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Abstract

Gaussian Processes are a powerful tool that is finding successful applications in
the Control Systems field due to their high flexibility and ability to identify dy-
namical systems. In a general context, gaussian process regression is a bayesian
non-parametric method which makes predictions based on the posteriori prob-
ability density given training data. The behavior of the predictions (regressed
function) is completely characterized by the covariance function, whose proper-
ties are directly inhereted by the regressed function. In many problems, such
function is chosen ad hoc and depends on prior knowledge of the underlying phe-
nomena, i.e. depends on human intervention.
Learning-Based Non-Linear Model Predictive Control (LB-NMPC) scheme is a
data-driven implementation of the MPC used to control non-linear dynamical
systems while satisfying plant constraints, it is aimed at improving the nominal
model available to the controller by approximating underlying missing dynam-
ics with a gaussian process using past plant observations as training data. We
implement the so-called Generalized Kernels to the Gaussian process within the
LB-NMPC, exploiting the spectral representation of a positive-definite function
that is modelled as mixture of a basis function. Such basis function can have de-
sired properties such as smoothness or degree of differentiabilty, generating richer
model classes that can be used to identify more complex dynamical systems. This
procedure automatizes the selection of the kernel function, while still maintaining
an analytic expression of the regressed function, allowing its implementation on
the MPC scheme and, in particular, it has a strong link with RKHS framework
that is useful to analyze the model class rigorously.
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Chapter 1

Introduction

The past few decades have been marked by the growing computational power
available to us, giving possibility to the development fast algorithms to solve
complex optimization problems. Model Predictive Control is an approach which
solves iteratively an optimization problem to finish a control task even when the
system’s behavior presents non-linear dynamics, guaranteeing high-performance
with respect to other control techniques. However, the quality of this control
technique depends on the accuracy of the mathematical description of the physical
system, making the identification procedure for the physical system a key aspect.
In the case of linear systems, System Identification is a well established field
explaining detailed techniques based on the reconstruction of the system’s impulse
response given observations, obtaining excellent results. However, the case of non-
linear system identification is a still under deveploment by the most part, mainly
because of the huge diversity of non-linearities that can be present in a given
system, making most of the standard identification methods not well-suited for
the task. Although difficult, in most of the cases there’s the core idea of using a
basis function k that can approximate arbitrarily well any function if enough basis
functions are added together [12],[24]. This is the case for neural networks, these
simple structures can approximate any function and they have been successfully
implemented in some real-time applications to infer patterns from data or to
learn dynamical systems, achieving incredible results that make them the most
used model structures [10]. Although their great capabilities to learn from data,
their complex structures could make their application within a MPC scheme
rather difficult. Another similar technique, which has been neglected in the past
given the heavy computational burden of its training, are Gaussian Processes.
This approach, which falls into the non-parametric Bayesian framework[14], also
models the identification of the physical system as a sum of basis functions k but
their locations on the operational space depends on the observed data. Moreover,
the kernel function is actually meaningfull for regression, i.e. its properties are
inhereted by the regressed function, and its analytical expression can be quite
simple, making it an attractive method for MPC schemes. Gaussian processes
have been readily proposed for joint learning and control tasks [11], moreover
there’s a vast literature available that describes their flexibility for learning and
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10 CHAPTER 1. INTRODUCTION

prediction capabilities [25] in different machine learning tasks. In this thesis, we
are interested in a class of kernels which have been rarely implemented to learn
non-linear dynamical systems. This class of kernels are flexible by design, and
should be able to infer much more complex behavior, outperforming the standard
kernel choices. Our goal is to apply gaussian processes to the Model Predictive
Control scheme, in order to achieve high performance during a complex control
task. This joint effort between learning and control is relatively new within
NMPC applications[6], mainly because now we are able to efficiently introduce
data-driven techniques for tasks that require a high-computational speed. Some
of these learning techniques are based on the introduction of a Gaussian process
aimed at improving different aspects of the overall controller setup, either tunning
directly the objective function [15] or improving the mathematical models[17] for
solving the optimization problem. Not only that, gaussian processes were also
implemented withing a NMPC scheme to improve the performance, pushing the
controller to take less conservative actions while keeping the controlled system
within a safety region to avoid possible damages [7].

1.1 Improving physical models from data

Through out the thesis we will focus on the improvement of the mathematical
description of the system by means of Gaussian processes, aimed to improve the
solution of the following optimal control problem:

argmin
x,u

� tf

t0

l(x(t), u(t))dt+ ln(x(tf ))

s.t ẋ(t) = ft(x(t), u(t), t; p)

where ft are the system’s dynamics. This problem has a huge history behind,
many techniques have been developed ranging from Calculus of Variations to
Dynamic Programming. Here we focus on a more pragmatic way, based on the
discretization of the problem which allows the use of the heavy computational
machinery we have at hand. Moreover, we will focus on the behavior of the system
which can be influenced by the presence of external disturbances or uncertainty
present in some parameters p ∈ Rnp of its mathematical description, directly af-
fecting the resulting optimal control trajectory u(t)∗. Leaving aside disturbances,
our goal is to improve this mathematical description, at least locally, based on the
available data of the system’s behavior. That is, given a nominal description fn
we would like to improve this description based on the prediction errors observed
in previous control tasks. More explicitly, the true dynamics ft(x, u) of the model
can be decomposed:

ft(x, u) = fn(x, u) + ψ(x, u)

where ψ is called the mismatch model. Depending on the knowledge available to
us, we can set two kind of models:
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� Grey-Box: We have a mathematical description from physical principles,
the mismatch model will be formulated based prediction errors of the nom-
inal model and the measured variables (i.e. velocity prediction).

� Black-Box: We don’t have a mathematical description, the mismatch
model will be formulated from differences between observations (i.e. ve-
locity differences).

These representations are general, many system identification techniques have
these qualities ( i.e. ARMAX models in the linear case [13]), but we make a clear
distinction: we won’t use a parametric representation of the models. That is, the
regressed functions will live in an infinite-dimensional space. This is the case of
Gaussian Process, where the estimated functions are just an infinite collection
of random gaussian variables. By modelling ψ as a Gaussian process, the pre-
diction values at the particular test point (x, u) have a conditional probability
with respect to the observed data {(xi, ui)}Ni=1. At first sight this seems a rather
complicated way of making estimation, but the predicted values will have a neat
expression of a weigthed sum

ψ(x, u) =
N�

i=1

k(x, u; xi, ui)αi

allowing its implementation within the NMPC scheme while mainting its powerful
prediction performance. As can be noticed, this prediction depends on the chosen
basis function called kernel. The flexibility of Gaussian process comes from this
function, selecting the right kernel can result in a drastic change of behavior as
we will discuss later. Our focus will be on an analytical approximation of this
kernel function which should lead to a kernel that best represents data, hence
improving performance in the NMPC. Most of the earlier work about approxi-
mating a gaussian process was directed at reducing the computational training or
prediction time given the necessity to invert an N ×N covariance matrix which
has O(N3) computational complexity: adding more data-points to the prediction
model meant recomputing the covariance matrix. This made applying gaussian
processes unappealing for high-amounts of data, techniques about approximating
or reducing the complete inversion of the covariance matrices were developped
[19] by taking artificious inputs, inducing inputs, that reduce the overall com-
putational burden while keeping the prediction accuracy of the gaussian process.
This lead to approximating the kernel function itself, which completely character-
izes the covariance matrix, based on properties about its frequency components
[21] particularly to fasten the predictions. This approach was later generalized to
obtain a highly flexible class of kernels capable of approximating any kernel called
Generalized Spectral Kernels. Within this thesis we analyze the behavior of these
kernel approximations in the NMPC, trying to establish if their flexibility leads
to an overall improvement of the closed-loop performance and if they are suitable
for non-linear identification. Our model benchmark will be the Cart-Pendulum
system, we will compare the generelized kernel with the Squared Exponential
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kernel, widely used in the machine learning field, moreover we will establish their
generalization capabilities by employing them in different control tasks.

1.1.1 Organization of the thesis

The main programming tools we used in this work are based on Algorithmic
Differentiation, which is a recent programming paradigm. The core idea is that
complex functions in a computer program are compositions of elementary arith-
metic sequences, using a symbolic framework combined with a graph structure
makes it possible to track these sequences and compute their derivative either
in a forward or backward fashion, this makes their numerical evaluation much
faster and suitable for complex optimization problems . In this work, we use the
open-source software Lb-MATMPC which has two components:

� MATMPC: A MATLAB-based fast NMPC solver which uses on CasADi[3],
a general-tool for gradient-based numerical optimization based on AD in
symbolic framework, heavily focused in optimal control.

� gpr-torch: An open-source Python library for Gaussian Processes which
uses Pytorch, an optimized tensor library based on AD for creating and
training of deep neural networks.

The thesis will be structured as follows:

� Chapter 2: Here we will give the main components of Non-Linear Model
Predictive Control and the techniques used to solve them.

� Chapter 3: We will introduce Gaussian Processes and their main prop-
erties, linking its learning properties to standard system identification and
their implementation on the NMPC scheme.

� Chapter 4: The focus will be on the study and generalization of the spec-
tral kernel, where the ideas come from and why it can have great capabilities
for non-linear identification.

� Chapter 5: Simulation results of the generalized kernel, focusing on the
training procedures and later confronting it with the Squared Exponential
kernel. We will test the gaussian models with two different nominal models,
in two different control tasks, discussing the results of the generalization
properties of the kernels to determine the overall performance.

� Conclussions We conclude by describing the results obtained with this
work, highlighting the main aspects and giving a general direction for fur-
ther investigations.



Chapter 2

Non-Linear Model Predictive
Control

In this chaper we introduce the Model Predictive Control formulation, focusing
on its application to Non-Linear dynamical systems. We give a brief introduction
to the main ingredients for the linear case, highlighting the crucial aspects that
make this approach exceptional for control of complex systems while achieving
high-performance and later focusing on the applied tecniques for non-linear sys-
tems throughout the thesis. This interest arises from the growing computational
capabilities of modern computers, which allows to solve in real-time control tasks
at high-frequency sampling using fast algorithms based on approximations of the
original problem. Moreover, we will also focus on cases that can give rise to
unsatisfactory performance, mainly parametric errors present during the mod-
elling of the physical system. We will set the optimal control problem for the
cart-pendulum system, which is our benchmark model to test the integration of
Gaussian processes for the learning of the mismatch model. Given the high accu-
racy of modern computers, it is correct to assume that simulations of the inverted
pendulum are accurate enough to validate our proposed learning techniques.

2.1 Model Predictive Control

The roots of Model Predictive Control [16] are based on optimization, mainly the
study of the Linear Quadratic Regulator problem:

min
u

N−1�

k=0

1

2
(xT

kQxk + uT
kRuk) + xT

NQNxN (2.1)

s.t.

�
xk+1 = Axk + Buk

x0 = x̂0

(2.2)

where xi ∈ Rnx , ui ∈ Rnu are state and control variable, x̂0 is the initial
observed state, the matrices Q,R,QN > 0 are assumed positive definite and
u = [u1, . . . , uN−1] are the decision variables to optimize. Under general assump-
tions about the system, this problem admits a (unique) optimal solution, i.e. a
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14 CHAPTER 2. NON-LINEAR MODEL PREDICTIVE CONTROL

sequence u∗ that minimizes the objective function and drives the state variable
to 0, moreover the control sequence has a feedback form u∗

i = K(i)x(i) where
K(i) comes from solving a Discrete Riccati Equation in a backward fashion. In
a perfect setting, this optimal control trajectory could be applied in an open-
loop fashion and complete the control task, nevertheless the limitations of this
approach is that the true system’s behavior may have some discrepancies with
respect to the predicted solution x∗ from the initial state x̂0, either from para-
metric errors within the nominal model system or measurements errors of the
state, blindly applying the optimal solution could result unsatisfactory perfor-
mance. Another key point is the physical limitations of the control trajectory,
i.e. actuators limits, or confinement of state vector to be within some regions for
safety reasons. That is:

xmin ≤ x ≤ xmax

umin ≤ u ≤ umax

The MPC formulation is capable of handling these difficulties by solving the
optimal control problem at each iteration of the control task. At stage k, given
the available state measurement xk = x̂k, it solves (2.2) for the prediction horizon
[k, . . . , k+N −1] and applies the first element of the control sequence uk(0) = u∗

0

to the real system, shifting the prediction horizon [k + 1, . . . , k − N ] and re-
iterating the procedure once the measurement of xk+1 is available, as illustrated
in figure (2.1).

Figure 2.1: Model Predictive Control scheme.

Constraints can be introduced within the optimization problem, given a con-
vex cost, these can be solved efficiently using Quadratic Programming (QP)
solvers. In the end, we have the main ingredients for the MPC formulation:

� Cost function: Usually convex function for efficient solving, it has to
reflect the goals of the control task.

� System dynamics: It’s the mathematical description of the physical sys-
tem. The accuracy of the modelling heavily influences the computed opti-
mal control trajectory.

� Constraints: These are conditions that must be satisfied throughout the
control task, imposed either on the state or the control variables. They can
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be hard, i.e. imposed by the physical system, or soft, conditions we’d like
to be satisfied but are not necessarily achievable.

2.2 Non-Linear Model Predictive Control

We focus now on the extension of the MPC paradigm to the non-linear dynamics
case, in particular on the Direct Optimal Control approach, which is based on a
particular discretization of the state and control variables, allowing the approxi-
mation of the original problem into a Non-Linear Programming (NLP) problem.
This NLP formulation can be solved with the implementation of fast algorithms
to compute the optimal decision variables making the integration of moving pre-
diction horizon an appealing technique, even in cases where the dynamics of the
physical system are highly complex, maintaining high performance throughout
all the stages of the control task. This comes with a caveat, we must have a high
sampling frequency and the mathematical description of the system has to be
accurate enough to make the predictions representative of what is happening in
real-time. From first principles, we can obtain a mathematical description of the
system at hand as

ẋ(t) = f(x(t), u(t), t; p) (2.3)

where x(t) ∈ Rnx , u(t) ∈ Rnu are the state and control variables, p ∈ Rnp

are parameters which characterize the system. Knowledge of the values of p
is important to guarantee high-accuracy prediction, which is sometimes not the
case, we will focus later on that problem.

