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Abstract

In the field of large scale structure, cosmic voids are gaining more and more impor-
tance as useful probes of cosmology and fundamental physics. This is partly due to the
more linear gravitational evolution as compared to their overdense halo counterparts.
However, the models and parameters used to describe cosmic voids are still not univo-
cal, and their analysis is often limited to the largest sizes. This ignores the so-called
void-in-cloud effect, describing smaller voids embedded in overdense surroundings.

The aim of this thesis is to model the void size function including the void-in-cloud
effect, and to study its cosmology dependence. In order to do so, we generate different
void catalogs from the PATCHY mocks of SDSS BOSS DR12 using the void finder
VIDE, each assuming a different value of the matter density parameter Ωm for the
transformation from redshifts to distances. We adopt a multivariate analysis to remove
spurious voids by comparing their properties with voids from a random catalog. We fit
different models for the void size function proposed in literature to the void abundance
of the cleaned catalog. Each fit is performed using a MCMC with three free parameters:
the linear threshold for void formation δV , the linear threshold for collapse δc, and the
rescaling factor rs. We find that the various models exhibit different levels of agreement
with the data, and a different behaviour of the parameters as a function of Ωm. The
Vdn model shows an anomaly in its parameters corresponding to the true value of Ωm
used in the construction of the mock galaxy catalog, indicating a way to recognise it
among the different cosmologies. After the application an Alcock-Paczyński correction
to the catalogs, the Vdn model shows a residual dependence of the fitting parameters
upon the value of Ωm. The results of this work underline the importance of studying
the void-in-cloud effect in order to understand the distribution of cosmic voids in galaxy
surveys.
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Introduction

Observations and simulations of the universe indicate that at large scales matter
is distributed in a web-like structure, the cosmic web (Bond & Myers (1996), Bond et
al. (1996)). The cosmic web is composed by haloes (virialized high density regions of
matter), filaments, walls and cosmic voids. The latter are underdense regions in the
distribution of galaxies, and fill the majority of the volume of the Universe. Due to
their low density character, cosmic voids are useful probes to investigate many aspects
of the cosmology of the large-scale universe (Pisani et al. (2019), van de Weygaert &
Platen (2011)). Redshift-space distortions (RSDs), distortions of the spatial distribution
of galaxies due to their peculiar velocities, can lead to important information about the
growth factor of structures. Cosmic voids allow the analysis of RSD at small scales, where
the two-point statistics of galaxies is characterised by non-linearity and virialization,
and provide information about the formation and evolution of structures (Hamaus et
al., 2015). Being by definition devoid of matter, cosmic voids are dark-energy dominated
objects. Their evolution is ruled only by the gravitational attraction and the expansion
of the universe. Via the study of the expansion of voids during cosmic history it is
possible to gain information about the nature of dark energy (Bos et al., 2012). Voids
are also good laboratories to investigate Einstein’s General Relativity and its possible
extensions. Modified gravity leads to a difference in the matter density profile compared
with General Relativity that can be measured via gravitational lensing around voids
(Baker et al., 2018), and it causes a faster expansion of voids that can be captured by
RSDs around voids (Hamaus et al., 2016). Voids are particularly sensitive to diffuse
components, and they are therefore becoming a topic of interest for studying neutrinos
and their properties. Additionally, the typical sizes of voids span the range of the free-
streaming range of neutrinos (Massara et al., 2015).

We have just listed a few examples of the usefulness of voids as probes to investigate
cosmology, but there is still not a univocal theory to describe them. Different aspects of
voids has been studied and modelled in the literature, such as their density and velocity
profiles (Hamaus et al., 2014). The number density of voids as a function of the void
radius, the void size function, is the analogous of the halo mass function to estimate
the abundance of voids and compare it to the observations. The first model proposed
by Sheth & van de Weygaert (2004) to describe the void size function was based on the
conservation of the number density of voids during their evolution. To take into account
the fact that voids can merge together during their evolution, Jennings et al. (2013)
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proposed a different model, the Vdn model, which considers as conserved quantity the
cumulative volume fraction of void.

It has to be noted that the majority of the theories proposed so far have been devel-
oped in the dark matter haloes and voids context. Little attention has been devoted to
the study of voids from galaxy surveys, and the models that well describe dark matter
voids might not be equally valid for galaxy voids. Aim of this thesis work is to investi-
gate the void size function of voids identified from galaxy surveys, studying the different
models proposed in the literature. Via the parameters of the models obtained from the
fits to the void abundance of catalogs constructed using different values of the matter
density parameter in the transform from redshift to distances, we want to analyse the
dependence of the different models of the void size function upon the chosen cosmology.

In Chapter 1 we will see the theory underlying this work, from the cosmological
background to the derivation of the evolution of underdensities of the matter field which
leads to voids. Adopting excursion set theory we will derive the expressions of the
different models of the void size function. In Chapter 2 a description of the MultiDark
PATCHY mock galaxy catalog (Kitaura et al. (2016), Rodríguez-Torres et al. (2016))
used to generate the void catalogs is presented, as well as a brief overview about how
it was produced. In Chapter 3 we will look at the methods used: the void finder VIDE
(Sutter et al., 2015) to identify voids from the galaxy catalog, and the Least Square and
Markov Chain Monte Carlo methods to search for the best fitting parameters. In Chapter
4 the analysis of the work is presented. We will generate different catalogs using different
values of the matter density parameter in the transform from redshifts to distances.
Adopting a Markov Chain Monte Carlo method we will fit the different void size function
models to the void abundance as a function of radius. Via the agreement of the data to
the different models and the best fitting parameters we will study the dependence of the
void size function upon the chosen model. Looking at the behaviour of the parameters
obtained from the fits we will study the cosmology dependence of the different models
of the void size function. Finally, we will apply an Alcock-Paczyński correction (Alcock
& Paczyński, 1979) to the void catalogs and look for a residual cosmological dependence
of the parameters. In Chapter 5 we will discuss the results obtained in Chapter 4 and
we will suggest future developments of this work.
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Chapter 1

Theoretical background

The structures that we observe today are the evolution of small perturbations in
the matter density field of the universe. Hierarchical scenarios of structure formation
successfully explain the formation histories of gravitationally bound virialized haloes.
The excursion set approach first proposed by Press & Schecher (1974) and then developed
by Epstein (1983) and Bond et al. (1991), provides an analytical description of the
collapse and virialization of overdense dark matter haloes.

The universe at Megaparsec scales, however, shows filamentary and sheetlike struc-
tures that are not well described by virialized spherical structures. Excursion set theory
can nevertheless be applied to the large empty regions between galaxy clusters and fil-
aments, cosmic voids. While galaxy clusters contain the majority of the mass of the
universe, cosmic voids are the dominant component of the total volume of the universe
at Megaparsec scales. They are underdensities of the matter field of the universe, and
they can be studied as spherical evolution of negative density perturbation (Blumenthal
et al., 1992). In a void-based description of structure formation the matter is squeezed
between expanding voids, forming filaments and sheets at the intersections between void
walls (Icke, 1984).

In section (1.1) we will briefly see the elements of the cosmology we will be dealing
with, in section (1.2) we will see the spherical evolution of overdensities and underden-
sities of the matter density field, and in section (1.3) we will study excursion set theory
applied to voids, introducing the different models of first-crossing distribution function
and void size function. In the development of this chapter we will mainly follow Hamaus
(2017).

1.1 Cosmological Background
In this section we will first give a look to the cosmological framework we will be

working in, focusing on the relevant aspects for the subsequent analysis. We will mainly
follow Coles and Lucchin cosmology book (Coles & Lucchin, 1995). We are interested
in systems at very large scales, where the only relevant force is the gravitational one.
Einstein’s General Relativity describes gravity as a distortion of the spacetime itself,
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and Einstein’s equations relate the metric of the spacetime to the matter distribution of
the universe:

Rµν −
1
2gµνR− Λgµν = 8πG

c4 Tµν (1.1)

where Rµν is the Ricci tensor constructed form the Riemann curvature tensor, gµν is the
metric tensor, R is the Ricci scalar defined as the trace of the Ricci tensor R = gµνRµν ,
Λ is the cosmological constant, G is the gravitational constant, c is the speed of light
and Tµν is the stress-energy tensor. The cosmological constant was first introduced by
Einstein himself in order to ensure static cosmological solutions, but today it is incor-
porated in the energy-momentum tensor as dark energy, the non-zero intrinsic energy
density of the vacuum. The stress-energy tensor describes the matter distribution, and
for a perfect fluid it takes the form

Tµν = (p+ ρc2)uµuν − pgµν (1.2)

where uµ is the fluid 4-velocity, and ρ and p are the energy density and the pressure of
the fluid, respectively.

The cosmological principle states that on very large scales the universe is homo-
geneous and isotropic. Applying these symmetries, the most general solution of Ein-
stein’s equation takes the name of Friedmann-Lemaître-Robertson-Walker (FLRW) met-
ric. Defining the infinitesimal line element as ds2 = gµνdxµdxν , the FLRW metric takes
the form

ds2 = (c dt)2 − a2(t)
[ dr2

1− kr2 + r2(dθ2 + sin2 θdφ2)
]

(1.3)

where r, θ and φ are the comoving coordinates, t is the proper time, a(t) is the scale
factor which describes the expansion of the universe, and k is the curvature parameter.
Depending on the sign of the curvature parameter the universe is open (k > 0), flat
(k = 0) or closed (k < 0). From the scale factor we can define the Hubble parameter as

H ≡ ȧ

a
(1.4)

where the dot indicates the derivative with respect to the proper time t. Edwin Hubble
introduced the parameter that bears his name looking at the redshifts and the distances
of different galaxies, which led him to the discovery of the expansion of the universe. We
can define the redshift parameter as

z = λobs − λem
λem

(1.5)

where λem and λobs are the wavelengths emitted by the source and observed on the
Earth, respectively. The Doppler effect generates a shift in the wavelength depending
on the velocity of the source, and it permits us to relate the redshift parameter to the
velocity.

v

c
= (z + 1)2 − 1

(z + 1)2 + 1 (1.6)
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where v the radial speed of recession. Eq. (1.6), for non-relativistic velocities becomes
v

c
≈ z . (1.7)

Hubble found a relation of proportionality between the velocity and the distance of the
objects observed, and the proportionality constant is the Hubble parameter:

v

c
= H · d (1.8)

where d is the non-comoving distance (Carroll & Ostlie, 2007). When Hubble first
proposed his law he didn’t know that H is a time dependent parameter, and considered
instead a constant H0 which can be expressed in the form

H0 = 100 h km s−1Mpc−1 (1.9)
which is nothing but the value of the Hubble parameter evaluated today H0 = H(t0).
The parameter h is a dimensionless parameter which incorporates the tension that re-
gards the value of the Hubble parameter in the literature.

In the FLRW metric Einstein’s equations take the form of the Friedmann equations:

H2 = 8πG
3 ρ− kc2

a2 , (1.10)

ä

a
= −4

3πG
(
ρ+ 3 p

c2

)
. (1.11)

From Eq. (1.10) we can define the critical energy density ρc as the energy density that
the universe would assume if it were flat (k = 0):

ρc = 3H2

8πG (1.12)

and from it we can define the density parameter

Ω ≡ ρ

ρc
= 8πGρ

3H2 . (1.13)

The conservation of the energy-momentum tensor in the FLRW metric for a perfect fluid
becomes

ρ̇ = −3H
(
ρ+ p

c2

)
. (1.14)

In many cases we can express the equation of state of the fluid as p = wρc2, where the
parameter w depends on the fluid and lies in the range 0 < w < 1.

The universe during its evolution has crossed different epochs, each one characterised
by the domination of one component (radiation, matter, dark energy). In each epoch we
can consider as a good approximation a mono-component universe, with Ωi = 1 where
i indicates the specific constituent. Each component can be expressed as a perfect fluid
with a different value of w: wm = 0 for matter, wr = 1

3 for radiation and wΛ = −1 for
dark energy.
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1.1.1 Einstein-de Sitter universe

Let us now consider the simplified case of a flat universe k = 0 with no cosmological
constant Λ = 0, and composed only by matter (w = 0, Ωm = 1). This solution is known
as Einstein-de Sitter universe. In such a universe the solution of Eq. (1.14) is

ρ ∝ a−3 (1.15)
and from Eq. (1.10) we obtain

a ∝ t
2
3 (1.16)

from which
H = 2

3t . (1.17)

These solutions will be useful later on, and they show that an Einstein-de Sitter universe
will keep expanding forever, with a constant deceleration parameter q ≡ − äa

ȧ2 = 1
2 .

1.1.2 Standard model of cosmology

Mono-component universes as the Einstein-de Sitter one can be good approximations,
but our universe is more complicated than that. The most accepted model that describes
the universe is the flat-ΛCDMmodel, also called standard model of cosmology. The name
itself tells us that we are considering a universe with zero curvature k = 0, and a non-null
cosmological constant Λ 6= 0.

The standard model of cosmology takes into account the composition of the universe
at z = 0, mainly dark energy and matter. The major component is dark energy, with
Ω0

Λ ≈ 0.7. The cosmological constant Λ is transposed to the right hand side of Eq. (1.1)
and can be considered as a perfect fluid with energy density

ρΛ = Λc2

8πG (1.18)

and pressure pΛ = wΛρΛc
2 = −ρΛc

2. We can see from Eq. (1.14) that the energy density
of dark energy is constant in time. The matter component of the present universe has
a density parameter of Ω0

m ≈ 0.3, of which only Ω0
b ≈ 0.05 is baryonic matter. Almost

all matter of the universe is non-baryonic matter which interacts only gravitationally,
called dark matter. Finally, the universe has a small component of radiation, consisting
mainly of photons and neutrinos, with density parameter Ω0

r ≈ 10−5. In this work we
will neglect the radiation component, and consider

ΩΛ + Ωm = 1 . (1.19)
In such a composed universe we can write the Hubble parameter H as a function of

the quantity of matter in the universe:

H = H0

√√√√Ω0
m

(
a

a0

)−3
+ 1− Ω0

m . (1.20)

We can observe that the Hubble law (1.8), which with Eq. (1.7) relates redshifts and
distances, depends on the parameter H, and therefore on the value of Ωm.
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1.2 Spherical evolution
The cosmological principle states that the universe is homogeneous. However this is

valid only at very large scales, and the universe has inhomogeneities that lead to structure
formation. All structures observed today, such as galaxies, cluster of galaxies and voids,
have grown from small density perturbations in the matter field of the universe. Let us
define the density contrast

δ(x, t) = ρ(x, t)
ρ̄(t) − 1 (1.21)

where ρ(x, t) is the density field at time t and position x, and ρ̄ is the mean density of the
universe. At early times, when perturbations are small, they can be described by linear
perturbation theory. However, physical structures evolve a highly non-linear regime
which cannot be described by linear theory and it requires a different analysis. To deal
with non-linear gravitational dynamics analytically we need to make assumptions on the
density distribution, and the simplest way to do so is to consider a spherically symmetric
gravitational system. We need to remember that this model is not physically accurate,
but it allows us to understand the processes and the dynamics involved. Considering
a spherically symmetric density fluctuation δ(t, r) we can define the average density
contrast

∆(r, t) = 3
r3

∫ r

0
δ(r′, t)r′2dr′ . (1.22)

The total mass inside a sphere of radius r is then

M(r) =
∫ r

0
ρ(r′, t)4πr′2dr′

=
∫ r

0
ρ̄(t)(1 + δ(r′, t))4πr′2dr′

= 4π
3 r3ρ̄[1 + ∆(r)] .

(1.23)

In linear theory, when the density contrast is small, we can factorize it into its
temporal and spatial dependence as

δ(x, t) = D(t)δ(x) (1.24)

where D(t) is the linear growth factor, from which we can define the linear growth rate

f(t) ≡ d lnD(t)
d ln a(t) . (1.25)

To a good approximation f(t) can be related to Ωm as f(t) ≈ Ω0.6
m (Peebles, 1980). To

linear order in the density contrast the conservation of mass implies
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∂δ(x, t)
∂t

+ 1
a(t)∇ · v(x, t) = 0

= dD(t)
dt

δ(x) + 1
a(t)∇ · v(x, t)

= d lnD(t)
d ln a(t)

d ln a(t)
dt δ(x, t) + 1

a(t)∇ · v(x, t)

= f(t)H(t)δ(x, t) + 1
a(t)∇ · v(x, t)

(1.26)

where v(x, t) the peculiar velocity field. In the second row we have applied the factor-
ization of Eq. (1.24), and in the third row the definition of the linear growth rate (1.25).
Integrating over some volume, applying the divergence theorem and using the definition
of the average density contrast (1.22) we can write the radial velocity in linear theory as

v(r, t) = −1
3f(t)a(t)H(t)r∆(r, t) (1.27)

As a first analysis we will consider a matter dominated Einstein-de Sitter universe
with no cosmological constant Λ = 0 and Ωm = 1. In section (1.2.3) we will see the
generalization to a ΛCDM cosmology. Let us now consider a test particle at a distance
r from the center of a spherically symmetric density distribution. Birkhoff’s theorem
states that a spherically symmetric body affects other objects as if all its mass were
concentrated at a point at its center. Our test particle then is affected only by the
mass inside the sphere of radius r, M(r). Newtonian gravitational theory leads to the
equation of motion

r̈ = −GM(r)
r2 . (1.28)

Integrating this equation over time we obtain the energy equation

1
2 ṙ

2 − GM(r)
r

= K (1.29)

where the first term corresponds to kinetic energy, the second term to the potential
gravitational energy and K is the integration constant. Replacing the mass M(r) with
the expression obtained in Eq. (1.23) we obtain

ṙ2 − 8πG
3 ρ̄r2[1 + ∆(r)] = 2K . (1.30)

Looking at the definition of Ω in Eq. (1.13) we can define the background matter density
parameter Ωm = ρ̄

ρc
and write Eq. (1.30) as

ṙ2 − ΩmH
2r2[1 + ∆(r)] = 2K . (1.31)
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We can set the value of K from the initial conditions. The initial perturbation is small
and evolves following linear theory, so we can use Eq. (1.27) to determine the initial
velocity:

ṙi ' riHi −
1
3fiHiri∆i(ri) (1.32)

where all quantities are calculated at the initial time and are characterised by the sub-
script i. Eq. (1.32) leads to the expression of the integration constant

2K = (riHi)2
[(

1− ∆i

3

)2
− (1 + ∆i)

]
' −5

3(riHi)2∆i . (1.33)

Eq. (1.23) allows us to relate the average density contrasts at general and initial time
through mass conservation

1 + ∆ = (1 + ∆i)
r3
i ρ̄i
r3ρ̄

. (1.34)

From the definition of Ωm we can write

ρ̄i
ρ̄

=
(
Hi

H

)2
. (1.35)

From Eq. (1.31) and using Eq. (1.33), (1.34) and (1.35) we can finally obtain the
dynamical equation of a spherically symmetric density perturbation(

ṙ

r

)2
= H2

i

[
(1 + ∆i)

(
r

ri

)−3
−
(5

3∆i

)(
r

ri

)−2]
. (1.36)

We will now consider separately the overdensity and underdensity cases, defined by
∆i > 0 and ∆i < 0 respectively.

