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Abstract

This thesis addresses the problem of multi-person 3D pose estimation from videos captured
by a wearable camera. We focused on the recently introduced EgoBody dataset, a synchronized
multi-view dataset, including three third-views and one first-person view of two interacting
individuals. Notably, in the first-view the wearer is hidden behind the camera, hence present-
ing a challenge for his/her accurate 3D pose estimation. The proposed architecture leverages
information frombothKinect (third-view) andHolo (first-view) cameras at training time to ef-
fectively estimate 3Dpose of the camerawearer only from the egocentric view at test time. This
thesis proposes an original architecture’s design and evaluates its performance on the EgoBody
dataset.
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1
Introduction

Human pose estimation (HPE) has become a fundamental tool in computer vision, enabling
applications in action recognition [11], human-computer interaction [12], and augmented re-
ality [13]. Traditionally,HPEmethods relied on images or videos captured from a third-person
perspective. However, egocentric videos, captured from a head-mounted camera (HMC) pro-
vide a more natural and immersive perspective for tasks like understanding human interaction
and manipulation in real-world environments.
Consequently, egocentric video analysis has emerged as a prominent field within computer
vision, focusing on understanding human activities and interactions from a first-person (ego-
centric) perspective. This perspective offers unique challenges and opportunities, particularly
in scenarios capturing interactions between individuals.
In particular, accurate egocentric 3D pose estimation has the potential to revolutionize various
fields:

• Augmented Reality (AR): Imagine anAR system that overlays virtual objects onto the
real world based on a user’s hand and body pose in an egocentric video. This could be
used for tasks like furniture placement in a room, virtual prototyping of products, or
even enhancing physical therapy exercises.

• Virtual Reality (VR):Egocentric pose estimation can be used to createmore immersive
VR experiences by accurately reflecting the user’s body movements within the virtual
world. This can enhance the feeling of presence and improve the user’s interaction with
virtual objects.
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• Human-Computer Interaction (HCI):Byunderstanding a user’s posture and gestures
through egocentric pose estimation, HCI systems can become more intuitive and nat-
ural. Imagine controlling a robotic arm or navigating a virtual environment using just
your body movements captured by an HMC.

• Action Recognition and Analysis: Egocentric pose data can be used to analyze and
understand human actions in various contexts. This could be used for applications like
sports analysis, gait analysis for medical purposes, or even sign language recognition.

However, egocentric HPE introduces novel technical challenges compared to traditional
third-person approaches. The primary challenge arises from the fact that the camera wearer’s
body is almost fully occluded behind the camera. Additionally, the egocentric perspective in-
troduces major complexity due to motion blur and variations in illumination caused by con-
tinuous head movements.
Several research efforts have addressed these challenges and explored techniques for egocentric
HPE. Some works focused on single-person pose estimation in egocentric videos, often em-
ploying deep learning architectures like Convolutional Neural Networks (CNNs) to directly
regress pose parameters from the egocentric frames [5]. A recent work build a shared feature
space for egocentric and third-view poses and leveraged it at inference time for enhancing 3D
pose estimation [9]. However, for scenarios involving multiple people interacting in the scene,
additional considerations are needed.
Recent studies have explored multi-person pose estimation in egocentric videos. Some ap-
proaches leverage prior knowledge about the scene layout or interaction context to improve
pose estimation accuracy [3]. For instance, the work by [14] utilizes information about object
affordances and hand-object interactions to enhance pose estimation in egocentric settings.The
work in [8] utilizes information about the visible (from thefirst -personperspective) interacting
person to improve the 3D camera wearer pose estimation. However, relying on such contex-
tual cues can limit the generalizability of the model to scenarios where this information may
not be readily available.

The work in has [5] contributed valuable insights the domain of Model-fitting in the Loop
by utilizing SMPL [15]. These studies have demonstrated the importance of leveraging contex-
tual cues and multi-view information for robust pose estimation.

The paper addressed the challenge of multi-person pose estimation in egocentric videos,
particularly focusing on addressing missing data due to self-occlusions. We propose a novel
approach that leverages information from complementary viewpoints within an egocentric
dataset to achieve accurate pose estimation for both individuals in the scene, even when one
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person is occluded in theHMC view. Our work builds upon the success of existing deep learn-
ing architectures for HPE while introducing a novel training strategy that allows the model to
learn from complete data (both people visible) and generalize to scenarios with missing data
(one person occluded).

The paper also addressed another challenge of pose estimation in synchronizedmulti-view
egocentric videos using data from both Hololens and Kinect cameras. The dataset utilized
for this study, EgoBody, provides multiple subsets with synchronized views capturing interac-
tions between two individuals. This dataset presents a unique scenario where one individual,
the wearer of the Hololens camera, is not visible in the captured frames, posing a significant
challenge for traditional pose estimation methods.

The overarching goal of this research is to develop an architecture that can effectively lever-
age information from both Kinect andHololens cameras at training to accurately estimate the
poses of both individuals at test time, where only the Hololens view is available. This architec-
ture is crucial for applications such as augmented reality scenarios, where understanding the
interactions between individuals is essential for immersive experiences.

1.0.1 Contributions

The contributions of this thesis include:

• Proposing a novel architecture for pose estimation trained in synchronized multi-view
egocentric videos captured using Hololens and Kinect cameras.

• Leveraging information from third-view and first-view during training to learn param-
eters for accurate 3D pose estimation of two interacting individuals from the only ego-
centric perspective provided by the Hololens.

• Demonstrating the effectiveness of the proposed architecture through experimental eval-
uation on the EgoBody dataset.

1.0.2 Composition of Thesis

The composition of this thesis is structured into several key chapters, each contributing to a
comprehensive exploration of the proposed approach forMulti-View Multi-Person Human
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Pose Estimation (MV MP HPE) using the EgoBody dataset and modified Skinned Multi-
Person Linear Model (SMPL).

1. Introduction: This opening chapter sets the stage for the researchby outlining themain
objectives, themotivation behind the study, and the specific challenges addressed by the
proposed methodologies.

2. Background:

(a) This section introduces the SkinnedMulti-Person Linear Model (SMPL), a key
foundation for much of the work in 3D human pose and shape estimation. The
nuances of SMPL and its relevance to accurate and realistic human modeling are
discussed.

(b) Joint location estimation is explored in depth, highlighting the critical role of accu-
rately identifying joint positions in the effective application of SMPL models for
human pose estimation tasks.

(c) The adaptation and application of SMPL across various datasets are examined,
demonstrating the flexibility and challenges of utilizing SMPL in diverse research
contexts.

3. Related Work:

(a) Acomprehensive surveyof existingmethodologies in single-person andmulti-person
pose estimation sets the context for the proposed research, showcasing the evolu-
tion of techniques and the state-of-the-art.

(b) The role of Human Mesh Recovery (HMR) within the framework of SMPL
modeling is detailed, emphasizing its importance in achieving realistic and accurate
human pose reconstructions.

(c) Various strategies for addressingmissing data inpose estimation tasks are discussed,
an area of significant challenge in the field.

(d) The section concludes with a detailed examination of approaches to human pose
estimation using egocentric data, a relatively less explored area that the current
research contributes to significantly.

