

UNIVERSITA' DEGLI STUDI DI PADOVA Dipartimento di Ingegneria Industriale DII Corso di Laurea Magistrale in Ingegneria Energetica

Tesi di Laurea Magistrale in Ingegneria Energetica

THE IMPACT OF THE GENERATION MIX ON ELECTRICITY MARKET PRICES: A COMPARATIVE ANALYSIS AT EUROPEAN LEVEL

Relatore: Prof. Ing. Arturo Lorenzoni Correlatore: Jan Marc Schwidtal

> Laureando: Maria Lorente Gay Matricola n. 1188644

Anno Accademico 2019/2020

Table of contents

ABSTRACT		IX
1. INTRODUCT	'ION	1
2. BACKGROU	ND: ELECTRICITY MARKET DEVELOPMENTS	3
2.1. THE	TALIAN MARKET DEVELOPMENTS AND LIBERALIZATION	3
	SPANISH MARKET DEVELOPMENTS AND LIBERALIZATION	
2.2.1.	National Energy Plans (PEN)	
2.2.2.	Stable Legal Market (MLE)	
2.2.3.	Market Liberalization	
2.3. GRO	WTH OF RENEWABLE GENERATION	
2.3.1.	Italy	8
2.3.1.1.	Solar	14
2.3.1.2.	Wind	18
2.3.2.	Spain	22
2.3.2.1.		
2.3.2.2.		
2.3.2.3.	Solar	32
3. MARKET STR	RUCTURE	37
3.1. THE	TALIAN ELECTRICITY MARKET	27
3.1.1.	Market zones	
3.1.2.	The Spot Electricity Market (MPE)	
3.1.2.1.		
3.1.2.2.		
3.1.2.3.		
3.1.3.	The Forward Electricity Market (MTE)	45
3.2. THE	SPANISH ELECTRICITY MARKET	46
3.2.1.	Wholesale market (MIBEL)	49
3.2.1.1.	The Forward Electricity Market	50
3.2.2.	Retail market	51
4. DATA AND D	DESCRIPTIVE STATISTICS	53
	DGY	
5.1. Ordi	NARY LEAST SQUARES (OLS)	57
5.1.1.	OLS assumptions	
5.1.2.	Checking correlation between explanatory variables	
5.1.3.	Unit roots test	
5.1.4.	Model	62
5.1.5.	Test on the residuals	63
6. RESULTS		67
6.1. ITAL	·	67
6.1.1.	North	67
6.1.2.	Central-North	
6.1.3.	Central-South	69
6.1.4.	South	70
6.1.5.	Sicily	71
6.1.6.	Sardinia	72
6.2. Spair	ν	73
7. DISCUSSION		75

7.1.	COMPARISON BETWEEN ITALIAN COMMERCIAL ZONES	75
7.2.	Comparison between Italy and Spain	77
8. COMPL	LEMENTARY ANALYSIS	79
8.1.	Italian analysis with hourly data	79
8.1.	1. Comparison between zones	80
9. CONCL	USIONS	81
	USIONS	
ACKNOW		83

Index of figures

Figure 1: Highlights of the Italian Liberalization process	5
Figure 2: Highlights of the Spanish Liberalization process	8
Figure 3: Evolution of installed power of electricity production plants powered by RES	10
Figure 4: Regional distribution of installed RES power at the end of 2018	11
Figure 5: RES electricity production by source	. 12
Figure 6: Gross electricity production covered by RES	12
Figure 7: Italy Electricity Demand in GWh. 2000-2018	
Figure 8: Regional distribution of RES production	
Figure 9: Evolution of the number and power of PV	
Figure 10: Regional distribution of solar plants in terms of installed plants (left) and power installed	
(right) until end of 2018	
Figure 11: Average size of newly installed PV systems	
Figure 12: Number of PV plants by regions	
Figure 13: Power of PV plants by regions in [MW]	
Figure 14: Evolution of PV production	
Figure 15: Regional distribution of national electricity production from PV systems in 2018	
Figure 16: Evolution of number and power of wind farms	
Figure 17: Regional distribution of wind farms by installed power (left)and number of installed plan	
(right) at the end of 2018	
Figure 18: Average size of installed wind farms	
Figure 19: Evolution of wind production	
Figure 19. Regional distribution of wind production	
Figure 20: Regional distribution of while production Figure 21: Evolution of renewable generation in GWh	
Figure 21: Evolution of renewable generation in Gwn	
Figure 22: Evolution of renewable instance power: NWV Figure 23: Percentage of installed power in Spain at the end of 2018	
Figure 24: Structure of the electricity generation at the end of 2018	
Figure 25: Structure of renewable energy generation at the end of 2018	
Figure 26: Regional distribution ratio renewable installed power/total power	
Figure 27: Community distribution ratio renewable generation/total generation	25
Figure 28: Geographical distribution of renewable power/total power (left) vs renewable	
generation/total generation (right) at the end of 2018	25
Figure 29: Comparison of renewable generation/total generation between Spain (blue) and the	
average of the countries member of ENTSO-E22	
Figure 30: Evolution of wind installed power in MW	
Figure 31: Wind power installed (left) vs wind generation (right) at the end of 2018	
Figure 32: Percentage of wind power over total national wind power by communities	
Figure 33: Evolution of wind generation in GWh (top) and percentage of wind over total generation	
(bottom)	
Figure 34: Percentage of wind generation over total national wind generation by communities unti	1
2018	28
Figure 35: Wind power over total power (left) vs wind generation over total generation (right) in	
ENTSO-E member countries	
Figure 36: MW of installed hydro power. Annual evolution	
Figure 37: Installed hydro power in Spain at the end of 2018	
Figure 38: Hydro generation in GWh. Annual evolution	30
Figure 39: Hydro generation in GWh. Month evolution	30
Figure 40: Average hourly profile of hydro over total generation in 2018	31
Figure 41: Installed hydro power of each community over national hydro power	
Figure 42: Hydro generation of each community over national hydro generation	31
Figure 43: Hydraulic generation over total generation in ENTSO-E member countries	32
Figure 44: MW of installed Solar power. Annual evolution	32

Figure 45: Installed solar power in Spain at the end of 2018	33
Figure 46: Percentage of photovoltaic installed solar power of each region over the national	
photovoltaic capacity until 31/12/2018	
Figure 47: Annual evolution of solar generation. [GWh]	34
Figure 48: Percentage of solar generation over total national solar generation at the end of 2018.	34
Figure 49: Solar generation, monthly maximums and participation on total generation	35
Figure 50: Average hourly profile of solar photovoltaic generation over total generation in 2018	35
Figure 51: Solar generation over total generation in ENTSO-E member countries	35
Figure 52: Structure of the Italian Electricity Market	
Figure 53: Zonal division of the Italian territory	39
Figure 54: Interconnection between zones	40
Figure 55: Time sequence of the Spot Electricity Market	
Figure 56: MGP structure	
Figure 57: Time sequence of intraday market sessions	43
Figure 58: Time sequence of MSD market sessions	
Figure 59: Electrical market structure	
Figure 60: Map of distribution areas	
Figure 61: Free market traders	48
Figure 62: Sequence of the Spanish wholesale electricity market	49
Figure 63: Boxplot of regression variables. North zone	54
Figure 64: Evolution of zonal price and gas price for North zone	55
Figure 65: Annual and monthly evolution for SOLAR. North zone	55
Figure 66: Wind generation evolution. Northern zones.	56
Figure 67: Wind generation evolution. Southern zones.	
Figure 68: Ordinary Least Squares (OLS) method. Own elaboration	57
Figure 69: Results of the Jarque Bera on normal distribution of the SOLAR variable.	59
Figure 70: Comparison of results between Italian zones	
Figure 71: Comparison results between Italy and Spain.	78

Index of tables

Table 1: Summary National Renewable Energy Action Plan (NREAP)	10
Table 2: PV plants installed in Italy in 2018	14
Table 3: % power and number variation between 2017 and 2018	17
Table 4: wind farms installed in Italy in 2018	18
Table 5: Percentage power and number variation between 2017 and 2018	20
Table 6: Data description	54
Table 7: Results of Spearman test: correlation matrix for North zone	60
Table 8: Example of Augmented Dickey-Fuller test	61
Table 9: Augmented Dickey-Fuller test and Philips-Perron test results for variables at level. NORTH	1
zone	62
Table 10: Serial correlation test on EViews. Before modelling the residuals (up) and after applying	
AR(1) assumption (down)	64
Table 11: Example of the entire table of results for OLS methodology	64
Table 12: Regressions results for North zone	67
Table 13: Regression results for Central-North zone	68
Table 14: Regression results for Central-South zone	69
Table 15: Regression result for South zone	70
Table 16: Regression results for Sicily zone	71
Table 17: Regression results for Sardinia zone	72
Table 18: Regression results for Spain	73
Table 19: Comparison of results between zones	75
Table 20: Comparison of results between Italy and Spain	77
Table 21: Regression results for hourly data. Central South zone	79
Table 22: Comparison between Italian zones using hourly data	80

List of abbreviations

AC:	Alternating current
AELEC:	"Asociación Española de la Industria Eléctrica", i.e. Spanish Electrical Industry
	Association
AIC:	Akaike Information Criterion
AU:	"Acquirente Unico", i.e. Single Buyer
CDE:	"Consegna Derivati Energia"
CNE:	"Comisión Nacional de Energia", i.e. National Energy Commission
CNMC:	"Comisión Nacional de los Mercados y la Competencia", i.e. National
	Commission for Markets and Competition
D:	Day D
DC:	Direct Current
DSO:	Distribution System Operator
EEX:	European Energy Exchange
ENEA:	"Agenzia Nazionale per le nuove tecnologie, l'energia e lo sviluppo económico
	sostenibile", i.e. National Agency for new technologies, energy and
	sustainable economic development
ENEL:	"Ente Nazionale per l'Energia Elettrica"
ENTSO-E:	European Network of Transmission System Operators for Electricity
ESIOS:	"Sistema de Información del Operador del Sistema (Red Eléctrica de España)",
	i.e. Information System of Operator
EU:	European Union
GME:	<i>"Gestore del Mercato Elettrico",</i> i.e. Electricity Market Operator
GRNT:	"Gestore della Rete di Trasmissione Nazionale", i.e. National Transmission
	Grid Operator
GSE:	" <i>"Gestore dei Servici Energetici",</i> i.e Energy Services Manager
IPEX:	Italian Power Exchange
JB:	Jarque Bera
MGP:	" <i>Mercato del Giorno Prima", i.e.</i> Day-ahead Market
MI:	"Mercato Infragiornaliero", i.e. Infraday Market
MIBEL:	"Mercado Ibérico de Electricidad", i.e. Iberian Electricity Market
MIBGAS:	"Mercado Ibérico del Gas", i.e. Iberian Gas Market
MLE:	"Mercado Legal Estable", i.e. Stable Legal Market
MO:	Market Operator
MPE:	"Mercato Elettrico a Pronti"
MSD:	"Mercato del Servizio di Dispacciamento", i.e. Ancillary Services Market
MTE:	"Mercato electtrico a Termine dell'energia elettrica"
NREAP:	National Renewable Energy Action Plan
OLS:	Ordinary Least Squares
OMIE:	"Operador del Mercado Ibérico de Energía – Polo Español", i.e. Spanish
	Energy Market Operator.
OMIP:	"Operador del Mercado Ibérico de Energía- Polo Portugués", i.e. Portuguese
	Energy Market Operator.
OTC:	Over The Counter
PEN:	"Plan Energético Nacional", i.e. National Energy Plan

PNIEC:	"Piano Nazionale Integrato per l'Energia e il Clima", i.e. Integrated National
	Energy and Climate Plan
PUN:	"Prezzo Unico Nazionale", i.e. Single National Price
PV:	Photovoltaics
REE:	"Red Eléctrica Española", i.e. Spanish Electricity Network
RES:	Renewable Energy Sources
SMP:	Spanish Market Price
TIDME	"Testo Integrato della Disciplina del Mercato Elettrico", i.e. Integrated Text
	of the Electricity Market Regulations
TSO:	Transmission System Operator
UNESA:	"Asociación Española de la Industria Eléctrica", i.e. Spanish Electrical Industry
	Association
ZMP:	Zonal Market Price

List of symbols

β ₀ :	Regression's constant
β ₁ :	Regression's coefficient for Load
β2:	Regression's coefficient for RES
β₃:	Regression's coefficient for Solar
β4:	Regression's coefficient for Wind
β ₅ :	Regression's coefficient for PGAS
β _{6:}	Regression's coefficient for Hydro
ρ:	Coefficient of AR(1)
ADF:	Augmented Dickey Fuller
AR(1):	First order autoregressive process
b ₁ :	Sample skewness of Jarque Bera test
b ₂ :	Kurtosis coefficient of Jarque Bera test
BP:	Breusch Pagan
D:	Vector of dummies
DW:	Durbin Watson statistic after applying serial correlation on the residuals
DW_0:	Durbin Watson statistic before applying serial correlation on the residuals
E:	Mean
8:	Error term of a regression
HYDRO:	Megawatts of hydroelectric energy from reservoir
LOAD:	Total load in megawatts
n:	Size of the sample
P:	Price
PGAS:	Gas price in €/MWh
PP:	Philips-Perron
Q:	Quantity in megawatts
R ² :	Regression's correlation coefficient
r _s :	Spearman's coefficient
SOLAR:	Megawatts of solar energy
WIND:	Megawatts of wind energy
X:	Independent variable of a regression
Y:	Dependent variable of a regression
σ:	Variance

ABSTRACT

The goal of this thesis is to investigate the impact of non-programmable renewable energy generation mix on Italian and Spanish electricity markets by studying electricity price in the spot electricity market. Specifically, to investigate whether different energy sources have a different impact on the price, whether and or how much this is varying from different market zones and whether the impact is on general, daily-basis or maybe rather on an hourly basis.

To detect the impact on electricity prices, it is followed a consolidated methodology adopted by Clò et al. [1] and developed an empirical analysis for Italy's commercial markets and for the whole Spanish market by using a multivariate regression. It is considered daily averaged data for the renewable generation mix (specifically solar and wind) and spot electricity price from the respective day-ahead markets for the whole year 2018. As a secondary studio the impact on electricity prices in Italy is analysed by using hourly data.

The results obtained support the hypothesis that rising zonal loads tend in general to raise zonal market prices based on the data from 2018. The intensity of this effect is pronounced with varying intensity. In Italy the lowest effect is in the North, with an impact of 1.19 €/MWh increase for each 1000 MWh of demand. The highest effect is found in the islands, reaching a value of 25.11 €/MWh in Sicily. In Spain, there is a low impact of load, with a value of only 0.045 €/MWh. It is interesting to stress how the impacts of photovoltaics and wind vary across Italian zone. While both prove to have in general a decreasing impact, on the electricity spot price, wind is the main driver of the electricity price reduction in the southern zonal areas whereas solar has a more significant decreasing impact on the northern zone prices. Eventually, Central North is the zone with the highest impact of both renewable sources. In Spain, no evidence is found for photovoltaics for electricity price reduction. But, on the other hand, an increase of 1 GWh of wind decreases the Spanish electricity price by 1.42 €/MWh. The results obtained also show for both Italy and Spain the assumption of high correlation between the price of gas and electricity: an increase of 1 €/MWh of gas price causes statistically an electricity price increase between 0.90 €/MWh and 1.73 €/MWh in Italy (depending on the zone) as well as an increase of 1.76 €/MWh in Spain.

Compared to the daily data case, results of the secondary analysis show that solar comes out significant in all zones of Italy. Energy from solar panels is obtained only a few hours a day, therefore it turns out that the impact seems to be stronger on an hourly basis. However, wind has rather a daily impact, being wind generation more constant from day to day also not having such a plausible difference between hours as solar.

1. INTRODUCTION

The layout of global energy systems has significantly changed over the past decades, in particular considering the last 20 years of innovation, efficiency improvement and economic development. Conventional power sources have been started to be substituted with renewable resources, in the so-called *decarbonization* of the planet, in order to cease greenhouse gases' emissions into the atmosphere.

This transition has heavily affected electricity generation, distribution and consumption, since many treaties and policies have been implemented to effectively realize this energy turnaround. Energy markets have not escaped from the effects of the large penetration of renewable energy sources into the energy generation mix, especially in Italy where energy production from renewable sources grew rapidly and consistently from the last years of 2000s reaching more than 100 TWh in 2017. This is an increase by 49.5 % in ten years, compared to 2007 where renewable energy production was 56.55 TWh [2]. Theoretically, a larger penetration of RES should reduce energy prices in day-ahead markets given the lower marginal prices of renewable sources with respect to conventional fossil fuels, like coal, oil and natural gas. The question is however whether this can be proved and, if yes, quantified by actual market data.

The aim of this thesis is therefore to investigate the impact of renewable energy sources (specifically wind and solar) on electricity spot prices of two different electricity markets, the Italian and Spanish electricity market. Specifically, to investigate whether different sources have a different impact on the price, whether and or how much this is varying from different market zones and whether the impact is on general, daily-basis or maybe rather on an hourly basis.

To carry out this project, this thesis followed the well acknowledged study done by Clò et al. [1] and developed an empirical analysis using an autoregressive model. Explanatory variables included are the generation of non-programmable renewable energy sources [MW], power load [MW] and gas price [\notin /MWh] used to study their weights on spot prices as the dependent variable. The data used, for the spot market, has been selected and gotten from the respective national electricity market operators of Italy (GME) and Spain (OMIE) [3][4]. The data for the generation mix on the other hand has been provided by the European Network of Transmission System Operators for Electricity (ENTSO-E) [5]. The period of analysis is the whole year 2018 from January 1st until December 31st, taking into account any time of day for Spain and for each of the 6 commercial zones in which Italian electricity market is divided.

The work is organized as follows: in chapter 2 is presented the history of the Italian and Spanish market liberalization, that is, thanks to which policies both current markets structures have been reached. At the end of the chapter is also reported, for both countries, an explanation of the statistical data on the growth of renewable generation. Next, chapter 3 shows a brief overview of the current market structure for both national electricity systems. It is described the structure of Day-Ahead Market and Ancillary Services Market in Italy as

well as the wholesale and retail market for Spain. Finally, in the following chapters are focused on the analysis. It is explained in detail the data and methodology used as well as the interpretation and comparison of the results obtained in the analysis.

2. Background: Electricity market developments

2.1. The Italian market developments and liberalization

Electricity industry started at the end of the 19th century when local suppliers produced electricity for consumers near the production site, public illumination, and transportation. The first European electricity plant dates back to 1883, built in Milan by Edison's company. It was a long period without a great innovation in market structure. It was segmented and unsuitable for satisfying consumption's increase mainly due to problems with power lines and, among other things, due to supply's discontinuity, with the result of a poor quality service. Therefore, a legislative intervention was necessary. In Italy nationalization arrived in the 1960s at the height of the economic boom, when politicians realized that electricity could be a great deal for an energy-consuming country like Italy. Already after the Second World War there was some legislative proposal but only, in 1962, a resolution come about: Law n. 1643 of December 6, 1962, also known as the Nationalization Law, was published [6]. With this regulation was established the "Ente Nazionale per l'Energia Elettrica" – ENEL (National Electricity Authority), a public legal entity subject to the supervision of the Minister for Industry and Business "to which is reserved, on the national territory, the task production, import and export, transport, transformation, distribution and sale of electricity from any type of source produced [...]"[6]. In addition it was assigned to the new company the management of all existing companies and activities in the electricity supply chain. Doing so it was created a situation of state monopoly, with the aim of "ensuring, with minimum management costs, an electricity's availability in terms of quantity and price adequate to the needs of a balanced economic development in the country" [6]. Thanks to the monopoly it was possible to achieve objectives otherwise impossible, as the almost complete electrification of the country together to the harmonization of the cost of electricity.

By the early 1990s, Italy's electrical unification was already achieved. The main objectives of the Nationalization Law had been achieved, whereby the monopoly had exhausted its function and was time to move to the free market competition. More interest in renewable energy sources (RES) was taken by the government and the public because of environmental and climate preoccupations, together with the initiatives and the directives of the European Union: the commitment to double by 2010 the share of RES from the level in 1990 (from 7 % to 14 % of generation), in parallel with the doubling at the EU level.

The first important act of the government concerning RES was Law No. 308 of 1982 [7]. This law, in addition to imposing norms limiting energy consumption in production processes and establishing incentives for energy efficiency, dealt with the promotion of RES. This law introduced the first, embryonic regulation of renewable energy in Italy and had some innovative characteristics with respect to the energy situation of the time: first, it established an exception to the situation of monopoly in electricity production retained until then by ENEL, by allowing private generating plants based on RES with generation capacity up to 3 MWe; Second, it declared RES plants to be of "public utility", thus giving them a preferential route to obtaining construction authorisation and installation permits. Third, it introduced compulsory homologation of the Italian Republic to

delegate some power (limited and specified) to the regional governments in the subsector of RES (as well as in energy efficiency). Also it introduced substantial incentives for RES, for applications in the building sector, in industry and in agriculture, ranging from 30 to 50 % of the capital costs and even up to 80 % in the case of PV.

The start toward full market liberalization occurred with Law n. 9/91 of January 9, 1991 [8]. This law eliminated the 3MW limit and made available funding for the construction of new plants. Regarding "traditional" sources, the regulation redefined the concept of self-consumption not only to the individual company, but also to all subjects of the same industrial group; the constraint on production for self-consumption was removed, allowing companies to sell more than 30% to Enel, with the possibility of selling the entire production to the public. The end of Enel's monopoly occurred in 1992, when it changed from a public body to a joint-stock company and became ENEL S.p.a.

