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Abstract

Every year respiratory viruses such as influenza, respiratory syncytial virus, and human parain-
fluenza virus cause seasonal epidemics with peaks in hospitalizations and deaths. The SARS-
CoV-2 pandemic has altered this seasonal pattern due to the severe non pharmaceutical inter-
ventions implemented against it [1][2]. However, with the relaxation of the interventions against
SARS-CoV-2, the circulation of the other viruses is rising again, thus the understanding of the
dynamics of interdependent epidemics remains critical. The co-circulation of multiple viruses
is the result of factors concurring at different scales: from the microscopic scale of within-host
infection mechanisms to the scale of the human encounters and mobility [3]. Extensive viro-
logical data becoming increasingly available are providing evidence of a complex network of
virus-virus interactions [4]. Still, the extent of these interactions is not clear, and their role in
the epidemic dynamics is far from being understood. For convenience purposes the epidemics
caused by each virus are mainly studied separately. However a proper accounting for virus-
virus interactions becomes essential to understand the interdependent epidemics and anticipate
their future course. This requires a new approximate theory beyond current approaches [5][6]
to tackle the coupled system of viruses’ dynamical equations and enable scalable numerical
simulations. This work introduces a new multi-pathogen dynamical model accounting for the
competitive interaction between pathogens. The aim of this project is to explore the phase
space of possible dynamical regimes. Understanding gained by numerical simulations will be
backed up by theoretical considerations. Model trajectories will be compared with patterns
observed in the real data.
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Introduction

Each season there are multiple respiratory viruses circulating in the population and representing
a burden for the public health. Among them, influenza, respiratory syncytial virus, human
parainfluenza virus and others with a similar behavior. They share the same biological targets,
they attack the same age groups and the symptoms of the infections coincide. For these reasons
they are generally studied together, under the name of influenza like illness (ILI). Recently,
multiple PCR tests have been developed and progressively employed in large scale studies.
Through them it is possible to test individuals for many viruses with just one swab. This
allows for the tracking of all the viruses currently circulating in a population.

Many studies are starting to monitor the composition of ILI cases revealing the viral agents
causing the infections. This enables reconstructing viruses’ co-circulation at the population
level and provides evidence of virus-virus interactions [3]. Virus interactions can be inferred
also from within-host observations, e.g. by analyzing virus co-occurrences, or their absence [4].
Most viruses are found to interfere with each other and are subject to cross-immunity: after
an infection with a virus the hosts gain a temporary protection against infections with other
viruses. The extension of such protection depends on the level of similarity between the first
pathogen and a potential secondary one. The more similar they are, the stronger the protection
while the more they differ, the weaker it is. The viral co-circulation dynamics resulting from
these heterogeneous interactions forms a complex system.

Being able to describe virus co-circulation at the population level through dynamical models is
necessary to understand what happens in reality and to have the possibility of exploring possible
epidemiological and intervention scenarios. Compartmental models, such as SI, SIS and SIR,
are a versatile technique used in epidemiology to study the spreading of infectious diseases
at the population level. Majority of compartmental models focus on the spread of a single
pathogen. Still, a few compartmental models take into account multiple pathogens and their
interaction mechanisms. They are built upon two main frameworks introduced in [5] and in [6].
They adopt two different views, the first one the host’s and the second the pathogen’s one. The
host-view model allows for both temporary and long-term cross-immunity, thus it is flexible,
but it can not be upscaled to many viruses since the number of variables grows exponentially
with the pathogens considered. On the contrary, the pathogen-view model is scalable to many
viruses, but it is not flexible, it can account only for long-term cross-immunity thus it is more
suitable for systems with highly similar viruses, e.g. strains of the same virus.

The thesis aims at filling the gap in the literature of multi-pathogen modeling by introducing
a framework able to combine flexibility and scalability. We develop a multi-pathogen compart-
mental model that adopts the pathogen-view but is able to describe short term interaction.
Interactions among viruses are included with the introduction of convalescent compartments
that replicate the cross-immunity mechanism.

ix



INTRODUCTION

We use the model to investigate the consequences of multi-pathogen interaction on the multi-
pathogen co-circulation dynamics. For illustrative purposes we take the perspective of influenza,
by far the most studied virus. We reproduce flu incidence dynamics found in surveillance
data. We try to answer three practical questions within our framework to gain fundamental
understanding of the impact of other respiratory infections on influenza incidence:

• What is the effect of the presence of other respiratory viruses on influenza dynamics?

• What is the effect of the presence of other respiratory viruses on influenza parameters
estimation?

• Is there a relation between the interactions strength matrix and the matrix of the corre-
lations between the incidences?

The thesis is structured as follows. In chapter 1 we provide an introduction to epidemiology
and to compartmental models, both mathematically and practically. In chapter 2 we make
an overview of the variety of respiratory viruses and their interactions. Then we present the
state-of-the-art of the compartmental models describing such scenarios. The model developed
during this project is presented in chapter 3, where it is also compared to the host-view model.
We retrieve the dynamics of a virus similar to influenza with our model and we use it as a
reference during the analysis described in chapter 4. Eventually, in chapter 5 there are the
conclusions of this work.
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Chapter 1

Models in epidemiology

In the field of epidemiology, mathematical models have a fundamental role. It is necessary to
develop the right model to describe the scenario under consideration. Modeling should be a
trade-off between reality abstraction, in order to maintain a simple mathematical description,
and accuracy to replicate the main aspects of the system. Once the model is properly defined,
it becomes a predictive tool and allows for understanding the fundamental epidemiological
processes.

This thesis work is about creating a framework capable of describing systems populated by
many respiratory viruses. Since the next chapter goes into the development process, with the
explanation of the biological context and the state-of-the-art of the actual models, this first
chapter is dedicated to an introduction to mathematical models in epidemiology. In section 1.1
we briefly present the field of epidemiology and its history. Then, in section 1.2 we provide
an overview on compartmental models from the mathematical point of view and in section 1.3
some of their practical applications are shown.

1.1 History of epidemiology

The word epidemiology comes from the union of the Greek words epi (= upon), demos (=
people), logos (= study of), literally the study of what occurs among the population. Indeed,
according to ‘A Dictionary of Epidemiology’ [7], its definition is:

‘The study of the distribution and determinants of health-related states or events in specified
populations, and the application of this study to control of health problems ’.

In other words, epidemiology studies the occurrence of diseases (or other health-related charac-
teristics) in a specific population and tries to control them. A disease can be either infectious
or noninfectious. The first one can be passed between individuals, whereas the second develops
over an individual’s lifespan. For this reason, the epidemiology of noninfectious diseases inves-
tigates the risk factors associated with the chance of developing the disease. In opposition, the
primary cause of catching an infectious disease is the presence of infectious cases in the local
population. This work focuses on the latter, where mathematical models have great predictive
power at the population scale and over relatively short time scales.

The origins of mathematical epidemiology are far in time. There are studies about the spreading

1



CHAPTER 1. MODELS IN EPIDEMIOLOGY

Figure 1.1: Spot map made by Snow to track cholera cases and water pumps localization [9].

of infectious diseases from the past centuries, some examples are the ones by Bernoulli and Snow.
Bernoulli in 1766 analyzed mortality induced by smallpox and highlighted the importance of
prevention against the disease [8]. In 1854 Snow investigated the localization of cholera cases in
London, during a cholera epidemic. He marked on a ‘spot map’, reported in Figure 1.1, all the
cases because he believed in a correlation between households with cholera and water pumps
localization [9]. Through his studies he was able to demonstrate that the source of disease
in the area of interest was a specific pump. But the foundation of modern epidemiology can
be attributed to Ross in 1911 [10]. In his works, he studied a system of differential equations
to model the spreading dynamics of malaria. He was able to show that malaria can persist
only if the number of mosquitos (the source of the infection) is above a certain threshold. As a
consequence, it is not necessary to kill all the mosquitos to eradicate malaria, but only a fraction
of them. Such work can be considered the first mathematical model of malaria transmission.

Similar epidemic models were later developed by Kermack and McKendrick in 1927 [11]. They
summarized the spreading mechanism of a general infectious disease as follows: one (or more)
infected person enters a population where people are more or less susceptible to that disease.
The disease spreads from infected to susceptible by contact. Each infected individual has to
go through the course of the infection and can get out of it either by recovery or death. The
proportion of people involved, the timing and the severity are all characteristics depending
on the single disease. They demonstrated that the epidemic does not need to terminate the
susceptible population to be extinct. For each specific set of infectivity, recovery and death
rates, there exists a critical susceptible population density below which the epidemic does not
even start. The more this threshold is exceeded the smaller the population density will be at
the end of the epidemic. In this case, the epidemic continues to increase as long as the density
of the unaffected population is greater than the threshold density. When this point is reached
the epidemic begins to wane and eventually dies out.

2



1.2. COMPARTMENTAL MODELS

Still nowadays the progress of an infectious disease can be defined qualitatively in terms of
pathogen load within the host, which in turn is determined by the growth rate of the pathogen
and the interaction between the pathogen and the host’s immune response. The scheme in
Figure 1.2 shows the temporal evolution of an infection along with the corresponding response
of the host immune system. Initially the host is susceptible to the infection: the pathogen is
not present in his organism, and he has a low level of nonspecific immunity. At time 0 the host
is exposed to an infectious individual and becomes infected with a microparasite from him.
From this moment the internal abundance of the parasite grows over time. During this early
phase the individual may exhibit no evident signs of infection and the abundance can be too
low to cause a further transmission. Once the abundance is sufficiently large within the host,
there is the possibility of transmitting the infection to other susceptible hosts. In this phase
the host is infectious. At last, when the host’s immune system has defeated the parasite attack,
the host is no longer infectious and is recovered. In this simplified scenario, at this point the
immune response developed to oppose the virus renders the host immune to further infections
for a lifelong duration.

Figure 1.2: Figure from [5]. Temporal evolution of an infection from the point of view of the pathogen
(gray curve) and the host’s immune response (black curve). All the S-E-I-R phases are shown.

1.2 Compartmental models

Starting from Kermack and McKendrick work [11], epidemiological models are often formulated
in terms of mutually exclusive compartments: hosts are grouped by their health status with
respect to a pathogen. This modeling technique is called compartmental model. In this section
we provide an overview of some of the most common compartmental models. We illustrate their
versatility while maintaining a simple and clear mathematical description. All the mathematical
details can be found in the book by Keeling and Rohani [5].

In compartmental models transitions between compartments, i.e. health status in Figure 1.2,
occur according to rates. For example, the transition from susceptible to infected is mediated by
the event of contagion and occurs at a rate that is proportional to the factors that affect such an
event, e.g. the fraction of infected present in the population. Rate translates into probability of
an individual moving from a compartment to the next one per unit time. As for all the models,

3



CHAPTER 1. MODELS IN EPIDEMIOLOGY

this is an abstraction of reality, done for mathematical convenience. Indeed, systems modeled
by compartmental models can be easily represented by a set of ordinary differential equations.

The population is assumed to follow the homogeneous mixing hypothesis: all individuals are
considered to behave equally and they have the same number of contacts ⟨k⟩ through which
transmission can occur. This simplifies the mathematics of the model but it can result in an
unrealistic scenario when dealing with a large population.

SI Model

Figure 1.3: Scheme of SI compartmental model.

