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Introduction

Recent developments in the fields of confinement, cooling and control of intra-particles interaction

brought a new focus on BCS-BEC crossover. Let’s consider a system of Fermions at very low temper-

ature. We know that under a certain temperature, both for charged that for neutral systems, appear

mechanisms that permit the formation of pairs made by Fermions. Through an external magnetic

field is possible to fix the intereaction between the Fermions and thus the size of the pair. When the

Cooper pair size becomes very small compared to the avarege distance between particles, it is not the

Fermionc behavior of the single particles but the Bosonic behavior of the entire pair to prevail in the

system. Varying the pair interaction there is no simmetry breaking, so we have a continous transi-

tion passing from the BCS regime to the BEC one, just a crossover. In the beginning, the study of

this model was aimed at understanding superconductivity in materials with extremely low electronic

density. In a very diluite superconductor the Cooper pair is always smaller than the avarege distance

between particles, so considerable a Boson. In the firtst chapter we will formally approach the prob-

lem through the Bogoliubov-de Gennes equations, from which we can easly derive the gap and the

number equation under the conditions of zero temperature and no external potential. Then we moved

to the critical temperature, near the phase transition point. A fondamental tool to study the phase

transition is the Landau theory. We will explore the main feature of this theory and its application to

superfluid neutral system: the Ginzuburg-Landau theory. Of particular importance is the work of C.

A. R Sà de Melo, Mohit Randeria and Jan R. Engelbrecht [1]. They solved the microscopic number

equation and the gap equation at the critical temperature. Using the mean-field approximation they

obtain the dissocate temperature of the Cooper pair but not the bosonic condansation temperature.

To obtain the right value in the BEC regime, as we will see in the second chapter, is necessary to go

over the mean-field approximation and considering Gaussian fluctuations of the order parameter. At

the end of the work they derived the Ginzburg-Landau functional and the relations for its parame-

ters. What we wiil do is to study the behavior of the parameters in the mean-field and beyond-mean

filed approximation. These parameters are linked to some charcteristic quantities by simple relation.

Approaching the critical temperature from below one has that this quantities diverge or goes to 0

because of the pair breaking and the disappear of the superfluid phase. In this work we will study

Ginzburg-Landau coherence lenght (diverges) and the critical frequency (goes to zero) for different

values of the coupling. From their behavior we have extract some conditions to have a better superflu-

idity. This systems, for their nature, are best studied at very low temperature where the superfluidity

is more consistent. We will investigate the temperature interval around Tc where the G-L theory is

relaiable. In the last part of the chapter we will evaluate a relataion for the sound velocity directly

from the Ginzuburg-Landau functional. In the second part instead we focus on another characterisctic

superfluid phenomenon: the Josephson effect. This consists in a supercurrent that is established be-

tween two superfluids separeted by an insultator. The Josephson effect can be studied in two modes:



direct current (DC) or alternate current (AC). We will investigate the two possibilities for a Fermionic

neutral system. For this part we will consider a bidimensional system, since the 3D case is has already

been investigated far enough. We analyze the effects of fluctuations, evaluating in the mean-field and

beyond mean-field case the composite Boson chemical potential (µB), the sound velocity (cs), pressure

(P) and the condensate fraction (n0/n). Then we move to the study of Josephson current. In the

first case we consider the critical current without the relative imbalance and fixed phase difference

between the two reservoirs (DC Josephson current). Using the same procedure of [2] we evalutate how

the ratio between the density critical current and the single particle tunneling probability changes

along the crossover. Then comparing this relation with the one of the critical Josephson current we

can understand how this latter changes along the crossover. We use the results in the AC Josephson

effect replacing the coupling-dependent tunneling energy on the junction Josephson equations. We

proceed with the study relative imbalance z[t] and phase difference φ[t] time evolution behavior along

the crossover.
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Chapter 1

Introduction to the BCS-BEC

crossover

There has been great excitement about the recent experimental and theoretical progress in the

Bardeen-Cooper-Schrieffer (BCS) to Bose Einstein condensation (BEC) crossover in ultracold Fermi

gases. The BCS–BEC crossover problem was of little direct experimental interest before the era of

ultracold atoms, because of the difficulties encountered in the realization of ultra-cold systems with

controllable interaction between particles . This situation changed dramatically with the realization

of dilute gases of fermionic alkali atoms with (40K, 6Li) , such as can be cooled into the degenerate

regime and their inter atomic interaction can be tuned via a Feshbach resonance. While the experi-

mental realization of the phenomenon, we now call the “BEC–BCS crossover”, was attained only in

the last few years, theoretical considerations of this issue go back a lot further. In the first part of

this chapter we review some of this history, while then we report the theoretical model that describe

BCS-BEC crossover for a coupled Fermi system.

1.1 Historical background

In this part we shall give a brief review of the history of the BCS-BEC theory [3,4]. While the many

people worked on the theory of Bose-Einstein condensation in liquid helium in the years between

London’s proposal of this phenomenon in 1938 and the work of BCS [5] in 1957, nobody seems notice

that the 4He atom is actually a composite of six fermions. With hindsight this is hardly surprising,

since the minimum energy scale relevant to dissociation of the atom into its fermionic components is

several orders of magnitude greater than that involved in BEC of the liquid, and thus it is usually an

excellent approximation, in the context of the latter, to treat the atom as a simple structureless boson.

The first person to make the explicit suggestion that pairs of fermions (electrons) with an effectively

attractive interaction might form a molecular-like object with bosonic statistics and thus undergo

BEC appears to have been Ogg [6], in the context of a very specific superconducting system (an

alkali metal-ammonia solution); however, Ogg speculated that this mechanism might more generally

be the explanation of superconductivity. This idea was taken up a few years later by Schafroth [7]

and amplified in the paper of Schafroth et al. [8]; however, it proved very difficult to use this approach

to calculate specific experimental quantities. It treats the system as composed by non-overlapping
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composite bosons which undergo Bose-Einstein condensation at low temperature. Following the work

of Bardeen Cooper and Schrieffer [5], furtherwork was done, mainly by Blatt and coworkers, along the

lines developed in ref. [8]; see for example ref. [9]. This work emphasized the point of view that Cooper

pairing in a weakly interacting Fermi gas could be viewed as a form of BEC (of pairs of electrons); the

qualitative considerations developed in it foreshadow some of those that resurfaced subsequently in

the context of the crossover problem. However, the interest in the Cooper pair and composite Bosons

has been kept disjoint for some time, until theoretical interest arose for unifying them as two limiting

(BCS and BEC) situations of a single theory where they share the same kind of broken symmetry. One

important development that, at least with hindsight, pulls rather strongly in the opposite direction

is the seminal paper of Yang [10] on off-diagonal long-range order (ODLRO). Yang showed that the

generalized definition of BEC given by Penrose and Onsager [11] for a simple Bose system such as 4He

could be generalized to apply to a fermionic system provided one replaces the single-boson density

matrix by the two-fermion one. However, it seems to have been some time before the full significance

of this observation was appreciated by the community. Meanwhile, attempts were being made to apply

BCS-like ideas to Fermi systems 3He other than the electrons in metals. In the case of liquid and

heavy nuclei, the situation seemed to be fairly close to the original BCS work, in the sense that the

pairing interaction was likely to be so weak that the radius of any pairs formed would be much greater

than the inter-fermion distance, just as it is in (pre-1970s) superconducting metals. The theory of the

BCS-BEC crossover took shape initially through the work by Eagles [12] with possible applications

to superconducting semiconductors, and later through the works by Leggett [13] and Nozieres and

Schmitt-Rink [14] where the formal aspects of the theory were developed at zero temperature and

above the critical temperature, respectively. The interest in the BCS-BEC crossover grew up with

the advent of high-temperature (cuprate) superconductors in 1987, in which the size of the pairs

appears to be comparable to the inter-particle spacing. Related interest in the BCS-BEC crossover

soon spread to some problems in nuclear physics, but a real explosion of this activity appeared starting

from 2003 with the advent of the fully controlled experimental realization essentially of all aspects of

the BCS-BEC crossover in ultra-cold Fermi gases. This realization, in turn, has raised the interest in

the crossover problem especially of the nuclear physics community, as representing an unprecedented

tool to test fundamental and unanswered questions of nuclear many-body theory. The Fermi gas

at the unitary limit (UL), where fermions of opposite spins interact via a contact interaction with

infinite scattering length, was actually introduced as a simplified model of dilute neutron matter, and

the possibility to realize this limit with ultra-cold atoms was hence regarded as extremely important

for this field of nuclear physics. As these examples show, there are several aspects of the BCS-BEC

crossover which are of broad joint interest to both ultra-cold atoms and nuclear communities.
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1.2 BCS-BEC crossover

In this chapter we want to illustrate the fundamental characteristics of the BCS-BEC crossover phe-

nomenon and the mechanism to tune the interaction between particles. We will consider a system

of coupled Fermions at zero temperature in absence of an external potential. For simplicity we treat

a single channel s-wave interaction. The Hamiltonian density of a dilute and interacting two-spin

component Fermi gas in a box of volume V is given by:

Ĥ =
∑
σ

∫
drdΨ̂†σ(r)

[
− ~2

2m
∇2 − µσ

]
Ψ̂σ(r) + g

∫
dr3Ψ̂↑σ(r)Ψ̂†↓(r)Ψ̂↓(r)Ψ̂↑(r) (1.1)

where the sum σ =↑, ↓ is over the spin component, d is the dimension of the system, µσ is the single

Fermion chemical potential and g < 0 the attractive interaction strength. The field operator Ψ̂σ(r)

destroys a Fermion of spin σ in the position r, while Ψ̂†σ(r) creates a Fermion of spin σ in the position

r. They are Grassman operators so they anticommute:[
Ψ̂σ(~r, t), Ψ̂†σ′(~r

′
, t

′
)
]

= Ψ̂σ(~r, t)Ψ̂†σ′(~r
′
, t

′
) + Ψ̂†σ′(~r

′
, t

′
)Ψ̂σ(~r, t) = δ(~r − ~r‘)δ(~t− ~t‘)δ(σ − σ′) (1.2)

The total number of particles N=N↑+N↓ could be written in function of the field operator Ψσ(r):

N =

∫
dr3 < n̂(r) > (1.3)

where n̂(r) is the number density operator:

n̂(r) =
1

V

∑
σ=↑,↓

Ψ̂†(r)Ψ̂σ(r) (1.4)

The Heisenberg equation of motions associated to (1.1) is:

i~
∂

∂t
Ψ̂↑ =

[
− ~2

2m
− µ+ gΨ̂†↓Ψ̂↓

]
Ψ̂↑ (1.5)

The interacting term could be treated within the man-field approximation replacing

Ψσ(r) =< Ψσ(r) > +δΨσ(r), where δΨσ(r) is considered a small fluctuations respect to the mean-field

term. Neglecting all the term higher than the second order, it reads:

Ψ̂†↓Ψ̂↓Ψ̂↑ =< Ψ̂†↓Ψ̂↓ > Ψ̂↑ + Ψ̂†↓ < Ψ̂↓Ψ̂↑ > + < Ψ̂†↓Ψ̂↑ > Ψ̂↓ (1.6)

We introduce the gap function ∆(~r, t) = g < Ψ↓(~r, t)Ψ↑(~r, t) >. We know that the gap function is the

required energy to destroy the pair. It rappresent the order parameter of the superconductive phase

transition and the term Θ(~r, t) =< Ψ̂↓(~r, t)Ψ̂↑(~r, t) > is the condensate wave function of the pair.