Another step towards liberalization has been the establishment of a new body, the High Authority for Electrical Energy and Gas, created by Law 481 of 1995 [9]. The Authority determines regulations and criteria for the energy market, and it has a broad spectrum of related responsibilities. It responds to Parliament and is independent of the government, although it has to follow the decisions of the government concerning all the main energy policy decisions. It was only by the end of this transitory period that the concepts of energy market, liberalisation and privatisation started being introduced.

In November 1998, the Italian government organised a National Conference on Energy and Environment through the "National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA)". This conference came at the conclusion of a series of about 100 national and a few international meetings and workshops, which discussed all technical, economic, social, institutional and legislative aspects of the Italian energy system. The viewpoints of all stakeholders were collected, compared and discussed, in an unprecedented effort of public involvement. On the specific subject of RES, the conclusions of the Conference called for a doubling of their share in the production of electricity (see below), indicating that, in the context of the liberalisation of the electricity sector, market instruments should preferably be used to reach this goal. [10]

As in most other European countries, the second half of the 1990s has been characterised by the liberalisation of the energy market as well as by the privatisation of the former public monopolies for gas and electricity. This process has also involved the "unbundling" of energy companies, with separation between generation, transmission distribution and retail. In the same years, the European Union was working to establish a community approach to the electricity market, a process ended with Directive 96/92/EC [11]. The directive aimed to lead the market towards free competition through "common standards for the generation, transmission and distribution of electricity. It defines the organizational and operating rules of the electricity sector, market access, the criteria and procedures to be applied [...] as well as the management of the networks". The rules envisaged increasing efficiency in all phases of the supply chain, while strengthening security of supply and competitiveness of the European economy, leaving states the choice of the most suitable regime for internal situations. The directive did not provide in any way exclusive rights for import, export, production, transmission and distribution of electricity, as

had been the case of Italy. For this reason, the country found itself having to carefully study the changes and innovations to be introduced into the legislation.

Related to the Directive, in 1999, was published the Legislative Decree n. 79, known as "Bersani Decree" [12]. The formation process lasted three years and began with the establishment of the "Carpi Commission", made up of experts analysing the reform. The Commission's report showed the need to deeply change the structure of the electricity market in all its branches. The implementation of these points occurred by limiting the power of ENEL, establishing that by the beginning of 2003 an operator could not import or produce more than 50% of the total energy of the Italian market, thus forcing the institution to sell part of its market share. On the customer side, action was taken by dividing the market into captive and free market, with the aim of gradually reducing the former until reaching a situation of complete opening of the free market. Transmission remained an exclusive monopoly to the state through the creation of the "Gestore della Rete di Trasmissione Nazionale" - GRNT (National Transmission Grid Operator) now called Terna, who introduced the "Acquirente Unico" (Single Buyer), as guarantor of the production capacity of the captive market and the "Gestore del Mercato Elettrico" – GME (Electricity Market Manager). Distribution (as transmission) remained a regional monopoly, but operated through various private companies. It is only with the Bersani decree that, in Italy, we can talk about the liberalization of the electricity sector.

The liberalization process continued for several years with continuous regulatory developments. Only in 2007 Italy arrived at the complete liberalization with the transformation into Law of the Decree n. 73 of June 18, 2007 [13]. This decree determinates the legal unbundling between distribution companies and energy sale companies. They need to be legally unbundled by being separate companies (with different management, accounts etc.), but they can still be owned by the same "mother company". There are different levels of unbundling, legal unbundling being the less stringent one, ownership unbundling the most stringent one. The later applies to transmission systems, which is why for example Terna is only owned by the state and by nobody else.

Figure 1 shows a chorological summary of the most important dates in this Italian liberalization process.

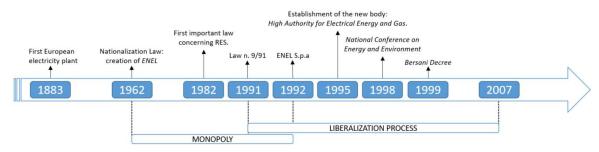


Figure 1: Highlights of the Italian Liberalization process. Own elaboration

Although formally nearly completed, the transformation is far from accomplished: the final users still have very little scope for choosing their supplier for electricity, the option being most of the time limited to one supplier alone, and competition being limited to a few cases of large industrial consumers. Energy is now supposed to be a "shared responsibility" between the central government and the regions: this should mean that the central

government issues the guide-lines, and the local powers follow with legislation and application.

2.2. The Spanish market developments and liberalization

The Spanish electrical system is a sector with special characteristics. One of these is that both, transmission and distribution of electricity, in a monopoly, that is, when all production falls on a single company. Furthermore, the generation normally requires significant economies of scale, this is why much of the 20th century the sector was under a state monopoly, made up of a few companies and heavily regulated. This situation lasted until the end of the 90s when the liberalization of the sector began.

The normative regulation of the sector can be divided since the 1970s into three welldifferentiated stages: the "*Planes Energéticos Nacionales*" – PEN (National Energy Plans), the "*Mercado Legal Estable*" – MLE (Stable Legal Market) and Liberalization [14].

2.2.1. National Energy Plans (PEN)

Industrial electrification was born in Spain with the constitution of the Spanish Electricity Society in 1875 in Barcelona, considered the first Spanish electricity company. At the end of the 19th century, many electricity companies, using direct current (DC) for transportation, were limited to short distances. For this reason, in 1901, 60% of the electricity came from thermal sources while the rest came from hydraulic ones. It is with the introduction of alternating current (AC) in the 20th century that long-distances electricity transport begins. This pushed the development of the hydroelectric industry, such is the case that at the end of the 1930s, Spain had 1500 MW of which 80% were hydroelectric. In the following decades, due to the civil war and the post-war period, there was a stagnation in the generation capacity, added with an increase in demand, a significant generation deficit emerged.

"Unidad Eléctrica S.A."- (UNESA), was founded in 1944 through the interconnection of regional electrical systems and the construction of new plants in addition to the creation of a centralized system to manage the National Electric System at all times. Finally the deficit could be alleviated thanks to the application of the "Tarifas Tope Unificadas" (Unified Top Rates) that promoted the construction of power plants. This allowed Spain to enter in a phase of accelerated growth (from 1960 to 1970) which, at the same time, generated higher energy demand.

During the 1970s, oil's price shot up firstly in the crisis of 1973 and then in the second crisis of 1979, which induced a global energy crisis. Price instability due to geopolitical reasons highlighted the need to reduce dependence on oil. The strategy of PEN's from 1975 to 1983 consisted of satisfying the increased demand and the reduction of dependence on oil, through investments in coal and nuclear power plants. This type of plants required of a large capital disbursement during the context of an economic crisis. Electricity rates, which were regulated by the state, did not undergo the necessary increase to assume the entire investment that was being made. All this generated an accumulated deficit in companies of the sector and endanger the viability of the system [14].

2.2.2. Stable Legal Market (MLE)

The second regulatory stage, known as "*Mercado Legal Estable*" – MLE (Stable Legal Market), was created with the aim of alleviating this accumulated deficit in the sector. In 1983, both the Government and electricity companies reached an agreement and signed a first protocol[15]. In it is recognized that the bad economic situation of the sector was not due to the management of the companies and a series of measures were established for the sanitation of the sector. The main measures consisted of:

- nationalizing the electricity transmission network with the creation of the "Red Eléctrica Española" – REE;
- a revision of the last PEN;
- a change in the tariff policy.

In addition, the sector underwent a major restructuring with a large exchange of assets reducing in four electrical groups. Finally, with the approval of the new tariff system in 1987[16], the MLE began, which enabled the sector's financial crisis to be overcome.

Since the early 1990s, the aim of the European Economic Commission was to create a single electricity market across Europe. This market seeks to bring competition to all electricity sectors as well as the freedom to import and export electricity between countries of EU. These new rules for the sector were promoted by Directive 90/547/EEC [17] that deals with transport in networks and Directive 96/92/EC [11] established how the sector would be liberalized, the opening of networks to third parties, the creation of an organized market for electricity and the minimization of state's role in the system [14][18].

2.2.3. Market Liberalization

It is from Electricity Sector's Law 54/1997 [19] that Directive 96/92/EC was transposed, creating the basis of the current legislative framework for the Spanish electricity sector. This law creates the necessary tools to liberalize the market: separating regulated activities, such as transmission and distribution, from unregulated activities (also called free activities), such as generation and commercialization, in addition to the entry of REE into the stock market and privatizing certain parts of it. Finally, the Electricity Market Operator was created, which manages the generation offers and demands, and the National Energy Commission (CNE), the institution in charge of outlining the state policy in the Energy Sector[20].

The European Union continued the liberalization process of the electricity sector with Directive 2003/54/EC [21] with measures to accelerate this process. This directive was transposed in Spanish Law with the Law 17/2007.

Between 2001 and 2010 renewable energies became more protagonists with the "*Plan de Fomento de las Energias Renovables en España*"- The Plan for the Promotion of Renewable Energies (2000-2010)[22], the "*Plan de Energías Renovables*"- Plan for Renewable Energies (2005-2010) [23], and the still in force Spain's National Renewable Energy Action Plan (2011-

2020)[24] – "Plan de Acción Nacional de Energías Renovables". They looked to promote saving and efficiency, setting bonuses for the use and installation of renewables.

As mentioned previously, in 2007 the European Commission released an Action Plan with three main objectives for the entire European Union by 2020. The first was to achieve 20% of energy consumption with renewable energy, the second was to improve energy efficiency by 20% and the third to reduce CO2 emission by 20%.

Finally, it is with Law 24/2013 [25], stablished with the objective of "establish the regulation of the electricity sector in order to guarantee the supply of electrical energy, and to adapt it to the needs of consumers in terms of safety, quality, efficiency, objectivity, transparency and minimum cost", that the system recovers its financial balance thanks to the increase in new taxes and the reduction of premiums for certain activities. It should be said that this law thereby did not review or reform the sector, but limited itself to alleviating the tariff deficit.

Due to the need to reduce global CO2 emissions and energy dependence on fossil fuels however, the EU was forced to coordinate an energy plan. In essence, it becomes apparent that the Spanish regulatory framework of the last decades has been strongly influenced by the European Directives [14][18]. Figure 2 summarizes in chorological order the most important dates in this Spanish liberalization process:

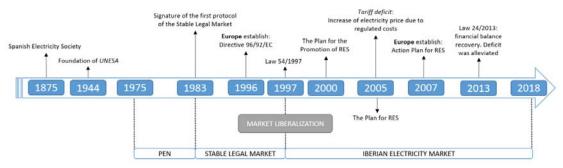


Figure 2: Highlights of the Spanish Liberalization process. Own elaboration

2.3. Growth of renewable generation

In this chapter the growth of renewable generation is described for the two analyses countries Italy and Spain, first on a general level and then specifically for wind and solar in each country.

2.3.1. Italy

The promotion of electricity produced from RES is among the priorities of the European Union (EU) for reasons of security and diversification of energy supply, for reasons of environmental protection and for reasons linked to economic and social cohesion.

With the Directive 2009/28/EC [26], the EU has identified the strategic plans to combat climate change by proposing short and medium-term measures aimed at the adoption of the following energy measures to be realized by 2020:

- +20% of energy from renewable sources in final energy consumption;
- -20% of energy consumption compared to the trend scenario, through efficiency energy;
- -20% of emissions into the atmosphere.

Each State member is required to adopt a National Renewable Energy Action Plan (NREAP), identifying strategies and implementing measures to improve energy efficiency in energy consumption and to increase the role of renewables in the transport sectors, electricity and heat.

Italy adopted its NREAP in June 2010. With the Legislative Decree 3/3/2011, n.28 [27] define the methods and criteria for the implementation of the measures envisaged by the NREAP, in line with the indications of the European Directive mentioned above, the objectives of which are to be achieved by 2020.

Among the general objectives they take on particular importance:

- The **reduction of emissions** of harmful gases for the climate (CH4, CO2...) according to the commitments undertaken at the international level.
- The security of energy supplies, considering that Italy depends heavily on energy imports. Examples of the problematic situation were: oil supply disruptions as a result of political events in Libya in 2011 and reductions in gas supplies from Russia through Ukraine.
- Improving the competitiveness of the national industry through support for the demand for renewable technologies and the development of technological innovation. The development of renewable sources could be an element of economic evolution, employment and investment for the country.

Regarding the objectives for renewable energy, Italy has assumed for the year 2020:

- To cover with renewable energy **17%** of gross final energy consumption.
- In detail this is shall be reached by a target of the share renewable energies to be 17,09% in the heating/cooling sector, 10,14% in the transport sector and 26,39% in the electricity sector.

Therefore, the development of renewable sources in the production of electricity remains a strategic action line. To increase the percentage of electricity consumption covered by renewable sources while ensuring efficiency and acceptable costs, it is necessary that the electricity system infrastructure is adequate; in particular, to aim at the realization of the so-called smart grids, capable of realizing efficient forms of storage, accumulation and sorting of the electricity produced. Table 1 illustrate the objectives that Italy intends to achieve in the three sectors (electricity, heat and transport) for the purpose of meeting the targets set, comparing the reference year 2005, the intermediate situation to 2008 and the forecasts for 2020.

	2005			2008			2020		
	RES	GFC	RES/GFC	RES	GFC	RES/GFC	RES	GFC	RES/GFC
	Mtoe	Mtoe	%	Mtoe	Mtoe	%	Mtoe	Mtoe	%
electric	4,84	29,74	16%	5,04	30,39	16,58%	9,11	31,44	28,97 %
heat	1,91	68,5	2,8%	3,23	58,53	5,53%	9,52	60,13	15,83%
transport	0,17	42,97	0,42%	0,723	42,61	1,7%	2,52	39,63	6,38%
total	6,94	141,2	4,91%	9	131,5	6,84%	22,3	131,2	17%

Table 1: Summary National Renewable Energy Action Plan (NREAP). Source: [28]

According to the Italian Ministry of Economic Development [28], in 2018, RES have consolidated their role by finding widespread use in all sectors (thermal, electrical and transport) and are confirmed as a strategic resource (also in economic and employment terms) for the sustainable development of the country. In 2018, the gross final energy consumption covered by RES has reached over 17,8%, a value well beyond the target assigned to Italy by the EU by 2020. The increased role of RES have contributed to the decrease in Italy's dependence on the supply of foreign sources. The share of national energy needs met by imports (while remaining high, equal to 74%), was further down and has for years been below historical values. The 2020 RES targets set for Italy appear within reach but, in the longer term, however their role will need to be further strengthened: i.e. the Integrated National Plan for Energy and Climate (PNIEC) sets an ambitious target for 2030 in terms of the share of total energy consumption covered by RES of 30%.

Along last decades, the Italian power system faced an intense energetic transition to Renewable Energy Sources, due to the increase of investments in Renewable Generation (RG) following several legislative initiatives supported by both the European Union and the Italian governments (e.g. *"Conto Energia"*¹, *"Conto Termico"*²). To exploit the potential of renewable energy production, Italy implemented generous incentive schemes: the largest scheme incentivised solar PV production and led Italy from a low base of installed PV in 2010 to become the world's fourth largest country by installations by the end of 2014.

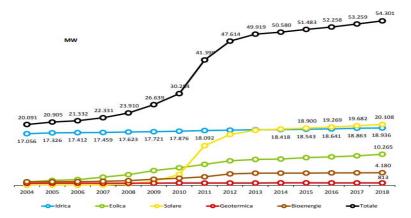


Figure 3: Evolution of installed power of electricity production plants powered by RES. Source [29]

¹ Italian Ministerial Decree of the 6th of February 2006

² Italian Ministerial Decree of the 28th of December 2012

Indeed, as it can be seen in Figure 3, between 2004 and 2018, the gross efficient power of RES plants installed in Italy increased from 20091 MW to 54301 MW, with an overall variation of 34210 MW and an annual average growth rate of 7%. Years with major increases in power are 2011 and 2012. The total installed power powered by RES that came new into operation in 2018 was 1042MW, a slightly higher increase compared to 2016-2017 (1001 MW).

The national electricity park has historically been characterized by a wide spread of hydroelectric plants; in recent years the installed power of these plants has almost remained constant: an average increase of 0.7% per year, while all other renewable sources, in particular solar and wind, have grown at a rapid pace, thanks mainly to the various public system's incentives.

Figure 4 shows that, at the end of 2018, Lombardia is the region with the highest concentration of installed power of RES plants for electricity production (15.4 % of the total national power); in the North it is followed by Piemonte, with 8.7%, and Veneto (6.4%). Tuscany, mainly thanks to the exploitation of geothermal resource, is instead the region with the highest installed power in Central Italy (4.2%). In Southern Italy the first region for installed power is Puglia (10.2%) followed by Sicily, with 6.5% and Campania (5.2%).

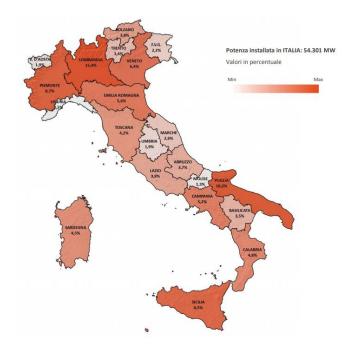


Figure 4: Regional distribution of installed RES power at the end of 2018. Source [29]

Regarding production, Figure 5 shows the evolution of RES electricity production of each renewable source. Solar energy alone accounted for about the 8% of total electric production in Italy in 2014, making the country one with the highest contribution from solar energy in the world. While the contribution of the traditional renewable sources of hydro and geothermal remained rather stable over the course of time, a rapid growth in the deployment of solar, wind and bio energy in recent years led to Italy producing over 40% of its electricity from RES (see Figure 6):

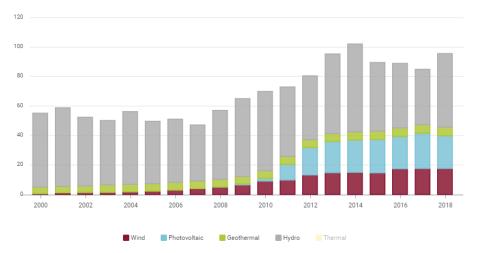


Figure 5: RES electricity production by source. Source: [2]

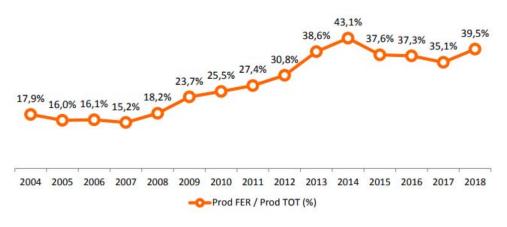


Figure 6: Gross electricity production covered by RES. Source [29]

Such impressive transition has been pushed by three main international economic and social drivers:

- Necessity of reducing pollution by substituting harmful sources to the environment (i.e. coal) with RES.
- Decreasing costs of RES investments. Photovoltaics' greenfield investment costs decreased by 75% from 2010 to 2017, as well as wind plants' costs, which decreased by 30% along the same reference period [30];
- Purpose of reaching the energetic independence from fossil fuels (especially countries with limited reserves of hydrocarbon deposits as Italy), by consumptions' electrification and consequent increase in electricity production.

As previously mentioned, RES electric production showed an increase (15% yearly from 2009 to 2014) along last decade, facing a slight decreased caused by the drop off hydroelectric production from 2015 to 2017 (-20%) although still showing an increase in the production of the other sources. Such increase of RES production has been supported by the Italian authorities through feed-in tariffs and fiscal benefits, as well as granting dispatchment priority to energy produced by RES in power markets.

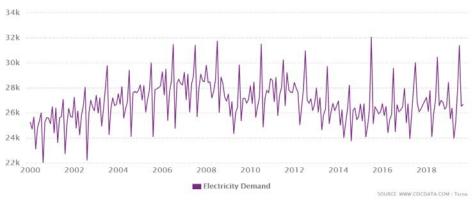


Figure 7: Italy Electricity Demand in GWh. 2000-2018. Source [31]

It can be seen in Figure 7 a strong fluctuation of demand, from 24k to 32k GWh within short time. Years characterised by the decrease of electricity demand average (from 2011 to 2014), RES production faced a regular growth, emphasising the transition from traditional power plants, (which faced several decommissionings), contributing less to the supply of electricity demand. Figure 8 shows the regional distribution of RES production in Italy.

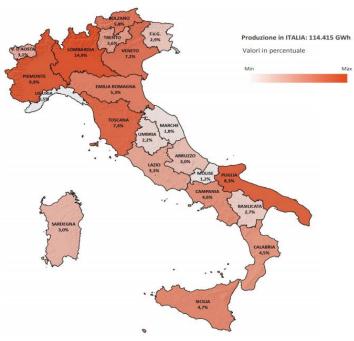


Figure 8: Regional distribution of RES production. Source [29]

It is described further in detail in the following sub-chapters the prevailing type of RES per region but in the North is hydro and in the South is PV and wind. As it can be seen in Figure8 in 2018, Lombardia is confirmed as the Italian region with the highest production from renewable sources: 17094 GWh (equal to 14.9% of the 114415 GWh produced overall in Italy), followed by Piemonte, with 9.9% of national production. In the South, Puglia excels with the 8.3%. Electricity generation from renewable sources is distributed as follows: Northern Italy 53.3%, Center Italy 14.6%, South (islands included) 32.1%.

2.3.1.1. Solar

At the end of 2018, 822.301 photovoltaic plants were installed in Italy, for a total power of 20.108 MW; most of them (about 92%) have less than 20kW. 37% of the installed power is concentrated in plants between 200-1000 kW. Overall, the power of PV represents 37% of that related to the entire RES capacity installed at national level in Italy. As reported in Table 2 in 2018, production from solar sources was 22.654 GWh, equal to 19.8% of total electricity production from renewable sources; 61% of the electricity generated by PV systems is produced by plants with size above 200 kW.