1.2.1 Overdensity

For ∆i > 0 we can solve Eq. (1.36) in parametric form

r

ri
= 1

2

(5
3∆i

)−1
(1− cos η) (1.37)

Hit = 1
2

(5
3∆i

)− 3
2
(η − sin η) (1.38)

where the parameter η is defined as

dη = ri
r

√
5
3∆iHidt . (1.39)

At ηta = π, when ṙ = 0, the radius of the overdensity reaches its maximum, and after
that moment, called moment of turn-around, it decouples from the Hubble flow and it
starts to shrink. We can derive the time of turn-around tta from Eq. (1.38).
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Mass conservation of Eq. (1.34) in a matter dominated Einstein-de Sitter universe
leads to

1 + ∆ = (1 + ∆i)
(
r

ri

)−3( a
ai

)3

= (1 + ∆i)

(
3
2Hit

)2

(
r
ri

)3

= (1 + ∆i)
9(η − sin η)2

2(1− cos η)3

(1.40)

where the first row derives from Eq. (1.34) applying Eq. (1.15) of an Einstein de Sitter
universe, and in the second row we have applied properties (1.16) and (1.17). In the
last row we have replaced the solutions of Eq. (1.37) and Eq. (1.38). Expanding the
solution equation of the time Eq. (1.38) to first order we get

Hit '
1
2

(5
3∆i

)− 3
2 η3

6 (1.41)

and similarly the equation of mass conservation (1.40) leads to

1 + ∆ ' (1 + ∆i)
(

1 + 3
20η

2
)

' (1 + ∆i)
[
1 + ∆i

(3
2Hit

) 2
3
] (1.42)

where we used the linearized solution Eq. (1.41). After the turn-around point the
overdensity shrinks until it reaches the collapse, where all matter is concentrated in a
single point. We can see from Eq. (1.37) that this happens at ηc = 2π. At the moment
of collapse, tc = 2tta, the linear average density contrast will be

1 + ∆c ' (1 + ∆i)
[
1 + 3

5

(6π
4

) 2
3
]
' 1 + 1.686 . (1.43)

We can then define δc = 1.686 as the linear density threshold for collapse. Remember
that this is the value of the average density contrast in linear theory at the moment of
collapse, for a spherically symmetric density distribution.

1.2.2 Underdensity

In the case ∆i < 0 we have an underdensity of the matter density field. In this case
the parametric solution of Eq. (1.36) is

r

ri
= 1

2

(5
3 |∆i|

)−1
(cosh η − 1) (1.44)
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Hit = 1
2

(5
3 |∆i|

)− 3
2
(sinh η − η) (1.45)

where the parameter η is now defined as

dη = ri
r
i

√
5
3 |∆i|Hidt (1.46)

and it is imaginary. In this case the perturbation never reaches a point of turn-around
and continues to expand. When two shells with different initial radius ri cross each
other, they reach a stage of non-linearity and we can call that moment as the formation
of the void. From Eq. (1.44) and (1.45) we can derive the infinitesimal distance between
shells and the infinitesimal time

dr = 1
2

(5
3 |∆i|

)−1[
(cosh η − 1)

(
dri − ri

d∆i

∆i

)
+ ri sinh η dη

]
(1.47)

dt = 1
2Hi

(5
3 |∆i|

)− 3
2
[
(cosh η − 1)dη − 3

2(sinh η − η)d∆i

∆i

]
. (1.48)

At the moment of shell-crossing the infinitesimal distance between shells vanishes at one
moment in time dr = 0 dt = 0, which from Eq. (1.47) and (1.48) lead to

d ln ∆i

d ln ri
=
[
1− 3

2
sinh η(sinh η − η)

(cosh η − 1)2

]−1
. (1.49)

The shell-crossing condition depends on the particular density distribution that we
choose. From the definition of the average density contrast (1.22) we can derive

d ln ∆
d ln r = 3

(
δ(r)
∆(r) − 1

)
. (1.50)

Let us now assume an inverted top-hat density distribution, described by

δi(ri) =
{
δ0 ri < r0

0 ri ≥ r0
(1.51)

from which from Eq. (1.22) we get

∆i(ri) =
{
δ0 ri < r0

δ0
( r0
ri

)3
ri ≥ r0

(1.52)

which leads to

d ln ∆i

d ln ri
=
{

0 ri < r0

−3 ri ≥ r0 .
(1.53)
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In the case of a spherical inverted top-hat distribution the shell-crossing condition (1.49)
becomes

sinh η(sinh η − η)
(cosh η − 1)2 =

{
0 ri < r0
8
9 ri ≥ r0 .

(1.54)

At ri < 0 the only solution is the trivial one η = 0, while in the ri ≥ r0 case the solution
is ηsc ' 3.488, and the condition is first satisfied at the boundary shell at ri = r0. As
we did in the overdensity case, from the equation of mass conservation (1.34) we can
derive the average density contrast as a function of the initial density contrast and the
parameter η

1 + ∆ = (1 + ∆i)
9(sinh η − η)2

2(cosh η − 1)3 . (1.55)

At the shell-crossing point ηsc = 3.488 the average density contrast is then

1 + ∆sc ' 0.2047 ' 1− 0.8 (1.56)

from which we can define the non-linear density threshold for void formation ∆sc ' −0.8.
At the moment of shell-crossing the comoving radius of the underdensity has expanded
by a factor (1 + ∆sc)−1/3 ' 1.7. Expanding to linear order Eq. (1.55) leads to the linear
average density contrast

1 + ∆ ' (1 + ∆i)
[
1− |∆i|

(3
2Hit

) 2
3
]

= (1 + ∆i)
[
1− 3

206
2
3 (sinh η − η)

2
3

]
(1.57)

which, calculated at the shell-crossing point ηsc ' 3.488 results in

1 + ∆sc ' 1− 2.717 . (1.58)

We can define the linear density contrast for void formation δV as the density contrast
at the moment of shell-crossing in linear theory, and its value in the case of a spherical
inverted top-hat density distribution is δV = −2.717.

1.2.3 ΛCDM generalization

In a general ΛCDM cosmology the motion of the test particle in a spherically sym-
metric density distribution is given by

r̈ = −GM
r2 + Λ

3 r (1.59)

from which, following Mo et al. (2010), we can derive the dependence of the linear density
threshold for collapse upon Ωm:

δc ≈ 1.686 Ω0.0055
m . (1.60)

In the case of the standard model for cosmology, considering Ωm = 0.3, we obtain
δc = 1.674. We can see that there is a small change in the value of δc going from an
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Einstein-de Sitter to a ΛCDM universe. Similarly, the value of δV goes from −2.717 in an
Einstein-de Sitter universe to δV = −2.731 in a ΛCDM universe (Jennings et al., 2013).
In the following calculations and analysis we will consider the parameters corresponding
to the standard model of cosmology.

1.3 Excursion set theory
In the previous section we considered perturbations of the density field of the uni-

verse, that can fluctuate on arbitrarily small scales. Excursion set theory allow us to
smooth the density perturbations at a cutoff scale RS making use of a window function.
The smoothed density contrast will be

δRS(x) =
∫
δ(x′)WRS(x− x′)d3x′ (1.61)

where WRS is the window function. Different choices are possible, such as the Gaussian
window in real or Fourier space. We will use a top-hat window function in real space:

WRS(x) =


3

4πR3
S
|x| < RS

0 |x| ≥ RS
(1.62)

normalized such that
∫
WRS(x)d3x = 1. To simplify the following calculation we will

analyse it in Fourier space. The Fourier transform of the density contrast is defined as

δ(k) =
∫
δ(x)e−ik·xd3x . (1.63)

The convolution of Eq. (1.61) then becomes a simple multiplication

δRS(k) = δ(k)WRS(k) (1.64)
where WRS(k) is the Fourier transform of the top-hat window function:

WRS(k) = 3
(kRS)3 [sin(kRS)− kRS cos(kRS)] . (1.65)

Let us define the two-point correlation function in real space as the joint ensamble
average of the density contrast at two points separated by a distance r:

ξ(r) ≡ 〈δ(x)δ(x+r)〉 (1.66)
which depends only on the magnitude of the distance, due to the properties of homo-
geneity and isotropy. The analogous in Fourier space will be

〈δ(k)δ(k′)〉 =
∫ ∫
〈δ(x)δ(x+r)〉e−i(k+k′)·xe−ik

′·rd3x d3r

=
∫
ξ(r)e−ik′·xd3r

∫
e−i(k+k′)·xd3x

≡ P (k′)(2π)3δD(k + k′)

(1.67)
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where δD(k + k′) is the Dirac delta function, and in the last row we have defined the
power spectrum as the Fourier transform of the two-point correlation function

P (k) =
∫
ξ(r)e−ik·xd3r (1.68)

that, like the two-point correlation function, depends only on the magnitude of k. We
can now define the variance of the density field as the two-point correlation function of
the smoothed density contrast calculated at a distance r = 0

σ2
RS ≡ 〈δ

2
RS(x)〉

= ξRS(r = 0)

= 1
(2π)3

∫
PRS(k)d3k

= 1
2π2

∫
P (k)W 2

RS(k)k2dk .

(1.69)

From now on we will consider the variance as the quantity that identifies the smoothing
scale RS.

1.3.1 First-crossing distribution function

Let us consider a sequence in the initial Gaussian random field δRS where RS is
decreased stepwise from a large initial value. Fig. (1.1) shows in the left-most panel of
each set the smoothed density contrast as a function of the variance at a given cutoff
scale σRS . We can see that the density contrast performs random walks (Bond et al.,
1991), and each set shows a different path. The two other panels of each set show the
structure evolution of each configuration.
The first set represents the cloud-in-cloud process. The density contrast crosses the
linear threshold for collapse δc at two different scales: in the central panel we can see
different clouds of matter, which will collapse in one bigger cloud (last panel).
The second set shows the cloud-in-void process. The density contrast crosses the linear
threshold for collapse at a small scale, while it crosses the linear threshold for void
formation δV at larger scales. This represents the presence of a cloud inside a larger
void.
The third set shows the void-in-void process. The density contrast crosses twice the
threshold δV . In the central panel we can see a hierarchy of voids at different scales,
which will end up merging into one large void (similarly to the cloud-in-cloud effect).
The last set shows the void-in-cloud process. Here the density contrast crosses the
threshold for void formation δV at a smaller scale than the one in which it crosses the
threshold for collapse δc. This sets represents the presence of a void inside a matter halo,
as we can see in the central panel. While the larger matter cloud collapses the void is
squeezed at smaller and smaller sizes. When the halo has collapsed the void no longer
exists (Sheth & van de Weygaert, 2004).
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Figure 1.1: Random walks of the density contrast and corresponding structures and
evolution in four cases: cloud-in-cloud, cloud-in-void, void-in-void and void-in-cloud
processes. Left panels: Random walks of the density contrast δRS as a function of the
variance Sm = σ2

RS
. Central panels: Structure corresponding to the path of the random

walk in the corresponding left panel. Right panels: Evolution of the structure of the
corresponding central panel. Adopted from (Sheth & van de Weygaert, 2004).
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We can quantify the number of voids defining the first-crossing distribution function
as the fraction of random walks which cross the threshold for void formation δV and had
not crossed the threshold for collapse at larger scales:

f(σRS , δV , δc) = f(σRS , δV )−
∫ σ2

RS

0
f(σR′

S
, δc)f(σRS , δV |σR′

S
, δc)dσ2

R′
S
. (1.70)

The second term on the right hand side represents the void-in-cloud process, which has
been subtracted to the fraction of random walks that cross δV . Defining the void-and-
cloud parameter as

D ≡ |δV |
δc + |δV |

(1.71)

and the variable
ν ≡ |δV |

σRS

(1.72)

the solution of Eq. (1.70) is found using Laplace transforms (Sheth & van de Weygaert,
2004) and can be expressed in terms of these new quantities as:

νf(ν) =
∞∑
j=1

2jπD2

ν3 sin(jπD)e−
(jπD)2

2ν2 (1.73)

where we have dropped the explicit dependence on the parameters δV and δc. Sheth and
van de Weygaert (Sheth & van de Weygaert, 2004) proposed an approximation form of
Eq. (1.73), valid for δc

|δV | &
1
4 :

νf(ν) ≈
√

2
π
νe−

ν2
2 e
[
− |δV |

δc

(
D
2ν

)2
−2
(
D
ν

)4]
(1.74)

where the second exponential represents the void-in-cloud term. In fig. (1.2) we can
see the comparison between the two forms of the first-crossing distribution function, i.e.
the general form (blue line) and Sheth-van de Weygaert approximation (orange line) as
a function of ν. We can see the comparison of the two functions in the case of four
different sets of parameters. Note that the two forms are quite similar to each other
when the parameters sets are inside the regime of validity of the approximation, while
in the upper-left plot, where the parameters are outside that regime, the two functions
differ both in magnitude and in the value of ν that corresponds to the peak.

It will be useful to define also an "hybrid" model (Jennings et al., 2013):

νf(ν) =


∑∞
j=1

2jπD2

ν3 sin(jπD)e−
(jπD)2

2ν2 x > 0.276√
2
πνe

− ν
2

2 e
[
− |δv |

δc

(
D
2ν

)2
−2
(
D
ν

)4]
x ≤ 0.276

(1.75)

where x = D
ν . The reason of the utility of this function will be clarified in Chapter 4.
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Figure 1.2: Comparison between the general solution of the first-crossing distribution
function (blue line) and the Sheth-van de Weygaert approximation (orange line) in the
case of four different sets of parameters δV and δc.
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1.3.2 Void size function

A better quantity to express the abundance of voids that can be compared with data
is the void size function, which expresses the number density of voids per logarithmic bin
in the void radius dn

d lnR . We have seen that during spherical evolution a void expands
by a factor independent of its initial size. We can then define a Lagrangian void radius

RL = rs ·R (1.76)

as the Eulerian one R multiplied by a rescaling constant rs. We have seen in section
(1.2.2) that when it reaches the shell-crossing condition the void has expanded by a
factor (1 + ∆sc)−1/3 ' 1.7, which implies a rescaling factor rs ' 0.58 in the case of a
spherical inverted top-hat distribution (Chan et al., 2014).

The first model of the void size function was proposed by Sheth and van de Weygaert
(Sheth & van de Weygaert, 2004), and it is based on the conservation of the comoving
number density of voids during their evolution and the transition from linear to non-
linear theory

n = nL (1.77)

which, along with the definition of the Lagrangian void radius (1.76), implies

dn
d lnR = dnL

d lnRL
. (1.78)

The void size function in the Sheth-van de Weygaert model can be written in the form

dn
d lnR = 1

V

(
R

RL

)3
νf(ν) d ln ν

d lnR

= 1
V

1
r3
s

νf(ν) d ln ν
d lnR

(1.79)

where V is the void volume

V (R) = 4π
3 R3 . (1.80)

Sheth-van de Weygaert model however presents the issue that the cumulative volume
fraction of voids larger than a value RV

F(RV ) =
∫ ∞
RV

dr
r
V (r) dn

d ln r (1.81)

exceeds unity. In order to overcome this problem Jennings, Li and Hu (Jennings et al.,
2013) proposed a new model of the void size function that takes into account the fact
that during their evolution voids can merge together. The conserved quantity, then, is
not the number density of voids, but the total volume of voids:

F(R) = F(RL) (1.82)
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that, from the definition of F Eq. (1.81), implies

V (R)dn(R) = V (RL)dn(RL) . (1.83)

This model is the so-called Vdn model, and it modifies the void size function of Eq.
(1.79) as

dn
d lnR = dnL

d lnRL

(
VL
V

)
= dnL

d lnRL
r3
s

= 1
V
νf(ν) d ln ν

d lnR .

(1.84)

In Fig. (1.3) we can see the comparison between the Vdn model and Sheth-van de
Weygaert model. Each column shows a different set of parameters, while each row shows
the models calculated using the two different forms of the first-crossing distribution
function: the first row considers the general form, while the second row adopts the
Sheth-van de Weygaert approximation.
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Figure 1.3: Comparison between Vdn model (blue continuous line) and the Sheth-van
de Weygaert model (orange dashed line) in the case of two different sets of parameters
δV and δc and the two different first-crossing distribution functions, i.e. the general
form and Sheth-van de Weygaert approximation.
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Chapter 2

Data set

In this work we will use a mock catalog of the twelfth release of the Baryon Oscillation
Spectroscopic Survey (BOSS)(Dawson et al., 2013), a branch of the Sloan Digital Sky
Survey (SDSS). The Sloan Digital Sky Survey has carried out imaging and spectroscopy
over one third of the Celestial Sphere. It started routing operations in 2000, April, using
a dedicated 2.5-meter wide-field telescope instrumented with a sequence of sophisticated
imagers and spectrographs. We are interested in SDSS-III (Alam et al., 2015), which
started operations in Fall 2008, completing in Summer 2014.

BOSS is a survey designed to measure the universe using baryon acoustic oscillations
(BAO), a feature imprinted on the clustering of matter by acoustic waves that propagate
in the pre-recombination universe. Sound waves that propagate in the early Universe,
like spreading ripples in a pond, imprint a characteristic scale on cosmic microwave
background fluctuations. These fluctuations have evolved into today’s distribution of
walls and voids of galaxies, meaning this baryon acoustic oscillation (BAO) scale (about
150 Mpc) is visible among galaxies today. BOSS project used the 2.5-meter aperture
Sloan Foundation Telescope at Apache Point Observatory. The telescope used a drift-
scanning mosaic CCD-camera with five color-bands. Spectra are obtained using the
double-armed BOSS spectrographs, covering the wavelength range 3600-10000 Å with
a resolving power of 1500 to 2600. BOSS provides redshifts for 1.5 million galaxies
divided into two samples: LOWZ, which selected the brightest and reddest galaxies of
the low-redshift galaxy population (z . 0.4), and CMASS, which isolates galaxies at
higher redshift (z & 0.4) (Rodríguez-Torres et al., 2016).

