,2,1],[3,1,3,2]]
5 [1]

Bordered sutured Heegaard diagram with α-arcs

This is an example of an input where the first line is "normal".
Suppose to have the bordered sutured Heegaard diagram in Figure A.2. Then,

input.txt is the following.

1 normal
2 10
3 25
4 [[15 ,16 ,17 ,20 ,23 ,14] ,[20 ,21 ,22 ,23] ,[23 ,22] ,[21 ,20] ,[18 ,21 ,20 ,17] ,

[14,23,22,13],[2,12,15,3],[12,2,5,13],[13,5,4,14],[3,15,14,4],
[19,7,6,16],[16,6,9,17],[8,18,17,9],[18,8,7,19],[1,11,24,25,11,1],
[16 ,15 ,12 ,25 ,24 ,11 ,25 ,12 ,13 ,22 ,21 ,18 ,19 ,10 ,10 ,19] ,[25 ,24] ,

[11 ,24]]
5 [15,9,13,4,3,16]

Tangle Heegaard diagram

This is an example of an input where the first line is "tangle".
Consider the (2,−3)-Pretzel tangle with the orientation on the stings as in Figure

A.3 and its tangle Heegaard diagram represented in Figure A.4. Then, input.txt
is the following.

1 tangle
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Figure A.2: A bordered sutured Heegaard diagram.

Figure A.3: (2,−3)-Pretzel tangle with oriented strings.

Figure A.4: Tangle Heegaard diagram for the (2,−3)-Pretzel tangle.
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Figure A.5: Oriented tangle diagram for Q3/7.

2 8
3 22
4 [[1,11,9,2],[4,13,14,10,12,3],[3,12,13,4],[11,1,2,9,10,14],

[11 ,12 ,10 ,16 ,18 ,17 ,15 ,9] ,[12 ,11 ,14 ,19 ,18 ,21 ,22 ,13] ,[13 ,22 ,19 ,14] ,
[9 ,15 ,16 ,10] ,[5 ,15 ,17 ,6] ,[16 ,20 ,21 ,18] ,[17 ,18 ,19 ,20] ,
[20 ,19 ,22 ,8 ,7 ,21],[8,22,21,7] ,[20,16,15,5,6,17]]

5 [[1, 0],[3, 1]]
6 [2,4,6,8]
7 [2,3,6,7]

Single rational tangle

This is an example of an input where the first line is "rational".
Consider the rational tangle Q3/7, represented in Figure A.5. Then, input.txt

is the following.

1 rational
2 1
3 [[1, 3, 7]]
4 []
5 [4,1,3,2]

Non-rational tangle

This is an example of an input where the first line is "rational".
Consider the tangle T , represented in Figure A.6, where we label the rational

pieces and the gluing points according to the image. Then, input.txt is the fol-
lowing.

1 rational
2 3
3 [[1,1,2],[0,1,3],[1,1,1]]
4 [[1,4,2,1],[1,3,2,2],[1,2,3,1],[2,3,3,4]]
5 [3,1,4,2]
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Figure A.6: Oriented tangle diagram for T , divided in rational components.

A.3 Additional settings

There are some additional parameters that can be set manually inside main.py .
They are the following.

• user_experience . This flag, if set to True , stops the run in different points
and asks for an manual confirmation in order to proceed. If set to False , the
run does not stop until the end or until it finds an error in the input data.

• input_check . "If this flag is set to True , the program stops after pre-
processing the input, giving the user the opportunity to check if the input
given is correct. A message is printed on the screen, and the program asks
for manual confirmation before proceeding. If this flag is set to False , the
program does not print the initial diagram and skips this step.

• try_multiplicity_zero_regions_choices . This flag, if set to True , allows
the program to generate others diagrams where the only difference from the
one given in the input is the choice of the multiplicity zero regions (this is only
implemented for the cases "tangle" and "rational"). If set to False , only the
given input will be nicefied. In the case of an input of type "rational", this flag
is automatically set to True .

• print_distance_complexities . This flag, if set to True , prints after every
iteration of the algorithm the distance complexities, the total complexity and
the number of generators of the diagram obtained with the last cycle. If set to
False , the above data is not printed between the cycles.

• print_intermediate_steps . This flag, if set to True , prints after every
iteration of the algorithm the new diagram obtained with the last modification.
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One of the data displayed, is the last move done on the previous diagram; it is
presented as showed below.

1 Regions of the last diagram that we modified:
2 Type of move: Handleslide
3 Starting region: Region 4
4 Edge modified: [12, 9]
5 Ending region: Region 4
6 Neighbour region: Region 6
7 Middle regions:
8 Region 27
9 Region 28

10 Edges crossed:
11 [5, 12]
12 [2, 33]
13 [4, 7]

If set to False , the diagrams generated are not printed between the cycles.

