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Abstract

In this work we propose a new approach to correct themulti-path interference phenomenon
which occurs in time-of-flight cameras. The basic ToF assumption that the light is only re-
flected once in the scene is not met in reality. In the real-world, multiple light rays come at
the camera sensor from multiple indirect paths with different amplitudes and time delays.
This causes interference and affects the final depth estimation accuracy.

We introduce a deep learning approach to learn the typical reflection structure of the light
in a real environment and use it as strong prior to estimate the shape of the time-dependent
scene impulse response, called backscattering vector. We use a predictive model to perform
the actual prediction starting from the rawToF data acquired by the camera and a generative
model to constrain the solution to resemble the characteristic structure of real backscattering
vectors. We show also how spatial correlation on the input data can be efficiently exploited
to improve the final prediction.

We develop the proposed approach under some simplifying assumptions. In particular,
we assume that theMPI effect is generated only by specular reflections. Nevertheless, experi-
mental results on real data demonstrate the effectiveness of the proposed approach showing
performance comparable with other state-of-the-art algorithms.
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The truly creative people tend to be outliers.
Nolan Bushnell

1
Introduction

A ToF camera is a range imaging system which is able to capture depth information in real-
time. It works by illuminating the scene with a light signal and measuring the time taken
by the light to travel the distance from the camera to the object and back again. However,
the basic assumption that the light is only reflected once in the scene is not met in many
real cases. Typically, it bounces multiple times inside the scene, generating multiple reflected
signals that interference at the camera sensor. This is known asmulti-path interference effect
and it can lead to significant errors in the depth estimation [1].

The time-dependent scene impulse response, indicating the amount of light returned to
the camera sensor after a particular time-of-flight, is called backscattering vector. It contains
important information about the scene geometry, therefore its knowledge may be exploited
in a wide range of applications. It can be used to see around the corners [28], detect object
in highly-scattering media [29], infer material properties from a distance [30, 31], as well as
perform optimal multi-path interference correction.

Many authors [2] in the literature propose methods to correct the multi-path effect start-
ing from the raw data acquired by the ToF camera. This work focuses on the development
of a completely new approach for backscattering estimation and its application to the multi-
path interference correction task. Due to the reflection properties of the light in a real envi-
ronment, typically thebackscattering vectorpresents somevery characteristic structures. The
main idea is to employ a deep learning approach to learn the underlying reflection structure
and use it as strong prior to optimize the estimation of the backscattering vector.

The proposed technique is based on twomodels, the first one is a predictivemodel which
takes in input the rawToFdata and produces a compressed representation of the correspond-
ing backscattering vector, while the second is a generative model that reconstructs the final
backscattering vector starting from its compressed representation. We developed the pro-
posed approach under some simplifying assumptions. In particular, we trained the deep
leaning architecture in a supervised manner on simulated data, assuming that MPI is gener-
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ated only by two specular reflections of the light inside the scene. In futureworks the idea can
be generalized to a more realistic scenario, accounting for diffuse reflections and performing
the optimization on real data through some unsupervised domain adaptation techniques.

Experimental results confirm the effectiveness of the approach, achieving performance
comparable to other state-of-the-art algorithms for multi-path correction. We worked ei-
ther at single pixel-level and at local level, showing how spatial correlation can be efficiently
exploited to improve the final prediction. The method turns out to be robust against noise,
and provides good correction capabilities on real-world ToF data.
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Technology is nothing. What’s important is that you have
a faith in people, that they’re basically good and smart,
and if you give them tools, they’ll do wonderful things with
them.

Steve Jobs

2
ToF Technology andMPI Problem

The use of Time-of-Flight (ToF) technology for range imaging has become increasingly pop-
ular in the last years. Compared to other technologies to obtain scene depth, ToF cameras are
more versatile and this makes them useful in a wide range of applications, such as pose esti-
mation, coarse 3D reconstruction, human body parts recognition and tracking, augmented
reality, scene understanding, autonomous driving, robotic navigation systems, and so on.
Depth measurements are based on the well-known time-of-flight principle. It works by illu-
minating the scene with a light signal and estimating the depth by measuring the time ∆t
taken by the light to come back to the camera sensor. Since speed of light in vacuum is con-
stant, i.e. 299 792 458 m/s2, the relationship between depth and time is given by:

d =
c t

2
(2.1)

The factor 1/2 is due to the fact that the light has to travel the distance twice, it propagates
from the ToF projector to the scene and comes back. Note that ToF cameras acquires radial
depth maps, this means that the distance value associated to each pixel refers to the radial
distance of the corresponding 3D point from the camera projector. Radial depth can be
converted to the standard z-depth knowing the intrinsic parameters of the camera.

The success of these systems is driven by their benefits, in particular they exhibit some in-
teresting advantages compared to their competitors. Nowaday, the most widely used range
imaging techniques are the stereo and the structured light cameras. In stereo, the depth is
computed looking for pixel-wise correspondences into two images of the same scene. The
main limitation in this context is that the success of the correspondence computation re-
quires the presence of meaningful textures in the scene. Structured light cameras mitigate
this problem actively projecting a light pattern to be used as reference. Both these two tech-
nologies suffer the occlusion problem, require an accurate extrinsic calibration and the cor-
respondence computation prevents them from being used in real-time. Conversely, ToF sys-
tems are able to acquire dense depth and intensity images simultaneously at high frame rates,
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ToF Stereo Structured light

Correspondence computation No Yes Yes
Occlusion problem Limited Yes Yes
Extrinsic calibration No Yes Yes
Auto illumination Yes No Yes
Untextured surfaces Good performance Bad performance Good performance

Depth range Light-power and
mod. freq. dependent Baseline dependent Light-power and

baseline dependent
Spatial resolution Low High High

Table 2.1: Comparison between range imaging techniques

have low weight and compact design without any moving parts and do not suffer from the
occlusion problem. In table 2.1 a comparison between the most widely used range imaging
techniques is reported.

There exist two main types of ToF technologies. Sensors based on discrete pulse modu-
lation that measure the time-of-flight directly, or sensors based on Amplitude Modulated
Continuous Wave (AMCW) that measure the time-of-flight indirectly. The AMCW sen-
sors estimate the time from the phase displacement between the emitted and the received
light signals. This workwill focus only onAMCWsystems, since currently they are themost
available and widely used cameras on the market. Beside all these good aspects, ToF cameras
are subjected to some limitations that need to be further analysed and improved. Between
all, the multi-path interference problem is responsible for a significant error in the depth
estimation that is highly scene dependent and thus difficult to be corrected.

2.1 AMCWCamera Principle

AMCWcameras illuminate the scenewith an amplitudemodulated continuousnear-infrared
light signal at frequency fm and compute the phase displacement between the reflected sig-
nal and an internal reference clock for each pixel. Figure 2.1 shows a graphical illustration
of the AMCW camera principle. Typically the frequency of the amplitude modulation is
in the megahertz range. Knowing the phase shift φ ∈ [0, 2π), it is possible to derive the
corresponding time-of-flight and depth values according to:

∆t =
φ

2πfm
d =

c∆t

2
=

c φ

4πfm
(2.2)

Note that the previous equations link the modulation frequency at the depth resolution,
higher is the modulation frequency smaller is the minimum appreciable depth value. As we
will see later in section 2.1.2, modulation frequency influences also themaximummeasurable
range. The higher the frequency the smaller the maximum acquirable range.
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Projector

ToF sensor

Illumination signal

Reflected signalφ Target

Figure 2.1: Illustration of AMCWcamera principle. The ToF camera illuminates the scene
with an amplitude modulated light signal and estimates the depth looking at the phase dis-
placement between the illumination and the reflected signals.

Themost common setting is to use a sinusoidal illumination signal and a rectangular clock
at the same frequency, this combination leads to a closed-form solution for phase and ampli-
tude reconstruction [3, 4]. Mathematically, the illumination signal is expressed as:

im(t) = 1 + sin (2πfmt) = 1 + sin (ωt) (2.3)

For a particular acquisition time t, the scene can be modelled as a Linear Time-Invariant
(LTI) system. Assuming that the light bounces only once in the scene, it introduces only an
attenuation α < 1 and a time delay∆t > 0 in the illumination signal, therefore its impulse
response is given by:

h(t) = α δ (t−∆t) (2.4)

Note that the delay∆t = 2d
c
corresponds to the time-of-flight of the light. Under this ideal

assumption, the reflected illumination signal presents only an attenuatedα < 1 and a phase
displacement φ = 2πfm∆t:

r(t) = (im ∗ h) (t) = α+ α sin (2πfm(t−∆t)) = α+ α sin (ωt− φ) (2.5)

The sensor sensitivity is modulated with a rectangular shutter signal at the same frequency
fm, represented by:

s(t) = 1 (sin (2πfmt)) = 1 (sin (ωt)) (2.6)

The camera sensor is formed by an array of smart pixels, the so-called lock-in pixels [5]. Each
pixel is able to sample the amount of light reflected by the scene, computing the correlation
between the reflected illumination signal and the sensor sensitivity inside a given integration
intervalTint, as illustrated in figure 2.2. The raw correlationmeasure recorded by the camera
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t

r(t)

φ

t

s(t)

Tm

⌊Tint/Tm⌋Tm

Tint

Figure 2.2: Correlation computation. The lock-in pixels of the ToF camera sensor record
the correlation between the reflected light signal and the sensor sensitivity inside a given in-
tegration interval Tint.

is given by:

m =

∫
Tint

r(t) s(t) dt

=

⌊
Tint

Tm

⌋
︸ ︷︷ ︸

N

∫ Tm

0

r(t) s(t) dt+

∫ Tint

NTm

r(t) s(t) dt (2.7)

Under the reasonable assumption that Tm = 1
fm
≪ Tint the second term in (2.7) can

be neglected. Moreover, since the sensitivity is zero for the second half of the modulation
period, the equation reduces to:

m = N

∫ Tm/2

0

[α + α sin (ωt− φ)] dt

= N α
Tm

2
+N α

∫ Tm/2

0

sin (ωt− φ) dt

= N α
Tm

2︸ ︷︷ ︸
I

+N α
Tm

π︸ ︷︷ ︸
A

[
− cos (ωt− φ)

]Tm/2

0

= I + Acos (φ) (2.8)

The main result is that the raw correlation measurement captured by the ToF sensor turns
out to be a sinusoidal function of the phase shift between illumination and reflected signal.
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Figure 2.3: Correlation function reconstruction. In order to reconstruct completely ampli-
tude, phase and intensity of the correlation function it has to be sampled several times. On
the left it is reported the correlation function sampled for θ = 0, π/2, π and 3π/2, while on
the right the correspondingDFT. In case of perfect sinusoidalmodulation theDFT contains
only the fundamental harmonic and a DC component.

2.1.1 Correlation Function Reconstruction

The correlation function encodes useful information about the scene impulse response in its
amplitude, phase and intensity, therefore we are interested in its reconstruction. To this end,
the correlation function has to be sampled several times, figure 2.3. One simple way is intro-
ducing additional known internal phase displacements θ = n2π/K , forn = 0, ..., K−1, in
the sensor sensitivity and performingK subsequent correlation measurements. Since there
are three unknowns, it must be K ≥ 3. More measurements improve the precision but
also incorporate additional errors due to the sequential sampling such as motion blur which
will be discussed later on. Typically the system is solved in the optimal least-squares sense [1]
usingK = 4 samples. The recorded correlation measures are going to be dependent on the
artificial phase displacements introduced in the sensor sensitivity:

m2πn/K = I +Acos

(
φ+ n

2π

K

)
= I +

A

2

(
ej(φ+n 2π

K ) + e−j(φ+n 2π
K )

)
(2.9)

Amplitude, phase and intensity can be easily derived looking at the DFT of the previous
expression:

M(k) =

K−1∑
n=0

m2πn/K e−jkn 2π
K (2.10)

Due to linearity of equation (2.9), it results:

M(k) =
A

2
e−jφ δ (k + 1) +NI δ (k) +

A

2
ejφ δ (k − 1) (2.11)

Imposing the equality between equations (2.10) and (2.11), the information about intensity
is contained on the DC tapM(0), while the information about phase and amplitude can be
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extracted from the first tapM(1). ForK = 4 it results:

M(0) = 4I = m0 +mπ/2 +mπ +m3π/2 (2.12)

M(1) =
A

2
ejφ = m0 e

0 +mπ/2 e
−π/2 +mπ e

−π +m3π/2 e
−3π/2

= (m0 −mπ) + j(m3π/2 −mπ/2) (2.13)

The inversion of the previous relationships leads to a close-form solution for the amplitude:

A =
1

2

√
(m0 −mπ)2 + (m3π/2 −mπ/2)2 (2.14)

the phase:

φ = arctan

(
m3π/2 −mπ/2

m0 −mπ

)
(2.15)

and the intensity:

I =
m0 +mπ/2 +mπ +m3π/2

4
(2.16)

Note that, in order to reconstruct completely the correlation function, an interval of time
K Tint is required, sinceK subsequent correlationmeasures need tobe acquired. The stretch-
ing of the overall acquisition time may lead to motion blurring effects in case of dynamic
scenes.

2.1.2 Unambiguous Range
At this point it is important to notice that, since the correlation function (2.9) is periodic
of period 2π, the reconstructed phase value φ will be necessary in the interval [0, 2π). This
implies that also the depth estimated through equation (2.2) will always falls into a specific
interval, that interval is called unambiguous range:

d ∈ [0, Da) Da =
c

2fm
=

λmod

2
(2.17)

where λmod is the wavelength of the illumination signal. Distances to objects that differ
of Da appear undistinguishable. The maximum unambiguous distance Da represents the
maximum depth value that can be correctly estimated acquiring ToF data at a single modu-
lation frequency fm. Real depth values greater than the maximum unambiguous distance
are going to wrap into the interval [0, Da), leading to an ambiguity in the depth estimation.
Clearly, as themodulation frequency fm increases, the depth resolution increases, but the un-
ambiguous range decreases. This trade-off must be taken into consideration for the choice
of the modulation frequency. As we will see later in section 2.6, acquiring data at multiple
modulation frequencies allows to extend the unambiguous range.
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Figure 2.4: Phasor representation of the correlation function in a MPI-free case. Ampli-
tude and phase of the recorded correlation function can be fully characterized bymeans of a
complex phasor.

2.1.3 Phasor Notation
As stressed by Gupta et al. [6], a convenient representation for the sinusoidal correlation
function is the phasor notation. Ignoring the intensity component that will require a sepa-
rate treatment, the information about amplitude and phase of the recorder correlation func-
tion is fully contained on the first tap of its DFT (2.10). Without loss of generality, it can be
fully characterize by means of the complex phasor, as illustred in figure 2.4:

v = 2M(1) = X ejφ ∈ C φ = 2πfm∆t (2.18)

This duality allows to perform operations between sinusoidal signals in the complex plane,
simplifying the analysis of multiple interfering reflected signals in a MPI scenario.

2.2 MeasurementModel and Backscattering
Wehave seen that, a light signal that flies inside the scene for a time∆t before coming back to
the camera sensor produces a correlationmeasure fully characterized by the complex phasor:

v = X ej2πfm∆t (2.19)

Due to the linearity of the scene modelled as a LTI system, in case of a more complex be-
haviour of the light, it is always possible to express the acquired correlation measure as an
integral over all the infinitesimal light returns [7], that is:

v =

∫ tmax

tmin

x(t) ej2πfmt dt (2.20)

9



where [tmin, tmax] is the ToF interval of interest and x(t) is referred to as “backscattering”.
The backscattering is proportional to the scene impulse response and indicates the amount
of light returned to the camera sensor after a particular time-of-flight t:

x(t) ∝ h(t) (2.21)

Note how the measurement model above enforces a strict relationship between the correla-
tionmeasure and the scene impulse response which is useful to derive information about the
scene geometry from the acquired ToF data.

From a computational point of view, it is interesting to derive a discrete approximation
of the previous model in order to be able to perform efficient computations using a finite
precision machine. Discretizing the ToF interval of interest into N steps, the continuous
model can be approximated with its discrete version:

v =
N−1∑
n=0

xn e
j2πfmtn tn = tmin +

tmax − tmin

N
n (2.22)

Time and depth resolutions achievable using the discrete approximation depend on the
number of stepsN , in particular:

tres =
tmax − tmin

N
dres =

dmax − dmin

N
(2.23)

Clearly, increasing the number of steps the approximation is going tobebetter andbetter, up
to the limit forN →∞where the discrete and the continuous models coincide. Note that,
since the temporal variable represents the time taken by the light to cross the scene and the
lightmoves at extremely high speed, the time resolutionmust be on the order of picoseconds.

In addition, the discrete model (2.22) can vectorized as a matrix multiplication between
the measurement matrixΦ ∈ C1×N and the so called “backscattering vector” x ∈ RN×1:

v =
[
ej2πfmt0 · · · ej2πfmtN−1

]  x0
:

xN−1

 = Φx (2.24)

The backscattering vectorx is the sampled version of the backscattering signalx(t), and still
remains proportional to the scene impulse responseh(t). Figure 2.5 reports the typical shape
of the backscattering vector in the ideal case.
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Figure 2.5: Backscattering vector in the MPI-free case. When the light bounces only once
in the scene at some distance d∗, the backscattering vector is formed by a single non-zero
element, i.e. xj > 0 for j = ⌊(d∗ − dmin)/dres⌋, and xn = 0 for n ̸= j. The amplitude of
the non-zero element mainly depends on distance and reflectance of the surface.

2.3 DepthMeasurement Errors

With the evolution of time-of-flight technology, a lot of work has been devoted in order to
understand the sources of errors [3, 4]. Depth errors can be classified into systematic errors
and non-systematic errors. Generally, systematic errors can be managed by calibration while
non-systematic are more difficult to be compensated because highly unpredictable. One
common approach to deal with non-systematic errors is filtering.