The most simple dynamics that a compartmental model can describe is the SI (Figure 1.3).
The SI dynamics represent the contagion process where susceptible become infected with a rate
proportional to:

• β, the transmissibility parameter which regulates the speed of the spreading;

• ⟨k⟩, the mean number of contacts that each individual has;

• I
N
, the fraction of infected people in the population.

After catching the disease, infected individuals stay infectious forever. Such a dynamic leads
to the spreading of the disease over the entire population N : in the end I = N . Speaking in
terms of densities: S

N
+ I

N
= s + i = 1. This could suit chronic infections or pathogens that

always have a fatal outcome. An example from animals’ diseases is the highly pathogenic avian
influenza subtype (H5N1) [12].

SI model is described by the simple set of ordinary differential Equations 1.1:

ds

dt
= −β⟨k⟩si (1.1)

di

dt
= β⟨k⟩si

. By solving this ODE system, the solution in terms of density of infected is:

i(t) =
i0e

βt

1− i0 + i0eβt

with i0 being the initial fraction of infected over the entire population. The resulting behavior
of i(t) is a Sigmoid function: during the early phase the growth is exponential and ruled by β,
then the slope decreases because there are less susceptible to be infected and then it saturates
to 1, all hosts end up getting infected.

4



1.2. COMPARTMENTAL MODELS

SIS Model

Figure 1.4: Scheme of SIS compartmental model.

On the opposite side with respect to the SI model, where there is no possibility of recovering
from the infection, there is the SIS model. In the SIS, after being infectious for a period, hosts
can heal and return to be susceptible to that disease. The infection does not confer immunity
to the hosts. Thus the transitions described are two as shown in Figure 1.4:

• the contagion, which is mediated by the infected people through the rate β⟨k⟩ I
N
;

• the healing from the infection, that happens spontaneously at the recovery rate µ = τ−1

which is the inverse of the infectious period.

The ODE system describing the SIS dynamics is expressed by Equation 1.2:

ds

dt
= −β⟨k⟩si+ µi (1.2)

di

dt
= β⟨k⟩si− µi

which gives as a solution for the density of infected again a Sigmoid-like behavior:

i(t) = i0
(β − µ)e(β−µ)t

β − µ+ βi0e(β−µ)t
.

Since there is the possibility of recovering, i(t) does not saturate anymore at 1 like in SI case,
but at a value that can be retrieved by searching for the stationary states di

dt
= 0. The results

are the no infected scenario (i(t) = 0) which is a stable equilibrium if β < βc =
µ
⟨k⟩ , but becomes

unstable if β > βc, and the dynamical equilibrium at i(t) = β⟨k⟩−µ
β⟨k⟩ , that is feasible only in the

case of β > βc. That situation is called endemic equilibrium and represents the case in which
the number of new recovered equals the number of new infections.

During the early phase of the spreading s ≈ 1, i ≪ 1, thus i(t) can be approximated with
i(t) ∼ i0e

(β⟨k⟩−µ)t. Consequentially the initial transient can determine two different results for
the spreading process:

• the case β⟨k⟩ < µ leads to a decreasing dynamics that ends up at zero infected;

• the case β⟨k⟩ > µ leads to an increasing dynamics.

Again, βc is a threshold value, it is called epidemic threshold since it establishes whether an
epidemic grows exponentially or goes extinct. Thus it is the minimum value of the infection

5



CHAPTER 1. MODELS IN EPIDEMIOLOGY

probability for which the disease survives. The pathogen’s survival condition can be rewritten
as:

β⟨k⟩
µ

= β⟨k⟩τ = R0 > 1. (1.3)

This defines a fundamental quantity in epidemiology, the basic reproductive ratio R0 = β⟨k⟩τ .
By definition R0 is the number of cases generated by a case in a fully susceptible population. In
other words, the epidemic threshold condition becomes: ‘assuming that the entire population
is initially susceptible (s(0) = 1), a pathogen can invade only if R0 > 1’.

SIS dynamics is mainly used to model a disease in which individuals have a very short temporary
immunity period after which they become susceptible again to the infection. For example, this
assumption is reasonable for sexually transmitted infections like chlamydia [13] and gonorrhoea
[14], where there is hardly any immunity and repeated infections are common.

SIR Model

Figure 1.5: Scheme of SIR compartmental model.

The majority of the infectious diseases leave the hosts with an immunity to a secondary infec-
tion. In terms of compartmental models this is described with a SIR dynamics. The transitions
involved are the same just illustrated for the SIS model, but in this case another compartment
is present, i.e the recovered (Figure 1.5), where hosts have gained lifelong immunity to the
disease from which they healed. Such dynamics well represent the one of measles [15] and
chickenpox [16] that can infect only once in a lifetime. Otherwise, if the temporal window ob-
served is limited, then the majority of the infectious diseases can be approximated with a SIR
dynamics, even those with limited immunity duration. For instance, for influenza, COVID-19
and many other respiratory infections immunity lasts several months or even years. Thus, if
we aim at describing an epidemic during the course of a winter season, the SIR model provides
a convenient approximation.

The SIR dynamics is the one described by Equation 1.4:

ds

dt
= −β⟨k⟩si (1.4)

di

dt
= β⟨k⟩si− µi

dr

dt
= µi

where r = R
N

is the density of recovered individuals. Despite its extreme simplicity, this model
can not be solved explicitly to obtain analytical expressions for s(t) and i(t). Thus, here it
is reported the idea of what happens at the beginning and at long-term. Since i is affected
by the same mechanisms introduced for the SIS model, at the initial stages the two dynamics

6



1.2. COMPARTMENTAL MODELS

are similar and there is the same threshold behavior at βc =
µ
⟨k⟩ , as the SIS case. Only if the

pathogen has R0 > 1 it can invade the population, otherwise it dies out. The asymptotic state
can be retrieved by following all the analytical steps explained in [5] under the assumptions of
t→∞ and r0 = 0:

1− r(∞) = s0e
−r(∞)R0 . (1.5)

The epidemic terminates without reaching the whole population. There is a portion of the
people that remains susceptible, and the epidemic declines because infected individuals do
not find enough susceptible to infect. It is important to notice that the final value r(∞) is
independent of the specific values of β and µ, it is a function of R0 only.

If a portion of the population ν is initially immune to the pathogen, either by vaccination or
by previous infection, it can be included in the system in this way:

di

dt
= β⟨k⟩(1− ν)si− µi

s(0)∼1
≈ β⟨k⟩(1− ν)i− µi.

The concept of basic reproductive ratio can be extended to the reproductive ratio: R = β⟨k⟩τs,
the number of cases generated by a case in a partially susceptible population. Merging together
the definition of R0 and the fraction of immunized, R can be rewritten as R = R0(1− ν). If

R0(1− ν) = 1→ ν = 1− 1

R0

the epidemic does not start. This condition is called herd immunity threshold. It shows that
vaccination can be used to reduce the proportion of susceptible below 1

R0
and hence eradicate

the disease. In general, R0 can be estimated from surveillance data and interventions can
modify its value and thus the progress of the epidemic.

SEIR Model

Figure 1.6: Scheme of SEIR compartmental model.

As seen in section 1.1, when a host contracts an infection, there is a period between the time
zero of the contagion and the moment when it becomes infectious. That is the exposed (or
incubation) period, during which the pathogen abundance grows inside the host organism to
reach the threshold abundance level for the host to be infectious. In many cases, like the
ones just presented, this passage can be neglected in order to simplify the description. But in
the case of a longer incubation period, this can be explicitly modeled by adding an exposed
compartment. An example where the SEIR model is adopted because it well suits the disease
characteristics is the Ebola case, which has an average incubation period of 9 days [17].

The scheme of the SEIR dynamics is shown in Figure 1.6 and its representation from the
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mathematical point of view is in Equation 1.6:

ds

dt
= −β⟨k⟩si (1.6)

de

dt
= β⟨k⟩si− ϵe

di

dt
= ϵe− µi

dr

dt
= µi

where e = E
N

is the density of exposed individuals and ϵ the inverse of the latent period. The
resulting dynamics behaves similarly to a SIR, with the same final equilibrium state found in
Equation 1.5. However the SEIR model has a slower growth rate, since individuals need to
pass through the E compartment before they can contribute to the transmission. The exposed
stage adds a delay to the dynamics.

Generalizations

Compartmental models are extremely versatile, they can be easily adapted to fit different
epidemic situations, following the knowledge about the spreading mechanism of each pathogen.
To the basic frameworks just exposed, more state-variables and transitions can be added. Some
examples can be:

• Waning of immunity: many viruses have an immunity duration that is temporary. Once it
is waned the hosts return to be susceptible. The most appropriate compartmental model
to describe this dynamics is the SIRS. For example, influenza viruses fit in this situation
[18].

• Birth and death rates: if the population can not be considered constant over the obser-
vational period, birth and death events must be included in the dynamics. Births add
susceptible and deaths can remove individuals from each compartment.

• Risk structure: usually pathogens do not affect all the hosts with the same intensity. To
have a more accurate description of the population, risk structures can be included in the
model. In childhood diseases, such as measles, different age cohorts have different risk
of contracting the infection. This can be accounted for by adding to the compartmental
model compartments corresponding to the different age groups and by assuming they have
a different risk of getting infected[19].

In addition to compartmental models, there exist other epidemiological modeling frameworks,
such as contact networks, metapopulation models and agent based models. They have an
increasing level of complexity: contact networks include into the spreading dynamics of a
disease, the specific structure of contacts among individuals; metapopulation models include
spatial heterogeneities and mobility; agent based models are a complex combination of multiple
agents interacting among them and with the environment, according to specific rules. With
these models it is possible to reach very accurate results, but still compartmental models are
widely used: they are more flexible and less computational intensive, thus they are more suitable
to be integrated in computational intensive studies, such as the ones involving data fitting.
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1.3 Use of compartmental models

In the previous section, compartmental models have been introduced from the mathematical
point of view. Their versatility has been claimed and in this section some of their practical
applications are finally presented.

Compartmental models have two main roles: understanding and predicting. They can be used
to understand real world disease spreading. Building them from an individual-level knowledge
of epidemiological factors, compartmental models give back the population-level epidemic dy-
namics. Such dynamics can be affected by many factors and by the means of models it is
possible to identify the effect of each factor on the resulting dynamics, increasing our under-
standing of the infection under study or a specific epidemic. On the other hand, compartmental
models have a great predictive power. They are useful to simulate the transmission dynamics
to anticipate the future course of an epidemic and to compare possible scenarios in response,
e.g. intervention measures.

Here are some examples of public health issues that compartmental models can help to address.

Biological understanding. Models can be used to test different biological hypotheses to see
which better describe available data. There are multiple influenza subtypes circulating among
the population simultaneously every season (this concept is further explained in section 2.1). In
the study [20] the authors develop a compartmental model that comprehends all these viruses
and their possible interactions. They fit with the model flu incidence data collected in Hong
Kong in the period 1998-2018. From that, they are able to estimate the strength of the cross-
immunity between each virus-pair, the timing and frequency of changes in population immunity
in response to antigenic mutations in influenza viruses, and key epidemiological parameters.