2.2.1 Setting up the Non-Linear Programming problem

Assume now that the system dynamics are smooth enough, i.e. Lipschitz, we can
pose now pose the continuous control problem as

min
x(·),u(·)

� tf

t0

l(x(t), u(t))dt+ lf (x(tf )) (2.4)

s.t





x(t0) = x̂0

ẋ(t) = f(x(t), u(t), t; p)

r(x(t), u(t)) ≤ 0, ∀t ∈ [t0, tf ]

rf (x(tf )) ≤ 0

(2.5)

where l and lf are the objective function, r(·) and rf (·) are the path and ter-
minal inequality constraints. The optimization problem depends on the value
of x̂0 which is the initial condition of the system. Many solving techniques are
available, we put our focus on the Direct Multiple Shooting approach [20], where
we divide the prediction horizon [t0, tf ] into N shooting intervals [τk, τk+1] with
k = 0, . . . , N − 1, obtaining N + 1 grid points t0 = τ0 < τ1 · · · < τN = tf .
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The control trajectory is parametrized such that it remains constant during an
interval:

u(t) = uk, ∀t ∈ [τk, τk+1)

This control trajectory parametrization, together with the multiple shooting grid,
results in the representation of state trajectory asN coupled initial value problems

�
ẋ(t) = f(x(t), ui, t; p), ∀t ∈ [τi, τi+1)

x(τi) = xi

In multiple shooting, N + 1 shooting points (x0, . . . , xN) are defined exactly on
each grid point such that these variables satisfy xi = x(τi). To take into consid-
eration the system’s dynamics, the continuity constraints are imposed

xi+1 = Ξ(τi, xi, ui), i = 0, . . . , N − 1

where Ξ(·) is an integration operator which solves the IVP in the interval [τi, τi+1)
and returns the solution at the grid point τi+1. Throughout this thesis we use a
uniform grid, and apply the same integration operator. We obtain the following
discrete-time autonomous system dynamics:

xi+1 = φ(xi, ui), i = 0, . . . , N − 1

where φ(·) is the resulting function from calling the integration operator. Regard-
ing the path constraints, they are imposed directly on the shooting grid points:

�
r(xi, ui) ≤ 0, i = 0, . . . , N − 1

rf (xN) ≤ 0

Given these parametrizations, we can reformulate the original objective function
as:

N−1�

i=0

� τi+1

τi

l(xi, ui)dt+ lf (xN)

which can be approximated as a discrete sum:

N−1�

i=0

l(xi, ui) + lf (xN)

where we omit the grid points, we can formulate the NLP problem as

min
x,u

N−1�

i=0

l(xi, ui; p) + lf (x(tf )) (2.6)

s.t





x0 = x̂0

xi+1 = φ(xi, ui), i = 1, . . . , N − 1

r(xi, ui) ≤ 0, i = 0, . . . , N − 1

rf (xN) ≤ 0

(2.7)
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where x = [x0, . . . , xN ] and u = [u0, . . . , uN−1] are the discretized state and
control variables. In the case of Non-Linear MPC, at every instant k of the
control task, a similar NLP problem is formulated over the prediction horizon
and the initial optimal input u∗

0 of the control sequence is applied. However,
finding the optimal solution of the NLP is not an easy task, mainly when we
want real-time solutions in highly non-convex problems. We have to resort to
another approximation within the NLP formulation to convexify the problem at
hand. This results in a multi-hierarchy scheme[4], where fast algorithms have to
be parallelized or find clever ways to avoid repeating computations, one of those
is Sequential Quadratic Programming.

2.2.2 Sequential Quadratic Programming

To solve the original NLP problem, we use a local quadratic approximation of the
original objective function and linearized constraints at each stage. In general, a
NLP problem has the following form:

min
z

a(z) (2.8)

s.t b(z) = 0 (2.9)

c(z) ≤ 0 (2.10)

where z ∈ Rnz are the decision variables, a(z) : Rnz → R is the objective function,
b(z) : Rnz → Rnb and c(z) : Rnz → Rnc are the equality and inequality constraints
respectively. Given the non-convexity of the problem, it is hard to find global
solutions and we rely only on local optimality. Still, many arguments can be
made such that we can analyze those local optimal points in a similar fashion for
global solutions. Those solutions are based on the minimization of the Lagrangian
Functional:

L(z,λ, µ) = a(z) + λT b(z) + µT c(z)

Admissible solutions have to satisfy the celebrated Karush-Kuhn-Tucker condi-
tions, assume that z∗ is a local minimizer for NLP problem then there exist
Lagrange multipliers λ∗ and µ∗ such that:

∇zL : ∇za(z
∗) +∇zb(z

∗)Tλ∗ +∇zc(z
∗)Tµ∗ = 0 (2.11)

∇λL : b(z∗) = 0 (2.12)

∇µL : c(z∗) ≤ 0 (2.13)

µ∗
i ci(z

∗) = 0 i = 1, . . . , nc (2.14)

A primal-dual solution (z∗,λ∗, µ∗) is called a KKT point, more details on the
conditions for a local minimizer can be found [20]. Assume to have an initial
guess (z∗i ,λ

∗
i , µ

∗
i ) at iteration i, it’s possible to linearize the NLP problem to find a

primal increment Δz = z−z∗i from solving the following Quadratic Programming
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(QP) subproblem:

min
Δz

1

2
ΔzTHΔz+∇za(z

∗)TΔz (2.15)

s.t. b(z∗) +∇zb(z
∗)TΔz = 0 (2.16)

c(z∗) +∇zc(z
∗)TΔz ≤ 0 (2.17)

where H = ∇2
zL(z∗i ,λ∗

i , µ
∗
i ) denotes the Hessian of the Lagrangian. The solution

of the subproblem gives the optimal incrementΔz∗ and new multipliers λi+1, µi+1,
resulting in the update:

z∗i+1 = z∗i + αΔz∗

λ∗
i+1 = (1− α)λ∗

i + αλi+1

µ∗
i+1 = (1− α)µ∗

i + αµi+1

where α is the step-size, this procedure is iterated until the KKT conditions are
satisfied up to a given accuracy. There are many other schemes to obtain solutions
of the NLP, based on different strategies of posing the problem or parametrization,
which are out of the scope of the thesis.

2.2.3 Solving the Optimal Control Problem

Given this brief introduction to NLP, we can apply it directly into an optimal
control problem. The classical discretized objective function for control tasks has
the form

1

2

N−1�

k=0

�h(xk, ui)�2W +
1

2
�hN(xN)�2WN

(2.18)

where h is usually a non-linear function, it can embed tracking or regulation tasks.
Recall the discretize OCP (2.7), given an initial state and control trajectory guess,
defining z = [z0, . . . , zN−1, xN ]

T ∈ Rnz where zi = [xT
i , u

T
i ]

T ∈ Rnx+nu and the
discretized constraints:

b(z) =




x0 − x̂0

x1 − φ(x0, u0)
...

xN − φ(xN−1, uN−1)


 c(z) =




r(x0, u0)
...

r(xN−1, uN−1)
rN(xN)




where the inequaly constraints have the form

rl ≤ r(xi, ui) ≤ rl

rlN ≤ rN(xN) ≤ rN
l
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we can setup the usual NLP. At the l iterate of the SQP, given the state and
control trajectory zl guess, we have the following QP subproblem

min
Δx,Δu

N−1�

i=0

�1
2

�
Δxi

Δui

�T
H l

i

�
Δxi

Δui

�
+ gl

T

i Δxi

�
(2.19)

+
1

2
ΔxT

NH
l
NΔxN + gl

T

N ΔxN

s.t Δx0 = x0 − x̂0

Δxi+1 = Al
iΔxi + Bl

iΔui + ali, i = 0, . . . , N − 1

cli ≤ cli + C lT

i Δxi +DlT

i Δui ≤ cli, i = 0, . . . , N − 1

clN ≤ clN + C lT

N ΔxN ≤ clN

where Δx = x − xl, Δu = u − ul, defining with xl = [xl
0, . . . , x

l
N ] and ul =

[ul
0, . . . , u

l
N−1]. The respective Hessian matrices Hi,HN are approximated via

Gauss-Newton method and gi,gN are first-order terms of the Lagrangian. The
linearization matrices are

Al
i =

∂φ

∂xi

, Bl
i =

∂φ

∂ui

, ali = φ(xi, ui)− xl
i+1 (2.20)

C l
i =

∂r

∂xi

, Dl
i =

∂r

∂ui

, C l
N =

∂rN
∂xN

cli = rli − r(xi, ui), cli = rli − r(xi, ui)

clN = rlN − rN(xN), clN = rlN − rN(xN)

From the solution of the QP, we can update the state and control trajectory:

xl+1 = xl + αΔxl (2.21)

ul+1 = ul + αΔul

and iterate until the KKT conditions are satisfied, we apply the first control input
of the converged solution and shift the trajectory for the next sampling instant.

2.2.4 Parametric uncertainties on the NMPC

Given the previous formulation, we focus on our benchmark problem. Consider
the inverted pendulum which has the following nonlinear dynamics

p̈ =
−ml sin(θ)θ̇2 +mg cos(θ) sin(θ) + F

M +m−m cos2(θ)

θ̈ =
F cos(θ)−ml cos(θ) sin(θ)θ̇2 + (m+M)g sin(θ)

l(M +m−m cos2(θ))

where p is the cart’s position, θ is the pendulum’s angular position and F is
the control force, depicted in Figure 2.2. From now on, each simulation will have
as correct parameters the ones in Table 2.2.4.
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Figure 2.2: Cart-pendulum sys-
tem where M is the cart mass,
m and l are the pendulum mass
and angular position.

Parameter Value

M 0.1 kg
m 1 kg
l 0.5 m
g 9.81 m/s2

Table 2.1: Correct parameters of
the cart-pendulum system.

The state variables will be x = [p, θ, v,ω]T , the control input will be u = F ,
we have the discretize OCP

min
x,u

N−1�

i=0

���
�
xi

ui

�
−
�
xref

uref

� ���
2

Q
+ xT

NQNxN (2.22)

s.t x0 = x̂0 (2.23)

xi+1 = φ(xi, ui) ∀i = 0, . . . , N − 1 (2.24)

− 2 ≤ pi ≤ +2 ∀i = 0, . . . , N − 1 (2.25)

− 50 ≤ ui ≤ +50 ∀i = 0, . . . , N − 1 (2.26)

where Q = diag[10, 10, 0.1, 0.1, 0.01] and QN = diag[10, 10, 0.1, 0.1] are the weight
matrices, x̂0 = [0, π, 0, 0]T is the initial state of the system, we solve this problem
using SQP. While solving the QP problem, the main cause of the prediction error
comes from the parametric error, this a static error present in the non-linear
nominal model. Our goal is to compensate this error from the measurements of
the variables ṗ and θ̇ in the discretized model that comes from the integration
operator φ(xk, uk). We will have two models to evaluate, based on the knowledge
of the mathematical description we will compensate the predictions using:

� Grey-Box: Mathematical description is available, we will define the mis-
match model on velocity prediction errors: ψ(xk, uk) = q̇k+1 − ˆ̇qk+1, where
q̇k+1 are the measured velocities of the sytem (i.e. cart velocity or pendulum
angular velocity) while ˆ̇qk+1 is our velocity prediction based on the nominal
model.

� Black-Box: No mathematical description is available, we will define the
missmatch model on velocity increments: ψ(xk, uk) = q̇k+1− q̇k. In this case
q̇k+1 and q̇k are velocity measured values.

In particular, these models will be implemented by the means of a guassian pro-
cess -pun intented- trained to learn the mismatch model, with the hope of com-
pensating these parametric uncertainties.



Chapter 3

Gaussian Processes for System
Identification

The goal of this chapter is to introduce the general framework of system identi-
fication of non-liner dynamical systems using Gaussian processes. There’s a vast
literature and many approaches have been proposed in the past decades, from neu-
ral networks to fuzzy logic models, where one the main ideas is the application of
a set of basis functions[23], which are either local or global, that approximate the
underlying system. Recall that any model about the physical system is wrong
and we are not trying to infer the true model, instead we want to find useful
models that are able to complete the task in different working conditions of the
physical system. This paradigm was introduced by Ljung [13], which put on the
shelf different kinds of black-box models for linear systems and evaluated their
performance by minimizing some penalty function (i.e. the quadratic prediction
error). Such unifiying framework for linear system identification remains valid
for non-linear systems. Nonetheless, it is useful to give preliminaries concepts
on linear system and later apply the key ideas to non-linear models. We will
focus on the Bayesian framework, introducing Gaussian processes and their main
properties. Moreover, we will give their connection with the Reproducing Ker-
nel Hilbert Spaces, making the application of Gaussian processes for dynamical
systems theoretically sounding. Later, we will introduce the implementation of
the gaussian process into the NMPC scheme, showing the reformulation of the
discretized optimal control problem.

3.1 Bayesian framework for System Identifica-

tion

The main goal of system identification is to learn models from observed data,
which allows for prediction of properties or behaviors of the phenomena at hand.
Most models result in a mathematical expression, which describe relationships
between variables present in the system. There could a huge amount of variables
which play a role in the observed output and different models of the same model

21
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class could describe arbitrary well the data, raising the necessity to select the best
model by using some criterion. There should be also a measure of the complexity
of the model classes, their size or flexibility. Here we introduce the basic example
for linear systems using the Bayesian approach to inference, remarking the key
concepts that will be also applied for non-linear cases.