2.3.1 Systematic Errors
Systematic errors occur when the formulas used for the reconstruction do not model all as-
pects of the actual physical layer. InAMCWcameras, a relevant error appears as consequence
of the fact that in practice the emitted illumination signal does not follow exactly the theoreti-
cal one, due to the difficult generation of a perfectly sinusoidal signal. The actualmodulation
process introduces high order harmonics that induce a deviation from the perfect sine func-
tion. This error, typically refereed to as wiggling or circular error, produces an offset that
depends only on the measured depth. The error plotted against the depth follows a sinu-
soidal shape. The actual form of this oscillation depends on the strength and frequencies of
the higher order harmonics. This offset is typically compensated acquiring more samples of
the correlation function and extending the formulas to incorporate higher order harmonics,
or keeping the formulas are they are and estimating the residual error between the true and
the measured depth during the calibration process.

In addition, it has been observed that the measured depth is greatly affected by the total
amount of incident light received by the sensor. This error is know as amplitude-related
error. The higher the reflected amplitude, the higher the depth accuracy. Low amplitude
appears more often in the border of the image as the emitted power is lower than in the
centre. Contrarily, when objects are too close to the camera saturation can appear and depth
measures will be not valid. The origin of amplitude-related errors has been identified in the
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non-linearities of the semi-conductors forming. Discarding high and low amplitude pixels in
the depth estimation avoids this kind of error butmay lead to sparse depthmaps. A different
solution can be the combination of depth measurements from multiple range images with
different exposure settings, or filtering.

Another phenomenon that introduces ambiguity in the depth estimation is its depen-
dence on the chosen integration time. Acquiring the same scene with different integration
times causes different depthvalues in the entire scene. Themain reasonbehind this integration-
time-related error, is sill a subject under investigation. The common strategy to solve this
problem is to repeat the calibration procedure for all different integration times used.

The manufacturing process as well as the physical position of the pixels in the camera sen-
sor produce an error characteristic for each pixel, namely built-in pixel-related error. Impu-
rities in the semi-conductors introduce pixel-related depth offsets, leading to different depth
measured by two neighbour pixels corresponding to the same real depth. On the other hand,
the position of each pixel in the sensor array affects the capacitor charge time delay. The ef-
fect is a rotation of the image plane, e.g. a perpendicular flat surface appears with a different
orientation. A common representation of this error is a fixed pattern noise obtained by com-
paring the measured depths with a reference distance.

A well-know source of error in all electronics devices is the temperature. Temperature-
related errors happen because internal camera temperature affects the semi-conductors re-
sponse introducing a depth drift in the whole image. To mitigate this error, new generation
ToF cameras incorporate a fun to stabilize the internal temperature.

Other noise sources that introduce errors in the final depth estimation are the shot noise,
originated from the discrete nature of the photon-to-electron conversion, and the quanti-
zation noise, characteristic of the analog-to-digital conversion process which transforms the
collected electrons into a digital number. Typically these sources of noise are statistically char-
acterized. Shot noise can be modelled by a Poisson process, while quantization noise has an
approximately uniform distribution.

2.3.2 Non-Systematic Errors

Non-systematic errors are those who do not depend on the camera itself but by the actual
acquired scene. These errors cannot be compensated through an accurate calibration pro-
cess so more sophisticated techniques must be adopted. The typical low resolution of ToF
cameras promotes flying pixels along depth discontinuities. In the case that the solid angle
extent from a sensor pixel falls on the boundary between a foreground and a background,
the recorded correlation measure is a mixture of the light returns from both regions. Due to
the non-linearity of the depth on the raw data and to the phase wrapping effect, the result-
ing depth is not restricted to the range between the foreground and the background butmay
attain any value in the camera’s depth range. In case of flying-pixels, local information from
neighbouring pixels can be used to approximately reconstruct the true depth value.
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Motion artefacts is another kind of non-systematic error that is present in traditional cam-
eras used in dynamic environments, and that results even more relevant in ToF cameras. As
already underlined, the reconstruction of the whole correlation function in the depth acqui-
sition process requires a finite time interval. In particular, the correlation function needs to
be sampled several times, stretching the overall acquisition time. In case of physical motion
of the objects or of the camera in the scene during the acquisition time, moving parts ap-
pear displaced in subsequent acquisitions. This leads to inconsistent depth measurements
that generate motion blurring effects, especially along depth discontinuities. Moreover, new
generation ToF cameras acquire raw data at multiple modulation frequencies aggravating
the effect of motion artefacts. The development of effective techniques to mitigate these
artefacts is still a open research topic. From a physical point of view the use of special 4-tap
lock-in pixels [5] allows to halve the required acquisition time and thus to reduce the impact
of motion artefacts. Other proposals rely on an estimation of the optical flow in the scene
and on a software compensation based on a theoretical movement model.

Other concerns include ambient light that may contain unwanted light of the same wave-
length as that of the ToF projector which causes false depthmeasurements. Frequency-based
filters can be used in order to minimize this effect.

Finally, the most significant source of error in ToF technology is the multi-path interfer-
ence effect, produced by multiple returning light rays. The correction of this unpredictable
error is themain objective of this work. Section 2.5 summarizes themain reasons behind this
phenomenon and describes a mathematical model useful to characterize it.

2.4 Statistical Error Propagation Analysis
From the previous section it is clear that the raw data acquired by the ToF sensor are affected
by noise. Consequently, the reconstructed correlation function is noisy as well. Here the
objective is to analyse how the errors on the raw acquired samples propagate to the recon-
structed correlation function. The propagation of uncertainty theory provides themathemat-
ical framework to study the effect of variables’ uncertainties on the uncertainty of a function
based on them. Referring to equations (2.15), (2.14) and (2.16), the non-linear relationship
between the raw data and the reconstructed amplitude, phase and intensity values can be
rewritten as [1]:

f : R4 7→ R3

m =
[
m0,mπ/2,mπ,m3π/2

]T 7→ f(m) = [A,φ, I]T (2.25)

where f = X2 ◦ X1 withX1 being the linear mapping:

X1(m) =

1
2 0 −1

2 0
0 −1

2 0 1
2

1
4

1
4

1
4

1
4

m (2.26)
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and:

X2([x, y, c]
T ) = [Φ(x, y)−1, c]T Φ(A,φ) = [Acos (φ) , A sin (φ)]T (2.27)

Applying the error propagation analysis, the first order approximation of the noise on the
output parameters is given by:

Σf = Jf · Σm · JT
f (2.28)

whereΣm andΣf indicate the covariance matrices respectively of the input variablem and
the output function value f(m), while Jf is the Jacobian of f with entries Jf,ij = ∂fi

∂xj
.

The Jacobian, computed on the average recorded raw values, can be derived exploiting
standard differentiation rules, yielding to:

JX1 =

1
2

0 −1
2

0
0 −1

2
0 1

2
1
4

1
4

1
4

1
4

 (2.29)

JΦ−1 = J−1
Φ =

[
cos (φ) −Asin (φ)
sin (φ) Acos (φ)

]−1

=

[
cos (φ) sin (φ)
− 1

A
sin (φ) 1

A
cos (φ)

]
(2.30)

JX2 =

 cos (φ) sin (φ) 0
− 1

A
sin (φ) 1

A
cos (φ) 0

0 0 1

 (2.31)

Jf = JX2 · JX1 =
1

2

 cos (φ) −sin (φ) −cos (φ) sin (φ)
− 1

A
sin (φ) − 1

A
cos (φ) 1

A
sin (φ) 1

A
cos (φ)

1
2

1
2

1
2

1
2

 (2.32)

Assuming the simple case where the measurements m0,mπ/2,mπ,m3π/2 are indepen-
dent and identical distributed with some error σ. Under this assumption the input covari-
ance matrix is given by Σm = diag(σ2, σ2, σ2, σ2) while the output one results Σf =

diag(σ
2

2
, σ2

2A2 ,
σ
4
). The correlation function parameters turns out to be independent with

errors respectively of:

σA =
σ√
2

σφ =
σ√
2A

σI =
σ

2
(2.33)

Another common reasonable assumption is considering each raw acquired sample dis-
tributed according to a Poisson distribution. Therefore, since for a poisson distribution
the variance is equal to the average value, the covariance input matrix can be expressed as
Σm = diag(σ2

m0
, σ2

mπ/2
, σ2

mπ
, σ2

m2π/2
) = diag(m0,mπ/2,mπ,m2π/2). This assumption

leads to a well-know formula for the error of the reconstructed phase value:

σφ =

√
I√
2A

(2.34)

14



Projector

ToF sensor
Target

Figure 2.6: Generation of the MPI effect. The multi-path interference effect is caused by
multiple propagation paths inside the scene which interference at the camera sensor.

The relation above holds on the average values and provides an estimation of the character-
istic Signal-to-Noise Ratio (SNR) for the recorded signal, where the amplitude can be inter-
preted as the relevant signal while the square root of the intensity as the noise. Higher is the
amplitude smaller is the error, and viceversa, higher is the intensitymore noisy is the acquired
correlation function. Finally, the error on the estimated depth is directly proportional to the
error on the phase and depends strictly on the modulation frequency used. Higher modula-
tion frequencies turn out to be more noise resilient:

σd =
c σφ
4πfm

=
c

4πfm

√
I√
2A

(2.35)

2.5 Multi-Path Interference Effect
One of the main sources of error in ToF technology is the Multi-Path Interference (MPI)
phenomenon. The basic principle of AMCW cameras relies on the hypothesis that each
pixel receives a single optical ray emitted by the projector which bounced only once in the
scene. This assumption, unfortunately, is violated inmost real-world scenarios and eachpixel
receives a superposition of multiple optical rays coming from different points of the scene.
This phenomenon introduces a non-systematic error in the depth estimation, typically very
difficult to be corrected since it is highly scene-dependent and thus unpredictable.

The MPI effect can occur either intra-camera, due to the light reflection and scattering
with the imaging lens and aperture, or extra-camera. Extra-cameramultiple returns are caused
bymultiple propagation paths between the light source and the sensor’s pixels. The primary
return, calleddirect component, is the one that covers the smaller distance inside the scene and
thus associated with the true depth value. All the other interfering rays, associated to higher
order reflections, fall under the name of global component. Typically the direct component
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Figure 2.7: Specular and diffuse reflections. The figure shows the difference between spec-
ular (left) and diffuse (right) reflections. Specular surfaces reflect the light along a single direc-
tion, while lambertian surfaces diffuse the incident energy equally in all directions. The plots
below report the characteristic shape of the backscattering vector in the two cases, specular
reflections appear very concentrated in time while diffuse reflection are more spread.

results also the brightest one, though it need not be. Figure 2.6 reports an example of the
generation process of the MPI effect.

There are two main types of interfering optical rays, those generated by specular reflec-
tions and those generated by diffuse reflections. Specular returns are typically caused by the
reflection of the light with a specular surface, where all the incident energy is reflected in a sin-
gular direction according to the law of reflection. Conversely, diffuse returns are associated
to the scattering of the light with a lambertian surface. Lambertian surfaces scatter incident
illumination equally in all directions. Ideal lambertian surfaces are not physically plausible.
Although, many real-world matte surfaces can be well approximated by a combination of
both specular and diffuse reflections. In the following, we will use the name “diffuse reflec-
tion” to indicate this situation. The two different types of reflections generate a different
MPI effect, as illustrated in figure 2.7. Specular reflections appear very concentrated in the
time domain, while diffuse reflections present a first thin component followed by a more
spread tail. This difference translates in a different shape of the backscattering signal.

2.5.1 Mathematical Description

The MPI effect leads to a coherent superposition of multiple interfering light signals at the
camera sensor. Since, in general, multiple returns have covered different distances and have
bounced on different surfaces inside the scene, they add up with different amplitudes and
phases and thus the resulting correlation measure does not represent the real depth value.

For instance, the correlation measure generated by two specular reflections at time t1 and
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Figure 2.8: Phasor representation of the correlation function in a MPI case. The recorded
correlation function in case of two specular reflections is given by the superposition of two
interfering returns and therefore it does not reflect the real depth value.
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Figure 2.9: Backscattering vector in the MPI case. Considering two specular reflections
at time t1 and t2 > t1, the backscattering vector is formed by two non-zero peaks, i.e.
xj1 , xj2 > 0 for ji = ⌊(ti − tmin)/tres⌋, and xn = 0 for n ̸= j1, j2.

t2 > t1 can be expressed in phasor notation as shown in figure 2.8:

v = X1 e
j2πfmt1 +X2 e

j2πfmt2 = X ejφ ∈ C (2.36)

Note that the measurement model derived in section 2.2 holds also in aMPI scenario, the
difference is given by the shape of the backscattering vector. In general, the backscattering
may have an arbitrary complicated envelope but it always enforces a relationship between
the scene impulse response and the raw data acquired by the ToF camera. The typical shape
of the backscattering signal in case of two specular reflections is reported in figure 2.9.
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2.6 Multi-Frequency Acquisition
A single correlationmeasure in aMPI scenario does not allow to separate of multiple incom-
ing interfering rays. Since the behaviour of each reflected optical ray depends on themodula-
tion frequency used, one common approach to deal with theMPI phenomenon is to acquire
raw data atM ≥ 1modulation frequencies. The additional information provided by mul-
tiple correlation measures can be exploited in order to mitigate the effect of interfering rays,
trying to distinguish between direct and global components. Multi-frequency ToF data are
acquired subsequently, illuminating the scene withM amplitude modulated signals at the
frequencies f0, f1, ..., fM−1 and capturing theM corresponding correlation functions. The
overall acquisition time becomesM K Tint. Another advantage of a multi-frequency acqui-
sition is that different frequencies have different unambiguous ranges that can be combined
in order to extend the overall unambiguous range, without reducing the minimum depth
resolution associated always to the higher frequency. This operation can be performed effi-
ciently exploiting the chinese remainder theorem [8].

An intuitive explanation of the fact that capturing correlationmeasures atmultiplemodu-
lation frequencies provides additional information about theMPIphenomenon comes from
the following observation, schematically illustrated in figure 2.10. Let v(fm) and v(2fm) be
the twophasors acquired at the basemodulation frequency fm and at the doubled frequency
2fm. In a multi-path free case, the two phasors are expected to have equal amplitudes and
double phases, i.e. |v(2fm)| = |v(fm)| and arg(v(2fm)) = 2 arg(v(fm)). However, this
is not true in case of MPI. For instance, if the MPI is produced by two specular reflections
v = v1+v2, the previous observation holds for each single return, i.e. |vi(2fm)| = |vi(fm)|
and arg(vi(2fm)) = 2 arg(vi(fm)) for i = 1, 2, but not for their superposition. Due to
the interfering effect, the camera records two phasors such that |v(2fm)| ̸= |v(fm)| and
arg(v(2fm)) ̸= 2 arg(v(fm)). Therefore, looking at the phasors acquired at different
modulation frequencies we can get some clues about the underlyingmulti-path interference
effect.

The measurement model (2.24) can be easily generalized to the multi-frequency acquisi-
tion scenario. In this case the camera will acquire for every pixel a complex vectorv ∈ CM×1

representing theM recorded phasors. The relationship between the acquired phasors and
the scene impulse response is always in the form:

v =

 v0
...

vM−1

 =

 ej2πf0t0 · · · ej2πf0tN−1

... . . . ...
ej2πfM−1t0 · · · ej2πfM−1tN−1


 x0

...
xN−1

 = Φx (2.37)

where now the measurement matrix Φ ∈ CM×N accounts for all the M modulation fre-
quencies. Note that the previous relationship holds because changing the modulation fre-
quency, the phase of each interfering ray changes but the amplitude remains constant. This
means that the backscattering vector is uniquely defined independently from the modula-

18



v(fm)

v(2fm)

MPI-free case

v(fm)

v(2fm)

MPI case

Figure 2.10: Frequency diversity of theMPI effect. On the left it is reported themulti-path
free case for which the amplitude of the acquired phasors is constant and the phase is linear
with themodulation frequency. In the two specular reflections case on the right the previous
observation holds for each single interfering component but not for their superposition.

tion frequencies used during the acquisition process, in fact it indicates the amount of light
returned.
A further modification can be introduced to turn the complex measurement model into a
real one. In particular, stacking the real part of the previous system of equations on top of
its imaginary part, it results:

v =



Re[v0]
...

Re[vM−1]
Im[v0]

...
Im[vM−1]


=



cos (j2πf0t0) · · · cos (j2πf0tN−1)
... . . . ...

cos (j2πfM−1t0) · · · cos (j2πfM−1tN−1)
sin (j2πf0t0) · · · sin (j2πf0tN−1)

... . . . ...
sin (j2πfM−1t0) · · · sin (j2πfM−1tN−1)


 x0

...
xN−1

 = Φx

(2.38)
With an abuse of notation, we will use the same terminology for the complex measurement
model (2.37) and the real one (2.38). They express the same relationship in two slightly dif-
ferent mathematical ways.