4. The EgoBody Dataset:

(a) The characteristics that distinguish the EgoBody dataset from existing datasets in
the domain of human pose estimation are highlighted, underscoring its value and
potential for research.
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(b) A comparisonwith other datasets illustrates the unique advantages and challenges
presented by the EgoBody dataset, providing justification for its selection in this
study.

5. Proposed Approach:

(a) The chapter beginswith an overviewof the network architecturemodifications de-
signed to leverage the EgoBody dataset for multi-view, multi-person human pose
estimation, highlighting the innovative aspects of the approach.

(b) A significantportion is dedicated todiscussing the integrationofKinect andHoloLens
views, elaborating on the methods and challenges associated with merging these
perspectives for enhanced pose estimation accuracy.

(c) Detailed descriptions of the preprocessing steps and data augmentation tech-
niques employed enhance the dataset’s utility for the research objectives, showcas-
ing the meticulous approach to dataset preparation.

(d) The implementation details, including the choice of loss functions and training
methodologies, are provided, offering insights into the practical aspects of bring-
ing the proposed approach to fruition.

6. Experimental Results:

(a) This chapter presents a thorough evaluation of the proposedmethodologies, start-
ing with the definition of evaluation metrics and proceeding to a detailed analysis
of quantitative and qualitative results.

(b) Baselines are established for comparison, and the performance of the proposed
approach is critically examined against these benchmarks.

(c) A discussion section delves into the implications of the findings, evaluating the
effectiveness of the loss functions and the overall impact of the research on the
field.

7. Conclusion: The concluding chapter synthesizes the research findings, highlighting the
contributions to the field of multi-view multi-person pose estimation . Reflections on
the advancements achieved, alongside considerations for future research, draw the study
to a close.
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2
Background

2.1 Introduction to the Skinned Multi-Person Lin-
earModel (SMPL)

SMPL is a widely used representation of human body shape and pose aimed at facilitating 3D
pose estimation and human mesh recovery [15]. SMPL represents the human body as a de-
formable mesh parameterized by three sets of parameters: pose parameters, shape parameters,
camera parameters, and global translation respectively θ, β, γ, ϕ are optimized SMPL-X param-
eters.

1. Pose Parameters: These parameters encode the joint rotations of the human body in a
3D space. By adjusting the pose parameters, one can control the orientation and config-
uration of the body joints, enabling the representation of various body poses and move-
ments.

A pose vector of 24x3 scalar values that keeps the relative rotations of joints with respec-
tive to their parameters. Each rotation is encoded as a arbitrary 3D vector in axis-angle
rotation representation. In the SMPL model, the human skeleton is described by a hi-
erarchy of 24 joints as shown by the white dots in the below figure. This hierarchy is
defined by a kinematic tree that keeps the parent relation for each joint

2. Shape Parameters: Shape parameters (shape vector of 10 scalar values) determine the
geometric variations in the human body shape. These parameters capture individual
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Figure 2.1: SMPL Parameters Representation

differences such as height, weight, and body proportions, allowing for the generation of
diverse human body shapes within the SMPL framework.

3. Global Translation: The global translation parameter specifies the overall position and
orientation of the human body in the world coordinate system. It accounts for transla-
tions and rotations of the entire body relative to the camera viewpoint.

By estimating these SMPL parameters from input images, one can reconstruct the 3D hu-
man pose and shape, facilitating tasks such as motion capture, animation, and virtual try-on.

2.2 Joint Location estimation

Thanks to the fixedmesh topology of the SMPLmodel, each joint location could be estimated
as an average of surrounding vertices.

This average is represented by a joint regressionmatrix learned from the data-set that defines
a sparse set of vertex weight for each joint. As shown in the below figure, the knee joint will be
calculated as a linear combination of red vertices, each with a different weight.
The below code shows how to regress joint locations from the rest-pose mesh:

v_shape: 6890x3 #the mesh in neutral T-pose calculated from a shape parameter of 10
scalar values.

self.J_regressor: 24x6890 #the regression matrix that maps 6890 vertex to 24 joint
locations

self.J: 24x3 #24 joint (x,y,z) locations
self.J = self.J_regressor.dot(v_shaped)

8



2.3 SMPL in different datasets

SMPL-Body offers a versatile framework for distributing created meshes and poses akin to a
standardized format for human bodies, comparable to a ”pdf” for bodies. However, the spe-
cific definition of joints and the arrangement of the kinematic tree can vary significantly across
different 3D datasets used for human pose estimation andmodeling2.2. In practice, the actual
joints of the human body are never directly observed but are inferred, often through motion
capture (mocap) systems.

Figure 2.2: Joint Regressor in different datasets

For instance, when utilizing datasets like Human3.6M (H3.6M), it becomes necessary to
transform the SMPL model’s joints to align with the specific 3D joint definitions used in the
dataset. This transformation accounts for differences in joint naming and hierarchy, where
higher numbers of joints defined in the dataset may need to be mapped or reduced according
to the dataset’s kinematic tree structure. Fig 2.3.

Additionally, when training models with 2D joint annotations from sources like OpenPose,
there is a need to map these 2D joints to corresponding 3D joints that project into the image
plane and align with the observed 2D annotations. Tools like the JointMapper provided in
[16] facilitate this mapping process, allowing for seamless integration of SMPL or SMPL-X
joints with OpenPose’s Coco_25 or coco_19 joints. Some datasets introduce additional joints
beyond the standard SMPL definition, such as 45 or 49 joints, which serve as supplementary
joints for joint regression tasks.
Mapping these extra joints requires knowledge of joint names and their associated kinematics,
as outlined in the joint mapping information provided in [17]. Understanding and adapting
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Figure 2.3: The left image represent SMPL joint ids to joint names, the middle one represent unique joints connectivity
each method use (SPIN for us) and with that we can visualize a Kinematic tree shown in the right image

to the nuances of joint definitions and kinematic trees across datasets are essential for ensuring
accurate and compatible pose estimation across diverse datasets and applications within the
field of human body modeling and analysis.
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3
Related work

3.1 Single-Person Pose Estimation:

Early works on egocentric HPE focused on single-person pose estimation. One approach uti-
lizesConvolutionalNeuralNetworks (CNNs) to directly regress pose parameters from egocen-
tric frames [5]. However, these methods struggle with complex scenarios involving multiple
people interacting in the scene. Single-person 3D HPE methods can be categorized into two
main approaches based on their output representation: skeleton-only and human mesh recov-
ery (HMR).
1. Skeleton-Only Approaches:

• Focus on estimating the 3D locations of key body joints (e.g., elbows, wrists, ankles) as
the final result.

• Do not use a detailed human body model to reconstruct a complete 3D human mesh.

• Can be further divided into:

– Direct Estimation: 3.1(a) These methods directly predict the 3D pose from a 2D
image, without first estimating a 2D pose representation.

– 2D to 3D Lifting: 3.1(b)Inspired by advancements in 2D HPE, these methods
estimate 3D pose by leveraging an intermediate step of predicting 2D pose first.
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2. Human Mesh Recovery (HMR) Approaches:

• Utilize a parametric human body model to recover a more detailed 3D human mesh
representation.

• This mesh goes beyond just joint locations and captures the overall shape of the body.

