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Abstract

In this thesis we explore a new approach to General Relativity introduced by G. Ellis
in 1971 [42], that defined new dynamical equations (called relativistic hydrodinamical
equations) based on the properties of the electric and magnetic parts of the traceless
part of the Riemann tensor, the Weyl tensor. Matarrese et al. in the mid-1990s [21],
[22], [23], [17] found new cosmological models, called silent universe, for the study of
irrotational dust using the relativistic hydrodinamical equations, in which the magnetic
part of the Weyl tensor vanishes. The small temperature anisotropies measured in the
Cosmic Microwave Background (CMB) of the order of 10−5 allow us to use the theory
of cosmological perturbations. In particular we perturbed a Szekeres metric, in the
form introduced by Goode and Wainwright in 1989, around a Friedmann-Lemaître-
Robertson-Walker (FLRW) solution. This is a special silent universe that has an unique
anisotropy along the z-axis. We solve the linearized Einstein Field Equations (EFE) in
order to find the behaviour of the out-of-homogeneity potential and we study the phase
plane analysis of this model using Ellis formalism. We study the geodesics equation for
a photon path emitted on last scattering surface towards us. With the second-order
solutions we compute the first and second-order CMB temperature anisotropies for the
Szekeres metric. In the end we want to make explicit the expression of the first-order and
second-order temperature deviation for a fully general silent metric, i.e. that contains
the maximum degree of spatial anisotropy. In both cases we recover the integrated
Sachs-Wolfe effect and a form that we interpret as the second-order correction of the
integrated Sachs-Wolfe effect, both dependent on the direction of observation.



1 Introduction

Physical Cosmology is a branch of physics different from other fields because it has some
intrinsic restrictions. First of all experimenters cannot reproduce a theorized phenomenon
in a lab, in this sense they are subject to restrictions imposed by the astronomical methods
that "allow one to look but not to touch" (Peebles 1993). Thus we can say that the sky
is a sort of "museum lab", a place where experimenters are not active in the observational
process, as in high-energy particle physics, but they must await the event, and what makes
it observable is completely independent of the observer. Thus the keyword is "waiting", be
ready with the best possible instrumentation to observe new events.
Nowadays, a great part of observational cosmology is the electromagnetic information of the
Cosmic Microwave Background Radiation (CMBR), type Ia supernovae and high redshift
galaxies. For this reason it is essential to study and to analyze the propagation of photons
in a universe that is not static and perfectly homogeneous, but that it is subjected to
expansion, shear and vorticity, following the rules general relativity. Only in this way we
can interpret the electromagnetic data and come to conclusions about observations.

1.1 The standard model of Cosmology

We began our discussion of the standard model of cosmology focusing on the observed uni-
verse. Over enough large scales we observe the universe to be isotropic, on these scales there
is no a preferential direction. Thus, we can make two hypotheses at large scales: we are in
a local place in which the universe looks spherically symmetric but it is spatially inhomoge-
neous, or what we observe can be assumed as global, so the universe is homogeneous, i.e. it is
isotropic for every observer. In this thesis we assume the second hypothesis, see [26] and [27].
Friedmann-Lemaître-Robertson-Walker (FLRW) are cosmological models in which the isotropy
about the fundamental velocity uµ is valid for every observer, i.e. the acceleration of the
fluid flow is zero everywhere:

u̇µ = 0. (1.1)

In this way we can consider another symmetry. Because of these models are isotropic for
every spacetime event, we can deduce that there is the invariance of physical properties in
every space-like hypersurface (t = const.) orthogonal to the cosmological fluid element, i.e.
the spatial homogeneity. These considerations implies that the cosmological tensors that
describe the shear and the vorticity of the fluid flow are identically zero in every point,
respectively:

σµν = 0, ωµν = 0. (1.2)

(For the details about the meaning of kinematical quantities and General Relativistic dy-
namics see Section 2).
From isotropic and homogeneity assumption necessarily follows that the matter in this model
must have the behaviour of a perfect fluid, so the energy flux must be zero

qµ = Pρ
µTρνu

ν = 0, (1.3)

where Tµν is the energy-momentum tensor and hµν is the projection tensor that projects
into the three-dimensional tangent space orthogonal to the fundamental velocity of the fluid
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flow. Furthermore the traceless anisotropic part of the energy-momentum tensor must be
identically zero, because it contains all the information about viscosity and free-streaming,

πµν = 0 . (1.4)

So in a FLRW universe these conditions hold everywhere.
We can define the scale factor a(t) using the scalar expansion Θ(t) through the relation

ȧ

a
=

1

3
Θ . (1.5)

The geometrical structure of FLRW can be studied using comoving coordinates xµ =
(t, xi) we can define the line element

ds2 = −dt2 + a2(t)fij(x
k)dxidxj . (1.6)

It is important to note that the metric function fij(xk) is time-independent, this fact derive
directly from the constraint σµν = 0. Moreover the fundamental velocity of the cosmological
fluid can be written as uµ = δµ0 .
The homogeneous hypersurfaces orthogonal to the fluid flow have the constant curvature
κ/a2(t) in every point, where κ is a constant and can take the values {−1, 0,+1}, where
respectively they refer to negatively curved, flat and positively curved cases. Thus the
FLRW metric, in comoving coordinates, can be written as

ds2 = −dt2 + γ−2a2(t)(dx2 + dy2 + dz2) . (1.7)

We have defined the function
γ = 1 +

1

4
κr2 , (1.8)

where r2 = x2 + y2 + z2.
The scale factor a(t) gives the information in an evolving universe about the variation of
distances. Given two world lines Γ1 and Γ2 on the three-surface of constant time t = t1, the
distance d1 measured between them along the curve xµ(s) = (t1, x

i(s)) is given by

d1 =

∫︂ Γ2

Γ1

a(t1)

γ

√︃
δij
dxi

ds

dxi

ds
ds (1.9)

Given an other constant time three-surface t = t2 we can find that the corresponding
distance d2 between the two curves along the previous world line is related to (1.9) by

d2 =
a(t2)

a(t1)
d1 (1.10)

We can see that all lengths scale with the scale factor a(t) and so we have, for all points
in the universe, an expansion that is isotropic. For the spacial homogeneity of the model
there is no center and no spatial edge, so there is not an outside universe.
The velocity of motion of the distance d(t) = d1a(t) in a generic surface t = const (where
t1 < t) is given by:

ḋ(t) = ȧ(t)d1 = H(t)d(t) , (1.11)
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where we defined the Hubble parameter law H(t) = ȧ(t)/a(t). We can interpret it as the
recession rate in distances in the three-space surface t = const. Ellis and Rothman (1993)
[28] demonstrate that Hubble rate is a "distance velocity" and it does not presuppose the
exchange of information, therefore Hubble rate is not subject to the speed-of-light constraint.
The most used FLRW model has two fundamental components: cold dark matter and dark
energy. The non-relativistic Cold Dark Matter (CDM) has the behaviour of a perfect fluid
(non collisional) and we hypothize that can be identified as a non-baryonic particle not yet
experimentally observed. The other component is the Dark Energy that takes the form of
a cosmological constant Λ that assume the meaning of a repulsion in Einstein’s equations.
This FLRW is usually called ΛCDM model.
There are different observations that shape ΛCDM: The luminosity distance and of the Ia
Super Novae and gamma ray bursts, the observation of the CMB anisotropies, the Baryon
Acoustic Oscillations (BAO), large-scale clustering of galaxies. Under these observations we
can have different important information about the present time universe. First of all we
are in an epoch of accelerated expansion, the curvature of the space can be considered flat
and we can compute the principal components of the universe, that is to say respectively
for dark energy, dark matter and baryonic matter. In more detail we write the Planck 2018
results (see [64])

ΩΛ = 0.679± 0.013 , Ωm = 0.321± 0.013 , Ωb = 0.02212± 0.00022 . (1.12)

We can see that ΩΛ is predominant with respect to the other parameters, therefore the
current universe in an accelerated expansion epoch. Riess et al. (1998) [30] and Perlmutter
et al. (1999) [30] find the evidence of the universe acceleration from the luminosity distance
and the analysis of the redshift of supernovae at z ∼ 0.5. ΩΛ gives theoretical issues, the
so-called called the "dark energy problem". The standard model ΛCDM must take into
account the fact that the universe energy density must be substantially dominated by dark
energy, whose nature is not understood.

We have just seen the symmetry properties of the FLRW models, the surfaces of ho-
mogeneity, given by constant time three-surfaces, and the homogeneity of the space is con-
sequence of the isotropy in every three-space point. However we observe that when we
observe smaller scales the degree of inhomogeneity increases, reaching the well-known as-
tronomical structures. The small inhomegeneities in the cosmic fluid flow will become the
today structures thanks to gravitational instability. Therefore these symmetries do not
make FLRW models realistic for the observed universe. We can regain a reasonable level of
reality perturbing around the FLRW solutions. This approximate method is very accurate
and nowadays it is the most powerful tools in the realm of cosmology.
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1.2 Cosmic Microwave Background

Theorized by G. Gamow in 1948 (see [32]), CMBR is the most important test for the thermal
history of the universe. The FLRW is the space-time geometry that is more suited to CMB
observations, and it is a reasonable justification to use ΛCDM as standard model.
Following Dodelson (2003) [2], in the primeval plasma, when the radiation temperature was
of an order of magnitude of about 104K, there was the former formation and then the
sudden ionization of neutral hydrogen by energetic photons. There is a fundamental feature
in the primeval plasma: free baryons and photons were in thermodynamic equilibrium, the
so called "baryon-photon" fluid. In particular there was mainly Thomson scattering of
photons from free electrons, therefore the plasma was opaque. In practice the intensity of
the plasma filled with photons followed the well-known black-body spectrum law:

Iν =
4πℏν3

c2
(︃
e

2πℏν
kBT − 1

)︃ . (1.13)

The measurements of COBE/FIRAS revealed that CMB represents the best black-body
spectrum ever observed in nature, see Fixsen et al. (1996) [65].
When baryons and radiation ended their interaction at z ≃ 1100 photons started to free
stream, this is called last scattering. More in detail when photon-baryon interactions be-
came negligible the universe homogeneous expansion cooled the radiation preserving the
thermal spectrum. Now we can observe the CMBR spectrum and it represent the most rich
information source about early universe.
The CMB was discovered by Penzias and Wilson in 1964, see [62]. They indicated a CMB
temperature of 3K isotropic in all directions. The first CMB detections gives the informa-
tion that the early universe was perfectly smooth, and the idea of the theory of the smooth
Big Bang stabilized. In the radiation spectrum the main characteristic is the dipole varia-
tion, an anisotropy in the thermodynamic temperature, it is in function on the position in
which the observer is pointing an antenna and has an average amplitude of ∼ 10−3. We
interpret this anisotropy as the effect of earth motion relative to the CMB rest frame and
another cause is the distant galaxies redshift. Then in 1992 COBE detected the presence
on CMB of the quadrupole anisotropy, the data indicated a temperature deviation of about
10−5 around the background temperature. The observations matched with the expected
gravitational perturbation to the CMBR due to the matter density fluctuations in large
scales. It was the awareness that the universe was not perfectly homogeneous. These re-
vealing anisotropies give us a large amount of information about early universe, they are
crucial in order to have a subtle determination of cosmological parameters.
CMB anisotropies are divided into primary anisotropies and second anisotropies.
i)Primary anisotropies was generated before the recombination and they give information
about early universe and the physics related to it. The most important example is the
Sachs-Wolfe (SW) effect that we will analyze in next sections.
ii)Secondary anisotropies were generated in an epoch after than recombination, in particu-
lar at structures formation time. We will study in next sections an example of secondary
anisotropies that is the Integrated Sachs-Wolfe (ISW) effect.
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1.2.1 Angular power spectrum

To understand the sense of the large scale effects, which we will analyze in this thesis, we
must describe the CMB field in a statistical way. We consider the temperature deviation as

δT (p̂) =
T (p̂)− TO

TO
=

∞∑︂
l=1

l∑︂
m=−l

almYlm(p̂) , (1.14)

where p̂ indicate the direction of the incoming photon, the l parameter is called the multiple
moment of the angular multipole expansion and TO is the observed temperature. We use
spherical harmonics Ylm to decompose the temperature deviation field because they form a
complete set of orthonormal functions on a sphere that are perfectly suited to describe a
distribuition on a celestial sphere. Orthonormal because they satisfy the normalization:∫︂

Y ∗
lmYl′m′ dΩ = δll′δmm′ . (1.15)

The real and imaginary part of the zeros of Ylm divide the celestial sphere, in first
approximation, into cells of constant solid angular size

θ ≃ π

l
. (1.16)

It is important to remember that the first two orders of multipoles are generally neglected,
because are induced by the observer and its position. The term l = 0 is the monopole, it
defines a correction that modify the mean temperature of the sky, for a particular observer,
with respect to the mean of all possible sky temperature configurations. The term l = 1 is
the dipole, it represents the solar system barycentre motion in relation to the rest frame of
the CMB. Moreover there are additional effects, aberration ad modulation effects, associated
with local Lorentz boosts.

The distribution of the alm coefficients is a Gaussian distribution and its origin are the
quantum fluctuations defined during inflation, see Dodelson (2003) [2]). More in detail the
mean value of alm, using ⟨·⟩ to denote ensemble average, is

⟨alm⟩ = 0 . (1.17)

Instead, the covariance C(l) ̸= 0, in particular

⟨a∗l′m′alm⟩ = C(l)δll′δmm′ , (1.18)

where the quantity C(l) is also called "angular power spectrum", and its value is given by
the quadratic average of the alm coefficients at a fixed angular scale

C(l) ≡
⟨︂
|alm|2

⟩︂
=

1

2l + 1

l∑︂
m,m′=−l

a∗l′m′alm . (1.19)

It is straightforward note that the variance at high multiple moments (small angular scales)
is much higher than the variance at low multipole moments (large angular scales). We can
quantify this fact looking at the variance of the power spectrum

∆C(l)

C(l)
=

√︃
2

2l + 1
, (1.20)
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Figure 1: Angular power spectrum of temperature fluctuations in the CMB detected by Planck
(2018) at different multiple moments. The red dots are the Planck’s measurements, and the blue
support shows the best fit of the standard model of cosmology. The lower panel shows the residuals
with respect to this model. Plot from Planck Collaboration [64].

this uncertainty in the precision of the C(l) is called "cosmic variance". In Figure 1 we
insert the Planck measurements at different angular scales; it is easy to note the cosmic
variance, at small multipoles moments we see larger error bars than at higher multipoles.
Now we can write the temperature fluctuations correlation function: given two temperature
anisotropies fields that point in different direction p̂1 and p̂2, their auto-correlation is

⟨δT (p̂1)δT (p̂2)⟩ =
1

4π

∞∑︂
l≥1

(2l + 1)C(l)Pl(cos θ). (1.21)

Here Pl(x) are the Legendre polynomials of l-order. It is easy to see that for aligned tem-
perature fields the angular power spectrum give the whole information about the considered
angular scale to the total variance of the temperature anisotropies:

⟨δ2T (p̂)⟩ =
1

4π

∞∑︂
l≥1

(2l + 1)C(l) . (1.22)

From Figure 1 we can see that the fluctuation observed have generally a relative am-
plitude of 10−5. Therefore the experimental setup have to search for a signal of amplitude
∼ 30µK on a monopole background temperature of ∼ 3K. It is important to notice that
at large angular scales, from ∼ 90◦ to ∼ 10◦ the scales of temperature anisotropies is
δT ≃ 1.2× 10−5.
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1.2.2 Perturbation theory

In order to understand the large scales anisotropies of the CMB we have to introduce
cosmological perturbation theory. As we have already seen in Section 1.1, the FLRW models
represents a homogeneous and isotropic Universe. Following [49] we write the metric (1.6)
in a more compact way, in function of the scale factor a(t) and the 3-space metric of constant
curvature γij :

ds2 = −dt2 + a2(t)γijdx
idxj . (1.23)

Solving Einstein Field Equations (see Section 4) we can recover the two well-known Fried-
mann equations [50]

(︃
ȧ

a

)︃2

+
K

a2
=

1

3
ρ+

Λ

3

H(t) =
ä

a
+

(︃
ȧ

a

)︃2

+
K

a2
= −p+ Λ .

(1.24)

In particular with ρ and p we are referring respectively to the energy density and the pressure
of the cosmic fluid. In this thesis we use the value of the Hubble constant, i.e. the nowadays
value of the Hubble parameter as

H0 = (66.88± 0.92) km/sec/Mpc , (1.25)

see Planck collaboration (2018) [64].
The fluctuations of CMB suggest that locally the Universe deviates from a perfect homo-
geneous and isotropic configuration. For this reasoning modern cosmology uses to perturb
the metric (1.23), keeping the FLRW solutions as a rigid background. We write the metric
tensor, in longitudinal gauge [51], as the sum of the FLRW metric tensor g(0)µν and a small
perturbation hµν , i.e.

gµν = g(0)µν + hµν . (1.26)

More in detail the line element of the perturbation tensor can be written as

hµνdx
µdxν = 2Φdt2 + a2(t)(−2Ψγij + 2χij)dx

idxj , (1.27)

where Φ and Ψ are the first-order gauge invariant variables called Bardeen potentials, more
in detail these variables form gauge invariant expressions only to first order. χij describes
the tensor modes, in particular it is a transverse and traceless tensor

∇ihij = γijhij = 0 . (1.28)

We point out that during inflation there are not vector perturbations, thus we neglected
them.
Einstein Field Equations (EFE) are the relations between the perturbations of the metric
and the perturbations of the energy-momentum tensor. In particular the energy-momentum
tensor has the general form for an imperfect fluid flow with 4-velocity uµ

Tµν = (ρ+ p)uµuν + pgµν +Πµν . (1.29)
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We require that the anisotropic stress tensor is traceless and flow orthogonal, i.e.