Classi di potenza	n°	Potenza (MW)	Energia (GWh)
P ≤ 3	279.681	760	806
3 < P ≤ 20	476.396	3.445	3.636
20 < P ≤ 200	54.209	4.244	4.375
200 < P ≤ 1.000	10.878	7.413	8.548
P > 1000	1.137	4.245	5.289
Totale	822.301	20.108	22.654

Table 2: PV plants installed in Italy in 2018. Source [2]

Distribution of installed PV capacity in Italy

Figure 9 shows the evolution of the time series of the number and installed power of PV systems in Italy. It can be seen that since 2013, with the end of the "*Conto Energia*" law, the growth rates in terms of capacity are significantly less sustained. Overall numbers of plants continue however to increase, indicating that specifically the growth of recent years is attributed mostly to small (residential) plants. At the end of 2018, 822.301 PV systems were installed in Italy for a total power of 20.108 MW. Small plants (power less or equal to 20 kW) make up more than 90% of the total plants installed in Italy and concentrate 21% of the overall national power.

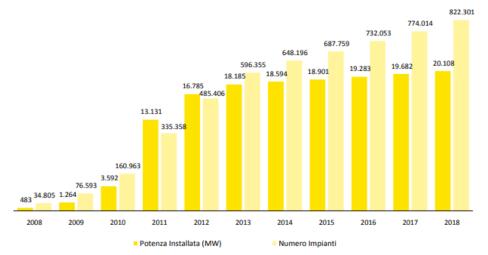


Figure 9: Evolution of the number and power of PV. Source [29]

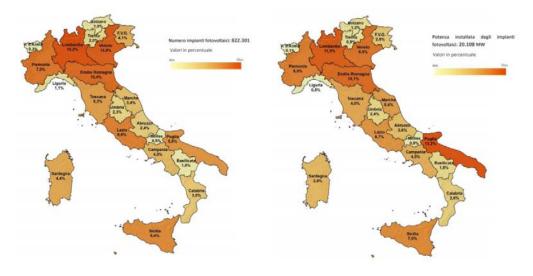


Figure 10: Regional distribution of solar plants in terms of installed plants (left) and power installed (right) until end of 2018. Source: [29]

The incremental installation of PV systems in 2018 did not cause significant changes in the relative territorial distribution, which remains almost unchanged compared to 2017. The highest concentration of solar plants in terms of installed plants is found in the Northern regions (approximately 55% of the total); in the Center about 17% and in the South the remaining 28%. Regarding installed power (Figure 10, right), 44% is concentrated in the North, 37% in the South and 19% in Central Italy. Puglia is the region characterized by the greatest contribution (13.2%) followed by Lombardia (11.5%). Lazio excels in the Center, with a 6.7%.

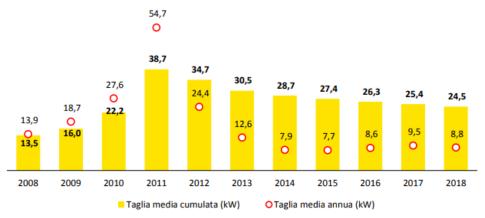


Figure 11: Average size of newly installed PV systems. Source [29]

Plants that came into operation in 2018 (mostly installations for domestic users), have an average power of 8,8 kW and the overall national average size of PV systems has gradually decreased since 2012; in 2018 stood around 24,5 kW.

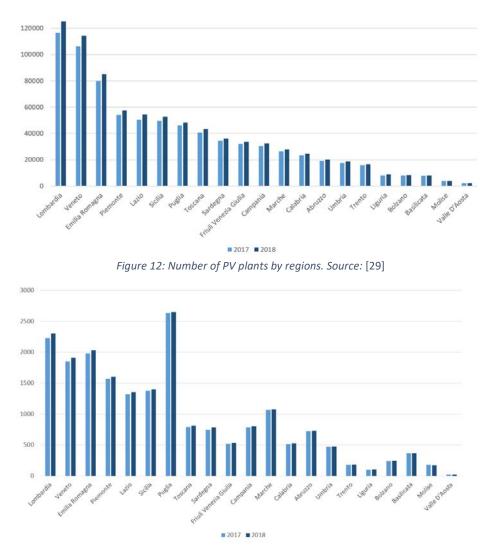


Figure 13: Power of PV plants by regions in [MW]. Source [29]

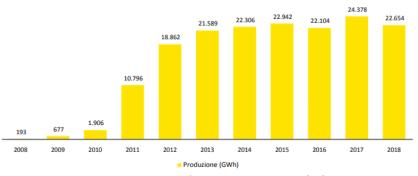

According to Figure 12 and Figure 13, at the end of 2018, Lombardia is the region with the largest number of installed plants (125.250), followed by Veneto with 114,624 plants. Puglia is characterized by the greater installed power (2.652 MW), followed by Lombardia with 2.303 MW. In general: plants in the south are fewer in numbers, but larger in terms of installed capacity. This is because a lot of these plants are utility-scale (e.g. green-fields). The North on the other hand has much more in terms of numbers, but smaller capacity because to a big share of roof-top plants of residential or industrial facilities. According to the "Gestore Servizi Energetici" (GSE) – Energy Services Manager.

Table 3 shows the variation in terms of number and power of photovoltaic plants of each Italian region.

	% Variation 2017/2018			% Variation 2017/2018		
	N⁰	MW		Nº	MW	
Lombardia	7.4	3.4	Campania	6.9	2.7	
Veneto	7.6	3.2	Marche	4.6	1.0	
Emilia Romagna	6.7	2.4	Calabria	5.0	2.0	
Piemonte	5.8	2.1	Abruzzo	5.5	1.3	
Lazio	8.0	2.1	Umbria	6.0	1.8	
Sicilia	5.8	1.7	Trento	4.2	2.7	
Puglia	4.6	0.8	Liguria	7.5	4.4	
Toscana	5.8	2.6	Bolzano	2.4	1.3	
Sardegna	4.4	5.1	Basilicata	3.3	0.5	
Friuli Venezia Giulia	5.1	2.0	Molise	3.3	1.4	
Valle D'Aosta	4.9	3.1	ITALIA	6.2	2.2	

Table 3: % power and number variation between 2017 and 2018. Source [29]. Own elaboration

In 2018 there was an increase in the number (+6.2%) and power (+2.2%) of photovoltaic plants more contained than in previous years. The greatest variation in the number of plants (+8.0%) is observed in Lazio, followed by Lombardia, Veneto and Liguria; the smallest increase (+2.4%) is recorded in Bolzano. Regarding PV production, Figure 14 shows that in 2018 Italy reached 22.654 GWh, a sharp drop compared to the previous year (-7.1%). It represented 19.8% of the 114 TWh produced from all renewable sources in Italy [29].

Distribution of generated PV capacity in Italy

Figure 14: Evolution of PV production. Source: [29]

Figure 15 shows the regional distribution of national electricity production from PV systems in 2018. Puglia, with 3438 GWh, is the region with the highest production (15.2% of the total); followed by Lombardia, with 9.9% and Emilia Romagna with 9.7%. Valle d'Aosta and Liguria are the regions with the lowest photovoltaic production (0. 1% and 0.5% respectively).

Figure 15: Regional distribution of national electricity production from PV systems in 2018. Source [29]

2.3.1.2. Wind

At the end of 2018, 5.642 wind farms were installed in Italy, most of which (92%) were small (less than 1 MW). Of the 10.265 MW installed in Italy at the end of 2018 (19% of the entire installed capacity of renewable energy sources at national level), 86% (9.082 MW) was concentrated in 308 wind farms with a power higher than 10 MW. During 2018, wind production was 17.716 GWh, corresponding to 15.5% of the total electricity production from renewable sources. As highlighted in Table 4, 90% of the electricity generated by wind farms was produced by plants with a power higher than 10 MW, 6% by those with power between 1 and 10 MW and the remaining 4% by plants below 1 MW [29].

	2017		2017 2018			2018 / 2017 Variazione %	
Classi di potenza (MW)	n°	MW	n°	MW	n°	MW	
P ≤ 1 MW	5.175	491,0	5.209	507,6	0,7	3,4	
1 MW < P ≤ 10 MW	117	619,4	125	675,2	6,8	9,0	
P>10 MW	287	8.655,5	308	9.081,9	7,3	4,9	
Totale	5.579	9.765,9	5.642	10.264,7	1,1	5,1	

Table 4: wind farms installed in Italy in 2018. Source: [2]

According to Table 4 , the power's increase between 2017 and 2018 (+499 MW, equal to 5.1%) is mainly linked to the growth of these plants with power higher than 1 MW, in both terms: size (5.9%) and installed power (5.2%). The segment of power plants less than 1 MW, which also includes small wind turbines, represents only 16.6 MW of the almost 500 MW installed in 2018 (approximately 3%).

Distribution of installed wind capacity in Italy

Figure 16 shows the evolution of the time series of the number and installed power of wind farms in Italy.

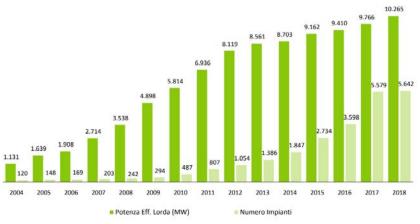


Figure 16: Evolution of number and power of wind farms. Source [29]

In the last fifteen years, a quick development of wind farms has been observed in Italy: in 2004 there were only 120 plants installed, with a power of 1131 MW, while at the end of 2018 the national park was composed of almost 5642 plants with 10265 MW of total power. In 2018, the installed wind power represented 18.9% of that relating to the national capacity of renewable energy plants.

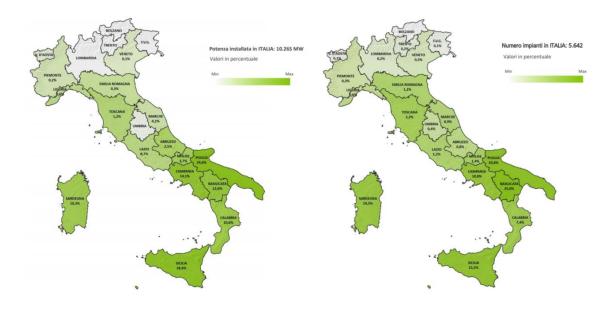


Figure 17: Regional distribution of wind farms by installed power (left)and number of installed plants (right) at the end of 2018. Source: [29]

As it can be seen in Figure 17 southern Italy has the highest number of wind farms; Basilicata is the region with more percentage of plants on the national territory (25 %), followed by Puglia (20.8%). In northern Italy, the spread of these plants is much more modest; the most representative regions are Emilia Romagna and Liguria, with 1.2% and 0.6% respectively. Finally in central Italy, the region characterized by the greatest presence of wind plants is

Tuscany with 2.2% of the total. Regarding the regional distribution of the power: in northern and central Italy, the plants installed at the end of 2018 cover, considered together, only 5.2% of the total national power. Puglia with 24.6% and Sicily with 18.4% hold by far the highest value for installed power; together with the also significant regions of Campania, Calabria, Basilicata and Sardinia. According to Figure 18, the overall national average size of wind farms has gradually decreased since 2010; in 2018 it stood at around 1.8 MW.

Figure 18: Average size of installed wind farms. Source [29]

Table 5 shows the variation in terms of number and power of wind farms for each Italian region.

	% Variation 2017/2018			% Variation 2017/2018	
	Nº	MW		N⁰	MW
Piemonte	5.9	0.0	Marche	-1.9	-0.1
Valle d'Aosta	0	0.0	Lazio	2.9	33.7
Lombardia	11.1	4.3	Abruzzo	9.3	9.9
Trento	-	-	Molise	0.0	0.0
Bolzano	-66.7	-6.5	Campania	2.5	3.8
Veneto	-6.3	-0.0	Puglia	0.1	2.1
Friuli	0.0	0	Basilicata	0.7	22.6
Liguria	0.0	-2.7	Calabria	1.2	0.3
Emilia Romagna	1.4	0.0	Sicilia	1.5	4.5
Toscana	0.8	0.0	Sardegna	2.2	3.1
Umbria	0.0	0.0	ITALIA	1.1	5.1

Table 5: Percentage power and number variation between 2017 and 2018. Source [29]. Own elaboration

For the construction and operation of wind farms, certain environmental and territorial characteristics of the sites, such as wind, orography, accessibility, are particularly important. For that reason, the presence of wind farms is not homogeneous on the national territory: in Southern Italy, in particular, is concentrated the greatest number of wind farms (32.4%) and the 96.8% of the country's overall wind power. The region with the highest installed power is Puglia, with 2523.3 MW; followed by Sicily and Campania with 1892.5 and 1443.2 MW respectively.

Distribution of generated wind capacity in Italy



Figure 19 shows the evolution of national electricity production from wind farms in 2018 according to GSE.

Between 2004 and 2018 the production of electricity from wind sources has almost increased tenfold, going from 1847 GWh to 17716 GWh; in 2018 the production value remained substantially unchanged compared to 2017 (-0.1%). With 4594 GWh of electricity produced, Puglia holds the first place of wind production, followed by Sicily (3211 GWh) and Campania (2494 GWh). These three regions together cover 58.1% of the national overall. [29]

As it can be seen in Figure 20 most of the national wind production is generated in the southern regions and the islands; in the North, however, lower values are recorded, due to the limited installed power. Among the regions, Puglia hold the first place with 25.9% of the national wind production in 2018. Followed by Sicily (18.15%), Campania (14.1%), Basilicata (12.1%) and Calabria (11.6%). While PV has a concentration in the northern and southern regions in Italy, the electricity generation from wind is clearly concentrated predominately in the South.

Figure 20: Regional distribution of wind production. Source: [29]

2.3.2. Spain

Renewable energy production in the Spanish electricity system has grown in 2018, due to the increase in hydraulic and wind production. 100.314 GWh of renewable energy generation (+19% compared to 2017) [32]. At the end of 2018, renewable generation in Spain amounted to 48612 MW (just over 38% of total generation) above the 32% of the previous year.

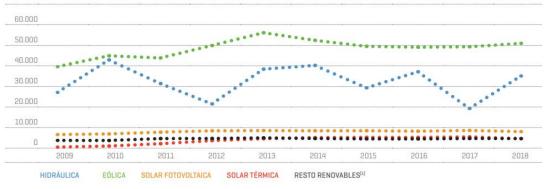


Figure 21: Evolution of renewable generation in GWh. Source [32]

On year 2018, according to Figure 22, the renewable installed capacity has grown 0.9% over 2017, which means 427 MW more. This increase has been made, mainly with wind technology (which has contributed 88.4% of the new power). The second source in contribution to the new renewable power (at a great distance from wind) has been the photovoltaic solar with an additional 26 MW from 2017 to 2018. The rest of renewable sources have had very little or no increments. In any case, it is noteworthy that, since 2009, have been installed in Spain more than 8500 MW of renewable energy have been installed in Spain.

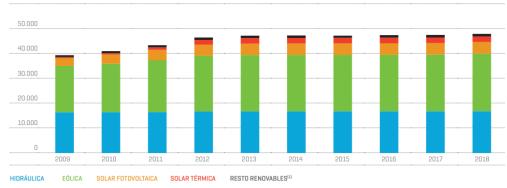


Figure 22: Evolution of renewable installed power. MW. Source [32]

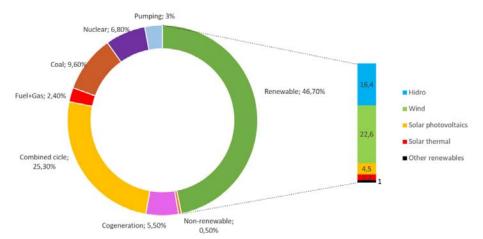
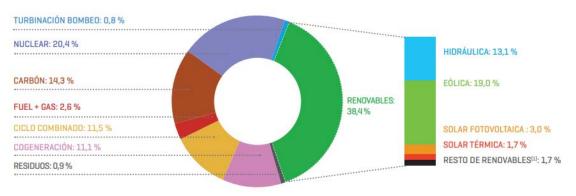



Figure 23: Percentage of installed power in Spain at the end of 2018. Source [32]. Own elaboration

Incluye biogás, biomasa, geotérmica, hidráulica marina, hidroeólica y residuos renovables.

The increase in renewable generation, coupled with the decrease in total production, has led to the reduction of conventional thermal production, with the consequent decrease in CO2 emissions that have been reduced 13.8% compared to the previous year (standing at little bit higher levels than in 2016). Wind contributes in 19% of the total national generation, being the second generating source after nuclear, maintaining high levels of participation. According to Figure 24, Spain's generation mix is differing from Italy's not only on the RES side, but also by the fact that nuclear is present with a notable share of 20% and gas (also due to the coal share) has a relatively smaller share.

Figure 24: Structure of the electricity generation at the end of 2018. Source [32]

Figure 25: Structure of renewable energy generation at the end of 2018. Source [32]

In Figure 25 we can see that regarding renewables, during 2018, wind power continues to be the leader, accounting for just over 49% of the total renewable generated nationwide (considerably less than 2017 due to the increase of hydraulic generation). Wind power production has grown for the second year in a row running with a variation of 3.5% compared to 2017. With this technology, it has been produced 49570 GWh (a value still lower than a 9.4% recorded in 2013). Regarding the geographical distribution of renewable power (Figure 26), five Autonomous Communities (regions) concentrate almost 70% of the RES installed power in Spain. There are, ordered from highest to lowest: *"Castilla y León"*, *"Galicia"*, *"Andalucía"*, *"Castilla-La-Mancha"* and *"Extremadura"*.

Castilla y León		21,7
Galicia		14,9
Andalucía		12,4
Castilla-La Mancha	na an ann an a' tha a' ann an an ann an ann an ann an an an an	12,1
Extremadura		7,7
Cataluña		7,3
Aragón		7,3
Comunidad Valenciana		4,7
Navarra		3,0
Asturias		2,9
Murcia		1,6
Islas Canarias		1,2
La Rioja		1,2
País Vasco		0,9
Madrid		0,5
Cantabria		0,3
Islas Baleares		0,3

Figure 26: Regional distribution ratio renewable installed power/total power. Source [32]

According to Figure 27, Castilla y León, Navarra, Aragón, Galicia, Castilla-La-Mancha and La Rioja, more than 50% of their generation has been renewable. Among them, it should be noted the participation of renewable energy on the total generation of Castilla y León accounted for more than 75%.

Castilla León	20,
Galicia	17,
Andalucía	11
Castilla La-Mancha	11
Cataluña	8,8
Aragón	8,5
Extremadura	5,3
Navarra	3,6
Asturias	3,6
omunidad Valenciana	3,5
Murcia	1,4
La Rioja	1,2
País Vasco	1,2
Islas Canarias	0,9
Cantabria	0,5
Madrid	0,4
Islas Baleares	0,3

Figure 27: Community distribution ratio renewable generation/total generation. Source [32]

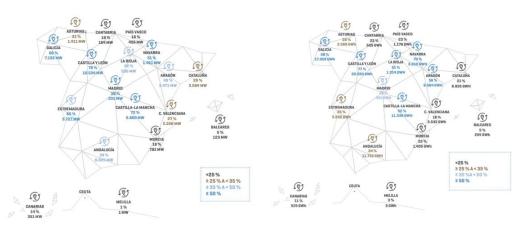


Figure 28: Geographical distribution of renewable power/total power (left) vs renewable generation/total generation (right) at the end of 2018. Source [32]

Compared to the rest of European countries, Spain has risen from sixth to fifth position by volume of renewable generation. Regarding Figure 29 the share of renewable energy with respect to total generation, Spain continues to present data above the European average, with the particularity that 2018, coinciding with the high hydro generation, the difference compared to the average of the other European countries has been 7% (compared to 3.5% the previous year).

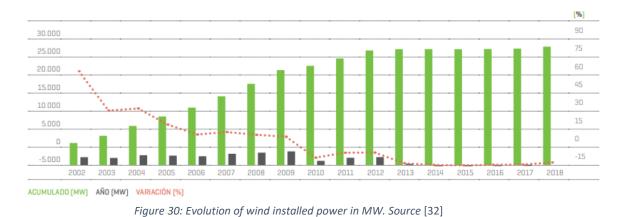

(1) Por indisponibilidad de datos para toda la serie de algunos países, el gráfico de evolución contiene información de: Alemania, Austria, Bégica, Bosnia-Herzegovina, Bulgaria Croacia, Dinamarca, Eslovaquia, Eslovaquia, España, Francia, Macedonia del Norte, Grecia, Holanda, Hungria, Italia, Luxemburgo, Polonia, Portugal, República Checa, Rumania y

Figure 29: Comparison of renewable generation/total generation between Spain (blue) and the average of the countries member of ENTSO-E223

³ Germany, Austria, Belgium, Bosnia, Bulgari, Croatia, Denmark, Slovakia, Slovenia, Spain, North Macedonia, Greece, Netherlands, Hungary, Italy, Luxemburg, Poland, Portugal, Czech Republic, Romania and Switzerland.

2.3.2.1. Wind

As mentioned previously, in 2018 wind generation is the main renewable source in Spain, with 49750 GWh generated and 23507 MW of installed power. This means 3.5% more than the national wind generation in 2017 and 19% of the total energy generate nationwide. Overall represents 22.6 % of national power installed, being the second technology behind the combined cycle (Figure 23).