The mock galaxy catalog that we will use in this work is the MultiDark Patchy mock
catalog, and it has been constructed using the code PATCHY (Kitaura et al. (2016),
Rodríguez-Torres et al. (2016)). In the next section we will briefly see its construction.

2.1 MultiDark-Patchy mock galaxy catalog
The Baryon Oscillation Spectroscopic Survey scanned the sky with great accuracy,

but the analysis of such survey arises a question: if the universe is comparable with an
unique huge experiment, how can we determine the uncertainties in the measurements
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Parameter Value
Ωm 0.307115
ΩΛ 0.692885
Ωb 0.048
σ8 0.8288
h 0.6777

Table 2.1: Cosmological parameters adopted in the construction of MultiDark-Patchy
mocks.

derived from observing it? To solve this issue, during the past decades there has been
an effort to encode our knowledge of structure formation in computational algorithms,
and compare the models to the observations.

The PATCHY method, that has been adopted in the construction of the catalog we
will use, relies on the large-scale density field obtained from approximate gravity solvers
and uses a biasing prescription to populate it with mock galaxies. To construct high-
fidelity mock light cones for interpreting the BOSS DR11 &DR12 galaxy clustering, an
iterative training procedure has been applied, in which a reference catalog is statistically
reproduced with approximate gravity solvers and analytical-statistical biasing models.
The five steps that summarise the catalog construction are reported in the following
subsections. The cosmological parameters used in the construction of the catalog are
show in Table (2.1).

2.1.1 First step: generation of a reference catalog

The first step consists in the generation of an accurate reference catalog. In this case
the reference catalog is extracted from the BigMDPL simulation, one of the MultiDark
N-body simulations described by Kyplin et al. (2016). The BigMDPL is performed with
GADGET-2 code (Springel, 2005), with 38403 particles on a volume of (2.5h−1Mpc)3,
assuming a ΛCDM cosmology with the cosmological parameters of Tab. (2.1). Haloes
are defined based on the Bound Density Maximum halo finder (Kyplin & Holzman,
1997).

To populate the haloes with galaxies the Halo Abundance Matching (HAM) tech-
nique (see e.g. Nuza et al. (2013)) has been used. The basic assumption of the HAM
method is that massive haloes host massive galaxies. Since observations show that this
cannot be a one-to-one relation, it is necessary to include scatters. Therefore the maxi-
mum circular velocity Vpeak of each object has been modified adding a gaussian noise:

V scat
peak = (1 +N (0, σHAM))Vpeak (2.1)

where N is a random number produced with a gaussian distribution with zero mean and
standard deviation σHAM. Then, the catalog has been sorted by V scat

peak starting from the
object with the largest velocity. The catalog has been used to construct the cumulative
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number density of the haloes as a function of V scat
peak. The cumulative number density of

galaxies has been concurrently computed from the Stellar Mass Function (Rodríguez-
Torres et al., 2016). Finally, a monotonic relation between the two cumulative number
densities has been constructed:

ngal(> M i
∗) = nhalo(> V scat

peak,i) (2.2)
which implies that a halo with V scat

peak,i will contain a galaxy with stellar mass M i
∗.

2.1.2 Second step: PATCHY code

In the second step the PATCHY code (PerturbAtion Theory Catalog generator of
Halo and galaxY distributions) is trained to match the two- and three-point clustering
of the full mock galaxy catalogues for each redshift bin. To simulate structure formation
augmented Lagrangian Perturbation Theory (ALPT) has been adopted. Let us first
define the displacement field Ψ(q, z), which maps a distribution of dark matter particles
at initial Lagrangian position q to the final Eulerian position x(z) at redshift z:

x(z) = q + Ψ(q, z) . (2.3)

In this approximation the displacement field is split into a short-range component
ΨS(q, z), calculated using spherical collapse approximation, and a long-range compo-
nent ΨL(q, z). The latter is calculated relying on second order Lagrangian Perturbation
Theory (2LPT), and then filtered with a Gaussian kernel K(q, rS) = exp(−|q|2/(2r2

S)),
where rS is the smoothing radius. The ALPT displacement is then

ΨALPT(q, z) = K(q, rS) ◦Ψ2LPT + (1−K(q, rS)) ◦ΨS (2.4)

and it is used to move a set of homogeneously distributed particles from Lagrangian
initial conditions to the Eulerian final ones. Then, using a clouds-in-cell scheme, the
particles have been gridded to produce a smooth density field δALPT.
The galaxies are then populated on the mesh according to the bias model, which is
composed by different contributions:

• Deterministic bias:
It relates the expected number count of haloes or galaxies ρg ≡ 〈Ng〉∂V at a given
finite volume to the underlying dark matter field ρM, where 〈...〉∂V is the ensemble
average over the differential volume element ∂V .
The bias relation can be arbitrarily complex ρg = B(ρM). The one used in the
construction of MultiDark Patchy mocks is composed by a threshold bias, the local
bias expansion, and a bias which compensates for the missing power of PT based
methods.

• Stochastic bias:
The halo distribution is a discrete sample of the continuous underlying dark mat-
ter distribution. To account for shot noise one could do Poissonian realizations of
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the halo density field, but the excess probability of finding haloes in high density
regions generates over-dispersion.
The strategy has been to generate a mock catalog which reproduces the cluster-
ing of the whole population of galaxies at a given redshift. Mixing massive and
low mass galaxies the over-dispersion has a dominant role, and can be modelled
with a negative binomial probability distribution function, including an additional
parameter to account for over-dispersion (Kitaura et al., 2016).

2.1.3 Third step: HADRON code

Once we have a spatial distribution of objects which accurately reproduce the clus-
tering of the whole galaxy sample at a given redshift, we assign the halo/stellar masses
to each object according to the statistical information extracted from the BigMultiDark
simulation using the Halo mAss Distribution ReconstructiON (HADRON) code (Zhao
et al., 2015). The main steps of the HADRON code are:

• Compute the density field and cosmic web structures according to the dark mat-
ter particles from the reference N-body simulation. Then, classify the knots into
different classes according to their enclosed mass, obtaining the density ρDM and
cosmic web classification type tCW for each cell.

• Compute the number of haloes in each density and cosmic web classification type
bin according to the halo catalog from the reference N-body simulation.

• Taking the dark matter particles according to the approximate catalog mock gen-
erator, compute the density and cosmic web type.

• Apply halo exclusion to the halo catalog from the mock generator, assigning mass
above the threshold to haloes.

• Assign mass to the rest of the haloes. Find the local density ρDM and cosmic
web classification type tCW for each mock halo, and assign the mass with the
probability from the corresponding distribution of halo masses with density ρDM
and type tCW.

2.1.4 Fourth step: SUGAR code

The fourth step consists in the construction of light cones applying the SUrvey
GenerAtoR (SUGAR) code (Rodríguez-Torres et al., 2016). The SUGAR code works
with cubic boxes using positions and velocities of dark matter haloes as inputs. The first
step is to locate the observer (z = 0) and transform from comoving cartesian coordinates
to equatorial ones (right ascension and declination) and redshift. In order to include the
effects of galaxy peculiar velocities the transform of halo coordinates into redshift space
is

s = rc + v · r̂
aH(zreal)

(2.5)
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where rc is the comoving distance in real space, v is the velocity of the object with
respect to the Hubble flow, r̂ is the line of sight direction, a is the scale factor and
H(zreal) the Hubble parameter at the redshift corresponding to rc, computed from

rc(zreal) =
∫ zreal

0

cdz
H0
√

Ωm(1 + z)3 + ΩΛ
(2.6)

where c is the speed of light and H0 the Hubble constant. From Eq. (2.5) and Eq.
(2.6) it is possible to compute s(zobs), where zobs is the observed redshift. In order to
construct light-cones from snapshots, an object with redshift zobs from a snapshot with
redshift zi will be selected if

zi + zi−1
2 < zobs <

zi + zi+1
2 . (2.7)

Finally, in order to complete the mock catalog, and angular mask is applied to match
the area of the selected sample.

2.1.5 Fifth step: comparison with observations

Once the mock catalogs are complete they are compared to observations. First, in
configuration space the two- and three-point correlation functions has been calculated,
followed by the monopole and quadrupole. Then, the monopole and quadrupole have
been analyzed in Fourier space. Finally, the cosmic evolution modelled in the MultiDark
PATCHY mocks has been compared to the one of the observations. All the process is
iterated until the desired accuracy for the statistical measures is reached.

In figure (2.1) a visualisation of the BOSS DR12 and one MultiDark PATCHY mock
is shown. We can see that both the data and the mocks follow the same selection criteria,
including the survey mask. The empty regions seem to be similarly distributed in the
two cases. The color code stands for the stellar mass (Kitaura et al., 2016).
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Figure 2.1: Pie plot of the BOSS DR12 observations (upper left region), and one
MultiDark patchy mock realization (lower right region), from Kitaura et al. (2016)
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Chapter 3

Method

In order to step from the theory we have seen in Chapter 1 to the results of the
analysis of Chapter 4, we need to take some time to understand the methods that we
will use in order to obtain valid results. In this chapter, therefore, we will see the methods
that will be used later on. To find cosmic voids from the MultiDark PATCHY mock
galaxy catalog of the BOSS SDSS DR12 (see Chapter 2) we will use the VIDE code
(Sutter et al., 2015). VIDE code is described in Section 3.1. In order to perform fits and
search for the optimal parameters of the model which describe the data we will first apply
the Least Squares method (Section 3.2). As we will see in Section 4.2 another approach
will be needed, and the fits will be performed using a Markov Chain Monte Carlo method
(Section 3.3). The code that will be used is the emcee code (Foreman-Mackey et al.,
2013), whose main steps are shown in Section 3.3.3.

3.1 VIDE: the Void IDentification and Examination toolkit
To identify cosmic voids from the MultiDark PATCHY mock galaxy catalog we are

using the publicly-available code Void IDentification and Examination toolkit (VIDE)
(Sutter et al., 2015), an enhanced version on the watershed public code ZOnes Bordering
On Voidness (ZOBOV) (Neyrinck, 2008).

In subsection 3.1.1 we will see the types of input supported by VIDE. The core of
the void finder is ZOBOV, which is an inversion of the dark-matter-halo finder VOBOZ
(VOronoiBOund Zones) (Neyrinck et al., 2005). The major change in ZOBOV is that it
looks for density minima instead of maxima. In Fig. (3.1) we can follow the void finding
mechanism main steps, explained in subsections 3.1.2, 3.1.3 and 3.1.4. The results and
outputs of VIDE are shown in subsection 3.1.5.

28



Figure 3.1: Void finding mechanism (from Neyrinck (2008)). (a) Galaxies from a
40 × 40 × 5(h−1Mpc)3 slice of the AAVFCP region of the Millenium simulation. (b)
2D Voronoi tessellation, with each particle’s Voronoi cell shaded according to its area.
(c) Zones of galaxies. The cores of each zone, i.e. the density minima, are shown with
crosses. Different colours demarcate different zones. (d) Watershed transform. Void
1, the deepest void of the sample, is represented with the darkest colour. Colours from
dark to light indicate the stages at which each zone is added to the void.
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3.1.1 Inputs

VIDE is extended to accept different inputs:

• Simulations:
To identify voids in N-body dark matter simulations VIDE is able to read Gadget
(Springel, 2005), FLASH (Dubey et al., 2008) and RAMSES (Teyssier, 2002) sim-
ulation outputs, files in the Self-Describing Format and generic ASCII files listing
positions and velocities. It can also find voids in halo populations, constructing a
mock galaxy population using a Halo Occupation Distribution (HOD) formalism
(Berlind & Weinberg, 2002).

• Observations:
To identify voids in observations the user has to provide an ASCII file listing galaxy
right ascension, declination and redshift, as well as a pixelization of the survey mask
using HEALPIX (Górski et al., 2005). HEALPIX can easily determine which pixels
lie on the boundary between the survey and any masked region, an essential feature
for VIDE to constrain voids to the survey volume. VIDE also provides a utility
for constructing a rudimentary mask from the galaxy positions themselves.

3.1.2 Voronoi tessellation

The first step in the void finding mechanism is the density estimation of each particle
in the survey, using the Voronoi tessellation field estimator, the dual of the Delaunay
tessellation field estimator (Schaap, 2007). The Voronoi tessellation divides the space
into cells around each particle, with the cell around particle i defined as the region
of space closer to the particle i than to any other particle. If V (i) is the volume of
the Voronoi cell of particle i, we can define the density estimation as 1/V (i). Voronoi
tessellation defines also a set of neighbours for each particle: the particles whose cells
are adjacent to the Voronoi cell of particle i. The dual process, Delaunay triangulation,
connects neighbouring particles. In Fig. (3.2) we can see Voronoi (on the left) and
Delaunay (on the right) tessellations (Schaap, 2007).
Fig. (3.1a) shows a set of particles corresponding to galaxies in a slice of the Millenium
simulation. Fig (3.1b) depicts the Voronoi tessellation of these particles.

3.1.3 Zoning

The next step of the void finder is the partition of the Voronoi cells into zones
around each density minimum. A minimum is a particle with lower density than any of
its Voronoi neighbours. The void finder sends each particle to its neighbour with higher
density, until no more higher-density neighbours can be found. This way it creates local
catchment basins, whose cores are the minimum density particles of each zone. Fig.
(3.1c) shows the partition of the Voronoi cells into zones.
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Figure 3.2: A set of 20 points with their Voronoi (left-hand frame: solid lines) and
Delaunay (right-hand frame: solid lines) tessellation. Left: the shaded region indicates
the Voronoi cell corresponding to the point located just below the centre. Right: the
shaded region is the contiguous Delaunay cell of the same point as in the left-hand
frame (from (Schaap, 2007))

3.1.4 Watershed transform

Finally, zones are joined into voids using a watershed transform. The word watershed
refers to the analogy of a landscape being flooded by a rising level of water. In Fig. (3.3)
we can follow the idea: on the left image we can see a surface in the shape of a landscape.
As the level of the water rises gradually, more and more landscape will be flooded, until
basins meet at the ridges corresponding to saddle-points of the surface. In the central
image of Fig. (3.3) we can see this step. In the end, the landscape will be completely
flooded, showing different cells separated by the ridge dams, as we can see in the last
image of Fig. (3.3) (Platen et al., 2007).

In the case of ZOBOV and VIDE the quantity to be raised is the density. Starting
from the absolute minimum value of the survey and then rising gradually its level, the
adjacent zones are joined together when the level of the density field overcomes the value
of the density of the wall between the basins. Fig. (3.1d) shows the growth of the density
from the deepest basin, represented by the darkest colour on the upper left angle of the
image. Successively lighter colours shade zones added when the density level reaches
successively higher values. The void finder imposes a density-based threshold, where
adjacent zones are only added to a void if the density of the wall between them is less
than 0.2n̄, where n̄ is the mean particle density of the survey. This way it is possible to
define a nested hierarchy of voids, with multiple "parent" voids. A parent void is defined
as a void which contains all the zones of a sub-void plus at least one more (Lavaux
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Figure 3.3: Principle of the watershed transform (form Platen et al. (2007)). Left:
The surface to be studied. Center : Rising the level of water from the local minima
different basins are flooded until they meet up near a ridge of the surface. Right: The
entire surface is flooded, leaving a network of dams which delineates the web of the
original surface.

& Wandelt, 2012). In our void catalogs we have set the threshold to zero, so we only
consider lowest level voids without parents.

3.1.5 Outputs

Fig. (3.4) shows an example of a final void found by VIDE. The galaxies are shown
as red dots, where dot sizes are proportional to the distance from the point of view. The
different purple regions are the different Voronoi cells that form the void.
VIDE gives the user access to different void properties for each void, and in the following
we will list the ones that will be useful later on in the analysis:

• Volume V .

• Radius: effective radius of the void, calculated from the volume of the void as

Reff ≡
( 3

4πV
) 1

3
(3.1)

• Redshift z.

• Core density: density of the largest Voronoi cell of the void.

• Density contrast: the ratio d of the minimum density of the ridge separating the
void from adjacent zones to the core density of the void.

• Number of member particles: number of tracers that define the void.
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Figure 3.4: Example Voronoi-based void. The Voronoi cells that define the void are
shown in purple with galaxies in red. The void has an effective radius of 20h−1 Mpc
within a spherical region of radius 50h−1Mpc. Galaxy point sizes are proportional to
their distance from the point of view. Galaxies interior to the void are shaded dark red
(Sutter et al., 2012).
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3.2 Least squares method
The method of Least Squares is a procedure to determine the best fit model to data.

It was advanced early in nineteenth century by Gauss and Legendre for estimation in
problems of astronomical measurement (Bickel & Doksum, 1977). The basic problem
regards linear regression, where, given two sets of n observations {xi} and {yi}, the aim
is to find the best fit straight line y = ax+ b. The method easily generalizes to finding
the best fit of the form

y = c1f1(x) + ...+ ckfk(x) . (3.2)

It is not necessary for the functions fk to be linear in x, all that is necessary is for y to
be a linear combination of these functions (Miller, 2006).

The idea is thus to find the curve as close as possible to all points in the plane xy.
To quantify this concept we introduce the residual sum of squares RSS

RSS =
n∑
i=1

(yi − (axi + b))2 (3.3)

in the case of the linear fit. The RSS measures the vertical distance from each data
point to the line ax+ b and then sums the squares of these distances. The least squares
estimates a∗ and b∗ are defined to be the values of the parameters a and b such that the
RSS is minimum (Casella & Berger, 1990). In the general case of the fit y = f(x), the
least square method can be expressed as

min
( n∑
i=1

(yi − f(ck, xi))2
)

=
n∑
i=1

(yi − f(c∗k, xi))2 (3.4)

where c∗k is the set of parameters that minimizes the value of RSS, therefore the set of
parameters that defines the best fit.

3.3 Markov Chain Monte Carlo
As we will see in section 4.2, we will need a different approach from the least squares

method to obtain the fitting parameters. The choice has naturally fallen on a Markov
Chain Monte Carlo (MCMC) algorithm, in particular the emcee code (Foreman-Mackey
et al., 2013). MCMC is a numerical method for approximate inference, based on Bayesian
inference. In the next sections we will see what Bayesian inference is (Section 3.3.1),
the main steps to construct a MCMC (Section 3.3.2), and the emcee algorithm (Section
3.3.3).