Σµ
µ = Σµνu

ν = 0 . (1.30)

It contains all the information about shear and viscosity.
Considering a perfect fluid (Σµν=0), we can write the component of the of the perturbed
energy momentum tensor as

δT 00 =δρ

δT 0i =(ρ(0) + p(0))a−1δui

δT ij =− δpδij ,

(1.31)

where the variables with the superscript ρ(0) and p(0) are background quantities. Since δT ij

is diagonal, from the linearization of the EFE

δGµν = δTµν (1.32)

follows that the two Bardeen potentials are equal, Φ = Ψ. This is a great simplification for
gauge invariant equations that describe the dynamics of the system. Moreover we can write
the energy density in terms of the density profile δρ/ρ(0):

ρ = ρ(0)(1 + δ) . (1.33)

From equation (1.32), considering adiabatic perturbations and on scales larger than the
Hubble radius we can write the following "conservation" law:

ζ̇ = 0 (1.34)

where we denote the physical time derivatives (·)· = d/dt. The ζ parameter is known as
curvature perturbation and it was first introduced by Bardeen (1983) [52], and in terms of
Bardeen potentials is

ζ =
2

3

H−1Φ̇ + Φ

1 + w
+Φ , (1.35)

where w = p(0)/ρ(0) is the FLRW equation of state parameter. In comoving gauge, i.e.
uµ = 0, ζ is proportional to the perturbed spatial part of the Riemann tensor.
The perturbed EFE are linear, thus decomposing all variables in the eigenfunctions of the
3-Laplacian, the variables inside the equations can be studied separately, since they evolve
in a indipendent way. We focus on the case of zero-curvature, K = 0, in this manner
variables take the form of Fourier modes. We have already seen that during inflation there
was the generation of the small deviations from homogeneity and isotropy, thus we assume
that in inflationary period there was not preferred direction or position in the Universe. In
particular the fluctuations must be homogeneous and isotropic, and for these reasons the
Fourier modes, corresponding to each variables in the equations of motion, are untied. Now
we can define the initial power spectrum P (k) by

P (k)δ(k− k′) ≡ k3

2π2
⟨ζ(k, tin)ζ∗(k′, tin)⟩ . (1.36)

8



In order to have the power spectrum containing all the information about the perturbations,
also in this case, we assume the fluctuations being Gaussian.
In general we can write the power spectrum of a perturbed variable as the product of P (k),
the initial power spectrum, with a transfer function, usually denoted with Θ2. For example
density fluctuations can be written as

k3⟨δ(k, t)δ∗(k′, t)⟩ = δ(k− k′)2π2Pδ(k, t) , (1.37)

where the density contrast power spectrum Pδ is given by

Pδ(k, t) = Θ2
δ(k, t)P (k) . (1.38)

The fluctuations of the CMB temperature is different because the temperature field is a
function of direction. In the previous section we have defined the CMB power spectrum (1).
We have to solve EFE in order to have the evolution of the space-time and the behaviour of
metric potentials, then we can derive the transfer function ΘT (k, l) of the photon distribution
through Boltzmann Equation,

l(l + 1)

2π
C(l) =

∫︂
1

k
Θ2

T (k, l)P (k) dk . (1.39)

The curvature perturbation ζ and the Bardeen potentials Φ-Ψ remain constant on super-
horizon scales, i.e. k ≪ aH. Since in radiation domination epoch and in sub-horizon
scales, i.e. k ≫ aH, Bardeen potentials decay ∝ 1/(aH)2 and oscillate with the density
fluctuations, in particular these oscillates with constant amplitude. Writing the differential
of the conformal time as

dη =
dt

a(t)
, (1.40)

we can write the behaviour of the density fluctuations

δrad ∝ cos(cskη) , (1.41)

where cs denotes the adiabatic speed of sound, and peculiar velocity

vrad ∝ sin(cskη) . (1.42)

Therefore in sub-horizon scales the peculiar velocity and the density fluctuations are out
of phase. However, in matter domination epoch Φ and Ψ remain constant in sub-horizon
scales, in this case the density profile

δm ∝ a (1.43)

and the peculiar velocity has the proportionality

vm ∝ a1/2 . (1.44)

In the end in a Λ-domination epoch both curvature fluctuations decays and there is the
freeze out of the density fluctuations.
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1.2.3 Sachs-Wolfe effects

In 1967 Sachs and Wolfe [14] predicted for the first time the existence of anisotropies due
to gravitational redshift and blueshift in the cosmic microwave background. They used
a general relativistic approach integrating the geodesics equation in a perturbed FLRW
background. Historically, the integrated Sachs-Wolfe was first detected with the cross-
correlation between the number count of radio galaxies from NVSS data and HEAO1 A1
X-ray data with the first WMAP data, see [53]. Here we want to give an inceptive idea of
the SW effects following [54] and do not show in detail the calculation, in fact in Section
4 we recover the same results in a detailed and alternative way. We consider a photon
described by the world line xµ(λ) labelled by the affine parameter λ. We begin to write the
photon null wavevector kµ = dxµ/dλ perturbation expansion around its background value
k(0)µ

kµ = k(0)µ + δkµ . (1.45)

The photon geodesics is the solution of the well known geodesics equation

Dkµ

Dλ
= kµ;νk

ν = 0 (1.46)

at first-order. In particular, using the metric (1.26), (1.27) in conformal time g̃µν (see
equation (1.40)), the connection take the components

Γ0
00 = Φ′ , Γ0

0i = Φ,i , Γ0
ij = −Ψ′δij , (1.47)

where we used the prime to denote the conformal derivatives, (.)′ = d/dη.
Now we define the normalized 4-velocity truncated at first order:

uµ = u(0)µ + δuµ =
1

a
(1− Φ, vi) , (1.48)

where the 3-velocity vi is a first-order quantity, therefore in order to remain at first-order
we can only solve the temporal part of the geodesics equation. The unperturbed solution is
given by

k(0)µ = (1, êi) , (1.49)

where êi is a unity direction vector tangent to the unperturbed geodesics. Now the energy
of the photon measured by a comoving observer is given by

E = gµνu
µkν . (1.50)

Denoting ηE the decoupling conformal time and ηO the comoving observation time, it can
be shown that the time solution of the geodesics equation is given by

δk0 = δk0(ηE)− 2[Φ(ηO)− Φ(ηE)] +

∫︂ ηE

ηO

(Φ′ +Ψ′) dτ . (1.51)

The redshift is defined by the ratio between the photon energy measured at decoupling
time and at observer time,
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1 + z ≡ EηE
EηO

. (1.52)

Recalling that the CMB observed temperature is given by the relation between redshift and
emitted temperature

TO =
1

1 + z
TE , (1.53)

we can find the temperature deviation from the isotropy

δT (ηO) = δT (ηE) + [viêi]
ηE
ηO

− ΦηO +Φ(ηE) +

∫︂ ηE

η0

(Φ′ +Ψ′) dη . (1.54)

Let us analyze this expression term by term. The first term is equivalent to δγ/4, the
radiation density fluctuation in the spatial flat gauge. The next term is the Doppler effect,
it is generated by the observer motion in relation to the last scattering surface. The third
term is the ordinary Sachs-Wolfe (SW) effect, it is the temperature anisotropy due to the
fluctuations of the potentials, in particular these fluctuations generate gravitational redshift.
The integral is the integrated Sachs-Wolfe effect (ISW) and it is the temperature deviation
represented by the integration along the line of sight of the gravitational potential time
variation. When the gravitational potential deviates from a static behaviour it becomes
relevant. In the matter dominated epoch the gravitational potential is constant, thus in
the Einstein de-Sitter regime and at linear order the ISW effect vanishes. Therefore the
ISW is an effect that can be generated in radiation domination (early ISW) or dark energy
domination (late ISW). In particular early ISW effect is part of the primary anisotropies
because the matter-radiation equality redshift zeq ≃ 3300 is before the time of decoupling
zdec ≃ 1080. In the end the late ISW effect becomes important at redshifts z < 1. Moreover
on large angular scales l < 30 the perturbations theory predicts the well-known "Sachs-Wolfe
plateau", see Figure 1.
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1.2.4 ISW detection

In this section we want to give an introduction on the measurement of ISW effect following
[55]. In ΛCDM model the modifications of the Newtonian and curvature potentials are due
to expansion. We observe that in late times there is an apparent acceleration caused by
Dark Energy ΩΛ, where it must produce a quite important signature on CMBR. Detecting
ISW effect is difficult because primary anisotropies are more consistent, nearly an order of
magnitude larger. Moreover ISW effect contributes at large angular scales l < 30, small
multiple moments, therefore they are affected by cosmic variance.
The most used methods in order to detect ISW effect are the observed cross-correlation
with tracers and the "fields method" (the direct comparison of temperature fields). The
measurement of cross-correlated power spectra CgT (l) is the most used method, it uses cross-
correlation function in order to detect the ISW signal. There are four different statistical
methods in order to have spectra detection. The first finds the two-signals correlation, see
Boughn and Crittanden (2002) [56]. The second is a model dependent method that creates
a best-fit model with the measurements, see Ho et al. [57]. In practice there is the measure
of how well observed signals matches the signal predicted. The third uses the χ2 test and
the fourth uses comparison between models, see Afshordi et al. (2004) [58]. The cross-
correlation method has reported many detections with WMAP and Planck CMB data. One
of the best measurements was find by Gannantonio et al. (2008), see [59], with a 4.5σ.
The field-to-field comparison work with the hot and cold spot of the temperature field in
order to see the presence of ISW. The observable is the temperature field δISW , in general
the temperature anisotropies on large linear scales can be described as

δOBS = δT + λδISW , (1.55)

where δT is the primeval CMB temperature field, λ is the amplitude of δISW . In order to
detect the ISW signal, the best method to extrapolate information is from the large scales
matter distribution. Using a bias relation, see Granett et al. (2009) [60], in this way the
matter field can be estimated from galaxy surveys. Knowing the galaxy survey, the δISW
field can be approximately extracted from galaxy maps and temperature maps with

aISWlm =
CgT (l)

Cgg(l)
glm , (1.56)

where glm are the galaxy map spherical harmonic coefficients, aISWlm are the coefficients of the
ISW temperature anisotropy map and CgT (l), Cgg(l) are respectively the cross-correlation
funtion and the autocorrelation function, see Boughn et al. (1998) [61]. In particular
Granett et al. [62] detect an ISW signal with a temperature shift: for supervoids ∼ −11µK
at 3.7σ, for superclusters ∼ 8µK at 2.6σ, for an average between supervoids and supercluster
of ∼ 9.6µK at > 4σ.
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1.3 Inhomogeneity and Silent Universes

Here we enter in the field of inhomogeneous models. The inflation theory and the pertur-
bation theory around FLRW solutions, thus the small deviation from a metric perfectly
homogeneous and isotropic, have given a first theoretical answer of the inhomogeneity ob-
served in the universe. A scheming example is the cosmic web. As the redshift decreases the
matter distribution does not remain in a homogeneous continuum, as at z ∼ 1080, but it
is forced to aggregate in regions, structures. In the observation we find clusters of galaxies
forming filaments that intersect each other, leaving large void regions between the struc-
tures. In particular Hoyle and Vogeley (2002) [37], using the Point Source Catalog Survey
(PSCz) and the Updated Zwicky Catalog (UZC), detect 54 voids finding a typical scale size
of about ∼ 30h−1Mpc and a density contrast δ ∼ −0.93. So we can see that at recent epoch
we have an high degree of inhomogeinity. We are out of the perturbative regime. In this
case the non-linear effects of General Relativity may give an alternative answer to explain
the void regions and the collapsed regions.

Figure 2: Projected distribution of 250 000 galaxies, where on the top strip is represented the
observations in north galactic pole and on the bottom strip is represented the observations in south
galactic pole. The distribution is in function of the redshift and the right ascension, taken from [41]

A new approach that covers the greatest part of the most discussed cosmological models
was introduced by Matarrese et al. in 1993, see [21]. "Silent Universes" are a identi-
fication of a model in which the evolution of the cosmological fluid flow is purely local,
there is not change of any typology of information, nor waves nor gravitational waves. The
case of collisionless matter in cosmological perturbations in nonlinear regime in a matter-
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dominated universe is easily described by relativistic irrotational dust. This assumption can
be mathema-tized by the zero-vorticity kinematical restriction. This is the first assumption
to identify a silent universe. The second and the most stringent condition is the assumption
that the magnetic part of the Weyl tensor Hµν vanishes, we will give a complete treatment
of the meaning of Hµν in Section 2. The motivation of this choice is important to under-
standing the topic. While the electric part of the Weyl tensor Eµν , the tidal force field, has
a Newtonian counterpart that can be written in terms of the potential and its derivatives,
the magnetic part of the Weyl tensor has not a Newtonian analogue. Neglecting the latter
is equivalent to neglect the interactions of tensor mode (i.e. gravitational waves) and gives
us the ability to accept generic initial conditions for the cosmological dust. In this lies the
truly meaning of the designation of the name "silent" universes; Matarrese and al. (1994),
heuristically with the constraint Hµν = 0, established the silence.
There is a particularity in these assumptions. For a perfect silent cosmological fluid with
four-velocity uµ there is an orthonormal tetrad eµ that is eigenframe of the tidal force Eµν

and the shear tensor σµν . In this way we can diagonalize them, finding a system of only six
ODEs ruling the dynamics (if the flow is taken to be in a geodesics motion), fully charac-
terized by the eigenvalues of the tidal force and the shear.
In the perturbation of FLRW models at first-order the magnetic tidal tensor vanishes (see
[37], [38]), but at second order we get a non-zero value, this effect is called tidal induction,
see [22], [23], [39].
Bruni, Matarrese and Pantano (1995) [25] have explored the dynamics of different silent
models identifying the types of collapse using the phase plane analysis of the stationary
points. For the Szekeres models that we will study in this thesis (see Section 3.3), they
find two attracting stationary points that correspond to a pancake collapse and a spindle
(or cygar) collapse (Zel’dovich 1970 [40]). In general a silent model has fluid elements that
collapse in a triaxial spindle singularity. Moreover the asymptotic behavior around the sta-
tionary points, that represents FLRW universe, can be interpreted as a perturbation around
the background solutions, in fact they find the directions of the growing mode and decaying
mode of the perturbation in a matter dominated universe. In Section 3 we will see in detail
the dynamics of silent universe and the special case of Szekeres models.
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1.4 Summary of research

In this thesis we investigate the Cosmic Microwave Background temperature anisotropies of
a silent model using a consistent perturbative approach.

• We present an overview of the relativistic cosmology (Section 2).

• We introduce Silent Universes and the special case of Szekeres models (Section 3).

• We study the perturbed Szekeres space-time around FLRW. We solve the linearized
Einstein Field Equations in order to find the behavior of the metric inhomogeneous
potential (Section 4).

• We compare the evolution of the phase-plane analysis at the first-order case and in
the exact case for the Szekeres metric, and then we find the fixed points of the model
(Section 4).

• Using the perturbed Jacobi equation, we find the first-order and second-order geodesics
equation solutions for a propagating photon in Szekeres space-time and in a fully
general silent space-time (Section 5).

• We get the temperature anisotropies at first-order and at second-order for the Szekeres
metric and for a fully general silent metric (Section 5).

Throughout the thesis we choose units c = 8πG = 1.
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2 Cosmological dynamics

We want to show and define an alternative approach to General Relativity proposed by
Ellis G. (1971) based on the Bianchi and Ricci identities following Bertschinger (1995) [66]
and Ellis (1971) [42], instead of the most used method based on the Einstein field equations
and on the conservation equation. It is very useful to see the application to cosmology
that followed (see for example: Ellis and Bruni 1989 [43]; Hwang and Vishniac [44]; Bruni,
Dunsby and Ellis 1992 [38].
This formulation of GR is fundamental in order to understand the theory of silent universes,
developed by Matarrese et al. for the first time in 1993 (see [21]).