Distribution of installed wind capacity in Spain

Looking to Figure 30 the installed power increased constantly from the early 2000s until 2012, but from then onwards only little additional capacity has been installed. Wind energy generated in 2018, has increased by almost 3.5% compared to that registered in 2017, being highlighted in Canary Islands, its production has increased by more than 56%.

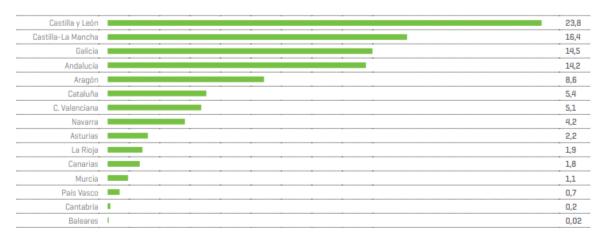
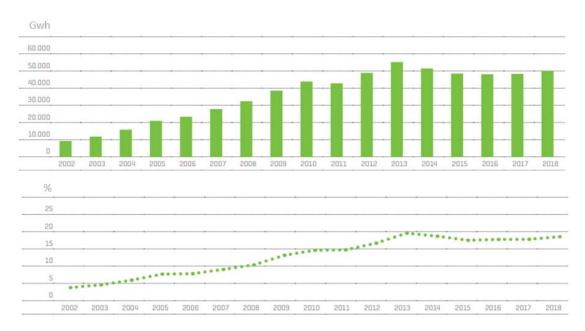



Figure 31: Wind power installed (left) vs wind generation (right) at the end of 2018. Source [32]


It should to be noted in Figure 31 the increase in power in the Canary Islands, which has doubled (compared to 2017) from 206.9 MW to 412.7 MW. Specifically outstanding is the strong increase of Tenerife, with just over 126 new MW installed (more than 61% of the new wind power installed in the Islands). In Gran Canaria, 50 MW have been installed, while the rest correspond, practically in equal parts, to Lanzarote and Fuerteventura [32]. Regarding communities and according to Figure 32, Castilla y León is the one with the most installed wind power, followed by Castilla-La Mancha, Galicia and Andalucía. It is noted that these four

communities concentrate almost 70% of the installed wind power in the country. Balearic Islands, Cantabria and Basque Country stand out on the opposite side, below 1% compared to the national group.

Figure 32: Percentage of wind power over total national wind power by communities. Source [32]

Figure 33 shows the evolution of national electricity production from wind farms and the percentage of wind over the total generation in Spain in 2018 according to REE.

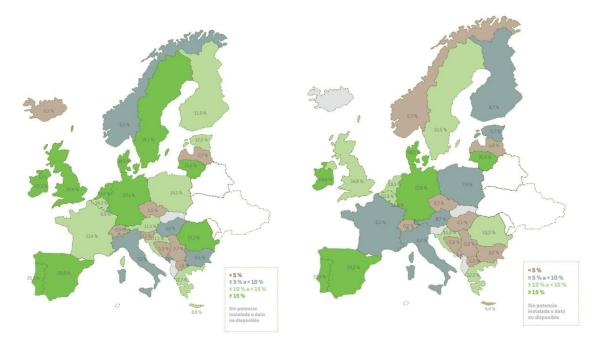

Distribution of generated wind capacity in Spain

Figure 33: Evolution of wind generation in GWh (top) and percentage of wind over total generation (bottom). Source [32]

Castilla y León				23,1
Galicia				16,9
Castilla-La Mancha				16,3
Andalucía				12,6
Aragón 🔤				8,8
Cataluña				5,5
C. Valenciana				5,0
Navarra				4,7
Asturias				2,2
La Rioja				1,8
Murcia				1,3
País Vasco				1,0
Canarias				0,7
Cantabria 🛛				0,1
Baleares I				0,0

Figure 34: Percentage of wind generation over total national wind generation by communities until 2018. Source [32]

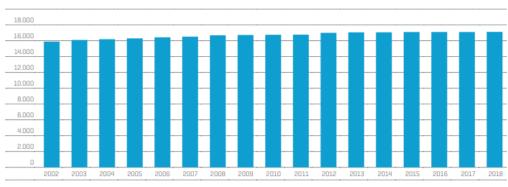

According to Figure 35, compared to the rest of the European countries Spain, with its overall capacity of 23.5 GW, remains in the second place with the largest installed wind capacity behind Germany, which is clearly the leader with just over 58 GW installed, followed in third place by Great Britain. Regarding the contribution of this source in the total generation, the outstanding leader is Denmark with just under 50% of its production coming from wind, being Spain in fifth place. However, Spain remains the leader in wind contribution to the national generation mix, followed by Germany with two fewer points.

Figure 35: Wind power over total power (left) vs wind generation over total generation (right) in ENTSO-E member countries.

2.3.2.2. Hydro

Hydro generation has been 1.8 times higher in 2018 compared to 2017, due to the increased rainfall. In 2018, it generated 34106 GWh which corresponds to 13.1% of the total energy generate nationwide. Hydro power has traditionally been the main renewable source in Spain, until 2009 when it was surpassed by wind power. Since then, it has clearly remained the second renewable source for installed power, with a total of 17049 MW at the end of 2018. Regarding the total national installed capacity (renewable and no-renewable), hydro represents 16.4%, which places it as the third technology behind combined cycle and wind. Figure 36 reports the evolution of installed hydro power in Spain from year 2002 until 2018.

Distribution of installed hydro capacity in Spain

Figure 36: MW of installed hydro power. Annual evolution. Source [32]

Figure 37 shows the Spanish hydro power installations at the end of 2018. Those ones with more installed power were "Castilla y León" and "Galicia" with more than 3000 MW.

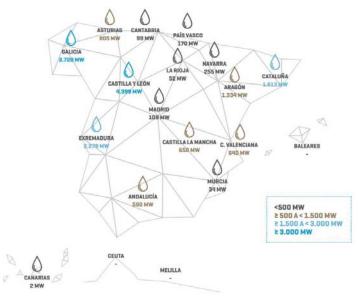


Figure 37: Installed hydro power in Spain at the end of 2018. Source: [32]

Distribution of generated hydro capacity in Spain

As it can be seen in Figure 38 hydro generation in Spain is highly variable, arriving in wet years to exceed 40.000 GWh, while in dry years that volume is reduced to more than a half. 2018 has been a wet year, placing production at 34106 GWh, 85% higher than 2017. In this way hydro contributed 13.1% to the total national production, occupying the fourth position of generating technologies.

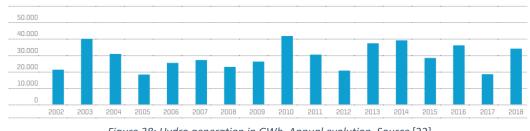


Figure 38: Hydro generation in GWh. Annual evolution. Source [32]

In comparison to the generation from other renewables, hydro power ranked second behind wind power with 34% of total renewable energy generated in Spain (Figure 25). As it can be seen in Figure 39, the last months of winter and the firsts of spring are these periods with higher hydro contribution present historically, mainly due to the melting snow in the mountains and also to the greater rainfall of those months. In 2018, April was the month in which most hydro generation came out with slightly more than 4700 GWh (74.7% higher than the maximum value of the previous year). Figure 39 shows the monthly evolution of hydro generation in Spain from 2014 to 2018. It can be seen that during one year, the period with more generation are the first months of the year.

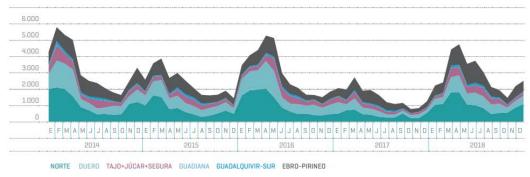


Figure 39: Hydro generation in GWh. Month evolution. Source [32]

One of the main advantages that this technology presents (compared to the rest of renewable sources) is its programmability, which is evident when observing Figure 40 showing how the greater contribution of this technology coincides with the peaks in demand in the morning (around 10:00 h) and in the evening (around 22:00 h).

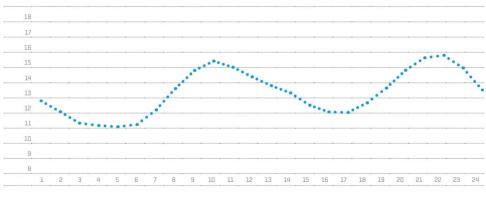
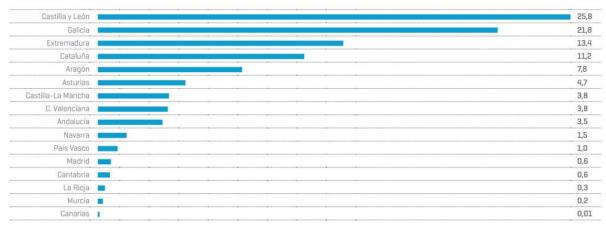



Figure 40: Average hourly profile of hydro over total generation in 2018. Source [32]

Concerning communities, in Figure 41 we can see that Castilla y León is the region with the most installed hydro power (almost 26% of the national hydro power) having exclusively the second most important basin on the peninsula, the so-called Duero. On the other hand, the North basin (the most important and that one running along the Cantabrian coast and much of Galicia, places the latter community in second position in hydraulic capacity, with almost 22% of the total. Thus, five communities account for 80% of the total installed capacity: Extremadura, Cataluña, Aragon and that those ones aforementioned.

Figure 41: Installed hydro power of each community over national hydro power. Source [32]

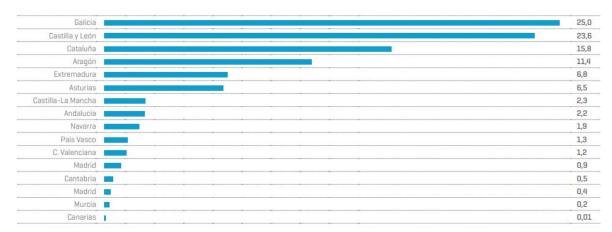


Figure 42: Hydro generation of each community over national hydro generation. Source [32]

Compared to the rest of European countries, in 2018 Spain has occupied the seventh place in energy generated with this technology. However, it is situated below the half, in nineteenth position, in terms of participation of the hydraulics over the total generation, see Figure 43 below.

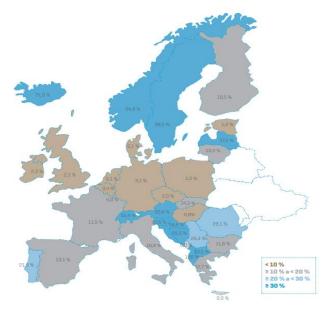
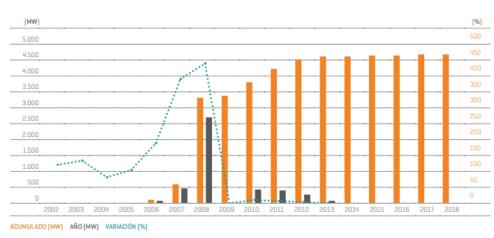



Figure 43: Hydraulic generation over total generation in ENTSO-E member countries. Source: [32]

2.3.2.3. Solar

Solar is the third renewable electrical generation source in Spain with 7018 MW of installed capacity and 12183 GWh of generation in 2018. This corresponds to 4.7% of the total energy generate nationwide and 6.7% of the total national installed capacity. Figure 44 shows the annual evolution of solar installed power in Spain.

Distribution of installed solar capacity in Spain

Figure 44: MW of installed Solar power. Annual evolution. Source [33]

As the same way as wind power, solar installed power has stabilized over the last five years after a long path of continuous growth. The highest increases are recorded in 2007 and 2008, with the latter reaching a record of new 2733 MW. This growth continued until 2013 with an average of over 250 MW installed each year.

Figure 45 shows the Spanish solar power installations at the end of 2018. Those ones with more installed power were: "Castilla la Mancha", "Andalucía", "Extremadura" and "Castilla y Léon" with more than 400 MW.

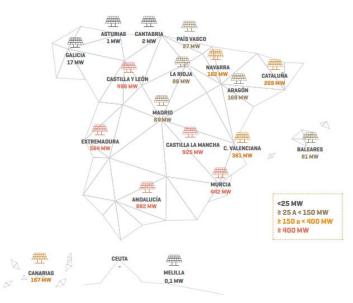
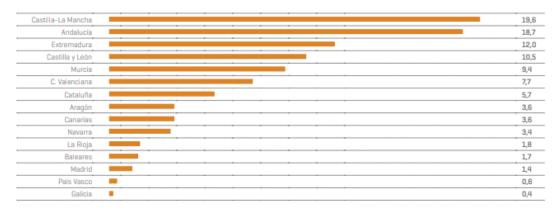



Figure 45: Installed solar power in Spain at the end of 2018. Source: [32]

As it can be seen also in Figure 46, "Castilla-La Mancha" is the region with more photovoltaic solar power installed with almost 20% of all the national power, followed by Andalusia with 18.7% and a little further away through "Extremadura" and "Castilla y León". These four communities together account 61% of the national installed solar power in Spain. On the other hand, specifically outstanding are the regions on the Cantabrian coast, all of them below 1% of the total national power.

Figure 46: Percentage of photovoltaic installed solar power of each region over the national photovoltaic capacity until 31/12/2018. Source: [32]

Distribution of generated solar capacity in Spain

Looking to Figure 47, solar generation in Spain the installed increased constantly from the early 2000s until 2012, but as well as wind power, from then onwards only little additional energy has been generated with a significant decrease in 2018.

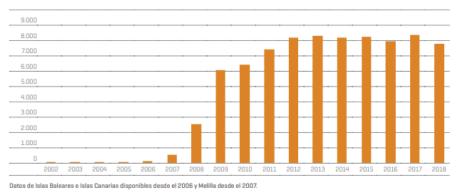


Figure 47: Annual evolution of solar generation. [GWh]. Source: [32]

As it can be seen also in Figure 48, "Castilla-La Mancha" is the region with more photovoltaic solar generation with more than 20% of all the national solar generation, followed by Andalucia with 19% and a little further away through "Extremadura" and "Castilla y León". These four communities together account 62.8% of the national solar generation in Spain. On the other hand, specifically outstanding are the regions on the Cantabrian coast, all of them below 1%.

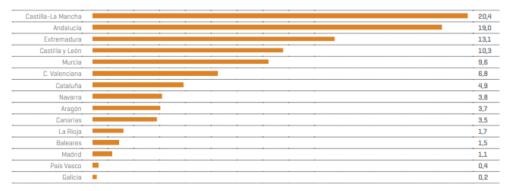


Figure 48: Percentage of solar generation over total national solar generation at the end of 2018. Source: [32]

As it can be seen in Figure 49, the summer months are these periods with higher solar contribution mainly due to the greater availability of the sun in those months. During 2018, the monthly maximum of production was recorded in July which was 1.9% higher than the previous year. Seasonality is an important factor in this technology and greatly conditions its production throughout the year. From May to August the generation presents quite similar values, while it falls to almost half in the months of November to February.

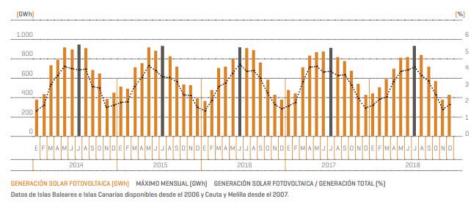
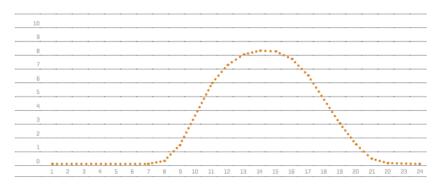



Figure 49: Solar generation, monthly maximums and participation on total generation. Source: [32]

When observing Figure 50 it can be seen that the contribution of this technology happens only with the hours of the day (from 8:00h to 21:00h).

Figure 50: Average hourly profile of solar photovoltaic generation over total generation in 2018. Source: [32]

Compared to the rest of European countries, as it can be seen in

Figure 51, in 2018 Spain has occupied the fifth place in energy generated with this technology behind Italy, Greece, Germany and Belgium. However, it is situated in second position in terms of ratio generation over the total generation.

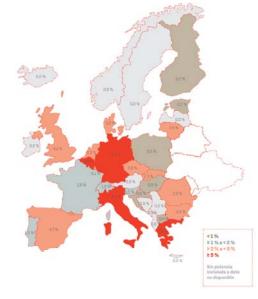


Figure 51: Solar generation over total generation in ENTSO-E member countries. Source: [5]

3. Market structure

3.1. The Italian Electricity Market

As explained in the previous chapter, in 1999, the Decree n.79 known as Bersani decree, set out the process of liberalization of the energy sector which would led to the current market organization structure. It laid the foundations for the creation of an organized wholesale electricity market (96/92/EC) into the national legislation, commonly known as the "Borsa Elettrica", or IPEX (Italian Power Exchange) in response to two specific needs:

- i. Promote, according to criteria of neutrality, transparency and objectivity, competition in the production and sale of electricity;
- ii. Ensure the economic management of adequate availability of dispatching services.

The sector changed from a monopoly to a complex mechanism, with a plurality of parties competing to offer services and products to customers rather than users. Currently the main parties involved in the market are:

- i. production companies;
- ii. the Transmission Grid Operator (TSO): Terna S.p.a
- iii. Distribution System Operators (DSO);
- iv. Market Operators active in energy trading and supply (MO);

IPEX enables producers, consumers, and wholesale customers to enter into hourly electricity purchase and sale contracts. Market participants can connect to an electronic platform through internet and enter into on-line contracts under secure access procedures based on digital certificates.

The task of organizing and managing the electricity market is set up to the "Gestore dei Mercati Elettrici S.p.A" (GME) which, operating according to the aforementioned criteria, also guarantees, the security of trade and the matching of the demand and supply of electricity. The Power Exchange is the virtual exchange location where the final price of energy. This price, also called *spot price*, is determined by the meeting between the quantities of electricity demanded and offered by operators who have been admitted to participate. It is also the place where "Terna S.p.a" obtains the necessary resources to provide for the dispatching of electricity in the national territory. IPEX also represents the physical market where the electricity injection and withdrawal programs are defined in (and from) the grid for each connection point.

However, it should be noted that the Power Exchange is not a mandatory market, as operators can conclude contracts for the purchase and sale of electricity even outside the same, through the so-called "Bilateral Contracts" or also known as "Over the Counter" (OTC), through which certain quantities of electricity are sold for a certain time horizon.

According to the TIDME ("Testo Integrato della Disciplina del Mercato Elettrico") [34], IPEX is divided into:

- i. The Spot Electricity Market (*"Mercato elettrico a pronti"* MPE): where most of the daily electricity trading transactions are performed.
- The Forward Electricity Market ("Mercato elettrico a termine dell'energia elettrica"-MTE): is the virtual location where the negotiation of energy contracts takes place with the obligation of delivery and withdrawal.
- iii. The Platform for physical delivery of financial agreements traded on IDEX ("Italian Derivates Energy Exchange) ("Consegna Derivati Energia" CDE)

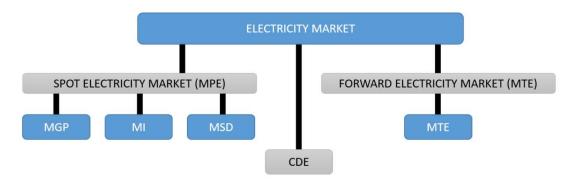


Figure 52: Structure of the Italian Electricity Market. Source: [3]

The majority of electrical energy in IPEX is traded through the spot market, in particular in MGP.

3.1.1. Market zones

The electrical system is divided into subsets of transmission grids defined as zones. These zones are defined to consider physical limits created simply due to geographic limitations and respectively connecting few lines. By doing so, system security is enhanced.

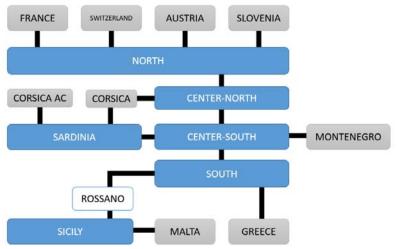
This electricity system thus is a very special approach only used in Italy. Is divided into market zones, groups of geographical and virtual areas whose energy price is:

- i. For generators/sell-offers differentiated according to the area (also called zonal price): determined for each hour by the intersection of the demand and supply curves and is different from zone to zone when transmission capacity limits are saturated.
- ii. For consumers, however, consumers/buy-offers face always one National Single Price: the "*Prezzo Unico Nazionale*" PUN, which simply corresponds to the average of the zonal sale prices, weighted with total purchases.

Terna S.p.A divides the network into zones on the basis of these criteria:

- Transport capacity between the zones has to be adequate. Considering the most frequent operation situation on the basis of the forecasts made on the market and implementing the adequate programs of injection and withdrawal.
- The programs execution of injection and withdrawal does not have to cause congestions within each zone considering the predictable operating situations (also known as the "copper plate" assumption);
- The location of injections and withdrawals, including the potential ones, within each zone does not have to have a significant influence on the transport capacity between areas.

Currently, the national transmission grid can be summarized as follows:


- i. Six geographical zones: North, Center-North, Center-South, South, Sicily and Sardinia.
- ii. One virtual zone representing constrained zones, those consisting only of generating units: Rossano.
- iii. Nine neighboring countries (so-called virtual zones): France, Switzerland, Austria, Slovenia, Malta, Montenegro, Corsica, Corsica AC and Greece.