3.1.1 The Linear Case: Some key concepts

Assume to have N datapoints D = {(xi, yi)}Ni=1, where x ∈ Rd is the measured
input (or feature) and yi ∈ R is the measured output. A bayesian measure model
is defined as:

yi = xT
i w + �i (3.1)

where w ∈ Rd is the regressor, modelled as random variables with probability
density p(w). Output measurements are always affected by imprecisions which
are unpredictable, modelled usually as � ∼ N (0, σ2

0) and assumed independently
and identically distributed (i.i.d) for all the measurements. Our goal is to infer
values of the regressor that best describe the dataset D under some criterium. In
the Bayesian framework we don’t have a punctual estimation but rather a prob-
ability density from which we infer some quantities. In the spirit of introducing
the metholody followed in the thesis, for now we pursue the Maximum Likelihood
approach to obtain a punctual estimate of the regressor. Assume that the model
parameters are normally distributed w ∼ N (0,Σ). By stacking measurements,
we obtain the more general regression model:

y = Φw + � (3.2)

where Φ = [xT
1 , . . . ,x

T
N ]

T ∈ RN×d, � ∼ N (0, σ2
0IN) and we have that

y ∼ N (0,ΦΣΦT + σ2
0IN)

Consider now the likelihood function:

L : Rd −→ R+

w �−→ L(w; y) = p(w, y)

where y is assumed fixed and the variable w can change, we find the Maximum
Likelihood estimate as:

ŵ = argmax
w∈Rd

L(w, y) (3.3)

Equivalently, we can define the negative log-likelihood:

l(w; y) = −log(p(w; y)) (3.4)

and set the optimization problem as:

ŵ = argmin
w∈Rd

l(w, y) (3.5)
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The joint distribution can be computed as: p(w, y) = p(y|w; σ2
0)p(w), where the

conditional is the model error distribution. We obtain:

l(w, y) = −log(p(y|w; σ2
0))− log(p(w))

where:

p(y|w; σ2
0) ∼ N (Φw, σ2

0IN)

p(w) ∼ N (0,Σ)

obtaining the final optimization problem:

ŵ = argmin
w∈Rd

1

2σ2
0

�y − Φw�2 + 1

2
wTΣ−1w + C (3.6)

where C is a constant. This is a simple quadratic optimization problem, and
admits solution:

ŵML(y) = Φ(ΦTΦ+ σ2
0Σ

−1)−1ΦTy (3.7)

Notice how the objective function can be decomposed in two terms: the first term
is the data-fit and the second term is the complexity penalty. This decomposition
generates a natural trade-off between interpretability of the data and flexibility
of the model, something that will be recurrent throughout the thesis. If we’d like
to make predictions using a new test point x∗, we can simply use our punctual
estimate:

ŷ(x∗) = xT
∗ ŵML = xT

∗Φ(Φ
TΦ+ σ2

0Σ
−1)−1ΦTy

We can find an alternative expression for our estimate by appying the inversion
lemma to the inverse matrix:

ŵML = ΣΦT (ΦΣΦT + σ2
0IN)

−1y (3.8)

One key aspect of the Bayesian framework is that it gives us confidence on our
estimates. In general, given the probabilistic nature of our model, we can apply
the Bayes’ formula to find the parameters w posterior distribution:

p(w|y, X) =
p(y|w, X)p(w)

p(y|X)
(3.9)

where

p(y|X) =

�
p(y|w, X)p(w)dw

is a normalization constant. It is known that p(w|y, X) is still a gaussian density,
with mean and variance:

E[w|y] = ΣΦ(ΦΣΦT + σ2
0IN)

−1y (3.10)

var(w|y) = ΦΣΦT − ΣΦ(ΦΣΦT + σ2
0IN)

−1ΦTΣ) (3.11)
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where the mean of the posterior has the same expression of the ML estimate.
This is a known result, in case of Gaussian densities the maximum likelihood
estimate coincides with the mean of the posterior density of the regressor, i.e.
the maximum a posteriori estimate (MAP):

E[w|y] = ŵML

and the variance is the remaining uncertainty on the parameters given that we’ve
observed the dataset D.

3.1.2 Non-Parametric Bayesian Regression

Following the linear regression case, we can generalize our measurement model
to non-linear model as:

y(x) = g(x; θ) + � (3.12)

where g(x; θ) is a non-linear mapping, x ∈ Rd and θ are some parameters that
characterize such function. Non-linear identification is based on trying to infere
g(x; θ) from data, which can be extremely challenging. It is possible to apply
some approximations and redefine the problem as a linear regression. We can get
to this general result by first defining a non-linear mapping, called basis function:

φγ : Rd �−→ Rk

x �−→ φγ(x)

where γ are parameters we can modify. Then, we can set the measurement model
as:

y(x) = φγ(x)
Tw + � (3.13)

where w ∈ Rk is a random vector and � is white noise. We can set again Φ(X) =
[φ(x1), . . . ,φ(xN)]

T , and obtain the linear regression model:

Y = Φ(X)w + �, � ∼ N (0, σ2
0IN)

This is the one of the most general black-box models[12], think of neural net-
works. Choosing the basis function represents the most challenging part, it has
to be set a priori based on the knowlegde of the underlying system together with
the parameters γ that best describe the data. Assuming again w as normally dis-
tributed N (0,Σ), we can apply the ML estimator to obtain punctual estimates:

ŵ = ΣΦ(X)T
�
Φ(X)ΣΦT (X) + σ2

0In

�−1

y (3.14)

In particular, we can make a prediction based on a new test input x∗:

y(x∗) = φ(x∗)
T ŵ (3.15)

= φ(x∗)
TΣΦT (X)

�
Φ(X)ΣΦT (X) + σ2

0In

�−1

y (3.16)
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Recall that we have a probabilistic model, encoding our priors assumption about
the system. Indeed given the input x, the measurement model has a gaussian
density:

p(y(x)) ∼ N (0,φγ(x)
TΣφγ(x) + σ2

0) (3.17)

If we consider another input x�, noting that the error between output measure-
ments are independent, we obtain their covariance (correlation) as:

E[y(x)y(x�)T ] = φγ(x)
TΣφγ(x

�) (3.18)

That is, the map φγ(x) induces a covariance function in the measurement model,
which directly influences our estimate and prediction (look closely at (3.14) and
(3.16)). Analyzing the properties of that function, choosing the basis function
φγ that best suits our needs and devicing a way to compute the (sub)-optimal
parameters γ will be discussed next, where we introduce the Gaussian processes
framework.

3.2 Gaussian Processes for Regression

In this section, we introduce the tool that will be our cornerstone through the
thesis. It is flexibile as a function approximator, analogous to that of Neural
Networks with an intimate link between both of them, and its intuitive way to
construct classes of functions that represent our a priori knowledge of the model
gives us a powerful tool for system identification. Most of its properties are well
known in the machine learning field [25], our interest here is their capabilities
as non-linear approximator. One of the main approaches for non-linear system
identification is based on using a set of basis functions, which tries to infer the
manifold generated by the observed inputs and variables, think of reconstructing a
static image from some of its pixels. This can be generalized for Gaussian Process
using the Reproducing Kernel Hilbert Spaces formalism, where these manifolds
are not other that sums of linear combinations of the basis function.

3.2.1 Gaussian Processes

Before introducing gaussian processes, we need to introduce the notion of a
stochastic process. This is an important mathematical tool applied in many
science fields when trying to describe uncertain phenomena. Many complex phys-
ical behaviors can be described with simple models based on stochastic processes,
describing its formalism and main properties is crucial to the understanding of
gaussian processes.

Definition 3.2.1 (Stochastic process). Consider a probability space (Ω,F ,P),
where Ω is a non-empty set, F is a σ-algebra of Ω and P is a measure function.
A stochastic process is a collection of random variables {Xt}, indexed by a set T ,
defined on Ω:

X(t,ω) : T × Ω → R (3.19)
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The stochastic process is characterized by its cummulative distribution func-
tion F (x) for a finite-dimensional collection of random variables {Xt1 , . . . , XtN},
which is defined as:

Ft1,...,tk(x1, . . . , xk) � P(Xt1 ≤ x1, . . . , XtN ≤ xN) (3.20)

It has to satisfy the standard conditions such as right-continuity and monoticity.
Moreover, if it’s absolutely continuous it admits a density function p(x) defined
as:

pt1,...,tk(x1, . . . , xk) =
∂kFt1,...,tk(x1, . . . , xk)

∂x1 . . . ∂xk

(3.21)

In most cases is rather difficut to explain the behavior of the stochastic process
for each realization of ω (sample path), in general we can describe its behavior
with the moment functions.

Expectation and Covariance

We are interested on the mean behavior and correlation between different random
variables of the process, usually referred as the first and second moments. We
define the mean function m(t) as:

m(t) =

�

Ω

Xt(ω)dP(ω) =
�

R
x dFt(x) (3.22)

and the covariance function C(t, s) as:

C(t, s) =

� �

Ω

(Xt(ω)−m(t))(Xs(ω)−m(s))dP(ω) (3.23)

=

� �

R2

xy d2Ft,s(x, y)−m(t)m(s) (3.24)

(3.25)

We have that the variance of the random variable Xt is:

σ2(t) = C(t, t) (3.26)

and the correlation function with another r.v. Xs is defined as:

ρ(t, s) =
C(t, s)

σ(t)σ(s)
(3.27)

We will see that mainly the study of the covariance (correlation) function is the
study of the behavior of the stochastic process itself. A key property is its positive
definiteness, a covariance function C(t, s) is:

� (Semi-)Positive definite: Consider the random variable X = α1Xt1 +
· · ·+ αkXtk , we have:

Var(X) =
k�

i=1

k�

j=1

αiαjC(ti, tj) ≥ 0, ∀αi ∈ R, ti ∈ T, k > 0 (3.28)

which is the definition of a semi-positive definite function.
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This is a fundamental property for stochastic processes. In Abrahamsen [1], they
noted that the class of covariance functions coincide with the class of positive
definite functions and that the class of correlation functions coincide with the
class of positive definite functions where C(t, t) = 1. This can be seen also as a
restriction, the modelling of some phenomena with a stochastic processes must
be done with a valid covariance (correlation) function. In such review, they
mainly focused on the analitycal properties that a positive function must have
to obtain specific behaviors of the stochastic processes. To simplify the analysis,
some invariance properties must be embedded on C or ρ, a general assumption
is stationarity.

Stationarity

The behavior of a stochastic process strongly depends on the cummulative dis-
tribution F (x), which depends on the index set T . Making assumptions on the
covariance functions means making assumptions on the index set, which are gen-
erally properties that such set must contain. A classic assumption is that the
index set T is a linear space (i.e. t, s ∈ T ⇒ t+ s ∈ T , e.g Rd).

Definition 3.2.2. A stochastic process is called strongly stationary if the
finite-dimensional distributions are invariant to translations on the index set T:

Ft1,...,tk(x1, . . . , xk) = Ft1+s,...,tk+s(x1, . . . , xk), ∀s ∈ T (3.29)

This property is in general hardly verify. We can define a lesser condition,
which acts not on the cummulative distribution but rather on the moments of
the process.

Definition 3.2.3. A stochastic process is called weakly stationary process if:

�
m(t) = m

C(t, s) = C(t− s)
(3.30)

That is, the mean is constant and the covariance between random variables de-
pends only on the difference of the indexes. For the correlation function:

ρ(τ) =
C(τ)

σ2
0

(3.31)

with σ2
0 = C(0) and τ = t− s.

We will treat interchangeably the covariance and correlation function, differing
only by the scale constant σ2

0. In most of the non-linear identification approaches,
stationarity is implicitely assumed as the basis function depends only on the
distance between the input variables. We follow this direction, mainly because
most of the data is collected in a small region and it simplifies the training and
implementation of the gaussian processes.



28CHAPTER 3. GAUSSIAN PROCESSES FOR SYSTEM IDENTIFICATION

Differentiability

Another interesting property to us is the derivative of a stochastic process. We
can define the derivative of a scalar process X(t), with t ∈ Rn as:

Ẋi(t,ω) =
∂X(t)

∂ti
= lim

Δ→0

X(t+Δei,ω)−X(t,ω)

Δ
(3.32)

where ω is a fixed and ei is a unit vector in the i-th. Under some conditions on

the covariance function of the process [1], if the derivative
∂2C(t, s)

∂ti∂sj
exists and

it’s finite for all i = 1, . . . , n at (t, t), the derivatives of process are mean-square
continuous. That is, realizations of Ẋi(t) are generally continuous, its moments
defined as:





E[Ẋi(t)] =
∂m(t)

∂ti
= ṁi(t)

C̈ij(t, s) = Cov(Ẋi(t), Ẋj(s)) =
∂2C(t, s)

∂ti∂sj

Given that we will use derivatives of gaussian processes, this property is useful
because we’ll have well defined linearizations within the NMPC and it will make
the proposed metric (5.4) a valid one.

Gaussian processes

We are now ready to introduce the definition of Gaussian processes and its main
characteristics.

Definition 3.2.4 (Gaussian process). It’s a stochastic process which has a mul-
tivariate normal distribution as finite-dimensional distribution. We focus on the
scalar case, for any collection of r.v. {Xt1 , . . . , Xtn}, where Xt ∈ R, it admits
density function:

p(x) =
1��

2πdet(Σ)
�n exp

�
−1

2
(x− µ)TΣ−1(x− µ)

�
(3.33)

where x = [x1, ..., xn]
T , µ = [m(t1), . . . ,m(tn)] ∈ Rn and Σ ∈ Rn×n are the mean

and the covariance matrix with Σij = C(ti, tj), defined by its two moments m(t)
and C(t, s).

Without loss of generality, we can consider zero-mean gaussian processes. In
regression problems, the gaussian process is denoted with f and the index set is
the Euclidean space Rd. We will denote a scalar gaussian process as:

f(x) ∼ GP(m(x), k(x, x�; θ)),

where we use θ to indicate that the covariance function k(x, x�) depends on some
parameters. The function k is also called the kernel function of the gaussian pro-
cess, we will use interchangebly the term kernel and covariance. For a collection
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of indexed random variables {f(x1), . . . , f(xn)}, according to the definition of
Gaussian process, we have that their joint distribution is:



f1
...
fn


 ∼ N

�
0,



k(x1, x1) . . . k(x1, xn)

...
...

k(xn, x1) . . . k(xn, xn)



�

(3.34)

Some classical examples are:

� Exponential Kernel:

kexp(x, x
�) = σ2exp

�
− γ�x− x��

�

� Squared Exponential Kernel:

kSE(x, x
�) = σ2exp

�
− �x− x��2

2l2

�

� Matérn Kernel:

kMA(x, x
�) =

21−ν

Γ(ν)

�√
2ν�x− x��

l

�ν

Kν

�√
2ν�x− x��

l

�

where Γ(ν) is the gamma function and Kν(·) is the modified bessel function
of the second kind [2].