• print_final_diagram . This flag, if set to True , prints the final diagram
obtained at the end of the run. If set to False , the final diagram is not
printed at the end of the execution of the program.

• print_details_nicefied_diagram . This flag, if set to True , print the fol-
lowing details of the run: number of generators of the final diagram, number
of regions of the final diagram, number of cycles of the algorithm needed to
obtain the final diagram. If set to False , none of this information is saved.

• print_output_for_PQM . This flag is effective only for diagrams of type "tan-
gle" or "rational". If set to True , at the end of the run it formats in a string
the final diagram as it is needed for the input of [PQM.m] and it prints this string
on screen. If set to False , this string is not printed.

• save_on_file . If the flag is set to True , the program is enabled to save
various data relative to the run on a file, as specified by the parameters listed
below. To save such data, there needs to be a folder named nicefied_diagrams

in the same folder where the input.txt file is located. After the run, the file is
saved in that folder with the name input_nicefied_diagram.txt . However,
if the flag is set to False , the program will not save anything, so even if the
next flags are set to True , they will not have any effect.

• save_intermediate_steps . This flag, if set to True , saves all the intermedi-
ate diagrams obtained in input_nicefied_diagram.txt (if we previously set
try_multiplicity_zero_regions_choices = True , it saves the intermedi-
ate diagrams only for the final diagram). If set to False , the intermediate
diagrams are not saved.
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• save_final_diagram . This flag, if set to True , saves the final diagram
obtained at the end of the run in input_nicefied_diagram.txt . If set to
False , the final diagram is not saved.

• save_details_nicefied_diagram . This flag, if set to True , saves some de-
tails of the run in input_nicefied_diagram.txt . These details are: number
of generators of the final diagram, number of regions of the final diagram,
number of cycles of the algorithm needed to obtain the final diagram. If set to
False , none of this information is saved.

• save_output_for_PQM . This flag is effective only for diagrams of type "tan-
gle" or "rational". When set to True , the program formats the final diagram
into a string that can be used as input for [PQM.m] and saves it in the file
input_nicefied_diagram.txt . If set to False , the program does not save
this string.

A.4 Pre-processing of the input

After the input is prepared and the additional settings are assigned, it is possible to
run the program. This is done by executing the python script main_run.py .

The pre-processing stage refers to the initial processing that is performed on the
input before the algorithm is applied. It includes reading the input and conducting a
series of sanity checks to ensure that the input is valid and can be properly processed
by the program.

Pre-processing of type "normal"

In the case the diagram is of type "normal", the program initially calculates the
curves and verifies that each circle, except for arcs, has at least three intersection
points. If the verification fails, the program prompts the user to manipulate the
diagram to increase the intersection points on the deficient circles.

After passing this check, the program performs another sanity check by examining
the edges of the diagram, identified by their endpoints, to locate all the edges twice
with opposite orientations. If this check also passes, the Heegaard diagram is created.

The next step involves checking if the input diagram is bordered. If it is, the
program then proceeds to check each of the border regions to see if they are already
square regions, or if an initial finger move is required to transform them to squares.
In the latter case, the finger_move_beginning_bordered() method is called to
perform the necessary move.

Pre-processing of type "tangle"

If the input diagram is of type "tangle", the program begins by computing the curves
of the diagram and verifying that each circle (excluding arcs) has at least three
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intersection points on it. If this check fails, the program terminates and prompts the
user to perform finger moves to increase the number of intersection points on the
deficient circles.

Once this check is passed, the program proceeds to a second sanity check by
scanning the edges of the diagram, identified by their endpoints, in an attempt to
find all edges twice in opposite orientation. If this check also passes, the program
generates the Heegaard diagram.

After the sanity checks, the program converts it into a peculiar Heegaard di-
agram by removing the sutures around the tangle’s endpoints, concatenating the
α-arcs, and placing the basepoints pi’s and qj ’s along with the two special ones in
the designated regions. If the flag try_multiplicity_zero_regions_choices is
enabled, the program generates all sixteen possible Heegaard diagrams with different
combinations for the choice of special basepoints pi and qj .

Pre-processing of type "rational"

If the input diagram is of type "rational", the program performs several steps to
construct the tangle Heegaard diagram for T .

Firstly, it builds the tangle Heegaard diagrams of R1, . . . , Rh with the procedure
described in Section 2.6.1 and glues them together according to the instructions given
in gluing_instructions .

During this process, the program conducts two sanity checks. Firstly, for any
rational tangle Qp/q, it verifies that p and q are coprime; if they are not, the program
terminates. Secondly, when gluing two tangles Qpi/qi

and Qpj/qj
, the program checks

that neither both pi and pj are odd nor both qi and qj are even. The purpose
of the second check is to avoid the creation of a closed component in T . If the
condition mentioned above is satisfied, it ensures that no closed components are
formed. In case this situation arises, the program alerts the user, but it does not
terminate the program unless the user decides to override the warning. This serves
as a precautionary measure to prompt the user to carefully examine the tangle for
any closed components.