3.3.1 Bayesian inference

Bayesian inference allows us to make inferences about the world around us, inter-
preting some data D in light of an underlying modelM as a function of some parameters
ΘM of the model. We are interested in finding the parameters which best describe the
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data D, so we want to infer the probability P (ΘM |D,M) that the parameters are ac-
tually ΘM given our data D and assuming the model M . Using factoring of probability
and rearranging the terms we obtain Bayes’ Theorem

P (ΘM |D,M) = P (D|ΘM ,M)P (ΘM |M)
P (D|M) (3.5)

where:

• P (D|ΘM ,M) is the likelihood, the probability of observing the data D assuming
a specific choice of the parameter ΘM of the model M ;

• P (ΘM |M) is the prior, the probability of having a particular set of parameters
ΘM for our model M before conditioning upon the data;

• P (D|M) is the evidence

P (D|M) =
∫
P (D|ΘM ,M)P (ΘM |M)dΘM (3.6)

or marginal likelihood of the model M , marginalized over all possible parameters
values ΘM . It quantifies how well the model explains the data D after averaging
over all possible values of the underlying parameters;

• P (ΘM |D,M) is the posterior, the probability of the parameters ΘM after combin-
ing the prior intuition P (ΘM |M) with observations P (D|ΘM ,M), and normalizing
by the evidence P (D|M).

The posterior is a very useful tool to make inferences about the world around us. We
can use it to make guesses about the model, compare different models and generating
predictions. We can define the expectation value of a generic parameter-dependent
function f(ΘM ) with respect to the posterior P (ΘM ):

EP [f(ΘM )] ≡
∫
f(ΘM )P (ΘM )dΘM∫

P (ΘM )dΘM
=
∫
f(ΘM )P (ΘM )dΘM (3.7)

since
∫
P (ΘM ) = 1 by definition. This represents the weighted average of f(ΘM ), where

the weight of each value of ΘM is given by the chance we believe that value is correct
(Speagle, 2019).

3.3.2 Towards Monte Carlo Markov Chain

In general the posterior can not be computed analytically. To estimate quantities
such as Eq. (3.7) requires the use of numerical tools. Focusing on the case in which the
integral over Θ is 1D, and dropping the subscript M for simplicity of notation, we can
approximate the integral using the Riemann sum over a discrete grid of points

EP [f(Θ)] ≈
n∑
i=1

f(Θi)P (Θi)∆Θi (3.8)
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where ∆Θi = Θj+1−Θj is the spacing between the set j = 1, ..., n+1 points of the grid,
and Θi = Θj+1+Θj

2 . Substituting to the normalized posterior P (Θ) the unnormalized
one P̃ (Θ), which is just P (Θ) multiplied by the evidence, the expectation value becomes

EP [f(Θ)] ≈
∑n
i=1 f(Θi)P̃ (Θi)∆Θi∑n

i=1 P̃ (Θi)∆Θi
. (3.9)

Eq. (3.9) has the form of a weighted sample mean of f(Θ), where the value of the
function in Θi, fi = f(Θi), is weighted by wi = P̃ (Θi)∆Θi. This resembles the fact
that, according to the posterior function, some values of f(Θ) can be more important
than others in the calculus of the expectation value. If we knew the shape of the posterior
sufficiently well, for large n we should be able to adjust ∆Θi such that the weights wi
are uniform. When this happens

∆Θi ∝
1

P̃ (Θi)
(3.10)

for all i. As n→∞ we estimate the posterior using a larger and larger number of grid
points whose spacing depend on Θ. We can then define the density of points based on
the varying resolution ∆Θ(Θ)

Q(Θ) ∝ 1
∆Θ(Θ) . (3.11)

Q(Θ) is called proposal distribution. We can then rewrite Eq. (3.7) as

EP [f(Θ)] =
∫
f(Θ) P̃ (Θ)

Q(Θ)Q(Θ)dΘ∫ P̃ (Θ)
Q(Θ)Q(Θ)dΘ

=
EQ[f(Θ) P̃ (Θ)

Q(Θ) ]

EQ[ P̃ (Θ)
Q(Θ) ]

. (3.12)

Now we have two expectation values over Q(Θ) instead of P (Θ). This is useful because
we can estimate the final expression using a series of randomly generated samples from
Q(Θ). This method for estimating the expectation value is commonly referred to as
Monte Carlo approach.

There are a lot of Monte Carlo sampling strategies, i.e. generating samples from the
prior. Here we are interested in Markov Chain Monte Carlo, which generates samples
in such a way that the importance weights associated with each sample are constant.
MCMC hence seeks to generate samples that are proportional to the posterior, creating
a chain of parameter values {Θ1 → ... → Θn} over n iterations such that the number
of iterations m(Θi) spent in a particular region centred on Θi is proportional to the
posterior density P (Θi) contained within the region. In other words the sample density

ρ(Θ) ≡ m(Θ)
n

(3.13)

tends towards the posterior distribution ρ(Θ) → P (Θ) as n → ∞. The expectation
value EP [f(Θ)] therefore reduces to the sample mean (Speagle, 2019)

EP [f(Θ)] = 1
n

n∑
i=1

fi . (3.14)
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3.3.3 Algorithm: emcee

The code we will use to run MCMCs is the emcee code (Foreman-Mackey et al.,
2013), an open source which is a Python implementation of the affine-invariant ensemble
sampler for Markov Chain Monte Carlo proposed by Goodman & Weare (2010). As we
saw in section 3.3.2, MCMC is a procedure for generating random walks in the parameter
space that, over time, draws a representative set of samples from the distribution. Each
point in a Markov chain depends only on the position of the previous step. In the
following we will briefly see the main steps of emcee algorithm.

Metropolis-Hastings algorithm
Metropolis-Hastings procedure is the simplest and most commonly used method to con-
struct the MCMC. It is an iterative process schematised as follows:

1. Given a position Θ(t) in the parameter space, sample a proposal position Ψ from
the transition distribution T (Ψ; Θ(t)), which is a probability distribution for the
transition from Θ(t) to Ψ.

2. Accept the proposal with probability

min
(

1, P (Ψ|D)
P (Θ(t))|D)

T (Θ(t); Ψ)
T (Ψ; Θ(t))

)
. (3.15)

If this step is accepted the new position Θ(t+1) = Ψ, otherwise the position Θ(t)
is repeated in the chain: Θ(t+ 1) = Θ(t).

Stretch move
Metropolis-Hastings algorithm converges to a stationary set of sample from the dis-
tribution, but there are other algorithms with faster convergence. One of these is the
algorithm proposed by Goodman & Weare (2010), an affine-invariant ensemble sampling
called "stretch move". This method simultaneously evolves an ensemble of K walkers
S = {Θk}, where the distribution of the walker k depends on the current positions of the
other K − 1 walkers. For the choice of the next position of the walker k, another walker
j is randomly chosen between the remaining walkers, and the new position proposed is

Θk(t)→ Ψ = Θj + Z[Θk(t)−Θj ] (3.16)

where Z is a random variable. The proposal is accepted with probability

min
(

1, ZN−1 P (Ψ)
P (Θ(t))

)
(3.17)

where N is the dimension of the parameter space. This procedure is then repeated in
series for each walker.
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Parallel stretch move
In order to parallelize the stretch move method we need to split the ensemble into two
subsets S(0) = {Θk ∀ k = 1, ...,K/2} and S(1) = {Θk ∀ k = K/2 + 1, ...,K}, and
simultaneously update all the walkers of the set S(0) using the stretch move position,
but considering only the positions of the walkers in the other set S(1). Then we can
update the set S(1) using the new positions of S(0), and so on and so forth.
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Chapter 4

Analysis

As we have seen in Section 1.3.2, the void size function quantifies the number of
cosmic voids as function of their radius. Its mathematical form is not univocal, and
both the Sheth-van de Weygaert model of Eq. (1.79) and the Vdn model of Eq. (1.84)
depend on the same parameters: the linear threshold for void formation δV , the linear
threshold for collapse δc and the rescaling factor rs.

The first aim of this thesis is to study the different models of the void size function
through the investigation of the parameters of the models. This will be done searching
for the best fit of the models to the data void abundance calculated from void catalogs
constructed by VIDE using the mock galaxy catalog of the MultiDark PATCHY survey.
The second goal of this thesis work is to study the cosmology dependence of the void
size function. This will be achieved generating different void catalogs using VIDE with
different values of the matter density parameter Ωm in the transform from redshifts
to distances, and studying the fitting parameters of the void size function to the void
abundances of the catalogs with different cosmologies. Model and cosmology dependence
of the void size function will be analyzed in parallel through the investigation of the
fitting parameters of the models.

To expose the work done we will follow the order in which the analysis has been car-
ried out, in order to allow the reader to follow the choices made during the development
of the thesis work, showing also the complications encountered during the analysis. In
Section 4.1 we will explain how the void catalogs have been constructed and how the
calculation of the data void abundance has been performed. Sections 4.2 and 4.3 will
show the reader the reason why the multivariate analysis of Section 4.5 will be necessary,
in order to clean our catalogs from spurious voids. In Section 4.6 Sheth-van de Weygaert
and Vdn model of the void size function with general form and Sheth-van de Weygaert
approximation of the first-crossing distribution function will be fitted to the void abun-
dances of the different catalogs, and in Section 4.7 the cosmology dependence of the best
fitting parameters will be examined. Section 4.8 will expose a study of the convergence of
the series of Eq. (1.73), leading us to study model and cosmology dependence of the two
void size function models with the hybrid function proposed by Jennings et al. (2013),
in Section 4.9. In Section 4.10 we will question the choice of the most natural fitting
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Ωm
0.0
0.1
0.2

0.307115
0.4
0.5

Table 4.1: Values of the matter density parameter used in the construction of the
void catalogs.

parameters considered. Alcock-Paczyński effect will be studied in Section 4.11, and after
having applied the Alcock-Paczyński correction proposed by Correa et al. (2020) we will
search for a residual cosmology dependence of the fitting parameters.

4.1 Generation of catalogs
The first step in our analysis is the generation of six different catalogs, each of them

with a different value of the matter density parameter of the universe Ωm in the transform
between redshifts and distances. As we have seen in Eq. (1.20), the value of Ωm affects
the value of the Hubble parameter H, which influences the transform between redshift
and distances, as we have seen in Eq. (1.8) and Eq. (1.7). Changing the value of Ωm
therefore changes the way in which VIDE reads the MultiDark PATCHY mock galaxy
catalog, driving it to identify differently distorted structures from the same survey.

In Table (4.1) are listed the values of Ωm used in the generation of the different
catalogs. Note the presence of the value Ωm = 0.307115, which is the value of the matter
density parameter that has been used in the generation of the mock galaxy catalog (see
Table (2.1)). From now on we will refer to this value of Ωm as "true cosmology". In Fig.
(4.1) are shown the abundances of the different catalogs as a function of the void radius

dn
d lnR(δV , δc, rs, R). Abundances are calculated as follows:

1. Load the void catalog and extract the void radius using VIDE;

2. Make an histogram of the void radius using a log-spacing binning;

3. Calculate the mean difference between bins dR and the mean value of each radius
bin R;

4. Divide the histogram density by the survey volume;

5. In order to obtain the void abundance as a function of the logarithm of the radius
divide the number density by dR/R.
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Figure 4.1: Void abundances as a function of the void radius of the six different
catalogs generated using VIDE with different values of the matter density parameter
Ωm in the transform from redshifts to distances.
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4.2 Least squares fits: ridge problem
Now that we have constructed the catalogs, we want to fit the abundances with the

different models of the void size function. We remind here the four different models that
we will consider:

• Sheth-van de Weygaert model (Eq. 1.79) using the general form of the first-
crossing distribution function (Eq. 1.73). From now on we will call this model
SvdW-general.

• Sheth-van de Weygaert model (Eq. 1.79) using Sheth-van de Weygaert approxi-
mation of the first-crossing distribution function (Eq. 1.74). From now on we will
call this model SvdW-SvdW.

• Vdn model (Eq. 1.84) using the general form of the first-crossing distribution
function (Eq. 1.73). From now on we will call this model Vdn-general.

• Vdn model (Eq. 1.84) using Sheth-van de Weygaert approximation of the first-
crossing distribution function (Eq. 1.74). From now on we will call this model
Vdn-SvdW.

In the calculation of the models we neglected the redshift evolution of the void size
function, and instead we expressed it for the redshift average of all voids. The aim is
now to fit these models to the different catalogs, and study the behaviour of the fitting
parameters. In order to do so the first approach has been the Least Squares method
(Section 3.2): for each void size function model dnmodel

d lnR (δV , δc, rs, R) we want to minimize
the residual sum of squares

RSS =
N∑
i=1

(dndata
i

d lnR −
dnmodel

i

d lnR (δV , δc, rs, R)
)2

(4.1)

where dndata

d lnR is the void abundance calculated as in Section 4.1, i.e. our data, and N is
the number of bins in which we are dividing our abundances. The optimal values of the
parameters δV , δc and rs are the ones that minimize the RSS of Eq. (4.1).

During this analysis, however, a problem has occurred: the optimal parameters found
by the minimization were not univocal. For each model studied, changing the initial
guess of parameters in the minimization gave different optimal results, with a different
value of the RSS. In Fig. (4.2) we can see the behaviour of the RSS of the different
minimizations as a function of the final parameters, in the case of the SvdW-SvdW
model. The plot shows 194 points, each one corresponding to a different minimization.
On the three axes we find the parameters δV , δc and rs, and the value of the residual
sum of squares RSS is indicated by the colour bar.

This problem is known as ridge problem (Russell & Norvig, 1995), and it is a well
known issue in hill-climbing algorithms. In hill-climbing the aim is to find the global
maximum of a function, and the ridge problem implies that, when going up the hill
searching for the maximum, the algorithm gets stuck on a ridge and it is not able to find
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the direction to go further up. In our case we are searching for the global minimum,
and the ridge problem consists in the fact that the minimization does not find a single
value, but a curve composed by local minima. To produce the plot of Fig. (4.2) we have
defined a grid of initial values and search for the absolute minimum, but as we can see
we have found a ridge of local minima. With a rigid grid we are not able to gain the
certainty of having found the global minimum, even if we can see that the values of RSS
on the ridge are not constant but seem to indicate a trend towards the global minimum.
However, the real absolute minimum could always be the result of a minimization that
we have not performed yet. The least squares method, even iterated on a grid, is not the
best approach to proceed with the analysis. A new method is needed, and from now on
we will use a Markov Chain Monte Carlo in order to perform the fits (see Section 3.3).

4.3 MCMC fits: first attempt
In order to overcome the ridge problem we adopted a different method to fit the dif-

ferent models of the void size function to the data: Markov Chain Monte Carlo (MCMC).
In Section 3.3 we explained what MCMCs are, and we briefly followed the steps of the
emcee code (Foreman-Mackey et al., 2013) we have used to perform them.

We have then fitted the four different models of the void size function listed in Section
4.2 to the void abundances as a function of the radius of the six different catalogs. In
Fig. (4.3) we can see the best fits of the four models to the data corresponding to the
true cosmology (i.e. the catalog constructed with Ωm = 0.307115). It is evident that
none of the models fits to the data sufficiently well, especially on small radius scales,
where the void-in-cloud effect is dominant. The ridge problem of the previous section
has been overcome and the result of the MCMC fit is univocal, nevertheless the void
size function models and the data abundance do not agree at all. The problem must lay
either on the models or on the data.

4.4 Large radii limit
In the literature we often see only the right tail of the void abundance, that corre-

sponds to the abundance of large voids (see e.g. Chan et al. (2014)). Small voids are
more challenging to take into account, because at small scales the presence of the shot
noise is more relevant, and the void-in-cloud effect becomes dominant. Therefore in this
section we will consider only the large radii limit, i.e. only the voids with radius larger
than the one corresponding to the peak of the data abundance, in order to investigate
the reason of the poor agreement between the void size function models and the data
abundances that we have seen in last section (see Fig. (4.3)).

Since we are now considering only large voids, we can neglect the void-in-cloud
contribution. Therefore as first-crossing distribution function we will consider the Press-
Schechter function (Press & Schecher, 1974):
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Ωm δV rs
0.0 −0.094+0.005

−0.005 0.995+0.013
−0.013

0.1 −0.129+0.007
−0.008 0.916+0.019

−0.019
0.2 −0.155+0.009

−0.009 0.873+0.019
−0.021

0.307115 −0.175+0.011
−0.012 0.851+0.021

−0.024
0.4 −0.189+0.014

−0.014 0.839+0.024
−0.026

0.5 −0.225+0.018
−0.017 0.781+0.024

−0.028

Table 4.2: Sheth-van de Weygaert model with Press-Schechter first-crossing distri-
bution function. Optimal parameters obtained from the fits performed with MCMC
method to the abundances of the catalogs constructed with different values of the
matter density parameter Ωm. The fits have been performed only to voids with large
radius.

νf(ν) =
√

2
π
νe−

ν2
2 (4.2)

Comparing this equation to Sheth-van de Weygaert first-crossing distribution function
of Eq. (1.74), we can notice that the latter is formed by a first contribution identical to
the Press-Schechter function, and a second contribution due to the void-in-cloud effect.
Considering only Press-Schechter form of the first-crossing distribution function, we fit
Sheth-van de Weygaert model (Eq. 1.79) and the Vdn model (Eq. 1.84) to the large
voids abundance of all catalogs using MCMC method, with the linear density threshold
for void formation δV and the rescaling factor rs as free parameters. Fig. (4.4) shows
the best fits of both models to the void catalogs abundances.

A great improvement from the fit to all voids of Fig. (4.3) is visible: the agreement
between the models and the data is remarkable. The optimal parameters obtained
from the fits of the Sheth-van de Weygaert model (Eq. 1.79) are shown in Table (4.2),
while the parameters obtained in the fits of the Vdn model (Eq. (1.84)) are presented
in Table (4.3). The Sheth-van de Weygaert model exhibits a linear threshold for void
formation δV smaller, in absolute value, with respect to the one predicted by the spherical
collapse theory (see Section 1.2.2). On the other hand the rescaling factor rs is higher
than expected, representing voids which have expanded less than the ones predicted by
spherical collapse. The fitting parameters of the Vdn model are even farther from theory
than the Sheth-van de Weygaert ones. The absolute values of the linear thresholds for
void formation are two order of magnitude smaller than the one predicted by spherical
collapse theory. The rescaling factors are instead larger than expected: with only one
exception in the case of the catalog constructed with Ωm = 0.0, all values are greater than
1, reaching rs ≈ 6.5 in the case of the catalog constructed with Ωm = 0.5. A rescaling
factor that exceeds unity represents voids which could shrink during their evolution,
instead of expanding.