2.7 Spatial Data Acquisition

One advantage of ToF cameras is the possibility to acquire dense data in one-shot. This
means that the acquisitionprocess discussed in the previous sections happens simultaneously
for each pixel of the camera sensor. LetW ×H be the resolution of the ToF camera, where
W indicates the width andH the height of sensor in number of pixels. Note that typically a
ToF camera has a lower resolution than a standard RGB camera.
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Thederivedmeasurementmodel (2.37) holds for each single pixel, but canbe reformulated
to characterize the whole sensor behaviour. Let V ∈ CW×H×M be a three dimensional
complex tensor such that:

Vuv = vuv =

 vuv0
:

vuvM−1

 {
u = 0, . . . ,W − 1

v = 0, . . . , H − 1
(2.39)

and letX ∈ RW×H×N be the three dimensional real tensor such that:

Xuv = xuv =

 xuv0
:

xuvN−1

 {
u = 0, . . . ,W − 1

v = 0, . . . , H − 1
(2.40)

where vuv and xuv represent respectively the multi-frequency phasors and the backscatter-
ing vector associated to the pixel with coordinates (u, v). The tensorX proportional to the
whole scene impulse response is commonly referred to as transient scene. With the new no-
tation, the measurement model results in:

V = ΦX (2.41)

The only difference is that instead of using the standard matrix multiplication it is neces-
sary to use the so called n-mode product between tensors. In order to simplify the notation,
the convention in our work is that the n-mode product between a matrix and a tensor will
correspond always to a standard matrix multiplication between the matrix itself and the last
dimension of tensor reshaped into a column vector, that is:

Vuvm =

N−1∑
n=0

ΦmnXuvn =

N−1∑
n=0

Xuvn e
j2πfmtn


u = 0, . . . ,W − 1

v = 0, . . . , H − 1

m = 0, ...,M − 1

(2.42)
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If I have seen further than others, it is by standing upon
the shoulders of giants.

Isaac Newton

3
Literature Review

Many authors in the literature have faced theMPI effect proposing different methods to cor-
rect it, but this still remains an open research field [2]. The development of effectivemethods
formulti-path interference compensation is a deeply studied topic, since it would resolve the
main problem of ToF cameras promoting the diffusion of this technology to a wide range
of real-world applications. Most of the methods proposed in the literature can be organized
basically into four main categories. The first category contains methods which combine the
ToF technology to other range imaging technique in order to obtain an improve depth es-
timation. The second one uses a single modulation frequency and an iterative procedure
to adjust the scene geometry and compensate for the MPI effect. The third family contains
those methods which acquire data at multiple modulation frequencies and rely on physical
model to characterize and correct the MPI phenomenon. Finally, in the last category there
are all the methods which employ a neural network architecture in order to learn from data
the best strategy to correct the MPI effect. In the following sections we are going to present
all these categories, highlighting themore relevant representatives and theirmain limitations.

3.1 Combined Approaches

An approach that has been proposed to improve the final depth estimation is the combina-
tion ofToF technologywith other rage imaging techniques. The fusion of data coming from
different sources allows to reduce the depth reconstruction error, limiting the multi-path ef-
fect typical of ToF acquisitions.

Themethods in [21, 22] combine ToF and stereo technologies, exploiting the complemen-
tary characteristics of the two systems. On the other hand, in [23, 24, 25, 26] the authors
propose to use a modified ToF projector able to emit a spatial high frequency pattern in or-
der to separate the global and direct component of the light, and so correct MPI.
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Method MPI type No. mod.
frequencies Real-time Comment

Fuchs et al. [9] 2-Diffuse 1 No Highly time-consuming
Fuchs et al. [10] 2-Diffuse 1 No Highly time-consuming
Jiménez et al. [11] 1-Diffuse 1 No Highly time-consuming

Dorrington et al. [12] 2-Specular 2 No Solve minimization problem
Godbaz [13] 2-Specular 4 Yes
Kirmani et al. [14] 2-Specular 5 Yes Spectral reconstruction
Bhandari et al. [15] 3-Specular 77 n.a. OMP recovery algorithm
Freedman et al. [7] R-Specular 3 Yes Sparse reconstruction
Peters et al. [16] R-Specular M ≥ R Yes Burg entropy minimization

Marco et al. [17] General n.a. Yes MPI as time-varying convolution
Guo et al. [18] Diffuse 3 Yes
Agresti et al. [19] General 3 n.a.
Agresti et al. [20] General 3 n.a. Unsupervised domain adaptation

Table 3.1: Comparison between some state-of-the-art approaches for MPI compensation.

3.2 Iterative Single-Frequency Approaches

The second family contains those methods that acquire data using a single modulation fre-
quency and rely on a radiometric model for the light in order to iteratively adjust the geom-
etry of the scene and correct the MPI effect.

Fuchs et al. in [9] present an algorithm where a two bounces scenario on ideal lamber-
tian surfaces is considered. The algorithm works iteratively performing inverse ray tracing.
At each step it refines the scene geometry removing the multi-path contribution modelled
according to a specific reflection model. The algorithm starts from the acquired corrupted
depth measurements and it is expected to converge to the actual scene geometry. In [10]
they refine this approach by improving the reflection model and taking into account materi-
als with multiple albedo.

Jiménez et al. in [11] propose amethodbased on a similar idea. They develop a radiometric
model assuming perfect lambertian surfaces and that the multi-path effect comes only from
points within a neighbour region of each pixel. Multi-bounces are not considered. Jiménez
et al. characterize the multi-path effect through a cost function and use the single-frequency
ToF measurements to recover the actual scene structure solving an iterative optimization
problem.

Both these approaches provide good correction capabilities, forcing the final scene geom-
etry to be consistent with its own measured MPI. The main limitation is that the iterative
refinement procedure is highly time consuming, refusing the possibility to use thesemethods
in a real-time applications.

Finally, there is a study fromGupta et al. [6]which observes that diffusemulti-path reflec-
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tions tends to cancel out at high frequencies, thus they propose to reconstruct range from few
measurements at high frequency. Unfortunately this approach does not account for specu-
lar reflections and, moreover, it turns out to be unpracticable since it would require a very
high modulation frequency difficult to be generated in the real-world.

3.3 Model-BasedMulti-Frequency Approaches

Conversely, another approach is to use multiple modulation frequencies and exploit the fre-
quency diversity of the MPI phenomenon to correct it. This third category contains all the
methods based on a predefined physical model to describe the multi-path interference and
to separate direct and global components. In order to have amathematical treatablemodel it
is necessary to make some simplifying assumptions about the nature of the interfering rays.
The most common assumption is to approximate the received signal as the sum of a first
direct return and a second global path, with both components produced by specular reflec-
tions.

In [12] Dorrington et al. propose to use two modulation frequencies with ratio 2:1 to
separate direct and global components solving a non-linear minimization problem.

Godbaz in [13] uses two frequencies and a lookup table to resolve multi-path interference
in real-time. In his Ph.D. work he also provides a closed form solution which requires four
modulation frequencies.

Kirmani et al. acquire data at fivemodulation frequencies and adopt a two steps approach
[14]. First they detect if a pixel is affected byMPI, then if it is not they use the standard ToF
formulas, otherwise amplitude and phase of the two specular returns are estimated using
some spectral estimation techniques. In particular, they use the Prony’s method in the noise-
less case and a singular value based method when noise is present.

Bhandari et al. generalize the problem usingM > 4 frequencies to reconstruct R > 2
specular returns exploiting the well-studied compressed sensing theory [15]. Amplitude and
phase of each return are estimated via Orthogonal Matching Purists (OMP) recovery algo-
rithm. Theyproved theproposedmethod reconstructing three specular reflections acquiring
raw data using 77 modulation frequencies.

The SRAmethod [7] proposed by Freedman et al. uses three modulation frequencies to
estimate the backscattering vector assuming only its sparsity. It accounts only for specular
reflections, even if the authors declares that it is able to achieve good results also in a more
general multi-path scenario. The idea behind the SRA method is to reconstruct the shape
the backscattering vector finding the sparsest vector compatible with the acquired measure-
ments. To this end it defines an L0-minimization problem which solves introducing some
approximations. The final solution is computed solving a linear program. The authors fo-
cus also in the computational speed. Using a lookup table they are able to run the method
in real-time at 30 fps.

In [16] Peters et al. suggest to useM modulation frequencies to reconstruct the shape of
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the whole backscattering vector by minimizing the Burg entropy. The method guarantees
an exact reconstruction only in the case ofM specular returns or less, while if this condition
is not met it reflects uncertainty in the reconstruction by smoothing the peaks.

Some of thesemethods have been successfully applied to real-world applications but their
effectiveness remains constrained to the simplifying assumptions done for the MPI model
derivation. The main limitation is that the predefined physical model represents only an
approximation which does not reflect the actual multi-path phenomenon. These methods
exhibits good performance in the correction of few specular reflections, but they are not able
to deal with diffuse reflections therefore they inevitable fail on more complex scenarios.

3.4 Data-Driven Approaches

The last category overcomes the problemof having a predefined physicalmodel for themulti-
path interference. In this category there are all the methods based on some deep learning
algorithm to learn from data the best strategy to correct the MPI effect. In this way, the
learned model should be able to capture complex multi-path scenarios, accounting either
for specular and diffuse reflections. The main precondition to run these algorithms is the
availability of a large number of training samples from which the network can learn.

Marco et al. in [17] assume that most of the information about multi-path interference
from a scene is available in image space and can be modelled as a spatially-varying convo-
lution. Therefore MPI compensation could be achieved by a set of convolutions and de-
convolutions operations in the depth space. They use a convolutional autoencoder trained
through a particular two-stages approach which outputs the MPI corrected version of the
input depth map.

Guo et al. introduce a learning-based approach to tackle dynamic scenes, multi-path in-
terference, and shot noise simultaneously [18]. They use a convolutional architecture which
works on raw multi-frequency ToF measurements and produces improved measurements
that are compatible with standard equations for phase-unwrapping and conversion to depth.
Togetherwith their research, Guo et al. release also the FLAT (Flexible, Large, Augmentable,
ToF dataset) dataset, a synthetic dataset containing static and dynamic transient scenes for
the training and the evaluation of deep-leaning approaches in the ToF context.

In [19] Agresti et al. design a coarse to fine convolutional neural network that works on
amplitude and depth maps acquired at three modulation frequencies to correct the MPI
effect.

The key issue of using deep learning techniques in this range imaging field is the limited
availability of real-world training data with ground truth. Different from classic computer
vision problems there are not large datasets publicly available due to the fact that the acquisi-
tion of depth and raw ToF measurements with ground truth in a real scenario is a very com-
plex and time consuming task. Many deep learning approaches in the literature are trained
on synthetic data, where light transport events are simulated via software using some ray trac-
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ing techniques [27]. Unfortunately, it has been proven [20] that very well performing algo-
rithms trained on the synthetic case perform poorly in the real case due to the inconsistency
between real and simulated data. To solve this problem, Agresti et al. propose an interesting
unsupervised domain adaptation technique to train the network on synthetic data and then
adapt it to the real case in a unsupervised manner [20].
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The thing that’s going to make artificial intelligence so pow-
erful is its ability to learn, and the way AI learns is to look
at human culture.

Dan Brown

4
Proposed Deep Learning Approach

The backscattering vector contains important information about scene geometry, therefore
its knowledgemay be very useful in a wide range of applications. Capturing the propagation
behaviour of the light at extreme temporal resolution can be exploited to see around corners
[28], detect objects in highly-scattering media [29], infer material properties from a distance
[30, 31], as well as perform optimal MPI correction. The direct acquisition of transient in-
formation requires highly expensive measurements tools based on femto-photography or
interferometry-based systems [32]. Some attempts have beenmade in the literature to recon-
struct that information indirectly from a sparse set of measurements, like the one provided
by AMCWToF technology. As we have seen, the acquisition process of a ToF camera can be
described through a linear measurement model 2.37 which enforces a relationship between
the backscattering vector x ∈ RN and the raw data v ∈ CM acquired by the camera. The
vector η ∈ CM accounts for all the different sources of errors that affect a real ToF acquisi-
tion. The overall measurement model results in:

v = Φx+ η (4.1)

Themain objective of this work is to develop a method able to invert the previous system
in order to estimate the unknown backscattering vector starting from noisymulti-frequency
raw data. This is an ambitious task, because the underlying system is highly underdeter-
mined, i.e. M << N , and we aim to recover the whole signal from far fewer samples than
required by the Nyquist–Shannon sampling theorem. This problem can be reformulated
in the compressed sensing framework [33], but in a sense it is even more challenging due
to the small number of measures available to reconstruct the final signal. To have a rough
idea about the Degrees of Freedom (DoFs) in the solution, off-the-shelf ToF cameras typical
acquire data usingM = 3 modulation frequencies and in order to get a reasonable depth
resolution the backscattering vector should be discretized intoN = 500÷ 1000 steps. The
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Figure 4.1: Proposed deep learning approach. The generative model generates the output
backscattering vector starting from its compressed representation,while thepredictivemodel
predicts the most likely latent variable that satisfies the underlying measurement model.

estimation of the backscattering vector is an ill-posed problem that does not admit a clear
unique solution, therefore to be solved it requires the introduction of some additional strong
constraints. The SRAmethod proposed by Freedman et al. [7] estimates the backscattering
vector relying only on its sparsity, but this is not sufficient and leads to limited performance
in real-world applications. Due to the propagation and reflection properties of the light in a
real environment, typically the backscattering vector presents some very characteristic struc-
tures we can take advantage of. The idea is to use a deep neural network architecture in order
to learn the underlying reflection structure and use it as strong prior to optimize the estima-
tion of the backscattering vector. Deep networks turn out to be the perfect mathematical
tools to accomplish the proposed task, since they are powerful machine learningmodels that
have been proved to be able to capture complex structures on data and outperform other
state-of-art algorithms on classification, regression as well as generation tasks [34].

More in details, the proposed deep learning approach relies on twomain ingredients. The
first one is a generative model Gξ that starting from a compressed representation ẑ generates
in output the corresponding backscattering vector x̂ = Gξ(ẑ), while the second one is a
predictive model Pθ that takes in input the raw ToF data v and predicts the most likely la-
tent variable ẑ = Pθ(v) that satisfies the underlying measurement model (4.1). In this way
we can decouple the problem of generating output vectors with a particular structure by the
problem of predicting the output vector given the input ToFmeasures. This pipeline allows
to gain a finer control over the part of the network that captures the characteristic structures
of backscattering vectors, and helps to mitigate the negative effect of the high number of
DoFs in the solution. As already pointed out, there is a significant difference between the
input and output dimensions. Using a single model that starts from theM input variables
and outputs anN -dimensional backscattering vector, withM << N , leads to instabilities
during the optimization phase and to a network converging to a bad local minima. In con-
trast to directly optimising the signalx, the proposed pipeline performs the optimisation in
the domain of the latent representation z, lying in a lower dimensional space by definition.
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4.1 GenerativeModel

Let D∗
x ⊆ RN be the signal space where all possible backscattering vectors lie, it depends

on the propagation and reflection properties of the light in a real environment and must
account for both specular anddiffuse reflections. Note that it represents ourprior knowledge
about the shape and the typical structure of each backscattering vector. The generative model
Gξ maps a latent variable z ∈ RL into an approximation of the backscattering domain
Dx ≈ D∗

x:

Gξ : RL → Dx ⊆ RN

z → x = Gξ(z) (4.2)

It must implement a non-linear mapping, parametrized by weights ξ. Imposing the con-
straint L << N , the generative model, through its architecture and its weights, implicit
ensures that the output backscattering vector reflects a particular structure. The goal is to de-
fine a model whose rangeDx provides a good approximation of the actual domainD∗

x. The
generative model can be implemented through an fixed analytical model, or can be obtained
using some more advanced deep learning generative strategies, such as Variational Autoen-
coders (VAEs) or Generative Adversarial Networks (GANs).

AVAE is formed by an encoder followed by a decoder, trained tominimize the reconstruc-
tion error between input and output. In this way, the encoder learns to build a compressed
representation of the input which preservesmost of the original information and that can be
used alone by the decoder to reconstruct the original data. In addition, VAEs are specifically
designed to create continuous latent spaces, in order to allow the possibility to sample from
the latent space to generate completely new output data never seen during the training but
that reflect the original data distribution. VAEs have been successfully applied to different
generation tasks. In our context, a VAE can be trained to mimic the typical structure of real
backscattering vectors. The decoder of a trained VAE corresponds exactly to our generative
model, which given a continuous latent variable produces an output backscattering vector
reflecting the probability distribution seen during the training.

AGAN is another powerful generative neural network trained simulating a zero-sumnon-
cooperative game between two agents, a generator and a discriminator. The generator takes
in input some random noise sampled from a latent space and tries to generate new candi-
dates distributed according to a real data distribution, on the other hand, the objective of the
discriminator is to distinguish between samples produced by the generator from real sam-
ples. The generator is trained to fool the discriminator by producing novel candidates that
the discriminator thinks are not synthesized. As the training goes on, the generator learns to
produce better candidates, while the discriminator becomesmore skilled at flagging synthetic
data. At the Nash equilibrium, the output of the discriminator should be a random choice,
since it should not be able to distinguish between real or synthetic data. In our context, the
discussed generative model corresponds exactly to the generator of a trained GAN.

29



It is possible to think also to other approaches to build the proposed generativemodel, but
in any case itmust be the first part of our pipeline to be designed and to be fixed since the sub-
sequent optimization of the predictive model will rely on it. One fundamental requirement
for the generative model is that it must be differentiable in order to have the possibility to
apply the backpropagation algorithm for the optimization of the predictive model. In other
words, itmust be possible to compute the partial derivatives of the output backscattering vec-
torwith respect to the input latent variables, i.e. ∃∂xn

∂zi
, ∀n = 0, ..., N−1, i = 0, ..., L−1.

4.2 PredictiveModel

The second ingredient is the predictive model Pθ that, given in input the raw ToF data v ∈
CM , is going to predict the latent variable ẑ ∈ RL which is the most likely solution of the
underdetermined measurement model (4.1), under some noise tolerance:

Pθ : CM → RL

v → ẑ = Pθ(v) (4.3)
subject to soft-constraint:
||v−ΦGξ(ẑ)|| = 0

Ourproposal is todefine aneural network architecture for thepredictivemodel, parametrized
by weights θ. The predictive model has to be optimized in a supervised manner, minimiz-
ing a suitable loss function in order to learn the relationship between inputs and outputs. In
contrast to directly optimize the backscattering vectorx, the optimization is carried on in the
space of latent representation z. At each optimization step, the output latent variable ẑ is
mapped into the corresponding backscattering vector x̂ = Gξ(ẑ), keeping fix the generative
modelGξ.