After constructing the tangle Heegaard diagram, the program transforms it into
a peculiar Heegaard diagram by removing the sutures around the tangle’s endpoints,
concatenating the α-arcs, placing the basepoints pi’s and qj ’s, and generating all
the sixteen Heegaard diagrams carrying different combinations for the choice of the
special basepoints pi and qj .

A.5 Application of the Nicefication Algorithm

After the pre-processing stage, the input Heegaard diagram undergoes the Nicefica-
tion Algorithm. The algorithm is implemented as described in Section 4.2, but with
the modifications outlined in Section 4.5.

If the flag try_multiplicity_zero_regions_choices is activated, the program
runs the algorithm on all the possible sixteen diagrams. It starts with the diagrams
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that appear to be the most promising, i.e., those with a smaller total complexity,
and then moves on to the others. The first diagram is fully nicefied, and let #gen
be the number of generators of the resulting diagram. The program then nicefies
the other diagrams until the number of generators exceeds #gen. If this happens,
the algorithm stops, and the program moves on to the next diagram on the list. If
a diagram is nicefied and the final number of generators is #gen′ < #gen, then this
is stored as temporary final diagram and the number of generators of the successive
diagrams are compared with #gen′.

A.6 Examples of output

The output of the program is built with respect to the additional parameters pre-
sented in Section A.3. We see some examples of output obtained when these param-
eters are activated.

If print_final_diagram or save_final_diagram

If one of the above flags is activated, the respective string generated is of the following
form.

1 The algorithm worked!
2

3 We were able to nicefy the input given in ./ inputs/ for the diagram
input.txt

4

5 Details of the Heegaard diagram:
6

7 Is it nice: True
8

9 Number of regions: 22
10 Number of intersection points: 29
11 Number of border points: 10
12

13 Regions of the diagram:
14 Region 1:
15 Input: [27, 16, 17, 20]
16 Badness: 0
17 Distance: 2
18 Is a border region: False
19

20 Region 2:
21 Input: [29, 27, 20, 21]
22 Badness: 0
23 Distance: 1
24 Is a border region: False
25

26 ...
27

28

29 Region 22:
30 Input: [29, 28]
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31 Badness: 0
32 Distance: 2
33 Is a border region: False

If print_details_nicefied_diagram or save_details_nicefied_diagram

If one of the above flags is activated, the respective string generated is of the following
form.

1 Number of generators of the diagram: 45
2 Number of cycles of the algorithm: 2
3 Number of regions of the diagram: 22

If print_output_for_PQM or save_output_for_PQM

If one of the above flags is activated, the respective string generated is of the following
form.

1 regionsInput = ( {{1 ,9 ,36 ,35 ,38} ,{2 ,12 ,13 ,14 ,29} ,{3 ,13 ,12 ,11 ,21} ,...
... ,{39 ,42 ,41 ,39 ,40} ,{40 ,41 ,42 ,\[ Placeholder ],\[ Placeholder ]}} );

2

3 alphasInput = ( {{1,{1,24,19,20,25,8,29,14,13,12,11,21,4,33,42,41,...
...28 ,10 ,9 ,36 ,7 ,26 ,18 ,17 ,23 ,6 ,31 ,39 ,40 ,34}}} );

4

5 betasInput = ( {{1,{1,8,7,2,5,4,3,6}},{2,{9,38,40,42,41,39,37,14,...
...15 ,11 ,12 ,29 ,30 ,31 ,32 ,33 ,34 ,35 ,36}}} );

6

7 cancellationSortListInput = ( { } );
8

9 alphaArcs = ( {{"a
",{42,41,32,3,22,15,16,27,2,35,38,37,30,1,24,19,20}}, {"b",{11,21,
4,33}} ,{"c" ,{13 ,12}} ,{"d" ,{25 ,8 ,29 ,14}}} );

10

11 basepointRegions = ( {{7,p,{1,0},-2},{8,q,{1,0},-2},{9,p,{-1,0},-2},
{10,q,{-1,0},-2},{11,p,{0,-1},-2},{12,q,{0,1},-2}} );

12

13 multiplicity0Regions = ( {{41 ,{{4 ,5} ,{28 ,10} ,{9 ,38} ,{37 ,14} ,{13 ,21}} ,
{0 ,1} , -4} ,{42 ,{{8 ,7} ,{36 ,9} ,{10 ,16} ,{15 ,11} ,{12 ,29}} ,{0 , -1} , -4}});

This string is already formatted to be used as input of [PQM.m]. For details on
this Software, we refer to the documentation of [PQM.m].
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