Outbreak analysis and forecasting. By analyzing outbreaks it is possible to obtain impor-
tant information on the virus causing it to quantify the intensity of the epidemic and possibly
make forecasts about the future spreading. This has a fundamental role especially when new
pathogens emerge, whether they are new strains or completely new viruses. The most recent
example is the COVID-19 pandemic. A new virus from the human coronavirus family emerged
and attacked the population whose immune system was completely unprepared. During the
early phases of the spreading, there were no clues about the virus’ characteristics and analysis
on available data have been fundamental to quantify the importance of such a phenomenon.
In the work [21], they provide estimations of R0, per-day mortality and recovery rates about
the early phase of the COVID-19 outbreak in Hubei, China, through a compartmental model
having as compartment Susceptible-Infectious-Recovered-Dead (SIDR). By calibrating the pa-
rameters of the SIRD model to the reported data, they also attempt to forecast the evolution
of the outbreak. For example, Figure 1.7 is taken from the original paper and shows the pre-
dictions on the cumulative number of infected by COVID-19 (red solid line), from their SIRD
model calibrated on the available cases data at that time (red dots).

Vaccination study. The goal of influenza vaccination is to maximize health benefits through
efficient use of limited resources. According to World Health Organization recommendations,
influenza vaccination programmes have targeted individuals older than 65 years and those
at risk. In [22] the authors develop a method that exploits a SIRS model to evaluate how
changing target populations in the seasonal vaccination programme would affect infection rate
and mortality. In Figure 1.8 they show the results of their study: they compare the consequences
on morbidity and mortality of the actual vaccination strategy (in red, 70% vaccine coverage
among people 65+) to an hypothetical extension to the age group of 5-16 years (in cyan, 70%
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Figure 1.7: Figure from [21]. Simulations until the 29th of February of the cumulative number of
infected by COVID-19 in Hubei as obtained using the SIRD model. Dots are the confirmed number
of cases, the solid line is the model prediction and the dashed lines are the lower and upper bounds.

vaccine coverage among people 65+ and 30% among children aged 5-16).

Figure 1.8: Figure from [22]. Comparison between two influenza vaccination strategies: in red 70%
vaccination coverage among people 65+, in cyan 70% vaccination coverage among people 65+ and
30% among children aged 5-16. The effects are shown in terms of the number of infections and deaths
saved per year.

Another application example can be the introduction of a new vaccine. Respiratory Syncytial
Virus (RSV) is a respiratory virus gaining mounting interest, since it is the most common
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cause of acute lower respiratory infection in young children [23] and it constitutes a substantial
disease burden in older adults [24]. RSV vaccines are still under development, with some of
them being at the trials phase [25]. This leads to debates about the necessity of vaccinating
people against RSV. In such a complex system, with a lot of interdependent viruses, what can
be the result of suppressing RSV? For example, since there is evidence of interference between
RSV and influenza [26][27], could a vaccination against RSV cause an increase in influenza
cases? A compartmental model can be designed to simulate influenza and RSV co-circulation
and quantify the impact of RSV vaccination.

Plan interventions. Compartmental models can guide difficult policy decisions where there is
a trade-off between multiple alternative control strategies. An evident example is the COVID-
19 pandemic. During the emergency phase, most countries adopted strong interventions: lock-
downs, social distancing and face masks. Many studies, based on compartmental models, have
simulated the effect of these interventions on the disease spreading, both anticipating future
spread to guide government decisions and retrospectively analyzing real epidemics to evaluate
the interventions’ effectiveness [28].
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Chapter 2

Multi-pathogen systems

In chapter 1 we illustrate how to model the spreading dynamics of an infectious disease on a
population, through compartmental models. However in real life the same population is subject
to many different pathogens co-circulating simultaneously and aiming to the same biological
targets. This opens the possibility of interactions among them. To study and understand the
dynamics of a pathogen, it may be necessary in certain cases to account for the presence of
other pathogens and to model their interaction. In addition, multi pathogens models can be
used to describe co-circulating subtypes or strains of the same pathogen to investigate disease
evolution.

This work focuses on respiratory viruses epidemics. Despite many studies claiming the presence
of interactions among them [4][29], very few mathematical models integrate the presence of
different viruses in the same system. Thus, it is still not clear if these interactions are important
to describe real data, to quantify the public health impact of these infections and to plan
interventions. The aim of this project is to try to fill this gap.

In this chapter we provide an overview on the respiratory viruses co-circulating in the human
population and causing seasonal epidemics (section 2.1) as well as on their interactions (sec-
tion 2.2). Then, two different approaches to tackle multi-pathogen and multi-strain systems
are exposed with their strengths and limitations (section 2.3, section 2.4).

2.1 Subtypes, strains and different viruses

There are many different respiratory viruses co-circulating. They aim at the same biological tar-
gets (upper and lower respiratory tracts), their symptoms are very similar (cough, sore throat,
fatigue, ..) and they attack the same age cohorts (children, elderly people). Taken together
these viruses cause the Influenza Like Illness (ILI), a syndromic condition often studied aside
from its etiology [30]. During recent years, with the evolution of the multiple PCR test, it
is becoming possible to test patients for different viruses with a single test [4][29], improving
the investigation of ILI composition and the monitoring of viral spreading in the population.
Common viruses contributing to ILI include influenza virus, respiratory syncytial virus (RSV),
human parainfluenza virus (HPIV), coronaviruses, human metapneumovirus, respiratory ade-
novirus (AdV) and rhinovirus (RV) [31][32]. An example of the ILI composition found in the
study [29] is reported in Figure 2.1.
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Figure 2.1: The upper panel shows the number of weekly samples positive to ILI viruses and their
subdivision into different viruses. The lower panel shows the weekly positive as a percentage of the
total. Data and figure from [29].

Figure 2.2: Number of influenza detected cases from global surveillance data [33]. Specimens are
categorized by influenza A subtypes and B lineages. During COVID-19 pandemic flu reported cases
dropped to almost zero.

14



2.1. SUBTYPES, STRAINS AND DIFFERENT VIRUSES

It is important to highlight that most of the ILI viruses have a further internal subdivision
into different subtypes. This distinction is necessary because due to their genetic and antigenic
dissimilarities they can be considered as different viruses. We illustrate the case of influenza as
an example.

There are four types of influenza viruses, called A, B, C and D [34]. Only types A and B cause
the most human illnesses and are responsible for influenza season each year. Whereas influenza
C causes mild illness and not human epidemics and influenza D spreads mostly among cattle.
About influenza A viruses, they are divided into subtypes, based on different proteins present
on the surface of the virus, hemagglutinin (H) and neuraminidase (N). More than 130 influenza
A subtypes combinations have been identified in nature and recombinations continuously oc-
cur. The subtypes that most frequently circulate among humans are A(H1N1) and A(H3N2)
[35]. Regarding influenza B viruses, they are classified into two lineages: B/Yamagata and
B/Victoria. Then, there is a further subdivision of influenza A subtypes and B lineages, into
genetic clades and subclades. Such subdivision is based on the similarity of genetic mutations
and it groups viruses that come from the same common ancestor virus. Since influenza viruses
are constantly changing, it is important to always keep track of the variants in circulation to
be able, for example, to update the vaccine composition. Seasonal flu vaccines are formulated
to protect against influenza viruses known to cause epidemics. By analyzing the composition
of the spreading viruses it is possible to forecast the next season circulating viruses, to create
specific and more effective vaccines. Figure 2.2 shows the distribution of flu types and subtypes
found from recent years global surveillance data. From the situation depicted it is also inter-
esting to note that there is a drop in flu cases reported, corresponding to non-pharmaceutical
interventions against COVID-19.

Mutations happen by the means of two different mechanisms: the antigenic drift and the
antigenic shift [36]. The antigenic drift consists of mutations in the genes of influenza viruses
that can result in changes in the surface proteins. These surface proteins are antigens : they are
recognized by the immune system and can trigger an immune response to generate antibodies
to block the infection. Antigenic drifts happen continuously with the replication of the virus
among hosts. If these changes are small, the new variant of the virus is similar to the parental
one, maintaining similar antigenic properties. This means that the antibodies created by the
immune system after an infection, are capable to recognize and respond also to antigenically
similar viruses. Otherwise, when a change happens in an important location of the proteins or
many mutations accumulate, the resulting virus can have very different properties or behavior.
In this case the new variant is called strain. This can lead to a change also in the antigenic
properties and therefore a new strain can trigger a weaker response from the original virus’s
antibodies. The second mechanism is the antigenic shift : it refers to strains recombination
that generates new subtypes having a mixture of the original strains’ antigens. This includes
also the situation in which a flu virus circulating and attacking animals gains the ability to
infect humans. The resulting viruses are completely new for the population and their immune
systems are not prepared to defeat them. Indeed, when antigenic shift occurs, there can be
huge consequences on the population. This was the case of influenza A(H1N1) in 2009 that
originated from swine flu and made a jump between species [37]. Human population was not
protected from such a virus and the spreading was quick and massive causing a pandemic. Type
A viruses undergo both antigenic drift and shift and are the only flu viruses known to cause
pandemics, while flu type B viruses change only by the more gradual process of antigenic drift.

Most of the other ILI viruses are structured in subtypes and are subject to mutations, leading
to a large number of viral agents co-circulating in the human population and with them a
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variety of interactions occurring among them. It is necessary to distinguish ILI viruses and to
study their co-circulation as different viruses to better anticipate seasonal epidemics and plan
targeted interventions.

The next section is dedicated to the interactions that can occur among respiratory viruses from
both the points of view of biology and epidemiological modeling.

2.2 Respiratory viruses interactions

When speaking about ‘interaction’ in the context of infectious diseases, the reference is to any
process caused by an infection by one pathogen that affects infections by other pathogens.
Generally interactions can be in both directions: they can be either competitive or synergistic,
depending if one infection obstructs or facilitates the other. In the case of respiratory viruses
they seem to be mainly competitive, there are many studies showing negative interactions
among them, for example: influenza-influenza, influenza-RSV, influenza-RV, influenza-HPIV,
coronaviruses-RV [4],[29],[38]. Moreover they can occur at several scales and can be summarized
in [3]:

• cellular-level interactions: direct interactions between viral products, altered receptor
presentation, modification of release of immune system mediators, competition for host
resources among the pathogens;

• host-level interactions: change of transmissibility due to symptoms, individual variation in
commensal microbiota, effect of symptomatic responses to infection, tissue damage, com-
petition for host resources, immune cell-mediated interaction, immune signaling-mediated
interaction, antibody-mediated interaction;

• population-level interactions: behavioral responses to disease, medication, vaccination.

Interactions at any level can have effects on epidemic spreading at the entire population scale
and on public health projections, affecting spatial and temporal spreading patterns. Thus, even
if it is still not known the precise biological nature of each single virus-virus interaction, when
such a system has to be described with compartmental models, the effects of the interactions
can be modeled in a general way at the population-level. To simplify the description of this
scenario particular assumptions about conferred immunity and interactions are made.

The mechanism through which after an infection with a virus, the host is protected from a
further infection by related strains or even different viruses is called cross-immunity. The
immunity gained after the first infection protects against viruses other than the one infecting
first. Of course, the level of such cross-protection depends on the epidemic context under
study. For example, if the viruses considered are different strains from the same parental virus,
i.e. mutations that are genetically similar but they behave differently, or they are different
subtypes, the cross-immunity level should be high, due to their similarities. On the contrary,
if the two pathogens are completely different viruses, such protection should be lower or even
not present at all. When many cross-reactive diseases are circulating within the population,
different assumptions about the nature of the cross-interaction have different effects on the
modeling outcome. Below are presented some of the assumptions that can be made when
describing interactions between two viruses [5].