2.1 A new approach to General Relativity

The new approach consists in dividing the four dimensional space-time into constant time
three-dimensional hypersufaces. In this way each temporal coordinate has an associated
spatial hypersurface in which there is a comoving observer. In a manifold point of view (see
Section 5) we are dividing the space-time in time-like worldlines determined by an affine
parameter λ and a position vector y that labels each particular worldline:

xµ(λ, yi) . (2.1)

We assume that exist an unique vector field that represents the velocity of the cosmic fluid
element, it is defined by the relation

uµuµ = −1 , (2.2)

so in terms of normalized comoving coordinates we can express the velocity as

uµ = (t, yi) . (2.3)

The four velocity uµ can be seen as the tangent vector of the worldline, i.e. using the
coordinates xµ(λ,y)

uµ =
dxµ

dλ
. (2.4)

In this way we can split the tensor of the theory in parts that are parallel or orthogonal to
the fluid flow. For this purpose we define the projection tensor

Pµν ≡ gµν + uµuν . (2.5)

It satisfies the projection conditions:

Pµνu
ν = 0 , P σ

µ P ν
σ = P ν

µ . (2.6)

Pµν projects, in every point, tensors in the rest space of a comoving observer identified by
its four-velocity uµ; for a generic tensor Aµ we have

A∥ = −uµAµ , Aµ
⊥ = Pµ

νA
ν . (2.7)
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We can think that each space-time point has a world-line with tangent vector uµ(λ, yi), so
for every single world-line there will be a different decomposition of Aµ. It is straightforward
to show that the decomposition for a second-rank tensor Bµν is given by

B∥ = uµuνB
µν , Bµ

⊥ ν = Pµ
σPνρBρσ . (2.8)

Using the relation (2.5) we can write the General Relativity line element in terms of the
comoving 4-velocity and the projection tensor

ds2 = gµνdx
µdxν = Pµνdx

µdxν − (uµdx
µ)2 . (2.9)

The meaning is immediate. A comoving observer that has worldline xµ(λ, yi), given a
subsequent event xµ + dxµ, we can identify from (2.9) an infinitesimal spatial separation

δl =
√︁
hµνxµxν (2.10)

and a infinitesimal time separation

δt =
⃓⃓
uµdx

µ
⃓⃓
. (2.11)

The approach that must be followed is to think about a free-falling observer well defined
by one worldline. This observer see itself moving along a straight line and constant velocity,
thus do not feel gravitational force, however it sees the adiacent free-falling observers that,
in a fully general way of thinking, follow curved lines. This effect is the well-known tidal
force effect that is explained in General Relativity with the geodesics equation. The essence
of geodesics equation resides in the fact that the commutator of the covariant derivatives of
the 4-velocity is non-zero,

[∇ρ,∇σ]u
µ = Rµ

νρσu
ν . (2.12)

This is the so called Ricci identity, and it is well defined for every 4-vector uµ. We can see
that Einstein tensor, Gµν = Rµν − 1

2gµνR, is given through the a reduction of the Riemann
tensor, the Ricci tensor Rµν = Rσ

µσν , and thinking about the Einstein field equation

Gµν = Tµν (2.13)

(where we stress the fact that in our thesis we choose units c = 8πG = 1) we can see a
clear convenience, i.e. the Ricci tensor is given by the components of the energy-momentum
tensor Tµν , but it doesn’t allow us to extract directly the fully information carry by Rµ

νρσ.
The only method to reach the total information is finding the metric components. The
method we want to show here, also called Lagrangian evolution, is based on that part of
the Riemann tensor the we cannot obtain from the ricci tensor. The Weyl tensor is defined
in a 4-dimensional space as

Cµνρσ = Rµνρσ − 1

2

(︂
gµ[ρRσ]ν − gν[ρRσ]µ

)︂
+

1

6
Rgµ[ρgσ]µ , (2.14)

where the square brackets denote antysimmetrisation. We can demonstrate that this tensor
obeys the same symmetries of the Riemann tensor

C[µν][ρσ] = C[ρσµν] , Cµ[νρσ] = 0 . (2.15)
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The fundamental feature of the Weyl tensor is that it is trace-free

Cσ
µσν = 0 . (2.16)

Therefore, while the Ricci tensor is the trace of the Riemann tensor that gives the infor-
mation about the curvature of local sources, the Weyl tensor is the traceless part of the
Riemann tensor and it contains the information of nonlocal sources. We will make a com-
parison between the Newtonian tidal forces and the property of the Weyl tensor. Using the
Einstein field equation and the Bianchi identity

Rµ
νρσ;λ = 0 , (2.17)

we can find a relation that join the Weyl tensor with the Energy momentum tensor

C ;ρ
µνρσ = (Tσ[ν;µ] +

1

3
gσ[µT;ν]) . (2.18)

Following Ellis (1971) the Weyl tensor can be determined by the symmetric an trace-free
symmetric tensors Eµν and Hµν . We use the Levi-Civita Symbol ϵµνρσ in order to define
the totally antysimmetric tensor in a space-time defined by the metric gµν :

ηµνρσ =
√
−gϵµνρσ . (2.19)

In particular it will be useful to define projected Levi-Civita to the orthogonal tangent plane

ηµνρ = ηµνρσu
σ . (2.20)

Thus we can split the Weyl tensor in

Cµνρσ = (gµναβgρσγδ − ηµναβηρσγδ)u
αuγEβδ + (ηµναβgρσγδ + gµναβηρσγδ)u

αuγHβδ , (2.21)

where

gµναβ ≡ gµαgνβ − gµβgνα . (2.22)

In equation (2.21) the second-rank tensor Eµν is called the "tidal force", and we refer to it
as the electric part of the Weyl tensor:

Eµν ≡ uρuσCµνρσ . (2.23)

In order to give an intuitive idea of the meaning of the tidal force we want to see its
correspondent tensor in classic gravitation. From a Newtonian point of view it takes the
parts of the gravitational field ϕ, the tidal force can be written as the 3-dimensional tensor

Eij ≡
∂2ϕ

∂xi∂xj
− 1

3
Pij

∂2ϕ

∂xk∂xk
. (2.24)

It is straightforward to show that the Poisson equation can be rewritten using the tidal force
in the Newtonian case
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∂Eij

∂xj
=

1

3

∂ρ

∂xi
. (2.25)

The other tensor in equation (2.21) is Hµν and, as we anticipated in the Introduction,
it will be of primary importance in order to discriminate a silent universe. It is called the
magnetic part of the Weyl tensor and it is defined by

Hµν ≡ 1

2
ηαβγ(µu

γuδCαβ
ν)δ . (2.26)

The magnetic tidal tensor has not a Newtonian counterpart.
Both parts of the Weyl tensor are symmetric

E[µν] = 0 , H[µν] = 0 , (2.27)

trece-free and flow-orthogonal

Eµνu
ν = Hµνu

ν = 0 , Pν
σEµν = Eµσ , Pν

σHµν = Hµσ . (2.28)
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2.2 Relativistic hydrodynamical equations

Therefore, the new approach that we are outlining want to reach the new field equation
given by (2.18). Before we must recover the kinematic quantities. Considering a particle
worldline that is linked to the observer from the connection vector Xµ, we can reach the
relative position of the particle with respect to the observer rest-frame simply projecting
the connection into it. Defying the acceleration vector

Duµ

Dλ
≡ uµ;νu

ν , (2.29)

we can reach an expression for the relative velocity of the particle with respect to the
observer

V µ ≡ vµνPν
σX

σ , (2.30)

where vµν is the tensor that quantifies the spatial projection of the velocity covariant deriva-
tives

vµν ≡ Pρ
µPσ

νuρ;σ . (2.31)

This quantity can be splitted in
vµν ≡ Θµν + ωµν , (2.32)

where Θµν = Θ(µν) is the symmetric part and ωµν = ω[µν] is the anti-symmetric part.
Θµν is usually called the expansion tensor and it represents the length rate in a given
direction. Representing l as the length between the observer and the particle, we can
quantify the isotropic part of the expansion Θµ

µ = Θ called volume expansion, and we can
reach the overall length rate as

Dl/Dλ

l
=

1

3
Θ . (2.33)

It corresponds to the well-known Hubble law in FLRW models, where H = Θ/3.
ωµν is called vorticity tensor and it represent a rotation that preserves all distances, i.e. a
rigid rotation. We define the vorticity vector as

ωµ =
1

2
ηµνρPν

σu
ρ;σ . (2.34)

It encodes the direction of the rotation and it gives us the possibility to write an expression
for ωµν :

ωµν = ηµνρω
ρ . (2.35)

Now we can decompose the covariant derivatives of the comoving flow element four
velocity appearing in the spatial gradient (2.31) as

uµ;ν = −uν
Duµ

Dλ
+

1

3
ΘPµν + σµν + ωµν . (2.36)

The third term, σµν , entering in this decomposition, is called shear tensor and it is trace-free;
it gives the information about how the spacetime distorts the fluid flow. This distortion
is volume-invariant and it is non-vanishing if the model is non-isotropic, in fact we have
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seen in the Introduction (Section 1.1) that in a FLRW model, that is fully homogeneous
and isotropic, the shear is zero. In other words the anisotropy direction remains unchanged
while other directions change lengthening and shortening each other.
Now refocusing on the Weyl tensor, we can find the following relations for its covariant
derivatives measured in a given worldline in terms of its electric and magnetic parts using
the definitions of the expansion, shear and vorticity tensosr:

uνuρCµ
νσρ =Pµ

αPν
βE

αβ + ηµναβuνσαγH
γ
β − 3Hµ

νω
ν ,

1

2
Pµ

αuβu
ρηβγδCγδσρ =Pµ

αPν
βH

αβ
;ν + ηµναβuνσαγE

γ
β ,

PµλPναuβC σ
αβσρ; =Pµ

αPν
β

DEαβ

Dλ
+ PανηµβγδuβHαδ;γ +ΘHµν

+ 2uαH
(µ

γ ην)αβγ
Duβ
Dλ

+ PµνσαβEαβ

− 2Eαν(σµα − ωµ
α)− Eαµ(σνα − ων

α) ,

1

2
Pµ

αPνρuβη
αβγδC σ

αβσρ; =− Pµ
αPν

β

DHαβ

Dλ
+ PανηµβγδuβEαδ;γ +ΘEµν

+ 2uαE
(µ

γ ην)αβγ
Duβ
Dλ

− PµνσαβHαβ

+ 2Hαν(σµα − ωµ
α) +Hαµ(σνα − ων

α) .

(2.37)

We can see the high degree of symmetry between the magnetic tidal tensor and the force
field.
The total derivatives that we used to define the acceleration vector (2.29) can be interpreted
as the proper time derivatives in the rest frame of the fluid element if we choose uµ as the
velocity of the cosmological fluid flow itself. In this way equation (2.37) is very simplified
for the simple reason that the projectors take a more easy configuration. Moreover the
equations are fully covariant and gauge-invariant, see [43]. Now we can rewrite equation
(2.18) in terms of Eµν and Hµν , a new set of field equation for a perfect fluid introduced by
Ellis (1971) [42]:

Pµ
αPν

βE
αβ
;ν =3Hµ

νω
ν − ηµναβuνσαγH

γ
β +

1

3
Pµνρ;ν ,

Pµ
αPν

βH
αβ
;ν =− 3Hµ

νω
ν + ηµναβuνσαγE

γ
β − (ρ+ p)ωµ ,

Pµ
αPν

β

DEαβ

Dλ
=3Eα(µσν)α − Pα(µην)βγδuβHαδ;γ − 2uαH

(µ
γ ην)αβγ

−ΘEµν − PµνσαβEαβ − Eα(µων)
α − 1

2
(ρ+ p)σµν ,

Pµ
αPν

β

DHαβ

Dλ
=3Hα(µσν)α + Pα(µην)βγδuβEαδ;γ + 2uαE

(µ
γ ην)αβγ

−ΘHµν − PµνσαβHαβ −Hα(µων)
α ,

(2.38)

where we denote p as the pressure of the cosmic fluid. It is fascinating how this set of
equations are similar to the Maxwell equations as Ellis noted in [42]. I wrote it so that
the symmetries and analogies with Maxwell equations would appear clearly. First of all
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these equations are exact and covariant, so independent from the coordianate system. In
Newtonian theory these equation are the correspondent of the divergence and the curl of
the Eij defined in equation (2.24):

∂Eij

∂xj
=

1

3

∂ρ

∂xi

∂Ei
l

∂xk
ηjlk +

∂Ej
l

∂xk
ηilk = 0 .

(2.39)

In order to get the "topos" of the Ellis equations, velocity gradient uµ;ν , we can solve the
Einstein field equations and find the covariant derivatives, or using the evolution equation
of the kinematic components already defined we can write:

DΘ

Dλ
+

1

3
Θ2 − Duµ;µ

Dλ
+ 2(ω2 − σ2) +

1

2
(ρ+ 3p) = 0 ,

Pµ
ν

Dων

Dλ
+

1

2
ηµναβuν

Duβ;α
Dλ

+
2

3
Θωµ − σµνω

ν = 0 ,

Eµν + Pµ
αPν

β

Dσαβ

Dλ
− Du(ν;µ)

Dλ
+

2

3
Θσµν

+σµασνα + ωµων +
1

3
Pµν

(︄
2σ2 + ω2 − Duµ;µ

Dλ

)︄
= 0 .

(2.40)

In particular the first equation is the well-known Raychaudhuri equation, see [45]. Adding
a cosmological constant Λ and using (2.33) we can have a more intuitive form of the
Raychaudhuri equation

3
D2l

Dλ2
= 2(ω2 − σ2) +

Duµ;µ
Dλ

+
1

2
(ρ+ 3p) + Λ . (2.41)

This form shows that the acceleration rate of the length between the comoving observer
and a nearby particle is directly proportional to the density of the fluid flow and to the
cosmological constant, therefore Λ take the parts of a constant repulsive force. Moreover we
can see that the rotation scalar is acting a repulsive effect that is unaffected by gravity, the
corresponding of the centrifugal force. The shear term distorts in a attractive way the fluid
flow and, as could be expected, the covariant derivatives of the acceleration vector influence
the distance between the worldlines.
Looking at the second dynamical equation, considering that the shear and the acceleration
are zero, the variation of the vorticity can be described by a rigid flow because there is not
deviations in the fluid worldlines.
In the last equation is interesting see that the only source of the shear tensor is the Electric
part of the Weyl tensor. The force field take the parts of the gravitational field that induce
the variation of the shear in the flow lines.
As the Einstein field equations, this set of dynamical equation must be solved only with the
density and pressure evolution. We can rewrite the continuity equation

Tµν
;ν = 0 (2.42)
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in terms of the kinematical quantities, only splitting the covariant derivatives of Tµν in the
orthogonal and parallel part with respect to uµ:

Dρ

Dλ
+ (ρ+ p)Θ = 0 . (2.43)

Therefore we have defined a close set of dynamical equations for the density and the geometry
of the space-time in the presence of a mass-fluid element.
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3 Silent Universes

In this section we follow the analysis performed by Matarrese et. al. (1993)-(1995) [21],[17]
through Lagrangian evolution, analyizing the worldline trajectory of a cold dust irrotational
fluid flow element with 4-velocity uµ, only dependent on ρ, on the velocity gradient uµν and
on the electric tide Eµν , in the case of Hµν = 0.

3.1 Dynamics of irrotational dust

We have seen that the density and the velocity gradient are local, moreover the evolution
of Eµν depends only on local components, therefore Hµν = 0 implies that the worldlines
of the cosmological fluid flow evolve independently of each other. Barnes and Rowlingson
(1989) [20] found that, imposing ωµν = 0 and Hµν = 0, the second equation of (2.38), that
represents the H-divergence, gives rise to the equation

ηµναβuνσαγE
γ
β = 0 . (3.1)

Contracting the indices with the fully antisymmetric tensor, we can find the spatial relation

σi[kE
j]
k = 0 . (3.2)

Therefore the representative matrix of the force field and the shear commute. So there must
exist a common orthonormal tetrad for Eµν and σµν . In this way we can write

Eµν =
3∑︂

s=1

Esesµesν , σµν =
3∑︂

s=1

σsesµesν (3.3)

where {Es}s=1,2,3 and {σs}s=1,2,3 are respectively the eigenvalues of Eµν and σµν , and
{esµ}s=1,2,3 are the common eigenvectors.
Following Bruni, Matarrese and Pantano (1995) [17] there must exist a coordinate basis
in which the metric is diagonal with basis vectors the eigenvectors of the force field and
the shear. Moreover we can interpret esµ as the tetrad of an orthonormal hypersurface
orthogonal in each point to the velocity flow field, thus we can write

uµ = −δ0µ , esµ = lαδ
s
µ . (3.4)

In this way we can write the general line element of a silent model as

ds2 = −dt2 +
3∑︂

s=1

l2s(t,x)(dx
s)2 , (3.5)

where we used the notation for the length size l but in the above equation has a different
value depending on the direction. In this way we can write the expansion rate in the the
three directions esµ as

Dls/Dλ

ls
= σs +

1

3
Θ . (3.6)
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Moreover we can define the average length, given by

l = (l1l2l3)
1/3 , (3.7)

in this way we can write the expansion rate as

Dl/Dλ

l
=

1

3
Θ . (3.8)

Now we make a differentiation of the collapses corresponding to the different configura-
tions that the directional lengths can take.

• Point-like singularity: all three ls → 0.

• Spindle-like singularity: two ls → 0 and the third → ∞.

• Pancake-like singularity: two of ls take finite values and the other tends to zero.

• Cylinder singularity: two ls → 0 and the third takes a constant value.

We have already said that if we take the velocity field of the fluid element as in equation
(2.38) the total derivatives can be written as the time derivatives, from now on we will use
the time derivative notation (.)̇ .
So the fundamental values of the silent theory are the density, the expansion scalar and
the eigenvalues of the shear and the force field. We can label each of these values to a
component of a six dimensional phase-space position vector:

X = (ρ,Θ, σ1, σ1, E1, E2) , (3.9)

where we uses only two eigenvalues for the shear and the force field because both are trace-
free.
Matarrese et al. (1993) showed that the evolution of the flow worldlines is given by a set of
six first-order ordinary differential equations giving the time evolution of the components
of X. It is is important the fact that these differential equations are ordinary, because give
us the information that each fluid element is uninfluenced by the surrounding ones, and
these proceed only forced by the initial conditions. In other words, defying the differential
equation as Ẋ = V(X), V is time independent and the orbits do not intersect. Using the
tidal Maxwell equations (2.38), the continuity equation (2.43) and the constraint equations
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(2.40) we can write:

ρ̇ = −Θρ ,

Θ̇ = −1

3
Θ2 − 2σ21 − 2σ1σ2 − 2σ22 −

1

2
ρ ,

σ̇1 =
2

3
σ2(σ1 + σ2)−

1

3
σ21 −

2

3
Θσ1 − E1 ,

σ̇2 =
2

3
σ2(σ2 + σ1)−

1

3
σ22 −

2

3
Θσ2 − E2 ,

Ė1 = E1(σ1 − σ2)− E2(σ1 + 2σ2)−ΘE1 −
1

2
ρσ1 ,

Ė2 = E2(σ2 − σ1)− E1(σ2 + 2σ1)−ΘE2 −
1

2
ρσ2 .

(3.10)

Defying the local average scale factor l = (l1l2l3)
1/3 and using continuity equation in

equation (3.10), we can recover the density law as function of the lengths

ρ =
M

l1l2l3
. (3.11)

In this equation we denote the constant averaged mass measured at a time t0:

M = ρ(t0)l(t0) . (3.12)

We can see that, when a metric length ls → 0 we get a density singularity.
From equation (3.10) we can see that, in the six dimensional phase space of the dynamics
variables,

∇ ·V = −5Θ . (3.13)

Therefore the divergence V depends only on Θ and the system is conservative if the system
is contracting Θ < 0, dissipative if the system is expanding Θ > 0. From Raychaudhuri
equation (the second of equations (3.10)), since the velocity expansion rate is strictly neg-
ative, as soon as Θ take a negative value, the collapse is irreversible and in this case the
only fixed point is the origin of the six dimensional phase space. On the other hand if the
absolute value of the position vector X diverge also all the six dynamical variables diverge
independently.
Of course the most restrictive silent universe assumption is the cancellation of Hµν . Matar-
rese et. al. (1994) [22] proved that in a perturbated FLRW universe the magnetic part of
the Weyl tensor is generated at second order (the already mentioned "tidal induction"), so
during the inhomogeneities’ nonlinear evolution. If we think with a inductive reasoning we
can say that silent models can be a special case of a more general model. Mutoh et. al.
(1997) [46] analyzed the perturbations of silent universe and the effect of a perturbed and
non-zero magnetic tidal tensor. They found that in a spindle-like collapse the perturba-
tions of Hµν diverge and so there is exchange of gravitational information, "the silence is
broken". They dub this "quiet universe". On the other hand in a pancake-like collapse the
perturbations vanish, this is in agreement that, in the Newtonian case, the configuration of
the cosmological fluid tends to a pancake-like collapse.
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3.2 Dimensionless Variables

Bruni, Matarrese and Pantano (1995) [17] rewrite the problem with a new set of variables
in order to understand the collapsing or expanding configurations. We can perform a linear
transformation in our 6-dimensional phase-space writing:

σ+ =
1

2
(σ1 + σ2), E+ =

1

2
(E1 + E2) ,

σ− =
1

2
(σ1 − σ2), E− =

1

2
(E1 − E2) .