� Polynomial Kernel:

kpol(x, x
�) = (1 + γxTx�)d

� Trigonometric Kernel:

ktrig(x, x
�) = σ2cos(ω(x− x�))

In Algorithm 1 we report the simple procedure to generate sample-paths of a
Gaussian process with covariance k(x, x�). Note that these are a priori realiza-
tions, no inference has been done. As stated, there are many parameters that
control the behavior of the stochastic process, in Figure 3.1 we can see properties
from periodicity to smoothness, etc. Notice how also setting different parameters
change the resulting function within a model class (in particular for the Matérn
kernel). Therefore, we could naivily (not so much) say that setting these co-
variance functions means choosing a space of functions with properties inhereted
from the covariance function, i.e. we are choosing an hypothesis, and within
that same class there are more intrinsicate behaviors determined by the so called
hyperparameters. We will later formalize this initial intuition.
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Figure 3.1: Realizations on uniform grids with SE, Matérn, Polynomial and
Trigonometric kernels.

3.2.2 Regression with Gaussian processes

Now, consider that we have N datapoints {(xi, yi)}, we are interested in finding
the relationship between input x ∈ Rd and the measured output y ∈ R. We
model their relation with a Gaussian process f indexed by the input variables x.
The setup for measurement model is:

yi(xi) = f(xi) + e, where

�
f(x) ∼ GP(0, k(x, x�; θ)

e ∼ N (0, σ2
nδij)

(3.35)

where e is white gaussian noise representing the uncertainty in our measurements.
Collecting all the measurements, we have that:

y =



y1
...
yN


 =



f(x1)

...
f(xN)


+



e1
...
eN


 (3.36)

From now on, we indicate the input collection as X and e the collection of mea-
surement errors:

y = f(X) + e (3.37)

Algorithm 1 Generate sample paths on a n-points uniform-grid

procedure SamplePath(k, {x1, . . . , xn})
[K(X,X)]ij ← k(xi, xj)
L ← CholeskyDecomposition(K(X,X))
e ← n samples from N (0, 1)
f ← LT e

end procedure
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We have that y is a normally distributed vector with probability density:

y ∼ N (0, K(X,X) + σ2
nIN) (3.38)

where [K(X,X)]ij = k(xi, xj). Given that we have a probabilistic model, when
we have to make predictions in another index point x∗, we need to compute the
conditional probability of f(x∗) with respect to the available data y, where the
joint probability for [f(x∗),yT ]T is available:

�
f(x∗)
y

�
∼ N

�
0,

�
K(x∗, x∗) K(X, x∗)
K(x∗, X) K(X,X) + σ2

n

��
(3.39)

It’s a known result that conditioning jointly gaussian variables results in a gaus-
sian variable:

f(x∗|y,X) ∼ N (µ(x∗|y,X), var(x∗|y,X)) (3.40)

with




µ(x∗|y,X) = K(x∗, X)

�
K(X,X) + σ2

n

�−1

y

var(x∗|y,X) = k(x∗, x∗)− k(x∗, X)
�
K(X,X) + σ2

n

�−1

K(X, x∗)
(3.41)

where K(x∗, X) =
�
k(x∗, x1), . . . , k(x

∗, xn)
�
and K(X, x∗) = K(x∗, X)T . To

make a punctual estimate of f(x∗), we could apply the ML estimator, which in
the Gaussian case coincides with the mean of the conditional density:

f̂(x∗) = µ(x∗|y,X) (3.42)

As can be noticed, the prediction strongly depends on the choosen covariance
function. Another great property of the Bayesian framework is that it allows to
define the uncertainty in our predictions, but we won’t use these information in
the MPC scheme.

3.2.3 Learning the Hyperparameters

The quality of the regression depends on the parameters we assign to the ker-
nel function. There are many methodoligies to carry out the selection of the
hyperparameters such as cross-validation or grid-like evaluations. One of the
most applied is the marginal likelihood maximization when we are dealing with
continuous hyperparameters θ ∈ Rn. In general, the observed variables y are
distributed according to:

p(y|X) =

�
p(y|f)p(f |X)df (3.43)
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where we integrate out the random functions f distributed according to the gaus-
sian process, while p(y|f , X) is the measurement error distribution. In the Gaus-
sian case, we have a closed-form expression for the marginal likelihood:

y|X ∼ N (0, K(X,X) + σ2
nIn) (3.44)

We can apply the log transform to p(y|X) and try to maximize it with respect
to the hyperparameters:

log(p(y|X; θ)) = −n

2
yT (Kθ(X,X) + σ2

nIn)
−1y − n

2
log(2πdet(Kθ(X,X) + σ2

nIn)

(3.45)

Notice how can we divide the objective function as a data-fit term (first-term)
and a complexity-term (second-term), which makes this function suitable for
regularization within the selection procedure. Define K = Kθ(X,X) + σ2

nIn, we
can set the Marginal Log-Likehilihood optimization problem:

θ∗ = argmax
θ∈Rn

log(p(y|X; θ))

This is in general a non-convex optimization problem with respect to the hyper-
parameters, in some cases there are also constraints that must be satisfied (e.g.
for SE kernel l ∈ R+). The objective function, under some conditions such as the
differentiability of the kernel fucntion k with respect to the hyper-parameters,
admits a gradient:

∂log(y|X; θ)

∂θj
=

1

2
yTK−1

θ

∂Kθ

∂θj
K−1

θ y − 1

2
tr(K−1

θ

∂Kθ

∂θj
) (3.46)

=
1

2
tr
�
(ααT −K−1

θ )
∂Kθ

∂θj

�
(3.47)

where α = K−1
θ y. This procedure is also known as Empirical Bayes or Type-2

ML, we can apply gradient descent algortihms to this optimization problem to
find the hyper-parameters. Given the non-covexity of the objective function, the
solutions may be locally stationary and different initializations for the hyper-
parameters may lead to drastical different solutions. With a relative low number
of parameters this phenomena can be disregarded, but once we start constructing
more complex kernels and the dimensionality of the hyper-parameters grows, some
solutions can lead to overfitting.

3.2.4 Reproducing Kernel Hilbert Spaces

We denoted earlier a Gaussian Process as a function f(·) taking as input x ∈
Rd. Indeed, any gaussian process can be seen as assigning a probability to a
function where its measure is given by the infinite-dimensional distribution. In
the Figure 3.1, we used the different covariance functions to see how the behavior
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of the associated Gaussian process changed. Assume that we have a set of basis
functions {φd(x)}nd=1 and we construct a function as:

f(x) =
n�

d=1

wdφd(x)

where the random variables wd ∼ N (0, σ2) are independent between each other.
If we compute the covariance between different inputs:

E[f(x)f(x�)] = E
�� n�

d=1

wdφd(x)
�� n�

d=1

wdφd(x
�)
��

= σ2

n�

d=1

φd(x)φd(x
�)

This is a covariance function constructed from the set of basis functions. Any
realization of (w1, . . . , wn) will assign a linear combination of the set of basis
functions, hence we can assign a probability to any linear combination of such
functions based on the joint distribution of (w1, . . . , wn). Of course, in rare cases
we precisely know such functions for the regression problem and we rely on the
kernel function where there’s no trace of a set of basis functions. Moreover, we
could pose the question of what happens if we impose an infinite number of basis
functions weighted by the random variables, does it admit a kernel representation?
Or viceversa, if any fixed kernel admits a set of basis functions weighted by some
random variables. The answer is positive and comes from Mercer’s Theorem, but
to understand it we have to introduce the notion of Reproducing Kernel Hilbert
Spaces (RKHS) which gives us a powerful tool for regression problems [8].

Definition 3.2.5 (RKHS). Let X be a non-empty set and k(·, ·) a positive definite
kernel function defined on X . A Hilbert space Hk of functions defined on X with
inner product �·, ·�Hk

is called a reproducing kernel Hilbert space (RKHS) with
kernel k if it satisfies the properties:

1. For all x ∈ X , the kernel section k(·, x) ∈ Hk.

2. For all x ∈ Hk and for all f ∈ Hk:

f(x) = �f, k(·, x)�Hk
( Reproducing Property or Evaluation operator )

From this general definition, we’d like to characterize the relationship between
a kernel k(x, x�) and a Hilbert spaceHk. Indeed, there is a one-to-one relationship
between them, as stated by Moore-Aronszajn theorem:

Theorem 3.2.1. Moore-Aronszajn: For a positive definite kernel k there exists
a unique Hilbert space Hk such that k is the reproducing kernel, and viceversa.
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Now, for purpose of understanding better what is the role of k, we introduce
the formal construction of a reproducing kernel Hilbert space. Consider a kernel
k : X ×X → R positive-definite. We can define the space of linear combinations:

H0 = span
�
k(·, x) : x ∈ X

�
=
�
f =

n�

i=1

aik(·, xi) : n ∈ N, ai ∈ R, xi ∈ X , i = 1, · · · , n
�

Moreover, we can define as inner-product between f =
�n

i=1 aik(·, xi) and g =�m
j=1 bjk(·, yj):

�f, g�H0
:=

n�

i=1

m�

j=1

aibjk(xi, yj)

which satisfies all properties of an inner-product by the positive-definiteness of
k. The induced norm is �f�2H0

= �f, f�H0 and we can obtain the Reproducing
Kernel Hilbert Space of k by taking the closure of H0:

Hk = spanH0 :=
�
f =

∞�

i=1

aik(·, xi) : (a1, . . . ) ⊂ R, (x1, . . . ) ⊂ X , such that

�f�2Hk
:= lim

n→∞

���
n�

i=1

aik(·, xi)
���
2

H0

=
∞�

i,j

aiajk(xi, xj) < ∞
�

From this construction, it can be noticed that properties of any function f ∈ Hk

are inhereted from the properties of k. That is, when we set a covariance function
on the gaussian process f , we are implicitly making assumptions on the space on
which realizations may belong.
Now, let µ be a finite Borel measure defined on X with X being its support (e.g.
Lebesgue measure). Let L2(µ) be the Hilbert space of square-integrable functions
with respect to µ. We can define the integral operator with k defined as before,
we have:

Tkf :=

�
k(·, x)f(x)dµ(x), f ∈ L2(µ)

This is a self-adjoint, positive and compact linear operator with a countable
system of non-negative eigenvalues {λk}∞k=1 such that

�∞
i=1 λ

2
i < +∞. This

implies that there exists an eigen-decomposition {φi}+∞
i=1 of Tk such that:

Tkf =
+∞�

i=1

λi�φi, f�L2(µ)φi

The eigenfunctions {φi}+∞
i=1 form an orthonormal system in L2(µ), i.e. �φi,φj�L2(µ) =

δij. Mercer’s Theorem says that the kernel function can be described by this set
of eigen-pairs.
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Theorem 3.2.2 (Mercer’s Theorem). Let X ⊂ Rd, µ a positive Borel measure on
X , k(·, ·) a symmetric continous function defined on X×X and positive definite.
Moreover, k such that:

�

X

�

X
K(x, y)2dµ(x)dµ(y) < +∞

Then

k(x, x�) =
+∞�

i=1

λiφi(x)φi(x
�)

where the series converge absolutely and uniform over x, x� ∈ X .

This means that for each absolutely integrable kernel we choose, there’s a
basis function from which we could carry a Bayesian linear regression where the
weights are associated to a measure µ. This representation, although abstract,
gives us the intuition that we could construct any kernel if we were to assign the
correct measure, in particular for stationary kernels as we will see in the next
chapter. In a similar fashion to the gaussian regression, we could ask if given N
datapoints {(fi, xi)}Ni=1, there exists a function in Hk that minimizes:

f̂ = argmin
f∈Hk

N�

i=1

(fi − f(x))2 + γ�f�2Hk
(3.48)

where Hk has kernel k. The answer is positive, and intimately linked to gaussian
regression.

Theorem 3.2.3 (The Representer Theorem). If Hk is a RKHS, the minimizer
of 3.48 has the form:

f̂(·) =
N�

i=1

αik(·, xi)

where α = [α1, . . . ,αN ]
T are given by

α = (K(X,X) + γIn)
−1f (3.49)

where f = [f1, . . . , f2]
T and K(X,X) is the Gram matrix given by k(xi, xj).

Notice the familiarity of the solution, indeed it coincides with the mean of
the posterior of a GP. Now we know that choosing the kernel means choosing a
set of basis functions, and the prediction depends again on such basis functions.
Therefore, it is reasonable to try to approximate in some way the basis functions
to improve the overall performance of the GP in the regression task.
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3.3 Gaussian Processes in the NMPC

In this section we describe the implementation of gaussian processes in the NMPC
scheme. We’ll give a brief introduction on the training procedure, from collecting
the data and setting up the optimal control problem. The intent of implementing
the gaussian process is to achieve better predictions, in particular during the
generation of the QP subproblem which relies on the accuracy of the nominal
model, leading to a better closed-loop behavior.

3.3.1 Training the Gaussian process

The training of a gaussian process is a straightforward procedure. Collect data
from the system, model the input variables that will be form the feature space and
the relative variable to predict. For dynamical systems, the feature space usually
relates to past-present inputs and state variables, and the quantity to model with
the gaussian process is generally some partially observed state variable. In our
case, the input for the GP are physical variables that come from the same instant
k and its output is the relative prediction error at the next instant k + 1. This
is a general approach, recall again the discretized model that comes from the
integration operator:

xk+1 = φ(xk,uk)

where we can divide the state variable as xk = [qk, q̇k]
T where qk ∈ Rnq and

q̇k ∈ Rnq are the positions and velocities of the physical system. We assume that
we can observe the state variable, so we don’t deal with state estimation.