• Typically involve a 3Dpose and shape network that estimates parameters controlling the
body model, ultimately generating the 3Dmesh. 3.1(c)

Figure 3.1: Single‐person 3D HPE frameworks. (a) Direct estimation approaches directly estimate the 3D human pose
from 2D images. (b) 2D to 3D lifting approaches leverage the predicted 2D human pose (intermediate representation) for
3D pose estimation. (c) Human mesh recovery methods incorporate parametric body models to recover a high‐quality
3D human mesh. The 3D pose and shape parameters inferred by the 3D pose and shape network are fed into the model
regressor to reconstruct 3D human mesh.[1]

3.2 Multi-Person Pose Estimation:

Several recent studies have explored multi-person pose estimation in egocentric videos. Some
approaches leverage contextual information about the scene or interaction context to improve
pose estimation accuracy. For instance, [3] utilizes knowledge about object affordances and
hand-object interactions to enhance pose estimation. However, relying on such contextual
cues limits generalizability to scenarios where this information might not be readily available.
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Similar to 2D multi-person HPE, 3D multi-person HPE can be categorized into two main
approaches: top-down and bottom-up (illustrated in Figure 3.2)
Top-Down Approach 3.2(a)

1. Human Detection: This methd first utilizes a human detection network to identify in-
dividual people in the image or video frame. This results in bounding boxes or keypoint
detections for each person.

2. 3D Pose Estimation: For each detected person, a separate 3D pose network estimates
their individual 3D pose representation. This representation could be in the form of
joint locations in 3D space or parameters of a 3D body model.

3. World Coordinate Alignment: Finally, all estimated 3D poses are aligned to a common
world coordinate system, allowing for analysis of relative positions and interactions be-
tween people.

Bottom-Up Approach 3.2(b)

1. Joint and Depth Estimation: This approach directly estimates the locations of all body
joints in the image or video frame, along with a depth map for each pixel.

2. Person Association: Body parts are then associated with specific individuals based on
estimated root joint depth and relative depth of different body parts. This step groups
the estimated joints into individual 3Dpose representations for each person in the scene.

Figure 3.2: Illustration of the multi‐person 3D HPE frameworks. (a) Top‐Down methods first detect single‐person regions
by human detection network. For each single‐person region, individual 3D poses can be estimated by 3D pose network.
Then all 3D poses are aligned to the world coordinate. (b) Bottom‐Up methods first estimate all body joints and depth
maps, then associate body parts to each person according to the root depth and part relative depth.
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3.3 Multi-View Pose Estimation:

Multi-view images can reduce the ambiguity significantly. However, it is challenging to fuse in-
formation frommultiple views. Typicalmethods include fusingmulti-view 2Dheatmaps [18],
enforcing multiple view consistency [19], triangulation [2], and utilizing the SMPL model
[20].

Figure 3.3: Main framework of EpipolarPose [2].

Triangulation is another fundamentalmethod for reconstruction in computer vision. Epipo-
larPose [2] uses the epipolar geometry method to recover the 3D pose from the 2D poses and
uses it as a supervision signal to train the 3D pose estimation model, as shown in Fig. 3.3. first
propose a baseline method that feeds the 2D joint confidences and 2D positions of all views
produced by the 2Dpose detector to the algebraic triangulationmodule to obtain the 3Dpose.

Markerless motion capture has been a subject of research in computer vision for over a
decade. Initial efforts focused on tracking the 3D skeleton or geometric model of the human
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body across multi-view sequences [21]. However, these tracking-based methods require ini-
tialization in the first frame and are susceptible to local optima and tracking failures. Conse-
quently, more recent approaches have shifted towards a bottom-up strategy, reconstructing
3D pose from 2D features detected in images [22]. Notably, recent advancements [23] have
demonstrated impressive results by integrating statistical bodymodelswithdeep learning-based
2D detectors.

Figure 3.4: Overview of the proposed approach of [3]. Given images from a few calibrated camera

In this thesis, our emphasis is on multi-person multi-view 3D pose estimation. Previ-
ous research predominantly employs 3DPSmodels, where nodes represent the 3D locations of
body joints and edges encode pairwise relations between them [24],[25],[26],[27]. [3] Fast-
MvPose worked on identifying and matching correspondences using for cross-view match-
ing.The main challenge of this problem is to find the cross-view correspondences among noisy
and incomplete 2D pose predictions.Fig 3.4

A great work work done by [4], MvP represents skeleton joints as learnable query embed-
dings and let them progressively attend to and reason over the multi-view information from
the input images to directly regress the actual 3D joint locations, greatly decreasing computa-
tional cost. MvP also have also compared their methods with the previous one. Typically, the
state space for each joint is represented as a 3D grid, discretizing the 3D space. The likelihood
of a joint’s location is determined by a joint detector applied across all 2D views, and pairwise
potentials between joints are defined by skeletal constraints [24],[25] or body parts detected in
2D views [27], [28]. Subsequently, the 3D poses of multiple individuals are jointly inferred
through maximum a posteriori estimation.
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Figure 3.5: (a) reconstruction‐based or (b) volumetric representation based, which incur heavy computation burden. (c) [4]
MvP method solves this task as a direct regression problem without relying on any intermediate task by a novel Multi‐view
Pose Transformer, and largely simplifies the pipeline and boosts the efficiency.

3.4 HumanMesh Recovery (HMR) with SMPL

The Human Mesh Recovery (HMR) [6] model builds upon the SMPL representation to re-
cover detailed 3D human meshes from 2D images. HMR leverages deep learning techniques
to predict the SMPL parameters directly from input images, enabling the reconstruction of
accurate 3D human poses and shapes. Their are different method and approaches proposed
after [6] to reduce the reconstruction error, some of these approaches are shown in 3.6.
The integration of SMPL andHMR into our proposed architecture enables us to leverage the
rich representational power of these models for pose estimation in synchronized multi-view
egocentric videos. By predicting SMPL parameters for each individual in the scene, we can re-
construct their poses and shapes, facilitating a wide range of applications in augmented reality,
virtual reality, healthcare, and security.

Single-image and video-based HPEmethods have achieved significant progress [1, 4]. How-
ever, applying these approachesdirectly to egocentric videos is challengingdue to self-occlusions
and limited field of view. Several works have addressed egocentric HPE, with some focusing
on single-person pose estimation [5]. Others explore multi-person pose estimation, but often
require additional information or assumptions about the scene or interaction context [3].
The key challenge in our work is estimating the pose of a person occluded in the HoloLens

view. Recent approaches like [6] utilize model-fitting techniques for 3D pose reconstruction,
but these methods may struggle with occlusions. Our work addresses this challenge by leverag-
ing the complete data from the Kinect views to learn a model that can generalize to the single-
viewHoloLens data.
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Figure 3.6: (a) Method works by fitting the SMPL body model to the measured IMU orientations they obtain initial 3D
poses Θ. (b) The proposed model takes as input a human body image and output 3D body deformable model and cam‐
era parameters. (c) SPIN[5] trains a deep network for 3D human pose and shape estimation through a tight collaboration
between a regression‐based and an iterative optimization‐based approach (d) [6] They take a picture image and use a spe‐
cial program (convolutional encoder) to understand the main shapes and features and guess a 3D model, trying different
versions until they find one that matches the person’s joints and finally, they check their guess against a ”checker” (discrimi‐
nator) to make sure it looks like a real person.[7]

Human pose estimation (HPE) in egocentric videos presents unique challenges compared
to traditional third-person approaches. This section reviews existing research addressing these
challenges, particularly focusing on multi-person pose estimation with missing data due to oc-
clusions.