The design of a “good” loss function, which satisfies some desirable properties, is a critical
point thatwe are going to discuss later. For now, since the predictivemodel has to accomplish
two goals simultaneously, let’s assume that also its loss function can be divided into twomain
terms. The first term, calledmeasurement error ℓm, will quantify how consistent is the final
prediction with the recorded correlation measures. In others word it forces the predicted
backscattering vector to be a solution of the underdetermined system (4.1) under some noise
tolerance.

ℓm = ℓm(v,Φ x̂) (4.4)

The second term, called reconstruction error ℓr, will measure the goodness of the network
to fit the ground truth, and therefore it tries to select between all possible solutions the most
likely one. In this way the network will learn the typical probability distribution of the solu-
tion from the data ground truth.

ℓr = ℓr(x, x̂) (4.5)
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The overall loss function, computed for each single training sample (v,x), is given by:

ℓ(v,x) = ℓm(v,Φ x̂) + λ ℓr(x, x̂) (4.6)

where the parameter λ ∈ R+ controls the trade-off between the two contributions.
Theoretically speaking, let pdata(v,x)be the data-labels distribution for our task, and let’s

assumewehave available aproper training setS = {(vi,xi)}M−1
i=0 sampled frompdata(v,x).

The optimizationof the proposedpredictivemodelwill be carried on according to the Empir-
icalRiskMinimization (ERM) rule,which aims tominimize the true errorL = E(v,x)∼pdata

[
ℓ(v,x)

]
over thewhole data distributionbyminimizing the empirical error over the available training
set:

θ∗ = arg min
θ

LS =
1

M

∑
(vi,xi)∈S

ℓ(vi,xi) (4.7)

For a sufficient large training set, the theoretical PAC learnability principle ensures an up-
per bound for the gap between empirical and true errors. In practice, the ERM rule can be
implemented employing some gradient descent strategies and using the backpropagation al-
gorithm to compute all the partial derivatives of the output with respect to the predictive
model’s weights, i.e. ∂xn

∂θi
, ∀ θi ∈ θ. Note that since the generative model is fixed during this

optimization we have ∂xn

∂ξi
= 0, ∀ ξi ∈ ξ. Moreover, we recall that, since the first step of

the backpropagation algorithm is the computation of the partial derivatives of the output
backscattering vector with respect to its latent representation, the generative model must be
differentiable.

4.3 Pixel-level and Local level Prediction
In the previous sectionwe proposed a predictive model that, for each pixel, takes in input the
multi-frequency phasors vector v and predicts the most likely latent variable ẑ that satisfies
underlying measurement model (4.1). In section 2.7, we have also said that, since ToF cam-
eras are able to acquire in one-shot the raw correlation measures for each pixel in the camera
sensor, the linear relation between the transient sceneX ∈ RW×H×N and the dense tensor
of raw data V ∈ CW×H×M recorded by the camera can be equivalently formulated as:

V = ΦX +H (4.8)

Note that this relation is equivalent to (4.1) but looking at the acquisition process at the
whole sensor level, where the tensorH ∈ CW×H×M accounts always for the noise.

There are two main possibilities to invert this system and reconstruct the unknown tran-
sient scene. The first option is to work at single pixel-level as detailed before, this means that
the predictive model, in order to produce the output latent variable for pixel (u, v), looks
only at the corresponding input pixel:

Zuv = Pθ

(
Vuv

)
(4.9)
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Figure 4.2: Pixel-level and local level prediction. On the left it is reported the predictive
model working at single pixel-level, while on the right the predictive model working at local
level. Working at local level allows to exploit the spatial correlation on the raw ToF data to
improve the final prediction. The generative model works always at single pixel-level.

This is the approach followed bymost of the methods proposed in the literature. Themain
limitation is that it works independently for each pixel even if from geometrical considera-
tions it is clear that there should be some spatial correlation between adjacent pixels in the
camera sensor.

The secondoption isworking at local level. In order to produce the output for pixel (u, v),
the predictivemodel can look at a small neighbourhood of size (2P +1)× (2P +1) around
the corresponding input pixel:

Zuv = Pθ

({
Vu′v′

∣∣u′ = u+ k; v′ = v + j; k, j = −P, ...,+P
})

(4.10)

This second strategy can improve the accuracy of the final prediction taking advantage of
the spatial correlation on the input data. In principle, multiple interfering returns are gener-
ated by the reflections of the emitted light on the entire scene and thus can reach the camera
sensor in any point, but due to the exponential decay of scattering events and the quadratic
attenuation with distance, they are mainly relevant on a local neighbourhood of each pixel.
This observation suggests that it is very likely that pixels inside a local neighbourhood share
similar MPI effects and thus show correlation. Increasing the receptive field P allows to
capture higher order reflections and exploit better the spatial correlation on data, but it also
increases the computational cost for the predictivemodel. Also in this case, there is a trade-off
between computational cost and performance. Moreover, the spatial correlation can be also
exploited to learn typical patterns in the input data associated to recurrent scene geometries
in the real-world, such as edges, corners, flat surfaces, spheres and so on.

In figure 4.2 it is illustrated the working principle behind the single pixel-level and local
level prediction. Note that in the proposedmethod the generativemodel is designed towork
always at pixel-level since there is a one-to-one relationship between the output backscatter-
ing vector and its compressed representation for each pixel. All the advantages coming from
the spatial correlation are exploited by the predictive model.
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4.4 Temporal Correlation
One advantage of ToF technology with respect to other range imaging techniques is the pos-
sibility to capture data in real-time, therefore the proposed predictive model can be further
extended to account also for the temporal correlation. The predictivemodel can be designed
in such away that the latent variable is predicted looking at the evolution of the acquired raw
ToF data through time, reflecting the temporal evolution of the scene. In particular, since
the systemmust be causal, the current prediction at time t > 0will be a function of the set of
recorded tensors {Vτ} at time τ = t, t− 1, . . . , t−T using some recurrent neural network
techniques.

Temporal correlation between subsequent frames is naturally present, since typically a
camera acquires static scenes or partial dynamic scenes where a large portion of image does
not change. Differently, if it is the camera that moves we get a completely dynamic scene,
but still natural camera movements ensure temporal correlation between a small set of sub-
sequent frames, i.e. small T . Random camera movements destroy completely the temporal
correlation, but very likely we are not interested to reconstruct the transient scene in these
cases.
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It is a capital mistake to theorize before one has data.
Sherlock Holmes (Arthur Conan Doyle)

5
ToF Datasets

The incoming chapter discusses different ToF datasets which have been employed for train-
ing and testing the proposed approach. Appendix A reports the procedures used for the
generation and the processing of ToF data. Note that all algorithms must be considered
as proofs of concept, and that the actual implementation must take into account also the
computational efficiency and other small details that have been omitted in the appendix for
brevity.

For the supervised optimization of the proposed approach we need a training set contain-
ing raw ToF data together with the corresponding ground truth transient scenes. Moreover,
since in this work the estimated backscattering vector is used mainly for MPI compensa-
tion and depth correction, the training set must contain also the associated depth ground
truth, i.e. T = {(Vi,Xi,Di)}M−1

i=0 . Note the information about the depthmap is implicitly
present in the transient scene, but it is provided separately for the sake of convenience. From
geometrical considerations it is clear that the direct component is always associated to the
shortest path, therefore the real depth corresponds to the index of the first non-zero element
in the backscattering vector. The depth can be easily extracted from the transient scene using
the algorithm A.1, where factor c > 0 has been introduced to account for numerical issues
and noise. We use c = 0.01.

The acquisition of a real dataset with transient ground truth is a very complex and ex-
pensive task and since there are not publicly available datasets suitable for our purposes, we
were forced to run the optimization of the proposed approach in a simulated environment.
Clearly, simulated data differ from the real one and introduce approximations in the final
prediction. One can think to many different generation procedures, from the simplest to
the more advanced ones which model a large number of physical effects. As usual, there is
a trade-off between complexity and accuracy. In chapter 6 we will propose three methods
for backscattering vector estimation, namely BVE_1srp , BVE_2srp and BVE_2srl . Each
method relies on different assumptions and therefore it requires a specialized training set.
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Figure 5.1: Qualitative analysis of simulated datasetT train
1srp . The plot on the left reports the

depth distribution, while on the right some examples of single-peak backscattering vector are
shown.

The next three sections describe the synthetic datasets used for the training of our networks,
as well as their generation procedures.

Conversely, the final test is instead carried on real ToF data for which we do not have the
transient scenes but only the ground truth depth maps, i.e. S = {(Vi,Di)}M−1

i=0 . The
performance are evaluated on real-world scenes looking at the MPI correction capabilities
based on the estimated backscattering vector. In the last section three real-world datasets
are introduced. These three datasets are the ones we will use for the final test of the MPI
correction capabilities of the proposed methods.

5.1 Simulated Training Dataset T1srp

Since the first developed method BVE_1srp does not account for the MPI effect, we need
to create a dataset T1srp = {(Vi,Xi,Di)}M−1

i=0 where each backscattering vector is formed by
a single peak. Moreover, BVE_1srp works independently for each pixel so there is no need
to have spatial correlation on the simulated data. The algorithm A.3 generates a completely
randomdataset, where each pixel has a depth value sampled uniformly in a given depth range
and a backscattering vector formed by a single non-zero element, i.e. single specular reflec-
tion. We chose to generate a uniform depth distribution because this corresponds to not
assume any prior knowledge about the scene geometry, therefore the network is forced to
learn the real relationship between input and output instead of some characteristic geomet-
ric structures contained in the training data. The uniform distribution is also the one which
provides higher entropy, meaning that it maximizes the amount of information supplied by
each training sample. The acquired raw data are then simulated according to the measure-
mentmodel (2.41). Note that the resulting dataset does not contain any source of noise since
it will be added randomly at each optimization step as form of regularization.

Using the discussed procedure we generate a training set T train
1srp for the optimization of

our network, and a validation setT valid
1srp for hyperparameters tuning. Both two datasets have
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Figure 5.2: Qualitative analysis of simulated datasetT train
2srp . The plot on the left reports the

depth distribution, while on the right some examples of two-peaks backscattering vector are
shown.

spatial resolutionW = H = 1 and backscattering vectors discretized intoN = 1000 steps
and with a maximum amplitude of one. The training set is formed byMtrain = 211 200
samples, while the validation test byMtrain = 2064 samples. Figure 5.1 reports a qualitative
analysis of the simulated data.

T train
1srp = SimulateT1srp(211 200, 1, 1, 1000, 7.49mm, 1) (5.1)

T valid
1srp = SimulateT1srp(2064, 1, 1, 1000, 7.49mm, 1) (5.2)

5.2 Simulated Training Dataset T2srp

The second method BVE_2srp considers the simple two specular reflection case, therefore
weneed to simulate a datasetT2srp = {(Vi,Xi,Di)}M−1

i=0 with backscattering vectors formed
by two non-zero elements. Also in this case spatial correlation on data is not required. Sim-
ilarly to before, algorithm A.4 produces a completely random dataset. The second peak is
generated as a function of the first one: the position is obtained adding a random offset to
the position of the first peak, while the amplitudemultiplying the amplitude of the first peak
by a random scale factor. This procedure aims to reproduce the strong correlation naturally
present between the two main peaks in a real backscattering vector. Both the offset and the
scale factor are randomly and uniformly distributed. The generation process accounts also
for the possibility to have MPI-free pixels, in particular the global component is added only
with a certain probability PMPI .

As before, we generate a training setT train
2srp and a validation setT valid

1srp with the same gener-
ation parameters. For the second peak we use a maximum offset ofO = 100 indices, corre-
sponding to amaximumdepthoffset of∆d = 74.9cm, amaximumscale factorS = 0.4 and
a multi-path probability PMPI ∼ 0.5. Also in this case, the choice PMPI ∼ 0.5 has been
made to avoid that the network learns some priors about the distribution of MPI-affected
pixels which may vary a lot depending on the considered scenes and forces it to detect the
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Figure 5.3: Qualitative analysis of simulated datasetT train
2srl . The twoplots on the left report

the depth distribution before and after the equalization procedure, while on the right some
examples of two-peaks backscattering vectors are shown.

presence of multiple returns only looking at the input data. Figure 5.2 reports a qualitative
analysis of the simulated data.

T train
2srp = SimulateT2srp(211 200, 1, 1, 1000, 100, 0.4, 7.49mm, 1, 0.5) (5.3)

T valid
2srp = SimulateT2srp(2064, 1, 1, 1000, 100, 0.4, 7.49mm, 1, 0.5) (5.4)

5.3 Simulated Training Dataset T3srl

The last developed method BVE_2srl relies on the spatial correlation to improve the final
prediction so the training dataset must account for it. Now we have to simulate a dataset of
patches, which exhibits spatial correlation inside each patch and formed by backscattering
vectors with two peaks. A completely random generation process is no more suitable. In
order to generate spatial correlated data the idea is to start from a proper depth map, com-
puting the direct component position in a deterministic manner and finally using a random
procedure similar to the one used before for the global component generation. The raw data
are always simulated through themeasurementmodel (2.41). AlgorithmA.6 implements ex-
actly this idea. As source of spatial correlation we use random depth map patches extracted
from the FLAT dataset released by Guo et al. [18]. The problem is that the FLAT dataset
provides a depth distribution different from the uniform one that we want to use for the
training of our network. This can be solved applying a depth equalization procedure, de-
tailed in algorithmA.5. Depth equalization is designed to add a constant offset to each patch
in order to obtain a final depth distribution as uniform as possible. Note that the offset is
constant inside each patch but differs between different patches. This can be seen as a form
of data augmentation, since adding a constant positive offset to a depth map is equivalent
to move the camera far away from the scene. In principle, since ToF cameras acquire radial
depth maps, adding a constant offset slightly modifies the scene geometry, but this is not a
big problem since we are not interested to the scene geometry but only to the spatial correla-
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Dataset M W ×H N O S dres xmax PMPI
No. spec.
reflections

Spatial
corr.

T train
1srp 211200 1× 1 1000 7.49mm 1 1 No

T valid
1srp 2064 1× 1 1000 7.49mm 1 1 No

T train
2srp 211200 1× 1 1000 100 0.4 7.49mm 1 0.5 2 No

T valid
2srp 2064 1× 1 1000 100 0.4 7.49mm 1 0.5 2 No

T train
2srl 211200 3× 3 1000 100 0.4 7.49mm 1 0.5 2 Yes

T valid
2srl 2064 3× 3 1000 100 0.4 7.49mm 1 0.5 2 Yes

Table 5.1: Summary of the generation parameters for the simulated training and validation
datasets.

tion on data which is preserved. A more sophisticated depth equalization algorithm can be
developed in order to add the constant offset in the z-depth space and then transform back
the z-depth into a radial depth value.

In order to simulate the required training and validation tests, we extract from FLAT
two sets of depth map patches {Dtrain

i }Mtrain−1
i=0 and {Dvalid

i }Mvalid−1
i=0 with spatial reso-

lution W = H = 3, then we run the depth equalization procedure and finally we use
them as source of spatial correlation. The spatial resolution 3 × 3 has been chosen because
BVE_2srl , which uses valid convolutions, has exactly this receptive field and therefore the
number of output valid pixels is the same of before. Figure 5.3 reports a qualitative analysis
of the simulated datasets, showing the depth distribution before and after the equalization
procedure and some two-peaks backscattering vectors chosen at random from T train

2srl .

{Dtrain,eq
i }Mtrain−1

i=0 = DepthEqualization({Dtrain
i }Mtrain−1

i=0 , 0, 7.49m) (5.5)

{Dvalid,eq
i }Mvalid−1

i=0 = DepthEqualization(Dvalid
i }Mvalid−1

i=0 , 0, 7.49m) (5.6)

T train
2srl = SimulateT2srl({Dtrain,eq

i }Mtrain−1
i=0 , 1000, 100, 0.4, 7.49mm, 1, 0.5) (5.7)

T valid
2srl = SimulateT2srl({Dvalid,eq

i }Mvalid−1
i=0 , 1000, 100, 0.4, 7.49mm, 1, 0.5) (5.8)

5.4 Real-World Testing Datasets S3, S4 and S5

In order to test the performance achieved by our methods in a real-world scenario we use
three real ToF datasets provided together with the research papers of Agresti et al. . In partic-
ular datasetS4 comes from [19] while datasetsS3 andS5 (box dataset) have been acquired in
[20]. In [20] the authors report a comparison between different state-of-the-art approaches
for MPI compensation on these three real datasets. We will take their work as baseline and
we will perform a consistent comparison, studying how our method behaves with respect
to the others techniques. The three datasets have been all acquired in a laboratory without
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external illumination using the SoftKinetic ToF camera DS541 at multiple modulation fre-
quencies. For each scene they provide unwrapped phase, amplitude and intensity, as well
as depth ground truth. Before the acquisitions, the camera has been calibrated in order to
remove the wiggling error. Depth ground truth acquisition is a very complex and time con-
suming task, therefore its availabilitymakes these datasets particularly useful in the study and
development of ToF data denoisingmethods. The depth ground truth has been acquired us-
ing an active stereo system. First, a light projector illuminates the scene with a series of phase
shifted patterns while the stereo system is recording. Then, there is the depth map compu-
tation and the triangulation process that leads to an accurate depth estimation. Finally, the
ground truth depth map is projected on the ToF camera field of view. In table 5.2 the main
properties of the three datasets are summarized, while figure 5.4 shows qualitatively them.
All the real scenes are in the depth range between 58 to 203 cmwith the depth distribution
in figure 5.4.d.