The production of this last virtual area is subject to constraints for the safe management of the electrical system, consisting only of production units whose interconnection grid is lower than their installed capacity

Figure 53: Zonal division of the Italian territory. (GSE)

To identify and remove any congestion that may be caused by scheduled injection or withdrawal, GME uses a simplified map of the real grid. The map only shows the most significant transmission limits that are those between national geographical zones, neighboring countries or foreign zones and constrained zones. In particular, upon the closure of MGP sitting, the algorithm run by GME uses the bids presented to find the supply-demand balancing, then calculates the results in terms of power flows between different zones. Whenever these results exceed the constraints, different prices are obtained on the two sides of the congestion. These are commonly known as zonal prices. With no congestions in place the zonal prices however do not defer, and hence one common price is in place. Figure 54 shows the topology of interconnection between the geographical and/or virtual zones of the zonal structure in force starting from 1st January 2019:

Figure 54: Interconnection between zones. Source [2]

A zonal market allows for Terna's costs reduction in the MSD to supply the necessary resources. Also ensure the compatibility of energy flows programmed and the safety of the system with the actual system constraints. This is an important element, especially if we consider the critical conditions of competition in MSD. Without a division of the market, a national uniform price might align to the values of the expected price in the area with higher prices, with consequent negative impact on prices paid by final customers.

Interconnections between zones are really important especially for efficiency. This is why it is very important to develop them constantly. The realization of new electricity grids or the upgrading of the existing ones aims to speed up the connection of the new facilities and to increase the transport capacity between zones, in order to solve congestion.

3.1.2. The Spot Electricity Market (MPE)

According to TIDME [34], the Spot Electricity Market consists of:

- i. **Day-Ahead Market** ("*Mercato del Giorno Prima*" MGP), which hosts most of the electricity sale and purchase offers exclusively for the next day.
- ii. **Intra-Day Market** (*"Mercato Infragiornaliero"* MI), allows market participants to modify the injection/withdrawal schedules defined in the MGP by submitting additional supply offers or demand bids.
- iii. Ancillary Services Market ("Mercato del Servizio di Dispacciamento" MSD), where Terna S.p.A procures the dispatching services needed to manage, operate, monitor and control the power system (relief of intra-zonal congestions, creation of energy reserve and real-time balancing).

The time sequence of the Spot Electricity Market in Italy is illustrated in Figure 55:

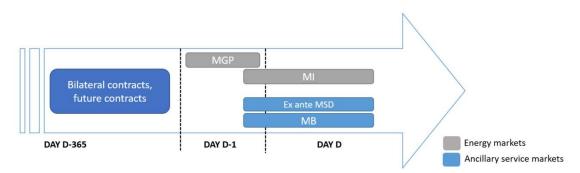


Figure 55: Time sequence of the Spot Electricity Market (Own elaboration)

3.1.2.1. Day-Ahead Market

The MGP hosts most of the energy sale and purchase transactions and is the place where hourly energy blocks are exchanged for the next day. It is a market organized according to the model of the implicit auction for the purpose of wholesale energy: Energy prices and quantities are exchanged as well as injection and withdrawal programs for the following day. In the purchase and sale contracts the GME operates as a central counterparty for market operators (manages the market platform), thus ensuring the successful outcome of the transaction and eliminating the counterparty risk [34].

The products traded on the MGP are physical contracts with obligation of physical supply. But participation to MGP is optional. The market is organized in 24 hourly bids. The MGP sitting opens at 8.00 of the ninth day before the day of delivery and closes at 12.00 of the day before the day of delivery. The results are published until 12.55 of the day before the day of delivery. Therefore, MGP is an auction market and not a continuous-trading market[3]. During the opening period of the session, participants can submit bids/asks where they specify the quantity and the minimum/maximum price at which they are willing to sell/purchase. Supply offers and demand bids must be consistent with the injection or withdrawal capabilities of the offer points to which they refer. The price or quantities must not be negative and the offers may also not specify any purchase price expressing, in this case, the operator's willingness to purchase energy at any price. Bids/asks are accepted after the closure of the market sitting based on the economic merit-order criterion and taking into account transmission capacity limits between zones. The market algorithm controls that the overall generation equals expected demand and that the energy flows do not violate the limits of any line interconnecting different zones previously described (section 3.1.1). As explained before, if there are no congestions, the price is the same in all the zones, otherwise the market is split in two or more zones, with respectively different prices.

At this point, MGP sitting results comprise:

- The production and withdrawal schedules for all the market participants, according to the respectively accepted bids;
- The market clearing price in each zone p_z for each hour of the day D, used to value the power injection quantities (injections are valued to the respective zonal price);

• A single national price (PUN) used to value the power withdrawal quantities in each geographical zones, equal to the average of zonal prices weighted by the total demand in each zone *Q_i*

$$PUN = \frac{\sum_{i} (P_i \cdot Q_i)}{\sum_{i} Q_i}$$

Referring again to section 3.1.1, all supply offers and the demand bids pertaining both to pumping and consuming units belonging to foreign virtual zones and accepted in the MGP are valued at the respective zonal price of the adjacent physical zone. Otherwise, the accepted demand bids pertaining to consuming units belonging to Italian geographical zones are valued at the PUN [3].

Figure 56 shows the structure and time sequence of the MGP:

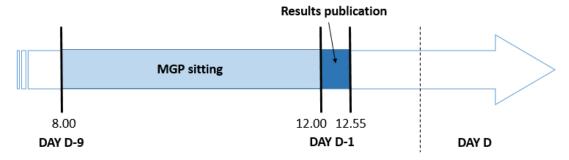


Figure 56: MGP structure (Own elaboration)

3.1.2.2. Intra-Day Market

The Intra-Day Market (MI) substituted the Adjustment Market in 2009 and was created to allow the market parties to update their commercial position, after the MGP clearing. In fact, MI allows updating the supply and demand schedules by placing new bids. Also in the electricity purchase and sale contracts stipulated on the MI market, GME operates as a central counterparty.

The MI is organized in seven sessions: MI1, MI2, MI3, MI4, MI5, MI6 and MI7. The sessions are organized occurring between the day (D-1) and day D in the form of implicit auctions of electricity, with different closing time and in sequence. Through these auctions, participants may better check the status of power plants and update the withdrawal schedules of consuming units, taking into account more up-to-date information about the status of their own power plants, the electricity requirements for the next day and market conditions. The sitting of the MI1 takes place after the closing of the MGP. It opens at 12.55 of the day before the day of delivery and closes at 15.00 of the same day. The results of MI1 are published within 15.30 of the day before the day of delivery. The sitting of the MI2 opens at 12.55 of the MI2 are published until 17.00 of the day before the day of delivery. For MI3, the sitting opens at 17.30 of the day before the day of delivery and closes at 11.45 of the same day. The results are published within 00.15 of the day of delivery. MI3 and next sessions (MI4, MI5, MI6 and MI7) are following one on the other with later 4h difference. To clarify, all sitting opening and closure times are listed in Figure 57.

MI is not at all a real-time market as the start of delivery of each session is, in general, 4h after gate closure (except for MI1 and MI2). The sessions of the MI the buy/sell offers are selected based on the rules that are consistent with those of the MGP. Nevertheless, unlike in the MGP, the PUN is not calculated and all purchases and sales are valued at the zonal price: this affects the consumption/offer units and is done to avoid arbitrage of the zonal and PUN prices.

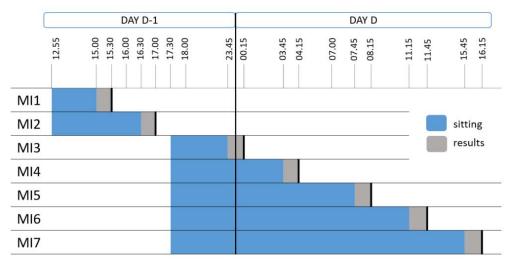


Figure 57: Time sequence of intraday market sessions. Source: [3]. (Own elaboration)

3.1.2.3. Ancillary Services Market (MSD)

The electricity supply service must be carried out in compliance with adequate standards of safety, reliability, quality, continuity and efficiency. That is achieved through the action of a figure in charge of managing and controlling the transmission system. Instantaneous balance between demand and generation has to be ensured, respecting the operating limits of voltage, current, frequency... even in conditions of large perturbations. Therefore, the system operator has a control of both voltage and frequency and also the appropriate resources to be used, even in hard situations. In Italia the supply of these resources take place through the Ancillary Services Market.

The Ancillary Services Market (MSD) is the venue where the TSO procures the resources required for managing and monitoring the system relief of intra-zonal congestions, creation of energy reserve and real-time balancing. Is organized by GME but Terna acts as a central counterparty and approves purchase and sale contracts with the aim of obtaining the resources for power system control (i.e. re-dispatching activity to comply with grid constraints).

In general the ancillary services market trades and remunerates the following services:

- Congestion management: these resources are used with the aim of eliminating the congestion on the network generated by the updated cumulative injection and withdrawal programs.
- **Secondary reserve** (frequency control): has the purpose of offset the gap between demand and production of the national system, thus bringing the power exchange

at the national border to the correct values, and contributing, as a result, to the reestablishment of the European frequency. Is considered the most valuable resource, because it is automatically activated in a few seconds.

- **Tertiary reserve**: in order to establish appropriate margins in relation to the minimum or maximum power in the programs following the MSD.
- **Real-time balancing**: in order to ensure the maintenance of the balance between withdrawals and injection of electricity, congestion resolution and correction of secondary reserve margins. Balancing service is used by obtaining resources of the tertiary reserve and accepting the offers presented in real time on the MSD.

While there are other not remunerated services (until now) and hence not traded on any market:

- Primary frequency control;
- Primary voltage control;
- Load shedding;
- Black-start capability;
- Secondary voltage control.

The market in question is organized in two phases that take place in multiple sessions: a programming phase (ex-ante MSD) and Balancing Market (MB), as provided in the dispatching rules.

i. MSD Ex-ante

The MSD ex-ante, takes place right after MGP and still in day D-1. In particular, it consists of six scheduling substages: MSD1, ..., MSD6. The sitting for bid/ask submission into the ex-ante MSD is a single one: it opens at 12.55 of the day before the day of delivery and closes at 17.30 of the same day. The results of the MSD1 are published within 21.45 of the day before the day of delivery. GME notifies Market Participants of the individual results of the MSD2 session (as specified in the dispatching rules) concerning the bids/asks accepted by Terna within 2.15 of the day of delivery. The notification of the results of the next sessions (MSD3, MSD4, MSD5, and MSD6) are following one on the other with later 4 hour difference (see Figure 58) [3].

Currently in Italy each MSD Ex-ante session where are obtained the reserve margins necessary for the safe management of the system, follows a corresponding session (auction) of the Intraday Market. That is, Terna uses MSD ex-ante to "correct" or at least building upon the MI [35]. Demand bids and supply offers are accepted by Terna in order to relieve residual intra-zonal congestions and to create reserve margins for system operation. It is important to mention that unlike MGP and MI, accepted offers of both ancillary service markets, MSD ex-ante and Balancing Market are remunerated at the price offered (pay-as-bid). So, there is no longer a fix zonal price that all generators would receive equally.

ii. Balancing Market (MB)

The Balancing Market (MB) is the venue where ancillary services offers (upward and downward), made available for periods of day D, are selected by Terna in order to guarantee the real-time balancing of the power system. In this market there is no "clearing" of the market ahead of time, but it's a real-time market. The MB takes place in six sessions, during which Terna selects service offers referring to groups of hours during the day. The first session of the MB takes into consideration the valid bids/asks that participants have submitted in the previous ex-ante MSD session. For the other sessions of the MB, all the sittings for bid/ask submission open at 22.30 of the day D-1 (and anyway not before the results of the previous session of the ex-ante MSD are known) and close 1 hour and a half before the beginning of the actual session, in which then offers are accepted and need to be executed in real time.

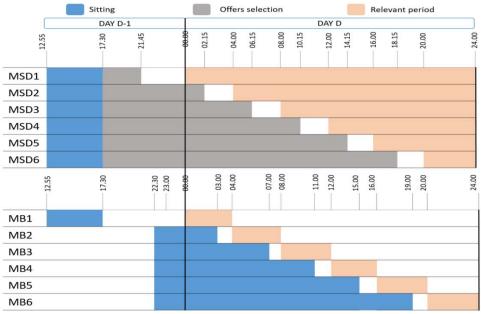


Figure 58 shows the time sequence of both ancillary services markets, MSD ex-ante and MB:

Figure 58: Time sequence of MSD market sessions. (Own elaboration)

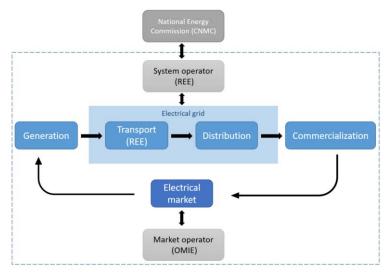
3.1.3. The Forward Electricity Market (MTE)

Market players, other than presenting bids on the spot market, can sign bilateral contracts (OTC) or participate in the forward electricity market. The venue for the latter kind of negotiation in the electricity sector in Italy is called *"Mercato a Termine dell'Energia"* – (MTE). Forward contracts imply the delivery and withdrawal obligation on a future date with GME acting as a central counterparty. Any market player can decide to sell or purchase blocks of energy in a future date. Trading in the MTE takes place on a continuous basis.

The forward contracts that can be signed in MTE are standardized, meaning that both the quantity and the time period cannot be varied freely. The energy blocks tradable on MTE consists of 1 MW power multiplied for a different number of hours in the chosen period, according to the definitions:

- Base-load, corresponding to all the hours of each day in the contract;
- Peak-load, corresponding to the hours between 9 and 20 in each day in the contract, Saturdays and Sundays excluded.

Participants enter bids/offers where they specify the type and delivery period of the contracts, the number of contracts and the price at which they are willing to purchase/sell. GME organizes an order book (for each type of contract ad each delivery period) where bids/offers are ranked by price offered (pay-as-bid). Sessions are held between 9.00 and 17.30 of market days, with closing time anticipated at 14.00 on the second-last day of the month. For multi-month products, the cascading rule applies, i.e. the same offer is repeated for each month until the end of the period. For each trading session and contract, GME publishes, among other information, the total volume traded, the reference price of the session and the minimum/maximum prices [3].


3.2. The Spanish electricity market

On the mainland of Spain, in November 1997, Electric Sector Law 54/1997 was published: it defines the Spanish Electricity Market and related institutions. The Spanish Electricity Market started up in January 1998 and this reform had the typical triple objective to guarantee:

- i. the supply of electricity;
- ii. the quality of this supply;
- iii. this process at a lower cost.

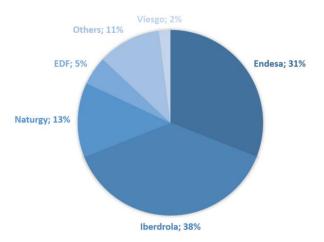
It establishes a fully competitive framework for the generation of electricity while, at the same time, it defines a transient process for the liberalization of retail supply. In the Spanish Electricity Market, the market mechanisms are centralized and managed by an entity known as *"Market Operator"* (MO). To play this role, a new institution was created: the "Compañía *Operadora del Mercado Español de la Electricidad"*; this institution is in charge of the set of short-term market mechanisms through which the great part of the physical transactions take place, manage the generation offers and demands, and the *"Comisión Nacional de la Energía"* (National Energy Commission), which will ensure the system's free competition.This law creates the necessary tools to liberalize the market: separating regulated activities, such as transport and distribution, from unregulated activities (also called free activities), such as generation and commercialization, in addition to the entry of *"Red Eléctrica de España"* – (REE) into the stock market and privatizing certain parts of it.

The electrical market aims to supply the entire society with electrical energy. In the production of electricity, different agents participate and interact with each other carrying out the activities previously mentioned: generation, transport, distribution and commercialization. Since the amount of electricity consumed and generated must always be the same, all agents must interact with great coordination. This demonstrates the character of the electricity supply system, as all these agents are involved for each moment of consumption.

Figure 59 shows the structure of the Spanish electrical market:

Figure 59: Electrical market structure. (Own elaboration)

Regarding generation, there are two types of producers:


- i. Special regime producers: are those that generate electricity through renewable and cogeneration energies.
- ii. Producers in ordinary regime are all others.

In this country, the transport is carried out by the REE. Previously there were different companies responsible for supplying electricity in each region, being the connection between regions really poor. Therefore, for reasons of efficiency, it was decided to nationalize the high voltage grid and make a single entity, the REE, responsible for managing the transport throughout the national territory under a monopoly regime. Distribution, although being a regulated activity such as transport, is carried out by private companies to which the State recognizes costs that, subsequently, are paid by consumers in the regulated part of the electricity tariff. In Spain the main distributers of electricity are: *"Endesa"*, *"Iberdrola"*, *"Naturgy"* (previously *"Gas Natural Fenosa"*), *"EDP"* and *"Viesgo"*, which form the AELÉC association (formerly known as UNESA). Figure 60 shows the Spanish area covered by each distributor:

Figure 60: Map of distribution areas. Source: [34]

In the past, distribution companies were also trading companies but now, with the liberalization of this market and due to the separation of regulated and liberalized activities, they can no longer carry out any type of activity related to the supply or production of electricity. Regarding commercialization, companies acquire electricity in the wholesale market and sell it in the retail market to the final consumer. Service provided by electricity traders must cover minimum quality condition as the continuity of the supply service, the quality and the relationship with the customer and the level of the product offered.

On liberalized market, the main traders that cover almost 90% of the supply are AELÉC association as it can be seen in Figure 61:

Figure 61: Free market traders. Source: [33] (Own elaboration)

The Spanish electricity market is clearly an oligopoly, as among five large business groups (AELÉC) control most of the electricity distribution and commercialization in the country. It is also worth mentioning other regulatory bodies and managers that ensure the correct system operation:

- "Red Eléctrica de España" (REE), which acts as system operator and sole carrier of electricity. Has the purpose of ensuring the correct functioning of the system and guaranteeing supply continuity.
- "Operador del Mercado Ibérico de Energía" (OMIE), acts as a market operator, managing the matching of energy purchase/sale offers in the daily and intraday market.
- "Comisión Nacional de los Mercados y la Competencia" (CNMC), preserves and guarantees the correct functioning, transparency and effective competition within the electricity markets.

The following sections will explain the operation of the current electricity market in Spain.

3.2.1. Wholesale market (MIBEL)

In order to improve security of supply and economic efficiency, Spain and Portugal launched on July 2007 the all-Iberian Electricity Market (MIBEL). The MIBEL complements the previous mechanisms of the Spanish Electricity Market with a derivatives market and other new market mechanisms. This derivatives market has its own MO called "*Operador do Mercado Iberico de Energía – Pólo Português*" (OMIP) and the old Spanish market operator is renamed as "*Operador del Mercado Iberico de Energia – Polo Español*" (OMIE) and it is still in charge of the spot markets.

The wholesale electricity market is structured into:

- i. The Forward Electricity Market
- ii. The Spot Electricity Market that includes:
 - a. Day-ahead market
 - b. Intraday markets
 - i. Intraday auction market
 - ii. Intraday continuous market
- iii. Market for adjustment services

As it can be seen in Figure 59 there are two key figures in this market:

- i. The System Operator (REE): responsible for managing the deliveries associated with the purchase and sale of the agents and ensures that these deliveries are physically viable in the electricity network;
- ii. The Market Operator (OMIE for Spain, OMIP for Portugal): which facilitates that transactions are carried out in a standardized manner and all agents have the same information.

The electricity market is a "pool" where agents are obligated to offer, to the Market Operator, all their available energy individually for each of their plants. Depending on the anticipation with which the purchase of electricity is made, we differentiate between spot market and markets with term delivery.

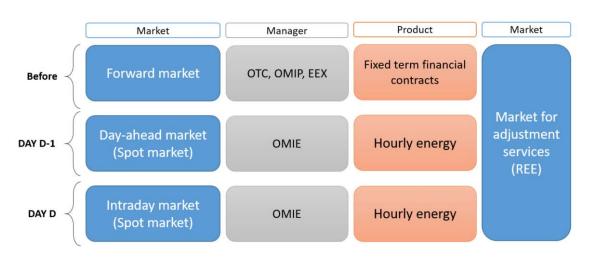


Figure 62 shows the time sequence of the Spanish wholesale electricity market.

Figure 62: Sequence of the Spanish wholesale electricity market. Source: [36]. Own elaboration

3.2.1.1. The Forward Electricity Market

In this market, agents exchange purchase/sale contracts with delivery times exceeding 24 hours, being able to produce years, months weeks or days before the physical delivery of the energy. On the one hand there are the non-organized markets: the bilateral contract market and the "Over The Counter" (OTC) financial market, where parties negotiate directly with each other according to their needs without participation rules and where prices are set privately. On the other hand, there are organized markets: in which there are participation rules approved and managed by other entities. It is carried out through continuous trading, where the agents show their firm purchase/sale offers during a certain period so that the rest of participants can access to those offers.

i. The Spot Electricity market

i.1. Day-ahead market

From all the organized markets stands out the daily market, also known as day-ahead market or simply "*pool*" market, since its volume of transactions represents 80% of the electricity consumption in Spain and Portugal. This market aims to carry out electrical energy transactions by submitting selling and takeover bids for electrical energy on behalf of the market agents for the 24 hours of the following day. Electricity producers offer the amount of energy they are willing to generate the next day and the price at which they are willing to do it. For their part, traders and consumers communicate the amount of electricity they want and the prices at which they would be willing to buy it. In this way, it is set the amount of electricity to be generated/consumed and the price thereof.

This market is managed by OMIE, whose main goal is to ensure that the hiring is carried out in conditions of transparency, objectivity and independence. OMIE marries the supply and demand curves until the interconnection between Spain and Portugal is completely occupied. Their buying and selling bids are based on their economic merit and depending on the available capacity for interconnection between price zones. If, at a certain time of day, the capacity for interconnection between two zones is sufficient to allow the flow of electricity resulting from negotiation, the price of electricity at that time will be the same in both zones. If, on the other hand, interconnection at that time is maxed out, at that moment the algorithm for setting prices results in a different price in each zone. The mechanism described for setting electricity prices is called market coupling [4].