3.5 AddressingMissing Data:

Asignificant challenge in egocentricHPE is handlingmissing data due to self-occlusions. Some
works address this by employingmodel-fitting techniques for 3Dpose reconstruction [6]. How-
ever, these methods can struggle with heavily occluded body parts.

3.6 HPEwith Egocentric Data:

Research in egocentric or first-person view video understanding has seen significant advance-
ments in recent years, fueled by studies such as ”You2Me” [8], ”First2Third” [9], ”Mo2Cap2”
[29], and ”HPS” [30]. This domain poses unique challenges compared to traditional third-
person approaches, such as limited field of view due to self-occlusions and variations in illumi-
nation caused by head movements. These works collectively aim to understand and interpret
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visual content from the wearer’s perspective, yet they each contribute unique perspectives and
methodologies to the field.

Figure 3.7: An overview of You2Me network.[8]

Learning from interactee (You2Me): This approach leverage information from comple-
mentary views of interactee(second-person) within an egocentric dataset. You2Me[8] propose
a learning- based approach to estimate the camerawearer’s 3Dbody pose from egocentric video
sequences. Their key insight is to leverage interactions with another person—whose body pose
we can directly observe—as a signal inherently linked to the body pose of the first-person sub-
ject.

Learning From Multiple View (First2Third):[9] exploit synchronized recordings from
head-mounted cameras and third view camera to capture complete multi-view data. During
training, the model learns the relationship between features in one view (e.g., hand visible in
first-person) and the corresponding pose information from another view (e.g., full body from
third-person). This allows them to estimate pose in scenarios where parts of the body are oc-
cluded in the egocentric view. ”First2Third” dataset is the closest to our work for enhancing
egocentric 3D pose estimation by incorporating third-person views, bridging the gap between
egocentric and third-person perspectives.By leveraging both egocentric and third-person view-
points, the work aims to improve the accuracy and robustness of pose estimation algorithms.
The incorporation of third-person views offers additional context and complementary infor-
mation that can help resolve ambiguities and challenges inherent in egocentric

Model-Based Reconstruction (Mo2Cap2, HPS):Mo2Cap2 [29] and HPS [30] focus on
reconstructing 3D pose by fitting a parametric body model (e.g., SMPL) to image features in
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Figure 3.8: An overview model of First2Third which uses a semi‐Siamese architecture.[9]

the egocentric frame. While these methods can handle occlusions to some extent, their accu-
racy can be limited by the quality of the initial pose estimation and the complexity of the body
model fitting process.
You2Me focuses on personalized video summarization, leveraging user interaction for content
selection. In contrast, ”First2Third” and ”Mo2Cap2” tackle challenges in human pose estima-
tion and activity recognition from egocentric videos, emphasizing the translation of egocentric
observations into conventional third-person representations. HPS introduces a hierarchical
approach to address scale variations and occlusions in egocentric videos, enhancing pose esti-
mation accuracy.

3.7 Our Approach in Context:

Our proposed method differentiates itself from existing work in several ways:

1. Leveraging Multiple Views: We exploit information from complementary viewpoints
within an egocentric dataset. This allows the model to learn from complete data (both
people visible) in some views and generalize to scenarios with missing data (one person
occluded) in the HMC view.
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2. Leveraging of EgoView forMulti-Person Identification:Weexploit information from
egocentric dataset,with the parameters fromKinect View, it is impossible to identify the
camera wearer and second person. We compared the parameters based on their points
distance in spacewith EgoView. This allows themodel to fuse the complete data coming
fromEgoView andKinect View(both people visible in kinect and only one in holoview),
we this we completed optimization for final parameters .

3. Learning from Complete Data: Our approach utilizes a training strategy that allows
themodel to learn a robustmapping between image features andpose parameters during
training, even when complete data is available. This knowledge is then transferred to
estimate poses in scenarios with missing data during testing.

4. Focus on SMPLParameters: Ourmodel predicts SMPLparameters, enabling not only
2D joint localization but also 3D pose reconstruction, crucial for various applications
like AR overlays.
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4
The EgoBody Dataset

Thiswork utilizes the EgoBody dataset [10] for training and evaluating our proposed approach
formulti-person pose estimation in egocentric videos withmissing data. Visualized dataset can
be seen in the image below. for each frame and each subject, the corresponding SMPL-X body
parameters global translation γ in R3, body shape β in R10, pose θ in R96 (body and hand)
and facial expression φ in R10, including the Here’s why EgoBody is particularly well-suited
for our research:

4.1 Characteristics of EgoBody:

• Multiple Views: The EgoBody dataset provides synchronized views of a scene captured
from four different perspectives: Main Camera, sub1 camera, sub2 camera (all Kinect),
and Holo Camera. This multi-view structure allows us to exploit complementary view-
points for pose estimation, addressing the challenge ofmissing data due to occlusions in
the HMC view.

• Ground Truth Pose: Each frame in the dataset is annotated with ground truth pose in-
formation for all people present in the scene. This information is provided in the form
of SMPL parameters, enabling not only 2D joint localization but also 3D pose recon-
struction, crucial for various applications.

• Diverse Interactions: The EgoBody dataset captures a wide range of social interactions
between two people in various indoor environments. This diversity allows the model to
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Figure 4.1: Overview of EgoBody Dataset: Capture setup. Multiple Azure Kinects capture the interactions from different
views (A, B, C), and a synchronized HoloLens2 worn by one subject captures the egocentric view image (D), as well as the
eye gaze (red circle) of the camera wearer.[10]

learn robust pose estimation capabilities that generalize well to unseen scenarios.

EgoBodydataset contains 125 sequences, 36 subjects and 15 indoor scenes. The dataset
has 3 subsets:

1. EgoSet (egocentricRGB subset of EgoBody) EgocentricRGB frames captured from the
HoloLens, calibrated and synchronized with the Kinect frames

2. MVSet: (third-person view RGBD, 3D scene, eye gaze, etc.) Synchronized frames cap-
tured from the Azure Kinects, frommultiple third-person views.

3. EgoSet interactee: Frames where the interactee is visible in the egocentric view.

Ground Truth is given in the fitting parameters of SMPL /SMPL-X, both of these models
work on three parameters the only difference is in SMPL-X has more joints with extra info
about Hands and Face. The GT is always in the coordinate system of the master kinect RGB
camera. The dataset has extensive detail about camera parameters
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4.2 Comparison to Existing Datasets:

Several egocentric pose estimation datasets exist. However, EgoBody offers distinct advantages
for our specific research goals, we did a comparison of Datasets for 3DHPE, with and without
data attributes like Egocentric, Interaction, Gaze, and Parametric Model Table 4.1, Table 4.2.