Remembering also the definition of number density operator, the interacting term becomes:

gΨ̂†↓Ψ̂↓Ψ̂↑ = g
[
< n↓(~r, t) > Ψ̂↑ + Ψ̂†↓∆(~r, t)+ < Ψ̂†↓Ψ̂↑ > Ψ̂↓

]
(1.7)

Now we can apply another approximation in order to further simplify the situation. We neglect the

third term, that rapresents the destruction process of a Fermion with spin σ =↑ and creation of one

with spin σ =↓. We neglect also the Fock term < Ψ̂†σΨ̂σ >. In this way the Heisenberg equation of
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motion becomes:

i~
∂

∂t
Ψ̂↑ =

[
− ~2

2m
− µ

]
Ψ̂↑ + ∆(~r, t)Ψ̂†↓ (1.8)

To solve it we rewrite the field operator using the standard stationary-state Bogoliubov transformation:

Ψ↑ =
∑
k

[
uk(r)ĉk↑e

−iEk↑t/~ + v∗k(r)ĉ
†
k↓e

iEk↓t/~
]

(1.9)

Ψ†↓ =
∑
k

[
u∗k(r)ĉ

†
k↓e

iEk↓t/~ + vk(r)ĉk↑e
−iEk↑t/~

]
(1.10)

where ĉk↑,ĉk↓,ĉ
†
k↑,ĉ

†
k↓ are the quasi-particle Fermi operators and Ek = ~ωk is the energy of these

quasi-particles. The coefficient uk(r) and vk(r) are renormalized as uk(r)
2 + vk(r)

2 = 1. Instead the

quasi-particles operators follow this condition on the thermal average:

< ĉ†kσ ĉk‘σ‘ >= f(Ek)δk,k‘δσ,σ‘ (1.11)

where f(Ek) = 1
eEk/kBT +1

is the Fermi distribution function. Replacing the transformation in the gap

function, mean-density and in the condensate number pairs one obtains:

∆(r) = −g
∑
k

uk(r)v
∗
k

[
1− 2f(Ek)

]
(1.12)

nσ =
∑
k

[
|vk(r)|2 + f(Ek)(|uk(r)|2 − |vk(r)|2)

]
(1.13)

N0 =

∫
ddr|Θ(r, t)|2 =

∫
d3r

∑
k

|uk(r)|2|vk(r)|2
[
1− 2f(Ek)

]2
(1.14)

With this approach the condensate wave function becames indipendent of time, it’s stationary. In-

stead replacing the Bogoliubov transformation in the Heisenberg equation of motion one obtains two

equation, one for uk(r) and one for vk(r). They could be written in matrix form:(
Ĥ0 ∆(r)

∆∗(x) −Ĥ0

)(
uk(r)

vk(r)

)
= Ek

(
uk(r)

vk(r)

)
(1.15)

where Ĥ0 = −~2∇2

2m − µ. These are called Bogoliubov-de Gennes (BdG) equations which allow us

to derive uk(r) and vk(r). To solve the BdG equation we proced considering that in our case of no

external potential we could write uk(r) and vk(r) like plane wave:

uk(r) = uke
ik·r (1.16)

vk(r) = vke
ik·r (1.17)

Replacing these relations in the BdG equations one obtain the following solutions for uk and vk:

uk =
∆(r)vk

Ek − (~
2k2

2m − µ)
(1.18)

vk =
∆∗(r)uk

Ek + (~
2k2

2m − µ)
(1.19)
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Substituing (1.19) in (1.18) one obtain the following relation for Ek:

Ek =

√
(
~2k2

2m
− µ)2 + |∆(r)|2 (1.20)

This is the single particle exitacions energy. So the quasi-particle operator b̂kσ could be associated to

particles that mediate the excitations of the pair. To obtain indipendent relations for uk(r) and vk(r)

it’s necessary to open the matrix of BdG equations in the two equations:

Ekuk =
(~2k2

2m
− µ

)
u2
k + ∆(r)vk (1.21)

Ekvk =
(~2k2

2m
− µ

)
v2
k + ∆(r)uk (1.22)

We multiply (1.21) for u∗k and (1.22) for v∗k and then we make the difference between the two. Replacing

(1.12) in ∆(r) and remembering that u2
k(r) + v2

k(r) = 1 one obtain the following relations:

u2
k =

1

2

[(~
2k2

2m − µ)

Ek
+ 1
]

(1.23)

v2
k =

1

2

[
1−

(~
2k2

2m − µ)

Ek

]
(1.24)

Now we have all the information to evaluate the gap function, the mean density and the number of

condensated paris. All these quantities depend on the temperature through the Fermi distribution

function. Since we are looking to describe the main features of the BCS-BEC crossover we chose the

temperature with the easiest case to treat. Fixing T=0 the Fermi distribution function f(Ek) becomes

zero. The gap function and the mean density relations reads:

∆(r) = −g
∑
k

uk(r)vk(r) (1.25)

n =
1

V

∑
σ

nσ =
2

V

∑
k

|vk|2 (1.26)

In the continuos limit the summation can be replace with the integral
∑

k →
V

(2π)d

∫
ddr. Then

replacing (1.23) and (1.24) one obtain the number equation:

n =
1

(2π)d

∫
ddk
[
1−

(~
2k2

2m − µ)

Ek

]
(1.27)

and the familiar BCS gap equation:

1

g
= − V

(2π)d

∫
ddk

1

2Ek
(1.28)

Unfortunately due to the choice of the contact potential, the gap equation diverges in ultraviolet.

This divergence is logarithmic in two dimensions and linear in three dimensions. We continue the

discussion with the tridimensional case. The approach to the bidimensional one, as we will see in the

third chapter, is pretty much the same but with some substantial physical difference. In 3D BCS one

solves the problem inserting a cutoff to the integral. Since in this regime the interaction is weak, the

single particles cannot have high energy otherwise they would not form pairs. Our gool is to describe
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the BCS-BEC crossover so in the BEC regime, where most of the partcles will condense, we have to

consider strong coupling between all the particles. It’s necessary to eliminate the ultraviolet cutoff in

the integral. To solve the question one writes the Lippman-Schwinger equation approximated at the

first order [13,15]:
1

g
=

m

4π~2as
− 1

(2π)3

∫
d3k

1

2εk
(1.29)

where the volume V was set equal at 1 for semplicity. The εk = ~2k2
2m is the single particle energy.

Instead as is the scattering lenght of the interacting process. For low energy interaction as is related

to the elastic cross σe section through the relation σe = 4πa2
s. As we can see the integral in (1.29)

is divergent in the same way of the one in (1.28), but with opposite sign. So replacing this relation

in (1.28) the divergence will disappear. Before to do that it’s good to spend some words on (1.29).

To describe the BCS-BEC crossover it’s necessary to increase the attractive potential beween the

Fermions. In the next section we will see in detail how to do it with an external magnetic field. Now

let’s see how the strenght interaction varies as the scattering lenght varies. In the BCS regime the

streng coupling is g → 0− and, as we said, we can consider the integral with the cutoff Γ. The (1.29)

reads:
m

4π~2as
=

1

g
+

mΓ

2π2~2
(1.30)

The leading term on the right-hand side of the relation is 1/g that diverges negatively. This means

that in the BCS regime as → 0−. In the deep BEC regime instead we would have g → −∞ and

the divergent integral without the ultraviolet cutoff. In the BEC regime as → 0+. Generally the

description is done in reference to the adimensional quantity 1/kFas where kF is the Fermi wave

vector of the non-interacting system. In this way 1/kFas passing from −∞ to ∞ going from the BCS

to the BEC regime. What happen in the middle where 1/kFas = 0? To find out we have to explicit

the scattering lenght in the relation (1.30) in this way:

as =
πgm

4π2~2 + 2gmΓ
(1.31)

the limit 1/kFas = 0 corresponds to a positively or negatively divergent scattering length. The as

diverges for the values of the cougling strenght:

g = −2π2~2

mΓ
= −g0 (1.32)

For semplicity of notation we can write g in unity of g0. So for g = −1+ we have as = −∞ and for

g = −1− the scattering lenght is as = +∞. The fact that crossing g0 the scattering lenght changes

the sign means that around this value bounded states emerge. In the crossover region |kFas| > 1, the

pair size becomes of the order of interparticle spacing and thus the system con no longer be regardered

as either a wealkly interactiong Bose or Fermi gas. In this region the pairs are so bounded to form

molecules. In particular, the unitary limit, 1/kFas = 0, gives rise to a universal strongly interacting

Fermi gas composed of molecules. In the next two chapters we will see that the unitary limit is a

priveliged region because it is the meeting point between the BCS and the BEC properties. Clarified

the link between the coupling strenght and the scattering lenght we can substitute the (1.29) in (1.28).