A complete cross-immunity between two viruses confers lifelong immunity to both. Modeling
both spreading dynamics with SIR models, the two recovered compartments have to coincide.
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Based on the previous explanation, such a high level of cross-protection suits the situation
of two different strains or subtypes from the same virus. What happens is that since both
strains are competing for the same limited resources, the susceptible hosts, only one strain will
dominate. The dominating one is the one which is able to use resources more efficiently. The
one having the highest R0 leads the other to extinction. This has evolutionary implications:
in theory, any mutation that generates new strains with larger R0 is favored in such a system.
Thus, both the transmissibility β and the infectious period µ should increase and the mortality,
if applicable, should decrease. However in reality there is a trade off between transmission and
virulence (more transmissible means more pathogen particles and more harmful to the host)
and between transmissibility and duration of infectious period (highly transmissible pathogens
are often of short duration).

In some cases there is no cross-immunity, but co-infections can not occur. Such an assumption
is plausible considering a reduced number of contacts when ill. In this case pathogens can
coexist as long as their basic reproductive ratio is greater than 1. This applies to pathogens
that are not supposed to be related through immune-mediated interactions. However, if they
attack the same population, it is possible that a change in hosts behavior leads to competition
and interference between pathogens dynamics. An example, among childhood diseases, could
be the measles and whooping cough dynamics [39]. The first one is caused by a virus and
the second by a bacterium thus they are considered to be unrelated. However they target
the same age cohorts. For this reason the quarantine during the infection and the following
convalescent period render a portion of hosts temporarily unavailable to the second disease,
leading to pathogens dynamics interference.

Eventually, partial cross-immunity describes the case in which after recovering from an infection
caused by a pathogen, an individual gains a partial protection against other infections. It is the
most common modeling framework because it can be adapted to suit various viral systems. The
strength of the cross-protection depends on the viruses and can be translated in the amount of
hosts that gain immunity and its duration. The more the viruses are similar, the stronger the
cross-protection: after the first infection the immune system has already prepared a specific
antibody response for that virus that can be applied also to similar viruses. This is the case
of different strains or subtypes of a virus. On the contrary, if the viruses considered are
very different the interaction should be weaker and shorter. Furthermore, the effects of the
protection can be modeled as a reduced susceptibility or transmissibility. This can be applied
to only a portion of individuals or there can be an homogeneous response on the population.
These characteristics make the partial cross-immunity a versatile framework, able to fit systems
populated with various levels of interaction.

2.3 Host-view model for any-type interaction

among pathogens/strains

As a first multi-pathogen compartmental model we illustrate the one that follows the theory
exposed in the book by Keeling and Rohani [5]. In its most general form, this formulation
uniquely identifies the entire infection history of individuals within each compartment and their
immunological status with respect to the various pathogens under consideration. The sum of
the individuals present in all the compartments gives the total population. This approach is
called host-view. Such a complete model quickly becomes difficult to study when we have more
than 2 pathogens: due to the large number of degrees of freedom the number of compartments
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grows exponentially with the number of pathogens.

A basic representative scheme of the spreading dynamics for a 2 pathogen system is shown
in Figure 2.3. Susceptible individuals can be infected by pathogen 1 or 2. If during the first

Figure 2.3: Basic scheme of the host-view compartmental model for a 2-pathogen system.

infection they also catch the second disease, then they recover first from one and then from
the other. Otherwise, if they are not co-infected, when they heal from the first they stay in a
convalescent status that protects them. Then they are finally recovered from the first disease
and they can catch the second. Once the infectious period has elapsed, they become recovered
to both pathogens.

This type of model is suitable to describe the cross-protection induced by infections from
different viruses, thanks to the presence of the convalescent compartment Ci (i = 1, 2). After
the infection by j, individuals stay in a convalescent status where they are temporarily protected
by further infections. Meaning that this type of immunity is short-term and it is different from
the one gained after the infection by i. Compartments Ci and Ri are now differentiated since
the original infections are different. This makes this model flexible and able to accommodate
weaker interactions as the ones potentially at play between different viruses. In reality, this
mechanism could be the result of a post-disease change of behaviors in the individuals, e.g.
they stay at home to completely recover, or the temporary immune response of their organism
that can also affect the susceptibility to other diseases.

The interdependence between pathogens is encoded in the parameters rI , rC that act like a
reduction in the probability of co-infection or secondary infection after convalescence, respec-
tively. For example, if these parameters are set to 1, the pathogens are independent, the second
pathogen can infect independently of the health situation with respect to the first one. While,
the lower rI and rC , the more the individual is protected to the second pathogen when infected
by the first one or convalescent to it. Such mechanism derives from evidence that respiratory
virus-virus co-infections are mostly negatively correlated [29].
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The dynamics of this model is described by the set of differential equations in Equation 2.1.
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İ1 = β1
I∗1
N
S − (µ1 + r

(12)
I β2

I∗2
N
)I1
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. Where S, Ii, Ci, Ri written with the capital letter are the number of individuals present in
each compartment. Here we use absolute numbers instead of densities because they are more
amenable to stochastic simulations. Blue terms represent the incidence of pathogen 1, and:

I∗1 = I1 + I12 + I
(R2)
1

I∗2 = I2 + I12 + I
(R1)
2

represent the total number of individuals that are infectious with pathogen 1 or 2 respectively.

In Appendix A we illustrate the 2 pathogens complete host-view model and its adaptation to 3
pathogens systems, to give an idea of the amount of mechanisms involved and then to compare
them to the model developed during this thesis project.

This model is complete and flexible, thanks to the mechanisms described it is able to account
for any-type interaction and can suit systems composed of strains and/or different viruses.
However, as highlighted, it can not be scaled to many pathogens. Thus, in the next chapter we
present an alternative scalable model present in literature.
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2.4 Pathogen-view model for long-lasting interaction

among strains

Another framework used to model multi-pathogen systems is the one developed by Gog and
Grenfell in [6]. The authors introduce an innovative compartmental modeling framework by
adopting the pathogen’s view. This means that the population is subdivided into compartments
that reflect the individuals’ health situation with respect to a single pathogen at a time. The
focus is on the current immune state of the host rather than the complex immune history of
all his exposures. Thus it is a status-based approach, opposite to the history-based approach
previously described with the host-view. Overall the pathogens present in the system are
treated independently. Thanks to this characteristic the model can be easily upscaled to n
different pathogens co-circulating in the same system, since the number of compartments scales
linearly with n. This represents a great improvement on the model complexity with respect to
the exponential scaling of the host-view model.

For each of the pathogens i = 1, .., n, j ̸= i the dynamics scheme in Figure 2.4 is repeated. The
sum of the individuals in each i-compartment is N , the total population.

Figure 2.4: SIR scheme of the pathogen-view compartmental model introduced by Gog and Grenfell
in [6]. It is valid for each pathogen i = 1, .., n, j ̸= i.

The respective system of ordinary differential equations for each i is:

Ṡi = −
∑
j ̸=i

σijβj
Ij
N
Si − βi

Ii
N
Si

İi = βi
Ii
N
Si − µiIi

Ṙi = µiIi +
∑
j ̸=i

σijβj
Ij
N
Si (2.2)

. The basic dynamics described is a simple SIR model, with transitions from susceptible to
infected and from infected to recovered. In addition, the interactions between the different
pathogens co-circulating are taken into account in the transition from the susceptible to the
recovered. When a fraction of the individuals is infected by j, a portion of individuals is
removed from the susceptible to the other pathogen i for any i ̸= j in the system. The removal
of the infected occurs according to the probability σij of acquiring immunity to i following an
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infection from j. A high value of σij means a high cross-protection between i and j, i.e. i and
j are antigenically similar and j induces strong immune response against i. This immunity
mechanism is called polarized immunity, it takes into account both the partial cross-immunity
and the reduced transmissibility assumptions mentioned in section 2.2: only some hosts gain
total immunity when exposed to a partially cross-reacting virus, the others do not gain any
immunity from the same exposure. Within the pathogen view, the result is that all hosts have
the same chance of gaining immunity to a pathogen, independently of their history of exposure.
As a consequence, only one variable is needed to describe susceptibility of a host with respect
to each pathogen, greatly simplifying the system and the model.

These removed individuals are moved to the compartment of the recovered from i, meaning
that they gain the same immunity as they would have been infected directly by i. This type
of immunity has a long-term duration without distinction on the original viral source of the
infection. Such assumption is strong and can hold when dealing with pathogens that are very
similar and for which it is possible to approximate the immune response of one with the other.
This is the case of different strains of the same virus. For example it could suit systems
composed of SARS-CoV-2 variants or influenza clades. Indeed, the work in [40] uses a model
similar to the one just presented, to describe the co-circulation of three SARS-CoV-2 variants
in New York City during winter 2020: the Alpha (B.1.1.7), the Epsilon (B.1.427/B.1.429) and
the Iota (B.1.526). During November 2020 the Iota variant was identified for the first time and
quickly became a predominant variant in the NYC area. Thus the authors simulate a system
considering the already circulating variants of concern (mainly Alpha and Epsilon) and include
this emerging one, to characterize its epidemiological properties in relation to the others’.

However if the purpose is to describe systems with different viruses, the model approximation
does not hold anymore: the cross-immunity duration is expected to be shorter than the immu-
nity gained after the reference virus infection. This is the main reason for which this model is
not suitable to describe multi-pathogen systems, even if it is computational efficient.
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Chapter 3

Pathogen-view multi-pathogen model

In the previous chapter we highlight that multi-pathogen models present in literature have some
limitations, when used to model co-circulating seasonal respiratory viruses. In particular, one
model is flexible, it can include both short-term weak interactions and long-lasting strong ones,
but it is not scalable. The other is scalable but not flexible, i.e. it models only long-lasting
interactions. Thus, for our purposes, we develop a multi-pathogen model that is both scalable
and flexible. In particular, we extend the pathogen-view framework to the case of short-term
interactions as the ones present among different pathogens. For this reason we will refer to this
model as the pathogen-view multi-pathogen model.

In section 3.1 we present our basic model and then we complete it to suit the characteristics of
seasonal respiratory viruses epidemics. In section 3.2 the complete model is compared to the
host-view one, to check whether the results are coherent between the two views or not. Then,
in section 3.3, we retrieve within our framework the incidence of an influenza-like virus, to use
it as a reference dynamics in the analysis.

3.1 Pathogen-view multi-pathogen model

The goal of this thesis project is to try to fill the gap of multi-pathogen modelling framework,
overcoming the scalability issue and at the same time enabling flexible interaction terms. A
model with this purpose needs to be able to capture the key interacting mechanisms between
viruses, keeping a simple structure to be scalable. This is the reason behind the choice of
adopting the pathogen view for the proposed model. Again, the basic dynamics rely on a
standard SIR scheme for each of the viruses present in the system. But the innovative element
is to introduce a convalescent compartment Cij as in host-view model. When individuals are
infected by j they are removed with a certain probability from the susceptible to any other
pathogen i ̸= j and they stay in the convalescent compartments Cij for a temporary period
q−1
ij . Thus, for every i there are (n− 1) Cij compartments. The portion of individuals that due
to the infection to j are protected from i is regulated by the parameter σij and proportional

to the incidence of j: σijβj
Ij
N

Sj

N
. This mechanism models the polarized interaction assumption

explained in section 2.4. Therefore, the interaction strength between different pathogens is
ruled by the σ matrix, which entries are ∈ [0, 1]. When σij = 0 the pathogens are completely
independent: the presence of a pathogen j does not affect the dynamics of the others i, i.e.
individuals infected by j are not removed from the susceptible to i. Whilst as σij increases, a
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larger portion of the infected by j gains (temporary) immunity also to i, thus the presence of j
affects the spreading dynamics of i. In this way the correspondence between the key interaction
parameters of this model and the host-view one is straightforward: 1− σ captures the effect of
rI and rC of the host-view model, while q is related to γ through: q−1 ∼ γ−1 + µ−1.