Table 4.1: Comparison of Datasets for 3D HPE, without data attributes like Egocentric, Interaction, Gaze, and Parametric
Model

Dataset Year Capture system Environment Single
person

Multi-
person

Single
view

Multi-
view

HumanEva 2010 Marker-based Mo-
Cap

Indoor Yes No Yes Yes

Human3.6M 2014 Marker-based Mo-
Cap

Indoor Yes No Yes Yes

CMUPanoptic 2016 Marker-less
MoCap

Indoor Yes Yes Yes Yes

MPI-INF-
3DHP

2017 Marker-less
MoCap

Both Yes No Yes Yes

TotalCapture 2017 Marker-based Mo-
Cap with IMUs

Indoor Yes No Yes Yes

3DPW 2018 Hand-held cam-
eras with IMUs

Both Yes Yes Yes No

MuPoTS-3D 2018 Marker-less
MoCap

Both Yes Yes Yes Yes

AMASS 2019 Marker-based Mo-
Cap

Both Yes No Yes Yes

NBA2K 2020 NBA2K19 game
engine

Indoor Yes No Yes No

GTA-IM 2020 GTA game engine Indoor Yes No Yes No
Occlusion-
Person

2020 Unreal Engine 4
game engine

Indoor Yes No Yes Yes
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Table 4.2: Comparison of Datasets for 3D HPE, with additional data attributes like Egocentric, Interaction, Gaze, and Para‐
metric Model

Name 3rd
Person

Egocentric Multi-
Person

Multi-
View

Interact Gaze Parametric
Model

3D
Scene

You2Me X ✓ ✓ X ✓ X SMPL-X X
Mo2Cap2 X ✓ X X X X X
PROX ✓ X X X X ✓ SMPL-X ✓
First2Third ✓ ✓ X ✓ X X X
CharadesEgo ✓ ✓ X X X X X
GIMO ✓ ✓ X X X ✓ SMPL-X ✓
HPS X ✓ X X X X SMPL ✓
Assembly101 ✓ ✓ X X X X X
HUMBI ✓ X X X X ✓ X
Ego Body ✓ ✓ ✓ ✓ ✓ ✓ SMPL-

X
✓
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5
Proposed Approach

This section details our proposed deep learning architecture for human pose estimation (HPE)
in egocentric videos withmissing data. Our approach leverages the information from both the
Kinect and HoloLens views during training and generalizes this knowledge to estimate poses
from single HoloLens frames during testing, where one person might be occluded.
In this chapter, we will explain the overview of ourModel MVMPHMR 5.1, SMPL and JRe-
gressor, SPINOptimatizationMethod and ourRegressionmodel whichwe used in submodels
SP HMR, EgoHMR,MPHMR.

5.1 Architecture ofMVMP-HMR:

Our architecture Figure 5.1 builds upon the well-established HumanMesh Recovery (HMR)
[1] for human pose estimation. However, we modify the HMRmodel and added it our archi-
tecture to handle two people present in two scene and address the challenge of missing data in
the HoloLens view.

The network takes images from both the Kinect and HoloLens views as input during train-
ing stage and only theHoloLens View input during testing stage. Whole architecture can be di-
vided into 4parts: (a)KinectViews (MP-HMR),(b)HoloLensView (SP-HMR), (c)HoloLens
View (Ego-HMR), (d) Addressing Person Identification, (e) SMPL Optimization. Here’s a
breakdown of the processing for each view:
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Figure 5.1: Overview of our architecture: MVMP HMR. Whole architecture can be divided into 4 parts: (a) Kinect Views
(MP‐HMR), (b) HoloLens View (SP‐HMR), (c) HoloLens View (Ego‐HMR), (d) Addressing Person Identification, (e) SMPL
Optimization
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5.1.1 Kinect Views (MP-HMR -Multi-PersonHMR):

Figure 5.2: Overview of Kinect branch, this is the detail part of 5.1 (a)

• Person Identification and Pose Estimation: The network first identifies individual
people within theKinect image. This was achieved using Yolo3, whose accuracy ismuch
better than CV2HOGDescriptor.

• Cropping and Individual Pose Estimation: For each identified person, the image is
cropped around the bounding box and fed into a separate HMR branch. This branch
estimates the individual’s SMPLparameters (M1(β, θ, γ) andM2(β, θ, γ)) using the stan-
dard HMR architecture.

• Temporary SMPL Parameters: The predicted SMPL parameters which represents hu-
man pose and shape can be used to project both 2D and 3D joint locations. These initial
estimates serve as temporary SMPL parameters, to identify correspondences of Camera
Wearer and Interactee by the results from EgoView Branch. After identification corre-
sponding FC will be merged withM1, M2 FC.

5.1.2 HoloLens View (SP-HMR):
• Single Person Identification (SP-HMR): The HoloLens image is processed through
a dedicated Single-Person HMR (SP-HMR) branch. This branch identifies the person
visible in theHoloLens view (the ”interactee”) and estimates their pose parameters using
the HMR architecture.

• Contextual InformationConcatenation: Inside the SP-HMRbeforepassing theFully-
Connected layer, the features extracted from theHoloLens image by SP-HMR are then
concatenatedwith additional information, which are themean-SMPL parameters β, θ,
γ, model is initialized with idle SMPL body pose.
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• OutputThe concatenated features from SP-HMR are then processed to obtain tempo-
rary SMPL parameters for the interactee (visible person) in the HoloLens view.

5.1.3 HoloLens View (Ego-HMR):
• EgoHMR: The HoloLens image is processed through a dedicated (EgoHMR) branch.
This branch identifies the person not visible in theHoloLens view (the ”camera-wearer”)
and estimates their pose parameters using the HMR architecture.

• Contextual Information Concatenation: Inside the Ego-HMR before passing the
Fully-Connected layer, the features extracted from the HoloLens image by SP-HMR
are then concatenated with additional information, which are the output SMPL param-
eters from SP-HMR. The Ego-HMR branch leverages the information from both the
image and the contextual cues (SMPL Parameters) to refine the pose estimation for the
camera wearer, even though they are occluded in the HoloLens view.

• Output: The concatenated features from SP-Ego-HMR are then processed to obtain
temporary SMPL parameters for the camera-wearer (invisible person) in the HoloLens
view

• Temporary SMPLParameters fromEgo-HMR:ThepredictedSMPLparameterswhich
represents human pose and shape can be used to project both 2D and 3D joint locations.
These initial estimates serve as temporary SMPL parameters, to identify correspon-
dences of Camera Wearer and Interactee by the results from KinectView Branch. After
identification corresponding FC will be merged withM1, M2 FC

5.1.4 Identifying Correspondences from two branches:
• A key challenge arises in distinguishing between the camera wearer and the second per-
son (interactee) in the output from the MP-HMR branch processing the Kinect views.
To address this, we propose a similarity measure, we compare the distance between the
pose parameters of the two people predicted byMP-HMRwith the pose parameters es-
timated by SP-HMR for the visible person in the HoloLens view.

• Based on the similarity measure, we can identify which person in the MP-HMR out-
put corresponds to the camera wearer (occluded in the HoloLens view) and which one
corresponds to the interactee (visible in the HoloLens view) foroverview check Fig 5.3 .
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Figure 5.3: Identifying Correspondences of Camera Wearer and Second Person from two branches, this is the detail part of
5.1 (d)

5.1.5 Estimating final parameter for ourMVMP-HMR:
• Once the Camera Wearer and Interactee is identified from theMP-HMR output, both
the corresponding the temporary SMPL parameters from SP-HMR (representing the
interactee) and Ego-HMR (representing the camera-wearer)are concatenated(FC) with
temporary SMPL parameters from respective bodies in MP-HMR.