One obtains the regularized gap equation:

− m

4π~2as
=

1

2

∫
d3k
( 1

Ek
− 1

εk

)
(1.33)
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The gap equation and the number equation have to be solved simultaneosly in order to determine the

gap energy and the chemical potential as functions of as. In three dimensions is convinent to introduce

the following dimensionless quantities [16]:

x2 =
~2k2

2m∆

x0 =
µ

∆

ξx =
~2k2
2m − µ

∆
= x2 − x0

Ex =
Ek
∆

=
√
ξx + 1

In this way (1.33) and (1.27) reads:

− 1

as
=

2

π
(2m∆)1/2I1(x0) (1.34)

n =
1

2π2
(2m∆)3/2I2(x0) (1.35)

where:

I1(x0) =

∫ ∞
0

dx
( 1

Ex
− 1

x2

)
x2 (1.36)

I2(x0) =

∫ ∞
0

dx
(

1− ξx
Ex

)
x2 (1.37)

These integrals had been evaluated in detail from Strinati et al. in [4, 16] with the use of complete

elliptic integrals. Another very useful quantity to be plotted is the condensated fraction, namely the

number of pairs that condense in the ground state over the total number of couples. Replacing (1.18)

and (1.19) in (1.14) and using the adimensional formalism introduced above, one obtains:

N0

N
=

π

8
√

2

√
µ
∆ +

√
1 + ( µ∆)2

I2( µ∆)
(1.38)

In Fig.(1.1) we reported the Gap energy, the chemical potential and the condensated fraction as a

function of 1/kFas, along the crossover from BCS to BEC regime. In the panel (a) of the figure we

can see the gap energy growing monotonically. From the BCS to BEC regime the Fermions are more

attracted to each other and so the pair requires more energy to be destroyed. In BCS theory the gap

energy at zero temperature depends linearly on the critical temperature,∆0 = 1.764kBTc. This means

that the critical temperature of a homogeneus Fermi system under mean-field theory increases as the

gap energy. What we expected instead is that the critcal temperature in the BEC regime converges

to the transition temperature of a BEC system of mass 2m: Tc ' 0.218EF . Another problem is

related to the mean-field approximation There are cases when the BdG equations can be replaced

by suitable non-linear differential equations for the gap parameter ∆(r), which are somewhat easier

to solve numerically and conceptually more appealing than the BdG equations themselves. These
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non-linear dierential equations for ∆(r) are the Ginzburg-Landau (GL) equation for the Cooper-pair

wave function and the Gross-Pitaevskii (GP) equation for the condensate wave function of composite

bosons. As a matter of fact, it turns out that the GL and GP equations can be microscopically derived

from the BdG equations in two characteristic limits; namely, the GL equation in the weak-coupling

(BCS) limit close to Tc [17] and the GP equation in the strong-coupling (BEC) limit at T=0 [18].

Staying focus on the treatment at zero temperature under the mean-field approach we report the GP

equations. From the BdG equations one obtains the GP equation for a gas of dilute composite bosons

of mass 2m in terms of the order paramete ∆(r), in the form [4]:

−~2∇2

2m
∆(r) +

4πaB
mB

∆(r) = µB∆(r) (1.39)

where mB = 2m is the mass of the couple, µB is the chemical potential of the composite boson,

defined by µB = 2µ + ε0 where ε0 = ~2/ma2
s is the binding energy of the molecule. This is the

energy that keep togheter the molecule. The term 4πaB
mB

is the strenght of the repulsive interaction

between the Bosons. The mean-field equation correctly recover the repulsion but with an incorrect

scattering lenght aB = 2as, which is overstimate compared with the exact result aB ' 0.6as obtained

from four-body dimer-dimer calculations [19]. Fluctuations inside molecules become important at

short distances. The energy of scale to consider and over which it no longer makes sense to speak

of Fermion pairs, is given by the binding energy ε0. In [20] K.Huang, Z.Qiang and L.Y showed in

detail how to apply this limit and what they obtained is a scattering lenght aB = 0.56as. In the next

chapter we will see how including Gaussian thermal fluctuations to the order parameter can also solve

the temperature question. Anyway the mean-field approach provides an intuitive and qualitatively

reasonable description of the BCS-BEC crossover. Indeed, the increase of the coupling brings out the

Bosons behavior of the couple in spite of Fermionic behavior of the single particles. In the BCS limit

µ = EF , then it decreases and around the value of 1/kFas = 0.5 becomes negative. In the BEC regime

the chemical potential becomes µ = ε0/2 and thus µB=0. This is the value of the Bosons chemical

potential at T=0 in BEC. But what characterized a Bose-Einstein condensate is the present of a

macroscopic number of particles in the ground-state. In panel (c) we can see that from BCS to BEC

this number increases and around the value of 1/kFas = 0.5 the 80% of the couples is condensated.

This is in general the reference value for the BEC.
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Figure 1.1: (a) Gap energy ∆0, (b) chemical potential µ and (c) the condensate fraction N0/(N/2) vs (kFas)
−1

at T=0 for homogenus system at mean-field level.
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1.3 Tunable Interactions

In the following we describe the basic physics of magnetically tunable Feshbach resonances which allow

to change the interaction between two Fermions simply by changing an external magnetic field [3,4,21].

As we shall see below, in general, one needs a two-channel model to describe a Feshbach resonance:

two fermions in the “open channel” coupled to a bound state in the “closed channel”. An energetically

accessible reaction channel is referred to as an open channel, whereas a reaction channel forbidden by

energy conservation is referred to as a closed channel. We have to consider the spin structure ot the

atom, formed by the nuclear and the electronic one. What we are interested in is the possibility for

this two to interact among each other. This allows not only the atom to change its spin, nuclear or

electronic, which are therefore no longer constant in motion, but also during a collision the internal

states of the atom can change opening up new channels for scattering. Quite generally, a Feshbach

resonance in a two-particle collision appears whenever a bound state in a closed channel is coupled

resonantly with the scattering continuum of an open channel. The ability to tune the scattering length

by a change of an external magnetic field B relies on the difference in the magnetic moments of the

closed and open channels. This difference allows the experimentalist to use an external magnetic field

B as a knob to tune across a Feshbach resonance. The resulting interaction between atoms in the open

channel can be described by a B-dependent scattering length that, in the vicinity of a resonance, has

the form:

a(B) = abg

(
1− ∆B

B −B0

)
(1.40)

Here abg is the off-resonant background scattering length in the absence of the coupling to the closed

channel while B and B0 describe the width and position of the resonance expressed in magnetic field

units. In the specific example of 6Li the electron spin is essentially fully polarized and aligned in the

same direction of the three lowest hyperfine states. Thus, two colliding 6Li atoms are in a continuum

spin-triplet state in the open channel. The closed channel has a singlet state that can resonantly mix

with the open channel as a result of the hyperfine interaction that couples the electron spin to the

nuclear one. A key property is that the singlet state supports a bound state, which we will seeto be

the responsible for resonance. This molecular state has a different magnetic moment respect the two

colliding atoms, the difference in energy can therefore be manipulated by a magnetic field:

∆E = ∆µB (1.41)

By modulating field B is possible to vary the difference between the energy of the particles in the

scattering process and the energy of the bound state, the latter is closer to the scattering energy, the

more likely it is for interacting particles to perform one transition to the bound state. This is the

basic mechanism of Feshbach resonance. As we can see from Fig.(1.3,A) at the magnetic field value

B0 there is no more energy difference between the closed and the open channel. In this way two

particles can form a bounded state. This situation results in a change of sign and divergence in the

scatterig lenght, in line with that reported in the previous section. To get an intuitive feel for the

scattering length, we do not need to understand the intricacies of the two-channel model of a Feshbach

resonance. Instead, we can look at the much simpler single-channel problem of two particles with a

short-range interaction. This simplified discussion is quite sufficient to understand much of the current

experimental and theoretical literature on cold Fermi gases. The technical reason for the validity of

this single-channel model is that most of the experiments are in the so-called broad resonance limit,
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Figure 1.2: Coupling of closed and open dimer scattering channels, which can be displaced relative to each other
by the coupling to a magnetic field B. (b) The corresponding scattering length vs the magnetic field.

where the effective range (which we do not discuss here) of the Feshbach resonance is much smaller

than k−1
F . This ensures that the fraction of closed-channel molecules is extremely small, a feature

directly confirmed in experiments. Consider the problem of two fermions with spin | ↑> and spin | ↓>
interacting with a two body potential with range r0. The effective interaction is independent of the

detailed shape of the potential thus we can examine it for the simplest model potential— a square

well of depth V0 and range r0 — to get a better feel for the scattering length as as a function of V0.

Figure 1.3: Coupling of closed and open dimer scattering channels, which can be displaced relative to each other
by the coupling to a magnetic field B. (b) The corresponding scattering length vs the magnetic field.

As shown in Figure 2b, as < 0 for weak attraction, grows in magnitude with increasing V0, and diverges

to −∞ at the threshold for the formation of a two-body bound state in vacuum. The threshold for a

square well is V0 = 2π2

mr20
, this is very similar to the relation (1.32). Once this bound state is formed, the

scattering length changes sign and decreases with increasing V0. Above the threshold, a > 0 has the

simple physical interpretation as the size of the bound state, whose energy is given by ε0 = −~2/ma2
s.

In tridimensional systems it’s possible yo have a bounded state only over a certain value of the coupling

strenght and therefore a certain value of V0.
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Chapter 2

Ginzburg-Landau theory for 3D

BCS-BEC crossover

The BCS and BEC theory describe system of particles in a superfluid phase. In both cases the phase

transition happens through a spontaneaus simmetry breaking. Under a certain temperature, called

critical temperature Tc, the system admits a non-zero value for the order parameter of the phase

transition in the equilibrium state. This order parameter could be the Cooper pair wave function

for the BCS theory, the condensated wave function for the BEC theory. In proximity of the critical

temperature the order parameter is small and therefore also the energy associate to the superfluid

part of the system. An important tool to study this situation is the Landau theory [22]. This is a

phenominologial mean-field theory of phase transition. It is based on some assumptions:

• It must exist a uniform order parameter such that it is zero for T > Tc and non-zero for T < Tc.

• The free energy is an analitic function of the order parameter.

• The free energy relation must satisfy the underlying symmetry of the system.

• Equilibrium state correspond to the absolute minima of the free energy.

Since the free energy is analytic it can be formally expanded in power of the order parameter. This

approach is used to describe many case of phase transition, one of the most popular is the Ising

model for the Ferromagnetic phase transition. One of the great accomplishments of this theory is its

description of the non-analytic behavior at phase transitions in terms of the discontinuos jumps in the

position of the absolute minimum of a function which is itself varying continuously with the quantity

that control the phase transition; that could be the temperarute for superfluidity or the magnetic field

for ferromagnetism. In this chapter we will apply this theory to the BCS-BEC crossover. Our starting

point is of course the Ginzburg-Landau (G-L) theory [23]. This is a phenomenological theory which

describes type-I superconductor. For a D-dimensional system of area LD the super component Fs of

the energy is given by:

Fs =

∫
LD

dDr
(
a(T )|Ψ(r)|2 +

b

2
|Ψ(r)|4 + γ|∇Ψ(r)|2

)
(2.1)

where a(T), b, γ are the G-L parameters. The temperature dependence is only on the paramter a(T)

because minimizing the energy functional the quadratic term becomes linear and its coefficient it must
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be zero in order to have a finite value of Ψ(r) in the equilibrium state. In this way a(T) could be

expandend around Tc in the form:

a(T ) =
da(T )

dT

∣∣∣
T=Tc

(T − Tc) (2.2)

Later, a version of Ginzburg–Landau theory was derived from the Bardeen–Cooper–Schrieffer micro-

scopic theory by Lev Gor’kov [17]. In the next section we will see in detail how it’s possible to obtain

a relation for the energy form-like the G-L functional starting from the density Hamiltonian of the

system.