(3.14)

With this transformation we have a new set of variables in the 6-dimensional phase-space,
more specifically we denote the new position vector as Y = (ρ,Θ, σ+, σ−, E+, E−) and we
can write the autonomous system Ẏ = W(Y) as

ρ̇ = −Θρ ,

Θ̇ = −1

3
Θ2 − 6σ2+ − 2σ2− − 1

2
ρ ,

σ̇+ = σ2+ − 1

3
σ2− − 2

3
Θσ+ − E+ ,

σ̇− = −2σ+σ− − 2

3
Θσ− − E− ,

Ė+ = σ−E− − 3E+σ+ −ΘE+ − 1

2
ρσ+ ,

Ė− = 3σ−E+ − 3E−σ+ −ΘE− − 1

2
ρσ− .

(3.15)

In this case we still have the divergence of the position vector

∇ ·W = −5Θ , (3.16)

and we still recognise the only stationary point of the system as the origin of the new phase-
space.
The most interesting special cases hidden in this ODEs system are the Szekeres models, see
Szekeres (1975) [8]. The first possibility corresponding to these models is the case in which
σ1 = σ2 and E1 = E2, or in the new variables

σ− = 0 , E− = 0 . (3.17)

Thus the orbits of that models are restricted to a 4-dimensional phase-space, and this means
that we must perform a restriction on the initial conditions. The second possibility in which
we can recover Szekeres models is the case in which σ1 = σ3, E1 = E3 or σ2 = σ3, E2 = E3,
in the new variables

σ+ = ±1

3
σ− E+ = ±1

3
E− . (3.18)

In the next section we will study the dynamics of these special models. In particular in this
thesis we will analyze a Szekeres type metric in order to compute the CMB temperature
anisotropies.
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In order to be consistent with the observations we can using the "dimensionless variables",
see Goode (1989) [47]. We use the following transformation with the previous variables, in
particular the standard density parameter is

Ω =
ρ

3Θ
, (3.19)

then we have the transformation definitions

Σ+ =
σ+
Θ
, ϵ+ =

E+

Θ2

Σ− =
σ−
Θ
, ϵ− =

E−
Θ2

.

(3.20)

The most relevant case in which we can find a Θ = 0 singularity is the turn-around epoch
in which, in a close universe, there is the inversion between expansion and contraction. In
all other cases, more specifically in the collapse analysis and in occurring singularities, it
is a worthwhile choice. Now defying the 5-dimensional phase-space with the corresponding
position vector G = (Ω,Σ+,Σ−, ϵ+, ϵ−) we can write

Θ̇ = −Θ2(
1

3
+ 6Σ2

+ + 2Σ2
− +

1

6
Ω) ,

Ġ = ΘF(G) ,
(3.21)

where F is a subsystem of ODEs given in equation (3.15) containing the transformed
variables {ρ, σ+, σ−, E+, E−} → {Ω,Σ+,Σ−, ϵ+, ϵ−}. From this relation we can observe
that the 5-dimensional hyperplane of equation

Θ = 0 (3.22)

is an open set of stationary points in which G diverge on it. Of course in this case we have
that the origin of the 6-dimensional phase-space is still a stationary point. The analysis
of the trajectories must be done in two different subsets in which there are contraction or
expansion, i.e. respectively Θ < 0 or Θ > 0. For this purpose we use a new dimensionless
variable that take the parts of a time variable for our 5-dimensional position vector G, we
define

τ =

∫︂
|Θ| dt =

{︄
+
∫︁
Θ dt = +3 ln l for Θ > 0

−
∫︁
Θ dt = −3 ln l for Θ < 0

(3.23)

In this way the time derivatives dτ/dt must be strictly positive. In the limit in which
τ → ∞ we can reach the collapse of the cosmic fluid, in fact if the average length l → 0
the expansion scalar must be divergently negative Θ → −∞. On the contrary if we have
a continuous expansion we still have τ → ∞, the average length diverge, l → ∞, so the
expansion scalar tends to vanish, Θ → 0, see equations (3.7), (3.8).
Now we denote the τ -derivatives as (.)′ = d/dτ . In this way we can write for the contraction
epoch the following ODEs system in the 6-dimensional phase-space W = (Θ′,G′) given by
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the six dynamical equations

Θ′ = −Θ

(︃
1

3
+ 6Σ2

+ + 2Σ2
− +

1

6
Ω

)︃
,

Ω′ = −1

3
[12(3Σ2

+ +Σ2)− 1 + Ω] ,

Σ′
+ = Σ+

[︃
1

3
− 2(3Σ2

+ +Σ2
−)− Σ+ − 1

6
Ω

]︃
+

1

3
Σ2
− + ϵ+ ,

Σ′
+ = Σ−

[︃
1

3
− 2(3Σ2

+ +Σ2
−) + 2Σ+ − 1

6
Ω

]︃
+ ϵ− ,

ϵ′+ = ϵ+

[︃
1

3
− 4(3Σ2

+ +Σ2
−) + 3Σ+ − 1

3
Ω

]︃
− Σ−ϵ− +

1

6
Σ+Ω ,

ϵ′− = ϵ−

[︃
1

3
− 4(3Σ2

+ +Σ2
−)− 3Σ+ − 1

3
Ω

]︃
− 3Σ−ϵ+ +

1

6
Σ−Ω .

(3.24)

Now we can see that the equations that refers to the variables of the five dimensional
position vector G are completely independent from the expansion scalar. Therefore we can
only study the 5-dimensional system G′ = F(G)

G′ =

{︄
+F(G) for Θ > 0

−F(G) for Θ < 0 .
(3.25)

In the case of Θ > 0 we have

Θ′ = Θ

(︃
1

3
+ 6Σ2

+ + 2Σ2
− +

1

6
Ω

)︃
,

Ω′ =
1

3
[12(3Σ2

+ +Σ2
−)− 1 + Ω] ,

Σ′
+ = −Σ+

[︃
1

3
− 2(3Σ2

+ +Σ2
−)− Σ+ − 1

6
Ω

]︃
− 1

3
Σ2
− − ϵ+ ,

Σ′
− = −Σ−

[︃
1

3
− 2(3Σ2

+ +Σ2
−) + 2Σ+ − 1

6
Ω

]︃
− ϵ− ,

ϵ′+ = −ϵ+
[︃
1

3
− 4(3Σ2

+ +Σ2
−) + 3Σ+ − 1

3
Ω

]︃
+Σ−ϵ− − 1

6
Σ+Ω ,

ϵ′− = −ϵ−
[︃
1

3
− 4(3Σ2

+ +Σ2
−)− 3Σ+ − 1

3
Ω

]︃
+ 3Σ−ϵ+ − 1

6
Σ−Ω .

(3.26)

Thus in the case of expansion we note that the sign is simply the opposite than in the
contraction case, a parity symmetry driven by the time reversal transformation τ → −τ .
More in detail, the parity symmetry give us the information that the trajectories for Θ > 0
and for Θ < 0 are mirrored. This symmetry will make the same fixed points up and down the
hyperplane Θ = 0, so in the 5-dimensional phase-space the stationary points take convergent
values for the G coordinates. Writing the Jacobian matrix of G we can see that the signs
change with the sign of Θ, therefore the eigenvalues of the matrix change values, thus the
stable points have the corresponding unstable ones and completely unstable points have the
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corresponding stable ones beyond the hyperplane of symmetry Θ = 0. Moreover the form
of the Raychaudhuri equation gives us the information that the "time" variation Θ′ will be
invariant under the "time-reversal" transformation. We can rewrite Raychaudhuri equation

Θ′ = ±αΘ , (3.27)

where
α ≡

(︃
1

3
+ 6Σ2

+ + 2Σ2
− +

1

6
Ω

)︃
. (3.28)

This gives the solution
Θ = Θ0e

±α(τ−τ0) . (3.29)

Therefore we can write the equation

(τ − τ0) = ∓ 1

α
ln[1 + αΘ0(t− t0)] . (3.30)

This is the connection form between the physical time t and dimensionless variable τ . In
this way we can write the relations for the expansion scalar, the average scale length and
the various length scales along the principal axis:

Θ =
Θ0

1 + αΘ0(t− t0)
,

ls = ls0[1 + αΘ0(t− t0)]
ps ,

l = l0[1 + αΘ0(t− t0)]
1/3α ,

(3.31)

where
ps =

1

α

(︃
1

3
+ Σs

)︃
. (3.32)

In particular Σ1 = Σ+ +Σ−, Σ2 = Σ+ −Σ− and Σ3 = −2Σ+. Every fixed point represents
a model and the contraction or expansion is monotonic and it depends on the signs of Θ0.
We can see that the singulirity

t− t0 =

{︄
− 1

αΘ0
for Θ0 > 0

+ 1
αΘ0

for Θ0 < 0 .
(3.33)

depends too on the signs of Θ0.
In the next section we want to study the special case of Szekeres models, the already seen
degenerate case in which both the variables Σ− and ϵ− vanish.
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3.3 Szekeres models

Barnes and Rowlingson (1989) [20] showed that the Szekeres solutions (see [8] ) are solutions
of an irrotational dust cosmological fluid element, with Hµν = 0, moreover the shear and the
force field have two degenerate eigenvalues. We can interpret FLRW solutions (homogeneous
and isotropic), the Kantowski-Sachs solutions (homogeneous and anisotropic) and Tolman-
Bondi solutions (inhomogeneous and isotropic) as special cases of Szekeres solutions, a
generalization of all three. There is a large literature on Szekeres models. More specifically
Szekeres (1975) studied a finite region filled with irrotational dust collapsing. An important
analysis was studied by Bonnor and Tomimura (1976) [48] where they classified various
models from the different values reached by the Szekerese metric parameters. Szekeres
solutions are divided in two classes:

• Class I: Solutions that formally represent the Tolman-Bondi spherically symmetric
solutions, generalising them. They are primarily used for study the nonspherical
collapse of an inhomogeneous dust mass distribution.

• Class II: Solutions that generalise Kantowski-Sachs and FLRW. These solutions are
used for the study of cosmological models.

Goode and Wainwright (1982) [9] found that a new formulation of the Szekeres metric
allows to study both Szekeres classes at the same time without modifying them. With this
formulation they studied in detail the singularities of the model.
Considering Θ < 0, so the collapsing epoch, we start to study the Szeekeres models dynamics
imposing

Σ− = ϵ− = 0 . (3.34)

Therefore the 5-dimensional position vector G is restricted to the 3-dimensional position
vector q = (Ω,Σ+, ϵ+), where we can define the restricted ODEs subsystem as q′ = −f(q).
Thus the dynamical equations take the form

Θ′ = Θ

(︃
1

3
− 6Σ+ − 1

6
Ω

)︃
,

q′ = −f(q) ,

(3.35)

where we can explicitly define de form of f as

Ω′ = −1

3
Ω(36Σ′

+ − 1 + Ω) ,

Σ′
+ = Σ+

[︃
1

3
− Σ+(1 + 6Σ+)−

1

6
Ω

]︃
+ ϵ+ ,

ϵ′+ = ϵ+

[︃
1

3
− 3Σ+(4Σ+ − 1)− 1

3
Ω

]︃
+

1

6
Σ+Ω .

(3.36)

Of course if the system is in a situation of expansion, Θ > 0, the sign of f changes. We can
easily calculate the divergence

∇ · f = 1− 7

6
Ω + Σ+(1− 42Σ+) . (3.37)
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Therefore we can see that the system has a well-behaviour if

∇ · f < 0 for Ω >
6

7

[︁
1 + Σ+(1− 42Σ+)

]︁
. (3.38)

Thus we can see that in any point of the 3-dimensional phase-space the trajectory of the
flow of f are converging except for the parabola in the Ω-Σ+ plane of equation

Ω =
6

7

[︁
1 + Σ+(1− 42Σ+)

]︁
. (3.39)

Moreover it is interesting the fact that ∇ · f is independent on ϵ+. For the Ω factor in the
right-hand side of the correspondent of the continuity equation in (3.36) we can see that
the trajectories in the reduced 3-dimensional phase-space cannot cross the plane Ω = 0, so
we must focus on the section given by Ω ≥ 0. We can see that the condition in equation
(3.38) are satisfied everywhere if it is satisfied the condition

Ω′ < 0 for Ω > 1− 36Σ2
+ . (3.40)

Therefore, for the condition Θ < 0, the equation Ω = 0 denote a convergence plane for the
trajectories in the 3-dimensional phase-space with position vector q, and we deduce that all
the points on it will be attractors.
Now we can study the Jacobian matrix of the system f(q) given by:

J(q) =

⎛⎜⎝−1
3(Ω + Σ2

+ − 1
3x) −24ΩΣ+ 0

−1
6Σ+ −1

6Ω− Σ+(12Σ+ + 1)− Σ+(6Σ+ + 1) + 1
3 1

1
6Σ+ − 1

3ϵ+
1
6Ω− 3ϵ+(8Σ+ − 1) −1

3x− 3Σ+(4Σ+ − 1) + 1
3

⎞⎟⎠ ,

(3.41)
Now we can find the stationary points simply imposing f(q) = 0 and solving the system.

We can find the following points

Point Ω Σ+ ϵ+

D1 1 0 0
D2 0 0 0
D3 0 1/6 0
D4 0 -1/3 0
D5 0 1/3 2/9
D6 0 -1/12 1/32
D7 -3 -1/3 1/6

Table 1: Stationary points for the f(q) = 0.

Now we find the values of the Jacobian for each stationary point {Ds}s=1,...,7 and com-
pute the different eigenvalues {λr}r=1,2,3, we impose

(J − λr1)v = 0 , (3.42)
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where v is a generic vector on the 3-dimensional phase-space, in order to understand if the
point represents a attractor, a repeller or a saddle.

We want to stress that if all λr < 0 the point is asymptotically stable, an attractor for
the trajectories in the 3-dimensional phase-space, on the contrary if λr > 0 the point is
unstable. Different signs denote a saddle point. The different eigenvalues values and their
interpretation are given in Table 2

Point λ1 λ2 λ3

D1 -1/3 -1/3 1/2
D2 1/3 1/3 1/3
D3 0 -1/2 1/2
D4 -1 -1 -2
D5 -1 -5/3 -2/3
D6 1/4 -1/4 5/8
D7 -1 -1/2 1

Table 2: Eigenvalues λr of the Jacobian J a in the case of expansion collapse Θ < 0.

In the expansion epoch there is the transformation τ → −τ and the sign of the Jacobian
J(q) changes, and subsequently the divergence ∇ · f and the eigenvalues λr change sign,
more in detail the condition (3.39) changes the direction of the inequalities, in this way the
Ω-plane is a set of repulsors points. In expansion regime or in collapse regime the λr have
opposite sign so opposite behaviour, i.e. for Θ > 0 a repulsor become an attractor and vice
versa, while a saddle remains a saddle.
Now we want to interpret the stationary points {Ds}s=1,...,7. Of course they remain un-
changed under expansion or collapse. Each stationary point represent a model, the sign of
the scalar expansion Θ give us the information about the expansion of the model from an
initial singularity or the collapse towards a future singularity.
In the previous section we have defined the paramaeter α and ps, see equations (3.28),
(3.32), they are useful to understand the length in Θ > 0 regime or in Θ < 0 regime, see
Table 3. We begin with point D1, a saddle point, it represents the well-known flat FLRW

Point α p1 p2 p3

D1 1/2 2/3 2/3 2/3
D2 1/3 1 1 1
D3 1/2 1 1 0
D4 1 0 0 1
D5 1 2/3 2/3 -1/3
D6 3/8 2/3 2/3 4/3

Table 3: Parameters β and ps for the stationary points.

model, in fact we see that the shear and the force field parameter are both zero. In point D2

we see a Milne universe, a void without shear and force field, it is conformally flat and so
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locally equivalent to an open FLRW model. It is a repeller in the collapse regime (so a at-
tractor in the expansion regime). Therefore both D1 and D2 have a collapse and expansion
that is spherical. D2 represents that the continuous expansion of a void is locally equivalent
to a Milne universe. Point D3 is a saddle and represents a solution with Ω = 0 (vacuum)
that is pure Szekeres, it do not fall in special cases. Point D4, a repeller for Θ > 0 (thus
an attractor for Θ < 0) is a degenerate Kasner model with p1 = p2 = 0, so non-expanding
along x, y and it has a pancake singularity. Also D5 is a repeller for Θ > 0 and represents
a degenerate Kasner model but now with one expansion direction and two contractiong
directions. Therefore point D4 represents the collapse of locally asymmetrical pancakes and
D5 represents the collapse of filament structures. Point D6 is a saddle and represents an
inhomogeneous expansion. Following Bonnor and Tomimura (1976) [48], there is a subclass
of Szekeres models that asymptotically tend to D6. D7 is unphysical because of the density
parameter is strictly negative. Moreover, if the shear parameter Σ+ > 0 we can see that,
during the collapse Θ < 0, the fluid elements take a prolate configuration, that is the case of
points D3 and D5, in fact we see in 3 that D3 has a length direction that remains unchanged
and D5 has an expanding length direction during the collapse and it is easy to see in mind
the filament. On the other hand if Σ+ < 0 the fluid elements take a oblate configuration.
We see that D4 and D6 have an oblate collapse, in fact D4 has only a collapsing direction
while the other two remain unchanged, and D6 has a faster collapse direction.