Once final results of daily market and bilateral agreements are obtained, they are sent to the System Operator for validation with perspective on their technical viability. This process is known as managing the system's technical limitations and ensures that the market results can be technically accommodated on the transportation network. As such, results from the day-ahead market may be altered slightly as a result of the analysis of technical limitations done by the System Operator, giving rise to a viable daily program. However, what is agreed in the daily market is unusual fulfilled, usually a series of mismatches appear. For example, if the wind increases, wind generators could offer more or may be the case that a generator has had a problem and cannot provide all the energy it has agreed upon. For this reason, in order to allow participants to adapt to these imbalances, is created the intraday market.

i.2. Intraday markets

The intraday markets allows market participants to adjust the day-ahead market's resulting schedule by submitting selling and purchase bids for energy, according to expected needs in real time. The intraday markets are currently structured into six bidding sessions in MIBEL's scope and a continuous cross-border European market, and they are carried out once the system operator has made the necessary adjustments after the day-ahead market so that the resulting schedule may be viable. Just like the day-ahead market, once this market is finished, the results are sent to system operators so that they can schedule balancing processes. Intraday markets allow agents to readjust their sale/purchase commitments up to four hours before real time. From that moment, there are other markets (market for adjustment services) managed by the REE in which the balance of production and consumption is ensured at all times.

i.2.1.The intraday auction market

The intraday auction market is currently structured into six sessions with programming horizons for each session, and it manages Portugal and Spain's price zones and the free capacity of interconnections: Spain-Portugal, Spain-Morocco, and Spain-Andorra, where the volume of energy and the price per hour are determined by the intersection of supply and demand.

The aim is to attend to adjustments to the Definitive Viable Day-Ahead Schedule, whose programming basis is the result of the day-ahead market, by submitting selling and takeover bids for electrical energy on behalf of market agents. As with the day-ahead market, intraday auctions follow the marginal pricing model and the market coupling model for the borders that it manages. The intraday auction market is currently structured into six sessions.

i.2.2. Intraday continuous market

Like the intraday auction market, the intraday continuous market, also called single intraday coupling (SIDC), gives market agents the chance to manage their energy imbalances.

The purpose of this market is to facilitate the trade of energy between different areas of Europe continuously and to increase the global efficiency of transactions on the intraday markets across Europe.

After the publication of the Definitive Viable Daily-ahead Schedule for the day (D+1) by the system operator, the opening of the negotiation of all contracts of the intraday continuous market for the next day (D + 1) will be made after the end of the first auction of the current day (D).

3.2.2. Retail market

There are a few consumers who buy the energy directly in the wholesale market, but the majority of the consumers do it through marketers, that have the function of buying energy from electricity generators, accessing to transportation and distribution networks to finally sell electricity to the final customer or international exchanges. The bill is established by the sum of two clearly different concepts:

- Energy costs: include, apart from the energy cost, the Adjustment Service cost, capacity costs and others with significantly less weight.
- Regulated costs, also called access tolls: include network costs (transport and distribution), subsidies for renewable energies, annual payments of electricity deficit and other costs with less weight. They suppose more than half of the bill for an average domestic client.

Retail market fixes the energy costs, since regulated costs are fixed by the Administration Currently, there are two types of retail market: regulated market and liberalized market. Both the same access charges and taxes will be paid in one market as in the other. The difference lies in the price charged for producing electricity and in the margin of the commercial management of the marketer. It is up to the user and their own characteristics to choose the type of market that best suits their conditions.

The billing modalities of liberalized markets and reference markets, although being similar, have significant differences: if a consumer has a contract with a marketer of the liberalized market, the rate they will pay will be the one agreed between each other. The other option is to be subject to one of the marketers of regulated market that will supply the electricity at the fixed prices. Liberalized traders are appointed by the Ministry of Industry. Currently these companies are the AELÉC group [37].

We are interested in assessing to what extent the penetration of renewable electricity sources has impact day-ahead wholesale electricity prices. The following sections will describe the data and the empirical model used.

4. DATA AND DESCRIPTIVE STATISTICS

The focus of our attention is the hourly wholesale price and hourly generation mix within different market zones. In particular we analyse data from Italy with its six different zonal markets and Spain with one national market.

Regarding Italy, we got the hourly price and total load consumed for each commercial zone, data provided by GME. We have obtained hourly generation mix from ENTSO-E, data also used by Terna [3][5]. Finally, we got gas price data from "European Energy Exchange AG" – EEX group [38]. Concerning Spain, in the same way as for Italy, we get hourly generation mix from ENTSO-E. The spot price for each hour of the day, instead, is obtained from ESIOS ("*Sistema de Información del Operador del Sistema*") [39], database belonging to REE. Finally, we got gas price data from MIBGAS - "Mercado Iberico del Gas" [40]. Table 6 shows a brief description of the data used for both markets, as well as the source where we have got it. Data covers the entire year 2018 and includes the generation mix subdivided according to energy source of production: solar, wind, geothermal, hydro, hydro pumped-storage, coal, gas, among others. Zonal prices refer to Day-Ahead Market that hosts most of the electricity sale and purchase transactions.

As renewable generation highly depend on the time of the day, we see an additional value in focus our attention on analysing the impact using hourly data. In this way we went one step further to the analysis done by Clò et al. who said: "We convert hourly data into daily-basis averaged hourly data. In this way we reduce excessive and unwanted noise that may arise from using hourly data (Gelabert et al. ,2011) [41]" [1].

The main obstacle we have encountered have been obtaining hourly data for gas price: this variable has a very relevant role in the analysis since it is highly related to the electricity spot price (as it can be seen in Figure 64). By just finding daily data series, we have had to prioritize adding this variable to our approach and, in this way, convert all other data into daily, instead of using hourly data but having to exclude gas price (which would surely lead to not optimal or misleading results). For this reason we convert price, generation and load variables from hourly data into daily-basis averaged hourly data, calculated as follows⁴:

$$Daily \, data = \sum_{h=1}^{24} \frac{Zonal \, price_h}{24} \tag{1}$$

⁴ Example for zonal price. It is done in the same way for other data.

Variable	Explanation	Source for Italy	Source for Spain
ZMP	Daily average (zonal) electricity price [€/MWh]	[3]	[39]
LOAD	Daily average total load [MW]	[5]	[5]
SOLAR	Daily average generation from photovoltaics [MW]	[5]	[5]
WIND	Daily average generation from wind [MW]	[5]	[5]
RES	The sum of SOLAR and WIND [MW]	[5]	[5]
PGAS	Daily gas price [€/MWh]	[38]	[40]

Table 6: Data description. Own elaboration

Before proceeding with the analysis, below is presented the evolution of our variables in the entire year 2018 in North zone. First of all we present on Figure 63 the boxplot of our regression's variables.

BOXPLOT of variables

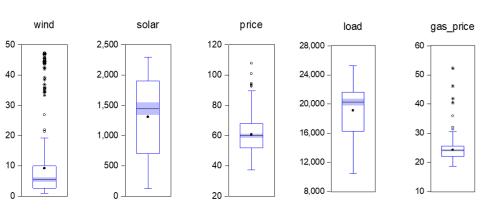


Figure 63: Boxplot of regression variables. North zone.

Figure 64 shows us the evolution of zonal market price and the price of gas for North zone. It can be seen that both variables follow a similar trend: i.e. in March there is a peak in both prices that falls again at the end of the month. After, from April to September prices increase regularly to then go back down gradually until the end of the year.

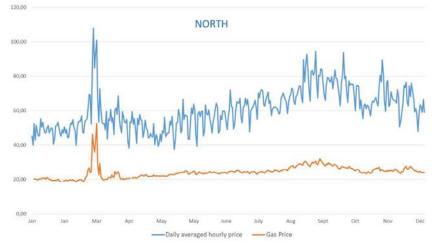


Figure 64: Evolution of zonal price and gas price for North zone. Own elaboration on [3] data.

On the graph of Figure 65 it is represented the annual evolution of solar generation for North zone. Also we have taken the month with the highest generation (June) and we graphed it separately to be able to see also the evolution of one month. If we take a look to solar annual generation, we note that months with the highest solar generation are those pertaining to spring-summer seasons: from April-May to August-September (when there's more sun on the territory).

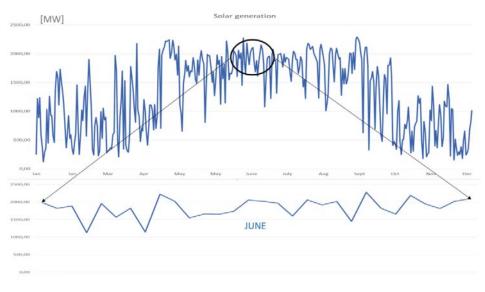


Figure 65: Annual and monthly evolution for SOLAR. North zone.

Regarding wind generation, we see that it is much more regular than photovoltaic generation. In this case, we want to compare two zones to confirm that the characteristic increase in North zone (around May and June) is somewhat punctual, since in general all zones behavior is quite regular. Say that in the Southern zones wind generation is much higher compared to Northern ones. (See Figure 66 and Figure 67)

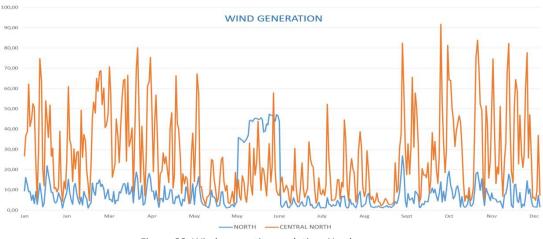


Figure 66: Wind generation evolution. Northern zones.

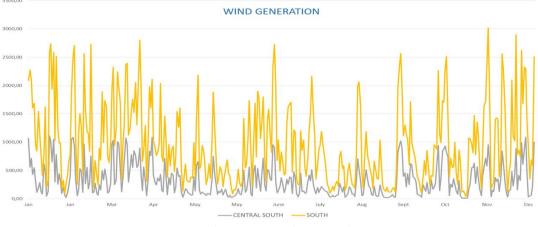


Figure 67: Wind generation evolution. Southern zones.

A brief overview of the overall methodology and approach used is:

- It is estimated the impact of renewable generation on electricity prices by modelling a linear regression with daily averaged price as dependent variable and using as explanatory variables the daily averaged electricity load, power generation mix by renewable energy source and the price of gas.
- To get the regression parameters, it is used Ordinary Least Squares (OLS) method, widely used in econometrics to estimate the parameters of a linear regression models.
- Before proceeding with the empirical analysis itself, it has been done some previous tests to check that our data fits with OLS assumptions (detaily explained in chapter 5).
- Once this previous tests done and data checked that is suitable for the analysis, one is able to run the regressions with the software: *EViews*.
- Then, in the same way as done for data series, residuals obtained after running our regressions fit OLS assumptions have to be checked. Otherwise pertinent changes should be made to get this fit.
- Finally, as long as the model satisfies the OLS assumptions for linear regression, one can
 rest easy knowing that estimates get the best as possible and one is able to reach into
 the pertinent conclusions.

5. METHODOLOGY

Regression analysis models the relationships between a response variable and one or more predictor variables. We use a regression model to understand how changes in the predictor values are associated with changes in the response mean. We can also use regression to make predictions based on the values of the predictors. There are a variety of regression methodologies that we can choose based on the type of response variable, the type of model that is required to provide an adequate fit to the data, and the estimation method.

5.1. Ordinary Least Squares (OLS)

In econometrics, Ordinary Least Squares (OLS) method is widely used to estimate the parameter of a linear regression model by minimizing the sum of the squared errors. This method draws a line through the data points that minimizes the sum of the squared differences between the observed values and the corresponding fitted values, also called predicted values. The error term indicates that the relationship predicted in the equation is not perfect, that is, the straight line does not perfectly predict dependent variable Y. The optimal line needs to be the one that minimizes the amount of error between predicted values and actual values. Specifically for each of the *n* observations in the sample, if one were to square the difference between the observed and predicted values of Y, and then sum these squared differences, the best line would have the lowest sum of square derrors.

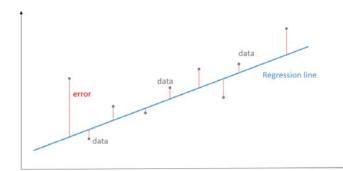


Figure 68: Ordinary Least Squares (OLS) method. Own elaboration.

5.1.1. OLS assumptions

There is a random sampling of observations:

Obtaining statistically valid results from the analysis depends on satisfying the following OLS assumptions [42]:

- i. The linear regression model is "linear in parameters": when the dependent variable Y is a linear function of independent variables (X's) and the error term, the regression is linear in parameters (β) and not necessarily linear in X's.
- ii.
- a. The sample taken for the linear regression model must be drawn randomly.
- b. The number of observations taken in the sample should be greater than the number of parameters to be estimated.

- c. Independent variables should impact dependent variables (and not dependent variables impacting independent ones). In the latter case, OLS estimators are likely to be incorrect.
- d. The error terms are random. This makes the dependent variable random.
- iii. There must be no relationship between explanatory variables (X) and the error term (E).
 In other words, the expected value of the mean of the error terms of OLS regression should be zero given the values of independent variables.

$$E(\varepsilon) = 0 \tag{2}$$

- iv. There is no multi-collinearity (or perfect collinearity): there should be no linear relationship between independent variables.
- v. There is homoscedasticity and no autocorrelation: the error terms in the regression should all have the same variance (σ). If this variance is not constant (i.e. dependent on X's), then the linear regression model has heteroscedastic errors and likely to give incorrect estimates.

$$Var(\varepsilon) = \sigma^2 \tag{3}$$

a. The OLS assumption of no autocorrelation says than the error terms of different observations should not be correlated with each other. In other words, the covariance (*Cov*) between errors of different observations must be zero.

$$Cov(\varepsilon_i \varepsilon_j) = 0 \quad for \ i \neq j$$
⁽⁴⁾

vi. Error terms should be approximately normally distributed: this assumption is not required for the validity of OLS method, however it becomes important when one needs to define some additional finite-sample properties.

We have to be careful that all these assumptions of OLS regression are satisfied while doing an econometrics test so that our efforts don't go wasted. These assumptions are extremely important as obtaining statistically valid results from the analysis depends on satisfying them. Having said that, many times these OLS assumptions will be violated. However, that should not stop us from conducting our econometric test. Rather, when the assumption is violated, applying the correct fixes and then running the linear regression model should be the way out for a reliable econometric test.

After this brief explanation of the OLS model and which assumptions have to be taken into account, the next step to follow is, as we have indicated at the end of the previous chapter 4, to check if our database fits with these assumptions aforementioned.

It should be said that for brevity, in the following sub-chapters only tests done with data referring to North zone of Italy are shown. The results of the other zones as well as those of Spain can be found in the annex.

5.1.2. Checking correlation between explanatory variables

First of all and to satisfy with assumption *iv*, one have to check if the explanatory variables have some kind of correlation between them as, if so, we would not have a good explanation of the model. There are two ways to check for potential correlations between sources, load and electricity and gas price.

- *Pearson Correlation Coefficient (PCC)* [43]: is the most widely used correlation statistic to measure the degree of the relationship between linearly related variables. It measures the linear dependence among variables and determines the correlation intensity, relativity and direction. For the PCC, both variables should be normally distributed.
- Spearman rank-order correlation coefficient r_s [44]: is a non-parametric test that is used to measure the degree of association between two variables. It does not carry any assumptions about the distribution of the data and is the appropriate correlation analysis when data are not normally distributed.

To check whether the variables are normally distributed or not, and hence whether to use the Pearson or Spearman test, it is used "Jarque-Bera test" – JB [45]. The test statistic JB test is defined as:

$$JB = n \cdot \left[\frac{\left(\sqrt{b_1}\right)^2}{6} + \frac{(b_2 - 3)^2}{24} \right]$$
(5)

Where, n is the sample size, $\sqrt{b_1}$ is the sample skewness coefficient and b_2 is the kurtosis coefficient. Skewness (*b1*) is a measure of lack of symmetry in a distribution. A normal distribution is perfectly symmetrical and has zero skew. If b1 is more than zero, the distribution is skewed to the right, having more observations on the left. Kurtosis (*b2*) measures the thinness of tails of a probability distribution. Like skewness, kurtosis also shows how the distribution of a variable deviates from a normal distribution. If *b2* is larger than three indicates a higher peak and thin tails compared to a normal distribution. For more information to how calculate *b1* and *b2* see [45]. The test statistic is always nonnegative. The null hypothesis for the test is that the data is normally distributed; the alternative hypothesis is that the data does not come from a normal distribution.

- H0: the data is normally distributed;
- H1: the data does not come from a normal distribution.

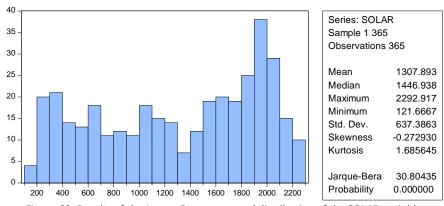


Figure 69: Results of the Jarque Bera on normal distribution of the SOLAR variable.

Figure 69 shows the obtained results for the data set of the variable "Solar". It has been used for this example daily data from solar generation for the North zone of Italy. A sufficiently small p-value from this test (normally less than 5%) means that the null hypothesis can be rejected and hence that the data does not come from a normal distribution. We run JB test for all variables and, as all p-value are < 5%, we reject the null hypothesis that the data is normally distributed and we check for correlation between the variables by using the Spearman test:

$$r_{\rm s} = 1 - \frac{6 \cdot \sum d_i^2}{n(n^2 - 1)} \tag{6}$$

Where, n is the sample size and d_i is the difference between the ranks of corresponding variables. According to [44], the Spearman correlation coefficient r_s can take values from +1 to -1. A value of +1 indicate a perfect association of ranks, r_s of 0 indicates no association between ranks and a value of -1 indicates a perfect negative association of ranks. (See [44] for further information about Spearman test).

		WIND	SOLAR	LOAD	PGAS
WIND	rs	1.000000			
WIND	p-value				
SOLAR	rs	-0.195144	1.000000		
JOLAK	p-value	0.0002			
LOAD	rs	-0.049856	-0.058686	1.000000	
LUAD	p-value	0.3422	0.2634		
PGAS	rs	-0.195748	0.157306	0.152068	1.000000
PGAS	p-value	0.0002	0.0027	0.0037	

Table 7: Results of Spearman test: correlation matrix for North zone

Table 7 is an example of the results of Spearman test: they are showed in a correlation matrix where it can be seen the r_s statistic between any pair of variables and the p-value for each r_s correlation value. Data used for the example have been daily data of renewable generation (wind and solar), load and gas price referring to North zone of Italy. The closer r_s is to zero, the weaker the association between the ranks. It can be seen that correlations between independent variables are weak (all values close to 0), therefore, according to [44], it can be affirmed that our model for North zone will not show collinearity issues in the regression.

As previously said, the results of these tests for the other zones of Italy as well as for Spain can be found on the annex. And all the results lead one to conclude that the model will not present collinearity issues in any area of study.

5.1.3. Unit roots test

The second step of our analysis consists in testing for unit roots in the series. Following Clò et al.[1] we use the Augmented Dickey-Fuller test (ADF) which tests according to [46]:

- The null hypothesis H0 that the series have a unit root, against
- Hypothesis H1 that the series are stationary

The existence of a unit root indicates that the time series is not stationary and it is random walk. The equation for the unit root test is the following:

$$y_t = \alpha + \rho y_{t-1} + \varepsilon_t \tag{7}$$

Where α is the constant of the regression and ε_t is the error term with mean value zero and constant variance. If ρ is equal to 1, the unit root exists and the series are random walk. In particular the null hypothesis is $\rho = 1$ against H1 $\rho < 1$. Once a value for the test statistic is computed it can be compared to the relevant critical value for the ADF test. The critical values included in the output are linearly interpolated from the table of values that appears in *Fuller (1996)* [47]. H0 of a unit root test is rejected if the test statistic is lower than the critical value. Table 8 shows an example of the ADF test. In this case t-Statistic is -2.85 and H0 can be rejected at 5% critical value.

Table 8: Example of Augmented Dickey-Fuller test

Null Hypothesis: SOLAR has a unit root Exogenous: Constant Lag Length: 4 (Automatic - based on AIC, maxlag=16)

		t-Sta	tistic	Prob.*
Augmented Dickey-Fuller test statistic		-2.84	6682	0.0501
Test critical values:	1% level	-3.44	8312	
	5% level	-2.86	9351	
	10% level	-2.57	0999	

Since the analysed data is characterized by clustering volatility and structural breaks (unexpected changes in the time series) the outcome could be biased by using the ADF test. So, following the proven literature approach of Clò et al. [1], Woo et al. [48] and Ketterer et al. [49], we add in our analysis the Philips-Perron test (PP), which implements a unit root test that differs from the ADF test in the serial correlation and in the heteroscedasticity of the errors.

PP test includes an alternative and nonparametric method for testing a unit root, by estimating the non-augmented Dickey Fuller equation and changing the test statistic. In this way, its asymptotic distribution is unaffected by serial correlation. This test directly modifies the ADF test statistic [50]. Table 9 shows the results of the ADF and PP tests done with EViews for the exemplary case of one Italian market zone. The results for the other zones are reported in the annex.

Table 9: Augmented Dickey-Fuller test and Philips-Perron test results for variables at level. NORTH zone.