2.1 Ginzburg-Landau functional

Let’s consider a 3D Fermionic neutral system in a unit volume with the Hamiltonian density:

H = Ψσ(x)
[
−∇

2

2m
− µ

]
Ψσ(x)− gΨ↑(x)Ψ↓(x)Ψ↑(x)Ψ↓(x) (2.3)

where the first term is the free particle term and the second is the interaction term. This Hamiltonian

described a system with single-channel s-wave interaction where g > 0 is the constant interaction.

We use the functional integral formulation to study the finite temperature crossover. Like in [1] we

proceed with the integral formulation of the effective action that appears in the definition of the

partition function Z. This can be done introducing the Hubbard-Strotonovich bosonic field ∆(x). The

Hamiltonian density becomes:

H = Ψσ[−∇
2

2m
− µ]Ψσ +

|∆|2

g
−∆Ψ↓Ψ↑ −∆Ψ↑Ψ↓ (2.4)

The action and partition function are related to the Hamiltonian density through the relation:

S =

∫ β

0
dτ

∫
dx[Ψσ(x)∂τΨσ(x) +H] (2.5)

Z =

∫
D[∆,∆]D[Ψσ,Ψσ]exp(−Sσ[∆,∆,Ψσ,Ψσ]) (2.6)

Integrating over the fermionic field Ψσ and obtain the effective action:

Seff [∆(x)] =

∫ β

0
dτ

∫
dx
|∆(x)|2

g
− Tr

[
lnG−1[∆(x)]

]
(2.7)

It is written in terms of the Nambu propagator:

G−1(x, x′) =

[
−∂τ + ∇2

2m + µ ∆(x)

∆(x) −∂τ − ∇
2

2m − µ

]
× δ(x− x′) (2.8)

and the trace in the Seff is over space ~x, imaginary time τ and Nambu indicies. The G-L theory

works near the critical temperature where the order parameter is small. In the effective action it is

the field ∆(x), that rappresents the gap energy, to be small. We can move to the momentum space

and expand the effective action in function of ∆(q). Since we are looking to describe the system in its
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equilibrium state the first order term of the expansion is 0.

Seff [∆,∆] =
∑
q

|∆(q)|2

Π(q)
+

1

2

∑
q1,q2,q3

b1,2,3∆1∆∗2∆3∆∗1−2+3 + ..... (2.9)

where Π is the coefficient for the second order terms |∆(q)|2 with all the grandient orders of ∆(q). To

obtain a relation formally equal to the G-L funciontal we have to consider only the quadratic term,

the quadratic gradient term and the quartic term. So the coefficient Π reads:

Π−1(q, 0) = a+
c|q|2

2m
+ .... (2.10)

The parameters have the following form:

a = − m

4πas
+
∑
k

[
1

2εk
+
tanh(βξk/2)

2ξk
] (2.11)

b =
∑
k

[
tanh(βξk/2)

4ξ3
k

− βsech4(βξk/2)

8ξ2
k

] (2.12)

c =
∑
k

[
tanh(βξk/2)

4ξ2
k

− βsech2(βξk/2)

8ξk
] (2.13)

where ξk = εk − µ with εk = ~2k2/2m. The exponent Seff [∆,∆] appearing in the integral for the

partition function (Eq.(2.6)) satisfies the assumptions of the Landau theory. The absolute minimum

of Seff [∆,∆] dominates Z in the stationary phase approximation [24], this mean that the minimum

of Seff corresponds to the equilibrium state of the system. So the bosonic field ∆(x) has to play the

role of order parameter. We will see in the next chapter that the parameter a(T) is 0 at T=Tc, like

in the Ginzburg-Landau functional. What it’s generally done to study the system near the critical

temperature is to expand it at the first order:

a(T ) =
da(T )

dT

∣∣∣
T=Tc

(T − Tc) = α(T − Tc) (2.14)

α =
∑
k

1

2kBT 2
c

sech2[
εk

2kBTc
] (2.15)

We can easly see that α is positive so the parameter a(T) is negative below the critical temperature

and positive above. In the next section we will see that the parameters b and c are always positive, so

for T > Tc we have the minimum for Seff at ∆(x) = 0, instead for T < Tc we have the minimum for

∆(x) 6= 0. So ∆(x) has the same behavior of the order parameter in the Landau theory. It’s reasonable

to use Seff as Ginzuburg-Landau functional. Minimazing the Seff one obtain the Ginzburg-Landau

equation:

δSeff [∆,∆]

δ∆
= 0 (2.16)[

α(T − Tc) + b|∆(x, t)|2 − ~2c

2m
∇2
]
∆(x, t) = 0 (2.17)
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In the standard Ginzburg-Landau equation appears the Cooper pair field Ψ(x, t) instead of ∆(x, t).

It’s possible to pass to the standard one replaicing ∆(x, t) = Ψ(x, t)/
√

2c. In this way one obtains:

[A(T − Tc) +B|Ψ(x, t)|2 − Γ

2
∇2]Ψ(x, t) = 0 (2.18)

where:

A =
α

2c
(2.19)

B =
b

4c2
(2.20)

Γ =
~2c

4mc
=

~2

4m
(2.21)

are the G-L parameters in the standard formulation.

2.2 Gap equation and Number equation

The G-L parameters depends by the critical temperature, the critical chemical potential and scattering

lenght. To determine this triad of values we need to solve a system of equations that involves them.

The first one is the gap equation calculated by minimizing the effective action ∂Seff (∆(x)/∂∆(x)=0

(saddle point condition):
1

g
=
∑
k

tanh(ξk/2T0)

2ξk
(2.22)

We notice that the gap equation is indipendent by the field ∆(x). The T0 appering in the gap equation

is simply the temperature of the most stable state of the system. Replacing the summation with the

integral we encounter a divergence and, like in the first chapter, this can be eliminated by replacing

the Lippman-Schwinger equation. The regularized gap equation with the scattering lenght instead of

the constant coupling g is:

− m

4π~2as
=
∑
k

[ tanh(ξk/2T0)

2ξk
− 1

2εk

]
(2.23)

Fixing the scattering lenght 1/kFas we have two unknown: µ and T0. We need another equation, thus

we introduce the number equation N=-∂Ω/δµ, where Ω=Seff [∆ = 0]/β is the grand potential. The

number equation instead depends by the ∆(x). As first attempt we subtitute ∆(x) = 0 everywhere,

this condition corresponds to the mean-field approximation at critical temperature. The number

equation obtained is:

n = n0(µ, T ) =
∑
k

[
1− tanh(

ξk
2T

)
]

= 2f(Ek) (2.24)

Where f(Ek) is the Fermi function. Solving the Eq.(2.23) and Eq.(2.24) we can estimate the saddle

point T0 and µ0, as a function of as. The n in the number equation is the number density of the

system and in our case is fixed. What it’s obtained is a T0 that grows continuously without showing the

phase transition from BCS to BEC. The problem is that the mean-field approximation is not enough

to describe properly the system. We can check this fact evaluating the applicability of the mean-field

approximation by the Ginzburg-Levanyuk criterion [25]. This is obtained studying the heat capacity

around the critical temperature for mean-field and and with small fluctiations. The mean-field case

shows a jump of the heat capacity at the critical temperature instead the beyond mean-field case has
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a divergence. Comparing the two cases it’s possible to estimate the range of temperature where the

effect of fluctuations are small respect to the mean-field jump. So the mean-field approximation is

valid only if we are considering a temperature T that satisfies the relationship:

T − T0 > Gi3DT0 (2.25)

where Gi3D is the Ginzuburg number:

Gi3D =
( BT

1/2
0

8πΓ3/2A
3/2

)2
(2.26)

Using the relations obtained in the previous section for the G-L parameters we can study the behaviour

of Gi along the crossover. In the BCS regime T − T0 is about 10−14, like ordinary superconductors.

Figure 2.1: GiT0 in function of the coupling

This value is much beyond the experimental sensitivity. In this case the mean-field approximation

works very well. From BCS to BEC it grows constantly. This means that in the BEC regime the

fluctuations became too important near the critical temperature and the mean-field approximantion

is no more good to describe the system. In the strong coupling regime effects emerge due to the

formation of very bounded pairs. To describe correctly the system in the BEC regime we look at

Gaussian thermal fluctuations about the trivial saddle point. The action expanded to second order in

∆(x) is given by:

SGauss = Seff [∆ = 0] +
∑
q,ωq

Π−1(q, ωq)|∆(q, ωq)|2 (2.27)

where Π−1 is the same of Eq.(2.9) and ωq = i2lπ/β. In this case we don’t stop the expansion to the

first order gradient term and quartic term but we will consider all the gradient orders of the quadratic

term. Form SGauss we obtain a new thermodynamic potential Ω = Ω0 − β−1
∑

q,ωq
lnΠ(q, ωq), which,

differentiated by µ, gives the beyond mean-field number equation. Following Nozières Schimtt-Rink ap-

proach [26] one can rewrite Ω in term of phase shift defined by Π(q, ωq±i0+) = |Π(q, ω)|exp[±iδ(q, ω)].
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The number equation incorporating the effects of Gaussian fluctuations is given by:

n = n0(µc, Tc) +
∑
q

∫ ∞
−∞

dω

π
nB(ω)

∂δ

∂µ
(q, ω) (2.28)

where n0 is Eq(2.24), nB = 1/[exp(βω)−1] is the Bose function and δ(q, ω) = −Arg(1−Π−1[q, ω±i0+)].

Now, like in the mean-field case, we solve the system of (2.28) and (2.23). It’s interesting to note

including Gaussian fluctuations leads to a change of Tc, and therefore µc, in the mean-field part of n

that are different respect to the pure mean-field case.