Σ+

ϵ+

D4

D2 D3

D6

D5

Figure 3: Σ+-ϵ+ plane (with Ω = 0) in a collapsing regime Θ < 0.
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In 3.3 we show the trajectories during the collapse, Θ < 0. We can see that that D4 and
D5 are attractors, D2 is a repeller, D3 and D6 are saddles. The Σ+ axis divide in two parts
the plane. Because of ϵ+ contains the information of the electric part of the Weyl tensor,
we have that the gravitational information vanish in ϵ+ = 0. As long as we are referring
to a plane in which Ω = 0 we have that ρ = 0. For this reason we interpret ϵ+ = 0 as the
Minkowski space-time.
In Section 4 we will study the perturbation around FLRW of the Szekeres metric in order
to study the trajectories and do the phase plane analysis.
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3.4 Silence universes in Newtonian limit

If the metric perturbations are 1-dimensional there is local evolution. But there is a very
interesting feature occurring if the matter distribution is in Newtonian limit. Matarrese et
al. (1993) [21] showed that if the magnetic part of the Weyl tensor is null in the Newtonian
limit the force field has a local Lagrangian evolution equation and the locality is broken only
when there is the intersection of trajectories. Therefore, since mass element is followed by
the tidal field depending locally only by density and velocity gradient, these fluid variables
and tidal field must evolve indipendently. Moreover, Matarrese et al. (1994) [22] discover
thatHµν do not necessarily vanish in Newtonian limit. We follow Bertschinger and Hamilton
(1994) [39] in order to get the magnetic part of the Weyl tensor in Newtonian limit. Starting
from the line element

ds2 = a2(τ)[−(a+ 2ϕ)dτ2 + 2widτdx
i + ((1− 2ψ)γij + 2χij)dx

idxj ] , (3.43)

see (1.27) Section 1.2.2. The two metric potential ϕ and ψ coincide to the Bardeen poten-
tials, respectively −Φ and Ψ. Now we compute the Weyl tensor:

C0
i0j = −1

2

[︂
Dij(ψ + ϕ)Ẇ ij + (∂2η +∇2 − 2K)χij

]︂
,

C0
ijk = 2∇[kW|i|j] +

1

2
(∇2 + 2K)γi[jwk] + 2∇[jχ̇|i|k] ,

Ci
jkl = γijmnγ

pn
kl

[︂
Cm

0p0 + (∇2 − 3K)χm
p

]︂
+ γijmnγ

pq
kl∇p∇nχm

q ,

(3.44)

where we used the definitions

Dij ≡ ∇i∇j −
1

3
γij∇2 , Wij ≡ ∇(iwj) , γijkl ≡ 2δi[kγ|j|l] . (3.45)

Now using the 4-velocity of the comoving cosmological flow

uµ = (
1

a
, 0, 0, 0) , (3.46)

and using the decompositions of the Weyl tensor in its electric and magnetic parts (see
equations (2.23) and (2.26)) we can find the force field

Eij =
1

2
Dij(ψ + ϕ) +

1

2
Ẇ ij −

1

2
(∂2η +∇2 − 2K)χij , (3.47)

and the magnetic tidal tensor

Hij = −1

2
∇(iHj) +∇kη

kl
(iḣj)l . (3.48)

We know that in Newtonian limit ϕ = ψ the force field take the parts of the gravitational
tidal field as we have already said in Section 2.1. However the magnetic tidal tensor have
not a Newtonian correspondent expression.
This last equation demonstrates that magnetic part of the Weyl tensor does not vanish in
the Newtonian limit.
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4 Silent metric cosmological perturbations

In this thesis we are primarily interested in evaluating the effects of light propagation for
a second order perturbation of the geodesics equation in a large scale Silent cosmological
model. In order to study this topic we must solve the linearized Einstein Field Equation
starting from a first order perturbed metric with a FLRW background. We discuss the
peculiarity of the metric with the study of the Weyl tensor and the consideration of the
dynamical system in terms of the covariant variables.
Initially on all scales, and at present time on large scales (≫ 100h−1 Mpc), large-scale struc-
tures are represented by first-order perturbation of the FLRW background geometry. We
shall consider the second class Szekeres-type flat metric [8] presented in the form introduced
by Goode and Wainwright [4] (1982) in a flat universe. We follow Meures and Bruni (2011),
but in this case we use a first-order metric, see [5]. The first-order perturbed metric in
cartesian coordinates has the form:

gµν = g(0)µν + hµν =

⎛⎜⎜⎜⎝
−1 0 0 0
0 a2(t) 0 0
0 0 a2(t) 0
0 0 0 a2(t)(1 + 2Z(t,x))

⎞⎟⎟⎟⎠ , (4.1)

where g(0)µν is the unperturbed background metric and hµν is the first order perturbation. We
set our coordinates in Synchronous gauge. We have done the chosen of synchronous gauge
because it has the property of the existence of a set of comoving fundamental observers
who fall freely without changing their spatial coordinates. The existence of a fundamental
observer follows directly from the geodesic equation:

duµ

dλ
+ Γµ

αβu
αuβ = 0 . (4.2)

. In particular, we define the affine connection

Γµ
αβ =

1

2
gµσ(gασ,β + gσβ,α − gαβ,σ) , (4.3)

where we used the notation for the quadri-gradient as (),µ ≡ ∂µ.
It is straightforward from (4.1) that Γi

00 = 0, implying that ui = 0 is a geodesic. In
particular fluid elements move along geodesic flow lines that are orthogonal to the cosmic
time t hypersurfaces, represented by a manifold Ht, with four-velocity:

uµ = (1, 0, 0, 0) . (4.4)

In this Section we want to find a solution for the linearization of the Einstein Field Equation
including the cosmological constant Λ:

Gµν = Tµν − Λgµν . (4.5)

We refer to matter as a representation of cold dark matter, a pressureless dust component,
and the fluid flow is irrotational. For instance, the energy-momentum tensor Tµν must have
only the zero component:

T 00 = ρ(t,x) . (4.6)
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We will use the following parameters for our computations: ΩΛ = 0.75, H0 = 72 km s−1

Mpc−1≃ 0.0736 Gy and Ωm = 1−ΩΛ. In the next parts of the thesis we will use the values
of ρ(0)0 = 3H2

0Ωm and the cosmological constant Λ = 3H2
0ΩΛ.

4.1 Continuity Equation

In order to solve the EFE we must have the general form of the density function ρ(t,x) in
terms of the metric potential Z(t,x). We present the continuity equation in term of the
kinematic quantity expansion tensor Θµν [3]:

ρ̇ = −Θρ , (4.7)

where the expansion scalar is given by:

Θ = uµ;µ . (4.8)

We denote the time derivative d
dt ≡ ()̇ and the covariant derivative as ∇µ ≡ ();µ.

Denoting the affine connection truncated to the first-order

Γµ
αβ = Γ

(0)µ
αβ + Γ

(1)µ
αβ , (4.9)

where we denoted the zeroth-order and first-order affine connection respectively as

Γ
(0)µ

αβ =
1

2
g(0)µσ(g

(0)
ασ,β + g

(0)
σβ,α − g

(0)
αβ,σ) (4.10)

and

Γ
(1)µ

αβ =
1

2
g(0)µσ(hασ:β + hσβ;α − hαβ;σ) . (4.11)

Using (4.10) and (4.11) we have that the only non vanishing components are :

Γ
(0)0

11 = Γ
(0)0

22 = Γ
(0)0

33 = ȧa, Γ
(0)k

0k =
ȧ

3a
=

1

3
H

Γ
(1)0

33 = 2aȧZ + a2Ż, Γ
(1)1

33 = −Zx, Γ
(1)2

33 = −Zy, Γ
(1)3

µ3 = Z,µ

(4.12)

where we defined the Hubble rate H(t) ≡ ȧ(t)/a(t).

With the Christoffel Symbols the continuity equation (4.7) take the form:

ρ̇+

(︃
3
ȧ

a
+ Ż(1− 2Z)

)︃
= 0 . (4.13)

Keeping in mind that Z ≪ 1 this form can be rearranged as:

ρ̇

ρ
= −

(︃
3
ȧ

a
+

1

2

(1 + 2Z)·

(1 + 2Z)

)︃
. (4.14)

And now is straightforward to find the general solution of the density function truncated to
the first order in Z:

38



ρ(t,x) =
m(x)

a3(t)
(1− Z(t,x)) , (4.15)

where m(x) is a constant of integration that we identify as the constant in time mass
function. It can be useful assuming that ρ(t,x) can be defined through the deviation from
the background function δ = δρ/ρ(0), where ρ(0) = ρ̄0/a

3 is the homogeneous energy density
of the background and ρ̄0 = 3ΩmH

2
0 . With these definitions the continuity equation is at

first order:
ρ̇(0) + 3Hρ(0) + (Ż + δ̇)ρ(0) = 0 . (4.16)

Now solving the differential equation using the background continuity equation

ρ̇(0) + 3Hρ(0) = 0 , (4.17)

we can find the result:
δ(t,x) = −Z(t,x) . (4.18)

We understand that the deviation from the background is fully identifiable with the metric
perturbative potential, and the study of its behaviour is the goal of the next sections.
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4.2 Perturbed Einstein equations

We want to present the set of perturbed Einstein equation for the metric (4.1). For instance
we define the Riemann tensor as:

Rµ
νρσ ≡ Γµ

νσ,ρ − Γµ
nuρ,σ + Γµ

αρΓ
α
νσ − Γµ

ασΓ
α
νρ . (4.19)

Now we are interested, in order to define the Einstein tensor, in Ricci tensor Rµν ≡ Rα
µνα

at zeroth-order and first order in the metric potential

Rµν = R(0)
µν +R(1)

µν (4.20)

and we can compute the following components:

R
(0)
00 = −3

ä

a
, R

(0)
11 = R

(0)
22 = 2ȧ2 + aä, R

(0)
33 = 2ȧ2 + aä ,

R
(1)
00 = −2HŻ − Z̈, R

(1)
01 = −Żx, R

(1)
02 = −Ży, R

(1)
11 = aȧŻ − Zxx ,

R
(1)
22 = aȧŻ − Zyy, R

(1)
12 = −Zxy, R

(1)
33 = 4Zȧ2 + 2aäZ + 4aȧŻ + a2Z̈ − Zxx − Zyy .

(4.21)

where we use ∂
∂xi

(.) = (.)xi to denote the spatial partial derivatives. With the Ricci tensor
we can compute the Einstein tensor with the following definition

Gµν ≡ Rµν −
1

2
gµνR , (4.22)

where we define the Ricci scalar

R = Rα
α = R(0) +R(1) = 6

(︃
H2 +

ä

a

)︃
+ 2

(︂
4aȧŻ + Z̈ − Zxx − Zyy

)︂
. (4.23)

Now, using (4.5) we can easily compute the set of perturbed Einstein Field Equations
(EFE) truncated at linear order:

(00) G00 = 3H2 + 2HŻ − Zxx + Zyy

a2
= ρ+ Λ

(01) G10 = G01 = −Żx = 0

(02) G20 = G02 = −Ży = 0

(11)
G11

a2
= −H2 − 3HŻ − 2

ä

a
− Z̈ + Zyy = −Λ

(12) G12 = G21 = −Zxy = 0

(22)
G22

a2
= −H2 − 3HŻ − 2

ä

a
− Z̈ + Zxx = −Λ

(33)
G33

a2
= −(1 + 2Z)

(︃
H2 + 2

ä

a

)︃
= −Λ(1 + 2Z) .

(4.24)

40



4.3 Solution of the perturbed EFE

In this section we want to find the behavior of the metric potential and the scale factor
by solving the EFE. We begin from the system of equations given in (4.24). It is clear to
notice that from the off-diagonal terms (01) and (02) we have that:

Żx = Ży = 0 . (4.25)

So we can split our metric potential in:

Z(t,x) = A(x) + ψ(z, t) . (4.26)

Moreover from (12) and (11),(22) we have the following relations:

Zxy = 0, Zxx = Zyy . (4.27)

Multiplying (33) by a2ȧ we get
ȧ3 + 2äȧa = Λa2ȧ , (4.28)

and it yelds

(ȧ2a)· =
Λ

3
(a3)· (4.29)

that can be easily solved to:

ȧ2a =
Λ

3
+ C , (4.30)

where identifying the moltiplication constant C =
a3ρ

(0)
0
3 we find the first Friedmann equation

for ΛCDM:

H2 =
Λ

3
+
ρ
(0)
0

3a2
. (4.31)

This is a first order nonlinear equation in t, and it can be integrated, finding the equation
that governs the course in time of the scaling factor

a(t) =

⎛⎝ρ(0)0

Λ

⎞⎠1/3

sinh2/3

(︄√
3Λ

2
t

)︄
. (4.32)

Now we can rewrite the system as:

(A) 2HŻ + 3H2 − 2Zxx = ρ+ Λ

(B) 2
ä

a
+H2 + 3HŻ + Z̈ − Zxx

a2
= Λ

(C) 2
ä

a
+H2 = Λ .

(4.33)

Now, combining the first Friedmann equation with equation (C) we can obtain the following
relation:

2
ä

a
− 2

3
Λ +

ρ
(0)
0

3
= 0 , (4.34)
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thus getting
ä

a
+
ρ
(0)
0

6
− Λ

3
= 0 . (4.35)

In this way we have obtained the second Friedmann equation for ΛCDM.

Now, computing algebraically the equations in the reduced sistem (4.33) (B) + (C)
2 − (A)

2
we have the relation

3
ä

a
+ Z̈ + 2HŻ = Λ− ρ

2
. (4.36)

Now, using (4.36) and (4.35) and focusing only on the first order components, we can
easily get

a3Z̈ + 2ȧa2Ż − ρ
(0)
0 Z

2
+

1

2
m = 0 , (4.37)

where we used the relation (4.15). Using the decomposition of the metric potential (4.26)
we can find:

a3ψ̈(t, z) + 2ȧa2ψ̇(t, z)− ρ
(0)
0

2
ψ(z, t) = −1

2
m(x) +

ρ
(0)
0

2
A(x) . (4.38)

We can note that the left hand side of the equation is only a function in (z, t) and the right
hand side is only a function in (x, y, z), for this reason, by exclusion, every side must be
equal to a function only z depending, g(z). Hence we have:

ψ̈ + 2Hψ̇ − ρ
(0)
0

2a3
ψ =

1

a3
g(z) . (4.39)

This is a Ordinary Differential Equation that has two homogeneous solutions, ψ++ψ−, and
one particular solution, ψp that is easily findable:

ψp = − 2

ρ
(0)
0

g(z) . (4.40)

Moreover, we have from equation (4.38) that

A =
2g(z)

ρ
(0)
0

+
1

ρ
(0)
0

m, (4.41)

therefore
ψ = ψ+ + ψ− − 1

ρ̄0
m. (4.42)

We just proved that the metric potential is independent of the function g(z), so without
losing generality we can set g(z) = 0. Thus we have all the information inside the second
order homogeneous equation:

ψ̈ + 2Hψ̇ − ρ
(0)
0

2a3
ψ = 0 . (4.43)

This ODE has two indipendent solutions

ψ(t, z) = f+(t)β+(z) + f−(t)β−(z) , (4.44)
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where the function f+, f− are shown in Fig.4.
These two functions represents the growing and the decaying modes of the metric potential
and β+(z) and β−(z) are the integration function constant in time, depending only on
z. Hypergeometric functions must be used in the integration of f+(t), we have used the
notation 2F1(·) to indicate them.

f+(t) =− 1

5
cosh

(︄√
3Λt

2

)︄⎡⎢⎣sinh2/3(︄√
3Λ

2
t

)︄⎛⎝cosh

(︄√
3Λ

2
t

)︄
+ 4

⎞⎠ 2F1

⎛⎝1/2, 5/6; 11/6;− sinh2

(︄√
3Λ

2
t

)︄⎞⎠

−82F1

⎛⎝−1/2, 5/6; 11/6;− sinh2

(︄√
3Λt

2
t

)︄⎞⎠
⎤⎥⎦ m,

f−(t) =
cosh

(︂√
3Λt
2 t

)︂
sinh

(︂√
3Λ
2 t
)︂ .

(4.45)

(a) f−(t) (b) f+(t)

Figure 4: Plots of the decaying mode f−(t) and the growing mode f+(t)

It is interesting to note the fact that in our model, with Λ ̸= 0 , the growing mode f+(t)
has an horizontal asymptote. On the contrary in the Λ = 0 case, in which the FLRW
background is an Einstein-de Sitter model, f+(t) ∝ a(t) for t≫ 1Gyr.
Now we have to find out the second component of the metric potential. For this purpose
we consider the off diagonals components of the Einstein tensor, in particular the relations
(4.27). From these it is easy to find the form of A:

A(x) = p(z) + q(z)x+ r(z)y + s(z)(x2 + y2) . (4.46)

From the reduced system (4.33) we can see that subtracting (B)− (C) we can have

3HŻ + Z̈ − Zxx

a2
= 0 (4.47)
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and splitting Z we reach to

ψ̈ + 3Hψ̇ − 2
s(z)

a2
= 0 , (4.48)

thus using the second order homogeneous equation (4.43) we get its first integral

Hψ̇ +
ρ
(0)
0

2a3
ψ − 2

s

a2
= 0 . (4.49)

Rearranging this equation and using the general solutions of ψ(t, z) we can find the exact
form of s(z)

s(z) =
aȧ

2
ψ̇(t, z) +

ρ
(0)
0

4a
ψ(t, z) = Bβ+(t) , (4.50)

where B = 1
4(ρ

(0)
0 Λ)1/3.