Dataset Type Depth GT Trans. GT No. Scenes Spatial Res. Modulation frequencies

S3 Real yes no 8 320× 239 10, 20, 30, 40, 50 and 60MHz
S4 Real yes no 8 320× 239 20, 50 and 60MHz
S5 (box) Real yes no 8 320× 239 10, 20, 30, 40, 50 and 60MHz

Table 5.2: Properties of the real-world testing datasets S3, S4 and S5.
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(a) Amplitude and depth maps of S3 dataset

(b) Amplitude and depth maps of S4 dataset

(c) Amplitude and depth maps of S5 dataset

(d) Depth distribution of datasets S3, S4 and S5

Figure 5.4: Qualitative analysis of real datasets S3, S4 and S5. Figures (a),(b) and (c) show
amplitude and depth map of each scene in the dataset. Figure (d) reports the depth distribu-
tion on the three datasets.

41



42



Develop a passion for learning. If you do, you will never
cease to grow.

Anthony J. D’Angelo

6
Developing Pipeline

In this chapter we are going to discuss the entire pipeline that has lead to the development
of the proposed approach for backscattering vector estimation, as well as all the related im-
plementation details. The roadmap is organized following a bottom-up approach, starting
from the simplest case and adding more and more details as the development proceeds up-
ward. This paradigm allows to break down the main complex problem into many small
and more treatable sub-problems. Each single sub-problem is going to be analysed and un-
derstood, in order to gain a complete knowledge regarding the behaviour of the proposed
algorithm. In the following chapter we will focus on a restricted case, in particular we will
assume that the MPI effect is generated only by specular reflections without accounting for
possible diffuse reflections. Nevertheless, in principle ourmethod canwork also with diffuse

Sparse generative
model

Single specular reflection
at pixel-level

Double specular reflections
at pixel-level

Double specular reflections
at local level

Figure 6.1: Illustration of the bottom-up paradigm followed in the developing pipeline.
We start from the simplest case and add more and more details as the development proceeds
upward.
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Parameter Value

No. modulation frequencies M = 3
Modulation frequencies f0 = 20MHz, f1 = 50MHz, f2 = 60MHz
Minimum depth value dmin = 0m
MinimumToF value tmin = 0sec
Maximum depth value dmax = c/2f0 = 7.49m (unambiguity range at f0)
MaximumToF value tmax = 1/f0 = 5 · 10−8sec
No. discretization steps N = 1000
Depth resolution dres = (dmax − dmin)/N = 7.49mm
ToF resolution tres = (tmax − tmin)/N = 5 · 10−11 sec

Table 6.1: Summary of the main design parameters which define the our reference setup.

reflections, but its extension to the more general case requires further effort and is going to
be the objective of a future work.

We will start introducing in section 6.1 the generative model we are going to adopt in the
specular reflections case. In section 6.2 we will discuss the baseline implementation of our
method considering only a single reflection and working at pixel-level. The objective is to
perform a feasibility study and to investigate possible issues that may arise in the subsequent
steps. Then, in section 6.3, we will keep working at single pixel-level but we will account
for a double reflections MPI effect. Even if also in this case the prior assumption is very
strong, from the experimental results we will observe how the proposed method is able to
provide good MPI correction capabilities in a real-world scenario. Finally, in section 6.4 we
will investigate the benefits of exploiting also the spatial correlation focusing always in the
double reflections scenario. Looking at the experimental results, we will see that the spatial
correlation can help filtering out themeasurement noise, improving the final prediction and
outperforming other state-of-art techniques in the MPI removal task.

Before starting the discussion we introduce the main design parameters which define our
reference scenario. We assume to have available a ToF camera that captures raw data at
M = 3modulation frequencies. For simplicity, the three frequencies are supposed to be ac-
quired simultaneously without accounting for possible motion artefacts that may arise. We
use the set of modulation frequencies f0 = 20MHz, f1 = 50MHz and f2 = 60MHz. Our
method is supposed to work in the depth range corresponding to the unambiguous range
of the lower modulation frequency, that spans between 0 and 7.49 meters. We discretize
the backscattering vector intoN = 1000 steps, therefore the depth resolution is about 7.49
millimetres while the time-of-flight resolution is 5 × 10−11 seconds. Table 6.1 provides a
complete summary summary of the main design parameters which define the our reference
setup.
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Figure 6.2: Graphical illustration of the output backscattering vector generated using the
sparse generativemodel. Eachpair (Ar, Tr) in the latent variablez =

[
A1, T1, ..., AR, TR

]T
represents amplitude and time position of the rth specular reflection.

6.1 Sparse GenerativeModel
As already stressed, in this work we assume theMPI phenomenon is generated by only spec-
ular reflections. This kind of approximation is the one adopted by many methods in the
literature, see table 3.1, and the most treatable from amathematical point of view. In particu-
lar, the backscattering domain is the signal space formed by at mostR ≥ 1 sparse reflections,
that is:

DR
x =

{
x ∈ RN

∣∣∣ ∥x∥0 ≤ R
}
⊆ D∗

x (6.1)

where theL0norm is defined as the total number of non-zero elements. For this very specific
case it is not necessary to employ a complex generative neural network in order to develop a
suitable generative model, because it can be fully descried by the sum of R ≥ 1 Kronecker
delta functions. More in details, given a latent variable in the form:

z =
[
A1, T1, A2, T2, ..., AR, TR

]T ∈ R2R (6.2)

the sparse generative model is defined as:

x = GR(z) =
[
x0, ..., xN−1

]T ∈ DR
x with xn =

R∑
r=1

Ar δ(n− Tr) (6.3)

where the Kronecker delta is:

δ(n− j) =

{
1 if n = j

0 if n ̸= j
(6.4)

In this context the latent variable assumes an explicit meaning, each pair (Ar, Tr) represents
amplitude and time position of the rth specular reflection. Figure 6.2 gives a graphical repre-
sentation of the meaning of latent variables.

The first problemwith this formulation of the sparse generative model is that it is not dif-
ferentiable due to the impulsive nature of the Kronecker delta function. In the continuous
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(b) Discretization problem

Figure 6.3: Graphical illustration of the approximation of the Kronecker delta trough a
sampled gaussian function.

case, the equivalent Dirac function can be seen as a gaussian function with a standard devi-
ation that tends to zero. The idea is to make the sparse generative model differentiable by
substituting the Kronecker delta with a sampled gaussian function with very small standard
deviation, that is:

xn =
R∑

r=1

Ar e
− (n−Tr)

2

2σ2 , σ << 1 (6.5)

Using this approximation it is possible to compute explicitly the partial derivatives of the
output backscattering vector with respect to the input latent variables:

∂xn

∂Ar

=
∂

∂Ar

[
R∑

j=1

Aj e
−

(n−Tj)
2

2σ2

]
= e−

(n−Tr)
2

2σ2 r = 1, ..., R (6.6)

∂xn

∂Tr

=
∂

∂Tr

[
R∑

j=1

Aj e
−

(n−Tj)
2

2σ2

]
= Ar

n− Tr

σ2
e−

(n−Tr)
2

2σ2 r = 1, ..., R (6.7)

The value for the small standard deviation σ > 0 is chosen in order to have a good approx-
imation of the Kronecker delta after the sampling operation, as illustrated in figure 6.3a. In
our implementation we use σ = 0.2.

The second problem is related to the discrete nature of the output backscattering vector.
In particular, the time position of each sparse reflection must be an integer number, while
typically the latent variable is formed by all real components. Note that approximating the
Kronecker delta with a gaussian function allows to have also real time positions, but the sam-
pling operation leads to a completely wrong output, see figure 6.3b. The simplest approach
is to round each time position Tr ∈ R to the nearest integer number T̃r = Q(Tr) ∈ N
before applying the model in equation (6.5):

xn =
R∑

r=1

Ar e
− (n−T̃r)

2

2σ2 (6.8)
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Figure 6.4: Mid-tread quantizer with unitary quantization step used to round the time
position to the nearest integer value.

The rounding is achieved through a uniformmid-tread quantizer with unitary quantization
step like the one depicted in figure 6.4:

T̃ = Q(T ) =

⌊
T +

1

2

⌋
∈ N T ∈ [0, N − 1] ⊂ R (6.9)

Unfortunately the quantization is not a differentiable operation and therefore the whole
generative model would become non differentiable. Here we can apply a trick that is not
perfectly mathematically correct but it is stable from a numerical point of view and makes
the model differentiable. During the computation of the partial derivatives of the output
backscattering vector with respect to the time position of each sparse reflection, we can ig-
nore the quantizer, approximating the non-differentiable quantization rule with an identity
function. The final expressions for the partial derivatives of the sparse generative model be-
comes:

∂xn

∂Ar

= e−
(n−T̃r)

2

2σ2 r = 1, ..., R (6.10)

∂xn

∂Tr

=
∂xn

∂T̃r

∂Q(Tr)

∂Tr︸ ︷︷ ︸
≈1

≈ Ar
n− T̃r

σ2
e−

(n−T̃r)
2

2σ2 r = 1, ..., R (6.11)

6.2 Single Specular Reflection at Pixel-level
The first step is the development of the proposed approach in the simplest case, which cor-
responds to the ideal case where the backscattering vector is generated by a single specular
reflection. In other words, we do not consider the MPI effect. Clearly, this is a strong sub-
optimal assumption in a real-world scenario, therefore we do not expect that the resulting
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algorithm will be able to correct errors caused by multiple returns. The objective is to per-
form a feasibility study to identify possible issues that may arise also in the subsequent steps.

In this context we adopt the sparse generative model discussed in section 6.1, in particular
we consider the single specular reflection case defined as follows:

G1 : R2 → D1
x ⊆ RN

z =
[
A1, T1

]T → x = G1(z) =
[
x0, ..., xN−1

]T (6.12)

with:
xn = A1 e

− (n−T̃1)
2

2σ2 (6.13)

Moreover, for now, we work at single pixel-level. This means that the predicted backscatter-
ing vector for pixel (u, v) is a function only of the corresponding pixel in the input raw ToF
data:

Xuv = G1
(
Zuv

)
= G1

(
Pθ

(
Vuv

))
(6.14)

Wewill refer to this first developedmethodwith the nameBVE_1srp, an abbreviationwhich
stands for “Backscattering Vector Estimation in the Single Specular Reflection case working
at Pixel-level”. The goal is to achieve a performance comparable with the standard ToF tech-
nique for depth estimation. Since the standard depth estimation uses a single modulation
frequency, in principle we expect to perform slightly better. Using data acquired at multiple
frequencies, the network should be able to filter out the noise in a more reliable manner.

In the following sections we are going to discuss the implementation details of the pre-
dictive neural network, such as its architecture, the loss functions used for the measurement
and the reconstruction errors and the training strategy adopted. Moreover, we will present
a problemwhich arises with the reconstruction error in our particular case, together with an
analysis of several loss functions tested to solve the issue. The final experimental results on
the real-world case are going to be provided in section 7.1.

6.2.1 Predictive Neural Network Architecture
For the implementation of the predictive model we propose a neural network that takes
in input the raw ToF data and predicts the latent variable associated to the corresponding
backscattering vector. This process is repeated for each pixel of the camera sensor in order
to obtain in output the complete transient scene. The predictive model works on tensors
with fixed spatial resolution W × H , and variable number of channels. The input tensor
V has 2M = 6 channels, corresponding to the real and the imaginary parts of the complex
phasors acquired at the three modulation frequencies, while the output tensorZ hasL = 2
channels, corresponding to amplitude and position of the single specular reflection we aim
to predict. Since in principle all the pixels in the image are equivalent, the inversion of the
underdetermined system (4.1) has to be performed using the same strategy for each pixels.
Moreover, BVE_1srp works at single pixel-level and so there is a one-to-one correspondence
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Figure 6.5: Graphical illustration of the predictive network architecture of BVE_1srp.

between input and output pixels. The idea is to use a neural network composed by stacking
of a set of layers one over the other. The layers are designed to implement a fully-connected
network along the channel dimension which works in the same manner for all the pixels.
Each layer extracts a variable number of features from the previous one, where each feature is
obtained applying a non-linear activation function to a linear combination of the previous
layer’s features with learnable weights. This network can be seen as a convolutional network
with kernels of size 1 × 1 along the spatial dimensions and a variable number of filters for
each layer. The architecture of the proposed network is depicted in figure 6.5, while table
6.2 reports the details of each layer. The network is formed by a first block of three convo-
lutional layers, all with 64 filters, which is supposed to denoise the input ToF data and to
extract relevant features. Then, it is split into two parallel specialized branches. One branch
predicts the amplitude Â1, while the other estimates the position T̂1 of the non-zero element
in the backscattering vector. Both are formed by three convolutional layers with decreasing
number of filters, respectively 32, 16 and 1. Finally, the two branches are concatenated to pro-
duce the output latent variable ẑ =

[
Â1, T̂1

]T . We use the ReLU activation function for
all hidden layers and the sigmoid for the output. The output sigmoid is rescaled in order to
cover the whole latent variable range, that is [0;xmax) for Â1, and [tmin, tmax) for T̂1. The
total number of learnable parameters of the proposed predictive model is 14 018.

6.2.2 Loss Function Analysis
The choice of a proper loss function is a crucial point in the machine learning pipeline. It
has the fundamental role of driving the algorithm towards the optimal solution. Mathemat-
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Layer Kernel size Input dimension Output dimension Activation

Conv c1
(
V
)

1× 1× 6× 64 W ×H × 6 W ×H × 64 ReLU
Conv c2

(
c1
)

1× 1× 64× 64 W ×H × 64 W ×H × 64 ReLU
Conv c3

(
c2
)

1× 1× 64× 64 W ×H × 64 W ×H × 64 ReLU
Conv a1

(
c3
)

1× 1× 64× 32 W ×H × 64 W ×H × 32 ReLU
Conv a2

(
a1
)

1× 1× 32× 16 W ×H × 32 W ×H × 16 ReLU
Conv a3

(
a2
)

1× 1× 16× 1 W ×H × 16 W ×H × 1 Sigmoid
Conv t1

(
c3
)

1× 1× 64× 32 W ×H × 64 W ×H × 32 ReLU
Conv t2

(
t1
)

1× 1× 32× 16 W ×H × 32 W ×H × 16 ReLU
Conv t3

(
t2
)

1× 1× 16× 1 W ×H × 16 W ×H × 1 Sigmoid

Concat z
(
a3, t3

) W ×H × 1,
W ×H × 2

W ×H × 1

Table 6.2: Hyperparameters used in the predictive network architecture of BVE_1srp. For
each layer, the table reports the kernel dimensions, the input and output dimensions and the
activation function applied at its output.

ically, a loss function maps a certain event onto a real number, intuitively representing the
cost associated with the event. In a supervised context, typically, the event is represented by
the current prediction of a learning algorithm and the loss function measures how it differs
from known ground truth. The choice of the loss function is strictly dependent on the task
under investigation and unfortunately there is not an universal loss that works for all kind
of data.

In section 4.2 we explained the general idea behind the proposed predictivemodel and we
said that its loss function is formed by two main terms, the measurement error ℓm and the
reconstruction error ℓr. In order to quantify how consistent is the final prediction with the
recorded correlation measures, the measurement error compares the input phasor vector v
with the one obtained applying themeasurementmodel 2.38 to our predicted backscattering
vector, i.e. v̂ = Φ x̂. Note that we are working on the real version of the input complex
vector v obtained stacking the real part on top of its imaginary part. The goal is to keep this
difference as small as possible, preferring small errors with respect to fewer very large errors.
The best suitable loss function for this task is the squared error loss, also know as L2 loss:

ℓm(v, v̂) =
2M−1∑
m=0

(
vm − v̂m

)2 (6.15)

In case of noisymeasures this error is never going to zero, but it will converge to the power of
the noise. Recall that higher modulation frequencies have finer depth resolution and higher
noise resilience. Therefore it makes sense to give more relevance to higher frequencies in
order to force the solution to be more related to those. Experimental results show that a rea-
sonable way to fix the weight associated to eachmodulation frequency is to chose it inversely
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Figure 6.6: Graphical illustration of the considered optimization example. The blue signal
represents the fixed ground truth backscattering, while the red one is our prediction that
needs to be optimized.

proportional to the corresponding depth resolution, equations (2.2) and (2.23):

dres,m =
dmax − dmin

N
=

c

2Nfm
wm =

1/dres,m∑2M−1
m′=0 1/dres,m′

=
fm

2(f0 + f1 + f2)
(6.16)

In this case we can use the weighted squared error loss for the measurement error:

ℓm(v, v̂) =
M−1∑
m=0

wm

(
vm − v̂m

)2 (6.17)

More critical is the choice of the loss function for the reconstruction error. It should mea-
sure how well the predicted backscattering matches the ground truth, but the problem is
that we are trying to compare two highly sparse vectors. A common problem with neural
networks arises when they work on highly sparse data because they tend to stuck on bad
local minima due to the fact that in most of the points the gradient of the loss function is
going to be zero. In the following we will present an analysis on different formulations of
the reconstruction error. For convenience, we will avoid the use of the subscript r, writing:

ℓr(x, x̂) = ℓs(x, x̂) (6.18)

where s is a string indicating the type of reconstruction loss we are considering.

6.2.2-i Absolute Error and Squared Error Loss Functions

Themost common loss functions typically adopted for regression tasks are the absolute error
loss (or L1 loss) and the squared error loss (or L2 loss):

ℓL1(x, x̂) =
N−1∑
n=0

∣∣xn − x̂n

∣∣ (6.19)

ℓL2(x, x̂) =
N−1∑
n=0

(
xn − x̂n

)2 (6.20)
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(a) Behaviour of L1 loss.