Figure 2.2: The critical temperature in function of the coupling. The red dotted line (T0) is mean-field critical
temperature while the black dashed line (Tc) is the beyond mean-field critical temperature. In the inset the
critical chemical potential in function of the coupling.

In this way we can analyze the effects of fluctuations on critical temperature and critical chemical

potential in function of the coupling. In the weak coupling regime the effect of the fluctuations is very

small, just like we predicted from the Ginzburg-Levaniuk criterion. In the BEC regime the correction

is fundamental to obtain the Bosonic condensation temperature kBTB ' 0.218εF . In order to better

understand the results we study the critical chemical potential. As we can see from the inset in Fig.2.2,

over 1/kFas = 0.35 the chemical potential become negative. In the BEC regime we will have a large

negative chemical potential |µc| >> Tc. Applying this condition to the gap equation in the limit

1/kFas → ∞, one obtains the relation µc = ~/(2ma2
s). The Cooper pair size becomes much smaller

than the avarege distance between the partcles because the attractive interaction becomes very strong.

At this point another energy joins the game: the binding energy. This is the energy that holds the

molecules togheter and is given by ε0 = ~2/(ma2
s), so in the strong coupling limit µc = ε0/2. As we

said, one can obtain this condition starting from the gap equation, that it’s invariant for any kind of

approximation on the order parameter. Now we can also introduce the molecule chemical potential

µB = 2µc + ε0 which is 0 in the strong coupling limit, like a Bosons system at critical temperature.

This result is valid both for the mean-field and for the beyond mean-field approximation. So the

critical temperature in the BEC limit founded with the man-field approximation is just related to

pair-breaking temperature Tdissoc defined as the temperature at which the pairs dissocate. Instead

the critical temperature founded with the fluctuations is the superfluid phase transition temperature

of the system.
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2.3 G-L parameters and characteristic quantities

Now we have all the tools to study the behavior of G-L parameters in function of the coupling. Using

the relations defined in the previous sections one can substitute the values of critical temperature

and critical chemical potential in the G-L parameter relations. We will focus about the differences

between mean-field and beyond mean-field approximation. We founded that the better way to do this

is to evaluate the relative difference of the parameters between the two approximations. Initially we

defined the theory in function of the order parameter ∆(x), then we move to the standard formulation

with Ψ(x). In this last we founded that the quartic term Γ is a constant, so not dependent on the

approximation used.

Figure 2.3: The beyond mean-field (black dashed line) and mean-field (red dotted line) parameters A and B
as a function of the coupling. In the inset the relative error between the mean-field and beyond mean-field
approximation in function of the coupling.

In the deep regions the parameter A follows what we previously said for the critical temperature. The

fluctuations are neglibigle in the BSC limit and important in the BEC. But as we can seen from the

inset Fig.(2.3)A), the relative error doesn’t grows continuosly, there is a minimum around 1/kFas = 0.

This means that around the unitary limit the coefficient of the quadratic term is very similar between

the mean-field and the beyond mean-field approximation. Instead for the parameter B the fluctuations

are neglibigle both for the BCS and BEC case, but are relevant for the unitary limit with a maximum

around the value 1/kFas ' 0.5. From the BCS regime until the maximum value the relative error

doesn’t grow continuosly, there is a minimum around the value 1/kFas = −0.5. To better understand
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these results it’s importat to see the behavior of some characteristic quantities: Ginzuburg-Landau

critical coherence lenght [27] and the critical rotational frequency [28]. The Ginzburg-Landu coherence

lenght is the distance form the system surface over which the Cooper pair wave function doesn’t vary.

In the BCS limit corresponds also to the Cooper pair size. Since we are considering neutral Fermions

we looked for the neutral analogous of critical magnetic field. For superfluid netrual system it’s possible

to destroy superfluidity by rotating the system. It happens over a certain value of rotational frequency

ωc. We will evaluate these two quantities around the critical temperature.

ξGL =

√
− Γ

A(T )
(2.29)

ωc =

√
12A(T )2

mΓ
(2.30)

We have taken a temperature from 3Tc/4 to Tc in order to still have ∆ small respect to the thermal

energy. We will evaluate the critical coherence lenght and the critical rotational frequency at different

coupling values. The first one diverge at Tc while the second one goes to 0. As we can see from

Fig.(2.5) and Fig.(2.6), increasing the coupling, the distance between the point where mean-field and

the beyond mean field curve diverges or go to 0, increases . For this reason in the case 1/kFas = 4

we report only the beyond mean-field curve. It’s very interesting noting the scale of the curves. The

G-L coherence lenght diverges much faster in the BCS and BEC regime than in the unitary limit.

In the same way the critcal rotational frequency goes to 0 much faster in the BCS and BEC regime

than in the unitary limit. This means that in the unitary limit, near the critical temperature, the

superfluidity is much more “resistant” than in the BEC or BCS regime. Since these two quantities are

functions of the parameters A and Γ, we can make some osservation. The coefficient Γ is a constant

dependent on the mass of the particle. The lower the mass of particles, the lower the speed which

the coherence lenght diverges or the critical rotational frequency goes to 0. On the other hand the

parameter A(T) is more complicated to connect it directly to some physical quantities of the system.

In order to identify some other physical quantites to associate with this better superfluidity one can

investigate the density of the system, (2.28). In the BCS limit the mean-field term of n dominates

while in the BEC regime is the beyond mean-field term dominating. We can identify these two terms

with the density of the Fermionic couples and the Bosonic couples. In the unitary limit there is like

a competition between the two behavior which benefits the superfluidity.

Figure 2.4: nmf and nbmf term of the beyond mean-field number equation as a function of the coupling.
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Figure 2.5: The G-L coherence lenght around the critical temperature at 1/kFas = −4, 0, 4. The black dashed
line is with mean-field approximation while the red dotted line is with beyond mean-field approximation.
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Figure 2.6: The critical rotational frequency around the critical temperature at 1/kFas = −4, 0, 4. The black
dotted line is with beyond mean-field approximation while the blue dashed line is with mean-field approximation.
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2.4 Ginzburg-Landau theory in the BEC regime at T=0

In the BEC regime the Fermi gas is dilute, na3
s << 1, and the order paramter ∆ is much less than

the binding energy of a diatomic molecule, ε0 = ~/(ma2
s). In this regime, since the chemical potential

is negative, there is no Fermi surface [20]. The parameters in the Ginzburg-Landau equation given

previosly are well defined even at zero temperature. Therefore the G-L theory can be applied from

zero temperature to near Tc in the BEC regime. Now we will study the limits of this statement. The

first thing to do is to check out the region where the order parameter ∆ is much smaller than the

binding energy. To do that we rewrite the gap equation and the number equation at T=0 in mean-field

approximation since in this case the fluctuations are neglibile everywhere.

m

4πas~2
=
∑
k

( 1

2εk
− 1

2Ek

)
(2.31)

n =
∑
k

(1− ξk
Ek

) (2.32)

where εk = ~2k2/2m, ξk = εk−µ and Ek =
√
ξ2
k + ∆2. We have solved the system obtaining the values

for the chemical potential and the gap energy. From Fig.(2.7) one can see that around 1/kFas = 0.76

the curves cross so we have to be over this value to consider the gap energy less than the binding

energy. To locate the optiaml value over which we can extend the G-L theory we evaluate the gap

energy using the G-L parameters. As we said at T=0 we can use the mean-field approximation and

in this case it’s easy to find the relation |Ψ0|2 = −A(T )/B. Replacing in |∆|2 = |Ψ|2/2c we can

compare this gap energy with the one obtained from (2.32). We founded that over 1/kFas = 1.3 there

is a relative difference less than 5% between the two. It means that over this value it’s reasonable to

use the G-L theory at T=0. This is useful because generally superfluid systems are studied at law

temperature through a microscopic approach.

Figure 2.7: The red dashed line is the gap energy a T=0 while the black dotted line is the binding energy vs
1/kFas.
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2.4.1 Sound velocity

The advantage to use G-L theory also at low temperature is that, once you know the behavior of

the G-L parameter, the relation for this quantities are easier to evaluate respect to use the standard

microscopic approach. In this section we derive the sound velocity starting from the G-L functional.

The sound velocity is a quantity closely related to the dynamic of the system. To deal it in the G-L

theory we have to consider the time evolution of the Ginzuburg-Landau equation (TDGL equation).

This requires a careful examination of Gaussian fluctuations and a simple low frequency expansion

is obtained only when ∆(T ) << ω [1]. In this case we needs to expand Q(iql) = Π−1(q = 0, iql) −
Π−1(0, 0) in powers of ω. A low frequency (ω << Tc) expansion of Q is obtained both in the BCS

and Bose limit where the condition ω << |µ| is automatically satisfied. Instead in the unitary limit

this is not possible because |µ| ' 0. The condition ∆(T ) << ω with ω << min(Tc, |µ(Tc)|) implies

that our TDGL results are not valid in a region around the point µ(Tc) = 0. So for ∆ << ω <<

min(kBTc, |µ(Tc)|) the expansion Q(ω + i0+) = −dω + .... yelds:

d =
∑
k

tanh(βξk/2)

4ξ2
k

+ i
π

8
κβ
√
µΘ(µ) (2.33)

where κ = N(εF )/
√
εF ,N(εF ) is the density of states at the Fermi energy and Θ(x) is the step function.