• The predicted parameters are than fitted using techniques mentioned in SPIN.

5.2 SMPL

The Skinned Multi-Person Linear (SMPL) model [15] is a widely used representation for hu-
manbody shape andpose estimation. It provides a functionM(θ, β) that takes pose parameters
θ and shape parameters β as input and returns a body meshM ∈ RN×3, whereN = 6890 ver-
tices. This function allows for the generation of detailed 3D human body meshes based on
specific pose and shape configurations.
One of the key advantages of the SMPLmodel is its ability to define body jointsX directly from
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the generated mesh vertices. Specifically, the body joints X can be represented as a linear com-
bination of themesh vertices, enabling the efficient extraction of joint locations from themesh
geometry. This linear relationship can be encapsulated using a pre-trained linear regressorW,
which maps the mesh vertices to the desired joint locations.
Mathematically, for k joints of interest, the major body joints X ∈ Rk×3 can be defined as:

X =WM

where X represents the joint locations. M is the body mesh generated by the SMPLmodel.W
is a pre-trained regressor matrix that maps mesh vertices to joint locations.
We stimate camera translationgiven themodel joints and2Dkeypoints byminimizing aweighted
least squares loss. We find camera translation that brings 3D joints S closest to 2D the corre-
sponding joints_2d:

Input:
S: (B, 49, 3) #3D joint locations
joints: (B, 49, 3) #2D joint locations and confidence

Returns:
(B, 3) #camera translation vectors

By utilizing the SMPLmodel and the associated linear regressorW, researchers can effectively
extract joint information from generated body meshes, facilitating tasks such as pose estima-
tion, motion capture, and animation. The SMPL model’s parameterization of pose (θ) and
shape (β) allows for versatile and customizable representations of human bodies, making it a
valuable tool in computer graphics and vision research.

5.3 SPIN for Optimization

Our method leverages the SPIN (SMPL oPtimization IN the loop) [5] framework, which was
developedwith a specific strategy inmind. SPINharnesses the synergy between two paradigms
to effectively train a deep regressor for human pose and shape estimation (see Figure 5.1 e). In
our approach, during the training process, input images are passed through the network to ob-
tain regressed parameters denoted as Θreg.
Instead of directly applying standard 2D reprojection losses at this stage, the regressed parame-
ters are utilized to initialize an optimization routine. Typically, starting this optimization from
a mean pose value can be slow. However, with a reasonable initial estimate, the optimization
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process can be significantly accelerated. This allows us to integrate the fitting routine directly
within the training loop.
Let Θopt = {θopt, βopt} represent the optimized set of model parameters obtained through it-
erative fitting. These optimized values are explicitly tuned so that the resulting shapeMopt =

M(θopt, βopt) and the reprojected joints Jopt align closely with the 2D keypoints. Using these
optimized parameters, we can directly supervise the network function f on the parameter level
using the loss:

L3D = ||Θreg −Θopt|| (3)

and/or on the mesh level using the loss:

LM = ||Mreg −Mopt|| (4)

This approach differs significantly from applying a reprojection loss solely on the 2D joints.
Rather than requiring the network to identify parameters that satisfy the joints’ reprojection,
we provide it with a parametric solution corresponding to a feasible 3D shape directly. Es-
sentially, we circumvent the network’s search in the parameter space by supplying privileged
parameters Θopt that are very close to the optimal solution.
An important characteristic of SPIN is its inherent self-improvement. A good initial estimate
Θreg from the network leads to improved optimization results Θopt, which in turn provides en-
hanced supervision to the network. This iterative processwithin the training loop is crucial as it
fosters a close collaborationbetween the two components, leading to continuous improvement
and refinement. This improvement and optimization can be compared with other methods,
check Table 5.1

Method Reconstruction Error (%)
NBF [31] 59.9
HMR [6] 56.8
SPIN [5] 41.1

Table 5.1: Reconstruction Error Comparison: The numbers are mean reconstruction errors in mm. We compare with ap‐
proaches that output a mesh of the human body. The approaches make use of 3D ground truth too. Using SPIN outper‐
forms the state‐of‐the‐art by significant margins

31



5.4 Dataset Preprocessing

For preprocessing the EgoBody dataset, we undertook several steps to adapt the ground truth
annotations and camera data for ourmodel’s requirements. Initially, the dataset was annotated
based on Kinect camera data, with pose parameters provided for 45 joints. To enhance the
detail and consistency across different scenarios, we extended the joint count to 49 by incorpo-
rating additional joints (Details mentioned in Chapter 2).
Given the nature of the dataset, where only one ground truth (GT) was available for the

camera wearer and both OpenPose and original GTs were provided for the second person, we
opted to use the original SMPL (SMPL-X) GT to maintain model uniformity. As the GTwas
given in Kinect Coord, we converted the SMPL parameters toHolo world coord for rendering
and to Hololens Frame PV for calculating loss, the process is:

Master Kinect RGB Coord --> Hololens World Coord
Hololens World Coord --> Current Frame Hololens PV(RGB) Coordinate

For rendering we had to converto to different y/z axis definition in opencv/opengl convention,
for Pyrender we used:

[[1 , 0, 0, 0],
[0 , -1, 0, 0],
[0 , 0, -1, 0],
[0 , 0, 0, 1]]

The key preprocessing step involved converting the SMPL GT data from Kinect view to a
Holo viewusing the provided extrinsics and intrinsics camera parameters. This transformation
resulted in three main components: the converted global orientation γ, camera parameters θ,
and 2D joints φ, which were saved separately in .npz files for both the camera wearer and the
second person.

During training with theDataLoader, we stored the paths to these preprocessing directories.
At runtime, during data loading, we retrieved the pose θ and beta β parameters alongside the
converted global orientation γ and camera parameters θ. These parameters were then fed into
the SMPL function, leveraging its built-in capabilities to generate the ground truthmodels for
the camerawearer and interactee. The global orientation γ and camera parameters θwere partic-
ularly essential for rendering the EgoView perspective accurately. This preprocessing pipeline
ensured that our model could effectively learn from the annotated data and generalize to new
scenarios.
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5.5 Data Augmentation

5.5.1 CutOut Augmentation

Tosimulate potential occlusion effects during image capture,we employ theCutOut technique
[32] as a data augmentation method. This involves applying a square zero-mask to a randomly
selected position within each image during training epochs. The size of the square mask is
chosen randomly from the range [0, a × R], where R = 224 represents the image resolution.
Our experiments show that setting a = 0.8 achieves optimal performance.

Figure 5.4: CutOut applied to images from the EgoBody dataset.

5.5.2 Motion Blur Augmentation

To mimic motion blur that can occur during photography, we implement a custom motion
blur augmentation. Traditional blur operations use fixed 2D filtering kernels, which may not
adequately model real-world scenarios [33]. Our approach involves randomly generating blur
kernels to simulate camera movements in various directions and speeds. Specifically, we sim-
ulate motion blur in four directions (horizontal, vertical, and diagonal) using kernels of sizes
3x3, 5x5, and 7x7. This method aims to capture diverse motion blur patterns observed under
different shooting conditions.