(b) Behaviour of L2 loss.

Figure 6.7: Behaviour of L1 and L2 loss functions. On the left the ground truth is fixed to
A = 0.4, T = 600, while on the right it is fixed toA = 0.2, T = 200.

Unfortunately, in this setting the network learns to predict always an all-zeros backscattering
vector because it is the most likely local minimum in the loss function. In order to under-
stand the behaviour of the network in this particular situation let’s consider the following
optimization example.

Let z = [A, T ]T be the latent variable representing the ground truth backscattering vec-
torx = G1(z), whereA is the amplitude and T the time position of the specular reflection.
Equivalently, let ẑ = [Â, T̂ ]T and x̂ = G1(ẑ) be the predicted backscattering vector. Let’s
assume we are optimizing the network and therefore we can vary amplitude and position of
the specular reflection in our prediction, while the ground truth remains fixed. Figure 6.6 il-
lustrates schematically the situation we are considering, where the blue signal represents the
ground truth backscattering and the red one is our prediction that needs to be optimized.
We can gradually change the parameters Â ∈ [0, 1) and T̂ ∈ [0, N − 1), and plotting for
each pair (Â, T̂ ) the corresponding loss function value. In figure 6.7 we repeat this experi-
ment for both the L1 and L2 loss functions. Note that in order to compare the behaviour of
different losses which may have different dynamic ranges, we have plotted the values renor-
malized into the interval [0, 1]. Looking at the plots we observe that, as expected, both the L1
and L2 losses have their absolute minimum in the optimal solution (Â, T̂ ) = (A, T ), but
we can also get a clue on the reason behind the failure of the learning process. During the
optimization phase, the searching of the minimum is performed using the gradient descent
algorithm. It works starting from a random initialization and decreasing the loss function
valuemoving the final prediction along the negative direction of the gradient. From the plots
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(a) Behaviour of HARD loss.

(b) Behaviour of SOFT loss.

Figure 6.8: Behaviour of HARD and SOFT loss functions. On the left the ground truth
is fixed toA = 0.4, T = 600, while on the right it is fixed toA = 0.2, T = 200.

it is clear that we have a meaningful negative gradient only in a small neighbourhood of the
optimal solution. In most of the cases the it does not point to the optimal solution, but to
the “bad” local minimum Â = 0. Another issue that arises in this situation is the gradient
vanishing problem. Since the gradient is null along the T -direction, the application of the
backpropagation algorithm leads to vanishing weights updates.

6.2.2-ii Hardmax and Softmax Loss Functions

From these considerations follow that, in order to use the gradient descent algorithm, a desir-
able property of the loss function is that it should have a negative gradient pointing in direc-
tion of the optimal solution in most of the cases. It must be able to drive the optimization
algorithm towards the optimal solution in a smooth way, avoiding discontinuity. In our
case, this means we cannot use a loss function that compares the two sparse vectors point-
wise, instead we have to design a suitable loss function that works on the entire sequences
and compares some other higher level features. For instance, one solution can be, first ex-
tract amplitude and position of the non-zero element in the two vectors, and then compare
these two features. The most immediate approach is to use the standardmax and argmax
functions, but since they are not differentiable they cannot be used in the gradient descend
algorithm:

ℓHARD(x, x̂) = λA

∣∣∣max
n

x̂−max
n

x
∣∣∣+ λT

∣∣∣argmax
n

x̂− argmax
n

x
∣∣∣ (6.21)
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A possibility is to replace the non-differentiable operations with the corresponding soft
versions, that are:

ℓSOFT(x, x̂) = λA

∣∣∣softmax
n

x̂− softmax
n

x
∣∣∣+ λT

∣∣∣soft argmax
n

x̂− soft argmax
n

x
∣∣∣

(6.22)

The typical implementation of the differentiable softmax function relies on the idea of
converting the vector x into a Probability Mass Distribution (PMD) px using:

px(n) =
eβxn∑N−1

n′=0 eβxn′
(6.23)

and then computing its expectation with respect to the precomputed probability distribu-
tion:

softmax
n

x = Epx

[
x
]
=

N−1∑
n=0

px(n)xn (6.24)

Similarly, the soft argmax is implemented using the previous probability distribution to
compute the expectation of the linear indices vectorn = [0, ..., N − 1]T :

soft argmax
n

x = Epx

[
n
]
=

N−1∑
n=0

px(n)n (6.25)

The factor β ≥ 1 has been introduced to raise the maximum value and lower the others in
order tomake the functionsmore discriminative. Figure 6.8 shows the behaviour of the hard
and soft loss functions repeating the optimization example of before. Even if in this case the
two losses exhibit the desired property, they are not good cost functions which we can use
for our optimization. The hard loss is not differentiable, while its soft version is numerically
unstable. The exponential term makes the soft loss prone to under and overflows for small
and large input values.

6.2.2-iii Cross-Correlation Based Loss Functions

Since we are trying to compare two signals that can be time displaced to each other, an-
other idea is to construct a suitable loss function based on their cross-correlation. The cross-
correlation is ameasure of similarity between two signals. In particular, the normalized cross-
correlation is a function rk that for each time displacement k ∈ [−N +1, N − 1]measures
how similar x ∈ RN and x̂ ∈ RN are. It is defined as:

rk =

∑N−1
n=0 xn · x̂n+k∑N−1

n=0 x2n
(6.26)
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Figure 6.9: Normalized cross-correlation computation between the ground truth and the
predicted backscattering vectors. On the left we have the two signals, while on the right the
resulting normalized cross-correlation function.

where the normalization is performed with respect to the fixed ground truth backscattering
vector. By construction, the cross-correlation between two backscattering vectors produced
by a singular specular reflection, x, x̂ ∈ D1

x, corresponds to a translated Kronecker delta:

rk = R · δ(k −∆T ) (6.27)

whereR = Â/A is the amplitude of the non-zero elementwhile∆T = T−T̂ is its position.
Figure 6.9 gives a graphical illustration of the cross-correlation shape.

In the perfectmatching case, i.e. x = x̂, the correlation is formed by a single peak centred
in the origin with unitary amplitude, i.e. R0 = 1 and ∆T = 0. This observation can
be exploited to construct a proper loss function which makes the correlation tending to the
perfect matching case. We need to associate a cost to each cross-correlation function that
is minimized in the perfect matching case. There are different possibilities. One approach
is to give a reward to each correlation peak proportional to its closeness to the origin and
simultaneously constraining the amplitude of the main peak to be approximately unitary.
The following are twoproposals basedon this idea. Bothuse a gaussian reward, thedifference
is in the amplitude constrain:

ℓCC1(x, x̂) =
∣∣∣1− N−1∑

k=−N+1

e−
k2

2σ2 · rk
∣∣∣ (6.28)

ℓCC2(x, x̂) =
N−1∑

k=−N+1

e−
k2

2σ2 ·
∣∣1− rk

∣∣ (6.29)

Looking at figures 6.10a-b we observe that the CC1 loss is not suitable for our purposes be-
cause it is minimized in the optimal matching case but also in many other points, introduc-
ing uncertainty about the optimal solution. Differently, the CC2 loss exhibits the desired
behaviour having a gradient that points always towards the optimal solution.
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(a) Behaviour of CC1 loss.

(b) Behaviour of CC2 loss.

(c) Behaviour of CC3 loss.

Figure 6.10: Behaviour of CC1, CC2 and CC3 loss functions. On the left the ground truth
is fixed toA = 0.4, T = 600, while on the right it is fixed toA = 0.2, T = 200.
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Another possibility to construct a suitable loss function exploiting the cross-correlation
signal is first extracting amplitude R and position ∆T of the non-zero element and then
imposing a constraint on these two features:

ℓCC3(x, x̂) = λA

∣∣∣R− 1
∣∣∣+ λT

∣∣∣∆T
∣∣∣ (6.30)

This approach is very similar to the hard loss function, but in this case all the operations
will be performed in the cross-correlation space in a differentiable manner. Recall that there
exists a relationship between cross-correlation and convolution operations, that is:

rk = (xn ∗ x̂−n)(k) (6.31)

Therefore, cross-correlation can be computed efficiently in the Fourier domain exploiting
the well-knownDFTproperties. TheDFTof the cross-correlationRf = DFT [rk] is given
by the multiplication between the DFT of the first signal Xf = DFT [xn] and the DTF
of the time reversed version of the second signal X̂ ∗

f = DFT [x̂−n], where the symbol ∗
indicates the complex conjugate:

Rf = Xf · X̂ ∗
f (6.32)

Moreover, fromour prior knowledge on the cross-correlation shape, equation 6.27, we have:

Rf = Re−j∆T 2π
N

f (6.33)

At this point we observe that the information about amplitude and position of the correla-
tion peak can be fully retrieved looking only at the DFT sampleR1 = X1 · X̂ ∗

1 :{
R =

∣∣R1

∣∣
∆T = −Arg

(
R1

)
N
2π

(6.34)

Putting all the previous considerations together, the overall loss function can be rewritten
as:

ℓCC3(x, x̂) = λA

∣∣∣∣∣X1 · X̂ ∗
1

∣∣− 1
∣∣∣+ λT

∣∣∣Arg
(
X1 · X̂ ∗

1

)∣∣∣ (6.35)

where X1 =
∑N−1

n=0 xn e
−jn 2π

N and X̂ ∗
1 =

∑N−1
n=0 x̂n e

jn 2π
N . Note that CC3 loss is more

efficient than the previously introduced correlation based losses, since it does not require
the computation of the whole DFTs, but only of the two samples X1 and X̂1. Figure 6.10c
confirms that CC3 loss exhibits the desired behaviour and can be used for the training of
our network.

One disadvantage of all correlation based loss functions is the computational inefficiency.
They require a lot of computations to be evaluated and this leads to a significant decrease in
the optimization speed. In addition, they do not scale well to more complex scenarios. They
show the desirable property in the simple case inwhich the backscattering vectors are formed
by a singular specular reflection, but the same behaviour is not guaranteed for more general
backscattering shapes.
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Figure 6.11: Behaviour of EMD loss function. On the left the ground truth is fixed to
A = 0.4, T = 600, while on the right it is fixed toA = 0.2, T = 200.

6.2.2-iv EarthMover’s Distance Loss Function

The last proposed reconstruction loss comes from the idea of comparing the two backscat-
tering vectors considering them as two PMDs and measuring their statistical distance. To
convert the backscattering vectors x and x̂ into probability distributions px and px̂ we sim-
ply rescale them in such a way that they satisfy the normalization property. Since the ground
truth vector is fixed while the predicted one changes during the optimization, the normaliza-
tion is performed with respect to the ground truth:

px(n) =
xn
X

px̂(n) =
x̂n
X

whereX =

N−1∑
n′=0

xn′ (6.36)

In this context there are different metrics to quantify the divergence between two PMDs
[35], such as Kullback–Leibler divergence, Hellinger distance, Jensen–Shannon divergence,
Jeffrey-divergence, and so on. Unfortunately, all thesemetrics can be evaluated only for prob-
ability distributions with a common support and this is not our case. A metric which mea-
sures the distance between two distributions without requiring a common support is the
Earth Mover’s Distance (EMD), also knows asWasserstein metric. Informally, if the distri-
butions are interpreted as two different ways of piling up a certain amount of dirt, the EMD
represents the minimum cost of turning one pile into the other, where the cost is assumed
to be the amount of dirt moved times the distance by which it is moved. It indicates how
muchmassmust be transported to transform one distribution into the other. The EMDhas
been successfully applied in the literature [36, 37] as loss function in the training of different
neural network architectures. In [36] the authors do some considerations showing that ap-
parently simple sequences of probability distributions converge under the EMD but do not
under other metrics.

In general, the earth mover’s distance is computed solving a linear programming prob-
lem, but in the special one-dimensional case it can be efficiently computed scanning the two
PMDs and keeping track of how much mass needs to be transported between consecutive
bins. This procedure leads to a closed-form solution for the EMD computation, involving
the difference between the two Cumulative Mass Distributions (CMDs). Let Px and Px̂ be
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Loss Definition

L1 ℓL1(x, x̂) =
∑N−1

n=0

∣∣xn − x̂n

∣∣
L2 ℓL2(x, x̂) =

∑N−1
n=0

(
xn − x̂n

)2
HARD ℓHARD(x, x̂) = λA

∣∣∣max
n

x̂−max
n

x
∣∣∣+ λT

∣∣∣argmax
n

x̂− argmax
n

x
∣∣∣

SOFT ℓSOFT(x, x̂) = λA

∣∣∣softmax
n

x̂− softmax
n

x
∣∣∣+ λT

∣∣∣soft argmax
n

x̂− soft argmax
n

x
∣∣∣

CC1 ℓCC1(x, x̂) =
∣∣∣1−∑N−1

k=−N+1 e−
k2

2σ2 · rk
∣∣∣ (see text for rk)

CC2 ℓCC2(x, x̂) =
∑N−1

k=−N+1 e−
k2

2σ2 ·
∣∣1− rk

∣∣ (see text for rk)
CC3 ℓCC3(x, x̂) = λA

∣∣∣∣∣X1 · X̂ ∗
1

∣∣− 1
∣∣∣+ λT

∣∣∣Arg
(
X1 · X̂ ∗

1

)∣∣∣ (see text forX1 and X̂ ∗
1 )

EMD ℓEMD(x, x̂) =
1

N X

∑N−1
n=0

∣∣cn − ĉn
∣∣ (see text for ck and ĉn)

wEMD ℓwEMD(x, x̂) =
1

N X

∑N−1
n=0 wn

∣∣cn − ĉn
∣∣ (see text for ck, ĉn andwn)

Table 6.3: Summary of all discussed loss functions. Note that theweightedwEMD loss will
be introduced in section 6.3.2.

the two CMDs, then the EMD can be computed as:

EMD(px, px̂) =
N−1∑
n=0

∣∣Px(n)− Px̂(n)
∣∣ (6.37)

Putting all the previous observations together, we can design a proper loss function mak-
ing it proportional to the average earth mover’s distance over the two equivalent probability
distributions:

ℓEMD(x, x̂) =
1

N
EMD(px, px̂) =

1

N X

N−1∑
n=0

∣∣cn − ĉn
∣∣ (6.38)

where the cumulative backscattering vectors are:

cn =
n∑

n′=0

xn′ ĉn =
n∑

n′=0

x̂n′ (6.39)

Figure 6.11 shows that the EMD loss exhibits the desirable property and it is able to drive
the optimization algorithm towards the optimal solution in a smooth way. It converges to
zero in the perfect matching case, and more important, it is scalable to more complex reflec-
tion scenarios. Experimental results proved that the EMD is the best performing loss func-
tion between all proposals, thus it is the one used for the reconstruction loss in BVE_1srp.

6.2.3 Training Procedure
As already said, BVE_1srp was trained on the simulated dataset T train

1srp . We used the Adam
optimization algorithm [38], a variant of the classic stochastic gradient descent which adapt
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Figure 6.12: Training curves obtained running the optimization of BVE_1srp for noise
levels σv =0.00, 0.02, 0.04, 0.06 and 0.08 on training and validation sets. The metrics
monitored are, from left to right, themeasurement error, the reconstruction error, the overall
error and theMAEon the depth estimated using the predicted output backscattering vector.

the learning rate for eachweight in the network. It uses an adaptivemoment estimation strat-
egy todynamically change the learning rates basedon thebehaviour of the optimization. The
final setup for BVE_1srp consists of the weighted squared error loss for themeasurement er-
ror and the EMD loss for the reconstruction error. We set the parameter λ in equation (4.6)
to 20 in order to give more weight to the reconstruction error and forcing the output of the
network to be more related to the transient ground truth. The entire dataset was divided
into batches ofM b = 1024 samples each, and the gradient at each iteration was computed
on a single batch. At each iteration, the corresponding batch is loaded into memory and a
gaussian zero-mean random noise is added to the real and imaginary parts of the simulated
raw ToF data. The input data at each iteration are given by:

V = ΦX +H Huvm ∼ N (0, σ2
v) (6.40)

The noise is independent and identically distributed across all the pixels in the image and
across all the acquired phasors at different modulation frequencies. Changing the noise at
each iteration helps to avoid overfitting on the training data and acts as a form of data aug-
mentation. The network never sees the exact same input data twice. Moreover, it helps
the network to learn to denoise the input data, giving more importance to the more stable
relationships between the acquired phasors and less to small fluctuations around the aver-
age value. The noise power is a hyperparameter which defines the Signal-to-Noise ratio in
the input data. We run the training for a total number of E = 2000 epochs on a Nvidia
GeForce GTX 1060 graphic unit. The overall amount of time required was about 6 hours.
We repeated the training multiple times, varying the amount of noise σv added to the input
data. At each epoch we monitored the behaviour of measurement error ℓm, reconstruction
error ℓr and overall error ℓ = ℓm + ℓr, as well as the MAE on the depth estimated using
the predicted output backscattering vector. Figure 6.12 reports the behaviour of the consid-
ered metrics during the optimization on both the training T train

1srp and the validation T valid
1srp
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sets. Clearly, the higher the noise level, the larger the errors of the predictive model will be.
Note that in the noise-free case the final estimation is almost perfect with an overall error
converging to zero. Looking at the curves we observe also that the errors on the training and
validation sets are consistent, indicating good generalization capabilities of the network. The
best performing set of weights, i.e. the one which minimizes the overall loss function on the
validation set, is saved and will be used for the final test on the three real ToF datasets.