Collecting the data

Given N time instants, we can group the observed states and inputs:

X = {x0, . . . ,xN−1} U = {u0, . . . ,xN−1}
Q̇ = {q̇1, . . . , q̇N} ˆ̇Q = {ˆ̇q1, . . . , ˆ̇qN}

where ˆ̇q are the predicted velocities by the nominal model and q̇ are the ac-
tual measured velocities. The mismatch model will be defined on the velocities,
depending on the kind of model setup, we define it as

Grey-Box : Δq̇k = q̇k+1 − ˆ̇qk+1 (Velocity prediction errors)

Black-Box : Δq̇k = q̇k+1 − q̇k (Velocity increments)

Each mismatch velocity component will be modelled independently as a gaus-
sian process. Defining the index points as x̃ = [xT ,uT ]T , we define the relative
gaussian process for the i-th mismatch velocity

Δq̇i := ψ̂i
q̇(x̃) ∼ GP(0, ki(x̃, x̃�))
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where ki(·, ·) is its kernel function. We obtain the measurement model

yi =



Δq̇i1
...

Δq̇iN


+



e1
...
eN


 = Δq̇i + e

where e ∼ N (0, σ2
nIN) is the measurement noise with variance σ2

n. The dataset
doesn’t need to be ordered in a sequential manner, it’s enough to have the pairs
(x̃k,y

i
k), rather it is heavily recommended to have a shuffled dataset. This is

because, from the manifold view-point, we are completing the velocity models of
the system and the prediction model isn’t based on causality.

Learning procedure

For each GP, we will have the dataset D = {(x̃j,y
i
j)}Nj=1. Each kernel will have its

own hyper-parameters θ ∈ Rnθ , these define the overall behavior of the process.
To optimize them, we minimize the Negative Log-Likehood by gradient-descent
– this is the key part of the learning procedure for GP-based models. There is
another important aspect of the learning that has to be treated, focused on the
generalization properties of the gaussian process. Given that we are trying to
infere the model mismatch, within a control task where the nominal NMPC con-
troller is active, our generalization capabilities could be limited within the state
trajectory obtained by the sub-optimal control trajectory, i.e. the generalization
properties are task-focused, or limited within a region of the operational space. A
way to avoid this bias within the learning is to apply an external control excita-
tion, this is a general procedure to explore different operational regions. Defining
uext the external input, this leads to the dataset

Δq̇ = q̇k+1 − φq̇(xk,uMPC + uext)

where uMPC is the control input from the MPC controller, needed to establish
safety and achievement of the control task. To estimulate the system, we will use
sum of decaying sinusoids in different regions of the control task. We will talk
more in-depth about the hyperparameters and excitation of the system in the
simulation results.

Making predictions

We can use the trained process to make prediction on a new test point x̃∗, the
conditional probability density of the process ψ̂i

q̇(x̃
∗) given the N datapoints is

still gaussian and its Maximum Likelihood estimate coincides with its mean. We
obtain the closed-form expression for the prediction as:

E[ψ̂i
q̇(x̃

∗)|D] := ψi
q̇(x̃

∗) = ki(x̃∗)αi

=
N�

j=1

ki(x̃∗, x̃j)α
i
j
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where αi = (Ki(X,X) + σ2
nIN)

−1yi and ki(x̃∗) = [ki(x̃∗, x̃1), . . . , k
i(x̃∗, x̃N)].

Finally, we have the complete mismatch model prediction at the test point x̃∗

ψq̇(x̃
∗) =



ψ1
q̇ (x̃

∗)
...

ψ
nq

q̇ (x̃∗)


 (3.50)

Given the model setup, we will have different models implementation in the
NMPC scheme. Under constant control input during the sampling interval Ts,
we have

� Grey-Box:

xk+1 = φ(xk,uk) +ψ(xk,uk)�
q(xk,uk)
q̇(xk,uk)

�
=

�
φq(xk,uk)
φq̇(xk,uk)

�
+

�
ψq̇(xk,uk) · Ts

2

ψq̇(xk,uk)

�

where φ is the nominal model description.

� Black-Box:

xk+1 = φ(xk) +ψ(xk,uk)�
q(xk,uk)
q̇(xk,uk)

�
=

�
qk + q̇k · Ts

q̇k

�
+

�
ψq̇(xk,uk) · Ts

2

ψq̇(xk,uk)

�

that is, our nominal velocity prediction model is the identity operator
φq̇(xk,uk) = Inq .

3.3.2 Learning-based NMPC

We are ready to implement the improved models within the NMPC scheme to
solve the OCP. Recalling the discretized OCP, the QP subproblem to solve iter-
atively will be:

min
Δx,Δu

N−1�

i=0

�1
2

�
Δxi

Δui

�T
H l

i

�
Δxi

Δui

�
+ gl

T

i Δxi

�
+

1

2
ΔxT

NH
l
NΔxN + gl

T

N ΔxN

(3.51)

s.t Δx0 = x0 − x̂0

Δxi+1 = (Al
i + Al

i,GP )Δxi + (Bl
i + Bl

i,GP )Δui + ali,GP , i = 0, . . . , N − 1

(3.52)

cli ≤ cli + C lT

i Δxi +DlT

i Δui ≤ cli, i = 0, . . . , N − 1

clN ≤ clN + C lT

N ΔxN ≤ clN

where we have new linearization matrices

Al
i,GP =

∂ψ

∂xi

, Bl
i,GP =

∂ψ

∂ui

, ali,GP = φ(xi, ui) + ψ(xi, ui)− xl
i+1
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and the other matrices are defined as in (2.20), notice that the continuity con-
straints now include the prediction of the GP in the term ai,GP . Another key
point to take into consideration is that the linearization matrices don’t come from
the actual linearization of the system but rather from the integration operator,
i.e. first-discretize-then-differentiate. This is possible because we’ve implemented
the optimization problem with the CasADi library and we’re able to compute
the derivatives with AD after the integration operator to improve computational
performance, we don’t digress further into that matter. These matrices can be
evaluated directly within Lb-MATMPC toolbox throughout the simulation, they
are of interest because their quality of linearization depends on the accuracy of
the original model. If the GP model has indeed learned the mismatch model,
we should get that Ai + Ai,gp is close to the linearized matrices of the original
system. This is possible because the kernel function encodes a priori informa-

tion about differentiability, in paricular
∂ψ

∂xi

is a well defined quantity if we use

kernels that satisfy the continuity property for the derivative process (3.32) - at
least twice-differentiable at 0 ([25] Chapter 9).
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Chapter 4

Generalization of Stationary
Kernel Functions

In this section we introduce the family of spectral representations of kernel func-
tions, a class of kernels flexible enough to describe our data. As we’ve seen before,
the quality of the regression using Gaussian processes strictly depends on the se-
lected kernel. If the phenomena that we are trying to describe is not compatible
with the kernel, i.e. the analytical properties of the kernel don’t resemble that of
the phisycal system we are trying to infer, the generalization will be unsatisfying.
An interesting idea is that of approximating the kernel function itself by adding
up different kernels to give the gaussian process more flexibility which should
model different behaviors of the phenomena we are trying to regress, obtaining
an overall improved prediction performance – this is not a new idea by itself and
it’s actually a standard approach for gaussian regression. The main difficulty
with such method is that the kernels must encode a priori information, there-
fore it’s up to the operator to select which kernels to use leading to tuning the
hyperparameters by trial-and-error, making the overall training procedure longer
and difficult. Moreover, if we were to implement different kernels within the
NMPC, the overall computational speed could increase depending on the amount
of kernels added, it would go against our goals of achieving fast predictions in
real-time, something the standard Squared Kernel has proved to excel. The SE
kernel has this nice flexibility property while maintaining a simple form, a key
aspect we would like to preserve in the implementation of gaussian process for
NMPC. Here, rather than imposing different classes of functions, we introduce
a general classes of kernels which from a simple basis kernel can approximate
any stationary kernel function[22]. That is, this class of kernels allows us to im-
prove the learning performance while implementing only one class of kernel and
adding little computational burden to the NMPC scheme. The main theoretical
underpinning is based on a Fourier decomposition for positive-definite functions,
Bochner’s Theorem, which has been at the center of many procedures with the
goal of approximating kernel functions [21],[9],[26],[5]. Before introducing the im-
plemented kernel, we describe the main ideas that lead up to it, with the hope of
making clear why we selected it.

41
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4.1 Spectral Representation of Kernel Functions

The main property of a kernel function is that it is positive-definite, Bochner’s
theorem uses this property to state an alternative representation of the kernel
function:

Theorem 4.1.1 (Bochner’s Theorem). A real-valued function on Rd is the covari-
ance function of a weakly stationary mean square continuous real valued process
defined on Rd if and only if it can be represented as

k(x− x�) =

�

Rd

ejω
T (x−x�)µ(dω)

where µ is a positive finite measure and x ∈ Rd.

This is main theoretical underpinning for many approaches that try to gener-
alize the kernel function. For now, focus in absolutely continuous measures with
respect to the Lebesgue’s measure, admitting density function S(ω)dω = µ(dω)
such that:

k(x− x�) =

�

Rd

ejω
T (x−x�)S(ω)dω.

Setting τ = x−x�, we have that S(ω) and k(τ) form a Fourier pair, by the duality
of the Fourier transform, we can compute the spectral density as:

S(ω) =

�

Rd

k(τ)e−jωT τdτ

Recall that we can normalize the kernel function k̂(x, x�) = k(x,x�)
σ2 where k(0) = σ2,

such that k̂(0) = 1. This is the correlation function of the stochastic process, it
can be interpreted as the expectation of the random variable ejω

T (x−x�), applying
Bochner’s Theorem:

k̂(x, x�) =

�
ejω

T (x−x�)S(ω)

σ2
dω and k̂(0) =

�
S(ω)

σ2
dω = 1

⇒ k̂(x, x) = EŜ(ω)

�
(ejω

T x)(ejω
T x�

)∗
�

where Ŝ(ω) = S(ω)
σ2 is a valid probability density function. Both of these repre-

sentations are usually referred as the Power Spectral Density of the stochastic
process, and have the following properties:

� Symmetry: S(ω) = S(−ω)

� Positivity: S(ω) > 0, ∀ω ∈ Rd

� Normalization: If k is the correlation function, then k(0) =
�
S(ω)dω = 1

which follow from the properties of the kernel function. Approaches based on this
decomposition to approximate the kernel function can be divided in probabilistic
or deterministic, depending on how they interpret the power spectral density. In
the following we describe their main characteristics and differences.
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4.1.1 Probabilistic and Deterministic Fourier Features

The probabilistic view states that the kernel is the mean of a function of the
random variable ω ∼ S(ω):

k(x, x�) = Eω∼S(ω)

��
ejω

T x
��

ejω
T x�
�∗�

where ∗ denotes the conjugate. Given that we are considering only real functions,
the imaginary part of the inner product can be discarded (more generally we have
that, by the symmetry of S(ω), the integration of the immaginary part is equal
to 0), allowing us to rewrite:

k(x, x�) = Eω∼S(ω)

�
cos(ωT (x− x�))

�

One of the first approaches using Fourier features[21] used this expression to
approximate the resulting kernel by Monte-Carlo integration. That is, they ex-
tracted M i.i.d. samples from S(ω) (it had to be known apriori) and computed:

k(x, x�) ≈ k̂(x, x�) =
1

M

M�

i=1

cos(ωT
i (x− x�)), ωi ∼ S(ω)

Moreover, they introduced a probabilistic bound to the error of the approxima-
tion:

Theorem 4.1.2 (Uniform convergence of Fourier Features). Let M be a compact
subset of Rd with diameter diam(M). Then, for the mapping k̂ , we have that:

Pr

�
sup

x,y∈M
|k̂(x, x�)− k(x, x�)| ≥ �

�
= C

�
σpdiam(M)

�

�2

exp

�
− D�2

4(d+ 2)

�

where σ2
p � ES(ω)[ω

Tω] is the second moment of the Fourier transform of k, D is
the number of samples and C is a constant.

We can see this bound in figure 4.4, where we extract M i.i.d samples from
S(ω) and generate k̂(x, x�). In this example we consider spectral densities from the
SE Kernel and Genereralized Kernel withK = 3 clusters, which will be introduced
later. Notice how the generated kernel function closely resembles the original
kernel near the origin, with a relative low number of samples, intuitively this is
caused by how many frequencies we extract near the peaks of the distribution, as
can be seen by the histograms. This is desirable because it leads local correlation
values, although the negative effect is at the tails of this approximation where we
can see oscillations that can cause erroneous correlation values between distant
datapoints. This approximation was mainly used to decrease the training time
while preserving some accuracy within SVM regression by computing the kernel
mapping from samples of ω ∼ S(ω), the spectral density remained the same so it
wasn’t actually infering the kernel structure. Let’s now elaborate the same result
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(a) Random Generalized Kernel, K = 3.

(b) Random SE Kernel.