We are looking for a clue to recognise the true cosmology in the fitting parameters.
Let us then investigate the dependence of the parameters upon the matter density pa-
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Figure 4.4: Best fits of Sheth-van de Weygaert model (in orange) and Vdn model (in
green) using Press-Schechter first crossing distribution function, with as free parame-
ters the linear threshold for void formation δV and the rescaling factor rs. The data
void abundances are represented in blue. Shaded regions show the error ranges of the
parameters of each model. In the upper right of each plot is shown the value of the
matter density parameter Ωm used in the construction of the corresponding catalog.
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Ωm δV rs
0.0 −0.096+0.013

−0.022 0.971+0.130
−0.166

0.1 −0.052+0.009
−0.010 1.696+0.261

−0.208
0.2 −0.035+0.008

−0.009 2.374+0.424
−0.336

0.307115 −0.027+0.008
−0.009 2.950+0.731

−0.544
0.4 −0.024+0.008

−0.010 3.345+0.922
−0.665

0.5 −0.009+0.003
−0.006 6.510+2.040

−1.756

Table 4.3: Vdn model with Press-Schechter first-crossing distribution function. Op-
timal parameters obtained from the fits performed with MCMC method to the abun-
dances of the catalogs constructed with different values of the matter density parameter
Ωm. The fits have been performed only to voids with large radius.

rameter Ωm. In Fig. (4.5) and Fig. (4.6) are shown the cosmology dependences of
the parameters obtained from the Sheth-van de Weygaert and Vdn model of the void
size function, respectively. Sheth-van de Weygaert model parameters show an almost
linear decreasing behaviour as Ωm increases. Our aim is to find a behaviour that can
suggest a preference for the true cosmology, but none indicator of such preference is
visible from these parameters. Fig. (4.6) displays instead an increasing behaviour of the
fitting parameters as functions of Ωm. Both trends look less linear than the Sheth-van
de Weygaert case. A slight change of slope in the trends is visible corresponding to the
Ωm = 0.4 catalog, but it could be associated with an anomaly in the parameters of the
Ωm = 0.5 catalog. Remember that the values of the parameters in the Vdn fits result
unphysical, and therefore their behaviour can not be considered very relevant.

We have fitted the two models to large radii voids in order to better understand the
physics beyond the disagreement of Fig. (4.3). We have found a better agreement of the
models to data, but the fitting parameters of the Vdn model result unlikely, representing
voids which, instead of expand during their evolution, could shrink to smaller sizes.

4.5 Multivariate analysis
As we have briefly mentioned in last section, the abundance of voids can be altered by

the presence of shot noise. This is due to the fact that voids identified by VIDE are simply
density minima with depressions around them. This can lead to the identification of
spurious voids due to the presence of discreteness noise, as first pointed out by Neyrinck
(2008). This effect is especially relevant at small scales, but also the abundance of
large voids can be influenced by shot noise. Neyrinck proposed a model to quantify
the significance of voids: assuming that the discreteness noise is similar to that in a
Poisson distribution, he converted the density contrast d to a probability. Defining the
cumulative probability P (d) as the fraction of voids in a Poisson particle distribution
with density contrast greater than d, Neyrinck found
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P (d) = exp(−5.12(d− 1)− 0.8(d− 1)2.8) (4.3)

and used this probability to evaluate the significance of voids identified by the void finder.
After Neyrinck’s first proposal, other cuts have been used to trim the void catalog in
an attempt to prune out spurious voids. Mao et al. (2017) used the density contrast as
a measure of void significance. Nadathur & Hotchkiss (2015) suggested a criterion in
which the void center, or circumcenter, is chosen as the point of intersection of the four
lowest density mutually adjacent Voronoi cells in the void, and the void is then classified
as spurious or genuine according to whether it is overdense or underdense compared
with the mean density, respectively, at the circumcenter. The downside of this approach
is that voids identified in a Poisson distribution are also underdense, and some genuine
voids can have an overdense core. Hamaus et al. (2016) chose to exclude voids with radii
below twice the mean particle separation. However, this approach strongly reduces the
size of the sample without removing all random voids.

All these cuts, taken separately, seem to not be able to isolate spurious voids from real
ones. We therefore choose to follow Cousinou et al. (2019) and perform a multivariate
analysis. In order to distinguish between random voids and genuine ones , we constructed
a void catalog using VIDE from the random catalog of the MultiDark PATCHY mocks,
subsampled it in order to obtain the same statistics of the catalogs generated in Section
4.1, and compared its abundance as a function of radius to the one of the void catalog
constructed using the true cosmology Ωm = 0.307115. In Fig. (4.7) the abundance
comparison is presented. In Fig. (4.7) we can already notice a difference between the
two catalogs, as the random catalog shows a greater abundance at small voids with
respect to the random catalog. The catalogs, however, are too close to suggest a simple
cut in the radius of voids: we need to study more properties.

Looking at the comparisons of the different void properties that VIDE outputs (see
Section 3.1.5), we can see an interesting difference regarding the core density, i.e. the
density of the largest Voronoi cell in the void. In Fig. (4.8) this comparison is visible.
We can see that the random catalog shows a peak at high values of the core density,
while the peak of the galaxy catalog appears at lower values. Our aim is to cut out as
many random voids as possible while keeping as many real voids as possible. Since the
abundance of the galaxy catalog at core densities corresponding to the random peak is
considerably lower than the random abundance, we choose to cut all voids with core
density higher than the intersection between the two catalogs, excluding the random
peak. The cut has been applied to core densities greater than 2.5. The abundance
comparison of the two catalogs after the core density cut is shown in Fig. (4.9). Looking
at the abundance comparison after the cut we can notice how the random catalog has
been affected more than the galaxy catalog: the peak of the random catalog at about
30 Mpc/h in Fig. (4.7) is no more present, and the random abundance is everywhere
lower in magnitude than the abundance of the galaxy catalog. We can also notice how
the cut in the core density has excluded the voids with the smallest radii: in both
catalogs voids with radius smaller than 10Mpc/h have been cut out.

The cut in the core density has been able to distinguish between random and real
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Figure 4.7: Void abundance comparison between the catalog constructed using
Ωm = 0.307115 (in blue) and the catalog constructed from the random catalog of
the MultiDark PATCHY mocks (in orange).

52



10 1 100 101 102

Core density

10 1

100

101

102

103

Vo
id

 n
um

be
r

Galaxy catalog
Random catalog

Figure 4.8: Core density comparison between the catalog constructed using Ωm =
0.307115 (in blue) and the catalog constructed from the random catalog of the Multi-
Dark PATCHY mocks (in orange).
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Figure 4.9: Void abundance comparison between the catalog constructed using
Ωm = 0.307115 (in blue) and the catalog constructed from the random catalog of
the MultiDark PATCHY mocks (in orange), after having applied the core density cut,
keeping only voids with core density smaller than 2.5.
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voids, affecting random voids more, but the abundances of the two catalogs are still too
close to each other to allow us to say that we have pruned out the majority of spurious
voids. Therefore we focus now on another property of voids: compensation C, defined
as

C = Nt
V

(4.4)

where Nt is the number of tracers inside a void, and V is the void volume. In Fig. (4.10)
the comparison between the compensation of the two catalogs after having applied the
core density cut is shown.
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Figure 4.10: Compensation comparison between the catalog constructed using
Ωm = 0.307115 (in blue) and the catalog constructed from the random catalog of
the MultiDark PATCHY mocks (in orange), after having applied the core density cut,
keeping only voids with core density smaller than 2.5

In Fig. (4.10) the characteristics of random voids seem to be more evident. At low
values of the compensation the abundances of the two catalogs follow almost the same
curve, until at a value of the compensation of 5 the random catalog starts to decrease
rapidly in abundance, while the galaxy catalog increases its abundance forming a peak.
In order to exclude spurious voids in both catalogs, while keeping as many genuine voids
as possible in the galaxy catalog, we apply a cut at the value of compensation of 5,
keeping only voids with a compensation higher than that value. Once again we look
at the void abundance as a function of void radius after both the core density and the
compensation cuts, whose comparison is shown in Fig. (4.11).
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Figure 4.11: Void abundance comparison between the catalog constructed using
Ωm = 0.307115 (in blue) and the catalog constructed from the random catalog of
the MultiDark PATCHY mocks (in orange), after having applied the core density and
the compensation cuts, keeping only voids with core density smaller than 2.5 and com-
pensation higher than 5.
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Ωm δV δc rs
0.0 −0.182+0.007

−0.007 0.035+0.002
−0.002 0.888+0.035

−0.033
0.1 −0.168+0.008

−0.007 0.039+0.002
−0.002 0.977+0.045

−0.040
0.2 −0.154+0.007

−0.007 0.039+0.002
−0.002 1.083+0.051

−0.044
0.307115 −0.136+0.009

−0.008 0.040+0.003
−0.003 1.244+0.078

−0.064
0.4 −0.139+0.008

−0.007 0.039+0.002
−0.002 1.266+0.068

−0.058
0.5 −0.127+0.009

−0.008 0.037+0.003
−0.003 1.398+0.100

−0.080

Table 4.4: Vdn-general model. Optimal parameters obtained from the fits performed
with MCMCmethod to the abundances of the catalogs constructed with different values
of the matter density parameter Ωm.

The abundance comparison of Fig. (4.11) shows a considerable difference between
the two catalogs. The second cut had a little affect on the galaxy catalog abundance,
while it had a massive effect on the random one. The abundance of the galaxy catalog is
now almost one order of magnitude higher than the random catalog abundance. Having
excluded the majority of voids associated to the random catalog we can presume to have
cut out also the majority of spurious voids identified by VIDE due to shot noise in the
galaxy catalog. We can continue with the analysis considering the six catalogs cleaned
by the two cuts just described.

4.6 Model dependence of the void size function
In the last section we have analysed a way to get rid of spurious voids due to shot

noise, which induces VIDE to identify voids that are not genuine. Therefore we apply
to all six catalogs the two cuts already described, keeping only voids with:

• Core density < 2.5,

• Compensation > 5.

This way we can consider our catalogs "cleaned" of spurious voids, and search for the best
fitting parameters of the four models of the void size function. The fits are performed
using MCMC method. We will consider separately the fits of each model.

4.6.1 Vdn-general model

Let us first look at the fits to the catalogs abundances of the Vdn model (Eq. (1.84))
using the general form of the first-crossing distribution function (Eq. (1.73)). In Fig.
(4.12) we can see the best fits to all catalogs. The agreement between the function and
the data is remarkable, and as an estimate of the goodness of the fits we can look at the
maximum posterior corresponding to the best fits parameters, whose mean value over
all six catalogs is about −40.
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Figure 4.12: Best fits of Vdn-general model with as free parameters the linear thresh-
old for void formation δV , the linear threshold for collapse δc and the rescaling factor
rs. The data void abundances are represented in blue, the void size function in red.
Shaded regions show the error ranges of the parameters of the model. In the upper
left of each plot is shown the value of the matter density parameter Ωm used in the
construction of the corresponding catalog.
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Ωm δV δc rs
0.0 −0.287+0.010

−0.011 0.050+0.002
−0.002 0.583+0.023

−0.023
0.1 −0.250+0.010

−0.011 0.054+0.003
−0.003 0.677+0.028

−0.028
0.2 −0.217+0.008

−0.008 0.055+0.003
−0.003 0.783+0.029

−0.028
0.307115 −0.197+0.009

−0.009 0.057+0.003
−0.003 0.879+0.038

−0.036
0.4 −0.202+0.008

−0.009 0.055+0.003
−0.003 0.900+0.037

−0.036
0.5 −0.188+0.008

−0.008 0.053+0.003
−0.003 0.980+0.040

−0.038

Table 4.5: Vdn-SvdW model. Optimal parameters obtained from the fits performed
with MCMCmethod to the abundances of the catalogs constructed with different values
of the matter density parameter Ωm.

In Tab. (4.4) the best fits parameters are presented. The absolute values of the
linear thresholds for void formation δV are smaller than the one predicted by spherical
evolution theory, as are the values of the linear thresholds for collapse δc, the latter being
of two order of magnitude smaller than expected. The rescaling factors increase with
Ωm, and for the catalogs constructed with values of Ωm above 0.1, rs is greater than 1.

4.6.2 Vdn-SvdW model

Fig. (4.13) shows the fits to the catalogs abundances of the Vdn model of the void size
function (Eq. (1.84)) with Sheth-van de Weygaert approximation of the first-crossing
distribution function (Eq. (1.74)).

The fits corresponding to this model seem quite good, but they do not perfectly agree
with the data, especially in the range of small radii. The mean value of the maximum
posterior of the fits is in fact about −80, smaller than the one of the Vdn-general model.
The best fitting parameters are presented in Tab. (4.5). We can notice again how the
linear thresholds are smaller, in absolute value, than expected. The linear thresholds for
collapse δc are two order of magnitude far from the predicted value of 1.674. However, the
rescaling factors rs are smaller than 1, corresponding to expanding voids as we expect.
In the case of the catalog constructed using Ωm = 0.0 the value of rs is the one predicted
from spherical collapse rs = 0.58.

4.6.3 Vdn models comparison

The two Vdn models we saw in the last two subsections deserve a closer look. We
can see "by eye" from the fits of Fig. (4.12) and Fig. (4.13) that they are quite similar,
but to compare the two models we better look at Fig. (4.14), where we can see the
void abundance as a function of void radius of the catalog constructed with the true
cosmology Ωm = 0.307115, along with the two Vdn models with general form (in red)
and Sheth-van de Weygaert approximation (in green) of the first-crossing distribution
function. Looking at this figure we can notice how the two models fit similarly the data
at large radii, while diverging more and more as the void radius becomes smaller and
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Figure 4.13: Best fits of Vdn-SvdW model with as free parameters the linear threshold
for void formation δV , the linear threshold for collapse δc and the rescaling factor rs.
The data void abundances are represented in blue, the void size function in green.
Shaded regions show the error ranges of the parameters of the model. In the upper
left of each plot is shown the value of the matter density parameter Ωm used in the
construction of the corresponding catalog.
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Figure 4.14: Best fits to the void abundance as a function of radius of the catalog
constructed using the matter density parameter Ωm = 0.307115 of the Vdn-general
model (in red) and Vdn-SvdW model (in green).
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Ωm

(
δc
|δV |

)general

V dn

(
δc
|δV |

)SvdW

V dn
0.0 0.19 0.18
0.1 0.23 0.22
0.2 0.26 0.25

0.307115 0.29 0.29
0.4 0.28 0.27
0.5 0.29 0.28

Table 4.6: Ratio between the linear threshold for collapse δc and the absolute value
of the linear threshold for void formation δV of the fitting parameters obtained for the
Vdn-general model and Vdn-SvdW model.

smaller. Remember that the Sheth-van de Weyaert approximation of the first-crossing
distribution function is valid for values of the parameter in the regime δc

|δV | &
1
4 . In Tab.

(4.6) the ratio of δc and the absolute value of δV is shown for each fit. The parameters
are inside the regime of validity of the Sheth-van de Weygaert approximation for the
catalogs constructed with Ωm ≥ 0.2 for both models. The Ωm = 0.0 and Ωm = 0.1
catalogs, however, for both models show a ratio of about 0.2, not far from the regime of
validity of the approximation.

It is not surprising, therefore, that the two models are so similar to each other.
The main difference at small radii reflects the difference we saw in Fig. (1.2), where a
discrepancy is visible between the general function and Sheth-van de Weygaert function
at small radii even in the regime of validity of the approximation. Fig. (4.14) compares,
then, the two models in the regime of validity of the approximation, showing us how the
approximation fits well the data at large radii, but still looks inaccurate at small radii,
with respect to the general form of the first-crossing distribution function.

4.6.4 SvdW-general model

Let us look now at the best fits obtained with the Sheth-van de Weygaert model of
the void size function (Eq. (1.79)) using the general form of the first-crossing distribution
function (Eq. (1.73)), shown in Fig. (4.15).

The figure exhibits a poor agreement between the data and this model, with a mean
value of the maximum posterior of about −700, greatly lower than the values of the
models we have seen so far. The best fitting parameters are presented in Tab. (4.7).
The values of the linear threshold for void formation δV are greater, in absolute value,
than the value predicted by spherical evolution theory. The linear thresholds for collapse
δc, unlike in the Vdn models, are much greater than the expected value. The rescaling
factors, instead, are perfectly physical results. We do not have to forget, however, that
the fits of this model present unsatisfactory results, reducing the relevance of looking at
the fitting parameters.
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Figure 4.15: Best fits of SvdW-general model with as free parameters the linear
threshold for void formation δV , the linear threshold for collapse δc and the rescaling
factor rs. The data void abundances are represented in blue, the void size function in
purple. Shaded regions show the error ranges of the parameters of the model. In the
upper left of each plot is shown the value of the matter density parameter Ωm used in
the construction of the corresponding catalog.
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Ωm δV δc rs
0.0 −3.628+0.020

−0.019 36.470+0.229
−0.215 0.481+0.004

−0.004
0.1 −3.971+0.022

−0.022 39.921+0.251
−0.235 0.446+0.004

−0.004
0.2 −4.236+0.020

−0.019 42.593+0.229
−0.213 0.422+0.003

−0.003
0.307115 −4.425+0.024

−0.024 44.484+0.287
−0.268 0.418+0.004

−0.004
0.4 −4.516+0.023

−0.023 45.404+0.278
−0.257 0.420+0.004

−0.004
0.5 −4.594+0.025

−0.024 46.192+0.283
−0.266 0.421+0.004

−0.004

Table 4.7: SvdW-general model. Optimal parameters obtained from the fits performed
with MCMC method to the abundance of the catalogs constructed with different values
of the matter density parameter Ωm.

Ωm δV δc rs
0.0 −1.711+0.124

−0.121 0.0147+0.0001
−0.0001 0.146+0.013

−0.011
0.1 −1.337+0.110

−0.115 0.0154+0.0001
−0.0001 0.196+0.019

−0.017
0.2 −1.104+0.106

−0.110 0.0161+0.0001
−0.0001 0.244+0.026

−0.023
0.307115 −0.870+0.097

−0.101 0.0175+0.0003
−0.0002 0.311+0.036

−0.031
0.4 −0.806+0.088

−0.088 0.0180+0.0004
−0.0003 0.342+0.037

−0.031
0.5 −0.729+0.074

−0.078 0.0190+0.0005
−0.0004 0.379+0.036

−0.033

Table 4.8: SvdW-SvdW model. Optimal parameters obtained from the fits performed
with MCMCmethod to the abundances of the catalogs constructed with different values
of the matter density parameter Ωm.