We obtain the TDGL equation:

(
a+ b|∆(x, t)|2 − ~2c

2m
∇2 − i~d ∂

∂t

)
∆(x, t) = 0 (2.34)

To see all the steps in more detail, consult [1]. Anyway, since we are looking to expand the theory at

T=0 in the BEC limit, where µ < 0, the imaginary term of d is 0. Passing to the standard definition

of the G-L theory with Ψ, instead of ∆, the coefficient of the time derivative term is D = ~d/2c.
Below we will follow the same procedure to obtain the Bogoliubov spectrum from the Gross-Pitaevskii

equation. Let’s consider the standard TDGL equation:

iD
∂Ψ(~x, t)

∂t
= A(T )Ψ(~x, t) +B|Ψ(~x, t)|2Ψ(~x, t)− Γ∇2Ψ(~x, t) (2.35)

We write order parameter Ψ(~x, t) in the following way:

Ψ(~x, t) = (Ψ0 + φ(~x, t))e−iµt (2.36)

where φ(~x, t) rappresents a real small fluctuation with respect to the real and uniform configuration

Ψ0 and the imaginary expontial is the phase component of the order parameter. Inserting (2.36) in

(2.35) we find:

iD(−iµΨ0 − iµφ+ φ̇) = A(T )Ψ0 +A(T )φ− Γ∇2φ+BΨ3
0 + 2bΨ2

0φ+ bΨ2
0φ
∗ (2.37)

where we neglect all terms of higher order than the second in φ. From now for the sake of notation

we will omit the spatial and temporal dependence of Φ(~x, t). To determine µ we impose the uniform

mean-field solution in the region T < Tc, Ψ(~x, t) = Ψ0e
−iµt. For for T < Tc the condition µ = 0

holds. Applying that, and remembering that for the mean-field order parameter worth the relation
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A(T )Ψ0 +BΨ3
0 = 0, one obtain:

iDφ̇ = −Γ2φ+BΨ2
0(φ+ φ∗) (2.38)

Now we split the field φ in a two-component wave:

φ(~x, t) = Aei(
~k~x−ωt) +Be−i(

~k~x−ωt) (2.39)

Replacing this relation in (2.38) we can devide the resultung equation in its real and imaginary

component. In this way we obtain a system of two indipendent equation, which determinant set to 0,

gives us the dispersion relation between ω and ~k. The dispersion relation is:

ω =

√
Γk2(Γk2 +BΨ2

0)

D2
(2.40)

In the limit of small ~k is linear like the phononic dispersion and in this case we know that the relation

is ω = kcs, where cs is the sound velocity. We have:

cs =

√
ΓBΨ2

0

D2
(2.41)

replacing |Ψ0|2 = −A(T )/B one obtain:

cs =

√
−ΓA(T )

D2
(2.42)

Comparing the relation for d and c we can see that at T=0 there are equal. So definetly the sound

velocity in the BEC regime is:

cs =
εF

n1/3~

√
1

kF ξGL(T )
(2.43)

This is a very simple relation that we can use to evaluate the sound velocity in a system made of

coupled Fermions in the regime of strong couplig at very law temperature.
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Chapter 3

Josephson effect in 2D BCS-BEC

crossover

3.1 2D BCS-BEC crossover

Before to study the 2D Josephson equations reported in the first chapter we have to define in more

detail the system we are going to study. We consider a two-dimensional (2D) attractive Fermi gas

of ultracold and dilute two-spin component neutral atoms. In accordance with the Mermin-Wagner-

Hohenberg theorem [29, 30] for d ≤ 2 there cannot be spontanuous simmetry breaking and so finite

condensate density at finite temperature. This is the first difference with the tridimensional case. The

2D BEC critical temperature is T=0. Nonetheless two-dimensional system can exhibit superfluidity

at finite temperature. There could be a quasicondensate density under a certain temperature, this

is called Berezinskii-Kosterlitz-Thouless (BKT) temperature [31, 32]. The BKT phase transition is a

topologiacal phase transition that not require symmetry breaking. Under a certain temperature there

is proliferation of disjointed vortices and, lowering further the temperature, under TBKT , one has

the formation of vortex-antivortic pairs that allow superfluidity. So there is a jump in the superfluid

density, going discountinuosly from a finite value to zero at TBKT . It’s reasonable to think that in two-

dimensional system, the role of quantum fluctuations should be crucial in describing several aspect of

the system. What we are going to do in this first part is to evaluate the effects of thermal fluctuation in

two-dimensional BCS-BEC crossover [33]. We will use the integral function procedure reported for the

3D case. The Hamiltonian density (2.4) and the partition function (2.6) are the starting point. Let’s

start with the mean-field case. We substitute ∆(x) = ∆0 in (2.4) where ∆0 real and then we integrate

(2.6) over the Fermionic field Ψσ. In this way we obtian the mean-field partition function [34]:

Zmf = exp
[
−
Smf
~

]
= exp−

[
−βΩmf

]
(3.1)

where Ωmf is the mean-field grand potential:

βΩmf =
Smf
~

= −Tr
[
ln(G−1

0 )
]
− βL2 ∆2

0

g
= (3.2)

= −
∑
k

[2ln(2cosh(βEsp(k)/2)− β(εk − µ)]− βL2 ∆0

g
(3.3)
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with εk = ~2k2/2m, Esp(k) =
√

(εk − µ)2 + ∆2
0 and G−1

0 is (2.8) with ∆(x) = ∆0. At zero temperature

the mean-field grand potential Ωmf becomes:

Ωmf = −
∑
k

(Esp(k)− εk + µ)− L2 ∆2
0

g
(3.4)

We are looking for the most stable state of the system so we obtain the condition for ∆0 that minimizes

the grand potential. (∂Ωmf

∂∆0

)
µ,L2

= 0 (3.5)

In this way one obtains the familiar BCS gap equation:

−1

g
=

1

V

∑
k

1

2Esp
(3.6)

In the continuum limit
∑

k → L2
∫
d2k/(2π)2 the gap equation diverges logharitmically in the ultra-

violet. As in the 3D case this problem is solved replacing the Lippman-Schwinger equation instead of

1/g. In 2D the scattering lenght is nonnegative and kFa2D >> 1 corresponds to the BCS regime while

kFa2D << 1 corresponds to the BEC regime. Since the scattering lenght it’s always positive, in 2D

BCS-BEC crossover always exists a bounded state between the Fermions for any value of the coupling

g [16, 35]. It’s possibile mapping the crossover with the binding energy εB instead of the scattering

lenght a2D. The binding energy can be written as:

εB =
~2

ma2
2D

(3.7)

In this way the bound-state equation is:

−1

g
=

1

V

∑
k

1

εk + εB
2

(3.8)

Subtracting this relation from (3.6), one obtains the the regularized gap equation:

∆0 =

√
2εB

(
µ+

1

2
εB

)
(3.9)

Instead replacing (3.8) and (3.9) in (3.4) one obtains:

Ωmf = − m

2π~2

(
µ2 +

1

2
εB

)2
(3.10)

The number equation is derived from the zero-temperature thermodynamic relation:

n = −
∂Ωmf

∂µ
(3.11)

which gives a relation for the chemical potential µ as a function of the number density.

µ =
π~2n

m
− 1

2
εB = εF −

εB
2

(3.12)

Introducing µB = 2µ+ εB/2 as the chemical potential of composite Bosons (made of bound Fermionic

pairs) one finds that µB = 2εF . So the Bosonic chemical potential µB is independent of the interaction
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between particles. Now we take into account the quantum fluctuations. To do that we have to take

again (2.4) and (2.6) and subtitute the order parameter ∆(x) with:

∆(x) = ∆0 + η(x) (3.13)

where η(x) is the complex pairing field of bosonic fluctuations. The procedure is the same of the

previous chapter. Expanding the effective action around the ∆0 up to the quadratic (Gaussian) order

in η(x) one finds a new effective action, SGauss = Seff [∆0] + Sg[η, η]. From the Gaussian effective

action is possible to evaluate a new grand potential. The resulting gran potential reads:

Ω = Ωmf + Ωg(µ,∆0) = Ωmf +
1

2β

∑
q

ln(det(M(Q)) (3.14)

where M(Q) is the inverse pair fluctuation propagator and its form is reported in detail in the supple-

ment material of the work [33]. Using (3.11) is possbile to evaluate the equation of state that takes

into account the effect of small Gaussian thermal fluctuation.

3.1.1 Properties of 2D BCS-BEC crossover system

To investigate the effects of thermal fluctuation in bidimensional BCS-BEC crossover we evaluate

some characteristic quantities: the chemical potential of composite Bosons (µB), the sound velocity

(cs) and the pressure (P). The chemical potential, in the mean-field approximation, rescaled for the

Fermi energy of the non interacting system is µB/εF = 2, while for the beyond mean-field case we

numerically solve the gap and number equation reported in the previous section. For the sound velocity

we use the thermodinamic relations:

cs =

√
n

m

∂µ(n)

∂n
(3.15)

(3.16)

where µ(n) is the single-particel chemical potential and n is the number density. To define the pressure

we start from the thermodinamic relation:

U = TS − PV + µN (3.17)

where U is the thermodinamic internal energy of the system, S is the entropy, V is the volume of the

Fermi gas and N is the total number of Fermions. Imposing the condition T=0 and using the relation

for the internal energy U/V =
∫ n

0 dnµ(n) one can find:

P = µ(n)n−
∫ n

0
dnµ(n) (3.18)
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We manage to write the sound velocity and pressure in function of µ(n). In the mean-field case it’s

easy to find:

cs,mf
vF

=
1√
2

(3.19)

Pmf
PF

=
3

2
(3.20)

where vF and PF are the Fermi velocity and pressure of the non interacting system. As for the chemical

potential they are indipendent of binding energy. Considering the Gaussian fluctuations instead we

have that they decrease with increasing the energy coupling, as we can see from Fig(3.1). So also in

2D system the effects of fluctuations are more relevant in the limit of strong coupling. To identify

a reference value for εB/εF that tell us where the system is considerable a Bose-Einstein condensed

we study the single particle chemical potential. We will look for which value of log(εB/εF ) where the

chemical potential becames negative. Physically we can say that under this value the system is in a

BCS regime of weakly bound fermionic pairs, instead over this value the system is in a BEC regim of

strongly bound fermionic pairs. Setting to 0 the equation (3.12) one finds that in the mean-field case

the chemical potential is 0 when εB = 2εF or log(εB/εF ) = 0.69. Instead from the numerical solution of

gap and number equation with Gaussian fluctuation we find that the single particle chemical potential

becames negative over the value εB/εF = 0.84 or log(εB/εF ) = −0.17. To further prove the goodness

of this criterion, we can study the behavior of the condensate fraction density of couples.

Figure 3.1: Chemical potential of composite Bosons µB/εF in blue, sound velocity cs/vF in red, pressure P/PF

in green, as function of the coupling. The continuous line is the constant mean-field value while the dashed line
is considering Gaussian fluctuations.

To do that we will use Eq.(21) of the work [36] where the mean-field number of couples condensated
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is evaluated as the largest eigenvalue of the two-body density matrix written through the Bogoliubov

rappresentation of the field operator ψσ. The relation is:

n0

n
=

1

4

π
2 + arctan( µ

∆0
)

µ
∆0

+
√

1 + µ2

∆2
0

(3.21)

The effect of fluctuations for µB, cs and P is relevant in the strong coupling limit and neglibible in

the BCS regime. In the strong coupling limit we expect that the number of condensate couples is

consistently larger than in the BCS regime, so we can assume that in the BEC limit the effect of

fluctuations on the condensate fraction would be neglibible. In [37] N.Fukushima et al. calculate the

effects of Gaussian fluctuations on the condensate fraction for a 3D BCS-BEC crossover. In particular

they obtain a relation like:

n0 = nc0 + ng0 (3.22)

where nc0 is the mean-field term while ng0 rappresents the correction due to Gaussian fluctuations.