Figure 5.5: Motion Blur applied to images from the EgoBody dataset.
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5.6 Implementation Details:

Our architecture is based on the SPIN (SMPL oPtimization IN the loop)[5] framework [5],
which serves as our baseline. However, we made several modifications to adapt it to our spe-
cific requirements.
Firstly, we replaced the perspective projection model used in SPIN with the weak-perspective
projection technique from HMR (Human Mesh Recovery) [6], similar to EFT (End-to-end
Recovery of Human Shape and Pose) [34],both of these method selected [35] as their baseline
form Official Pytorch Implementation for HMR networks. This change aligns better with
our dataset characteristics, particularly the EgoBody dataset, which provides high-quality 3D
annotations.
Furthermore, we removed the optimization module from SPIN (excluding the regression
model) due to the availability of detailed 3D annotations in the EgoBody dataset. This adjust-
ment streamlines our architecture and avoids redundant optimization steps.
For the regression model, we adopted a deep neural network architecture similar to Kanazawa
et al. [6], with a key difference in utilizing the 6D representation for 3D rotations proposed
by Zhou et al. [46]. This representation demonstrated faster convergence during training, en-
hancing the efficiency of our pose estimation.
The encoding of input images is performed using a ResNet-50 network [36] pretrained on the
ImageNet classification task. The ResNet output is average-pooled to produce features φ in
R2205, (2048 original output frommodel and θ = 24 ∗ 6+ β = 10+ γ = 3, the mean SMPL
parameter mentioned above).
The 3D regressionmodule comprises two fully-connected layers, each with 1024 neurons, sep-
arated by a dropout layer, followed by final layers seperater for each parameter θ, β, γ (a total of
85-dimensional output). We conduct T = 3 iterations for all experiments.
For pose estimation, the parameter θ is initially converted into K 3x3 rotation matrices using
theRodrigues formula. ReLU activations are applied to all layers except the final layer.
We set the learning rates to 1×10−5 and utilize the Adam solver for optimization. Our training
process spans 10 epochs, and training on a single NVIDIA RTX 3070 GPU typically requires
2-3 days.
These architectural details enable efficient and accurate pose and shape estimation tailored to
the characteristics of the EgoBody dataset.
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5.7 Loss Function and Training:

During training, the predicted SMPLparameters for both the camerawearer and the interactee
(obtained fromEgo-HMR and SP-HMR, respectively) are compared against the ground truth
SMPL parameters from the synchronized Kinect views using a loss function. This loss func-
tion guides the network to learn a mapping from the combined features (image information,
contextual cues, and temporary SMPL estimates) to accurate pose representations for both
people in the scene.
For Vertices loss we choose L1Loss, and for keypoint (2D and 3D) loss we selectedMSEloss, as
no reduction because confidence weighting needs to be applied and for Loss for SMPL param-
eter regression (both θ, β ), we also selectedMSELoss()
Defining loss function for HPS is very important part of architecture, we tested multiple op-
tions 5.6, as we mentioned before we replaced the perspective projection model used in SPIN
with the weak-perspective projection technique, assuming the real 3D annotations from Ego-
Body, we opted out for loss function of β, θ and 2d keypoints, for β, θ we could directly com-
pare them with our GT but for 2d keypoints we had to prepossessed them according to the
Holoview. The selection of loss function and their results are mentioned in Chapter: 6.

Figure 5.6: With initial β, θ, we can generate 3d joints and vertices (Φ) from SMPL. n represent number of people, in our
case we estimated the loss for both Camera Wearer and Interactee. At the end we sum up all the loss functions.
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5.8 Testingwith Single View: Generalizing Learned
Knowledge

During testing, only a single HoloLens image is provided as input. The network processes the
image through the same SP-HMR branch used during training for the HoloLens view.

• Single Person Pose Estimation (SP-HMR):The SP-HMR branch identifies the inter-
actee (visible person) in the image and estimates their pose parameters.

• Pose Estimation for Occluded Person (Ego-HMR): Similar to training, the predicted
pose parameters and features from SP-HMR (representing the interactee) are fed into
the Ego-HMR branch. However, since there is no Kinect view available during testing,
we cannot directly identify the camera wearer or obtain a corresponding image patch.

• Leveraging Learned Knowledge: Here, the power of the training process comes into
play. The Ego-HMR branch, trained on multiple views with ground truth for both
people, has learned a mapping between image features, contextual information (relative
camera positions), and temporary SMPLparameters. This allows Ego-HMR to leverage
the information from the visible person (interactee) and contextual cues to estimate the
pose parameters for the occluded camera wearer, even without a direct image input for
them.

36



6
Experimental Results

This section evaluates the effectiveness of our proposed approach formulti-person pose estima-
tion from egocentric dataset. We present quantitative and qualitative results on the EgoBody
dataset [10] and compare our method with existing baselines whenever available.

6.1 EvaluationMetrics:

We employ standard metrics commonly used for human 3D pose estimation evaluation:
1. Mean Per-Joint Position Error (MPJPE):Thismetric calculates the average Euclidean

distance between the predicted and ground truth 3D joint locations for all people in the
scene. We report separate MPJPE values for both the camera wearer and the second
person (interactee).

2. PA MPJPE: This metric focuses on the error in predicting the 17 key body joints (like
head, elbows, knees, etc.) defined by the Human3.6M dataset [37]. It provides a more
focused evaluation of core body pose estimation accuracy.

3. V2V (Vertex to Vertex): This metric calculates the average Euclidean distance between
the predicted and ground truth 3D locations of all body surface vertices represented by
the SMPLmodel. It provides a more comprehensive evaluation of the entire body pose.

4. PAV2V (PA Vertex to Vertex): Similar to V2V, but focuses on the error in predicting
the 3D locations of the same 17 key body surface vertices as PAMPJPE.

37



6.2 Baselines

Weevaluate ourmodel on theEgoBodydataset, whichprovides ground truthpose information
for multiple people in each frame. Here’s a breakdown of the results:

• Camera Wearer Pose Estimation: Since no existing methods specifically address pose
estimation for occluded individuals in the EgoBOdy dataset, we don’t have a direct base-
line for comparison for the camera wearer. However, we report theMPJPE, PAMPJPE,
V2V, and PAV2V errors achieved by ourmodel for the camera wearer to demonstrate its
effectiveness in estimating pose even with missing data due to occlusions.

• Second Person Pose Estimation (Interactee): We compare our model’s performance
on the second person (interactee) with the baseline results reported in the EgoBody
dataset paper [10]. Our method achieves competitive or superior performance on all
evaluation metrics compared to the baseline, demonstrating its accuracy in estimating
the pose of the visible person in the HoloLens view.

6.3 Results

Before conducting the experiment, it was necessary to preprocess the 3D annotations within
the EgoBody dataset to align with the requirements for direct model fitting. Specifically, we
transformed the global orientation of the SMPL model from world coordinates to camera co-
ordinates using the provided calibration data.

To enhance the robustness of the model and evaluate its performance under varying con-
ditions, we introduced data augmentations incrementally, resulting in four distinct configu-
rations. We employed the same evaluation metrics as those used in the EgoBody dataset [10],
comparing the results on the test set presented in Table 6.1 for Interactee and Table 6.2 for
Camera Wearer.