	At Level					
		PRICE	LOAD	SOLAR	WIND	PGAS
	t-Statistic	-2.1516	-3.5936	-2.8467	-3.1056	-3.2645
ADF test	p-value	0.2248	0.0064	0.0529	0.0270	0.0174
		n0	***	*	**	**
	t-Statistic	-6.9078	-9.6788	-8.0080	-4.0038	-5.4072
PP test	p-value	0.0000	0.0000	0.0000	0.0016	0.0000
		***	***	***	***	***

(*) significant at the 10% level; (**) significant at the 5% level, (***) significant at the 1% level and (no) not significant.

– Lag length based on Akaike Information Criterion (AIC)

- Probability based on MacKinnon (1996) one-sided p-values [51]

With the ADF test the price series is not significant (p-value higher than 0.1). Other series (for example solar and wind) are not stationary at 1% critical value. For that reason, following the aforementioned methodology, we also consult the PP test. In this case results show that we can reject the null hypothesis of having a unit root for all variables and we can specify the multivariate regression model by using the variables in level. In other words, it is not necessary to carry out any kind of transformation on the data (i.e. "the first difference" that means creating a new variable by subtracting each value with its previous one).

5.1.4. Model

Our approach builds on a consolidated methodology adopted by Clò et al. [1] so, the analysis is done only with solar and wind generation and we omit from the model all other traditional and or programmable sources such as geothermal, hydro, gas and coal.

We model the spot price ("zonal market price" – ZMP for Italy) with a linear regression using as explanatory variables the daily average electricity load (LOAD), the power generation by renewable energy source, in particular, we will take into account power of photovoltaics (SOLAR) and eolic (WIND). This two would also be labeled in our analysis like as variable renewable energy source (RES) characterized by a variable production dependent on the availability of the main natural power source. Finally we include the price of gas (PGAS) because it improves the explanatory power of our model and it results significantly.

In the first version of the model, as done by Clò et al. [1], we include as explanatory variable only the daily total load (LOAD), while the dependent variable is the zonal price (ZMP). Additionally we introduce a vector of dummies (D) to control the seasonal effects, which includes: 30 dummies indicating the days of the month and 11 dummies indicating the month of the year. These dummies control for month and day effects than can affect electricity prices dynamics. The resulting equation for the Model 1 is the following.

$$ZMP = \beta_0 + \beta_1 LOAD + \gamma D + \varepsilon_t \tag{8}$$

As we are interested in understanding to what extent a change in the zonal price is driven by different factors of both together the load and renewable generation, in the second version

of the model we add as explanatory variables the production from renewable sources (RES), which is the sum of wind and solar generation. The equation for the Model 2 is (9):

$$ZMP = \beta_0 + \beta_1 LOAD + \beta_2 RES + \gamma D + \varepsilon_t$$
⁽⁹⁾

(0)

Model 3, with equation number (10), split the RES effect between SOLAR and WIND generation:

$$ZMP = \beta_0 + \beta_1 LOAD + \beta_3 SOLAR + \beta_4 WIND + \gamma D + \varepsilon_t$$
⁽¹⁰⁾

Finally, equation (11) is used for Model 4. We add the daily spot price of natural gas as explanatory variable (PGAS).

$$ZMP = \beta_0 + \beta_1 LOAD + \beta_3 SOLAR + \beta_4 WIND + \beta_5 PGAS + \gamma D + \varepsilon_t$$
⁽¹¹⁾

5.1.5. Test on the residuals

To check the correct specification of our model we run some tests on the residuals. First of all we test for serial correlation in the OLS residuals using the Durbin Watson statistic which tests [52]:

- the null hypothesis H0 that the errors are serially uncorrelated against;
- the alternative H1 that they follow a first order autoregressive process (AR(1)).

The test statistic is calculated with the following formula:

$$DW = \frac{\sum_{t=2}^{T} (e_t - e_{t-1})^2}{\sum_{t=1}^{T} e_t^2}$$
(12)

Where e_t are residuals from an OLS regression. The DW test reports a test statistic, with a value from 0 to 4, where if DW=2 there is no autocorrelation; if 0 < DW < 2 there is positive autocorrelation (common in time series data) and for 2 > DW > 4 there is negative autocorrelation (less common in time series data). A rule of thumb, according to [52], is that test statistic values in the range of 1.5 to 2.5 are relatively normal. Values outside of this range could be cause for concern. Also, values under 1 or more than 3 are a definite cause for concern. Durbin Watson test requires the use of tables [53] where it can be found the upper and lower critical values DW_U and DW_L for different value of k (the number of explanatory variables) and n (the length of our sample). If $DW<DW_L$, H0 is rejected; if $DW>DW_U$ one can't reject the null hypothesis and if $DW_L<DW_L$

The second test we apply on the residuals is Breusch-Pagan test for heteroscedasticity [47] that verifies the null hypothesis that the error variances are all equal. The Breusch-Pagan test is based on models of the type for the variances of the observations. The test statistic for the Breusch-Pagan test is nR^2 , where *n* is the sample size and R^2 is the coefficient of determination of squared residuals from the regression. A small BP value along with an associated small p-value, indicates the null hypothesis is true. The alternative hypothesis is that the error variances are not equal, more specifically, as Y increases, the variances increase or decrease.

When applying the tests as described in the following chapter, it turns out that both heteroscedasticity and serial correlation are found in the residuals of the three regressions.

Therefore, again following Clò [1] we model the residuals assuming that they follow a first order autoregressive process AR(1), with $|\rho| < 1$ and ω_t being white noise.

$$\varepsilon_t = \rho \varepsilon_{t-1} + \omega_t \tag{13}$$

Table 10 is an example of the results obtained for serial correlation test on EViews: it can be seen that, before applying AR(1) assumption, p-value is less than 5% and the null hypothesis that there is no serial correlation has to be rejected. Once AR(1) is applied, p-value becomes much higher than 5% (around 0,9). In this case, H0 is accepted and one can confirm that after modelling the residuals, there is no serial correlation. Based on that, in the following chapter, the regressions are run using a generalized least-squares method to estimate the parameters in a linear regression model in which the errors are serially correlated and follow a first-order autoregressive process. The statistically significant estimates for ρ are in all cases of study around 0.1 and 0.9, indicating that the zonal price series have a first-order positive autocorrelation and affirm the validity of the AR(1) assumption.

 Table 10: Serial correlation test on EViews. Before modelling the residuals (up) and after applying AR(1) assumption (down).

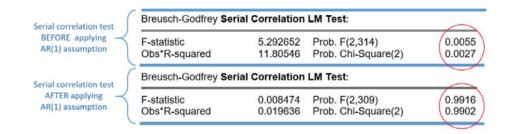
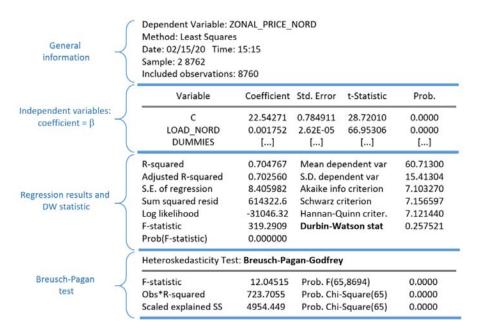



Table 11 is an example of the entire table of results obtained applying the Model 1 for the exemplary case of the dataset from North zone in Italy. Using the same data, Table 10 are the results showed by EViews applying the Breusch test for the serial correlation before and after applying the AR(1) assumption.

To simplify and make it clearer to understand, in the following chapter it is presented only those values that are of immediate interest for our analysis. For more information, tables with all specifications can be found in the annex. Values presented have different levels of significance depending on the model used and the zone of analysis. This significance level (also called p-value) is reflected in the results with blue asterisks next to the value: three asterisks (***) means that p-value is less than 1%, two (**) that p-value is between 1% and 5%, and one asterisk (*) means that the significance of our value is between 5% and 10%. The chosen criterion is that a significance level up to 5% (three or two asterisks) is enough to consider that the result obtained is significant. On the contrary a p-value higher than 5% is considered not significant and as a consequence the variable is ignored.

6. RESULTS

In this chapter, the results of the OLS regression obtained of with the software Eviews are presented. It is composed by two sections, applying the before mentioned methodologic approach first on the data set from Italy (6.1) and subsequently on the data set from Spain (6.2).

6.1. Italy

Since the Italian energy market is not a single national zone, but, as mentioned before, split in six major commercial zones, first the results for the individual zones are presented.

6.1.1. North

Regressions results for North zone.Table 12 shows the results of the regressions for the methodology detailed in the previous chapter. In the column for Model 1 are reported the results for the regression number (8) with the dependent variable North zonal spot price and daily average electricity load (LOAD) as the only explanatory variable. The column for Model 2 reports the results for the equation number (9) where both RES and LOAD are used as explanatory variables. Solar and Wind coefficient results are reported separately in Model 3 with equation number (10). Finally, the last column reports the results for the Model 4 that includes as explanatory variable the price of gas (PGAS). For brevity, table presented below, as well as all those presented from now on, do not report binary indicators (dummies).

Dependent variable: NORTH ZONAL PRICE [€/MWh]	Model 1	Model 2	Model 3	Model 4
LOAD: β_1	1.59*** (0.12)	1.58*** (0.11)	1.58*** (0.11)	1.18*** (0.08)
RES : β ₂	-	-2.31** (0.86)	-	-
SOLAR: β_3	-	-	-2.34** (0.87)	-2.91*** (0.61)
WIND: β_4	-	-	-42.29 ^(no) (100.5)	(no)
PGAS : β₅	-	-	-	1.50*** (0.08)
CONSTANT: β_0	23.13*** (3.51)	26.28*** (3.64)	26.63*** (3.74)	(no)
R ²	0.8258	0.8307	0.8308	0.931
R ² _adj	0.8018	0.8068	0.8064	0.931
ρ	0.584	0.575	0.574	0.894
DW_0	0.858	0.889	0.895	1.597
DW	2.208	2.191	2.194	1.981

*p-value < 10% critical value, **p-value < 5% critical value, ***p-value < 1% critical value, (no) not significant</p>
Standard errors are reported in percentacia.

Standard errors are reported in parenthesis.

 DW_0 indicates the results of the Durbin Watson statistic before correcting for serial correlation in the residuals. DW indicates the results after applying AR(1) assumption. The values on Table 12 refer to price variation [€/MWh] for every GW of energy generation mix (RES, SOLAR and WIND) but for the gas price, values are referred to zonal price variation for every €/MWh increased of gas price. This means that for example, regarding the values reported in the last column, a marginal increase of 1 GW in the production from Solar source **reduces** the daily north electricity price by 2.91 €/MWh. On the contrary, a marginal increase of 1 €/MWh of the price of gas **increases** the daily north electricity price by 2.91 €/MWh.

It is remarkable that the value for Load diminished from model 1 to 5. This may be due to as in the latter we add the price of gas as another explanatory variable, it can cause a variation in the coefficients of the other variables in order to better explain the regression. It is important also to refer to WIND component. As it can be seen in Table 12, the cell highlighted in red shows that the value for coefficient β_4 are not significant. The fact that wind generation is not significant in North zone is confirmed with Model 4, since Solar results obtained in the last model are almost the same as those obtained for RES in Model 2 (where solar and wind are taken into account together).

It can be seen that DW statistic before applying serial correlation on the residuals (DW_0) is 0<DW<2, which means that there is a positive autocorrelation in the residuals. After modelling the residuals, Durbin Watson statistic for all four models (DW) is around 2, the value for which the model has no correlation problems. Concerning R^2 coefficient, its value is around 0.8-0.9, which suggests a good fit to the data.

6.1.2. Central-North

In that case, Table 13 reports, for Central-North zone, the value of the regression coefficients (β_i) obtained for each independent variable by applying all four models aforementioned. Table 13: Regression results for Central-North zone

Dependent variable: CENTRAL-NORTH ZONAL PRICE [€/MWh]	Model 1	Model 2	Model 3	Model 4
LOAD: β_1	8.77*** (0.78)	8.66*** (0.7)	8.76*** (0.75)	6.65*** (0.5)
RES : β ₂	-	-5.27** (2.2)	-	-
SOLAR : β₃	-	-	-5.74** (0.7)	-7.68*** (1.98)
WIND: β_4	-	-	-40.52** (20.5)	-64.74*** (14.87)
PGAS : β₅	-	-	-	1.74*** (0.19)
CONSTANT: β_0	19.83*** (3.35)	22.53*** (3.4)	23.41*** (3.44)	-8.66*** (4.77)
R^2 R^2_adj	0.8206 0.7959	0.8236 0.7987	0.8256 0.8003	0.8966 0.8812
ρ DW_0 DW	0.5832 0.8697 2.1823	0.5892 0.8591 2.1610	0.5949 0.8523 2.1716	0.1706 1.657 1.955

- *p-value < 10% critical value, **p-value < 5% critical value, ***p-value < 1% critical value, (no) not significant</p>
- Standard errors are reported in parenthesis.
- DW_0 indicates the results of the Durbin Watson statistic before correcting for serial correlation in the residuals. DW indicates the results after applying AR(1) assumption.

In this case it is important to highlight Model 3. The analysis done before serial correlation gave not significant values for Solar and Wind but, as we have explained in chapter 0, heteroscedasticity can lead to incorrect estimations. It has been checked once AR(1) residual assumption has been applied: p-values for both coefficients are less than 5% confidence level and one conclude that β_3 and β_4 are significant in Center-North zone. This fact is also checked when applying Model 4, where all coefficients became significant at 1% critical value. Another value to highlight is the high impact of WIND to electricity price, with a reduction of 64.74 \leq /MWh per each GW of generation.

DW coefficients before correcting for serial correlation in the residuals (DW_0) reflect that there is a positive autocorrelation: 0 < DW < 2 (see chapter 0). And, in the same way that happens in the North zone, Breusch-Pagan test confirms also that standard errors are non-constant and present heteroscedasticity. After modelling the residuals, Durbin Watson statistic for all four models (DW) is around 2, a value for which the model has no correlation problems. Concerning regression's R² coefficient, it suggests a good fit to the data because its value is around 0.8.

6.1.3. Central-South

Table 14 reports, for Central-South zone, the value of the regression coefficients (β_i) obtained for each explanatory variable by applying all four models aforementioned.

Dependent variable:				
Dependent variable: CENTRAL SOUTH ZONAL PRICE [€/MWh]	Model 1	Model 2	Model 3	Model 4
	7.47***	7.45***	7.52***	4.90***
LOAD: β ₁	(0.7)	(0.7)	(0.7)	(0.5)
RES : β_2	-	-6.19*** (1.1)	-	-
SOLAR : β ₃	_	_	-3.95**	-4.89***
30LAR . p ₃	-	_	(1.8)	(1.4)
WIND: β ₄			-7.57***	-8.52***
VVIIND . p4	_	_	(1.2)	(1.03)
PGAS : β₅				1.50***
PGAS . p5	_	_	-	(0.16)
CONSTANT: β ₀	15.47***	21.86***	20.59***	(no)
	(3.93)	(3.73)	(3.88)	(110)
R ²	0.7836	0.8064	0.8087	0.8710
R ² _adj	0.7539	0.7791	0.7811	0.8522
ρ	0.6061	0.6005	0.6002	0.187
DW_0	0.8347	0.8512	0.8511	1.6511
DW	2.134	2.164	2.19	2.0034

Table 14:	Regression	results for	Central-South zone
-----------	------------	-------------	--------------------

- p-value < 10% critical value, **p-value < 5% critical value, ***p-value < 1% critical value, (no) not significant
- Standard errors are reported in parenthesis.
- DW_0 indicates the results of the Durbin Watson statistic before correcting for serial correlation in the residuals. DW indicates the results after applying AR(1) assumption.

In this situation, in the same way that happens with the previous case, all coefficients are significant at 1% level. In the next chapter values obtained will be discussed. Only remark that the value for Load decreases from model 1 to 4 and values for Solar and Wind present a slight increase. As in the same way as for the other zones, this may be due to that in the latter we add the price of gas as another explanatory variable and it can cause a variation in the coefficients of the other variables in order to better explain the regression.

Durbin Watson statistic before applying the AR(1) assumption (DW_0) shows that there is serial correlation on the residuals, with values 0 <DW<2. After applying for serial correlation, values became around 2, a value for which the model has no correlation problems. R² are around 0,8 that suggests a good fit to the data. Finally, a value of ρ of 0.6 and 0.2 confirms the AR(1) hypothesis: $|\rho| < 1$.

6.1.4. South

Table 15 shows the results obtained for each model (from 1 to 4), when applying the methodology for South zone.

Dependent variable: SOUTH ZONAL PRICE [€/MWh]	Model 1	Model 2	Model 3	Model 4
	10.17***	11.16***	11.38***	8.06***
LOAD: β_1	(1.6)	(1.5)	(1.5)	(1.2)
RES : β ₂	-	-4.89*** (0.6)	-	-
SOLAR: β_3	-	-	-1.91 ^(no) (0.41)	(no)
	-	-	-5.13***	-5.32***
WIND: β4			(0.6)	(0.5)
PGAS : β₅	-	-	-	1.43*** (0.16)
	22.42***	28.14***	25.27***	
CONSTANT: β_0	(4.77)	(4.33)	(4.61)	(no)
R ²	0.7148	0.7804	0.7847	0.8477
R ² _adj	0.6755	0.7494	0.7536	0.8262
ρ	0.5908	0.5668	0.5782	0.2042
DW_0	0.8735	0.9194	0.9044	1.6127
DW	2.045	2.1623	2.1834	1.9952

Table 15: Regression result for South zone

- *p-value < 10% critical value, **p-value < 5% critical value, ***p-value < 1% critical value, (no) not significant</p>

- Standard errors are reported in parenthesis.

- DW_0 indicates the results of the Durbin Watson statistic before correcting for serial correlation in the residuals. DW indicates the results after applying AR(1) assumption.

We highlight in this case the value obtained for β_3 in model 3. In the same way that has happened before with WIND variable in the North, the model has reported before applying AR(1) assumption an erroneous value of the result for Solar coefficient. This has occurred

due to heteroscedasticity which can lead to incorrect estimations. After correcting serial correlation, the no significance of solar in the South zone is checked when applying Model 4 since value for WIND is closer to RES value for Model 2.

Again it is seen that all DW_0 values reflect that there is a positive autocorrelation on the residuals and after applying the AR(1) assumption the model has no correlation problems with DW values around 2. The Breusch-Pagan test confirms also that standard errors are non-constant and present heteroscedasticity. R² suggests a good fit to the data with values between 0,7 and 0,8.

6.1.5. Sicily

Table 16 reports, for Sicily, the value of the regression coefficients (β_i) obtained for each explanatory variable by applying all four models aforementioned.

Dependent variable: SICILY ZONAL PRICE [€/MWh]	Model 1	Model 2	Model 3	Model 4
LOAD: β_1	30.10*** (2.45)	37.36*** (2.2)	35.41*** (2.3)	25.11*** (3.3)
RES : β ₂	-	-22.21*** (1.8)	-	-
SOLAR: β ₃	-	-	-5.97 ^(no) (6.2)	(no)
WIND: β_4	-	-	-22.70*** (1.8)	-22.47*** (2.2)
PGAS: β ₅	-	-	-	0.90*** (0.23)
CONSTANT: β_0	(no)	(no)	(no)	(no)
R ²	0.7189	0.8027	0.8086	0.8189
R ² _adj	0.6812	0.7755	0.7816	0.7934
ρ	0.6038	0.5897	0.6031	0.5755
DW_0	0.8706	0.8752	0.8533	0.9007
DW	1.9069	2.0113	2.0128	2.0128

Table 16: Regression results for Sicily zone

– *p-value < 10% critical value, **p-value < 5% critical value, ***p-value < 1% critical value, (no) not significant</p>

- Standard errors are reported in parenthesis.

 DW_0 indicates the results of the Durbin Watson statistic before correcting for serial correlation in the residuals. DW indicates the results after applying AR(1) assumption.

We highlight in this case the value obtained for β_4 (WIND). A decrease of 22.47 \notin /MWh of the zonal price is a high impact of the wind source compared to the no-significant impact of solar. The impact of 25.11 \notin /MWh of load is also remarkable. It can be seen that Sicily is an interesting case to comment on the next chapter. Durbin Watson values around 2 indicate that the model does not present correlation problems after applying AR(1) assumption and R² suggests a good fit to the data.

6.1.6. Sardinia

In this case, Table 17 reports, for Sardinia, the value of the regression coefficients (β i) obtained for each explanatory variable by applying all four models aforementioned.

Dependent variable: SARDINIA ZONAL PRICE [€/MWh]	Model 1	Model 2	Model 3	Model 4
LOAD: β_1	28.34*** (4.7)	25.49*** (5.2)	26.02*** (5.2)	19.34*** (5.0)
RES : β_2	-	-4.79** (2.4)	-	-
SOLAR: β_3	-	-	10.44 ^(no) (2.61)	(no)
WIND: β_4	-	-	-5.16** (2.5)	-7.70*** (1.9)
PGAS: β₅	-	-	-	1.76*** (0.2)
CONSTANT: β_0	22.53*** (4.91)	26.92*** (5.74)	23.95*** (5.79)	(no)
R ²	0.7234	0.7268	0.7287	0.8249
R ² _adj	0.6854	0.6883	0.6895	0.7996
ρ	0.5327	0.5308	0.5383	0.1455
DW_0	0.9926	0.9891	0.9851	1.7122
DW	2.1119	2.1383	2.1405	1.9989

Table 17: Regression results for Sardinia zone.

- *p-value < 10% critical value, **p-value < 5% critical value, ***p-value < 1% critical value, (no) not significant</p>

- Standard errors are reported in parenthesis.