Figure 4.1: Random Fourier Feature kernels using N = 128 samples, Samples
Histogram and Error Approximation.

but in a deterministic manner, in particular we focus on the function-view of the
gaussian processes. Defining with zi(x) = [cos(ωix), sin(ωix)]

T , we can see that:

k̂(x, x�) =
1

M

M�

i=1

cos(ωi(x− x�)) =
1

M

M�

i=1

zTi (x)zi(x
�)

More in general, this approximation can be seen as a trigonometric bayesian
regression problem where we model the gaussian process f(x), x ∈ Rd as:

f(x) =
M�

i=1

aicos(ω
T
i x) + bisin(ω

T
i x)

where the frequencies ωi are deterministic values and the coefficients {ai, bi} are
i.i.d random variables:

ai ∼ N
�
0,

σ2
0

M

�
, bi ∼ N

�
0,

σ2
0

M

�

with their variance scaled down by the number of basis functions. Defining φ(x) =
[cos(ωT

1 x), sin(ωT
1 x), . . . , cos(ω

T
Mx), sin(ωT

Mx)]T ∈ R2M , we obtain f(x) as a
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zero-mean Gaussian process with covariance function:

k(x, x�) =
σ2
0

M
φT (x)φ(x�)

which differs to the Random Features kernel by a scale factor σ2
0. This basis

was introduced by Lazarò et al.[9] mainly to reduce the computation complexity
of the inverse of the covariance matrix. Consider N datapoints, define the ma-
trix Φ(X) = [φ(x1), . . . ,φ(xN)] and assume additive noise e ∼ N (0, σ2

n) to the
measurements, we obtain the covariance matrix:

K(X,X) =
σ2
0

M
Φ(X)Φ(X)T + σ2

nIN

Applying the inversion lemma, we can obtain the equivalent inverse matrix as:

K(X,X)−1 =
1

σ2
n

�
IN − Φ(X)TA−1Φ(x)

�
, A = Φ(X)TΦ(X) +M

σ2
n

σ2
0

I2M

where A is a 2M × 2M matrix. If the 2M < N we can reduce the computa-
tional complexity of the inverse matrix while preserving accuracy of the approx-
imated kernel (recall the uniform bound). The training is done by optimizing
the marginal log-likehood with the fixed frequencies treated as hyperparameters,
with the hope that it can find resonable approximations of spectral density, in
this case we are indeed trying to infere some structure of the kernel. In Lazarò,
they state that a stationary gaussian process can be seen as a neural network
with one infinite-width hidden layer with weights distributed according to S(ω)
and trigometric activation functions. This is somewhat interesting but also use-
less, we can’t work with infinite samples or hidden-units. Moreover, both of
these approaches use only trigonometric approximations, which can be seen as a
symmetric Dirac’s delta approximation of the spectral density:

S(ω) =

�
1

M

M�

i=1

cos(ωT
i τ)e

−jωT τdτ

=
1

M

M�

i=1

δ(ω − ωi) + δ(ω + ωi)

2

where the δ’s are weighted uniformly. Now, if it was the case that the kernel
function that best suits our data admits discrete spectral density, even in the
most trivial cases, the discrete representation should look like:

S(ω) =
+∞�

i=1

ak
2
(δ(ω − ωi) + δ(ω + ωi))

where ak ≥ 0 and
�+∞

i=1 ak < +∞. This is the main cause of overfitting for both
approaches: the frequency components are truncated and not scaled down. Even
if we optimize them, their weights are associated to a uniform spectral density.
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A possible solution could be to associate different variances to the r.v {ai, bi}
adding 2M hyperparameters to the optimization problem, which in itself is not
infeasible, but considering the non-convex nature of the marginal log-likelihood
function, we would incur in many stationary-local points losing interpretability
of the solutions. These were the main results that lead to the approximation of
kernels for gaussian process, their flexibility and ease to train was of particular
interest at the time. This was known as sparsification of the spectrum and it
allowed to fasten the computation of either prediction or training of the gaus-
sian processes for high amounts of data. Although simple, they were powerful
techniques for the regression task, but their generalization properties were un-
satisfactory when applied to more complex problems – mainly because of their
persistent oscillatory behavior.

4.1.2 Continuous Spectral Densities

So far we’ve seen the approximation of the spectral density as a sum of Dirac’s
deltas. In general, we’d like to use continuous kernel functions with different
properties to explain data and sparsification of the spectrum would demise gen-
eralization properties of the original kernel. Consider the scalar SE Kernel and
compute its Fourier transform:

φ(ω) � F{kSE}(ω) =
� ∞

−∞
e
−
l2τ 2

2 e−jωτdτ ∝ e
−
ω2

2l2

where in this case ls = 1/l is the so called length-scale parameter. The clas-
sic interpretation for ls is that it regulates the strenght of the correlation be-
tween datapoints, while using the spectral representation we can deduce that
the lengthscale actually controls the frequency components of the kernel inputs
and therefore of the regressed functions. We can see this more clearly in Fig-
ure 4.2, where we simulate sample paths of a Gaussian process with a Gaussian
spectral density in a uniform grid. This is what makes the kernel gaussian a
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Figure 4.2: Spectral density with different lengthscales l = 1, 3, 7 with realizations
of the associated gaussian process. The spectral densities weren’t normalized for
clarity purposes.

really useful tool, by controlling a single parameter we can get drastical different
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behaviors. Although very flexible, one of its pitfalls is its generalization prop-
erties when applied to more complex phenomena. When it is not able to make
good predictions, during the training phase, it tends to increase or anhilated
its lengthscale parameters, higher lengthscales means constant behavior while
smaller lengthscales means more oscillatory behavior, this can lead to poor gen-
eralization performances. The main cause of this unwanted pathology is that the
kernel has the same power spectral density for the regression task. To adress this
lack of flexibility, in Wilson et al.[26], they used the Bochner’s representation to
approximate directly the spectrum with a mixture of gaussians. They noticed
that the SE Kernel spectral density was still a Gaussian, taking advantage of its
universal approximation property, they modelled each spectral dimension as a
coupled pair of gaussian distributions (so symmetry would be preserved) and the
resulting kernel was obtained by applying the inverse Fourier transform. Their
idea was that a high number of Gaussians for each dimension would be able to
approximate any spectral density. More exactly, for inputs τ ∈ Rd, each single
mixture density was modelled as:

φ
(j)
i (ω) =

1�
2π(l

(j)
i )2

exp
�
− (ωi − µ

(j)
i )2

2(l
(j)
i )2

�
⇒ Φq(ω) =

d�

i=1

�
φ
(q)
i (ω) + φ

(q)
i (−ω)

2

�

where µ(q) = [µ
(q)
1 , . . . , µ

(q)
d ] and l(q) = [l

(q)
1 , . . . , l

(q)
d ] are hyperparameters of the

q mixture. The resulting spectral approximation SQ was a weighted mixture,
whose Fourier transform was the Spectral Mixture kernel KQ:

SQ(ω) =

Q�

q=1

wqΦq(ω) ⇒ KQ(τ) =

Q�

q=1

wq

� d�

i=1

exp(−(l
(q)
i )2τ 2i )cos(µ

(q)
j τi)

�

This is a promising result because we have a closed-form expression of the ap-
proximated kernel, in particular it isn’t based on sampling and the permanent
oscillations are no longer a problem because of the exponential decay as can be
seen in Figure 4.3. In this case the trained hyperparameters can be interpreted,
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Figure 4.3: Spectral Mixture with Q = 3 for the scalar case. Left the spectral
density approximation, right resulting kernel.

µ is the center of the spectral distribution and l is the range of feature frequen-
cies which compose the kernel. The problem with this kernel is that the input
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features are inpendepent from each other, which is rarely the case for physical
systems as the states may appear as linear combinations. This result was later
generalized[22], obtaining more general conditions to have a full approximation
to any stationary kernel. Before stating their result, we have to formalize what
we wanted to achieve: we are looking for a class of kernel functions which is
flexible, tractable and can resemble any stationary kernel up to an arbitrary pre-
cision. The last condition is the focus of the next part, where we formalize how
any kernel is the limit of a class of kernels SQ. Before that, notice how we have
obtained two kind of spectral approximations: discrete dirac’s deltas and a con-
tinuous mixture. This is a consequence of Lebesgue’s Decompostion theorem,
which state that a positive finite measure µ(dω) can be divided as:

µ = µsing. + µcont.

where µcont. is an absolutely continuous measure which admits density and µdisc.

is a pure-point measure supported on a countable set (i.e. discrete). One causes
constant oscillatory behavior while the other has decaying frequency components.

4.2 Generalized Stationary Kernels

We can now present the generalization of the Spectral Mixture kernels, formal-
ized by Samo[22]. This class of kernels is very flexible and it can, in theory,
approximate any stationary kernel. This means that if we were to gather enough
data of a stationary process, we could precisely reconstruct the covariance func-
tion that characterizes such process. In this work we are not trying to infer the
original kernel, if the power spectral density S(ω) of the process was available
we wouldn’t need to recur to approximations, moreover trying to reconstruct the
power spectral density is a whole different problem. Instead, we are interested in
having a powerful class of kernel functions that can infer more complex patterns
from the available observations and improve the overall prediction performance
of the gaussian process, in particular this approximation has a nice interpretion
based on Mercer’s theorem(3.2.2): adapting S(ω) based on data actually means
changing the basis functions which determine our class model. The generalized
spectral kernels can be seen as a general extension of the Sparse Spectrum ker-
nels, where the frequencies are treated as deterministic parameters that have to
be optimized, in our case through the Marginal Likelihood, while avoiding its
overfitting tendencies by introducing exponential decay term. Another of its key
features is that, under simple assumptions about the kernel, we can embbed geo-
metrical properties such as differentiability of the resulting process, this together
with its simple analytical expression makes the generalized spectral kernel an
attractive implementation on the NMPC scheme.

Notions of convergence and Dense sets

Before introducing the generalized spectral kernel, we briefly introduce their
mathematical contruction to highlight its main characteristics.
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Convergence notions The approximation of a stationary kernel k(τ) is based
on the convergence of a sequence of functions in the spectral domain, we have
the following notions of convergence

� Point-Wise convergence: A sequence of functions {fn(x)} converges to
a function f(x) in the point-wise sence if |fn(x) − f(x)| < �, ∀x ∈ Rd as
n → ∞.

� L1-Convergence: A sequence of functions {Fn(x)} converges to F (x) in
the L1-sense if �Fn(x) − F (x)�L1 → 0 as n → ∞, where we considere the
canonical L1-norm �g − f�L1 =

�
|g(x)− f(x)|dx.

Consider now functions that are absolutely integrable, i.e
�
|f(x)|dx < +∞, then

they admit a Fourier transform. Assume that a sequence of {fn} and f in Rd are
absolutely integable functions, denote with {Fn} and F their Fourier Transform.
We have that:

|fn(x)− f(x)| ≤
���
�

Rd

(Fn(ω)− F (ω))ejω
T xdω

��� ≤
�

Rd

|Fn(ω)− F (ω)|dω

⇒ |fn(x)− f(x)| ≤ �Fn(ω)− F (ω)�L1 , ∀x ∈ Rd

If we are able to find a sequence {Fn} ∈ L1(Rd) that converges to F in the L1-
sense, then we are able to say that the sequence of functions {fn(x)} converges
point-wise to f(x). The main problems with this approach is that we don’t have
an explicit form for the sequences nor the limit, moreover it is difficult to prove
that an arbitrary sequence in L1 converges to an element in L1. To tackle these
difficulties we need to introduce the notion of a dense set.

Family of Dense functions in L1(Rd) We say that a set G is dense in the set
H if any sequence {gn} of elements in G admits a limit h ∈ H. We’d like to find a
set of spectral densities {Fn} that are dense in the spectral domain with respect
to the L1-norm, in that way the family of inverse Fourier Transforms of {Fn} will
also be dense in the space of integrable kernels (original domain) with respect to
the pointwise convergence. To aid such purposes, we state the following theorem:

Theorem 4.2.1 (Wiener’s Tauberian Theorem). If φ is a function in L1(Rd), a
necessary and sufficient condition for the set of all linear combinations of trans-
lations of φ to be dense in L1(Rd)(in the L1-sense) is that the Fourier transform
of φ:

F (x) � F{φ}(x) =
�

Rd

φ(ω)e−jxTωdω

has no zeros.
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Recall again the spectral density of the SE Kernel:

S(ω) =
1√
2πl2

e
−
ω2

2l2 ⇒ F{S}(x) = e
−l2

x2

2 > 0

It satisfies all the conditions of Wiener’s Tauberian Theorem, it is the known
Universal Approximation property of the Gaussian functions and it was brought
up by Wilson et al[26].

Generalized Spectral Kernels

Having a function that is dense in L1 is not enough, some conditions must be
imposed to have a dense set of functions for the spectral densities:

� Positivity: A valid function φ(ω) must be strictly positive.

� Symmetry: The basis function φ(ω) must be symmetric, moreover to any
translation φ(ω − ωi), we have to add another translation in the opposite
direction φ(ω + ωi) to obtain a valid spectral density.

� Normalization: The resulting approximation must integrate to 1. This is
required if the kernel represents the correlation function, which differs from
the covariance function just by a scale factor σ2.

These conditions must be satisfied to be a valid approximation of a spectral
density of a stationary process, we end up with the following spectral density
family:

Φ(ω) =
K�

i=1

αi

2
(φ(ω − ωi) + φ(ω + ωi)) =

K�

i=1

αi

2
(φ+

i + φ−
i )

where αi are non-negative coefficients associated to the pair (φ+,φ−) and such
that

�
i αi = 1 for correlations functions, from such approximation the resulting

kernel is found by applying the Fourier transform to Φ. These is the idea behind
theorem in Samo et al.[22] which we state:

Theorem 4.2.2 (Generalized Stationary Kernels). Let h be a real-valued positive
semidefinite, continuous, and integrable function such that h(τ) > 0, ∀τ ∈ Rd.
The family of functions:

kK(τ) �
K�

i=1

αkh(τ � γk)cos(2πω
T
k τ)

with ωk, γk ∈ R+d, αk ∈ R+, K ∈ N∗ is dense in the family of stationary real-
valued kernels with respect to the pointwise convergence, where τ �γ is the entry-
wise product.
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(a) 2D Generalized Kernel, K = 3.

(b) 2D Spectral Density SE, top view to highlight the centers.

Figure 4.4: 2D Generalized Kernel using a SE Kernel as basis function.

With this theorem, it’s possible to approximate arbitrarily well any stationary
continuous kernel function and any kernels whose spectral measure is a pure-point
measure (i.e. they admit Fourier expansion) by the continuity of the basis kernel
h(τ). Another consequence of theorem 4.2.2 is that the resulting kernel inherits
all the properties of the basis kernel, that is, if we choose a Matern kernel which is
2p times differentiable, the resulting approximation will be 2p times differentiable.
This is an exciting result, we know that the kernel function is strictily connected
to a Reproducing Kernel Hilbert Space and the functions which belong to such
space inherit the properties of the kernel: by approximating the spectral measure
we are changing the class of functions we can infere, an implicit model selection
procedure. Of course it comes with a trade-off, the number of hyperparameters
is O(DK) with D the parameters dimension and K the number of clusters. This
can lead to overfitting for high numbers of mixtures, moreover their optimization
mainly carried by maximizing the Marginal Log-Likelihood which notoriously has
many local-stationary points with few hyperparameters, let aside a few hundred.