The basic scheme of this model is shown in Figure 3.1, that has to be repeated for each
pathogen i = 1, .., n circulating in the system, with j ̸= i. It is mathematically represented by
Equation 3.1:

Ṡi = −βi
Ii
N
Si −

n∑
j=1,j ̸=i

σijβj
Ij
N

Sj

N
Si +

n∑
j=1,j ̸=i

qijCij

İi = βi
Ii
N
Si − µiIi (3.1)

Ṙi = µiIi

Ċij = σijβj
Ij
N

Sj

N
Si − qijCij

. The total number of compartments is [3+ (n− 1)]n: they scale quadratically with n and this
is an improvement with respect to the exponential scaling of models that adopt the host-view
[6].

Figure 3.1: Basic scheme of the pathogen-view multi-pathogen compartmental model introduced in
this work. It is valid for each pathogen i = 1, .., n, j ̸= i.

3.1.1 Application to respiratory infections

The one just presented is the model with its fundamental basic mechanisms. To make it suitable
for real respiratory viruses epidemics a few more aspects have to be added: the seasonality of
the viruses, the waning of immunity and the immigration term.
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Seasonality

First of all, respiratory viruses are characterized by seasonality. They do not spread uniformly
over the year, they generate waves according to environmental variables such as the weather
conditions and human behaviors. Dry and cold temperatures cause these viruses to thrive [41].
Moreover, cold weather changes the way human bodies respond to disease and by adding an
increased time spent indoors, the result is a higher risk of infection during winter period. For
example, in temperate regions viruses like influenza, RSV, HPIV and the human coronaviruses
have high spreading ability during winter while they are weaker in summer [4],[42],[43],[44].

Since the parameter βi encodes the transmissibility of the virus i, it is expected to vary over
the year. An effective way to model seasonal variation in transmission is to assume β following
a sinusoidal with a one year period (Equation 3.2):

βi(t) = β0,i

(
1.5 + sin

(
2π

365
t

))
(3.2)

. The parameter β0,i tunes the overall level of transmissibility and it is different for different
viruses. The center of the sine is set to be 1.5 in order to obtain values of the basic reproductive
number (R0(t) =

β(t)
µ
) in a meaningful range for seasonal respiratory viruses.

Waning of immunity

In SIR model, after acquiring an infection with a pathogen i, once elapsed an average infectious
period µ−1

i individuals are no longer infectious. They gain immunity that keeps them protected
from a further infection with the same pathogen (recovered compartment). Usually, in the
context of respiratory viruses, this immunity does not last forever and its duration can vary
from weeks to years, depending on the virus. To model the waning of immunity it is more
appropriate to use a SIRS dynamics: to the model it is added a transition that occurs at rate
λi at which recovered individuals lose immunity and return to be susceptible to i. This leads to
an endemic circulation, differently to the SIR dynamics. As anticipated before, in general this
type of immunity is longer and stronger with respect to the cross-immunity induced by another
virus j, which instead is partial, because developed only by a fraction σij of the infected, and
of shorter duration. If the virus i tries to attack a recovered host again, it will be defeated by
the specific immune response developed by the previous i-infection. On the other hand, the
same infection with i can lead to partial cross-protection effects from other j-infections. In this
case the mechanism is the one explained in the previous section with the temporary stay in the
convalescent Cji compartment. The duration of the two respective immunities, λ−1

i and q−1
ji , is

different because of the specificity of the immune response.

Immigration term

Seasonality makes the epidemics oscillate over the year and one of the causes is weather con-
ditions. For this reason, the incidence peak occurs at different moments of the year according
to different climatic zones. With people traveling across the world the spread of the diseases
is favored. This guarantees a global circulation of the viruses even during months with lower
incidence. The continuous circulation can be introduced in the model by adding a small con-
stant immigration rate per day: m infected individuals enter the system from the outside and
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m susceptible are removed to keep the total population unchanged. In this way, especially with
stochastic scenarios, the epidemics persist and do not get extinct.

Complete model

By integrating these three new mechanisms to the basic model, the resulting complete scheme
is the one in Figure 3.2.

Figure 3.2: Complete scheme of the pathogen-view multi-pathogen compartmental model introduced
in this work. It is valid for each pathogen i = 1, .., n, j ̸= i.

The entire spreading dynamics modeled is the following: individuals susceptible to pathogen
i (Si) can be infected by it (Ii) with a probability βi(t)

Ii
N
; after an average infectious period

µ−1
i they recover from i, i.e. they gain immunity against that virus (Ri). Then, after an

average period λ−1
i they lose immunity and become again susceptible to i. The influence of

the other infections j on i dynamics is taken into account by removing susceptible to i and
temporary protect them by staying in the convalescent compartment Cij. This transition

happens according to the rate σijβj(t)
Ij
N

Sj

N
and lasts for a period q−1

ij . These mechanisms are
repeated for any other pathogen j present in the system.

Since all the pathogens are handled independently thanks to the pathogen view, in this model
it is not possible to keep track of co-infections. The consequences of this aspect will be further
investigated in section 3.2.

The dynamics of the entire system is described by the set of Equations in 3.3, for each i = 1, .., n,
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j ̸= i:

Ṡi = −βi(t)
Ii
N
Si −

n∑
j=1,j ̸=i

σijβj(t)
Ij
N

Sj

N
Si +

n∑
j=1,j ̸=i

qijCij + λiRi −m

İi = βi(t)
Ii
N
Si − µiIi +m (3.3)

Ṙi = µiIi − λiRi

Ċij = σijβj(t)
Ij
N

Sj

N
Si − qijCij

. To study the system dynamics we will monitor the incidence of each pathogen, that by
definition is the number of new infections per day. Thus, for this pathogen-view model the
incidence of i is:

incidence(t) = βi(t)
Ii(t)

N
Si(t) +m

3.1.2 Stochastic simulations

Real world epidemics are not deterministic processes. The incidence peaks height varies from
year to year because of the variability induced by random effect in transmission. Hence a
stochastic version of the model would better resemble real data.

To switch from a deterministic compartmental model to its stochastic version, the transitions
between compartments have to be drawn from a binomial distribution. For example, the number
of susceptible that gets infected follows a binomial Bin(Si(t), βi(t)

Ii(t)
N

) and the number of
infected getting recovered follows Bin(Ii(t), µi). The immigration term is fundamental to avoid
epidemic extinction when dealing with stochasticity. In this case it is no longer represented by
a constant rate m, but it is drawn from a Poisson distribution with mean m = 1 person/day.

By definition, stochastic results vary from realization to realization. For this reason, to capture
a trend in stochastic scenarios, results need to compute the statistics over many years and
different realizations. In the setup used for this work, simulations are run for 60 years and
repeated for 200 realizations. Since the meaningful part of the dynamics to be analyzed is the
stationary one, the first 10 years of transient dynamics are discarded.

During all the simulations performed, the total population considered for the system is N =
60× 106 people and the initial conditions for each compartment are:

I0,i = 0.05×N

R0,i = 0.2×N

Q0,ij = 0×N

S0,i = N − I0,i −R0,i −
∑

j ̸=i Q0,ij

for every i = 1, .., n and j ̸= i. The choice to start simulations with the 20% of population
already recovered is made to speed up the convergence to the stationary dynamics. Anal-
ogously to the pathogen-view model introduced by Gog and Grenfell, the sum over all the
i-compartments gives the total population N , and this is true for every pathogen i = 1, .., n.
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The parameters that need to be parametrized based on real viruses characteristics are the
transmissibility β0,i, the duration of the infectious period µ−1

i and of the immunity λ−1
i and the

parameters related to interactions σ, q. The choice of their values is discussed in detail later.

3.2 Comparison between host-view and pathogen-view

model

As mentioned in section 3.1, the pathogen-view multi-pathogen model developed by us (Fig-
ure 3.2) can easily scale with n, the number of viruses co-circulating in the system. This is
possible since the different dynamics are treated independently. As a consequence, co-infections
can not be tracked. This is clearly a convenient simplification but it could also lead to an over-
estimation of the convalescents with a resulting underestimation of the incidence. For example,
when considering more than two pathogens, if a fraction of individuals is co-infected with both
pathogens j and k, they could be counted twice in the amount of people that would be protected
from i: both in Cij and Cik. This leads to a larger fraction of people temporarily removed from
the susceptible to i. Consequently, with less susceptible present there would be less infected
individuals, thus the incidence of i would be underestimated. To gain some insight on the
consequences of this bias, we compare our pathogen-view model to the standard host-view one,
that takes into account every transition and compartment possible, to check if the two results
are coherent, despite the differences highlighted above.

The comparison done is not complete and exhaustive, but rather it tests the two models in some
specific scenarios under the same assumptions. The two models are compared in the case of
systems with two and three pathogens. One pathogen is taken as reference and the other/others
are taken with similar, greater and smaller transmissibility. The remaining parameters are
kept fixed and equal. Then, incidence peaks height of the reference pathogen are monitored
while varying the interaction strength (parameters σ, ri = rc) and the duration of the cross-
protection (parameters q−1, γ−1). All the details are reported in Appendix A. Here there is a
quick comment on the results found.

For all the cases tested, the mean incidence peak height of the reference pathogen is computed
and then it is done the relative difference between the results from the two models. The
differences are always orders of magnitude of 10−2 or smaller. This suggests a high similarity
between the results of the two models under the cases tested. We can say that the pathogen-
view model introduced in this work is able to describe multi-pathogen systems even if it does
not track co-infections. This is probably due to the fact that co-infections are rare in real life
[29] and thus the previously mentioned incidence underestimation caused by co-infections does
not strongly affect our simplified model. Indeed, there are other works suggesting that co-
infections have a small impact in modeling these viruses’ dynamics. One of them is [45], where
the authors build a 2-pathogen host-view model to describe some of the ILI viruses’ incidence
data, in particular RSV and HPIV. Their model has the same cross-protection mechanism as
the one in Figure A.1, but it does not consider co-infections. Despite this, they show that their
model can well explain real incidence dynamics of RSV and HPIV together, suggesting a minor
role of co-infections.
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3.3 Flu-like pathogen

Once having tested that our model recovers similar dynamics with respect to the host-view
model, the aim is to systematically analyze the dynamics resulting from the model when simu-
lating different scenarios. In particular, we want to describe multi-pathogen systems reproduc-
ing the qualitative properties of co-circulating seasonal respiratory viruses. Given that influenza
is the most studied infection we take it as focal infection and see how the presence of other
viruses alters in the model its dynamics under different assumptions.

We describe below in detail how the model is parametrized in order to reproduce realistic
scenarios. For influenza parameters we use available data and information in the literature. But
since more limited information is available for the other viruses, we assume their transmissibility
(β0) and duration of immunity (λ−1) to be drawn from LogNormal distributions:

β0 ∼ LogNormal(β0,mean, β0,std)

λ−1 ∼ LogNormal(λ−1
mean, λ

−1
std)

. We choose as mean and standard deviation for the distributions, values that can represent
the heterogeneity of seasonal respiratory viruses and we make hypotheses on their relation with
respect to flu parameters. As shown in Figure 3.3, we decide to have a resulting β0 distribution
that is symmetric with respect to flu transmissibility β0,mean = β0,f lu and β0,std = 0.05, to
reflect the variety of real viruses. While the λ−1 distribution is asymmetric with respect to the
value of flu, it peaks at lower immunity duration, λ−1

mean = 1 year. The majority of the real
viruses have duration of the order of magnitude of months, but to replicate a general scenario,
assuming λ−1

std = 0.1 year, we obtain a long-tailed distribution that covers values over several
years.