We can also note that, without losing generality, we can rewrite the functions q(z) and r(z)
as

q(z) = 2Bγ(z)β+(z) = 0

r(z) = 2Bω(z)β+(z) = 0 .
(4.51)

Then, substituting in (4.46)

A(x) = p(z) +Bβ+(z)[(x+ γ(z))2 + (y + ω(z))2 − (γ(z) + ω(z))2] . (4.52)

Now rewriting this equation implementing the coordinate transformation

z̄ =

∫︂
p(z)[γ2(z) + ω2(z)]−Bβ+[γ

2(z) + ω2(z)] dz (4.53)

we can (dropping every bars) find a more simplified form of the last member of the metric
potential truncated at first order in β(z):

A(x) = Bβ+(z)[(x+ γ(z))2 + (y + ω(z))2] . (4.54)

We are interested in the restricted in which both γ = ω = 0. So the final form of the metric
potential is:

Z(t,x) = f+(t)β+(z) + f−(t)β−(z) +Bβ+(z)(x
2 + y2) . (4.55)

In all the following parts of the thesis we only consider the growing solution ψ+ considering
the growing mode β+(z) = D sin(kz) with D ≪ 1 and the decaying mode identically zero,
β−(z) = 0.
Looking at the metric potential form (4.55) is natural to make a coordinates transformation
from cartesian to cylindrical coordinates

x = r cos(φ), y = r sin(φ), z = z , (4.56)

finding
Z(t, r, z) = ψ(t, z) +A(ρ, z) = f+(t)β+(z) +Bβ+(z)r

2 . (4.57)
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Now, we can rewrite the metric (4.1) in cylindrical coordinates

gµν = g(0)µν + g(1)µν =

⎛⎜⎜⎜⎝
−1 0 0 0
0 a2(t) 0 0
0 0 a2(t)r2 0
0 0 0 a2(t)(1 + 2Z(t, r, z))

⎞⎟⎟⎟⎠ . (4.58)

The metric is totally independent on φ, therefore we have proved that the solution must
have a z-axial symmetry.

We report in Fig. 5 the plot of the density deviation profile (4.18), in which we
have a complete illustrative behavior of (4.57).

Figure 5: δ deviation profile of an under-density at the time tE = 3.8× 10−4Gyr for the perturbed
metric (4.1) in the form given by Goode and Wainwright (1982). All distance are comoving and in
Mpc. We force the fact that r = (x2 + y2)1/2.

Now we have the complete form of the perturbed metric function, thus we can explore in
detail the main aspects of photon behaviour in a silent type metric and the consequent
temperature deviations.

45



4.4 Phase plane analysis

In this section we want to studynour model defining the different parts of the Weyl tensor
and studying the dynamics of our cosmological model at perturbative order following the
exact case [5]. In particular we want to use dynamics equations of silent universes following
Bruni, Matarrese and Pantano (1995) [17].

We begin our treatment definying the projection tensor

Pµν = gµν + uµuν =

⎛⎜⎜⎜⎝
0 0 0 0
0 a2(t) 0 0
0 0 a2(t) 0
0 0 0 a2(t)(1 + 2Z(t,x))

⎞⎟⎟⎟⎠ . (4.59)

where uµ is the four-velocity of the irrotational fluid flow defined in equation (4.4). This
tensor projects into the inertial frame of a comoving observer.
In (4.8) we have defined the expansion scalar Θ. From this we can compute the shear tensor
of our model truncated at first order in the metric perturbation potential Z(t,x), given by

σµν = u(µ;ν) −
1

3
ΘPµν + u̇(µuν) =

⎛⎜⎜⎜⎝
3H + Ż 0 0 0

0 −1
3a

2Ż 0 0

0 0 −1
3a

2Ż 0

0 0 0 2
3a

2Ż

⎞⎟⎟⎟⎠ . (4.60)

The shear tensor determines the invariant volume spacetime distortion that characterizes
the relativistic fluid. We can clearly see that, considering the perfect fluid take a spherical
shape and using the metric potential given in (4.55), if we had a stretching along the x, y
axes then we would have a narrowing in the z axes and viceversa. Fixing this image in our
mind we can recover, with an intuitive idea, the plots of the first-order photon geodesics
equation solution shown in Section 2.3, see Fig. 8.
In Section 2.1 we have defined the fully antisymmetric tensor ηµνρσ in a curved space-time
from the well known Levi-Civita symbol ϵµνρσ, see eqs. (2.19), (2.20).
From these relations we can define the vorticity tensor, a rigid rotation of the relativistic
fluid with respect to the local inertial frame,

ωµν = 0 . (4.61)

Thus there is no non-vanishing components of the vorticity tensor. This is one of the
conditions, the least tightening, that must be satisfied in order to define a silent model.
This is an exact approximation from a hydrodynamical point of view, because considering
an ideal irrotational fluid flow at initial time, for the well known Kelvin theorem, it must
be stay irrotational in every future instant, see Raychoudhuri (1988) [19].

Now we want to follow the alternative formulation of General Relativity given by Ellis,
Maartens and Maccallum in [3]. We must use the covariant variables defined above: Θ, ρ,
σµν and ωµν . Moreover we have to define the Dynamical variables and in order to give them
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a formulation we must define the weyl tensor Cµνρσ. We have seen in Section 1 that Weyl
tensor is the traceless part of the curvature and its explicit definition is

Cρσµν = Rρσµν −
1

2
(gσνRρµ + gρµRσν − gσµRρν − gρνRσµ) +

1

6
(gρνgσµ − gρµgσν)R . (4.62)

The Weyl tensor can be splitted in the symmetric traceless tidal electric tensor Eαβ and
the tidal magnetic tensor Hαβ . Using the metric (4.1) and perturbing up to the first order,
Eαβ is defined by

Eαβ = Cαγβσu
γuδ =

⎛⎜⎜⎜⎝
0 0 0 0
0 E11 E12 0
0 E21 E22 0
0 0 0 E33

⎞⎟⎟⎟⎠ , (4.63)

where

E11 =
1

6

(︂
−a2 + 6ȧ2 + 6aä+ 9aȧŻ + 3a2Z̈ − 3Zxx

)︂
E12 = E21 = −1

2
Zxy = 0

E22 =
1

6

(︂
−a2 + 6ȧ2 + 6aä+ 9aȧŻ + 3a2Z̈ − 3Zyy

)︂
E33 =

1

2

[︂
2a(ä+ ȧŻ)− (Zxx + Zyy)

]︂
.

(4.64)

Instead Hαβ is defined by

Hαβ =
1

2
η µν
αγ Cµνβδu

γuδ = 0 . (4.65)

Thus every component of the Tidal magnetic field is identically zero. This is the second
condition in order to define a silent model. In particular this restriction has an important
physical meaning, the different neighborhood fluid flow elements cannot exchange grav-
itational information with each other, fully covering the sense of "silent universes", see
Matarrese et al (1994a,b) [22], [23].
As we have already seen, Barnes and Rowlingson (1989) [20] demonstrate that the eigen-
frames of σµν and Eµν are aligned, see eq (3.3). Using a common orthonormal tetrad
expanded up to the first order in Z:

e1µ = aδ1µ, e2µ = aδ2µ, e3µ = a(1 + Z)δ3µ . (4.66)

Because of this two tensors are traceless, we can gain the total information only from E1,
E2 and σ1, σ2.
Now we can make the convenient linear transformation defined in Section 2.2:

σ± =
1

2
(σ1 ± σ2), E± =

1

2
(E1 ± E2) . (4.67)

We know from the resolutions of EFE that Zxx = Zyy, so using the eigenvalues of σµν , Eµν

and the (00) component of the EFE (see equation (4.24)) we can reach the new variables

σ+ = −1

3
Ż, σ− = 0 . (4.68)
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and
E+ = −1

6
ρ(0)δ, E− = 0 . (4.69)

Now we can clearly see that the shear and the electric part of the Weyl tensor are only first-
order perturbation, this is completely in agreement with the fact that in FLWR background
the shear tensor and the electric tidal tensor vanish. The set of Ordinary Differential
Equations that governs the dynamics of our cosmological silent model can be seen as the
evolution of a six dimensional space outlined by the variables {ρ,Θ, σ+, σ−, E+, E−}.
We want to summarise the evolution equations that we have already defined in Section 1
without the influence of the magnetic tidal tensor Hµν . The continuity equation in terms of
the scalar expansion is given in (4.7). Therfore we write the Raychaudhuri equation that
defines the evolution of the expansion scalar in the presence of the cosmological constant Λ:

Θ̇ = Λ− 1

3
Θ2 − 2σ2 − 1

2
ρ . (4.70)

The evolution of the shear tensor is described by

σ̇µν = −σµγσγν +
2

3
hµνσ

2 − 2

3
Θσµν − Eµν , (4.71)

and finally the evolution of the eletric part of the Weyl tensor is

Ėµν = Pµνσ
γδEγδ −ΘEµν + 3Eγ(µσ

γ
ν) −

1

2
ρσµν . (4.72)

Following Bruni (2011) [5] we can split our variables in the zero-order one, i.e. the back-
ground quantity, and the first-order one, i.e. the perturbed quantity that characterizes the
inhomogeneities of the model. In this way we can describe the different variables as:

ρ = ρ(0)(1 + δ)

Θ = Θ(0) +Θ(1)

σ+ = σ
(1)
+

E+ = E
(1)
+ ,

(4.73)

where δ ≡ δρ/ρ(0), see Sect. 1.1.

Using the linear transformation (4.67) we can have the ful set of first order ODEs

δ̇ = Θ(0)δ +Θ(1)

Θ̇
(1)

= −2

3
Θ(0)Θ(1) − 1

2
ρ(0)δ

σ̇+ = −2

3
Θ(0)σ+ − E+

Ė+ = −Θ(0)E+ − 1

2
ρ(0)σ+ ,

(4.74)
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where we omitted the superscript denoting the first-order perturbed quantity to mark the
shear and the electric tidal variables in order not to burden the notation. As we said about
the new approach of GR defined in Section 2.1, with eqs. (4.74) we can re-derive the
differential equations that govern the behavior for the metric potential Z(t,x) and for the
scale factor a(t). Therefore we get a demonstration of the EFE alternative formulation, in
which the curvature information is totally encoded in the Weyl tensor Cµνρσ.
Now we want to understand the evolution of our model as a function of cosmological pa-
rameters. In order to analyze the phase plane for our perturbed metric we want to use the
cosmological parameters as variables:

ΩΛ =
Λ

3H2
, Ωm =

ρ̄

3H2
. (4.75)

Using the notation (.)′ = (.)·/H we can rewrite the first and the second Friedmann equation
for ΛCDM already find in Eqs. (4.31) and (4.35) using the new variables:

ΩΛ = 1− Ωm ,

Ω′
Λ = 3ΩΛ(1− ΩΛ) .

(4.76)

Now we can rewrite the continuity equation and the shear evolution using the splitting in
(4.73) and new derivatives already defined

δ′ = − 1

H
(Θ(0)δ +Θ(1))

σ′+ = −2σ+ +
1

2
H(1− ΩΛ)δ .

(4.77)

It can be useful define in a new variable the deviation velocity, encoded in the rate of the
metric potential, normalized with the expansion rate, i.e.

Σ+ = −Θ(1)

Θ(0)
(4.78)

and we can easily note that Θ(1)/Θ(0) = −σ+/H Using this new variable the above system
can be written at the first-order in Z as

Ω′
Λ = 3ΩΛ(1− ΩΛ)

δ′ = 3(Σ+ − δ)

Σ′
+ =

1

2

[︁
(1− ΩΛ)δ − Σ+(1 + 3ΩΛ)

]︁
.

(4.79)

Now using (4.49) and the quantity s = β+B we can find the conservation equation

Σ+ =
1

2
(ΩΛ − 1)δ − β+

2
(Ω

1/2
Λ − Ω

3/2
Λ )2/3 . (4.80)

In this way we have reduce the system (4.79) in a ODE with only two dynamical equations
as functions of the cosmological variable ΩΛ

Ω′
Λ = 3ΩΛ(1− ΩΛ)

δ′ = −3

2

[︂
(1− ΩΛ)δ + β+(Ω

1/2
Λ − Ω

3/2
Λ )2/3

]︂
.

(4.81)
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Using the exact metric proposed by Goode and Wainwright (1982) [9], that can be repre-
sented by the line element

ds2 = −dt2 + a2(t)(dx2 + dy2 +Ψ2(t,x)dz2) , (4.82)

where
Ψ(t,x) = 1 + ψ(t, z) +A(x) , (4.83)

we can find the exact values of the cosmological variables (see[5]):

ρ̃ = ρ(0)(1− ψ

Φ
) ,

Θ̃ = 3
ȧ

a
+

Φ̇

Φ
,

σ̃+ = −1

3

Φ̇

Φ
,

Ẽ+ =
2

3

ȧ

a

Φ̇

Φ
+

1

3

Φ̈

Φ
,

(4.84)

where we use the ()̃ to note that the value is computed with the exact metric. The ODEs
system governing the dynamics of the density and the expansion is

ρ̃· = −Θ̃ρ̃ ,

Θ̃
·
= −1

3
Θ̃

2 − 6σ̃2 − 1

2
ρ̃+ Λ ,

σ̃· = −2

3
Θσ̃+ + σ̃2+ − Ẽ+ ,

Ẽ
·
+ = −Θ̃Ẽ+ − 3σ̃+Ẽ+ − 1

2
ρ̃σ̃+ .

(4.85)

Now, using the definitions (4.75) and (4.76) we can find the exact differential equation
governing the density deviation

δ̃
′
= −3

2

[︃
(1− ΩΛ)δ +

β+
A

(1 + δ̃)(Ω
1/2
Λ − Ω

3/2
Λ )2/3

]︃
(1 + δ̃) . (4.86)

We can reach the conserved quantity that rules Σ̃+ = σ̃+/H

Σ̃+ =
1

2
(ΩΛ − 1)δ̃ − β+

2A
(1 + δ̃)(Ω

1/2
Λ − Ω

3/2
Λ )2/3 . (4.87)

We have shown in Fig. 3 the plots of the phase plane analysis for the case of small under-
density β+ ≪ 1, comparing the exact solutions with the first order perturbed ones. We set
the initial conditions

ΩΛ(t0) → 0 , δ(t0) → 0 , Σ+(t0) → 0 . (4.88)

In the phase plane this point represents the Einstein- de-Sitter space.
Following [24] de-Sitter (dS) space is the late time attractor for all solutions. In fact,
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different values of β+ give different trajectories in the phase plane, for this reason in the
(ΩΛ-δ) plot we can recognize the dS space in all values of δ along the vertical line ΩΛ = 1
and these all represents a fixed point. Moreover in the ΩΛ-Σ+ plot the dS space is only a
fixed point, it is represented by ΩΛ = 1 and Σ+ = 0.

Figure 6: Evolution of the phase plane for the variables Σ+, that contains the information of the
shear, and the deviation profile δ as the background value ΩΛ varies. We represented the case of
constant under-densities with only β+ > 0 for clarity. In every plot the continuous lines represent
the exact solution, instead the dashed lines represent the first order perturbed solution.
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5 CMB gravitational perturbations

We begin our discussion on CMB gravitational perturbations with a heuristic reasoning.
Although the deviation from the background δ is greater than unity on scales that are enough
small, the metric perturbations can be taken about small. In fact we see the logic of Sachs
and Wolfe (1975) calculating the behaviour of photons to first order in this perturbations.
However there is no way to know if second order expansion terms in a metric perturbation
will be negligible compared to the first order terms. From an intuitive point of view, there is
a great chance for effects to accumulate, because photons travel from the surface of emission
(last scattering surface) to the observer. We are presenting the hypothesis that the second-
order terms may be numerically large. In this section we want to investigate the behaviour
of photons not only to first-order, we employ the perturbative null-geodesics equation up to
the second-order to hµν and its derivatives.
We follow the idea that there is a manifold that represents the hypersurface of last scattering
with intrinsic perturbation and metric fluctuations that are independent of each other. We
follow the treatment for a second order geodesic followed by a photon presented by Pyne
and Birkinshaw [7] and by Pyne and Carrol [10], we apply it to our silent metric in order
to find the second order temperature deviation.

5.1 Boundary conditions

Our goal is the analysis of the temperature fluctuations seen by an observer in a perturbed
silent spacetime. We refer to our perturbed metric ḡµν (4.1) using a bar to explicit the fact
that we are in physical time. We conformally transform the metric and we separate out the
dependence on the scale factor a(η):

gµν = g(0)µν + hµν , (5.1)

where g(0)µν = ḡ
(0)
µν /a2 and hµν = h̄µν/a

2. In particular our time component will be confor-
mally transform through the relation:

η =

∫︂
1

a(t)
dt . (5.2)

In this way the line element in comoving coordinates and conformal time is

ds2 = gµνdx
µdxν = −dη2 + dx2 + dy2 + (1 + 2Z(η,x))dz2 . (5.3)

Moreover we define an affine parameter λ ∈ R and we consider a photon path xµ(λ). We
consider two manifolds, HO defined via the hypersurface of constant conformal time for
the observer xµO = (ηO, 0, 0, 0), and HE defined via the hypersurface of constant conformal
time at the emission xµE = (ηE , 0, 0, 0). HO and HE are connected by the photon path,
particularly what the observer sees is the intersection of its past light cone with HE .
Every spatial coordinate pi ∈ HE emits thermal radiation on direction versor d̂

i
, with

temperature TE(pi, d̂
i
). In particular we define the a-order separation vector as x(a)µ(λ),
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thus pi can be decomposed in

pi =

∞∑︂
a=0

p(a)i , (5.4)

where p(a)i is the separation of the intersection points of the deviation path, order by
order, with HE . Of course, for our purposes, we interpret HE as the hypersurfece of
last-scattering.
The photon path xµ(λ) direction is controlled on the observer hypersurface by a unity
vector lying in it, i.e. êi ∈ HO. Another interpretation of êi is to think about it as the
direction on the sky in which a comoving observer is pointing an antenna. Thus êi is
the initial condition that determines the direction vector and the spatial coordinates in
last-scattering surface.