4.6.5 SvdW-SvdW model

Fig. (4.16) presents the best fits obtained fitting to the void catalogs abundances the
Sheth-van de Weygaert model (Eq. (1.79)) with Sheth-van de Weygaert approximation
of the first-crossing distribution function (Eq. (1.74)). The plots show an excellent
agreement of the model to the data abundances, with a mean value of the maximum
posterior of −11, the best of all models. The parameters obtained in the fits are exposed
in Tab. (4.8). The values of δV shown in the table are the closest to the expected
value of −2.731, and quite in agreement with the best value obtained also by Chan et
al. (2014). The linear thresholds for collapse δc, on the other hand, are even smaller
than the ones obtained in the Vdn models, two order of magnitude smaller than the
predicted value. The rescaling factors are smaller than the predicted value of 0.58, but
still physical, representing voids which have expanded more, during their evolution, than
spherical ones.

Unlike the Vdn model, Sheth- van de Weygaert model shows very different results
for the two different first-crossing distribution functions. The parameters of the model
which uses the general form of the first-crossing distribution of Tab. (4.7) are well inside
the regime of validity of Sheth- van de Weygaert approximation, with a mean value of
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Figure 4.16: Best fits of SvdW-SvdW model with as free parameters the linear thresh-
old for void formation δV , the linear threshold for collapse δc and the rescaling factor
rs. The data void abundances are represented in blue, the void size function in orange.
Shaded regions show the error ranges of the parameters of the model. In the upper
left of each plot is shown the value of the matter density parameter Ωm used in the
construction of the corresponding catalog.
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δc
|δV | of about 10, while the parameters of the model which uses the approximation form
in Tab. (4.8) are well outside the δc

|δV | &
1
4 regime, with ratios of the order of 10−2. With

parameters outside the regime of validity of the Sheth-van de Weygaert approximation
it seems reasonable to expect a better fit for the model which uses the general form of
the first-crossing distribution function, but Fig. (4.15) and Fig. (4.16) show clearly that
this is not the case. Looking at all four models we can see that the model which fits best
the data abundances is the SvdW-SvdW model, with parameters outside the regime of
validity of the approximation.

4.7 Cosmology dependence of the void size function
In last section we have seen the best fits of the four models to the data, finding

the best fit for the SvdW-SvdW model, and a poor agreement for SvdW-general model.
The two Vdn models, instead, are coherent to each other, with a better fit in the small
radii range for the model which uses the general form of the first-crossing distribution
function. Now we can look at the fitting parameters as a function of Ωm, to study the
dependence of the parameters upon the cosmology and look for an indication about the
true cosmology.

Following the order of last section, let us first look at the Vdn model with general
form of the first-crossing distribution function in Fig. (4.17). The linear thresholds for
void formation δV show an increasing behaviour as Ωm increases, almost linear except
for a little raise at Ωm = 0.307115. The linear thresholds for collapse δc compose a curve
similar to a parabola with negative concavity at first approximation, with the maximum
at Ωm = 0.307115. The rescaling factors behave in a similar way to the one of δV ,
increasing almost linearly with a raise at the true cosmology value. We do not have to
forget, however, that the values of rs increases above 1, making the results unlikely. The
analysis of these fitting parameters therefore has a limited relevance.

Fig. (4.18) exhibits the behaviour of the fitting parameters obtained for the Vdn-
SvdWmodel. The trends of these parameters resemble the ones of the Vdn-general model
of Fig. (4.17), but in this case we do not have unphysical results, making the analysis
completely legitimate. The behaviour of δV and rs is almost linearly increasing with the
increasing of Ωm. In this case the small raise at the value of Ωm corresponding to the
true cosmology is only a hint, especially in the trend of the rescaling factor. The linear
thresholds for collapse δc show a distinct maximum corresponding to Ωm = 0.307115,
with values of δc that decreases for smaller and greater Ωm.

Despite the poor agreement of the SvdW-general model to the data, we present the
behaviour of the parameters in Fig. (4.19) for completeness of the analysis. The linear
threshold for void formation shows a convex decreasing behaviour with the increasing
of Ωm, while the linear threshold for collapse exhibits an increasing concave trend. The
rescaling factor rapidly decreases as Ωm increases from 0.0 to 0.2, it shows a minimum
at Ωm = 0.307115 and then it slightly increases again as Ωm increases from the true
cosmology value to Ωm = 0.5.

Fig. (4.20) presents the behaviour of the parameters obtained by the model which
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Figure 4.17: Best fit parameters as a function of Ωm. The parameters were obtained
fitting Vdn-general model to the abundances as a function of void radius of the catalogs
constructed with different Ωm.
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Figure 4.18: Best fit parameters as a function of Ωm. The parameters were obtained
fitting Vdn-SvdW model to the abundances as a function of void radius of the catalogs
constructed with different Ωm.
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Figure 4.19: Best fit parameters as a function of Ωm. The parameters were ob-
tained fitting SvdW-general model to the abundances as a function of void radius of
the catalogs constructed with different Ωm.
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Figure 4.20: Best fit parameters as a function of Ωm. The parameters were obtained
fitting SvdW-SvdW model to the abundances as a function of void radius of the catalogs
constructed with different Ωm.
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best fits the data abundances, i.e. SvdW-SvdW model. All parameters shows an increas-
ing trend as Ωm increases. The trend of the rescaling factor, considering the error-bars,
is perfectly linear, while the small errors of the first three values of linear threshold for
collapse allow us to recognize a little change of slope at Ωm = 0.307115. The linear
threshold for void formation increases in a slightly concave way, not showing any hint of
the true cosmology.

The fitting parameters obtained in the analysis of the different models do not all
behave in the same way: the model dependence extends to the trends of the parameters
as well as their values. The parameters of the two Vdn models using the two different
forms of the first-crossing distribution function show a similar behaviour as functions of
Ωm, suggesting a peculiarity of the true value of Ωm = 0.307115 in the form of a small
raise in the trends of the linear threshold for void formation δV and the rescaling factor
rs, and in the form of a maximum corresponding to the true cosmology in the case of
the linear threshold for collapse δc. The fact that the parameters of the two Vdn models
behave similarly is coherent with the agreement that the two models exhibit both in
the fits and in the values of the parameters. The Sheth-van de Weygaert models, on
the other hand, are very different also in this occasion. The model which uses Sheth-
van de Weygaert approximation of the first-crossing distribution function, which is the
best fitting model to the data abundances, barely suggests an indication of the true
cosmology.

4.8 Convergence issue
In the analysis so far we have not questioned the convergence of the function of Eq.

(1.73), which is an infinite series. At a first linear scale analysis the series converges
rapidly after the first 20 terms, and in the fits performed in the analysis of the previous
section the series has been performed using 100 terms. The poor fitting of the SvdW-
general model, however, suggests the need of a closer look to this function. In Fig. (4.21)
the function of Eq. (1.73) is drawn in the two cases of two sets of parameters close to
the ones obtained in the fits of the Sheth-van de Weygaert model (see Tab. (4.7)) and
Vdn model (see Tab. (4.4)). The different curves represent the series function calculated
with different numbers of terms.

In both plots we can notice how the series does not well converge. In the upper
plot we can see a shape that can resemble the void abundance of data in the range of
ν between 10−1 and 101, but at higher values of ν the curves increase again. Increasing
the number of terms shifts the second hill to higher values of ν, but even for the series
function calculated using 10000 terms we can see at ν ≈ 35 a plateaux at f(ν) ≈ 10−18.
The difference between the two plots shows how much the function depends on the
parameters δV and δc. In the lower plot the range of ν is wider, reaching values above
103. At small νs the tail of the main curve is visible. Notice how, depending on the
number of terms, the tail of the curve suddenly drops to zero at different values of ν.
In this plot we can see a second rising of the curve constructed using 1000 terms of the
series, while the one constructed by 10000 terms performs the plateaux at f(ν) ≈ 10−18
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Figure 4.21: General form of the first-crossing distribution function of Eq. (1.73)
calculated using 50 (blue line), 100 (orange line), 1000 (green line), and 10000 (red line)
terms in the series. Upper plot: series function calculated using a set of parameters close
to the ones obtained in the best fits of SvdW-general model of Tab. (4.7): δV = −4.0,
δc = 40.0. Lower plot: series function calculated using a set of parameters close to the
ones obtained in the best fits of Vdn-general model of Tab. (4.4): δV = −0.1, δc = 0.04.
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at values of ν in the range 20 < ν < 100, and at ν ≈ 300 raises again in a curve similar
to the ones with fewer terms. Even increasing the number of terms the series does not
converge.

In order to better understand the behaviour of the series, in Fig. (4.22) are shown
a few terms of the series (not summed), calculated using the same parameters used
in Fig. (4.21), in linear scale. The two plots show the same terms calculated with a
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Figure 4.22: Series terms of the general form of the first-crossing distribution function
of Eq. (1.73). Different lines represent the first (blue line), the second (orange line),the
third (green line), the tenth (red line) and the hundredth (purple line) term of the
series. Upper plot: series terms calculated using a set of parameters close to the ones
obtained in the best fits of SvdW-general model of Tab. (4.7): δV = −4.0, δc = 40.0.
Lower plot: series terms calculated using a set of parameters close to the ones obtained
in the best fits of Vdn-general model of Tab. (4.4): δV = −0.1, δc = 0.04.

different set of parameters, and they demonstrate once again the strong dependence of
the function on the parameters considered. In the upper plot we can see only negative
curves, while in the lower plot the terms oscillate from the positive to the negative plane.
This oscillatory behaviour could suggest an explanation for the ill convergence of the
series: it is reasonable to assume that, not considering all series terms, some terms do
not compensate each other, leading to an imbalance in the final calculation.

In Fig. (4.23) Sheth-van de Weygaert function (Eq. (1.74)) has been drawn over
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some of the curves of Fig. (4.21), i.e. the series function calculated considering 50 and
10000 terms. Sheth-van de Weygaert function, in light blue, follows the series function
at ν > 1, but instead of the latter it is well defined and does not increase again at higher
values of ν. At small ν, however, Sheth-van de Weygaert function deviates from the
general form of the first-crossing distribution function, as it is well visible in the upper
plot. Let us now recall the hybrid function of Eq. (1.75), first proposed by Jennings et
al. (2013):

νf(ν) =


∑∞
j=1

2jπD2

ν3 sin(jπD)e−
(jπD)2

2ν2 x > 0.276√
2
πνe

− ν
2

2 e
[
− |δv |

δc

(
D
2ν

)2
−2
(
D
ν

)4]
x ≤ 0.276

(4.5)

where x = D
ν . This function is represented by the dash-dotted black line of Fig. (4.23)

Eq. (4.5) show a piecewise-defined equation, composed by the general form of the
first crossing distribution function at x > 0.276, and by the Sheth-van de Weygaert
approximation at x ≤ 0.276. The point of intersection of the two functions depend both
on the void in cloud parameter D and on ν. In the upper plot of Fig. (4.23) we can
see that the function follows the general form of the first-crossing distribution function
at small ν, then smoothly decreases following Sheth-van de Weygaert function at high
values of ν, where the series function is ill defined. The hybrid function presents itself as
the best first-crossing distribution model to fit our data, as it incorporates the accuracy
of the general series function at ν < 1 while solving the ill-definition problem at larger
νs. In the next sections we will consider as first-crossing distribution function only this
hybrid model.

4.9 Model and cosmology dependence of the void size func-
tion with hybrid first-crossing distribution function

In the last section we studied the convergence of the series of the general form of
the first-crossing distribution function, and we concluded that the best first-crossing
distribution function to fit to the abundances of the data catalogs is the hybrid function
of Eq. (1.75), first proposed by Jennings et al. (2013). In this section therefore we will
perform the MCMCs of the Vdn and Sheth-van de Weygaert models using this function,
and we will look at the best fitting parameters obtained in the two cases. We will call
the two models Vdn-hybrid and SvdW-hybrid, respectively.

4.9.1 Vdn-hybrid model

Fig. (4.24) shows the best fits obtained fitting the Vdn void size function of Eq.
(1.84) using the hybrid function of Eq. (1.75) as first-crossing distribution function.
The agreement of the model to the data is remarkable, quantified by a mean value of
the maximum posterior of the best fits to the six catalogs data of −32. Comparing the
best fits of this model to the ones we got fitting the Vdn-general and the Vdn-SvdW
models of Fig. (4.12) and Fig. (4.13), respectively, we can notice the similarity of the
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Figure 4.23: Comparison between the general form of the first-crossing distribution
function of Eq. (1.73) calculated using 50 (blue line) and 10000 (red line) terms in
the series, Sheth-van de Weygaert function of Eq. (1.74) (cyan line) and the hybrid
function of Eq. (1.75) (dash-dotted black line). Upper plot: functions calculated using
a set of parameters close to the ones obtained in the best fits of SvdW-general model
of Tab. (4.7): δV = −4.0, δc = 40.0. Lower plot: functions calculated using a set of
parameters close to the ones obtained in the best fits of Vdn-general model of Tab.
(4.4): δV = −0.1, δc = 0.04.
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Figure 4.24: Best fits of Vdn-hybrid model with as free parameters the linear threshold
for void formation δV , the linear threshold for collapse δc and the rescaling factor rs.
The data void abundances are represented in blue, the void size function in dark grey.
Shaded regions show the error ranges of the parameters of the model. In the upper
left of each plot is shown the value of the matter density parameter Ωm used in the
construction of the corresponding catalog.
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Ωm δV δc rs
0.0 −0.181+0.007

−0.007 0.035+0.002
−0.002 0.890+0.037

−0.032
0.1 −0.169+0.008

−0.007 0.039+0.002
−0.002 0.975+0.045

−0.038
0.2 −0.154+0.007

−0.007 0.039+0.002
−0.002 1.085+0.049

−0.048
0.307115 −0.136+0.008

−0.008 0.040+0.003
−0.003 1.239+0.074

−0.063
0.4 −0.139+0.008

−0.007 0.039+0.002
−0.002 1.264+0.067

−0.059
0.5 −0.128+0.009

−0.008 0.037+0.003
−0.003 1.387+0.096

−0.075

Table 4.9: Vdn-hybrid model. Optimal parameters obtained from the fits performed
with MCMCmethod to the abundances of the catalogs constructed with different values
of the matter density parameter Ωm.

fits of Fig. (4.24) to the ones obtained using the general expression. Tab. (4.9) presents
the best fitting parameters of this model.

Consistently to the similarity of the best fits, also the parameters of Tab. (4.9) are
close to the ones obtained in the best fits of the Vdn-general model of Tab. (4.4). The
linear thresholds for void formation and for collapse are once again smaller than expected
from the spherical collapse theory, and the rescaling factor becomes unphysically greater
than 1 in the fits to the catalogs constructed with a matter density parameter Ωm ≥ 0.2.
Fig. (4.25) shows the behaviour of the parameters as functions of Ωm.

The trends of the parameters reflect the ones of the two Vdn models we have seen
in Section 4.7. The linear threshold for void formation δV and the rescaling factor rs
increase almost linearly. A small raise with respect to the otherwise straight line is visible
at the value of Ωm = 0.307115, corresponding to the true cosmology. The linear threshold
for collapse δc shows a hill-shaped behaviour, with a maximum corresponding to the
true cosmology. The Vdn model with hybrid first-crossing distribution incorporates the
characteristics of the two models of the Vdn void size function, i.e. the one which uses
the general form of the first-crossing distribution function and the one which uses the
Sheth-van de Weygaert approximation.

4.9.2 SvdW-hybrid model

In Fig. (4.26) we can see the best fits to the catalogs abundances of the Sheth-
van de Weygaert void size function of Eq. (1.79) with hybrid form of the first-crossing
distribution function of Eq. (1.75). This model shows a good agreement with the data
abundances, with a mean value of the maximum posterior of −39. Notice how the fit
to the Ωm = 0.0 catalog appears almost perfect, while increasing the value of Ωm the
subsequent fits agree less and less to the data, especially to voids with large radii. Tab.
(4.10) shows the best fitting parameters corresponding to Fig. (4.26).

The parameters of this model are closer to the ones obtained in the Vdn models than
the ones we got in the Sheth-van de Weygaert models we obtained in Tab. (4.7) and
Tab. (4.8). The linear thresholds for void formation are smaller, in absolute value, than
the ones of the other Sheth-van de Weygaert models, and more similar to the ones we
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Figure 4.25: Best fit parameters as a function of Ωm. The parameters were obtained
fitting Vdn-hybrid model to the abundance as a function of void radius of the catalogs
constructed with different Ωm.

Ωm δV δc rs
0.0 −0.207+0.010

−0.010 0.022+0.002
−0.001 0.838+0.034

−0.030
0.1 −0.194+0.012

−0.011 0.031+0.003
−0.002 0.897+0.040

−0.035
0.2 −0.188+0.010

−0.010 0.038+0.003
−0.002 0.930+0.032

−0.031
0.307115 −0.187+0.009

−0.009 0.046+0.003
−0.003 0.945+0.030

−0.028
0.4 −0.184+0.008

−0.009 0.048+0.003
−0.003 0.976+0.025

−0.027
0.5 −0.189+0.008

−0.008 0.051+0.003
−0.003 0.969+0.025

−0.025

Table 4.10: SvdW-hybrid model. Optimal parameters obtained from the fits performed
with MCMCmethod to the abundances of the catalogs constructed with different values
of the matter density parameter Ωm.
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Figure 4.26: Best fits of SvdW-hybrid model with as free parameters the linear thresh-
old for void formation δV , the linear threshold for collapse δc and the rescaling factor
rs. The data void abundances are represented in blue, the void size function in dark
red. Shaded regions show the error ranges of the parameters of the model. In the upper
left of each plot is shown the value of the matter density parameter Ωm used in the
construction of the corresponding catalog.
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obtained in the Vdn models. The linear thresholds for void formation are very small in
this case too, while the rescaling factors are greater than the value predicted in spherical
evolution theory, but they don’t exceed unity, keeping physical meaning. The behaviour
of these parameters as functions of the matter density parameter Ωm is shown in Fig.
(4.27).
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Figure 4.27: Best fit parameters as a function of Ωm. The parameters were obtained
fitting SvdW-hybrid model to the abundance as a function of void radius of the catalogs
constructed with different Ωm.