The analysis of bold rows given in Table 6.1 for Interactee and Table 6.2 for CameraWearer
reveals great improvement in themodel’s generalization capabilities following trainingwith the
Kinect view on MPHMR. This improvement underscores the effectiveness of the augmenta-
tion strategies employed in enhancing model performance.
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6.3.1 Quantitative Results

Table 6.1: Comparison of SOTA methods and evaluation on second person(Interactee)

Method MPJPE PA-MPJPE V2V PA-V2V

CMR [38] 200.7 109.6 218.7 136.8
SPIN [5] 182.8 116.6 187.3 123.8
LGD [39] 158.0 99.9 168.3 106.0
METRO [40] 153.1 98.4 164.6 106.5
PARE[41] 123.0 83.8 131.4 89.7
EFT[34] 123.9 78.4 135.0 86.0
Our MVMP-HMR(Holoview) 117 74.7 131.1 87.5
SPIN-ft(Egobody) 106.5 67.1 120.9 78.3
METRO-ft(Egobody) 98.5 66.9 110.5 76.8
EFT-ft(Egobody) 102.1 64.8 116.1 74.8
Our MVMP-HMR(Holoview + Kinectview) 93.1 61.5 104.8 70.5

Table 6.2: Comparison of SOTA methods and evaluation on Camera‐Wearer

Method MPJPE PA-MPJPE V2V PA-V2V

OurMVMP-HMR(Holoview) 114.2 71.4 103.0 83.1
OurMVMP-HMR(Holoview + Kinectview) 89.7 58.6 100.4 66.2
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6.3.2 Qualitative Results

Figure 6.1: Qualitative results from EgoBody dataset: Blue is camera wearer and pink is Interactee(1st Column), HoloView
frame(2nd column), Kinect View (3rd column)
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6.4 SelectionofLossFunctionanditsresultonEval-
uation:

Figure 6.2: (a) is the results from Loss function for beta parameters(β), (b) is the results from Loss function for pose parame‐
ters(θ) )

Figure 6.3: (a) is the results from Loss function for 2d keypoints generated by SMPL and (b) is the results from Loss func‐
tion for vertices parameters(Φ)

In the initial experiments focusing on pose estimation for the Second Person (Interactee),
we employed a total of five loss functions—covering Beta, pose, vertices, 2D keypoints, and 3D
keypoints—whose cumulative values constituted the overall loss as depicted in Fig. 6.2 and 6.3.
Transitioning to work with Weak Perspective Projection involved excluding the 3D keypoints
loss. Notably, during evaluation, particularly in terms of PA-MPJPE and PA-V2Vmetrics, we
observed rapid reductions, with differences of approximately 10 after each epoch.
Subsequently, we expanded our focus to pose estimation for the Ego body (camera wearer), ne-
cessitating an increase in the number of loss functions to eight (four for each individual). How-
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ever, this expansion posed a challenge, as indicated by MPJPE and PA-MPJPE results starting
at around 1600. While we observed a reduction in error rates after each epoch, the magnitude
of improvement was less significant (pre-evaluation results around 115 versus post-evaluation
results around 1600).
Eventually, we concluded that vertices and 2Dkeypoints, being computed frompose, Beta, and
camera parameters, could effectively serve as the three selected loss functions.

6.5 Discussion and Limitations:

The results on the EgoBody highlight the capability of our proposed approach. Themodel can
effectively estimate poses for both the camera wearer (occluded in the test image) and the sec-
ond person (visible) using the information from a single HoloLens frame and the knowledge
learned from the multi-view training process.
While the lack of a direct baseline for the camera wearer makes a quantitative comparison dif-
ficult, the achieved MPJPE, PAMPJPE, V2V, and PAV2V errors indicate promising accuracy
in pose estimation for occluded individuals.

Figure 6.4: (BEFORE: body shape frame_03180) Left: Abnormal body shape of Camera Wearer with camera angle(‐zfar),
Middle: Results according to the Extrinsic parameter of Holo Lens, Right: HoloImage

Figure 6.5: (AFTER: Body shape frame_03180) Left: Correct body shape of Camera Wearer with camera angle(‐zfar),Mid‐
dle: Results according to the Extrinsic parameter of Holo Lens, Right: HoloImage

42



The complexity of using CNN architecture for each branch, along with matching person
correspondences in each branch, presents unique challenges and impacts within the model.
Initially, we first identifiedpeoples captured from theKinect cameras and estimatedposes using
Kinect-View branch and then we matched these correspondences with the Ego-View Branch
to compute the final Camera Wearer and Interactee for the our MVMP-HMR.
However, this approach resulted in abnormal shapes(hand and feets) for the camera wearer,
as depicted in Fig 6.4, and the root rotations stayed the same, while the shapes for the interactee
remained valid.
After some observations we deduced that these discrepancy was likely due to:

1. For some frames, the detector only detected one person, and sometimes irrelevant ob-
jects (Fig. 5.2(b)).This means that if one person was detected (identified as M1), the
Human Mesh Reconstruction (HMR) model would assign the average SMPL (body
model) parameters to theunidentifiedperson (M2). SinceM2didn’t actually pass through
the model, a mismatch could occur and the features of the detected person (Interactee)
from the Kinect-View branch will fuse with the features of the CameraWearer from the
Ego-View branch.This fusion process could lead to inaccurate results for M2, as shown
in Fig 6.4.

2. The weight assignment at the final fully connected (FC) layer, where the camera wearer
was not present in the Holo Image.

After completing these observations we modified the architecture, we changed the detector
at Fig. 5.2(b) and added some constraints at Fig 5.3. This adjustment aimed to streamline the
model’s complexity and improve the accuracy of pose estimation outcomes. The results after
the changes can be appreciated in Fig. 6.5.
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7
Conclusion

In conclusion, our research has made significant strides in the field of 3D pose estimation, par-
ticularly focusing on theHPE of both the Second Persons andCameraWearer in the EgoBody
dataset. Leveraging the SPIN framework for optimization of our SMPL parameters and by
leveraging insights from You2Me, our methodology harnesses the strengths of state-of-the-art
approaches in egocentric pose estimation, we have developed a robust architecture for accurate
human 3D pose estimation in synchronized multi-view egocentric dataset. By utilizing deep
neural networks and advanced optimization techniques, we achieved high-quality 3D predic-
tions and improved convergence during training.
Our integration of Kinect view into the holo-view for training setup has been instrumental in
enhancing the accuracy and reliability of our model. This integration allowed for more pre-
cise estimation of 3D human poses and shapes from a single egocentric perspective during in-
ference, demonstrating the effectiveness of bringing together diverse viewpoints for compre-
hensive pose estimation. Furthermore, our approach addresses challenges encountered during
development, such as HPE of camera wearer and avoiding abnormal shape outputs, through
iterative refinement and optimization.
This collaborative approach has enabled us to overcome complexities inherent in egocentric
datasets like EgoBody, paving the way for improved accuracy and applicability in real-world
scenarios. Overall, our work contributes to advancing the field of egocentric 3D pose estima-
tion andunderscores the potential of integrating diversemethodologies for robust and accurate
human pose estimation.
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