6.3 Double Specular Reflection at Pixel-level

At this point we want to apply the proposed approach in anMPI case, trying to reconstruct
the shape of a backscattering vector generated by two specular reflections. As will be con-
firmed by experimental results, the two specular reflections hypothesis covers a large number
of real-world cases since the quadratic decay with distance produces very weak higher order
reflection, that canbewell approximatedbyonly twomain returns. This is the same rationale
underlying thework ofmany authors [12, 13, 14] which correct theMPI phenomenon assum-
ing it is formed only by two components. Clearly it is a restrictive assumption, therefore we
do not expect that the developedmethodwill be able to compensate for themulti-path effect
in all the cases. It will definitely fail in case of diffuse reflections or more than two reflections.

The generativemodel used for this secondmethod is the sparse generativemodel discussed
in section 6.1, where we consider only two specular reflections:

G2 : R2 → D2
x ⊆ RN

z =
[
A1, T1, A2, T2

]T → x = G2(z) =
[
x0, ..., xN−1

]T (6.41)

with:
xn = A1 e

− (n−T̃1)
2

2σ2 +A2 e
− (n−T̃2)

2

2σ2 (6.42)

Wekeepworking independently for eachpixel, neglecting the relationships between adjacent
pixels and estimating the output backscattering vector for pixel (u, v) looking only at the
corresponding acquired phasors:

Xuv = G2
(
Zuv

)
= G2

(
Pθ

(
Vuv

))
(6.43)

We will refer to this method with the name BVE_2srp, an abbreviation which stands for
“Backscattering Vector Estimation in the Double Specular Reflection case working at Pixel-
level”. In the following sections we are going to describe its architecture and a small variant
of the EMD loss function used in this case. The training strategy is exactly the same adopted
for the first method, discussed in section 6.2.3. The final experimental results are provided
in section 7.2.
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Figure 6.13: Graphical illustration of the predictive network architecture of BVE_2srp.

6.3.1 Predictive Neural Network Architecture
The network architecture of the predictive model used in BVE_2srp is very similar to the
one employed for the first method. It is always formed by a first stack of convolutional layers
to denoise the input data and extract relevant features, followed by two parallel branches.
The first branch is used to estimate the amplitudes [A1, A2]

T of the two specular reflections,
while the second branch estimates their time positions [T1, T2]

2. The number of filters in
the hidden layers and activation functions are preserved. The architecture of this second
proposed method is depicted in figure 6.13, while table 6.4 reports the details of each layer.
The total number of learnable parameters of this second predictive model is 14 052.

6.3.2 Weighted EMD Loss Function
All the considerations done in section 6.2.2 remain valid also in this context. In BVE_2srp,
we use the weighted squared error loss for the measurement error and a variant of the EMD
for the reconstruction error. BVE_2srp must learn to predict a first peak associated to the
direct component and a second peak associated to the global component, where the direct
component is very likely to be larger than the global component. Experimental results show
that the EMD does not perform very well in this case, since in many cases the network con-
fuses theMPI-free case, i.e. single large peak, with the case inwhich the backscattering vector
is formed by a large main peak and a small second one. The measurement error helps in the
discrimination, but for two very close peaks it is not sufficient. The final effect is that the
network learns to always predict a small global component even if it is not present in the
ground truth backscattering vector and this inevitably introduces an error in the final depth
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Layer Kernel size Input dimension Output dimension Activation

Conv c1
(
V
)

1× 1× 6× 64 W ×H × 6 W ×H × 64 ReLU
Conv c2

(
c1
)

1× 1× 64× 64 W ×H × 64 W ×H × 64 ReLU
Conv c3

(
c2
)

1× 1× 64× 64 W ×H × 64 W ×H × 64 ReLU
Conv a1

(
c3
)

1× 1× 64× 32 W ×H × 64 W ×H × 32 ReLU
Conv a2

(
a1
)

1× 1× 32× 16 W ×H × 32 W ×H × 16 ReLU
Conv a3

(
a2
)

1× 1× 16× 2 W ×H × 16 W ×H × 2 Sigmoid
Conv t1

(
c3
)

1× 1× 64× 32 W ×H × 64 W ×H × 32 ReLU
Conv t2

(
t1
)

1× 1× 32× 16 W ×H × 32 W ×H × 16 ReLU
Conv t3

(
t2
)

1× 1× 16× 2 W ×H × 16 W ×H × 2 Sigmoid

Concat z
(
a3, t3

) W ×H × 2,
W ×H × 4

W ×H × 2

Table 6.4: Hyperparameters used in the predictive network architecture of BVE_2srp. For
each layer, the table reports the kernel dimensions, the input and output dimensions and the
activation function applied at its output.

estimation. Figure 6.14a reports a typical situation where the ground truth is formed by the
direct component only, but the network predicts also a small global component.

Different strategies have been tested to solve the problem. In particular we tried different
values for the parameter λ in equation (4.6) but we were not able to find a good trade-off
to balance measurement and reconstruction errors. Note that this problem arises because in
the EMD the cost of moving a small mass for a long distance is much lower than the cost
of moving a large mass. The network learns to minimize the loss function predicting with a
good accuracy the direct component and neglecting the small errors due to the erroneous
global component positioning. Figures 6.14b-c illustrate the standard EMD loss compu-
tation through the absolute difference between the two cumulative backscattering vectors.
Looking at the plots we can identify two main types of errors, namely errors of the first and
second type. The error e1 of type 1, indicated in figures with green colour, is due to a small
imprecision in the prediction of the direct component. Instead, the error e2 of type 2, indi-
cated with the purple colour, is due to a completely wrong positioning of the small global
component. In the standard EMD loss computation, errors of the first type dominate and
therefore the network prefers tominimize them, neglecting the errors of the second type. Us-
ing the standard earth mover’s distance, the ratio e2/e1 is in general low. One idea to solve
the problem is to design a new variant of the EMD loss which changes the proportions be-
tween these two types of error, giving more importance to errors of the second type. Our
proposal is to use a weighted EMD loss function defined as:

ℓwEMD(x, x̂) =
1

N X

N−1∑
n=0

wn

∣∣cn − ĉn
∣∣︸ ︷︷ ︸

dn

(6.44)

where the weights, intuitively, should be proportional to the “density” of dn. Errors of type
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Figure 6.14: Graphical illustration of the difference between the standard EMD and the
weighted wEMD.

two are peaked and very concentrated in time and thus have lower “density” than errors of
type two, which instead are smaller but more time dilated. To compute the weights we use
the causal moving average of dn with a sliding windows ofW = 100 samples, that is:

wn =
1

W

W−1∑
k=0

dn−k =
1

W

W−1∑
k=0

∣∣cn−k − ĉn−k

∣∣ (6.45)

In this way we are giving more relevance to points which are preceded by other non-zero
samples, like the ones contributing to error of type 2. Figure 6.14d shows how the proportion
between the two errors changes using theweighted variant and how the ratio e2/e1 increases.
Note that the weighted earth mover’s loss continues to satisfy the desirable property of the
gradient. It is the loss function used for the reconstruction error in BVE_2srp.

6.3.3 Training Procedure

For the optimization of BVE_2srp we adopted exactly the same procedure described for
the first method in section 6.2.3. We used T train

2srp as training set and T valid
2srp as validation set.

We adopted the weighted L2 loss for the measurement error and the weighted EMD loss for
the reconstruction error. Figure 6.15 reports the behaviour of the metrics of interest on both
training and validation sets. Note that, for the same level of noise, BVE_2srp is more prone
to errors and it converges to a higher residual error with respect to the previous method.
This is expected because now there are more DoFs in the solution. In any case, the network
converges to a low residual error.
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Figure 6.15: Training curves obtained running the optimization of BVE_2srp for noise
levels σv =0.00, 0.02, 0.04, 0.06 and 0.08 on training and validation sets. The metrics
monitored are, from left to right, themeasurement error, the reconstruction error, the overall
error and theMAEon the depth estimated using the predicted output backscattering vector.

6.4 Double Specular Reflection at Local level

The third and last method investigated in this work relies on the idea that it is possible to
take advantage of the spatial correlation on the input data to improve the accuracy of the
final prediction. Here, we consider always the two specular reflections case. The objective is
to study how the spatial correlation can be exploited to gain some benefits over the previous
implementation. The predictive model is designed in such a way that the output for pixel
(u, v) is a function of the whole neighbourhood of size (2P + 1) × (2P + 1) centred on
the corresponding input pixel:

Zuv = Pθ

({
Vu′v′

∣∣u′ = u+ k; v′ = v + j; k, j = −P, ...,+P
})

(6.46)

In our implementation we use a square receptive field of size (2P +1) = 3. This choice has
bedone to limit the exponential growthof thenetwork complexity andbecause experimental
results show that larger values favours the overfitting of the network on the training data,
decreasing its generalization capabilities. The predictive model uses the raw ToF data from
9 input pixels to estimate the backscattering vector for each output pixel. The generative
model continues to work at single pixel level since there is a one-to-one relationship between
the output backscattering vector and its compressed representation.

We will refer to this last method with the name BVE_2srl, an abbreviation which stands
for “Backscattering Vector Estimation in the Double Specular Reflection case working at Lo-
cal level”. We expect that it will be more robust against noise, but still limited by the two
specular reflections assumption. In the next section we are going to present the network
architecture used to exploit the spatial correlation. The loss functions and the training strat-
egy are the same adopted before. The experimental results on the real-world datasets are
provided in section 7.3.
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Figure 6.16: Graphical illustration of the predictive network architecture of BVE_2srl.

6.4.1 Network architecture
There are different approaches to exploit spatial correlation in the input raw ToF data. Our
proposal is to use the same network architecture of before increasing only the receptive field
of the first layer. Now, the first convolutional layer extracts features for each pixel looking at a
neighbourhoodof size 3 around the pixel itself. All the subsequent layers keepworking pixel-
wise. Particular attention must be paid to the design of the first layer. The results achieved
by BVE_2srp suggest that the predictive model is able to perform a good estimation for
output pixel (u, v) only looking at the corresponding input pixel. This means that most of
the information required for the final prediction is contained in the input pixel (u, v). The
first layer of BVE_2srl has been designed with the intent of using the spatial correlation to
increase the amount of information available, without modifying what is already present in
the central pixel (u, v). For this reason, the first layer is formed by the concatenation of the
features extracted using two convolutional kernels. The first kernel with size 1×1×Cp acts
only on the central pixels (u, v) as before, while the second one with size 3× 3×Cl acts on
the whole neighbourhood {(u′, v′)|u′ = u+ k; v′ = v + j; k, j = −1, 0,+1}:

C1,uv =
[
−Puv−︸ ︷︷ ︸

Cp

, −Luv−︸ ︷︷ ︸
Cl

]T (6.47)

where:

Pu,v = P
(
Vu,v

)
(6.48)

Lu,v = L
(
{Vu′v′

∣∣u′ = u+ k; v′ = v + j; k, j = −1, 0,+1}
)

(6.49)
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Layer Kernel size Input dimension Output dimension Activation

Conv & Slice p
(
V
)

1× 1× 6× 64 (W + 2)× (H + 2)× 6 W ×H × 64 ReLU
Conv l

(
V
)

3× 3× 6× 64 (W + 2)× (H + 2)× 6 W ×H × 64 ReLU

Concat c1
(
p, l

) W ×H × 64,
W ×H × 128

W ×H × 64
Conv c2

(
c1
)

1× 1× 64× 64 W ×H × 128 W ×H × 64 ReLU
Conv c3

(
c2
)

1× 1× 64× 64 W ×H × 64 W ×H × 64 ReLU
Conv a1

(
c3
)

1× 1× 64× 32 W ×H × 64 W ×H × 32 ReLU
Conv a2

(
a1
)

1× 1× 32× 16 W ×H × 32 W ×H × 16 ReLU
Conv a3

(
a2
)

1× 1× 16× 2 W ×H × 16 W ×H × 2 Sigmoid
Conv t1

(
c3
)

1× 1× 64× 32 W ×H × 64 W ×H × 32 ReLU
Conv t2

(
t1
)

1× 1× 32× 16 W ×H × 32 W ×H × 16 ReLU
Conv t3

(
t2
)

1× 1× 16× 2 W ×H × 16 W ×H × 2 Sigmoid

Concat z
(
a3, t3

) W ×H × 2,
W ×H × 4

W ×H × 2

Table 6.5: Hyperparameters used in the predictive network architecture of BVE_2srl. For
each layer, the table reports the kernel dimensions, the input and output dimensions and the
activation function applied at its output.

With this configuration, the receptive field of the whole network turns out to be equivalent
to the receptive field of the first layer, that is 3 × 3. Since all layers use valid convolutions,
the output spatial dimensions are 2 pixels smaller than the input ones.

Figure 6.16 reports a graphical illustration of the predictive network architecture used in
BVE_2srl, while table 6.5 gives the details of each layer. The total number of learnable
parameters in this case is 21 668.

6.4.2 Training Procedure
We run the optimization of BVE_2srlaccording to the procedure already adopted for the
other twomethods and described in section 6.2.3. WeusedT train

2srl as training set andT valid
2srl as

validation set. We adopted the weighted L2 loss for themeasurement error and the weighted
EMD loss for the reconstruction error. Figure 6.17 shows the behaviour of the metrics of in-
terest during the optimization procedure. Comparing the residual errors after convergence
of BVE_2srp and BVE_2srl , we observe that spatial correlationmakes the model more re-
silient to randomnoise in the validation set. In the noise-free case the twomethods converge
to a very similar value, while in case of noise this last method reaches a lower residual error.
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Figure 6.17: Training curves obtained running the optimization of BVE_2srl for noise
levels σv =0.00, 0.02, 0.04, 0.06 and 0.08 on training and validation sets. The metrics
monitored are, from left to right, themeasurement error, the reconstruction error, the overall
error and theMAEon the depth estimated using the predicted output backscattering vector.
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If you’ve got the truth you can demonstrate it. Talking
doesn’t prove it.

Robert A. Heinlein

7
Experimental Results

To conclude our work, in this chapter we are going to present some experimental results
obtained running the three proposed methods for backscattering vector estimation. The
performance are evaluated from a qualitative and quantitative point of view on the three
real datasetsS3,S4 andS5 introduced in section 5.4. Due to the fact that for the real datasets
we do not have available ground truth transient scenes but only ground truth depth maps,
the threemethods are evaluatedwith respect to their capabilities to correct theMPI effect. In
particular, given the raw ToF data V , we can run the proposed approach to reconstruct the
transient scene X̂ and use algorithmA.1 to retrieve the corresponding depth map D̂DeepBVE:

D̂DeepBVE = Trans2Depth
(
Gξ(Pθ(V))︸ ︷︷ ︸

X̂

, dres
)

(7.1)

where Gξ and Pθ are respectively the generative and the predictive models and dres =
7.49mm is the depth resolution.

The proposed methods are then compared to the standard ToF technique for depth es-
timation, as well as to other state-of-the-art MPI correction algorithms. The standard ToF
formula (2.2) for depth estimationuses a singlemodulation frequency anddonot account for
multi-path effects. For a fair comparison with our approach, we consider the higher modula-
tion frequency used to acquire the data, i.e. fH = max(f1, . . . , fM) = 60MHz. The depth
map D̂60MHz provided by the standard ToF technique is computed through algorithm A.2:

D̂60MHz = ToFDepth
(
V, {f1, . . . , fM}

)
(7.2)

Note that the higher modulation frequency provides the higher depth resolution and noise
resilience, therefore we are comparing our methods with the best depth estimation obtained
using a single frequency. The other modulation frequencies are used here only to perform
phase unwrapping. Figure 7.1 reports the depth error maps obtained applying the standard
ToF technique on the three real datasets.
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Figure 7.1: Depth error maps (7.3) obtained applying the standard ToF technique at
60MHz on the real datasets S3, S4 and S5. Blue colour indicates depth underestimation,
while red colour indicates depth overestimation. The dark blue areas are those for which we
do not have ground truth depth. Each scene reports also the correspondingMAE (7.4).
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Themetric used to quantify the error in the depth estimation is theMean Absolute Error
(MAE). If we indicate withDm ∈ RW×H the depth map obtained applying method m and
withD ∈ RW×H the depth ground truth, the error map is given by:

Emuv = Dm
uv −Duv (7.3)

and the MAE computed over the entire test set S results:

emS =
1

M

M−1∑
i=0

∑
(u,v)

∣∣Emiuv∣∣ = 1

M

M−1∑
i=0

∑
(u,v)

∣∣Dm
iuv −Diuv

∣∣ (7.4)

The lower is theMAE the better is thematching between estimated and ground truth depth
maps, and therefore the better are the MPI correction capabilities.

7.1 Performance of BVE_1srp
Figure 7.2 reports thedepth errormapsobtained applyingBVE_1srp on the three real datasets.
The regions affected byMPI are those that present high depth overestimation andwhich are
indicated with the red colour in the plots. MPI is present mainly on surfaces with a strong
inclination, in particular on the floor, and near corners and concavities, where the light rays
bounce multiple time and arrive with different delays at the camera sensor. Comparing
BVE_1srp with the standard ToF technique we observe that the two approaches achieve
roughly the same performance. As expected, they are not able to correct MPI because they
do not account for it. Note that they are able to reliably reconstruct the range value on flat
regions where the ideal ToF assumption holds with good approximation, like in the first flat
wall scene of dataset S4. The average MAEs over datasets S3, S4 and S5 obtained applying
the single frequency approach are respectively 5.24, 5.43 and 3.62 cm. The corresponding
values obtained from our BVE_1srp method are 5.00, 5.01 and 3.33 cm. The proposed
method performs slightly better since, exploiting data acquired at multiple modulation fre-
quencies, it is able to filter out the noise in amore reliablemanner. These results are not good
from aMPI correction prospective, but turn out to be very promising because they confirm
the feasibility of the proposed approach as well as the the effectiveness of the loss function
and the training procedure designed.