Comparing this figure to the cosmology dependence plots of Fig. (4.19) and Fig.
(4.20) we see that the trends of these parameters are less defined than the ones of
the models of Section 4.7. The linear threshold for void formation increases with the
increasing of Ωm in the range 0.0 ≤ Ωm ≤ 0.2, but after Ωm = 0.2 the value of δV
remains almost constant. The linear threshold for collapse is characterised by smaller
error-bars, allowing us to see a clear increasing trend with the increasing of Ωm. A slight
change of slope is visible at Ωm = 0.307115. The rescaling factor values increases with
the increasing of Ωm, but the width of the error-bars prevent us to identify something
definite in the behaviour of rs at Ωm = 0.307115.
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4.10 Void-and-cloud parameter: a more natural fitting pa-
rameter?

So far we have analyzed the different models of the void size function fitting them to
the catalogs void abundances as a function of void radius, considering as free parameters
of the models the linear threshold for void formation δV , the linear threshold for collapse
δc and the rescaling factor rs. However, looking at the form of function (1.75), one
can argue that a more natural parameter of the model should be the void-and-cloud
parameter D instead of the linear threshold for collapse δc. The linear threshold for
void formation δV is implicitly present in the variable ν, and the rescaling factor is
what differentiate the Sheth-van de Weygaert and Vdn models. The linear threshold
for collapse, on the contrary, is explicitly present only once in the void-in-cloud term
of Sheth-van de Weygaert first-crossing distribution function, while the void-and-cloud
parameter appears more often in the first-crossing distribution functions.

It is worth noting, moreover, that the parameters of the models are not independent
from one another. The rescaling factor rs is defined by how much the voids have ex-
panded from their initial size when they reach the stage of non-linearity defined by the
non-linear threshold for void formation ∆sc, as:

rs = (1 + ∆sc)
1
3 (4.6)

Assuming spherical collapse, studying the nonlinear evolution of density fluctuation in a
random density field with Gaussian fluctuations Bernardeau (1994) proposed a relation
between the non-linear and the linear thresholds for void formation:

∆sc =
(

1− δV
c

)−c
− 1 (4.7)

where c ≈ 1.594. Assuming spherical collapse, then, Eq. (4.6) and Eq. (4.7) directly
relates rs and δV . The void-and-cloud parameter, as defined in Eq. (1.71), naturally
depends on both the linear threshold for void formation δV and the linear threshold
for collapse δc. In this section we will look at the correlation between the parameters,
and we will repeat the analysis of Section 4.9 considering the void-and-cloud parameter
instead of δc as free parameter of the models.

4.10.1 Vdn-hybrid model

In Fig. (4.28) we can see the comparison of the corner plots obtained from the
MCMCs performed using Vdn void size function with hybrid first-crossing distribu-
tion function to the abundance of the catalog constructed using the true cosmology
Ωm = 0.307115. The MCMC corresponding to Fig. (4.28a) considers as free parameters
δV , δc and rs and it is the one performed in the analysis of Section 4.9, while the MCMC
corresponding to Fig. (4.28b) considers as free parameters δV , the void-and-cloud pa-
rameter D and rs.
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Figure 4.28: Comparison between the corner plots obtained in the best fits of the
Vdn-hybrid model with different free parameters to the catalog constructed using the
matter density parameter Ωm = 0.307115.

In both figures the strong correlation between the rescaling factor rs and the linear
threshold for void formation δV is visible. Fig. (4.28a) also shows a strong correlation
of the linear threshold for collapse δc with both δV and rs. The void-in-cloud parameter
D, instead, exhibits an almost uncorrelated corner plot both with δV and rs, as we can
see in Fig. (4.28b). The void-and-cloud parameter D seems thus a more natural choice
in the analysis of the Vdn model. Therefore we performed the MCMCs fitting the Vdn-
hybrid model to the six catalogs constructed with different Ωm in the transform from
redshifts to distances, considering as free parameters δV , D and rs. The best fits are
shown in Fig. (4.29).

The agreement with the data is excellent, with a mean value of the maximum pos-
terior of about −32, as in Fig. (4.24). The best fits of Fig. (4.29) are in fact almost
identical to the ones of Fig. (4.24): the most relevant difference is the narrowness of
the best fit curves of Fig. (4.29) with respect to the ones of Fig. (4.24), i.e. the shaded
regions due to the errors of the parameters are wider in Fig. (4.24). The best fitting
parameters are presented in Tab. (4.11). The linear thresholds for void formation and
the rescaling factors are almost identical to the ones of Tab. (4.9), obtained from the
fits which consider as free parameters δV , δc and rs. The values of D of Tab. (4.11) are
also consistent with the ones calculated form Tab. (4.9) using Eq. (1.71).

Let us now look at the cosmology dependence of the parameters of Tab. (4.11)
in Fig. (4.30). The behaviours of the linear threshold for void formation δV and the
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Figure 4.29: Best fits of Vdn-hybrid model with as free parameters the linear threshold
for void formation δV , the void in cloud parameter D and the rescaling factor rs. The
data void abundances are represented in blue, the void size function in dark grey.
Shaded regions show the error ranges of the parameters of the model. In the upper
left of each plot is shown the value of the matter density parameter Ωm used in the
construction of the corresponding catalog.
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Ωm δV D rs
0.0 −0.181+0.007

−0.007 0.840+0.004
−0.004 0.891+0.035

−0.034
0.1 −0.168+0.007

−0.007 0.814+0.004
−0.004 0.981+0.044

−0.039
0.2 −0.153+0.007

−0.007 0.796+0.004
−0.004 1.091+0.049

−0.048
0.307115 −0.135+0.008

−0.008 0.774+0.005
−0.005 1.251+0.073

−0.065
0.4 −0.139+0.008

−0.007 0.782+0.005
−0.005 1.265+0.072

−0.060
0.5 −0.127+0.010

−0.009 0.776+0.005
−0.005 1.399+0.112

−0.083

Table 4.11: Vdn-hybrid model. Optimal parameters obtained from the fits performed
with MCMCmethod to the abundances of the catalogs constructed with different values
of the matter density parameter Ωm with as free parameters the linear threshold for
void formation δV , the void-and-cloud parameter D and the rescaling factor rs.
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Figure 4.30: Best fit parameters as a function of Ωm. The parameters were obtained
fitting Vdn-hybrid model to the abundance as a function of void radius of the catalogs
constructed with different Ωm.
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Figure 4.31: Comparison between the corner plots obtained in the best fits of the
SvdW-hybrid model with different free parameters to the catalog constructed using the
matter density parameter Ωm = 0.307115.

rescaling factor rs are the same of the ones of Fig. (4.25): both parameters increase
with the increasing of Ωm, showing a small raise at Ωm = 0.307115. The void-and-cloud
parameter D instead decreases with the increasing of Ωm from 0.0 to 0.307115, where it
shows a minimum, and then slightly increases again at Ωm = 0.4, just to decrease again
at Ωm = 0.5. Corresponding to the true cosmology we clearly see a change of behaviour
of the parameter, but due to the smallness of the fluctuations after that value and the
scarceness of points we cannot say if Ωm = 0.307115 corresponds to a real minimum.

4.10.2 SvdW-hybrid model

Let us now look at the comparison between the corner plots of the fits of Sheth-
van de Weygaert model with hybrid first-crossing distribution function to the catalog
constructed using Ωm = 0.307115 in Fig. (4.31). Fig (4.31a) shows the corner plot
performed during the analysis of Section 4.9, where we considered as free parameters
δV , δc and rs. All parameters are strongly correlated. Fig. (4.31b) instead corresponds
to the fit which considers as free parameters δV , D and rs. In the previous section we
saw how the change of the choice of the free parameter from δc to D eased the correlation
of the parameters in the Vdn model, showing in Fig. (4.28b) uncorrelated parameters.
This is not the case for the Sheth-van de Weygaert void size function, where the change
of the parameter considered as free merely changes the sign of the correlation: positive
in the case of δc and negative for the void-and-cloud parameter D.
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In Fig. (4.32) we can see the best fits obtained by the MCMCs considering D instead
of δc as free parameter. Comparing this figure to Fig. (4.26) we can notice that the best
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Figure 4.32: Best fits of SvdW-hybrid model with as free parameters the linear thresh-
old for void formation δV , the void in cloud parameter D and the rescaling factor rs.
The data void abundances are represented in blue, the void size function in dark red.
Shaded regions show the error ranges of the parameters of the model. In the upper
left of each plot is shown the value of the matter density parameter Ωm used in the
construction of the corresponding catalog.

fits look identical. The mean value of the maximum posterior probability is also the
same: −39. The only appreciable difference between the two figures lay in the shaded
regions, which correspond to the errors of the best parameters sets. Fig. (4.32) exhibits
in fact shaded regions noticeably wider than the ones of Fig. (4.26).

Tab. (4.12) shows the best fitting parameters corresponding to Fig. (4.32). Compar-
ing these parameters to the ones of Tab. (4.10) we can see that the linear thresholds for
void formation and the rescaling factors are identical in their error ranges. The values
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Ωm δV D rs
0.0 −0.206+0.010

−0.010 0.904+0.010
−0.012 0.842+0.034

−0.032
0.1 −0.194+0.012

−0.012 0.863+0.016
−0.018 0.899+0.040

−0.037
0.2 −0.187+0.009

−0.010 0.832+0.016
−0.017 0.931+0.031

−0.031
0.307115 −0.187+0.010

−0.009 0.805+0.016
−0.019 0.945+0.030

−0.027
0.4 −0.184+0.008

−0.009 0.791+0.016
−0.017 0.976+0.026

−0.027
0.5 −0.189+0.008

−0.008 0.787+0.015
−0.015 0.970+0.024

−0.024

Table 4.12: SvdW-hybrid model. Optimal parameters obtained from the fits performed
with MCMCmethod to the abundances of the catalogs constructed with different values
of the matter density parameter Ωm with as free parameters the linear threshold for
void formation δV , the void-and-cloud parameter D and the rescaling factor rs.

of D are also consistent with the ones calculated from δV and δc of Tab. (4.10). In Fig.
(4.33) the behaviours of the parameters of Tab. (4.12) are shown. The trends of the
linear threshold for void formation δV and the rescaling factor rs are the same as the
ones of Fig. (4.27). The void-and-cloud parameter exhibits a decreasing trend with the
increasing of Ωm, slightly convex.

Change the free parameter of the fits from δc to the void-and-cloud parameter seems
to be a reasonable choice looking at the forms of the first-crossing distribution function
Eq. (1.73), Eq. (1.74) and Eq. (1.75). This choice is justified also by the corner plot
of Fig. (4.28b), which shows uncorrelated distributions of D both with δV and rs. This
improvement, however, is not shared by the Sheth-van de Weygaert model. The change
of the fitting parameter also do not seem to bring any clarity in the behaviour of the
parameters as functions of the cosmology.

4.11 Alcock-Paczyński correction
The analysis we have done so far is based on the construction of different catalogs

with different values of Ωm in the transform from redshifts to distances. Now let us focus
on the meaning of this transform. In order to search for voids and analyze them the void
finder needs a box in real space, but the only information available from observation
catalogs are redshifts and angular positions, i.e. right ascension and declination. In
order to transform them into Mpc/h scale we need to assume a cosmology, which means
assume a fiducial value of Ωm, that is what we have done in Section 4.1 to generate
the catalogs. A discrepancy of the fiducial cosmology from the true one generates a
distortion in the spatial distribution of the tracers in the survey, and it affects also the
volume of voids. This is a manifestation of the Alcock-Paczynński effect (Alcock &
Paczyński, 1979).

In order to better understand how the Alcock-Paczynński (AP) effect changes the
volume of voids, and thus their radius, let us consider a spherical void defined by an
angular radius ∆θ and a redshift radius ∆z. These radii can be converted into real space
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Figure 4.33: Best fit parameters as a function of Ωm. The parameters were obtained
fitting SvdW-hybrid model to the abundance as a function of void radius of the catalogs
constructed with different Ωm.
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radii R‖ and R⊥ as

R⊥ = DM (z,Ωm)∆z (4.8)

R‖ = c

H(z,Ωm)∆z (4.9)

where the Hubble parameter depends on the value of Ωm as we have seen in Eq. (1.20),
and DM is the comoving angular diameter distance, defined as

DM (z,Ωm) =
∫ z

0

c

H(z′,Ωm) =
∫ z

0

c

H0
√

Ωm(1 + z)3 + (1− Ωm)
. (4.10)

The value of the chosen Ωm affects both radii in different ways, and if the fiducial
cosmology is different from the true one a spherical void will appear as an ellipsoid, as
we can see in Fig. (4.34). The semi-axis of the ellipsoid s⊥ and s‖ are defined by Eq.
(4.8) and Eq. (4.9), respectively, using the fiducial value of the matter density parameter
Ωfid

m . In Fig. (4.34) we can see the distortion of the spherical void in both directions. The

AP change of volume effect

Figure 4.34: Alcock-Paczyński change of volume effect (from Correa et al. (2020)).
The real spherical void is represented by a blue circle, the orange ellipsoid is the void
distorted by the Alcock-Paczyński effect, and the red circle is the spherical void iden-
tified by the void finder, with same volume of the ellipsoid.

real spherical void, represented by the blue circle, is distorted into the orange ellipsoid.
The void finder identifies the void with the volume of the ellipsoid, and then defines an
equivalent sphere of radius Rfid (red circle). The AP effect hence can lead to both an
expansion or a contraction of the original real spherical void, depending on the value of
the fiducial cosmology.
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Correa et al. (2020) suggest a simple way to correct the AP effect, comparing the
values of the semi-axis of the distorted ellipsoid to the real radii and thus defining the
coefficients

qAP
⊥ = s⊥(Ωfid

m )
Rtrue
⊥

= DM (z,Ωfid
m )

DM (z,Ωtrue
m ) (4.11)

qAP
‖ =

s‖(Ωfid
m )

Rtrue
‖

=

√
Ωfid

m (1 + z)3 + (1− Ωfid
m )√

Ωtrue
m (1 + z)3 + (1− Ωtrue

m )
. (4.12)

From qAP
⊥ and qAP

‖ they define the AP parameter

qAP =
(
(qAP
⊥ )2qAP

‖

) 1
3
. (4.13)

We can finally relate the radius Rtrue of the real spherical void to the radius Rfid identified
by the void finder from the distorted void:

Rfid = qAPRtrue . (4.14)

Adopting this approach we corrected the radii of the voids of our different catalogs di-
viding each radius by the AP factor qAP(z,Ωm). In Fig.(4.35) are shown the abundances
of all voids of the catalogs after the AP correction. We can see that the abundances are
almost superimposed on each other, verifying the validity of this correction. Note that
Fig. (4.35) shows the complete catalogs, without any cuts.

In order to better quantify the precision of this method we performed the MCMCs
fitting the Vdn and Sheth-van de Weygaert models of the void size function with hybrid
first-crossing distribution function to the catalogs corrected as just described, and cutted
as described in Section 4.5. In Fig. (4.36) and Fig. (4.37) the best fits to the six corrected
catalogs are visible. Both figures show remarkable agreement of the models to the data
of the corrected catalogs, with mean values of the maximum posterior probability of
−35 for the Vdn-hybrid model and −43 for the SvdW-hybrid model. We can also note
that Fig. (4.36) exhibits wider shaded regions with respect to Fig. (4.37). Tab. (4.13)
and Tab (4.14) present the best fitting parameters of Vdn and Sheth-van de Weygaert
void size function, respectively. The values of the linear thresholds for void formation
δV and for collapse δc result greater, in absolute value, in the Sheth-van de Weygaert
parameters of Tab. (4.14). On the other hand the rescaling factors rs of Tab. (4.13) are
all greater than the ones of the Sheth-van de Weygaert model, and they are all greater
than 1. Fig. (4.38) presents the dependence of the fitting parameters of the Vdn-hybrid
model upon Ωm, while Fig. (4.39) shows the cosmology dependence of the parameters
of SvdW-hybrid model.

Fig. (4.38) shows a residual dependence of the parameters upon the value of Ωm,
resulting in an increasing trend of both δV and rs. The linear threshold for collapse δc
instead exhibits a constant behaviour with a step between the values corresponding to
the Ωm = 0.307115 and the Ωm = 0.4 catalogs.
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Figure 4.35: Comparison of the abundances as a function of void radius of the dif-
ferent catalogs constructed using different values of the matter density parmaeter Ωm
in the transform from redshifts to distances after having applied the Alcock-Paczyński
correction to each void radius.

Ωm δV δc rs
0.0 −0.175+0.007

−0.007 0.041+0.002
−0.002 1.044+0.044

−0.038
0.1 −0.165+0.007

−0.007 0.040+0.002
−0.002 1.093+0.045

−0.043
0.2 −0.152+0.007

−0.007 0.039+0.002
−0.002 1.154+0.053

−0.047
0.307115 −0.136+0.009

−0.008 0.040+0.003
−0.003 1.241+0.079

−0.065
0.4 −0.125+0.010

−0.009 0.034+0.003
−0.0038 1.347+0.102

−0.084
0.5 −0.122+0.010

−0.009 0.035+0.003
−0.003 1.347+0.106

−0.088

Table 4.13: Vdn-hybrid model. Optimal parameters obtained from the fits performed
with MCMCmethod to the abundances of the catalogs constructed with different values
of the matter density parameter Ωm after the Alcock-Paczyński correction, with as free
parameters the linear threshold for void formation δV , the linear threshold for collapse
δc and the rescaling factor rs.
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Figure 4.36: Best fits of Vdn-hybrid model with as free parameters the linear threshold
for void formation δV , the linear threshold for collapse δc and the rescaling factor rs, to
the void abundances of the catalogs after the Alcock-Paczyński correction. The data
void abundances are represented in blue, the void size function in dark grey. Shaded
regions show the error ranges of the parameters of the model. In the upper left of each
plot is shown the value of the matter density parameter Ωm used in the construction
of the corresponding catalog.
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Figure 4.37: Best fits of SvdW-hybrid model with as free parameters the linear thresh-
old for void formation δV , the linear threshold for collapse δc and the rescaling factor rs,
to the void abundances of the catalogs after the Alcock-Paczyński correction. The data
void abundances are represented in blue, the void size function in dark red. Shaded
regions show the error ranges of the parameters of the model. In the upper left of each
plot is shown the value of the matter density parameter Ωm used in the construction
of the corresponding catalog.
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Ωm δV δc rs
0.0 −0.202+0.010

−0.011 0.039+0.003
−0.003 0.938+0.032

−0.033
0.1 −0.193+0.010

−0.010 0.041+0.003
−0.003 0.958+0.032

−0.030
0.2 −0.189+0.009

−0.010 0.042+0.003
−0.003 0.957+0.031

−0.029
0.307115 −0.188+0.009

−0.009 0.045+0.003
−0.003 0.943+0.030

−0.027
0.4 −0.181+0.008

−0.009 0.046+0.003
−0.002 0.966+0.027

−0.028
0.5 −0.183+0.008

−0.009 0.045+0.002
−0.002 0.947+0.025

−0.027

Table 4.14: SvdW-hybrid model. Optimal parameters obtained from the fits performed
with MCMCmethod to the abundances of the catalogs constructed with different values
of the matter density parameter Ωm after the Alcock-Paczyński correction, with as free
parameters the linear threshold for void formation δV , the linear threshold for collapse
δc and the rescaling factor rs.
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Figure 4.38: Best fit parameters as a function of Ωm. The parameters were obtained
fitting Vdn-hybrid model to the abundance as a function of void radius of the catalogs
constructed with different Ωm after the Alcock-Paczyński correction.
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Figure 4.39: Best fit parameters as a function of Ωm. The parameters were obtained
fitting SvdW-hybrid model to the abundance as a function of void radius of the catalogs
constructed with different Ωm after the Alcock-Paczyński correction.
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The fitting parameters of the Sheth-van de Weygaert model of Fig. (4.39) show a
constant behaviour, with only a slight increase from Ωm = 0.0 to Ωm = 0.307115 in the
δc case.
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Chapter 5

Discussion and conclusion

In this conclusive chapter we will discuss the results obtained in the analysis in
Section 5.1 and propose possible future developments of this work in Section 5.2. In the
conclusion of Section 5.3 we will sum up the main results of this work.