Figure 3.3: LogNormal distributions for β0 (on the left, LogNormal(β0,f lu, 0.05)) and λ−1 (on the
right, LogNormal(1yr, 0.1yr) of the generated pathogens circulating in the system.

Then, we select flu mean peak height as the characteristic of flu incidence dynamics that we
want to reproduce with our model, to have a well defined quantity to monitor during the
analysis. According to literature, the characteristics that a ‘flu-like’ pathogen has to have are:

• incidence peak in winter [4];

• infectious period: µ−1
flu = 4.5 days [30];
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• duration of immunity: λ−1
flu ∈ [2, 8] years [41];

• average weekly incidence peak of 1%. This value comes from the analysis of Réseau
Sentinelles data from France [46]: a network of volunteer general practitioners that collects
disease cases among their patients, for surveillance and forecasting purposes. These results
may not be the same for other countries.

Once set the infectious period and the duration of immunity in the meaningful range, the goal
is to find the couple of parameters (β0, λ

−1) that leads to the same incidence mean peak height
as flu, when co-circulating with 10 pathogens generated according to Figure 3.3. The choice
of considering the co-circulation of 10 pathogens is done to replicate the order of magnitude
of the co-circulating seasonal respiratory viruses. Indeed, probably even the values reported
in literature or from surveillance data are affected by the others circulation. The interactions
among them are set to have σij = 0.8 and q−1

ij = 21 days for each i, j = 1, .., n, with j ̸= i:
a protection of the 80% for a duration of three weeks after each infection. These values are
reasonable and compatible with other sources, even if there is limited information about them.

After simulating dynamics under these conditions, the mean weekly incidence peaks height
of influenza are collected. The chosen parameters couple is β0,flu = 0.2 and λ−1

flu = 4 years,
that leads to a mean peaks incidence around 1%. The resulting basic reproductive parameter
stays between R0,max = 2.25 and R0,min = 0.45, which is below the endemic threshold. An
example of the flu-like weekly incidence is shown in Figure 3.4: in the upper panel there is the
pathogen-view model result, the blue line is one stochastic realization; in the lower panel there
is the real flu weekly trend in France, collected by Réseau Sentinelles and available at [46]. As
can be seen, the stochastic trend is coherent with the real world dynamics. For example, the
maximum values are below the rate of 2000 in both cases and the mean incidence peak height
is 1000 people per 100000 people.

Figure 3.4: Upper panel: flu-like weekly incidence with stochastic pathogen-view model (β0,flu = 0.2,

λ−1
flu = 4 years, µ−1

flu = 4.5 days). Lower panel: flu weekly incidence trend in France, available at [46].

In Figure 3.5 there are some examples of stochastic realizations of the incidences resulting
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from the model, to better understand the impact of other co-circulating pathogens we compare
hypothetical scenarios with an increasing number of pathogens. It is interesting to notice the
resulting variability in pathogens’ peaks height and position. Even if the initial conditions
are the same for all the viruses, stronger pathogens (the ones with higher transmissibility and
higher peaks) occur earlier in time: they dominate the other viruses. Then, weaker viruses’
peaks follow, with decreasing heights.
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Figure 3.5: Example of stochastic realizations of the pathogens’ weekly incidences varying the number
of pathogens n co-circulating in the system. The pathogen highlighted in black is flu, the others are
generated according to Figure 3.3.
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Chapter 4

Analysis

This chapter presents the analysis performed on the complete pathogen-view multi-pathogen
model introduced in chapter 3. We take one focal pathogen, i.e. influenza, as reference and we
address some practical questions:

• What is the effect of the presence of other respiratory viruses on influenza dynamics?
(section 4.1)

• What is the effect of the presence of other respiratory viruses on influenza parameters
estimation? (section 4.2)

• Is there a relation between the interactions strength matrix σ and the matrix of the
correlations between the incidences? (section 4.3)

4.1 Effect of other pathogens on flu dynamics

What is the effect of the presence of other pathogens on influenza dynamics? The dynamics
of a pathogen like flu is taken as reference and it is monitored how the incidence peaks are
affected by the presence of the others.

Let’s take as an example the dynamics produced by the pathogen-view multi-pathogen model
in the case displayed in Figure 3.5, where the interactions are assumed to be σij = 0.8 and
q−1
ij = 21 days for each ij pair. In Figure 4.1 we present the respective flu mean peaks height
and its peaks height distribution, when it co-circulates with n − 1 different pathogens. By
looking at the plot on the left, it can be seen that assuming a protection of the 80% from 10
pathogens, for a duration of three weeks after the infection, flu incidence mean peaks height
is lowered by 60%. From the plot on the right, it is evident the effect of the presence of other
viruses on the distribution of the peaks height: starting from the blue curve when flu is alone,
by adding pathogens the distribution squeezes towards smaller heights until the pink curve with
n = 12. This effect of the presence of other respiratory viruses on influenza dynamics is quite
relevant and deserves further investigation.

The same analysis is applied to systems with a different number of pathogens and differ-
ent interaction strengths and duration. Multi-pathogen systems are simulated with n =
{1, 2, 4, 6, 8, 10, 12}, where pathogens’ parametrization is always the one described in Figure 3.3.
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Figure 4.1: Flu mean peaks height and peaks height distribution varying the number of pathogens n
co-circulating in the system. Case σ = 0.8 and q−1 = 21days.

One pathogen is ‘flu-like’ and the other n− 1 have parameters drawn from the LogNormal dis-
tribution. About the interaction strength, the entries of σ and q matrices are set to be equal
for each couple of pathogens i, j = 1, .., n,i ̸= j. The tested values are:

σij ∈ {0, 0.2, 0.4, 0.6, 0.8, 1}, q−1
ij ∈ {7, 14, 21, 30, 60}days.

The results are presented with the heatmaps in Figure 4.2 for the case varying (σ, n) and in
Figure 4.3 when varying (q−1, n): the left plot is the average peaks height of flu, the right plot
its coefficient of variation (= std

mean
).

Figure 4.2: Flu weekly incidence peaks height, varying σ and n, fixed q−1 = 21 days. On the left the
mean and on the right the coefficient of variation.

For a clear visualization of the trend varying n, σ, q−1, we also show the curves generated from
the heatmaps results. Looking at Figure 4.4, flu weekly mean incidence peaks height is reported
as a function of the number of pathogens co-circulating. On the left different curves represent
different σ, on the right they represent different q−1. The trend is that, from two pathogens,
by increasing the number of pathogens co-circulating, flu incidence peaks lower. There is an
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Figure 4.3: Flu weekly incidence peaks height, varying q−1 and n, fixed σ = 0.8. On the left the mean
and on the right the coefficient of variation.

Figure 4.4: Mean peaks height of flu weekly incidence varying the interaction strength and n. On the
right σ varies and q−1 = 21d, on the left q−1 varies and σ = 0.8.

unexpected increase in the peak incidence when passing from one to two pathogens considered.
When increasing the strength of interaction (σ) and the duration of the cross protection (q−1)
flu incidence peaks lower. Naturally, when σ = 0, meaning that the pathogens are independent,
the mean peaks height remains constant across different n. The coefficient of variation indicates
the variability of the peaks height from year to year, thus it is related to the predictability of
incidence peak height. We find that it is maximum at intermediate values of n in both Figure 4.2
Figure 4.3.

The overall results of this analysis are expected and natural, apart from the maximum peak
height at n = 2 and the maximum coefficient of variation at n = 4. These lasts are unexpected
and should be further investigated. Anyway the magnitude of these effects remarks the impor-
tance of considering real systems as multi-pathogen, to have a complete understanding of what
really happens.
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4.2 Effect of other pathogens on flu parameters estima-

tion

In literature it is possible to find very different estimations of the duration of flu immunity:
the usual range goes from 2 to 8 years [41] [47]. Of course this variability can affect whatever
analysis or forecast in which this parameter is involved. Thus, it would be very helpful to
understand which is the cause of this discrepancy. Since in the previous analysis it has been
highlighted that the effect of the presence of other viruses on influenza dynamics can be relevant,
it is natural to ask if this could also lead to a bias in parameters estimation. Indeed, to estimate
such parameters the presence of other viruses in the same system is normally ignored. This is
the question that the framework introduced in this work will try to solve: what is the effect of
other pathogens on flu parameters estimation?

When dealing with stochastic realizations, a possible estimator to look at to compare different
dynamics can be the peaks height distribution. The goal of the following analysis is to retrieve
the peaks height distribution of the ‘flu-like’ pathogen when it is in a system composed of
10 pathogens (brown distribution in Figure 4.1), with a single-pathogen-system peaks height
distribution. To find which (β0, λ

−1) this pathogen has to have to achieve such a distribution,
these parameters’ space is explored to search for the region with the minimum distance between
the two distributions. As distance it is used the Hellinger one, that for two discrete distributions
P,Q is defined as:

Hdist(P,Q) =

√√√√1

2

k∑
i=1

(
√
pi −
√
qi)2 pi, qi ∼ P,Q.

The explored parameters region is:

β0 ∈ [0.13; 0.42], step = 0.002

λ−1 ∈ [100; 6600]d, step = 100d

. For each of the points on this grid the single pathogen dynamics is simulated. Each simulation
is run for 200 realizations and from them it is retrieved the peaks height distribution. Then
it is computed the Hellinger distance between each of these distributions and the one of flu
with n = 10. The resulting distances are shown in Figure 4.5, where it is superimposed a
contour plot to identify the high-interest region, i.e. the minimum distance in dark-blue. All
the distances are of the order of magnitude of 10−2. The couple of parameters leading to the
minimum Hellinger distance is highlighted with a black point, while the original flu parameters
are marked with a black x. The peak height distribution of these ‘best-match’ parameters (blue
line) is compared in Figure 4.6 to the n = 10 distribution (red line) and n = 1 distribution of
the respective flu alone (gray line).

From these figures it is clear that the two couples of parameters do not coincide. If the flu-like
parameters with n = 10 are used in a single pathogen system (β0 = 0.2, λ−1 = 4yr), the peaks
height distribution found (gray line) differs from the original n = 10 one (red line). The most
similar distribution, i.e. dynamics, is the one with β0 = 0.186, λ−1 = 5yr. Meaning that if
the aim is to retrieve the dynamics of flu with n = 10 by considering only one pathogen, the
parameters have to be changed. This suggests a possible bias in real flu parameters estimation
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Figure 4.5: Hellinger distance between the peaks height distribution of flu with n = 10 pathogens
and the peaks height distribution of a single pathogen with (β0, λ

−1). The black dot is the couple of
parameters that leads to a minimum distance while in the black x there are flu parameters.