7.2 Performance of BVE_2srp
Figure 7.3 shows thedepth errormapsobtained applyingBVE_2srp on the three real datasets.
Even if we are considering only two specular reflections, now we can appreciate a strong im-
provement in the performance compared to the previous method. The average MAEs over
the three datasets are now reduced to 2.86, 3.43 and 2.52 cm. Experimental results confirm
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Figure 7.2: Depth error maps (7.3) obtained applying BVE_1srp on the real datasets S3,
S4 and S5. Blue colour indicates depth underestimation, while red colour indicates depth
overestimation. The dark blue areas are those for which we do not have ground truth depth
available. Each scene reports also the correspondingMAE (7.4).
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Figure 7.3: Depth error maps (7.3) obtained applying BVE_2srp on the real datasets S3,
S4 and S5. Blue colour indicates depth underestimation, while red colour indicates depth
overestimation. The dark blue areas are those for which we do not have ground truth depth
available. Each scene reports also the correspondingMAE (7.4).

that many real-world cases can be approximated by two specular reflections. This is due to
the fact that, since light power decays with the square of the distance, higher order reflec-
tions reach the camera sensor very weak. Moreover, real lambertian surfaces present always
a fraction of specular reflections and thus our assumption, in first approximation, holds also
for those surfaces. Note that this second method is able to improve the depth estimation
on MPI-affected regions without degrading too much the performance on MPI-free areas.
In the first flat wall scene of dataset S4 the MAE slightly increases of 12mm. We achieved
this result only after the introduction of the weighted EMD loss function. Some depth re-
construction errors are still present, especially on the floor regions. These areas are probably
subjected to more complex light transport events and therefore require the extension of our
hypotheses to be resolved.

7.3 Performance of BVE_2srl

In figure 7.4 the depth error maps obtained applying BVE_2srl on the three real datasets
are shown. These results confirm our intuition. The spatial correlation helps to improve the
final prediction making the network more robust to noise. With respect to the single pixel
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Figure 7.4: Depth error maps (7.3) obtained applying BVE_2srl on the real datasets S3,
S4 and S5. Blue colour indicates depth underestimation, while red colour indicates depth
overestimation. The dark blue areas are those for which we do not have ground truth depth
available. Each scene reports also the correspondingMAE (7.4).

approach, this last method produces more smooth outputs. In this case, the average MAEs
over datasetsS3,S4 andS5 result 2.43, 2.79 and 2.27 cm. Note that, since BVE_2srl is still
constrained by the two specular reflections assumption, it cannot do better that BVE_2srp
on more complex MPI scenarios. The gap in performance is only due to the advantages
provided by the spatial correlation.

Figure 7.5 reports a comparison between the outputs of BVE_1srp and BVE_2srl in a
real scene. We can see that the introduction of a second specular reflection allows to com-
pensate for the MPI effect in many cases, providing a more reliable depth estimation. In
particular, for the considered scene the MAE is reduced by 64%. The estimation of the en-
tire time-resolved backscattering vector allows to compute either the depth associated to the
direct component, which represents the real range value, and the depth associated to the sec-
ond specular reflection. Unfortunately, we do not have transient ground truth in the real
datasets so we cannot quantify the precision of our second reflection prediction. However,
some qualitative observations can be done. Looking at the differential depth, obtained as dif-
ference between the direct and the global depths, we observe spatial correlation. This means
that the network does not place the global component at random only to minimize the loss
function, but it learned a reasonable strategy that produces outputs coherent with the real
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Figure 7.5: Comparison between BVE_1srp and BVE_2srl. In the first row we have
the depth ground truth of the considered real-world scene and the depth error maps ob-
tained respectively from BVE_1srp and BVE_2srl. The second row refers to the output
of BVE_2srl. It reports the depth obtained looking at the direct component, the depth
obtained looking at the global component and the difference between the two. In the last
raw there is a comparison between the backscattering vectors obtained from BVE_1srp and
from BVE_2srl , for three different pixels.

scene geometries.

7.4 Comparisonwith State-Of-The-Art Techniques

Finally, we want to show how the proposed methods behave compared to other state-of-
the-art algorithms for MPI compensation. The compared algorithms are the SRA method
proposed by Freedman et al. [7], the DeepToF proposed by Marco et al. [17] and the two
methods proposed by Agresti et al. [19, 20]. For this comparison we will take as baseline the
work of Agresti et al. [20]. Table 7.1 reports the MAEs (7.4) for the compared algorithms
on the three real datasets S3, S4 and S5. The values indicated in brackets refer to the MAEs
after the bilateral filtering of the corresponding depth maps. A bilateral filter [39] is a non-
linear, edge-preserving noise reduction technique which substitutes each pixel value with an
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weighted average on nearby pixels. The weights are given by a combination of two gaussian
functions, one depending on the euclidean distance of pixels and the other on the absolute
difference of pixel values. The comparison confirms what we have already said. The first
proposed BVE_1srp method performs slightly better than the single frequency approach,
while BVE_2srp and BVE_2srl are able to provide amuchmore reliable depth estimation.
The fact that the exploitation of spatial correlation allows to reconstruct a smoothed depth
map is appreciable also looking at the difference in the gaps between raw and filtered MAEs
for BVE_2srp and BVE_2srl. In real-world scenes our last method achieves performance
comparable with respect to the other state-of-the-art algorithms. After filtering, it performs
better than all the other approaches, except for the unsupervised domain adaptation tech-
nique of Agresti et al. [20]. BVE_2srl , after filtering, produces an error of 2.60 cm on
S4 and an error of 2.12 cm on S5, while the method of Agresti et al. [20] produces errors
respectively of 2.36 and 1.66 cm. Note that the unsupervised domain adaptation technique
has been trained on real scenes similar to the ones in S3, S4 and S5, while our approach
uses a completely different synthetic training set generated at random. It is remarkable to
notice that, BVE_2srl outperforms with a large margin the SRA method, that across the
compared algorithms is the one which focuses on the most similar setup. Both acquire data
at three modulation frequencies and use a physical model to describe the MPI effect under
the specular reflections assumption. TheMAEs on datasetsS4 andS5 obtained applying the
SRAmethod are 5.11 and 3.37 cm.
To conclude, figure 7.6 shows the depth profiles estimated in proximity of a corner using

the compared algorithms. Also in this case, BVE_2srl is able to reconstruct depth values
very closed to the ground truth.
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Figure 7.6: Depth profile estimation in proximity of a corner. The first image reports the
depth ground truth of the considered real-world scene. The other plots compare the depth
profile estimated applying different state-of-the-art MPI correction algorithms with the one
obtained from the three proposed methods. The depth plotted corresponds to the high-
lighted horizontal line is the first figure, i.e. v = 100.
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S3 dataset S4 dataset S5 dataset
[cm] [cm] [cm]

Single frequency (60MHz) 5.24 5.43 3.62

SRA [7] n.a. 5.11 3.37

DeepToF [17] n.a. 5.13 6.68
+ calibration n.a. 5.46 3.36

Agresti et al. [19] n.a. 3.19 2.22
+ unsupervised DA [20] n.a. 2.36 1.66

BVE_1srp 5.00 (4.94) 5.01 (5.01) 3.33 (3.25)

BVE_2srp 2.86 (2.31) 3.43 (2.99) 2.52 (1.88)

BVE_2srl 2.43 (2.30) 2.79 (2.60) 2.27 (2.12)

Table 7.1: Comparison between several state-of-the-art MPI correction algorithms and the
threedevelopedmethodson the real datasetsS3,S4 andS5. Each rowreports thedepthMAE
(7.4) obtained applying the correspondingmethod. The values indicated in brackets refer to
the MAEs after the bilateral filtering of the corresponding depth maps. This comparison is
derived from the work of Agresti et al. [20].
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In literature and in life we ultimately pursue, not conclu-
sions, but beginnings.

Sam Tanenhaus

8
Conclusion and Future Work

The objective of this work was the development of a technique for backscattering vector es-
timation given the raw ToF data acquired by the camera. We started from the idea of using
a neural network architecture to learn the typical reflection structure of the light in a real
environment and use it as strong prior to optimize the backscattering vector estimation. We
proposed a deep leaning approach based on two models. A predictive model which takes in
input the raw data and produces in output the most likely representation of the correspond-
ing backscattering vector, and a generative model that converts the compressed representa-
tion in the final output estimation. We focused on the assumption that the MPI effect is
generated only by two specular reflections of the light inside the scene. We proceeded devel-
oping three methods, working either at single pixel-level and at local level. The last method,
called BVE_2srl, makes use of the spatial correlation on the input data to improve the final
prediction and turns out to be the best performing one.

Experimental results confirm the effectiveness of the proposed approach showing perfor-
mance comparable to other state-of-the-art algorithms for MPI correction. On the three
real datasets, it is outperformed only by the unsupervised domain adaptation technique pro-
posed by Agresti et al. [20]. This is highly encouraging, since we achieved these results
in the sub-optimal two specular reflections assumption and optimizing our network only
on synthetic data. The network during the training sees only random synthetic data, ob-
tained through a very simple simulation process that do not consider many real-world phe-
nomenons. The fact that the unsupervised domain adaptation technique performs better
than our approach in the datasets S4 and S5 is not surprising since it has been optimized on
similar real data without any restriction.

We think the proposed approach has a great potential and that relaxing some restrictive
simplifying assumptions it would be able to reach very high levels of accuracy. In particu-
lar, the generativemodel can be substituted by amore sophisticated deep learning generative
algorithm, such as a Variational Auto Encoder (VAE) or a Generative Adversarial Network
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(GAN). In this way, the best latent representation is learned from data and the proposed ap-
proach can account also for diffuse reflections or higher order specular reflections. Removing
the two specular reflections assumption, we expect to be able to produce amore realistic final
estimation and consequently to improve the MPI correction capabilities.

One fundamental aspect to consider in order to proceed in this direction is the availabil-
ity of meaningful training data containing a large number of realistic MPI cases. One first
possibility is to adoptmore advancedToF data simulation techniques, whichmodel physical
effects that in our work have been neglected and use a more accurate model for the noise. To
this end, synthetic transient ground truth can be generated trough the transient render en-
gine developed by Jarabo et al. [27], or we can use the precompute transient scenes provided
by Guo et al. in the FLAT dataset [18]. Then, the actual ToF acquisitions can be simulated
using the ToF Explorer simulator realized by Sony EuTEC starting from the work ofMeister
et al. [40]. The software is able to faithfully reproduce ToF acquisition issues like the shot
and thermal noise, the read-out noise, artefacts due to lens effects, mixed pixels and specially
the multi-path interference effect. The second possibility is to use some domain adaptation
technique to fine tune the network on real ToF data in an unsupervised manner.

Another idea to improve the final prediction is to provide to our predictive model more
informations about the noise distribution in the input data. A roughly estimation of the
noise level in a ToF acquisition can be derived from equation (2.34). With this additional
information, during the training thenetwork should learn to givemore relevance to less noisy
data, finding an optimal strategy to manage them.

Finally, it is possible to extend the proposed idea in order to take advantages also form the
temporal correlation. Since time-of-flight cameras acquire data in real-time, the temporal
correlation across subsequent frames can be exploited to improve the final prediction using
some recurrent neural network techniques.
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A
Datasets Processing Algorithms

Algorithm A.1 Extract depth map from transient scene.
Input:

- Transient scene X ∈ RW×H×N indicating the amount of light returned to the camera sensor
from a certain distance
- Depth resolution dres of the backscattering vector

Output:
- Corresponding depth mapD ∈ RW×H

function Trans2Depth(X , dres)
for all u ∈ {0, . . . ,W}, v ∈ {0, · · · ,H} do
n← argmin(n′ : Xuvn > c · max(Xuv)) ▷Get index of first non-zero element
Duv ← n · dres ▷ Compute the corresponding depth

end for
end function
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Algorithm A.2 Depth map computation using the standard ToF technique.
Input:
- Tensor of raw data V ∈ CW×H×M acquired by the camera.
- Set of modulation frequencies used to acquire the data {f1, . . . , fM}

Output:
- Corresponding depth mapD ∈ RW×H

function ToFDepth(V, {f1, . . . , fM})
fH = max(f1, . . . , fM )
for all u ∈ {0, . . . ,W}, v ∈ {0, . . . , H} do
mH ←Raw data from Vuv corresponding to frequency fH
φH ←Unwrapped phaseArg(mH)
Duv ← c φH

4π fH
end for

end function

Algorithm A.3 Simulate training dataset T1srp

Input:
- Size of datasetM ∈ N
- Spatial resolutionW ×H and number of discretization stepsN
- Depth resolution dres of the backscattering vector
- Maximum xmax backscattering amplitude value

Output:
- Dataset T1srp = {(Vi,Xi,Di)}M−1

i=0

function SimulateT1srp(M,W,H,N, dres, xmax)
for all i ∈ {0, · · · ,M} do
Xi ← zeros(W,H,N) ▷Generate all-zero transient scene
for all u ∈ {0, . . . ,W}, v ∈ {0, . . . , H} do
n← uniform(0, N) ▷ Sample random first peak index
xn ← uniform(xmin, xmax) ▷ Sample random first peak amplitude
Xiuvn ← xn ▷ Set amplitude of the first peak

end for
Di ← Trans2Depth

(
Xi, dres

)
▷ Compute depth map

Vi = ΦXi ▷ Simulate acquired raw ToF data
end for

end function
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Algorithm A.4 Simulate training dataset T2srp

Input:
- Size of datasetM ∈ N
- Spatial resolutionW ×H and number of discretization stepsN
- Maximum offsetO > 0 between first and second peak indices
- Maximum scale factor 0 < S < 1 between the first and the second peak amplitudes
- Depth resolution dres of the backscattering vector
- Maximum xmax backscattering amplitude value
- Multi-path interference probability 0 ≤ PMPI ≤ 1

Output:
- Dataset T2srp = {(Vi,Xi,Di)}M−1

i=0

function SimulateT2srp(M,W,H,N,O, S, dres, xmax, PMPI )
for all i ∈ {0, · · · ,M} do
Xi ← zeros(W,H,N) ▷Generate all-zero transient scene
for all u ∈ {0, . . . ,W}, v ∈ {0, . . . , H} do
n1 ← uniform(0, N) ▷ Sample random first peak index
xn1 ← uniform(xmin, xmax) ▷ Sample random first peak amplitude
Xiuvn1 ← xn1 ▷ Set amplitude of the first peak
if uniform(0, 1) < PMPI then ▷With probability PMPI add the second peak
o← uniform(0, O) ▷ Sample random offset for second peak index
s← uniform(0, S) ▷ Sample random scale factor for second peak amplitude
n2 ← n1 + o ▷ Compute second peak index
xn2 ← xn1 · s ▷ Compute second peak amplitude
Xiuvn2 ← xn2 ▷ Set amplitude of the second peak

end if
end for
Di ← Trans2Depth

(
Xi, dres

)
▷ Compute depth map

Vi = ΦXi ▷ Simulate acquired raw ToF data
end for

end function
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Algorithm A.5 Equalize depth distribution
Input:
- Depth maps {Di ∈ RW×H}M−1

i=0 , to be equalized
- Minimum d eq

min and maximum d eq
max equalized depth values

Output:
- Depth maps {Deq

i ∈ RW×H}M−1
i=0 equalized with uniform depth distribution

function DepthEqualization({Di}M−1
i=0 , d eq

min, d
eq
max)

for all i ∈ {0, · · · ,M} do
di ← mean(Di) ▷ Compute average depth

end for
pdfd(k)← P [di = k] =

No. patches such that di=k
M ▷ Compute average depth pdf

cdfd(k)←
∑k

j=0 pdfd(j) ▷ Compute average depth cdf
for all i ∈ {0, · · · ,M} do
d eq
i ← d eq

min + (d eq
max − d eq

min) · cdfd(di) ▷ Equalize average depth
∆d← d eq

i − di ▷ Compute constant offset
Deq

i ← Di +∆d ▷Add constant offset to the whole depth patch
end for

end function
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Algorithm A.6 Simulate training dataset T2srl

Input:
- Set of depth maps {Di ∈ RW×H}M−1

i=0 , to be used as source of spatial correlation
- Number of discretization stepsN
- Maximum offsetO > 0 between first and second peak indices
- Maximum scale factor 0 < S < 1 between the first and the second peak amplitudes
- Depth resolution dres of the backscattering vector
- Maximum xmax backscattering amplitude value
- Multi-path interference probability 0 ≤ PMPI ≤ 1

Output:
- Dataset T2srl = {(Vi,Xi,Di)}M−1

i=0

function SimulateT2srl({Di}M−1
i=0 , N,O, S, dres, xmax, PMPI )

for all i ∈ {0, · · · ,M} do
Xi ← zeros(W,H,N) ▷Generate all-zero transient scene
o← uniform(0, O) ▷ Sample random offset for second peak index
s← uniform(0, S) ▷ Sample random scale factor for second peak amplitude
for all u ∈ {0, . . . ,W}, v ∈ {0, . . . , H} do
n1 ←

⌊
Diuv
dred

⌋
▷Get first peak index from input depth map

xn1 ← uniform(xmin, xmax) ▷ Sample random first peak amplitude
Xiuvn1 ← xn1 ▷ Set amplitude of the first peak
if uniform(0, 1) < PMPI then ▷With probability PMPI add the second peak
op ← normal(0, σo) ▷ Sample pixel-dependent noise for offset o
sp ← normal(1, σs) ▷ Sample pixel-dependent noise for scale factor s
n2 ← n1 + o+ op ▷ Compute second peak index
xn2 ← xn1 · s · sp ▷ Compute second peak amplitude
Xiuvn2 ← xn2 ▷ Set amplitude of the second peak

end if
end for
Di ← Trans2Depth

(
Xi, dres

)
▷ Compute depth map

Vi = ΦXi ▷ Simulate acquired raw ToF data
end for

end function
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