...HE

η

HO

p(0)i

p(1)i
p(2)i

p(a)i

x(0)µx(2)µ x(1)µx(a)µ

...

d̂
(a)i

...d̂
(0)i

êi

Figure 7: Photon separation worldlines.
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We must explicit the background metric geodesics, x(0)µ(λ). We consider a null wavevector
which intersects HO at the spatial origin of the coordinates. We choose the affine parameter
λ in this way:

k(0)0 = 1

g
(0)
ij k

(0)ik(0)j = 1 .
(5.5)

We compute the geodesic equation of the background metric g
(0)
µν in order to find a λ-

parameter family that satisfies the above conditions:

x(0)µ = (λ, (λO − λ)êi)

k(0)µ = (1,−êi) .
(5.6)

where λO is the affine parameter evaluated in HO. Particularly we decide to point our
antenna in êi = (0, 0, 1), along the "special" comoving z-axis.
In the end, we can set, in order to find the solutions of the second-order geodesics equation,
the boundary conditions

x(1)µ(λO) = x(2)µ(λO) = 0

k(1)i(λO) = k(2)i(λO) = 0 .
(5.7)

Now, using the condition that gµνkµ(λO)kν(λO) = 0, i.e. kµ(λO) is null wave vector in HO,
we have the following condition for (5.3):

k(1)0(λO) =

(︃
1

2
h00 + h0ik

(0)i +
1

2
hijk

(0)ik(0)j
)︃

λ=λO

= Z(λO)

k(2)0(λO) =

[︃
3

8
(h00)

2 + h00h0ik
(0)i +

1

4
h00hijk

(0)ik(0)j +
1

2
(h0ik

(0)i)2

−1

8
(hijk

(0)ik(0)j)2
]︃
λ=λO

= −1

8
Z2(λO) .

(5.8)

These conditions are fundamental to study the second-order geodesics equation and to give
a quantitative result that is the purposes of the next sections.

54



5.2 Formulation of the a-order geodesic equation

In the following section we study the general n-order null geodesics, in order to describe the
geodesic of a photon to second-order for a perturbed metric in synchronous gauge.
Given a perturbed metric gµν = g

(0)
µν + hµν we start with the geodesic equation:

dkµ

dλ
(λ) + Γµ

αβk
α(λ)kβ(λ) = 0 , (5.9)

where kµ(λ) is the null wave-vector of the photon in function of some affine parameter λ,
moreover it is the derivatives of the photon path, kµ(λ) = dxµ

dλ (λ). In particular we express
the photon path and the associated wave-vector as a series expansions in order of hµν and
its derivatives

x(λ) =
∞∑︂
a=0

x(a)(λ)

k(λ) =
∞∑︂
a=0

k(a)(λ) .

(5.10)

In the same way the affine connection can be expanded as

Γµ
αβ =

∞∑︂
a=0

Γ
(a)µ

αβ . (5.11)

Now, Taylor expanding the Γ
(a)µ

αβ at xµ(λ) about their value at x(0)µ(λ) and substituting
it with the above expansions, we can obtain a totally equivalent geodesics equation holding
for the unperturbed path x(0)a(λ):

∞∑︂
a=0

[︄
d2x(a)µ

dλ2
+

⎛⎜⎝Γ
(a)µ

αβ +
∞∑︂
b=1

1

m!
∂σ1 ...∂σmΓ

(a)µ
αβ

⎛⎝ ∞∑︂
l=1

x(l)σ1

⎞⎠ ...

⎛⎝ ∞∑︂
p=1

x(p)σm

⎞⎠
⎞⎟⎠ .

×

⎛⎝ ∞∑︂
q=1

k(q)α

⎞⎠⎛⎝ ∞∑︂
r=1

k(r)β

⎞⎠
⎤⎥⎦ = 0

(5.12)

Of course, at zeroth-order the photon path x(0)µ is the corresponding geodesic for the FRW
unperturbed metric g(0)µν .
We can see that for an a-order equation this equation can be rearrange into a the following
equation for the deviation vector x(a)µ(λ):

f (a)µ =
d2x(a)µ

dλ2
+ 2Γ

(0)µ
αβk

(0)αk(a)β + ∂σΓ
(0)µ

αβk
(0)αk(0)βx(a)σ , (5.13)
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where the forced four-vector fµ, at first-order and second-order, can be written as:

f (1)µ =− Γ
(1)µ

αβk
(0)αk(0)β

f (2)µ =− Γ
(0)µ

αβk
(1)αk(1)α − 2Γ

(1)µ
αβk

(0)αk(1)β − 2∂σΓ
(0)µ

αβx
(1)σk(0)αk(1)β − ∂σΓ

(1)µ
αβx

(1)σk(0)αk(0)β

− 1

2
∂σ∂τΓ

(0)µ
αβx

(1)σx(1)τk(0)αk(0)β − Γ
(2)µ

αβk
(0)αk(0)β .

(5.14)

Using the metric (5.3) we have for the first-order force vector:

f (1)0 = −Z ′

f (1)1 = Zx

f (1)2 = Zy

f (1)3 = 2Z ′ − Zz .

(5.15)

where we used the notation for the conformal time partial derivatives ∂(·)/∂η ≡ (·)′.
In order to find the second-order CMB temperature deviation we will only need its time
component:

f (2)0 = 2k(1)3Z ′ − x(1)σ∂σZ
′ . (5.16)

Now looking at equation (5.13) we can see that x(a)µ satisfies the system of four coupled,
second order differential equations:(︄

d2

dλ2
+A

d

dλ
+B

)︄
x(a) = f (a) , (5.17)

where we made the indices implicit for ease of notation, in particular A and B are two 4×4
matrices defined by

Aµ
ν ≡ 2Γ(0)µ

ρνk
(0)ρ

Bµ
ν ≡ Γ(0)µ

ρσ,νk
(0)ρk(0)σ .

(5.18)

We can demonstrate that equation (5.13) is nothing but a perturbation of the Jacobi
equation of the background spacetime (see [10]).
Given a general four-vector vµ we define the covariant differentiation along the unperturbed
path x(0)µ as:

D

Dλ
vµ ≡ dvµ

dλ
+ Γ

(0)µ
αβk

(0)αvβ . (5.19)

Obviously we can obtain by differentiating a second time this form

D2

Dλ2
vµ =

d2vµ

dλ2
+Γ

(0)µ
αβ,γk

(0)αk(0)γvβ+Γ
(0)µ

αβ

dk(0)α

dλ
vβ+2Γ

(0)µ
αβk

(0)αdv
β

dλ
+Γ

(0)µ
αβΓ

(0)β
σρk

(0)αk(0)σvρ .

(5.20)
From the definition of the Riemann tensor (4.19) for the background metric we get
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D2

Dλ2
vµ −R(0)µ

νρσk
(0)νk(0)ρvσ =

d2vµ

dλ2
+ 2Γ

(0)µ
αβk

(0)αdv
β

dλ
+ Γ

(0)µ
αβ,γk

(0)αk(0)βvγ . (5.21)

So we can rewrite equation (5.13) in a more compact form:

D2x(a)

Dλ2
−R(k(0), x(a))k(0) = f (a) . (5.22)

It is important to point out that equation (5.22) holds along a segment of the unperturbed
path x(0)µ and produces solutions for the separation segments of the perturbed paths, from
x(1)

µ to x(a)µ , especially for our porpouse, to x(2)µ .
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5.3 Perturbed Jacobi equation solution

In this section we want to perform a formal solution for equation (5.13), particularly find
a form for the perturbed photon paths.
We define P (λ1, λ2) a 4 non-singular matrix function of λ1 ∈ R, λ2 ∈ R , and v(λ) such that
xa = Pv. With these assumptions we can find, starting from (5.13), the expression

v̈ + P−1(2Ṗ +AP )v̇ + P−1(AṖ +AP + P̈ )v = P−1f , (5.23)

where we used the notation (·)̇ = d/dλ. Because of P is totally a general matrix we can
choose it in the way this satisfies the relation

Ṗ = −1

2
AP . (5.24)

For the reason that in general a matrix function do not commute with its derivatives, the
solution of this differential equation is not simply an exponential. Knowing that P (λ1, λ1) =
1 we can write this equation as

P (λ2, λ1) = 1 − 1

2

∫︂ λ2

λ1

A(λ)P (λ, λ1) dλ . (5.25)

Reiterating order by order in A we can find

P (λ2, λ1) = 1 − 1

2

∫︂ λ2

λ1

A(λ) dλ+
1

4

∫︂ λ2

λ1

∫︂ λ

λ1

A(λ)A(λ′) dλdλ′ + ...

=

∞∑︂
n=0

1

(−2)n

∫︂ τ1

λ1

...

∫︂ τn

λ1

(︁
A(τ ′1)...A(τ

′
n)
)︁
dτ ′1...dτ

′
n

=
∞∑︂
n=0

1

(−2)nn!

∫︂ λ2

λ1

...

∫︂ λ2

λ1

P
(︁
A(τ ′1)...A(τ

′
n)
)︁
dτ ′1...dτ

′
n .

(5.26)

So we find that the solution of the differential equation is the path-ordered exponential

P (λ2, λ1) = P exp

(︄
−1

2

∫︂ λ2

λ1

A(λ)dλ

)︄
. (5.27)

This is Synge’s parallel propagator, see Synge (1960) [12]. In simple terms we have imple-
mented a change of variables in order to remove the first derivative of v in the equation
(5.23). We want to stress that the projector has the physical meaning of parallel projecting
a general vector v from λ1 to λ2 along the geodesics.
Let us make explicit some Synge’s parallel propagator’s relations. First of all we have the
existence of the identity

P (λ1, λ1) = 1 . (5.28)
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Furthermore we have the invertibility, in fact it easy to find the relation

P (λ2, λ)P (λ, λ1) = P (λ2, λ1) (5.29)

thus we can get
P−1(λ2, λ1) = P (λ1, λ2) . (5.30)

With these clarifications (5.23) can be rewritten as

v̈ + P−1

(︄
−
(︃
A

2

)︃2

− Ȧ

2
+B

)︄
Pv = P−1v (5.31)

and using equation (5.22)
v̈ − (P−1RP )v = P−1f . (5.32)

This equation can be written as a first-order matrix equation

d

dλ

(︄
v
v̇

)︄
−

(︄
0 1

P−1RP 0

)︄(︄
v
v̇

)︄
=

(︄
0

P−1f .

)︄
(5.33)

This is a matrix differential equation that can be solved following Humi and Miller (1988)
[13]. We use the method of Green’s function, inter alia we define the transition matrix
U(λ1, λ2) as a Green’s function for the Jacobi equation in the background, we write it as

U(λ2, λ1) = P exp

⎛⎝∫︂ λ2

λ1

(︄
0 1

P (λ1, λ)RP (λ, λ1) 0

)︄
dλ

⎞⎠ . (5.34)

We want to remark that this result tells us the importance of the background curvature to
the geodesics solution. So now we are able to show the solution for x(a)µ(λ) and k(a)µ(λ),
particularly start from a fixed affine parameter λ1. Thus defining

y(λ) =

(︄
v
v̇

)︄
=

(︄
P (λ1, λ)x

(a)(λ)
d
dλ [P (λ1, λ)x

(a)(λ)]

)︄
(5.35)

and

s(λ) =

(︄
0

P (λ1, λ)f
(a)(λ)

)︄
(5.36)

the formal solution is

y(λ) = U(λ, λ1)y(λ1) +

∫︂ λ

λ1

U(λ, λ′)s(λ′) dλ′ . (5.37)

We can explicit our solution using the boundary conditions

x(a)µ(λO) = k(a)i(λO) = 0 , (5.38)
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where λO is the affine parameter that characterizes the observer constant conformal time
hypersurface, HO. Therefore we can write

x(a)0(λ) = (λ− λO)k
(a)0(λO) +

∫︂ λ

λO

(λ− λ̃)f (a)0(λ̃) dλ̃

x(a)i(λ) =

∫︂ λ

λO

(λ− λ̃)f (a)i(λ̃) dλ̃

k(a)0(λ) = k(a)0(λO) +

∫︂ λ

λO

f (a)0(λ̃) dλ̃

k(a)i(λ) =

∫︂ λ

λO

f (a)i(λ̃) dλ̃ .

(5.39)

What makes these solutions interesting is the fact that they are valid for any type of metric
perturbation. We stress the fact that the perturbation is totally encoded in the form of the
force vectors f (1) and f (2) given in (5.15) and (5.16). Thus the explicit solutions of the
first order geodesics equation are for the photon path

x(1)0 = (λ− λO)Z(λO)−
∫︂ λ

λO

Z ′(λ− λ̃) dλ̃

x(1)1 =

∫︂ λ

λO

Zx(λ− λ̃) dλ̃

x(1)2 =

∫︂ λ

λO

Zy(λ− λ̃) dλ̃

x(1)3 =

∫︂ λ

λO

(2Z ′ − Zz)(λ− λ̃) dλ̃ .

(5.40)

We can simply derive with respect to λ in order to find the wave vector components:

k(1)0 = Z(λO)−
∫︂ λ

λO

Z ′ dλ̃

k(1)1 =

∫︂ λ

λO

Zx dλ̃

k(1)2 =

∫︂ λ

λO

Zy dλ̃

k(1)3 =

∫︂ λ

λO

2Z ′ − Zz dλ̃ .

(5.41)

In Fig 8 we show the solutions of equations (5.40) using the boundary conditions made
explicit in Sect. 2.1 and the conformally transformed metric potential given in (4.55).
It is useful to see that the z- component of the wave vector can be written as

k(1)3 = −k(0)3
∫︂ λ

λO

2Z ′ + k(0)3Zz dλ̃ , (5.42)
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moreover the total derivative in respect to λ is:

dZ

dλ
= Z ′ + k(0)i∂iZ , (5.43)

thus we get, using the boundary conditions (5.13),

k(1)3 = Z + Z(λO)− k(1)0 . (5.44)

This expression for the time component of the wavevector allows us to find a more elegant
form of the second order time component of the force vector given in (5.16)

f (2)0 = ZZ ′ − 2k(1)0Z ′ + 2Z(λO)Z
′ − x(1)α∂αZ

′ . (5.45)

We will see that only second-order quantity that enter in the temperature fluctuation formula
is the time component of the wavevector kµ(λ) given by, using:

k(2)0 = −1

2
Z2(λO) +

∫︂ λ

λO

[︂
ZZ ′ − 2k(1)0Z ′ + 2Z(λO)Z

′ − x1α∂αZ
′
]︂
λ′
dλ̃ . (5.46)

We have well defined the mathematics and the fundamental steps in order to find the solution
of the second-order geodesics equation. The physical quantities, that we made explicit, will
be implemented in the next section in order to calculate the CMB temperature fluctuations.

(a) x(1)0(η) (b) x(1)3(η)

Figure 8: Plots of the solutions of the first-order geodesics equation along special z-axis for the
photon-path x(1)µ for the perturbed line element (5.3).
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5.4 Temperature perturbation expansion

In this section we want to show the behavior of the photon temperature fluctuations from
the last scattering surface towards us. As we have done for the density profile deviation in
Section 2, we define the emitted temperature as

TE(p
i, d̂

i
) = [1 + τ(pi, d̂

i
)]T

(0)
E (5.47)

where T (0)
E is the emitted temperature in the uniform background and τ(pi, d̂

i
) is a deviation

function of the same order of the metric perturbation hµν independent of gravitational
effects. We must define the relative energy:

ω = −1

a
gµνu

µkν , (5.48)

where uµ is the conformal observer four velocity defined in (4.4) through the relation with
the corresponding physical quantity ūµ = a−1uµ . The exact CMB temperature observed
in O is related to the emission temperature by the form:

TO(x(λO), ê
i) =

ωO
ωE

TE(p
i, d̂

i
) . (5.49)

Expanding the quantities ωE , d̂
i
and the expansion relation given in relation (5.4) we can

write

TO =
ω
(0)
O + ω

(1)
O + ω

(2)
O

ω
(0)
E + ω

(1)
E + ω

(2)
E

[1 + τ(p(0)i + p(1)i, d̂
(0)i

+ d̂
(1)i

)]T
(0)
E . (5.50)

Now defying ω̃(a) ≡ ω(a)/ω(0) and Taylor expanding τ we can denote the deviation temper-
ature from the unperturbed spacetime as

δT ≡

⎛⎝ω(0)
E

ω
(0)
O

⎞⎠ TO

T
(0)
E

=
[︂
1 + (ω̃

(1)
O − ω̃

(1)
E + τ)

ω̃
(2)
O − ω̃

(2)
E + (ω̃

(1)
E )2 − ω̃

(1)
O ω̃

(1)
E + ω̃

(1)
O τ − ω̃

(1)
E τ + p(1)i

∂τ

∂xi
+ d̂

(1)i ∂τ

∂d̂
i

]︄
.

(5.51)

Expanding the metric perturbation and the photon wavevector we get the temperature
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fluctuation up to the second order perturbation:

δ
(0)
T = 1

δ
(1)
T =

[︃
1

2
hijk

(0)ik(0)j
]︃
λ=λO

+

[︃
1

2
h00 + h0ik

(0)i − k(1)i + τ

]︃
δ
(2)
T =

[︃
1

2
(h0ik

(0)i)2 − 1

8
(hijk

(0)ik(0)j)2
]︃
λ=λO

+
[︂
hijk

(0)ik(0)j
]︂
λ=λO

[︃
1

2
h00 + h0ik

(0)i − k(1)0 + τ

]︃
+

[︃
3

8
(h00)

2 − 1

2
h00k

(1)0 +
3

2
h0ih00k

(0)i + (h0ik
(0)i)2 − 2h0ik

(0)ik(1)0

+h0ik
(1)i + (k(1)0)2 − k(2)0 + τ

(︃
1

2
h00 + h0ik

(0)i − k(1)0
)︃
+ x(1)0

dk(1)0

dλ

−h0ix(1)0
dk(0)i

dλ
+ (x(1)i − k(0)ix(1)0)

(︄
1

2

∂h00
∂xi

+ k(0)j
∂h0j
∂xi

+
∂τ

∂xi
+ d̂

(1)i ∂τ

∂d̂
i

)︄⎤⎦ ,
(5.52)

where, because of the expansion of pi, we can write

p(1)i = x(1)i − k(0)ix(1)0 , (5.53)

thus we have defined in the expression of δT (2) the firs order distance

d̂
(1)i

=
k(0)i + k(1)i⃓⃓
k(0)i + k(1)i

⃓⃓ − k(0)i⃓⃓
k(0)i

⃓⃓ . (5.54)

Now, using the time component of the first order force vector f (1)µ computed in (5.15), we
can give the first order temperature fluctuation expression for our model:

δ
(1)
T (λ) = τ(λ)− I(1)(λ) , (5.55)

where we have defined I(1)(λ) as

I(1)(λ) ≡ −
∫︂ λ

λO

Z ′ dλ̃ . (5.56)

Therefore we have recover the well-known Sachs-Wolfe effect [14]. The second order
anisotropy is given by

δ
(2)
T (λ) =I(1)

(︂
Z(λO) + I(1) + τ

)︂
− I(2) + χ(λ)− x(1)0Z ′

+

[︄
x(1)i + k(0)i

∫︂ λ

λO

(λ− λ̃)Zz dλ̃+ k(0)iΣ(λ)

]︄
∂τ

∂xi
+ d(1)i

∂τ

∂di
.