5.1 Discussion
We have studied model and cosmology dependence of the void size function of the

MultiDark PATCHY mock galaxy catalog. In order to do so we constructed six different
catalogs using different values of the matter density parameter Ωm in the transform from
redshifts to distances.

As a first analysis we studied the Sheth-van de Weygaert model of Eq. (1.79) and the
Vdn model of Eq. (1.84) of the void size function, using Press-Schechter first-crossing
distribution function of Eq. (4.2), excluding voids with small radius and thus neglecting
the void-in-cloud term. We found a good agreement of the models to the data abundances
(see Fig. (4.4)), but the Vdn model exhibits extremely small absolute values of the linear
threshold for void formation and unphysically large values of the rescaling factor (see
Tab. (4.3)). In the behaviour of the parameters of both models it is not noticeable any
specific trend.

The presence of shot noise leads the void finder VIDE (Sutter et al., 2015) to identify
spurious voids in the survey; to clean the catalogs from these random voids and consider
the void-in-cloud effect, dominant at small radii, we applied a multivariate analysis:
comparing the void properties of the void catalog constructed using the true cosmology
to the one constructed from the random PATCHY sample, we applied two cuts on the
catalogs, in order to trim spurious voids while keeping as many real voids as possible.
The first cut has been applied to the core density, i.e. the density of the largest Voronoi
cell in a void, keeping only voids with core density smaller than 2.5. The second cut
regarded the compensation, that is the ratio between the number of targets present
in a void and the void volume. The choice has been that to keep only voids with a
compensation greater than 5.
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To analyze the void size function we fitted to the void abundances as a function of
the void radius the two models of the void size function:

• Sheth van de Weygaert model of Eq. (1.79)

• Vdn model of Eq. (1.84)

with the two different models of the first-crossing distribution function:

• general expression of Eq. (1.73)

• Sheth-van de Weygaert approximation of Eq. (1.74).

After a first attempt using the Least Squares method, which led to a ridge problem in the
optimization of the fit, the Markov Chain Monte Carlo method has been used to perform
the fits, considering the linear threshold for void formation δV , the linear threshold for
collapse δc and the rescaling factor rs as free parameters. Since we are treating all three
parameters as free in the fitting, we are not imposing any strong assumption on the
evolution or on the properties of voids, such as the sphericity assumption often used
in the literature (see e.g. Chan et al. (2014)). Nevertheless we compare the optimal
parameters of the fits to the ones derived from spherical evolution theory, in order not
to loose the physical meaning of the parameters.

The two Vdn void size functions with different first-crossing distribution functions
coherently fit the data abundances of the different catalogs: Fig. (4.14) shows that the
model which uses the general form of the first-crossing distribution function better agrees
with the data at small radii, where the void-in-cloud effect is dominant. The values of
the linear threshold for void formation and for collapse obtained in the best fits of the
two models are also quite similar (see Tab. (4.4) and Tab. (4.5)), and inside or very
near to the regime of validity of the Sheth-van de Weygaert approximation (see Tab.
(4.6). It has to be noted, however, that the values of the rescaling factor we got from the
Vdn-general model exceed unity in the fits to the abundances of catalogs constructed
with Ωm ≥ 0.2. A rescaling factor greater than one represents voids which, instead
of expanding during their evolution, can shrink to smaller sizes. In Section 1.2.2 we
have seen that, according to spherical evolution, unlike overdensities of the matter field
underdensities never reach a point of turn-around and continue to expand. A shrinking
void is therefore theoretically legitimate only in the case of the void-in-cloud effect, where
voids shrink due to the collapse of the cloud that surround them. The physical meaning
of a rescaling factor which exceeds unity, therefore, is that all voids of the catalog are
subject to the void-in-cloud effect, an unlikely result.

The Sheth-van de Weygaert void size function fits with different first-crossing distri-
bution functions appear very different from each other, regarding both the agreement
to the data (see Fig. (4.15) and Fig. (4.16)) and the best fitting values (see Tab. (4.7)
and Tab. (4.8)). The SvdW-general model fits poorly the data void abundances, with
optimal values of the linear threshold for collapse much greater than the value predicted
from spherical collapse. The SvdW-SvdW model proves itself as the best model to fit
the void abundances of the data catalogs. The parameters obtained in the MCMC fits,
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however, result outside the regime of validity of the approximation function, making the
excellent agreement of this model to the data rather unexpected.

Studying the convergence of the general form of the first-crossing distribution func-
tion of Eq. (1.73), we found that neglect some terms of the series function may lead
to unforeseen results at high values of ν = δV /σ, where σ is the variance at the length
scale we are considering. In that regime, however, the Sheth-van de Weygaert function
of Eq. (1.74) is well defined. Therefore we chose to consider as first-crossing distribution
function the hybrid function of Eq. (1.75), first proposed by Jennings et al. (2013).
Eq. (1.75) is a stepwise-defined function composed by the general form of Eq. (1.73)
at high values of D/ν, and by the Sheth-van de Weygaert approximation at small val-
ues of D/ν, where D is the void-and-cloud parameter defined in Eq. (1.71). Both the
Vdn and the Sheth-van de Weygaert void size function with the hybrid first-crossing
distribution function show a remarkable agreement with the data (see Fig. (4.24 and
Fig. (4.26)). The best fits and optimal fitting parameters of the Vdn model imitate
the ones of the Vdn-general model (see Tab. (4.9)), including the unphysical values of
the optimal rescaling factors. The best fitting parameters of the Sheth-van de Weygaert
void size function, on the other hand, are dissimilar from the ones obtained in both
Sheth-van de Weygaert models previously studied. The values of the linear threshold
for void formation in Tab. (4.10), in particular, are one order of magnitude smaller than
the ones of both Tab. (4.7) and Tab. (4.8).

Almost all models fitted so far produced values of the linear threshold for void for-
mation smaller, in absolute value, than the predicted value of −2.731 from spherical
evolution theory. From Fig. (1.1) we can see that a small absolute value of δV implies
that a greater number of random walks will cross this threshold value, increasing the
number of underdensities that, reaching the stage on non-linearity, become cosmic voids.
Similarly, a small value of the linear threshold for collapse δc increases the number of
random walks which cross that threshold, increasing therefore the abundance of collaps-
ing objects. The consequence on the void size function is an increase in the importance
of the void-in-cloud effect. Looking at the lower row of Fig. (1.1) we can notice how, as
δc decreases, it becomes easier and easier to find this type of structure in the evolution of
the matter density contrast. In all fitting parameters, with the exception of the case of
SvdW-general model, the values of δc obtained are two order of magnitude smaller than
the value predicted from spherical collapse, denoting an enhanced weight of the void-in-
cloud effect with respect to the theories proposed so far. As we have already mentioned,
the recurrent result of a rescaling factor greater than 1 corresponds to voids which, in-
stead of expanding, could have shrunk to smaller sizes. The only way for a cosmic void
to shrink without loosing physical meaning is to be inside a cloud. A rescaling factor
that exceeds unity therefore implies that almost all voids of the catalog are subjected
to the void-in-cloud effect. It is worth insisting on the fact that these unphysical values
has been obtained in the study of the Vdn model both with general expression of the
first-crossing distribution function and with its hybrid form of Eq. (1.75).

Via the parameters obtained from the fits we searched for a trend that could allow us
to better understand the dependence of the void size function upon the fiducial chosen
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cosmology. In particular we would like to find a suggestion of the true cosmology in the
behaviour of the parameters. Therefore we plotted the values of the parameters we got
from the fits of each model as a function of the matter density parameter Ωm used in
the construction of the catalog to whom the fit was performed.

The behaviours of the fitting parameters of the Vdn-general and Vdn-SvdW models
appear similar to each other (see Fig. (4.17) and Fig. (4.18)). The linear threshold
for void formation δc shows an hill-shaped behaviour, with maximum corresponding to
the true cosmology Ωm = 0.307115. The curve presents itself as more regular in the
case of the Vdn-general model, while in the Vdn-SvdW model the maximum at the true
cosmology appears more evident. The trends of δV and rs in both Vdn models are almost
linearly increasing. A small anomaly in the otherwise straight lines is visible at Ωm =
0.307115. The behaviour of the parameters obtained fitting to the data abundances the
Vdn-hybrid model mirrors the one obtained for the Vdn void size functions just described
(see Fig. (4.25)): δc shows an hill-shaped trend with maximum corresponding to the
true cosmology matter density parameter, δV and rs increase with the increasing of Ωm
linearly, with the exception of a small raise at Ωm = 0.307115. We can thus reasonably
conclude that a hint about the true cosmology is visible in the parameters of the Vdn
model, even though two of the three models present values of the rescaling factor that
exceed unity.

The behaviours of the parameters obtained from the fits of the Sheth-van deWeygaert
void size function models with different first-crossing distribution functions are very
different from each other, but due to the poor agreement of the SvdW-general model
we will focus on the other models. The SvdW-SvdW model (see Fig. (4.20)) shows an
increasing linear trend in the behaviour of all parameters. The anomaly in the linearity
present in the Vdn model is only slightly hinted in the trend of the linear threshold for
collapse. This behaviour of δc is shared by the SvdW-hybrid model (see Fig. (4.27)), in
which case the other two parameters do not show a clear indication of the value of the
true cosmology. Sheth-van de Weygaert model, therefore, does not allow us to identify
the true cosmology value from the fitting parameters. Only small hints are present, not
sufficient to give a definite outcome.

Looking at the correlation between the parameters, we analyzed the possibility to
use the void-and-cloud parameter D instead of the linear threshold for collapse as free
parameter of the fits. This choice seemed favourable in the study of the Vdn void size
function, since it led to an uncorrelated corner plot between D and both δV and rs (see
Fig. (4.28)). On the other hand this improvement is not shared by the Sheth-van de
Weygaert model (see Fig. (4.31)), and the change did not made the behaviour of the
parameters clearer.

In the end we followed Correa et al. (2020) and we applied an Alcock-Paczyński cor-
rection to the void radii of all catalogs, rescaling each radius by a factor which depends
on both the true cosmology and the fiducial cosmology used in the construction of the
catalog to whom the void belongs. This correction seems to remove the discrepancies
between the void abundances of the different catalogs constructed from the same Multi-
Dark PATCHY galaxy catalog (see Fig. (4.35)). Nevertheless we fitted the Vdn and the

100



Sheth-van de Weygaert void size function models with hybrid first-crossing distribution
function to the corrected catalog abundances, and found a residual cosmology depen-
dence in the Vdn model (see Fig. (4.38)), represented by an increasing behaviour of δV
and rs as the value of Ωm increases.

The study of the void size function of the MultiDark PATCHY galaxy survey arose
some unexpected results, such as the smallness of the values of the linear threshold for
collapse obtained from the fits, that is worth a deeper study. Another outcome that could
be further studied is the unphysical value of the rescaling factor recurrently obtained in
the best fits of the Vdn model, that could represent shrinking cosmic voids.

Sheth-van de Weygaert model with Sheth-van de Weygaert first-crossing distribution
function presents itself as the best model to fit the data abundances, but the parameters
obtained from the fits are outside the regime of validity of the approximation. This
result diversify the model from the one proposed, not by changing its expression but by
being an excellent fitting model in a regime of parameters where the proposed function
should not be valid.

The unexpected outcomes of this work could be related to the fact that, unlike many
studies presented in the literature so far, we did not neglect the void-in-cloud effect that
dominates the void size function at small radii. As we can notice comparing the results
we obtained in the large radii limit to the ones we got considering all voids, the void-
in-cloud effect has an important influence on the void size function. In order to trim
spurious voids we made the choice of excluding voids with properties analogous to the
ones of the voids of the random catalog. The void abundance has been influenced by
these cuts, and undoubtedly alternative cuts would lead to different parameters of the
models. We chose to consider high-compensation voids, that are more likely embedded
in overdensities and might be more related to the void-in-cloud effect. The choice of
the selection cuts to apply in order to consider only real voids is not obvious, and the
selection done in this work is surely not the only one possible.

It has to be noted that all the models proposed were developed in the dark matter
haloes and voids context, while we are considering a galaxy survey. Voids derived from
galaxy distributions could be different from dark matter voids, and the theories proposed
so far, such as Sheth-van de Weygaert and Vdn models of the void size function, could
be inaccurate in this context. This feature could explain the deviation of the fitting
parameters obtained from the ones predicted by the theory, including the smallness of
the linear threshold for collapse and the fact that we often obtained a rescaling factor
that exceeds unity.

5.2 Future development
This work takes a step forward in the understanding of the different models of the

void size function and their cosmology dependence in galaxy surveys. However, the
analysis here presented can be further extended and developed.

The theories proposed so far in the literature were developed in the study of voids
identified from dark matter surveys. The clustering of galaxies do not exactly mirrors the
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clustering of the bulk of the dark matter distribution, leading Kaiser (1984) to introduce
the galaxy bias to indicate that galaxies are biased tracers of the underlying matter
density field (Pollina et al., 2017). A possible future improvement of the work could be
the inclusion of the galaxy bias in the models, which quantifies the difference between the
statistics of galaxies and dark matter haloes. By looking at the distribution of tracers
at very large scales we can only observe the most luminous galaxies which are hosted
by the most luminous haloes (Kaiser, 1984). Pollina et al. (2017) therefore studied the
linear bias which, in terms of spatial correlation, can be written as

b = ξtm
ξmm

(5.1)

or

b =
√

ξtt
ξmm

(5.2)

where ξtm is the cross-correlation function between tracers (i.e. galaxies) and matter,
ξmm is the matter auto-correlation function and ξtt is the galaxy auto-correlation func-
tion. The inclusion of this parameter in the analysis could lead to different values of the
parameters, and hopefully a more accurate model to describe the void size function in
galaxy surveys.

To better understand the dependence of the parameters upon the cosmology, the
statistics could be implemented, adding some catalogs constructed with values of Ωm in
the transform from redshifts to distances closer to the true value used in the generation
of the mock galaxy catalog. Increasing the number of catalogs could lead to a clearer
trend in the behaviour of the parameters, and could allow a more detailed discussion of
the subject.

Another possible future development could focus on the multivariate analysis and
its choices, which allowed us to treat the void-in-cloud term of the void size function.
The choices made in this analysis are certainly not the sole ones, and a deeper focus on
this matter might open the possibility of an exhaustive study of the void size function
models, including and modelling also the void-in-cloud effect.

5.3 Conclusion
In this thesis work we have studied the model and cosmology dependence of the

void size function in galaxy surveys. In order to do so we constructed different catalogs
from the MultiDark PATCHY mock galaxy catalog, using different values of the matter
density parameter in the transform from redshifts to distances. In order to trim spurious
voids identified by the void finder due to shot noise, we have performed a multivariate
analysis, comparing the properties of the catalogs with the void properties of a void
catalog constructed from the random PATCHY sample. We chose two selection cuts,
on the core density and the compensation of voids. In this way we have been able to
consider also the void-in-cloud term, dominant at small radii where the presence of shot
noise is otherwise too important to allow an accurate analysis.
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Using an MCMC method we fitted to the void abundances of the catalogs Sheth-van
de Weygaert and Vdn models of the void size function, with the general and the Sheth-
van de Weygaert approximation forms of the first-crossing distribution function. The
fits has been performed using as free parameters the linear threshold for void formation,
the linear threshold for collapse and the rescaling factor, without imposing any strong
assumption on the voids. We found a coherent fit for the two Vdn models, with fitting
parameters in the regime of validity of Sheth-van de Weygaert approximation. The
best fit to the data corresponds to the Sheth-van de Weygaert model with Sheth-van
de Weygaert first-crossing distribution function outside the regime of validity of the
approximation, while the Sheth-van de Weygaert model with general form of the first-
crossing distribution function shows a poor agreement with the catalogs abundances.
Due to the ill-convergence of the series function in the expression of the general form
of the first-crossing distribution function, we found best to use the hybrid function
proposed by Jennings et al. (2013) as first-crossing distribution function. The fits of the
Vdn model are again coherent with the ones obtained in the other two Vdn models, while
Sheth-van de Weygaert model with hybrid first-crossing distribution function presents
fitting parameters far from the values of both the other Sheth-van de Weygaert models
studied. From the behaviour of the fitting parameters as functions of the matter density
parameter Ωm we studied the cosmology dependence of the void size function. All
Vdn void size function models present an anomaly in the trend of their parameters at
the value of Ωm corresponding to the one used in the construction of the MultiDark
PATCHY catalog, suggesting a particularity of that value with respect to the others.
Sheth-van de Weygaert model does not share this trend, demonstrating once again the
strong dependence of the parameters and their behaviour upon the chosen model.

Following Correa et al. (2020) we applied an Alcock-Paczyński correction to the
radius of each void, and the comparison of the void abundances of the catalogs after
the correction confirms its validity. However, a residual cosmology dependence of the
fitting parameters is still visible in the case of the Vdn void size function with hybrid
first-crossing distribution function.

This work analyzed the different models of the void size function proposed in the
literature without neglecting the void-in-cloud effect, and via the parameters obtained
from the fits to the catalogs constructed with different values of the matter density
parameter in the transform from redshifts to distances, it studied the dependence of the
different models upon the chosen cosmology.
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