They have concluded that ng0 can be neglect in all the crossover. We think that this results could be

extended for the bidimensional case. So we will evaluate the beyond mean-field condensate fraction

replacing in (3.21) the beyond mean-field chemical potential and gap energy. At the crossover values

for the binding energy we obtain that, both for the mean-field and the beyond mean-field case, the

number of particle condensated is 80%. This is a reasonable number of condensated particles to

consider the system a Bose-Einstein condensate.

Figure 3.2: The red dashed line is n0/n for the mean-field case as function of the binding energy. The blue line
is n0/n considering Gaussian fluctuations as function of the binding energy.
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3.2 Josephson Effect

In 1962 physicist Brian Josephson predicted that the Cooper pairs could potentially tunnel cross an

insulating layer [38]. This would create a coupling between the two superconducting states and create

a current across the gap, which was experimentally confirmed later. This is the Josephson effect and

it’s a purely quantistic effect. To begin understanding the effects of this tunneling we need a setup to

describe the quantum mechanical states related to the two sides of the junction.

Figure 3.3: Josephson junction

Taking a look at Fig.(3.3), we’ll describe the state of the superconductor on the left as ΨL and ΨR to

describe the right. We will investigate the dynamical Josephson effect in BCS-BEC crossover based

on a time dependent G-L equation. Let’s consider a tridimensional Fermi gas of N atoms with two

equally populated spin components and attractive inter-atomic strenght at zero temperature. At zero

temperature where the superfluid density concides with the total density, the G-L order parameter

describing the motion of Cooper pairs atom is defined as [39]:

Ψ(r, t) =

√
n(r, t)

2
exp(iθ(r, t)) (3.23)

where n(r, t) is the local atomic number density and θ(r, t) is the phase of the condensate wave

function. Under an external potential U(r) acting on individual atoms, the non-linear time-dependent

G-L equation (TDGLE) is:

i~
∂

∂t
Ψ(r, t) =

[
−~2∇2

4m
+ 2U(r) + 2µ/(n(r))

]
Ψ(r, t) (3.24)

Here m is the mass of one atom and µ(n(r)) is the bulk chemical potential of homogeneus fluid with

density n. The Josephson junction could be schematized like two reservoir of volume VL and VR such

that VL + VR = V in which NL and NR are enclosed at time 0, such that NL + NR = N . The

two reservoirs are divided by a monodimensional double weel potential barrier whith size C. In the

transverse directions we suppose the partcles are subjected to a strong harmonic potential that keep

them confined. We look for a time-dependent solution of the TDGLE of the form:

Ψ(r, t) = ΨL(t)ΦA(r) + ΨB(t)ΦB(r) (3.25)

where Φα(r) is the quasi-stationary solution of the TDGLE localized in the region α. Inserting this

relation in (3.24), after integrating over space and neglecting exponentially small termis, the system
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could be described by the following two-state model:

i~
∂

∂t
ΨL = ELΨL −KΨR (3.26)

i~
∂

∂t
ΨR = ERΨR −KΨL (3.27)

Here Eα = E0
α + EIα is the energy in the region α and K is the tunneling energy:

E0
α =

∫
d3rΦα

[ ~2

4m
∇2 + 2U(r)

]
(3.28)

EIα =

∫
d3rΦα2µ(2|Ψα|2Φα)Φα (3.29)

K =

∫
d3rΦL

[
− ~2

4m
∇2 + U(r)

]
ΦR (3.30)

The tunneling term K describes phenomenologically the tunneling between the two region. Unfortu-

nately a microscopic derivation of K in the full BCS-BEC crossover is not yet available. Under the

assumption that U(r) can keep weakly connected the particles between the two reservoirs, we can

write Ψα(t) =
√
Nα/2exp(iθα(t)) where Nα(t) and θα(t) are the number of Fermions and the phase

in the region α. Let’s introduce the phase difference:

φ(t) = θR(t)− θL(t) (3.31)

and the relative number imbalance:

z(t) =
NL(t)−NR(t)

N
(3.32)

Eq(3.26) and Eq(3.27) give:

ż = −2K

~

√
1− z2sin(φ) (3.33)

φ̇ =
2

~

[
µ(

N

2VL
(1 + z))− µ(

N

2VR
(1 + z))

]
+

2K

~
z√

1− z2
cos(φ) +

E0
L − E0

R

~
(3.34)

These are the atomic Josephson junction equations (AJJ) for the two dynamical variable z(t) and φ(t)

descibing the oscillations of N Fermi atoms tunneling in the superfluid state between the region L and

the region R. The tunneling current is defined as:

I = −żN/2 = (
KN

~
)
√

1− z2sin(φ) = I0

√
a− z2sin(φ) (3.35)

where I0 is the critical current. In the limit of z << 1 the tunneling current reduces to the BCS case

I = I0sin(φ) [40]. In deep BEC regime instead, where µ(n) ∼ n the AJJ equations reduce to the

bosonic Josephson junction equation (BJJ) introduced by Smerzi er al. [41]. This is the model we will

adopt to study the Josephson effect in bidimensional BCS-BEC crossover.
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3.3 DC Josephson effect and Tunneling Energy in 2D BCS-BEC

crossover

We gonna start not including imbalance and fixing the phase difference. In this way we don’t have to

evaluate the oscillations of z(t) and φ(t). This is the direct current mode (DC). Without oscillations

of the relative imbalance and phase difference we focus on the tunneling energy K. Generally it’s taken

constant because a microscopic derivation of K in the full BCS-BEC crossover is not yet available. In

a recent work M.Zaccanti and W.Zwerger [2] developed a model to describe Josephson tunneling be-

tween two superfluid reservois of ultracold atoms which account the dependence of the critical current

on the coupling all along the crossover. It’s possible to extend their result also to the bidimensional

case. Let’s consider a bidimensional setup of Josephson junction where a rectangular barrier connect

two reservoirs like in the figure.

Figure 3.4: Two-dimensional Josephson junction setup where the rectangular barrier of height V0 and size d
divides the two reservoirs

Under the condition of barrier heights (V0) considerably grater than chemical potential (µ), the su-

perfluid current is:

I(φ) = Icsin(φ) (3.36)

where φ is the phase difference between the systems in the two regions and Ic is the maximum current

possible. Assuming a homogeneus situation with transverse lenght A, the associated critical current

density is:

~jc =
~Ic
A

= Btcc(µB)n0 (3.37)

where tcc(µB) is the transfer matrix element associated with coherent tunneling of bosons, n0 is the

density of condensated couples and 2B is the total longitudinal size of the system. For the junction

geometry in Fig.(3.4) the matrix element con be written as [42]:

tcc(µB) =
|t|(µB)

4k(µB)B
µB (3.38)
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Here k = (µB)
√

2mµB/~ is the wave vector of a boson with mass 2m and chemical potential µB, while

|t|(µB) is the associated single-boson transmission amplitude. The critical current can be written in

the form:

~jc =
µBn0

2k(µB)
|t|(µB) (3.39)

We can see that the dependence of the critical current on the strenght coupling is in µB and n0 that

are both bulk properties. The microscopic tunneling amplitude |t|(µB) depends on the interaction and

determines the energy at which the tunneling process occurs. Under the condition of V0 >> µB on

the whole crossover, we are also supposing that the energy to tunnel doesn’t changes so much respect

to the barrier height. So we can consider this microscopic factor constant along the crossover. Until

now the relations have been formulated considering the system in the BEC regime. Instead in the

BCS regime the critical current of a Josephson junction is known to be equal to the current in the

normal state at a finite voltage eV = π∆0/2, where ∆0 is the energy gap at zero temperature [38,43].

It’s possible to connect the BCS current with the BEC one using the BCS relation of the condensate

density n0:
n0

n
=

3π

16

∆0

εF
(3.40)

In this way the BCS density current reads [2]:

~jc =
µFn0

2kF
|t|2(µF ) (3.41)

where |t|2(µF ) is the trasmission probability of a single fermion at the Fermi energy µF → εF . We

note that Eq.(3.39) and Eq.(3.41) are very similar. In fact just replace µB → 2µF and kB → 2kF

one can pass from one to the other. Considering the Fermi velocity of the noninteracting Fermi gas,

vF =
√
nvF /m, one obtains:

jc
|t|(µB)

=
jc

|t|2(µF )
=
nvF

8
λ0

√
µ̃ (3.42)

where λ0 = 2nc/n is the condensate fraction and µ̃ = µF /εF is the normalized chemical potential. The

ratio between the tunneling amplitude of one pair and the trasmission probability of one fermion show

a very weak dependence on the characteristic of the barrier for the assumpiont of high V0. This means

that one could use the density current BEC relation in the BCS regime, and viceversa, committing

a small error. The dependence on the coupling is in the product λ0
√
µ̃. Its behavior in mean-field

and beyond mean-field approximation is shown in Fig.(3.5). The beyond mean-field curve grows from

the BCS regime to a maximum at the value log(εB/εF )=0.26 and then decreases in the BEC regime.

Instead the mean-field curve grows monotonically. To better understand the meaning of this product

we can write (3.42) in the form of the critical current ~Ic = KN where K is the tunneling energy and

N the total number of Fermions.

~Ic = ~Ajc = ~A|t|2(µF )
nvF

8
λ0

√
µ̃ (3.43)

Replacing n = N/(2AB) one obtains:

~Ic = ~|t|2(µF )
NvF
16B

λ0

√
µ̃ (3.44)
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Comparing with ~Ic = KN , K reads:

K = ~|t|2(µF )
vF

16B
λ0

√
µ̃ = K0λ0

√
µ̃ (3.45)

where the factor K0 = ~|t|2(µF )vF /16B encloses all the factors indipendent by the coupling. Fixed the

setup of the system K0 is a constant along the crossover. So the product λ0
√
µ̃ gives us information

about the behavior of the tunneling energy and the critical current along the crossover. In the

tridimensional case we have seen that the unitary limit is the better configuration to have a better

superfluidity because of the competition between the Fermionic and the Bosonic density. In the 2D

case at the value of log(εB/εF )=0.26, where the current is mamximum, already the 85% of particles is

condensated, so in the bidimensional case there should be onother criteria to determine the condition

of better superfluidity. A possibility, always correlated to study of the condensate density, is that

over log(εB/εF ) = 0.86 most of the particles are already condensated and so becomes more difficult

to take other couples in the ground state. In fact the slope of the curve n0/n (Fig.3.2) decreases

after that values. This could mean that in 2D the superfluidity is linked to the predisposition of

the couples to condensate increasing the coupling. We will delve into this topic in the next section.