(5.57)
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In particular we define the second-order integral function

χ(λ) ≡
∫︂ λ

λO

2k(1)0Z ′ − 2Z(λO)Z
′ − ZZ ′ dλ̃ . (5.58)

Moreover we define the I(2)(λ) in the equation (5.57) as

I(2)(λ) ≡ −
∫︂ λ

λO

x(1)α∂αZ
′ dλ̃ . (5.59)

Especially this term can be interpreted as a correction to the integrated Sachs-Wolfe effect
that we find at first-order. The main idea of this term is that it includes the differences
between the perturbations along the first-order path and the perturbations along the back-
ground path. This term is smaller than the conventional Sachs-Wolfe effect but improving
the degree of observation precision it can represent a valid correction.
In the end the term Σ(λ) represents the Shapiro time delay

Σ(λ) ≡
∫︂ λ

λO

Zdλ̃ . (5.60)

We can think about the term k(0)iΣ(λ)(∂τ/∂xi) as the orthogonal photon deflection
due to a gravitational sources between the surface of last scattering and the observer,
so a gravitational lens effect on CMBR. It can be important at smaller angular scales,
in particular the deflection can give the product of the lens angle formed and the total
distance travelled by the CMB photons.
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5.5 Temperature anisotropies for a general silent metric

In this section we want to find the form of the CMB temperature fluctuations from a general
silent metric. Following Matarrese et al. (1995) [17], the definition of a general silent metric
(3.5) has three different inhomogeneous functions along the coordinate axis. Therefore we
can write the general first-order perturbation of a silent metric around a FLRW background
in conformal time as:

gµν = g(0)µν + hµν =

⎛⎜⎜⎜⎝
−1 0 0 0
0 1 + 2ξ(η,x) 0 0
0 0 1 + 2υ(η,x) 0
0 0 0 1 + 2ζ(η,x)

⎞⎟⎟⎟⎠ , (5.61)

where ξ, υ, ζ are the perturbed inhomogeneity functions. In order to calculate the forced
vector fµ we have to write the connection terms at zeroth, first and second-order using
equation (4.3). The zeroth-orders symbols vanish in the flat background. The first-order
symbols are

Γ
(1)0

11 = ξ′

Γ
(1)0

22 = υ′

Γ
(1)0

33 = ζ ′

Γ
(1)1

µ1 = ∂µξ

Γ
(1)1

22 = −υx
Γ
(1)1

33 = −ζx
Γ
(1)2

µ2 = ∂µυ

Γ
(1)2

22 = −ξy
Γ
(1)2

33 = −ζy
Γ
(1)3

µ3 = ∂µζ

Γ
(1)3

11 = −ξz
Γ
(1)3

22 = −υz
Γ
(1)3

µ3 = ∂µζ

(5.62)

and in the end the second-order symbols are
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Γ
(2)1

µ1 = −2ξ∂µξ

Γ
(2)1

22 = 2ξυx

Γ
(2)1

33 = 2ξζx

Γ
(2)2

µ2 = −2υ∂µυ

Γ
(2)2

22 = 2υξy

Γ
(2)2

33 = 2υζy

Γ
(2)3

µ3 = −2ζ∂µζ

Γ
(2)3

11 = 2ζξz

Γ
(2)3

22 = 2ζυz .

(5.63)

As boundary condition we impose to point the observer antenna along a generic direction
described by the unity vector êi of the of the 3-surface orthogonal to the fluid flow 4-velocity
uµ = (1, 0, 0, 0) satisfying the following condition

δij ê
iêj = 1 . (5.64)

Therefore the background photon path and wavevector have the components

x(0)µ(λ) = (1, (λO − λ)êi) (5.65)

k(0)µ = (1,−êi) . (5.66)

Using the same reasoning and boundary conditions that we have defined in the above sections
we can find that the first-order forced vector, given in equation (5.14), for our silent metric
(5.61) has the following components:

f (1)0 = −[(e1)2ξ′ + (e2)2υ′ + (e3)2ζ ′] ,

f (1)1 = (e1)2ξx + (e2)2υx + (e3)2ζx − 2(e1)k(0)µ∂µξ ,

f (1)2 = (e1)2ξy + (e2)2υy + (e3)2ζy − 2(e2)k(0)µ∂µυ ,

f (1)3 = (e1)2ξz + (e2)2υz + (e3)2ζz − 2(e3)k(0)µ∂µζ .

(5.67)

As before, we are only interested on the time dependent component of the second-order
forced vector in order to compute δ(2)T , we can find that

f (2)0 = ∂0hij ê
ik(1)j − 2x(1)µ

(︂
(e1)2∂µξ

′ + (e2)2∂µυ
′ + (e3)2∂µζ

′
)︂

= ∂0hij ê
ik(1)j − êiêjx(1)µ∂µ∂0hij .

(5.68)

With equation (5.67) we can explicit the solutions of the first-order geodesics equation for
the photon path and wavevector using the relations given by the equations (5.39). We can

66



write in a compact form the first-order photon path components:

x(1)0 =
1

2
hij(λO)ê

iêj(λ− λO)−
1

2

∫︂ λ

λO

∂0hij ê
iêj(λ− λ̃) dλ̃

x(1)1 =

∫︂ λ

λO

[︄
k(0)2(k(0)2υx − k(0)1ξy) + k(0)3(k(0)3ζx − k(0)1ξz)− k(0)1

(︃
ξ′ +

dξ

dλ′

)︃]︄
(λ− λ̃) dλ̃

x(1)2 =

∫︂ λ

λO

[︄
k(0)3(k(0)3ζy − k(0)2υx) + k(0)1(k(0)1ξy − k(0)2υz)− k(0)2

(︃
υ′ +

dυ

dλ̃

)︃]︄
(λ− λ̃) dλ̃

x(1)3 =

∫︂ λ

λO

[︄
k(0)1(k(0)1ξz − k(0)3ζx) + k(0)2(k(0)2υy − k(0)3ζy)− k(0)3

(︃
ζ ′ +

dζ

dλ̃

)︃]︄
(λ− λ̃) dλ̃ .

(5.69)

Then the solutions of the first-order photon wavevector are:

k(1)0 =
1

2
hij(λO)ê

iêj − 1

2

∫︂ λ

λO

∂0hij ê
iêj dλ̃

k(1)1 =

∫︂ λ

λO

k(0)2(k(0)2υx − k(0)1ξy) + k(0)3(k(0)3ζx − k(0)1ξz)− k(0)1
(︃
ξ′ +

dξ

dλ̃

)︃
dλ̃ ,

k(1)2 =

∫︂ λ

λO

k(0)3(k(0)3ζy − k(0)2υx) + k(0)1(k(0)1ξy − k(0)2υz)− k(0)2
(︃
υ′ +

dυ

dλ̃

)︃
dλ̃ ,

k(1)3 =

∫︂ λ

λO

k(0)1(k(0)1ξz − k(0)3ζx) + k(0)2(k(0)2υy − k(0)3ζy)− k(0)3
(︃
ζ ′ +

dζ

dλ̃

)︃
dλ̃ .

(5.70)

We interpret the integral inside k(1)0 as the sum of the contribution to the ISW effect along
each axis:

I(1)(λ) = −
∫︂ λ

λO

(e1)2ξ′ + (e2)2υ′ + (e3)2ζ ′ dλ̃ ,= (e1)2I(1)
x (λ) + (e2)2I(1)

y (λ) + (e3)2I(1)
z (λ) .

(5.71)
In this way we can write our components of the photon wavevector as

k(1)0 =
1

2
hij(λO)ê

iêj + I(1)(λ)

k(1)1 =Wx(λ) + k(0)1(I(1)
x (λ) + ξ(λO)− ξ)

k(1)2 =Wy(λ) + k(0)2(I(1)
y (λ) + υ(λO)− υ)

k(1)3 =Wz(λ) + k(0)3(I(1)
z (λ) + ζ(λO)− ζ) .

(5.72)

where Ws=x,y,z are the sum of the first two integrals in each spatial component of the first-
order photon wavevector given in equation (5.70).
Now we can write the temperature anisotropies. First-order temperature anisotropies δ(1)T

is given by substituting the above relations into equation (5.52), we have

δ
(1)
T (λ) = −I(1)(λ) + τ (5.73)
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So we have found that the first-order temperature deviation is the ISW effect, the great
information is hidden in the expression of I(1) equation (5.71). We can see that each
metric potential perturbation evolves independently of the others. In silent universes the
evolution of the cosmic fluid element is local at first-order around FLRW, i.e. each element
do not change information with others elements, in fact there are no directional mixed terms
in the integral of the integrated Sachs-Wolfe effect I(1).
Now we can write the second-order time component of the photon wavevector:

k(2)0 = −1

8
(hijk

(0)ik(0)j)2 + I(2)(λ)− χ(λ) , (5.74)

where we define

I(2)(λ) ≡ −
∫︂ λ

λO

x(1)µ∂µhij ê
iêj dλ̃ = (e(1))2I(2)

x + (λ)(e(2))2I(2)
y (λ) + (e(3))2I(2)

z (λ) , (5.75)

where each {I(2)
s }s=x,y,z is given by

I(2)
x (λ) = −

∫︂ λ

λO

x(1)µ∂µξ
′ dλ̃ , I(2)

y (λ) = −
∫︂ λ

λO

x(1)µ∂µυ
′ dλ̃ , I(2)

z (λ) = −
∫︂ λ

λO

x(1)µ∂µζ
′ dλ̃ .

(5.76)
Moreover, we define the last term of the second-order photon wavevector as

χ(λ) ≡ −2

∫︂ λ

λO

∂0hij ê
ik(1)j dλ̃ . (5.77)

With these definitions we can finally write the second-order temperature deviation defined
in equation (5.52), in particular we use the definition of the first-order direction vector d(1)i

already used in equation (5.54) :

δ
(2)
T (λ) =I(1)(λ)

(︃
1

2
hij(λO)ê

iêj + I(1)(λ) + τ

)︃
− I(2)(λ) + χ(λ)− x(1)0

[︂
ξ′(e1)2 + υ′(e2)2 + ζ ′(e3)2

]︂
+
{︂
x(1)i + k(0)iQ(λ) + k(0)iΣ(λ)

}︂ ∂τ

∂xi
+ d(1)i

∂τ

∂di
.

(5.78)

δ
(2)
T (λE) is the general expression describing the temperature anisotropies at second-order

for a general perturbed silent metric around a flat FLRW model. We want to stress that
this is nothing but the generalization of the equation (5.57). As in the previous section,
we can see that there is the term I(2), that we interpret as the second-order correction to
the ISW effect but now we see explicitly the anisotropy dependence given by the metric
potential perturbation. We have defined

Σ(λ) =

∫︂ λ

λO

ξ(e1)2 + υ(e2)2 + ζ(e3)2 dλ′ . (5.79)
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This is the Shapiro time delay along the photon path. Moreover Q(λ) is

Q(λ) ≡ −k
(0)l

2

∫︂ λ

λO

∂lhij ê
iêj(λ− λ̃) dλ̃ . (5.80)

We can observe that the temperature deviation at second-order is strictly dependent on the
direction of observation êi. Moreover we want to write the sixth term on the second line of
equation (5.52) in a more explicit form

[︂
(e1)2ξ′ + (e2)2υ′ + (e3)2ζ ′

]︂ [︄1
2
hij(λO)ê

iêj(λ− λO)−
∫︂ λ

λO

∂0hij ê
iêj(λ− λ̃) dλ̃

]︄
. (5.81)

In particular, we can note an interesting feature in equation (5.78); beyond the linear order
there are mixed terms between the inhomogeneous potentials. Matarrese et. al (1994a,b)
[22], [23] proved that a generic second-order perturbation give rise to a non-vanishing mag-
netic field, they named this effect tidal induction. So we can interpret the presence of mixed
term as the presence of non-local effects, the "breaking" of the silence due to the tidal
induction.
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6 Conclusions

In this work we have carried out the description of silent universes and their application
on the large scales temperature anisotropies. In order to understand the dynamics of silent
models, we have delved into the relativistic dynamics proposed by Ellis (1971) [42] which
consists in a set of partial differential equations describing a new approach (a hydrody-
namic one) to General Relativity. These equations are fully described by the magnetic
and electric parts of the Weyl tensor. Silent universes have a dynamics ruled by six first-
order quasi linear ODEs, which are a reduction of the Ellis equations with the constraints
p = ωµν = Hµν = 0. In practice, we are talking about an irrotational dust that has a
purely local dynamic; therefore, the behaviour of each flow line is fully determined in the
initial time conditions. No gravitational or sound information can be exchanged between
the different fluid elements after the boundary conditions given by initial time, this is the
reason why Matarrese et al. called these models silent universes, see [21],[22],[23].
We have defined and studied the phase plane analysis, following Matarrese et. al (1995)
[17], of a special case of silent universes, Szekeres models, see Szekeres (1975) [8]. Szekeres
models consist in irrotational dust with vanishing magnetic field and, in particular, they
have two equal eigenvalues for the shear and the force field. Goode and Wainwright (1982)
[9] presented an useful formulation of the Szekeres line element within silent models. This
formulation follows the general form of a silent metric given in equation (??). This new for-
mulation shows that Szekeres solutions are a generalization of FLRW solutions, in fact one
can find the growing and decaying modes of the perturbation around FLRW. More specif-
ically, we have studied and solved in detail the linearized EFE following the Szekeres line
element form (slightly different from the one defined by Goode and Wainwright) provided by
Merues and Bruni [5]. This form creates an advantage, it allows to split the dynamics of the
model in a flat ΛCDM background and in a part describing the inhomogeneous deviation
from this background. We have studied the phase plane analysis of differential equations
ruling the density deviation δ and the Σ+ (encoding the shear behaviour), as a function
of the ΩΛ parameter, comparing the exact system with the first-order ones. We find the
same behavior for both solutions. In particular, we have found that at first-order the dS
space for the ΩΛ-Σ+ plane is represented by the fixed point (1, 0), and for the ΩΛ-δ plane
is represented by the vertical line ΩΛ = 1, tracing the exact solutions.
In the second part of the thesis we have focused on finding the CMB temperature anisotropies
at first-order and second-order for the perturbed Szekeres metric. In this section we followed
Pyne and Carroll (1996) [7] analysis for a n-order temperature anisotropy. We have solved
the perturbed geodesics equation for a photon path emitted on the surface of last scattering
towards us, and we have used the method outlined by Pyne and Birkinshaw (1993) [10].
Beginning from our perturbed spacetime we have constructed null geodesics order by order
using the background null geodesics. It is a generalization of the Sachs-Wolfe method for
calculating the CMB fluctuation laid out in the introduction, see Section 1.2.2. In more
detail we have written the photon redshift in terms of its background worldline x(0)µ(λ)
focusing on the boundary conditions; in particular, we have pointed the direction of obser-
vation along the z-axis, that is the only direction in which the out-of-homogeneity Szekeres
potential is defined. Then, we have found the geodesics equation solutions to an arbitrary
order, solving the perturbed Jacobi equation. In the end we have written the first-order and
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second-order temperature deviation δ
(1)
T and δ

(2)
T . δ(1)T presents the well-known ISW effect,

while δ(2)T presents the Shapiro time delay and an integral that we have interpreted as a
second-order correction of the ISW effect. In the last section we have used the first-order
perturbation of a general silent metric defined by Matarrese et al. (1995) [17] using three
different inhomogeneous functions, one for each axis. Using the Pyne and Carroll method,
we have calculated the general form of first-order and second-order CMB temperature devi-
ations in silent universes. We have found that the first-order ISW effect can be split in three
different parts, each one following the behaviour of the anisotropy potentials. Also δ(2)T for a
generic silent metric presents the second-order correction of the ISW effect and the Shapiro
time delay that we have found in the previous section. The great difference from δ

(1)
T is the

presence of mixed terms. In practice at first-order we have a pure local effect, each metric
potential evolves independently of the others, but at second-order there is a mutual influ-
ence; for example, along the z-direction there are contributions of the potentials evolving
along others directions. We have interpreted this fact as the effect of the tidal induction
introduced by Matarrese et al. (1994a,b) [22], [23]. They showed that at first-order Hµν

vanishes, but not beyond; in fact, there are not mixed terms in δ(1)T , but there are in δ(2)T .
In silent models theory the most controversial assumption is that the magnetic part of the
Weyl tensor vanishes, in particular, for our purpose, in the large scales CMB field, where
we are forcibly neglecting the contribution of gravitational waves. Following Matarrese et
al (1994a,b) we have circumvented the problem by finding non-local contributions in the
second order perturbation of temperature anisotropies. But now we want to re-propose the
question written by Mutoh, Hirai and Maeda (1997) [47]: "Is the attractor in silent universe
still some attractor in more generic spacetimes?" This question can sprout an interesting
line of research, aimed at finding a geometry that specialize the generic silent metric defined
in equation (3.5).
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