Figure 4.6: Flu peaks height distribution with n = 10 pathogens (red), the single-pathogen distribution
with the minimum Hellinger distance (blue) and the original flu distribution (gray).

especially for the duration of immunity, as introduced at the beginning of this section. However
the two couples of parameters are both inside the minimum-distance region. Indeed this region
is quite wide, it comprehends values of β0 ∈ [0.160; 0.312] and duration of immunity over many
years, λ−1 ∈ [3; 14]yr. Thus, the a posteriori effect on the dynamics of a single pathogen or of
a pathogen in a populated system is the same as long as the values of β0 and λ−1 are rescaled.
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4.3 Correlation between incidences

In the study conducted by Nickbakhsh et al. [4], they start by examining virological diagnostic
data from over 40,000 episodes of respiratory illness over a 9-year period. Each of the patients is
tested for 11 virus groups, thanks to multiplex-PCR methods. This provides a data source about
the co-circulating and co-infecting viruses. From these data they use different approaches to
infer virus-virus interaction starting from the viruses prevalence time series: from the simpler
Spearman’s rank correlation coefficient to multivariate Bayesian framework and hierarchical
autoregressive model. Thus, they basically assume that it is possible to retrieve the presence
of an interaction between viruses by looking at their dynamics correlation.

However there are some other studies like [48], which is applied to microbial network interac-
tions, where they test whether such correlation-based methods are reliable for inferring inter-
action networks. By simulating bacterial communities they show that the information about
interactions carried by the correlations in abundance is limited.

The reason for the following analysis is to explore such context through the pathogen-view multi-
pathogen model. With a simplified setup, the question becomes: is there a relation between
the interaction strength matrix σ that is given in input to the model and the correlation matrix
ρ, that is computed between the output incidences? For example, for a three pathogens system
the relation searched is between:

σ =

 0 σ12 σ13

σ12 0 σ23

σ13 σ23 0

 ?

←→

 1 ρ12 ρ13

ρ12 1 ρ23

ρ13 ρ23 1

 = ρ

. To address this question, for the first time in this work it is introduced a σ matrix that is
symmetric but has different entries, since we would like to relate each σij to its relative ρij. As
correlation estimator we use the Pearson correlation coefficient, to see if even in a simplified
setup like this one, it is possible to extract some information from the incidences.

We use our model to simulate systems with 2,3,5 pathogens. For the cases of 2 and 3 pathogens,
σ off-diagonal elements are all the possible combinations of pairs and triplets composed with
{0.1, 0.3, 0.5, 0.7, 0.9}. For the 5 pathogens case, 100 combinations are chosen at random from
the same possible values. For each combination the simulation is run for 100 stochastic realiza-
tions. At each realization, pathogens parameters are drawn from the distributions described in
Figure 3.3. For the resulting incidences, pairwise correlations are computed and averaged over
the realizations. The results from all these simulations are reported in Figure 4.7 as pairwise
Pearson correlation coefficients between i and j incidences as a function of the initial σij. Each
point corresponds to the mean value (over the stochastic realizations) of ρij when the original
interaction among i and j is σij. The bars are the respective standard deviations. When mul-
tiple points are present, it means that the same interaction σij leads to different values of ρij,
depending on the other values present in the σ elements combination.

By looking at the most left plot, case of 2 pathogens, the trend is clear: the stronger the
interaction the lower the correlation. Suggesting an inverse relation between σ and ρ. Moving
to the case of 3 or 5 pathogens, the trend seems to be the same but at each value of the
interaction corresponds a range of correlation values. This means that by adding pathogens to
the system, the correlation becomes less informative about the pathogens input interactions.
To have a confirmation on the trend we compute the Kendall’s Tau distribution, a measure to
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Figure 4.7: Pearson correlation coefficient of pairwise incidences as a function of the respective initial
σij . Case of 2,3,5 pathogens in the system.

evaluate the correspondence between the two rankings: in this case, between the combinations
of σ values and the respective ρ.

Figure 4.8: Kendall’s Tau distribution between correlation and interaction strength rankings. Case of
3,5 pathogens in the system.

The values found in Figure 4.8 for the case of 3 pathogens are negative and mostly close to -1,
indicating strong disagreement between the two rankings, i.e. the higher the σij the smaller the
correlation between incidences ρij. However, for the case of 5 pathogens on the right, the values
found are noisier and widely spread in the negative semi-axis. It can be concluded that with
such simplified setup, when there are few pathogens in the system, the interactions strength
and the correlation maintain roughly an inverse relation. Though by adding pathogens to the
system, the Pearson correlation coefficient cannot be used anymore to retrieve information
about the initial interaction between the viruses.

To better illustrate indirect effects that arise when more than two pathogens circulate we
consider a specific example. We simulate a system with three pathogens: the pairs of pathogens
1-2 and 2-3 are independent (σ12 = 0 = σ23) and the pair 1-3 have a different level of interaction
at each simulation:

σ =

 0 0 σ13

0 0 0

σ13 0 0


with σ13 ∈ {0, 0.4, 0.8, 1}. Simulations are repeated for 100 stochastic realizations, with
pathogens parameters drawn at random each time. We compute the Pearson correlation co-
efficients between the resulting incidences and their mean (over the realizations) is reported
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in Figure 4.9 as a function of σ13. Each curve corresponds to a pair of pathogens. The trend
shown in the plot is that the stronger the interaction between 1-3, the lower the correlation
between all the incidences pairs. For 1-3 this is expected as already discussed above, while for
1-2 and 2-3 it is not, since these pathogens are kept independent during all the simulations:
the correlation between independent pathogens decreases as the strength of the interaction be-
tween the third couple 1-3 increases. Thus, the presence of interactions affects the correlation
between all the pathogens, even if they are independent and we expect them not to affect each
other. Concluding, when considering systems with interacting pathogens, Pearson correlation
between incidences is not a reliable indicator of the level of pathogens interaction.

Figure 4.9: Pearson correlation coefficient between incidences in a three pathogens system where
pathogens 1-2 and 2-3 are kept independent (σ12 = 0 = σ23) and the pair 1-3 has interaction σ13 ∈
{0, 0.4, 0.8, 1}. For all the curves, the higher σ13 the lower ρij : even correlations between the incidences
of independent pathogens are affected by the presence of the third pair’s interaction.

4.4 Conclusions

Thanks to the characteristics explained in chapter 3, our model can overcome the actual limita-
tions in modeling interdependent epidemics caused by respiratory viruses. We aim at highlight-
ing the effects of including within our framework the presence of other pathogens on a single
pathogen’s dynamics. For illustrative purposes, we take influenza as a reference pathogen, we
simulate different scenarios and we monitor the response of our model on influenza incidence.

We test our model by changing the number of pathogens, the strength of their interactions and
the duration. The effects on influenza incidence are that the peaks get lower by increasing the
number of co-circulating pathogens when n ≥ 2 and by increasing the extent of the interactions
both in strength and duration. From this analysis emerges that the presence of a pathogen can
slightly perturb the dynamics of another. However, when considering many other pathogens,
the overall impact on the focal pathogen can become relevant. If we apply these considerations
to ILI context introduced in chapter 2, we obtain that distinguishing the viruses and treating
them like a multi-pathogen system helps to clarify the impact of each one of them on the others’
dynamics.

This has important implications also in parameter estimation. Considering a pathogen as alone
and neglecting the fact that it is co-circulating with many others could lead to a bias in the
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estimated parameters. To illustrate this we perform a numerical experiment, we try to repro-
duce the dynamics of influenza co-circulating with 10 other pathogens with a single-pathogen
model, i.e. disregarding the presence of other pathogens. The explored parameter space is the
(β, λ−1). As a result we find that the dynamics of influenza with many other pathogens can be
retrieved with a single pathogen having different transmissibility and immunity duration. This
indicates that the estimate may be affected by the presence of the others and causes a rescaling
of the parameters.

Finally, we aim at finding a relation between the correlation of the incidences, output of the
model, and the viruses’ interactions, given in input. We use the Pearson coefficient as a cor-
relation estimator. We find that the general trend is an inverse relation: viruses with stronger
interactions have less correlated incidence dynamics and weaker interactions produce more cor-
related dynamics. This shows that the incidence dynamics carries to some extent information
about the virus-virus interactions governing such a dynamics. However, when the number of
viruses increases this trend becomes less clear. This highlights the challenge of identifying
biological interactions from population level spreading dynamics alone.
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Chapter 5

Conclusions

In this work we illustrate the complexities behind systems composed of multiple respiratory
viruses, analyzing the consequences of viruses heterogeneities and their interactions. We intro-
duce the epidemiological technique of compartmental models that can be adapted to describe
such a complex system. We present two compartmental models that have been developed for
modeling multiple-pathogen circulation: the host-view [5] and the pathogen-view [6]. Since we
want to describe systems populated by different viruses, these models are not optimal to suit
this purpose. The first is not scalable but it can describe different levels of temporary immu-
nity, thus it can suit multi-pathogen scenarios. The second is built for multi-strain systems
and as such it considers an acquired immunity that is long-term. However it has the advantage
that it can easily scale with the number of pathogens under consideration. To fill this gap, we
propose a new framework: due to the pathogen-view it is scalable and thanks to the convales-
cent compartments the cross-immunity is temporary and appropriate for our multi-pathogen
system.

From our analysis emerges that the overall effect of many pathogens on another pathogen’s
dynamics can be relevant and thus they have to be taken into account to provide an accurate
description of the reality. In particular, neglecting the presence of other pathogens in the system
can lead to biases in parameter estimation. Especially we underline the case of immunity
duration. Then, we find that a simple estimator of the correlation between incidences, as the
Pearson coefficient, can not give reliable insights on the strength of the interactions among the
viruses. By adding pathogens to the system this parameter becomes more noisy and can not
be taken as an indicator of the interactions. This question should be further investigated with
more sophisticated techniques.

A future implementation of our framework is simulating systems with real pathogens parameters
to have a realistic scenario and properly investigate practical questions. For example, we want
to apply this model to the influenza-RSV debate anticipated in chapter 1. We would like
to study the response of the system after the introduction of the RSV vaccine, and the role
played by the presence of other pathogens. Since there is evidence of interference between ILI
viruses [4], what could be the result of suppressing one of them? In particular, would there be
more benefits in the number of people protected by the vaccine against RSV or in the number
of people that, thanks to the interference between influenza and RSV, are protected against
influenza? Also, our framework could be used to understand the co-circulation of pathogens
perturbed by the COVID-19 emergency [1].
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Appendix A

Comparison between views

The pathogen-view multi-pathogen model (section 3.1) has been introduced in this work to
overcome the host-view model (section 2.3) that due to his completeness is impossible to upscale
to systems with high number of viruses co-circulating. As their names suggest they adopt two
different views: the pathogen and the host one, respectively. The first one can treat the viruses
independently, by considering the hosts’ health situation with respect to each virus at a time.
The latter keeps track of the hosts’ health with respect to every virus at the same time, in each
compartment, leading to an exponential growth of the number of compartments needed. Both
models are built in a way to take into account virus-virus interactions through the convalescent
compartments and the reduced probability of secondary infections after the first one, as already
explained in the respective sections.

In this chapter it is presented the complete 2-pathogen host-view model (section A.1), that adds
to the basic version presented in section 2.3 seasonality, waning of immunity and immigration
term. Then, the version extended to 3-pathogen systems (section A.1). Finally the two different
views models are tested in different situations under the same assumptions, to compare the two
resulting trends. The models are compared only for both the cases of 2 and 3 pathogens in the
system.

A.1 Host view model - two pathogens

In Figure A.1 is the scheme of a complete 2-pathogen host-view model. It takes into account
single infections (compartments I1, I2), co-infections (I12), the cross protection compartments
of convalescent (C1, C2) and the possibility of a second infection after the recovery from the

first one (I
(R2)
1 , I

(R1)
2 ). The immunity is lost with a rate λi and m represents the immigration

term.
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The dynamics of this model is described by the set of differential equations in Equation A.1.