4.2.1 Catching up with the times

We are interested in the spectral domain approximations because of the resulting
kernel analitycal tractability. Other kinds of methods are also available, which
mainly focus on the feature space of the gaussian process. The first method is
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an sparsification on the input by selecting inducing points on the feature space
[19], which have greater influence on the predictions, such that we can reduce the
computational complexity of the inversion of the covariance function, we won’t
discuss these methods because they don’t actually approximate the kernel struc-
ture. The second method is called Deep Kernel Learning[27], where the input
features are modelled by a neural network and then passed to a gaussian pro-
cess. The later is taking off the ground because of their great generalization
capabilities, it is a known fact that neural networks have great approximations
properties but their interpretability is somewhat lost. Nonetheless, although they
have a high number of parameters to train, modern software renders their imple-
mentation rather easy. To overcome the training of millions of parameters, they
rely on the techniques such as backprogation and stochastic optimization. The
hope in introducing neural networks is to find feature mappings that improve the
prediction capabilities: the idea is the same as random fourier features, where
we stated that a lower trigonometric representation can be applied to find richer
flexibility in the inference. Similarly, in deep kernel learning framework the task
to find interesting features is assigned to the neural netkwork, and given that a
gaussian process can be seen as a hidden layer with infinite-units, the last layer
of the network is an infinite expansion which depends on the learned features. As

Figure 4.5: Deep Kernel Learning model structure.

stated in Ober et al. [18], although these structures are able to generalize well,
the can suffer from overfitting. In such work they demonstrate how the MLL
optimization for the hyperparameters becomes a dull goal function. Indeed, they
apply the standard decomposition for the marginal likelihood and observed that
by applying the neural network, the data-fit term can always be minimized and
the only factor which influences the minimization is the complexity-term. They
state that such minimization occurs by correlating all the data-points and hence
becomes uninformative, we have encountered the same problem for the general-
ized spectral kernel. Still, the DKL gives satisfactory results even in the presence
of this bad behavior – they attribute this feat to the mini-batch stochastic learn-
ing applied during the training phase. Moreover, they state that a full Bayesian
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approach is enough to make DKL robust to these saturation of learning. This is
the main curse of the generilized spectral kernel: its flexibility, unless constrained
in some way by some additional regularization functions, can result in overcon-
fident models and its application on the MPC scheme could give unsatisfacotry
performances. Either way, its approximation capabilities can be compared to
that of Neural Networks, and its simple analytic form cannot be disregarded in
an iterative optimization problem.
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Chapter 5

Simulation Results

In this chapter we present the results of the generalized spectral kernel applied to
the NMPC controller. We will compare the overall performance with respect to
the Squared Exponential (SE) kernel, widely used in the machine learning field.
Recall our goal is to compensate the original model, based on the prediction errors
obtained from previous a control tak. We will first discuss the training procedure
and its main intricasies, evaluating each trained GP in two datasets: training
set and validation set. This will gives us initial hints about the performance of
the GP, but in general is not enough to decide which one performs better. We
will apply metrics defined on the differences between linearization matrices ob-
tained from the true model and the joint nominal-GP model, computing them
on the training and validation set. Although not possible in practice, here we
are interested in evaluating the capabilities of the Generalized Spectral Kernels
applied to dynamical systems. Later, we will evaluate their generalization prop-
erties by comparing the same matrices metrics on the closed-loop trajectory and
their relative one-step-ahead prediction errors, which should be in general a good
metric to evaluate the overall performance of the trained GP. As mentioned be-
fore, given that we are training the GPs in a particular control-task, we’d like
to be sure that the trained model is not task-focused. That is, if we were to
apply the learnt model in a slightly different control task, we would like to still
obtain a satisfactory performance: this indicates that the GP is indeed compen-
sating the parametric uncertainties present in the nominal model. To aid such
purposes, we will train the gaussian models in a richer dataset obtained by estim-
ulating the system. We will see that this improves performance and the models
obtained outperform the ones trained on datasets with nominal trajectories. Ac-
tually, this should be something we expect from the gaussian process: richer data
means more information about the system. We will perform these analisis on
two nominal models: changing the lengths and mass of the pendulum, as well as
the mass cart. We will see that the Gaussian process, with SE and generalized
spectral (SP) kernels are able to achieve improvements, however the SP kernel
outperforms the SE in many simulations.

55



56 CHAPTER 5. SIMULATION RESULTS

5.1 Setting up the models

In this section we describe the training of the prediction models defined in (3.50),
implemented in our benchmark dynamical system: the Cart-Pendulum. We com-
pare the following kernels:

kSE(x− x�) = α2 exp
�
− (x− x�)TΣ−1(x− x�)

�
(5.1)

kSP =
2�

i=1

α2
i exp

�
− (x− x�)TΣ−1

i (x− x�)
�
cos(µT

i (x− x�)) (5.2)

where x = [p, θ, v,ω, u]T ∈ R5 contains states and inputs of the system. The hy-
perparameters of the respective kernels are the lengthscales Σ = diag{l1, . . . , l5},
feature frequencies µi ∈ R5 and scale factors α2 ∈ R+. For the generalized spec-
tral (SP) kernel, we choose as basis function the Squared Exponential to show
that adding more flexibility indeed improves the performance and it doesn’t lead
to overfitting. We decided to implement only 2 mixtures because throughout the
learning procedures, we noticed that mixtures more or less converged to the same
µ. Notice that we defined µ as feature frequencies because there isn’t a physical
interpretation of such hyper-parameters.

5.1.1 Compensating parametric uncertainties

Recall again our original control problem for the cart-pendulum system (2.26). In
Figure (5.1), we present two simulations, one with correct parameters and another
with l = 0.8 m where we assume that all state variables can be measured. The
simulations run the original system, while the control trajectories are computed
with the nominal parameters. As can be notice, the behavior is widely different.
A more detailed information of what is happening comes from the linearization
matrices. Within a control task, at each state initial state x̂k, we evaluate the
distance between the linearization matrices of true ft and nominal fn model. We
use the Frobenius norm for Ak and l2-norm for Bk, obtaining:

�Atrue − Anom�F =
�

Tr((Atrue − Anom)(Atrue − Anom)T ) (5.3)

�Btrue − Bnom�2 =
�

(Btrue − Bnom)T (Btrue − Bnom)) (5.4)

these will be our metrics to evaluate closed-loop performance between prediction
models later into the results. In Figure 5.2, we present the distances of the
linearization matrices between the closed-loop trajectories of the nominal model
with respect to the true model. Within the simulations of the true model, there
are present errors from the application of the integrator operator, which can be
neglected. Our goal here is to use the prediction errors obtained from these
simulations and try to compensate the nominal model, by modelling the velocity
mismatch models with gaussian processes and training them with the available
prediction erros.
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Nominal Models: To examine the learning properties of both kernels SE and
SP, we carried our analisis with two different nominal models which we refer to
as:

� Nominal Length: Nominal model with a wrong value for the length of
the pendulum: l = 0.8m.

� Nominal Mass: Nominal model with wrong parameters: l = 0.4 m, M =
0.9 kg and m = 0.2 kg. The nominal trajectory for the pendulum swing-up
is depicted in Figure 5.3.

The nominal model has just a slight parametric error, while the second model
are much futher from the true ones. By evaluating the generalizion properties of
the GPs using these two models, we should be able to compare more effectively
which kernel has better properties to learn the mismatch model.

Figure 5.1: Cart-Pendulum simulation using the correct parameter l = 0.5 m.
Control actions are obtained from the NMPC scheme using the correct model
and the nominal model with l = 0.8 m.

Types of datasets: We will train the gaussian models with two different of
datasets. The aim is to obtain more information about the true system, by
applying an external known input added to the nominal input during the swing-
up task, we get more erroneous predictions from the nominal model which should
gives us more information about the mismatch model. We have the following
datasets, which we refer to:

� Nominal Inputs: Data is collected from nominal trajectories obtained
from a swing-up of the pendulum, as in Figure 5.1.

� Excited Inputs: Data is collected from trajectories with an external input
applied, in particular we will excite the system with a sum of decaying
sinusoids through out the nominal trajectory. An example is in Figure 5.4.
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Figure 5.2: Linearization Matrices within the MPC scheme, evaluated within the
nominal trajectory at each observed data point x̂k, uk with respect to the correct
model.

Figure 5.3: Cart-Pendulum simulation with nominal parameters l = 0.4 m, M =
0.9 kg and m = 0.2[kg].

5.1.2 Learning the hyper-parameters

We briefly discuss the training process and the problems that we encounter. This
is the fundamental part of the entire procedure, we trained the models with the
usual minimization of the negative marginal log-likelihood (NML) by employing
the gpr-torch library. During this phase, we initially let all the hyperparameters
to be traininable for both SE and SP kernels, noticing that the scale factors were
very unstable or got annihilated by the end of the procedure. Although the
objective function was indeed being minimized and reaching to local-minima,
the performance in the NMPC was either not satisfactory or the solver wouldn’t
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Figure 5.4: System trajectories excited by an external sum of sinusoids.

converge in the QP subproblem. As mentioned in Ober et al. [18], when dealing
with kernels with a high amount of parameters, these scale factors tend to become
a dull parameter and not improve the performance of the trained GP, we found
the same troubles. We decided to fix the scale factors: for the SE we have α = 1
and for the SP kernel we set then to be uniform αi = 0.5.

Mini-batch learning: In general, the standard training of the gaussian pro-
cess uses only the Npred datapoints used later for the prediction to optimize the
marginal likelihood. We found out that this could lead into overfitting during the
training, given that we have a relative high number of parameters. To improve the
training procedure, we applied mini-batch training, stacking data obtained from
previous swing-up procedures resulting in Ntot datapoints, dividing the whole
dataset into random subsets of Npred datapoints and, at each epoch, applying
gradient-descent with the random subsets. To improve the numerical stability
of the hyper-parameters µ, we scaled them by a constant and applied them into
ReLu activations for the µ parameters and soft-plus activations for the length-
scales parameters. This lead to an overall improvement of the training procedure,
where the hyperparameters would converge to the same values. Indeed, in all the
training procedures, the values converged for both grey-box and black-box models
to:

µ = [0, 2, 0, 0, 0] (Velocity GP)

µ = [0, 1, 0, 0, 0] (Angular Velocity GP)

while the lengthscales hyperparameters changed from dataset to dataset.

5.2 Training and Validation performance

In this section we evaluate the results of the learning process of the proposed ker-
nel, implemented in both grey-box and black-box models. The data set consists
of Ntot datapoints, collected from the swing-up task simulated with the nomi-
nal models with the relative nominal inputs or excited inputs. Recall that the
gaussian process uses Npred points to make the predictions about the mismatch



60 CHAPTER 5. SIMULATION RESULTS

of the nominal model. By looking at the fitting error on the Npred datapoints,
we evaluate how well the gaussian model describes the mismatch of nominal sys-
tem on known test inputs. The remaining datapoints of the training set are the
validation set, evaluating the fitting error on this set gives indication of the gen-
eralization properties of the gaussian model – if it indeed has learnt the mismatch
model. This is a standard procedure and, in general, it gives good indication of
the success of the learning procedure. In particular, we could say that the best
performing kernel is the one that achieves lower fitting error in the validation
set. However, once we use the chosen kernel to solve the OCP, one can observe
that the closed-loop trajectory can wildly differ from the true closed-loop trajec-
tory. That is, the gaussian process hasn’t actually learnt the mismatch model
– if that was the case, we should obtain similar trajectories. To better compare
the generalization properties between kernels, we evaluated the linearization ma-
trices in both the training and validation sets, and evaluated their distance to
the linearization matrices obtained from the true model. This was done in order
to establish which kernel is indeed learning the mismatch model, we have the
modified metric for the matrices:

�Atrue − AGP�F =
�

Tr((Atrue − AGP)(Atrue − AGP)T ) (5.5)

�Btrue − BGP�2 =
�

(Btrue − BGP)T (Btrue − BGP)) (5.6)

where AGP and BGP are the linearization matrices defined as in (5.1). Grey-
box models have the nominal and GP linearizations, black-box models have only
GP linearizations. To have improve the comparison, we removed the datapoints
where the control inputs where near zero to avoid skewing the analysis – these
points belong to parts of the system trajectory where the control task has been
completed, i.e. the pendulum is stably upwards. This will give us the first indi-
cation of the overall success of the learning procedure for the gaussian models.
We will use boxplots to have a better visualization about the distribution of the
fitting errors in the training and validation set, moreover we set Npred = 200 for
the all the models. We are ready to present the results of the learning procedure
for each nominal model, each with excited and nominal inputs, examining both
the performance of the grey-model and black-box model. Recall that each mis-
match velocity component of the nominal model was modelled with a gaussian
process, we refer to them as v and ω without making difference between nominal
and gaussian models.

5.2.1 Nominal Length model

Here we present the results of the learning of the mismatch model for nominal
model with pendulum length l = 0.8 m, where we have the fitting errors and
linearization matrices norms of the GP models in the training and validation
sets, trained with nominal inputs and excited inputs datasets, respectively.
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Grey-Box models: Nominal and Excited inputs

The fitting performance are in favor of the SE kernels in the dataset with nominal
inputs, while SP kernel is slightly better in the excited inputs datasets. We can
see this more clearly by looking at the linearization matrices norms, which are in
favor of the SE kernel in the validation set.

Figure 5.5: Grey-Box training and validation fitting errors for l = 0.8 m with
nominal inputs.

Figure 5.6: Grey-Box matrices norm for l = 0.8 m with nominal inputs.
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Figure 5.7: Grey-Box training and validation fitting errors for l = 0.8 m with
excited inputs.

Figure 5.8: Grey-Box matrices norms for l = 0.8 m with excited inputs.