As explained in [2] for the 3D case the origin of the nonmonotonic behavior of the critical current

presented in the work is quite different from the interpretation given by Spuntarelli et al. [44]. There,

the nonmonotonic behavior of the Josephson current was explanied through the Landau criterion with

the existence of two types of critical velocities associated with two different excitatio branches: pair

breaking on the BCS and phonons on the BEC. Instead in [2] the nonmonotonic behavior emerges

from the competion between the bulk properties λ0 and µ̃. Zaccanti and Zwerger conclusions are

also supported by recent experimantal studies which identify vortex rings and phonons, rather than

fermionic pair-braking excitations, as dissipation mechanism in all the crossover. We think that it’s

possible to apply the same reasoning to the bidimensional case without many problems, since, both

for 3D and 2D case, the potential barrier taken in exam is a one dimensional barrier, it extends only

in one direction.

Figure 3.5: The dashed red line is the mean-fiedl product λ0µ̃. The blue line is the beyond mean-field product
λ0µ̃.
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3.4 AC Josephson effect in 2D BCS-BEC crossover

In the privious section we focus on the critical Josephson current and its behavior along the crossover

restricting ourselves to the DC Josephson effect. In this last part we are going to see the effects

on the time evolution of imbalance and phase difference, considering a tunneling energy dependent

of the coupling. What we have to do is to substitute the tunneling energy K in the time evolution

equations of imbalance and phase difference [39] with K(εB/εF ) = K0λ0(εB/F )
√
µ̃(εB/εF ). From now

we will omit to write the dependence of εB/εF for simplicity of writing. We have to solve the following

differential equations:

ż = −2K0λ0
√
µ̃

~

√
1− z2sin(φ) (3.46)

φ̇ =
2

~

[
µ
( N

2VA
(1 + z)

)
+ µ

( N

2VB
(1− z)

)]
+

2K0λ0
√
µ̃

~
z√

1− z2
cos(φ) (3.47)

We will solve numerically this system of differential equations inserting the beyond mean-field values

of µ and n0. Since in the mean-field case µ, in unit of the Fermi energy, is a constant and and n0/n is

very similar between the two cases, it’s reasonable to think that the mean-field would not give us more

interesting information then the beyond mean-field case. The first thing we do is to evaluate how z[t]

and φ[t] change along the crossover for a fixed setup system. On the base of [39] we chose to study a

fermionic superfluid of 40K atoms with the total density n = 0.02atoms/µm2 and a tunneling value of

K0/kB = 2∗10−8Kelvin and z[0] = 0.5, φ[0] = 0. In Fig.(3.6) we show z[t] and φ[t] for three different

values of the coupling: log(εB/εF )= -10, log(εB/εF )= 0 and log(εB/εF )= 10. For the unitary case

the plot is until 20 ms because the oscillation frequency is too high. As we can see at unitary limit

the oscillating frequency of z[t] and φ[t] is higher, instead the maximum amplitude of φ[t] decreases

regardeless of the tunneling energy. We also note that along all the crossover the oscillation frequency

of z[t] and φ[t] is the same.

Figure 3.6: The red dashed line is φ[t] in [rad]. The blue line is z[t].
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In the first panel of Fig.(3.7) we report the oscillation frequency in function of the binding energy.

The behavior is very similar to the product λ0
√
µ̃ with a maximum at unitary. So the oscillation

frequency seems to be very sensitive to variation of the tunneling energy. Instead the maximum

phase difference has a monotonically beahvior, it seems to be more sensitive to the coupling strenght

variation. In particular the phase difference in the deep BEC regime goes to the value z[0] = 0.5. In

fact modifying the values of z[0] and φ[0] we notice that in the BEC regime the maximum amplitude

values of the imbalance and phase difference are the same and correspond to Max(z[0], φ[0]). From

BCS to BEC they adapt their maximum amplitude to reach this value in BEC regime. The oscillation

frequency seems to be indipendent by the initial condition z[0], φ[0]. In the mean-field case instead

the time evolution of z[t] and phi[t] have the same behavior of the beyond mean-field case until the

value log(εB/εF )= 0. Then the oscillation frequency continues to grow like the tunneling energy in

Fig.(3.5).

Figure 3.7: (a) Oscillation frequency of z[t] in Hz and φ[t] in rad*Hz. (b)Maximum amplitude φ[t] in [rad].
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To better understand the effect of variations of tunneling energy and coupling strenght in the beyond

mean-field case we looked for two values of εB/εF which corresponds the same value of the tunneling

energy. For example we have considered log(εB/εF )= 5 and log(εB/εF )= -3.57. In this way we can

see the effects of the coupling strenght neglecting those of tunneling energy. The increase in binding

energy leads to a dicrease of maximum amplitude of φ[t] and also a decrease of the oscillation frequency

of φ[t] and z[t]. To understand the effects of tunneling energy we fixed the binding energy and vary

the K0. The increase in tunneling energy leads to a dicrease of maximum amplitude of φ[t] and an

increase of the oscillation frequency in φ[t] and z[t]. This means that for the oscillation frequency

there is a competition of opposite effects, from BCS to unitary, between the tunneling energy and the

binding energy, and the effects linked to the tunneling energy seems wins over those of the binding

energy. In the BEC regime K(log(εB/εF )) decreases so the two effects are no longer in opposition. For

the phase difference instead it’s the opposite. From BCS to unitary the two effect are in agreement

and in the BEC are in opposition. In this case the effects linked to the binding energy get the better

on those linked to the tunneling energy. We have to remember that the tunneling energy depends on

the setup system throught the term K0 and on the binding energy through the term λ0
√
µ̃. For K0

fixed we can say is that an increase of binding energy take to different effects on the system depending

on the regime of the crossover. These effects from BCS to unitary regime are charachterized by an

increasing on the critical Josephson current and on the oscillation frequency of the relative number

imbalance and of phase difference, while they lead to a decrease of the maximum amplitude of the

phase difference. Instead from unitary to BEC an increase of the binding energy takes to a decrease

of the critical current and oscillation frequency on z[t] and φ[t] when the maximum amplitude of

φ[t] continues to decrease until the value Max(z[0], φ[0]). The turning point is when the number

of condensated particles reaches the 80%−85% of the total particles, over which the system could

be considered a Bose-Einstein condensate. We can reasonably conclude that there is a connection

between the coupling strenght, the condensate fraction and the Josephson current. Increasing the

coupling strenght from BCS the size of the couples decrease until it becomes less then the mean

distance between the couples. In this situation the Bosonic nature of the couples begin to emerge.

At this point the ground-state is still almost empty so the particles could easly condense. This is a

condensate made of not strong-coupled Fermions, not still considerable a Bose-Einstein condensate.

In this situation one has the most intense and oscillating Josephson current. This situation continue

until the condensed fraction reaches the value of 0.80-0.85. Continuing increase the coupling strenght

one has a system of strong-coupled Fermions in which most of the couples are already condensated,

considerable as a Bose-Einstein condensate. And in this situation the Josephson current stabilezes to

the BEC one.
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Conclusions

The BCS-BEC crossover phenomenon is an excellent candidate to study purely quantum effects.

In the second chapter we focus on the thermal fluctuations throught the use of the 3D Ginzburg-

Landau theory. Their effect has been quantified through the numerical solution of the gap and number

equation in mean-field and beyond mean-field approximation ((2.23),(2.24), (2.28)). We use the results

in the Ginzubrg-Landau approach, which turned out to be a great tool to investigate characteristic

quantities: Ginzburg-Landau coherence lenght or critical rotational frequency. Once determined the

G-L paramters one can build very simple relations for ξGL and ωc. From their study around the critical

temperature (Fig.(2.5) and Fig.(3.10)) we got that the better configuration to have a more consistent

superfluidity is the unitary limit. At 1/kFas = 0 there is a competition between the Fermionic

and Bosonic density (Fig.(3.11)) which traslates in a more resistant superfluidity around the critical

temperature. At this point we continued with the study of G-L theory because superfluid systems, by

their nature, are best studied at low temperature where this phenomenon is more consistent. The use

of G-L theory parameters could be extended to low temperature only in the BEC regime where the

gap energy ∆0 is less then the binding energy. In this regime also the sound velocity could be written

though the G-L parameter, in particular it results to be proportional to the inverse of the coherence

lenght. Generally to obtain this quantites one uses the microscopic approach that involve functional

integral and Feynman diagram methods. The advantage of the G-L theory is that, once established

the G-L parameters, the relations for the characteristic quantities are very easy to deal. Furthermore

there are many other cases where we could apply the G-L theory. Would be very interesting adapt

this model to charged particle systems. In this way one can study the critical magnetic field and

its penetration lenght (λ). Evaluating the Ginzburg-Landau parameter k = λ/ξGL it’s possibile to

determine where a system is type I or II superconductor.

In the last chapter we focus on onother purely quantum effect: 2D Josephson effect. We start with

the effects of thermal fluctuations on the description of the system. Also for the 2D case the effects of

fluctuations are predominant when the coupling strenght increases. Then we focus on the current of the

AC and DC Jospehson effect. For the DC we impose no relative imbalance and fixed phase difference

to the Josephson junction equations. In this way we study directly the maximum critical current.

This last is proportional to the tunneling energy that we take dependent on the crossover [2]. When

the binding energy is about equal to the Fermi energy the critical current shows a maximum. So it’s

reasonable to think that also in 2D there is some special mechanism that rule the superfluidity. In the

last part we replace the K coupling dependent in the Josephon equation. We study in detail the effects

along the crossover on the oscillating frequency on maximum amplitude of z[t] and φ[t]. Differently

from the 3D, the competition between the Fermionic and Bosonic behavior seems involve directly the

population of the ground-state energy. In fact the more intense and oscillating current occurs when

the ground-state population is around the 80% of the total particles and in prossimity of the change
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of sign of the chemical potential. In this condition the condensated couples are characterized by a

interaction strenght less then in the BEC regime. But in this region the condensate fraction increases

rapidly with the strenght coupling. We thik the in a laboratory, analyzing different samples could be

possible to prove these assumption.
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