Ṡ = −(β1
I∗1
N

+ β2
I∗2
N
)S + λ1(R1 + C2) + λ2(R2 + C1)− 2m

İ1 = β1
I∗1
N
S − (µ1 + r

(12)
I β2

I∗2
N
)I1 +m

İ2 = β2
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˙
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(R1)
2
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(2)
1 + λ1R12 − (β1

I∗1
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+ λ2)R2

Ṙ12 = µ1I
(R2)
1 + µ2I

(R1)
2 − (λ1 + λ2)R12

(A.1)

. Where blue terms represent the incidence of pathogen 1, and:

I∗1 = I1 + I12 + I
(R2)
1

I∗2 = I2 + I12 + I
(R1)
2

represent the total number of individuals that are infectious with pathogen 1 or 2 respectively.

A.2 Host view model - three pathogens

The 3-pathogens host-view model takes into account the same mechanisms explained for the 2-

pathogens version: single infections (Ii), secondary infections (I
(Rj)
i , I

(RjRk)
i ), cross-protection in

the convalescent compartments (Ci, Cij) and co-infections at each step (Iij, I
(Rk)
ij ). In addition,

in this case it is possible to have triple infections at the same time (Iijk). There is loss of
immunity with rate λi and m is the immigration contribution. Again, the interdependence
between pathogens is modeled through the reduction parameters rI , rC .

The system of differential equations that describes the host-view model with three pathogens
is in Equation A.2.

Ṡ = −(β1
I∗1
N

+ β2
I∗2
N

+ β3
I∗3
N
)S + λ1(R1 + C23) + λ2(R2 + C13) + λ3(R3 + C12)− 3m

İ1 = β1
I∗1
N
S − (µ1 + r

(1,2)
I β2

I∗2
N

+ r
(1,3)
I β3

I∗3
N
)I1 +m
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Figure A.1: Complete scheme of the host-view compartmental model for a 2-pathogen system.
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Ṙ3 = γ(3)C12 + λ1R13 + λ2R23 + λ1C2 + λ2C1 − (β1
I∗1
N

+ β2
I∗2
N

+ λ3)R3
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. Where blue terms represent the incidence of pathogen 1, and:
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are the total number of individuals that are infectious with pathogen 1, 2 or 3 respectively.

Despite the completeness of this model formulation, which takes into account all the possible
mechanisms that occur between three pathogens, its main limitation is the impossibility to
be upscaled to higher n. When dealing with two pathogens the number of compartments is
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11 while with three pathogens is 33. Such scaling with n is exponential and becomes almost
impossible to handle more virus-populated systems.

A.3 Two pathogens comparison

For the two-pathogen system, the reference pathogen is taken with β0,ref = 0.14, while for the
other pathogen three cases are tested: β0,other equal, smaller, greater than β0,ref. For the second
and third case the same test is repeated for two different β0,other values: 0.1,0.12 and 0.2,0.15
respectively. The other parameters are set to µ−1 = 4.5 d and λ−1 = 2 × 365 d for all. Each
scenario simulation is run for 50 years, for 200 stochastic realizations on both models, varying
the duration of the cross protection (γ−1 and q−1) and the strength of the pathogens interaction
(rI = rC and σ):

γ−1 ∈ {7, 14, 21, 30, 60}d, q−1 = γ−1 + µ−1

rI , rC , σ ∈ [0; 1], step = 0.2

. Then, the mean peaks height and at its standard deviation are collected and the results for
the different cases are reported as heatmaps in Figure A.2, Figure A.3, Figure A.4. When the
two pathogens have the same transmissibility parameter (Figure A.2) the mean peak height
has the same trend for both models: the stronger the interaction (σ → 1, rI , rC → 0) or the
longer the cross-protection period (smaller q, γ) the lower the peaks. In the case where the
reference pathogen is the most transmissible (Figure A.3), the results of the interactions on
it are irrelevant (case (a)) or very light (case (b)). The slightly emerging trend is the same
found in the case of similar pathogens Figure A.2. In the last case the reference pathogen is
the weakest (Figure A.4), when the second pathogen is quite different from it (case (a)), it has
a big influence on the reference’s peaks heights and the trend observed in the previous cases is
inverted. Apart from the ‘non-interacting’ case, the higher the interaction and the greater q−1,
the higher the peaks. While if the pathogen is similar to the reference (case (b)) the trend is
the usual one. To conclude, in Figure A.5 the relative differences of the mean peak height show
how close are the results of the two models, in each case. All the relative differences have an
order of magnitude smaller or equal to 10−2. It can be said that the two models with different
views display similar behaviors when subjected to the same conditions, in a 2-pathogen system.
Nevertheless, as anticipated at the beginning of section 3.2, the simplification limitations of the
pathogen-view model could emerge when dealing with multi-pathogen systems, where the co-
infections could play a determinant role. For this reason, to have a more meaningful comparison
between these models the analysis just exposed needs to be repeated at least on a 3-pathogen
system. It would be optimal to be able to compare the two views also with more populated
systems, but already with 3 pathogens the host-view model becomes difficult to handle: this is
also the reason why it is important to study a scalable model such as the pathogen-view one.

A.4 Three pathogens comparison

The same simulations already exposed are repeated in the case of three co-circulating pathogens.
Three different cases are tested: one where all the pathogens have the same transmissibility
parameter (β0,ref = 0.14 = β0,others), another where the reference pathogen is the strongest
(β0,ref = 0.14 > β0,others = [0.1, 0.12]) and then the case in which it is the weakest (β0,ref =
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Figure A.2: Weekly incidence peaks on a 2 pathogens system. Case similar pathogens: β0,ref = 0.14 =
β0,other, µ

−1 = 4.5 d, λ−1 = 2× 365 d.

0.14 < β0,others = [0.2, 0.15]). The other parameters are set to µ−1 = 4.5 d and λ−1 = 2× 365 d.

The resulting trends are the same already highlighted: when pathogens are similar (Fig-
ure A.6), the mean peaks height increases with the decreasing of the strength of interaction
(σ → 0, rI , rC → 1); when the co-circulating pathogens are weaker (Figure A.7) they do not
affect the reference’s peaks height; while when they are more transmissible (Figure A.8), the
trend is the opposite, with the mean height growing with the strength of interaction. In Fig-
ure A.9 there are the relative differences between the two models results. Even in this case
these differences have an order of magnitude smaller or equal to 10−2, suggesting a coherence
between the two views also in the case of three pathogens.
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Figure A.3: Weekly incidence peaks on a 2 pathogens system. Case reference pathogen is the strongest
one.
(a) β0,ref = 0.14 > β0,other = 0.1 (b) β0,ref = 0.14 > β0,other = 0.12. µ−1 = 4.5 d, λ−1 = 2× 365 d.
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Figure A.4: Weekly incidence peaks on a 2 pathogens system. Case reference pathogen is the weakest
one.
(a) β0,ref = 0.14 < β0,other = 0.2 (b) β0,ref = 0.14 < β0,other = 0.15. µ−1 = 4.5 d, λ−1 = 2× 365 d.
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Figure A.5: 2 pathogens system - rel diff = mean p.h. host - mean p.h. path
mean p.h. host
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Figure A.6: Weekly incidence peaks on a 3 pathogens system. Case similar pathogens: β0,ref = 0.14 =
β0,others, µ

−1 = 4.5 d, λ−1 = 2× 365 d.

Figure A.7: Weekly incidence peaks on a 3 pathogens system. Case reference pathogen is the strongest:
β0,ref = 0.14 > β0,others = [0.1, 0.12], µ−1 = 4.5 d, λ−1 = 2× 365 d.
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A.4. THREE PATHOGENS COMPARISON

Figure A.8: Weekly incidence peaks on a 3 pathogens system. Case reference pathogen is the weakest:
β0,ref = 0.14 < β0,others = [0.2, 0.15], µ−1 = 4.5 d, λ−1 = 2× 365 d.

Figure A.9: 3 pathogens system - rel diff = mean p.h. host - mean p.h. path
mean p.h. host

55



APPENDIX A. COMPARISON BETWEEN VIEWS

56



Bibliography

[1] WHO. Review of global influenza circulation, late 2019 to 2020, and the impact of the

COVID-19 pandemic on influenza circulation. https://www.who.int/publications/i/

item/who-wer-9625-241-264.

[2] Emi Takashita et al. “Increased risk of rhinovirus infection in children during the coro-

navirus disease-19 pandemic”. In: Influenza and Other Respiratory Viruses 15.4 (2021),

pp. 488–494.

[3] Lulla Opatowski, Marc Baguelin, and Rosalind M. Eggo. “Influenza interaction with co-

circulating pathogens and its impact on surveillance, pathogenesis, and epidemic profile:

A key role for mathematical modelling”. In: PLOS Pathogens 14.2 (Feb. 2018), pp. 1–28.

[4] Sema Nickbakhsh et al. “Virus-virus interactions impact the population dynamics of in-

fluenza and the common cold”. In: Proceedings of the National Academy of Sciences 116.52

(2019), pp. 27142–27150.

[5] Matt Keeling and Pejman Rohani. Modeling Infectious Diseases in Humans and Animals.

Princeton University Press., 2007.

[6] Julia R. Gog and Bryan T. Grenfell. “Dynamics and selection of many-strain pathogens”.

In: Proceedings of the National Academy of Sciences 99.26 (2002), pp. 17209–17214.

[7] Miquel Porta. A Dictionary of Epidemiology. Oxford University Press, 2014.

[8] Daniel Bernoulli. “Essai d’une nouvelle analyse de la mortalite causee par la petite verole”.

In: Mem. Math. Phy. Acad. Roy. Sci. Paris (1766).

[9] John Snow. Snow on cholera. London: Humphrey Milford: Oxford University Press, 1936.

[10] Ronald Ross. The prevention of malaria. London: John Murray, 1911.

[11] William Ogilvy Kermack, A. G. McKendrick, and Gilbert Thomas Walker. “A contri-

bution to the mathematical theory of epidemics”. In: Proceedings of the Royal Society of

London. Series A, Containing Papers of a Mathematical and Physical Character 115.772

(1927), pp. 700–721.

[12] M. P. WARD et al. “Estimation of the basic reproductive number (R0) for epidemic,

highly pathogenic avian influenza subtype H5N1 spread”. In: Epidemiology and Infection

137.2 (2009), pp. 219–226.

[13] Robin de Vries et al. “Systematic Screening for Chlamydia trachomatis: Estimating Cost-

Effectiveness Using Dynamic Modeling and Dutch Data”. In: Value in Health 9.1 (2006),

pp. 1–11.

57

https://www.who.int/publications/i/item/who-wer-9625-241-264
https://www.who.int/publications/i/item/who-wer-9625-241-264


BIBLIOGRAPHY

[14] R. M. Anderson et al. “The transmission dynamics of gonorrhoea: modelling the reported

behaviour of infected patients from Newark, New Jersey”. In: Philosophical Transactions

of the Royal Society of London. Series B: Biological Sciences 354.1384 (1999), pp. 787–

797.

[15] Linhua Zhou et al. “Global dynamics of a discrete age-structured SIR epidemic model

with applications to measles vaccination strategies”. In: Mathematical Biosciences 308

(2019), pp. 27–37.
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