Black-Box models: Nominal and Excited inputs

Both kernels have similar fitting properties of the velocities increments, but the
SP kernel is clearly better in the case of the linearization matrices in both nominal
and excited inputs datasets. This can be asserted by looking the performance on
the validation set.
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Figure 5.9: Black-Box training and validation fitting errors for l = 0.8 m with
nominal inputs.

Figure 5.10: Black-Box matrices norms for l = 0.8 m with nominal inputs.

Figure 5.11: Black-Box training and validation fitting errors for l = 0.8 m with
excited inputs.
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Figure 5.12: Black-Box matrices norms for l = 0.8 m with excited inputs.

5.2.2 Nominal Mass model

Here we present the results of the learning of the mismatch model for nominal
model with parameters l = 0.4 m, M = 0.9 kg, m = 0.2 kg , where we have the
fitting errors and linearization matrices norms of the GP models in the training
and validation sets, trained with nominal inputs and excited inputs datasets,
respectively.

Grey-Box models: Nominal and Excited inputs

In this case the SE performs better at fitting the mismatch model, and the re-
sulting linearization matrices are slighly in favor of the SE kernel.

Figure 5.13: Grey-Box training and validation fitting errors l = 0.4 m, M = 0.9
kg,m = 0.2 kg.
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Figure 5.14: Grey-Box matrices norms for l = 0.4 m,M = 0.9 kg, m = 0.2 kg.

Figure 5.15: Grey-Box training and validation fitting errors for l = 0.4 m, M =
0.9 kg,m = 0.2 kg, with excited inputs.

Figure 5.16: Grey-Box matrices norms for l = 0.4 m, M = 0.9 kg,m = 0.2 kg,
with excited inputs.
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Blac-Box models: Nominal and Excited inputs

Both kernels have similar performance at fitting the velocity increments. How-
ever, the SP kernel seems to be better with the linearization matrices. Indeed,
we have lower norms in the validation set, with both nominal and excited inputs.

Figure 5.17: Black-Box training and validation fitting errors for l = 0.4 m,M =
0.9 kg, m = 0.2 kg.

Figure 5.18: Black-Box matrices norms for l = 0.4 m, M = 0.9 kg,m = 0.2 kg.
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Figure 5.19: Black-Box training and validation fitting errors for l = 0.4 m, M =
0.9 kg,m = 0.2 kg, with excited inputs.

Figure 5.20: Black-Box matrices norms for l = 0.4 m, M = 0.9 kg,m = 0.2 kg,
with excited inputs.

5.3 Swing-Up Simulation

In this section we evaluate the performance of the trained GPs in the swing-up
task of 30 seconds. For each GP, we evaluate its one-step-prediction performance,
the norm of the linearization matrices and the distance between the closed-loop
trajectory to the trajectory of the true model. We should expect good perfor-
mances relatively for all GPs, given that they have been trained to do so. We
will evaluate the GPs on both nominal length and nominal mass model. We eval-
uated all the models together, either trained on nominal trajectories or excited
trajectories, to highlight if there’s any improvement in performance by the richer
dataset. Here, we define with SE-EX and SP-EX the respective models trained
with excited inputs.
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Nominal Length Grey-Box models

The one-step-ahead prediction errors are similar, but the SP-EX kernel is clearly
better during the linearization phase. Moreover, the closed-loop trajectory for
the SP-EX kernel is practically the same as the true model, confirming that a
richer datasets improves the inference of the mismatch model.

(a) One-Step-Ahead Prediction Error. (b) Linearization matrices norm.

(c) Complete swing-up task.

Figure 5.21: Grey-Box closed-loop performances.
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(a) Cart-pendulum positions.

(b) Cart-pendulum velocities

Figure 5.22: Grey-Box closed loop trajectories.

(a) Error with respect to the true trajectory.

Nominal Length Black-Box models

In this case the prediction of the SE is sligthly better, however the SP kernel is
better in the linearization matrices norm metric. This can be seen in the overall
distance from the closed-loop trajectory.
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(a) One-Step-Ahead Prediction Error. (b) Linearization matrices norm.

(c) Complete swing-up task

Figure 5.24: Black-Box closed-loop performances.
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(a) Cart-pendulum positions.

(b) Cart-pendulum velocities.

(c) Error with respect to the true trajectory

Figure 5.25: Black-Box closed loop trajectories.
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Nominal Mass Grey-Box models

Here we present the swing up for both grey-box and black-box models with the
Nominal Mass model, indicating with SE-EX and SP-EX the models trained
with excited inputs. Similar considerations as for the nominal length model hold.
However, the SE kernel has a slithly better performance.

(a) One-Step-Ahead Prediction Error. (b) Linearization matrices norm.

(c) Complete swing-up task

Figure 5.26: Grey-Box closed-loop evaluation.
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(a) Cart-pendulum positions.

(b) Cart-pendulum velocities.

(c) Error with respect to the true trajectory

Figure 5.27: Grey-Box closed-loop trajectories.
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Nominal Mass Black-Box models

In this case, the SP kernel is clearly superior in all aspects. All the metrics are in
its favor, it is easy to notice from the closed-loop trajectory that it is generalizing
better.

(a) One-Step-Ahead Prediction Er-
ror. (b) Linearization matrices norm.

(c) Complete swing-up task.

Figure 5.28: Black-Box closed-loop evaluation.
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(a) Cart-pendulum positions.

(b) Cart-pendulum velocities.

(c) Error with respect to the true trajectory.

Figure 5.29: Black-Box closed-loop trajectories.
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5.4 Moving Cart Simulation

In this section we present the results of the moving cart simulation, aimed at
the evaluation of the generalization performances of the proposed GP. The task
is to move between cart positions while maintaining the pendulum up, to see if
changing the tasks affects the overall behavior of the gaussian models. The results
from these simulation will allow us to clearly see which kernel is the superior
choice. As mentioned before, the gaussian processes are trained with swing-up
simulation data and their predictive performance are much better suited for that
task.

Nominal Length Grey-box models

The same considerations for the swing up simulation hold. The SP-EX kernel is
outperforming all the other kernels, but interestingly, the SP has a closer closed-
loop trajectory to true model. We can say that it has learnt the model.

(a) One-Step-Ahead Prediction Er-
ror. (b) Linearization matrices norm.

(c) Complete moving cart task.

Figure 5.30: Grey-Box closed-loop performances
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(a) Cart-pendulum positions.

(b) Cart-pendulum velocities.

(c) Error with respect to the true tra-
jectory.

Figure 5.31: Grey-Box closed loop trajectories.

Nominal Length Black-box models

In this case, we have clear indications that the SP kernel is better. At the initial
phase of the simulation, the SP-EX kernels follows closely the true trajectory
and later completes the task. We can say that it has indeed learnt the mismatch
model.
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(a) One-Step-Ahead Prediction Error. (b) Linearization matrices norm.

(c) Complete moving cart task.

Figure 5.32: Black-Box closed-loop performances.
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(a) Cart-pendulum positions.

(b) Cart-pendulum velocities.

(c) Error with respect to the true trajectory.

Figure 5.33: Black-Box closed-loop trajectories.

Nominal Mass Grey-box models

In this simulation, one can clearly see that the SE kernel fails at complete the
task. We tried multiple times to optimize the hyperparameters, with the hope of
improving its performance kernel without success. We could attribute this to the
lack of datapoints, in the case of the SE Black-Box models the lengthscales were
in the order of 104. From this simulation, we can say the the SP kernel is better
at modelling the mismatch model of the nominal model. The metrics are very
similar for both kernels. Although the SP fails to reach the reference position,
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which results in a constant error, it is much better at the initial swing up of the
pendulum. This is a clear indication that it has better generalizations properties:
it has indeed learnt the mismatch model.

(a) One-Step-Ahead Prediction Error. (b) Linearization matrices norm.

(c) Complete moving cart task.

Figure 5.34: Grey-Box closed-loop performances.
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(a) Cart-pendulum positions.

(b) Cart-pendulum velocities.

(c) Error with respect to the true trajectory

Figure 5.35: Grey-Box closed loop trajectories.

Nominal Mass Black-box models

In this case neither kernels were able to give satisfactory results. All the kernels
are wrong about the true system dynamics, we can attribute completing the task
to the NMPC controller, not the accuracy on the mismatch model prediction of
the kernels.
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(a) One-Step-Ahead Prediction Error. (b) Linearization matrices norm.

(c) Complete moving cart task.

Figure 5.36: Black-Box closed-loop performances.
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(a) Cart-pendulum positions.

(b) Cart-pendulum velocities.

(c) Error with respect to the true trajectory.

Figure 5.37: Black-Box closed loop trajectories.

5.5 Discussion

From the previous sections, we can assert that there’s an overall improvement of
the closed-loop trajectory using gaussian processes to learn the mismatch model.
Althouhg, the selection of the best kernel is not quite precise if we were to use
the fitting error in the validation set. This lack of criterium to select the right
kernel is one limitation of the training procedure, we tried to give some direction
by comparing the linearization performances of the kernels in the training sets
and validation set. Indeed, we found that lower matrices fitting in the validation
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set is strictly correlated to good closed-loop performance, specially for black-
box models. The analisis in the swing-up simulation was useful to establish
that the GP indeed learns the task from which the datapoints were collected.
The results of appying an external input are quite simple to elaborate: more
richer information on the training dataset, the better we can generalize. The
most interesting results came from the moving cart simulations, where during
the initial swing up of the pendulum to reach the reference position, the SP
models were clearly comparable to the true trajectory. That is, the SP kernels
have learnt the mismatch models and that is something that the SE kernel hasn’t
achieved neither in grey nor black-box models. By being able to assign negative
correlations to the distance between datapoints, the SP kernels are able to model
the mismatch dynamics more accurately. This means that our class of prediction
models is much richer, which is in accordance to the connection between Gaussian
processes and RKHS formalism. Moreover, the mini-batch learning was key to
finding the right hyperparameters. By applying gradient-descent to the marginal-
likelihood with random subsets, we were doing a random approximation of the
gradient loss – i.e. stochastic gradient-descent. This gaves us a way to prevent
overfitting during the training of the SP, which was a persistent problem initially.
To achieve good closed-loop performances, before applying mini-batch learning,
the SP kernels were tuned very carefully by hand and it was quite a troublesome
procedure. With mini-batch learning, the process has considerably become easier
and faster.



Conclussions

Within this work we evaluated the performance the Generalized Spectral kernel,
a class of kernels quite innovative to learn dynamical systems, confronting the
proposed kernel with the standard Squared Exponential kernel. We introduced
the basis principles for gaussian regression, and based on the connections be-
tween GPs and RKHS, we thought the SP kernels were a good alternative to
the SE kernels. Our goal became to determine that its properties of being able
to approximate arbitrarily well a stationary kernel were linked to an increase in
performance of the resulting prediction models – which has indeed been the case.
Later, we evaluated their fitting capabilities to determine which one performed
better with the available data by training them with a standard swing-up task
dataset, achieving similar performances. Given these similar fitting capabilities,
to establish a better metric of their generalizations properties, we computed their
relative linearization matrices within the training set and compared the distance
with respect to the matrices obtained from the true models, which allows us to
compare the kernels in a more sistemic way. Moreover, we trained the models
with richer datasets that came from exciting the system with an external input
during the swing up task with the hope to improve the infering of the mismatch
model. We defined two kind of nominal models, one slighly wrong (nominal
length model) while the other was much worse modelled (nominal mass model).
For the grey-box models, both kernels had similar performances during the learn-
ing phase. For the black-box models, the generalized spectral kernel was clearly
outperforming the SE kernel. We then applied the trained models to solve two
control tasks: swing up of the pendulum and moving the cart with the pendulum
stably upwards. During the swing up task, although the SE kernel had a satis-
fying performance, the closed-loop behaviors were clearly much better with the
SP kernels, both for grey and black-box models, achieving closed-loop trajecto-
ries that were almost identical to the true model. However, the performances of
both kernels weren’t far from one another and we couldn’t assert which one was
better with confidence. The final answer came from the moving cart simulation,
although the SE kernel proved to be still a valid choice, the overall closed-loop be-
havior was in favour of the SP kernel with both nominal models. We attribute this
feat to their great flexibility, which allows to model more complex behavior, and
accurately learn the mismatch model to compensate the parametric uncertainties
present in the nominal model. The most interesting result was their predictive
performance in the case of black-box models, where the learnt model was able not
only to complete the tasks in both swing up and moving cart simulations - while
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the SE kernel struggled - but the initial closed-loop trajectory was clearly similar
to the true trajectory in all the models implementing SP kernels. This gave us
the strong indication that the gaussian models with generalized spectral kernels
had indeed learnt the mismatch model and now, with confidence, we can finally
state that the SP kernel demonstrated to be the superior choice for learning the
mismatch model.

Further development

The simulations were carried out with the same number of test points for both ker-
nels, which is an essential element for doing predictions with gaussian processes.
In particular, one should investigate if a lower number of points gives can man-
tain the same generalization performances for the SP kernel. Moreover, we didn’t
apply any technique for reducing the test points, such as inducing points, while
it is a standard procedure for prediction with gaussian processes. This would
make this class of kernels an even more powerful tool, given that the NMPC
controller could solve the OCP much faster with a higher precision. Another key
point is the training of the hyper-parameters, given the high-flexibilility of the
SP kernel, it can suffer from overfitting. To solve this problem, we introduced
mini-batch training to improve to the training of the hyperparameters through the
marginal-likelihood. One way that may lead to an improvement of their inference
is by training them in a full Bayesian manner, treating the hyperparameters as
random variables modelling prior knowledge, to avoid the problems arising from
solely minimizing the ML through gradient-descent. Moreover, given that the SP
kernel depends heavily on its scales factor, one should try to develop a scheme to
infere them effectively, avoiding their annihilation during the training procedure.
Still, much more work on determining the learning performances before applying
the gaussian models to the NMPC controller is needed. The metrics defined in
this work cannot be evaluated in practice, and for now, we solely rely in analyzing
simulations for the choosing criteria.
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