- DW_0 indicates the results of the Durbin Watson statistic before correcting for serial correlation in the residuals. DW indicates the results after applying AR(1) assumption.

Sardinia is a case analogous to Sicily. Model 3 reports that Solar is no-significant and it is checked when applying Model 4. In this zone and Wind causes a reduction of the zonal price of 7.70 €/MWh and the high impact of load compared to the other zones, with a value of 19.34 €/MWh is also remarkable. Also in this case DW presents values around 2 which indicate that all four models do not present serial correlation problems.

6.2. Spain

2018 has been a wet year placing hydro power production 85% higher than 2017. At the same time it ranked second behind wind power with 34% of total renewable energy generated in Spain. On the other hand solar generation still has a comparatively small share compared to Italy. Hydroelectric power generation has traditionally been the main renewable source in Spain, only until 2009 when it was surpassed by wind power in terms of energy produced. For all these reasons just mentioned, it has been considered convenient that, apart from analysing solar and wind, hydroelectric reservoir is also analysed. Therefore we add to our analysis an extra model. The equation for Model 5 become as follows:

$$SMP = \beta_0 + \beta_1 LOAD + \beta_3 SOLAR + \beta_4 WIND + \beta_5 PGAS + \beta_6 HYDRO + \gamma D + \varepsilon_t$$
⁽¹⁵⁾

		1			
Dependent variable:					
SPANISH MARKET PRICE	Model 1	Model 2	Model 3	Model 4	Model 5
[€/MWh]					
	0.056***	0.057***	0.056***	0.051***	0.045***
LOAD: β ₁	(0.003)	(0.004)	(0.004)	(0.004)	(0.004)
		-1.53**			
RES : β ₂	-	(0.1)	-	-	-
			-0.39 ^(no)	-0.21 ^(no)	(22)
SOLAR : β ₃	-	-	(0.8)		(no)
			-1.54***	-1.50***	-1.45***
WIND: β_4	-	-	(0.1)	(0.1)	(0.1)
DCAS: P				0.666***	0.926***
PGAS : β₅	-	-	-	(0.21)	(0.15)
					-1.72***
HYDRO: β_6	-	-	-	-	(0.5)
CONSTANT	(20)	13.19***	12.11***	(20)	
CONSTANT: β_0	(no)	(3.38)	(3.50)	(no)	(no)
R ²	0.8376	0.9076	0.9086		0.9157
R ² _adj	0.8158	0.8945	0.8954		0.9035
ρ	0.5874	0.5696	0.5902		0.4793
DW_0	0.8724	0.9451	0.9443		1.092
DW	1.949	2.050	2.081		2.003

Results obtained for Spain are shown in Table 18:

Table 18	: Regression	results	for	Spain.
----------	--------------	---------	-----	--------

*p-value < 10% critical value, **p-value < 5% critical value, ***p-value < 1% critical value, (no) not significant

Standard errors are reported in parenthesis.

DW 0 indicates the results of the Durbin Watson statistic before correcting for serial correlation in the residuals. DW indicates the results after applying AR(1) assumption.

On first sight, the most relevant thing to comment with these results is the coefficient β_3 for solar generation. Model 3 shows that, after applying residual assumption, this explanatory variable is not significant in the regression as the confidence level of its p-value is larger than 10%. The second point important to highlight are the results for β_6 . By adding hydroelectric generation in the analysis it can be seen that its significance is less than 1%. The impact on final price is almost the same as that of wind generation (-1.72 €/MWh and -1.45 €/MWh

(45)

respectively). Regarding the impact of the price of the gas, increasing this variable by one unit (1 \notin /MWh) causes an increase in the Spanish market price of 0.926 \notin /MWh.

Durbin Watson statistic (DW_0) shows that there is serial correlation on the residuals but it rises to a value around 2 after applying the AR(1) assumption. As it is said in the previous analysis with a value of DW=2 the model do not present correlation problems. The value for R^2 are around 0.9 and suggests a good fit to the data.

7. DISCUSSION

After having obtained individual results for single zones and countries, in this section we are confronting and discussing the respective results to compare how differently the various sources impact prices in different markets. First, it is presented the comparison between the six commercial zones from Italy followed by the comparison between Italy and Spain.

7.1. Comparison between Italian commercial zones

This section presents the comparison of results obtained for all six Italian commercial zones. Results for Model 4 are reported in Table 19, regression model in which all explanatory variables are taken into account.

	Zonal market price [€/MWh]					
Variable coefficient	NORTH	CENTRAL NORTH	CENTRAL SOUTH	SOUTH	SICILY	SARDINIA
LOAD: β_1	1.19***	6.64***	5.11***	8.06***	25.11***	19.34***
SOLAR : β₃	-2.89***	-7.68***	-4.46***	(-)	(-)	(-)
WIND: β_4	(-)	-64.74***	-8.36***	-5.31***	-22.47***	-7.71***
PGAS : β₅	1.48***	1.74***	1.56***	1.44***	0.91***	1.76***
ρ	0.2112	0.1587	0.1785	0.2042	0.5755	0.1455

Table 19: Comparison of results between zones.

*p < 10%, **p < 5%, ***p < 1%, (-) no significative

The statistically significant estimates for β_1 support that rising zonal loads tend in general to raise zonal market prices based on the data from 2018. The intensity of this effect is pronounced with varying intensity. The lowest effect is in the North zone, with a value of $1.19 \notin MWh$ for each 1000 MWh increase; followed by Central South, Central North and South with values of $5.11 \notin MWh$, $6.64 \notin MWh$ and $8.06 \notin MWh$ respectively. The highest effect is in the islands reaching a value of $25.11 \notin MWh$ in Sicily. Having less influence in the Northern zones could be due to that North is the part of the territory most connected with the other European markets. In such case, the increase of load of an individual zone has little effect on zonal price as it can be balanced with the imports and exports of energy with other countries. In the same way, the high impact on the islands may be caused by the limitation of trade with other territories.

The statistically significant estimates for β_3 indicate that solar generation is not significant in South zones (including the islands). However, a 1000 MWh increase in solar generation reduces market price by $2.89 \notin MWh$ in the North followed by a reduction of $4.46 \notin MWh$ in Central South. The highest effect is found in Central North with a reduction of $7.68 \notin MWh$ on market price.

Estimates for β_4 indicate that wind generation is not significant in the North. However, it has the highest impact in Central North with a reduction of 64.74 \in /MWh. Also solar has the

highest impact. This fact could be attributed to the small size and delicate location of the zone in the middle of Italy. Load, on the other hand, has not the highest impact in this zone, although it remains significant.

The price of gas β_5 affects the zonal price in a much higher way that the renewable generation mix and total load. It can be seen the big influence of a variation in the gas price but the effect remains relatively constant for all zones. Increasing this price by one unit causes an increase in the zonal market price from 0.91 \leq /MWh in Sicily to 1.76 \leq /MWh in Sardinia.

It should be noted that results show that in general, RES have a detrimental effect on the price in all zones. Affecting both sources, solar and wind together in the center of the territory. Decomposing RES, it is interesting to stress how the impacts of wind and solar vary across different Italian zones. While both prove to have in general a decreasing impact on the electricity spot price, wind is the main driver of the electricity price reduction in the southern zonal areas whereas solar has a more significant decreasing impact on the northern zone prices

Everything explained above can be reflected also on Figure 70. This bar plot reports the results of Table 19 for each zone separated by sources.

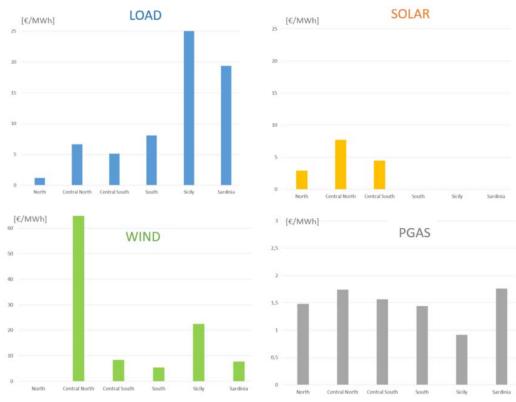


Figure 70: Comparison of results between Italian zones

7.2. Comparison between Italy and Spain

The solar and wind coefficients previously estimated indicate the impact of an additional GWh produced by these sources on the daily average market price. Table 20 shows, for Model 4, the summary of results for each market zone from Italy and for the single market in Spain.

	Market price [€/MWh]						
		ITALY					
Variable coefficient	NORTH	CENTRAL NORTH	CENTRAL SOUTH	SOUTH	SICILY	SARDINIA	SPAIN
LOAD: β_1	1.19***	6.64***	5.11***	8.06***	25.11***	19.34***	0.045***
SOLAR : β₃	-2.89***	-7.68***	-4.46***	(-)	(-)	(-)	(-)
WIND: β ₄	(-)	-64.74***	-8.36***	-5.31***	-22.47***	-7.71***	-1.45***
GAS_PRICE : β_5	1.48***	1.74***	1.56***	1.44***	0.91***	1.76***	0.944***
HYDRO: β_6	-	-	-	-	-	-	-1.72***
ρ	0.894	0.1706	0.1931	0.2042	0.5755	0.1455	0.4415

Table 20: Comparison of results between Italy and Spain.

*p < 10%, **p < 5%, ***p < 1%, (-) no significative

Starting with Italy, we have to highlight the characteristics of the six Italian zones that influence the competitiveness level. Big zones with many players plus a comparatively larger generation and demand in general, such as North, Central North, Central South show a higher level of competitiveness (reflected on lower prices) with respect to Sardinia and Sicily, that can be considered as smaller markets, with few players that can also act strategically on the MGP and on ex-ante MSD. We also have to take into account that a raise of 1 GW does not impact so much in the percentage in big zones as + 1 GW in smaller zones.

One of the most important points reflected on these results is the importance of the interconnections. Differences in zonal prices are determined by limitations in transmission capacity. Smaller zones with less players would normally have no impact on the zonal price if the transmission capacity would be unlimited. So, ideally all zones would be one zone. But since this is not the case and capacities are limited, the difference between big and smaller zones become important. It can be assumed that zonal prices give a measure of the local congestion of the grid. Difficulties in managing grid connections with the islands could be another reason that explain the higher prices registered in Sicily and Sardinia. Italian electricity market is an interesting study case. As it can be seen from the analysis, there are some zones that are competitive and have a high level of interconnections that brings efficiency, and there are other zones that are small and not so competitive, also because of the lack of interconnections.

Following with Spain, highlight the point that, compared to Italy, there is few solar generation and because of that, there might be other factors that have a stronger impact on the price than solar. An additional reason could be the different mix structure for Spain, as explained in chapter 3, with Nuclear in the first place unlike Italy which is gas. Even so, it is clearly seen that both wind and hydro generation have a very similar impact on the energy market price. Another point to highlight is the low impact of load. A value of only 0.045 €/MWh means that there is no impact in prices and this fact may be due to a better interconnection with other countries or within the country. The excess or lack of demand can be balanced in a very optimal way from energy's exports and imports with other countries and thus the Spanish energy price being relatively unchanged. Finally also say that gas prices and spot energy prices are closely related since the former affects in a very plausible way on the latter, both in Italy and in Spain.

The comparison between Italy and Spain can also be reflected on Figure 71. This bar plot reports the results of Table 20 for each Italian zone and for Spain, separated by sources.

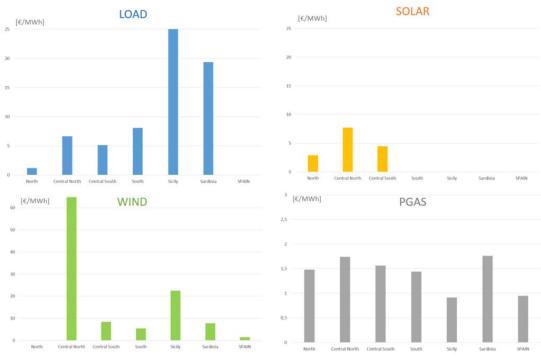


Figure 71: Comparison results between Italy and Spain.

8. Complementary analysis

8.1. Italian analysis with hourly data

On the previously detailed analysis we followed Clò et al. [1] because it is a well-proven approach. However we believe that there is additional value in doing the analysis using hourly data, which we are losing by analysing only daily averaged data. Due to the impossibility of obtaining hourly data for the variable "price of gas" we had limited the analysis by using daily data. We believe that the price of gas is very important to be in our regression analysis because it has a very relevant and plausible impact on the spot price of the energy market. Therefore, not taking gas price into account could lead us to not optimal conclusions about our analysis. In this chapter it is presented a secondary analysis done for Italy using hourly data. The methodology used is exactly the same as that used previously for daily data. The points in which this analysis differs are the addition of 23 dummies for each hour of the day to our vector *D*. In this way we can control seasonal effects for hour. The regression model is:

$$ZMP = \beta_0 + \beta_1 LOAD + \beta_3 SOLAR + \beta_4 WIND + \gamma D + \varepsilon_t$$
⁽¹⁶⁾

By having data for each hour means that our analysis will have more observations compared to the analysis done with daily data. The sample goes from having 365 data in a whole year (one value per day) to a length of 8760, one value each hour of the day for the whole year. Below it is presented only the detailed results obtained for one significant zone, in this case it is chosen Central South. At the end, general results for each zone is presented so that it will be easier to see differences between Italian market zones.

Dependent variable:			
CENTRAL- SOUTH ZONAL PRICE	Model 1	Model 2	Model 3
[€/MWh]			
	9.88***	10.85***	11.12***
LOAD: β ₁	(0.2)	(0.2)	(0.21)
		-7.28***	
RES : β_2	-	(0.37)	-
			-9.06***
SOLAR : β ₃	-	-	(0.47)
			-4.12***
WIND: β4	-	-	(0.63)
	14.15	13.43	11.426
CONSTANT: β ₀	(1.64)	(1.53)	(1.55)
R ²	0.9071	0.9108	0.9112
R ² _adj	0.9064	0.9101	0.9104
ρ	0.871	0.8583	0.8623
DW_0	0.267	0.307	0.308
DW	1.861	1.908	1.919

Table 21: Regression results for hourly data. Central South zone.

- *p-value < 10% critical value, **p-value < 5% critical value, ***p-value < 1% critical value, (no) not significant

Standard errors are reported in parenthesis.

- DW_0 indicates the results of the Durbin Watson statistic before correcting for serial correlation in the residuals. DW indicates the results after applying AR(1) assumption.

In Model 3, after splitting RES, both variables solar and wind have been significant at 1% level with an impact of reduction of electricity price of 9.06 \notin /MWh and 4.12 \notin /MWh respectively. In the same way as with the previous analysis for daily averaged data, Table 22 shows the results of the regressions of models 1, 2 and 3. DW statistics before correcting serial correlation (DW_0) are 0 <DW< 2 and show that there is positive autocorrelation in the residuals. Is it true for heteroscedasticity test: p-value for Breusch-Pagan test is lower than 5%, the null hypothesis that the error variances are all equal is rejected. After modelling the residuals, Durbin Watson statistic for all three models (DW) is around 1.9, a value much more closely to 2 in which the model has no correlation problems. R² coefficient suggests a good fit to the data because its value is 0.9. The statistically significant estimates for ρ are around 0.85, indicating that in the same way as for daily data, the zonal price series have high first-order positive autocorrelation and affirm the validity of the AR(1) assumption.

8.1.1. Comparison between zones

This section presents the comparison of results obtained for all six Italian commercial zones using hourly data. Results for Model 3 are reported because is through this model where all explanatory variables are taken into account.

	Zonal market price [€/MWh]					
Variable coefficient	NORTH	CENTRAL NORTH	CENTRAL SOUTH	SOUTH	SICILY	SARDINIA
LOAD: β_1	2.72***	13.1***	11.12***	10.82***	35.7***	32.73***
SOLAR : β_3	-1.72***	-10.8***	-9.06***	-6.02***	-33.36***	-29.78***
WIND: β_4	(-)	(-)	-4.12***	-2.10***	-15.42***	-3.54**
ρ	0.8940***	0.8648***	0.8623***	0.8717***	0.8188***	0.8967***

Table 22: Comparison between Italian zones using hourly data.

*p < 10%, **p < 5%, ***p < 1%, (-) no significative

The big difference that can be find in Table 22 compared to the previous case, where daily data has been used, is the fact that the estimate values for β_3 indicate that solar is significant in all zones of Italy. We obtain energy from solar panels only a few hours a day, therefore it turns out that the impact seems to be stronger on an hourly basis. However, wind has rather a daily impact, being wind generation more constant from day to day also not having such a plausible difference between hours as solar.

In the same way as in the previous analysis, Table 22 also shows the importance of interconnections: the increase of load of an individual zone has little effect on the North as it can be balanced with the imports and exports of energy with other countries, but has a high impact on the islands may be caused by the limitation of trade with other territories.

9. CONCLUSIONS

This work contributes to a very relevant line of research in the assessment of the impact of an increase in renewable energy in electricity markets, particularly on the electricity prices. It is especially interesting to perform this study in Italy where the commercial market is divided in different zones so on a case by case analysis, the outcomes are more detailed and can discover distinctive traits of a single zone in a single market or they can find either similarities between distant regions or differences between close zones.

This analysis differs from other studies in that Italian data are taken separately between commercial zones and results are compared with another European market: the Spanish electricity market. It is also one secondary analysis done for Italy. The difference with the main one is based on the regularity of data collection in order to see different price impact behaviors depending on the data used. While the former uses daily data the later uses data for each hour.

To detect the impact on electricity prices, it is followed a consolidated methodology adopted by Clò et al. [1] and developed an empirical analysis for Italy's commercial markets and for the whole Spanish market by using a multivariate regression. It is considered daily averaged data (calculated from hourly data) for the renewable generation mix (specifically solar and wind) and spot electricity price from the respective day-ahead markets for the whole year 2018.

The results obtained support the hypothesis that rising zonal loads tend in general to raise zonal market prices based on the data from 2018. The intensity of this effect is pronounced with varying intensity. In Italy the lowest effect is in the North zone, with a value of $1.19 \notin MWh$ for each 1000 MWh increase; followed by Central South, Central North and South with values of $5.11 \notin MWh$, $6.64 \notin MWh$ and $8.06 \notin MWh$ respectively. The highest effect is in the islands reaching a value of $25.11 \notin MWh$ in Sicily. Having less influence in the Northern zones could be due to that North is the part of the territory most connected with the other European markets. In such case, the increase of load of an individual zone has little effect on zonal price as it can be balanced with the imports and exports of energy with other countries. In the same way, the high impact on the islands may be caused by the limitation of trade with other territories. The low impact of load in Spain, with a value of only 0.045 \notin/MWh , could mean that it has a better interconnection with other countries or within the country than Italy. The excess or lack of demand can be balanced in a very optimal way from energy's exports and imports with other countries and thus the Spanish energy price being relatively unchanged.

Decomposing RES, it is interesting to stress how the impacts of photovoltaics and wind vary across different Italian zones. While both prove to have in general a decreasing impact on the electricity spot price, wind is the main driver of the electricity price reduction in the southern zonal areas whereas solar has a more significant decreasing impact on the northern zone price. Eventually, Central North is the zone with the highest impact of both renewable sources. This fact could be attributed to the small size and delicate location of the zone in the middle of Italy. Southern zones, for example, have the highest share of wind generation in Italy and on a windy day they produce much more energy than needed. This excess of energy

is sold to the North zones. In Spain, no evidence is found for photovoltaics for electricity price reduction. On the other hand, an increase of 1 GWh of wind and hydro decreases the Spanish electricity price by $1.76 \notin MWh$ and $1.72 \notin MWh$ respectively. Compared to Italy, there is few solar generation and because of that, there might be other factors that have a stronger impact on the price than solar. An additional reason could be the different mix structure for Spain, as explained in chapter 3, with Nuclear in the first place unlike Italy which is gas. Even so, it is clearly seen that both wind and hydro generation have a very similar impact on the energy market price.

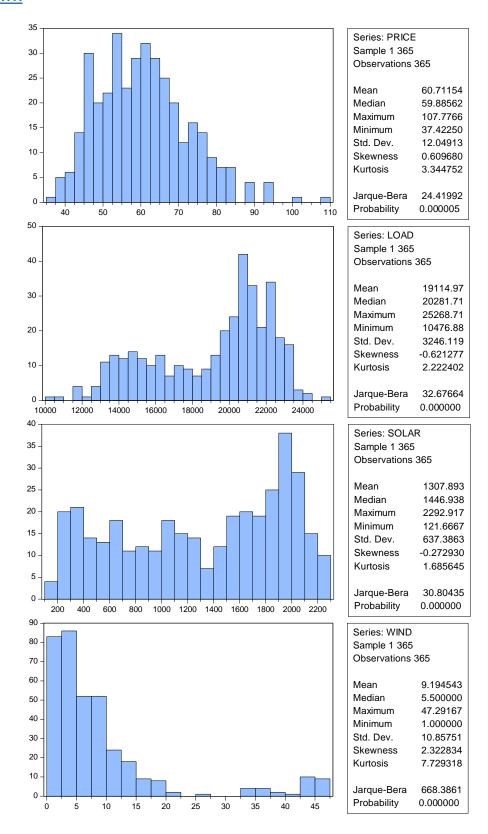
A finally remark is the high correlation between the price of gas and electricity. The results obtained for both Italy and Spain reflect the assumption: an increase of $1 \notin MWh$ of gas price causes statistically an electricity price increase between 0,90 and 1,73 $\notin MWh$ in Italy (depending on the zone) as well as an increase of $1.76 \notin MWh$ in Spain.

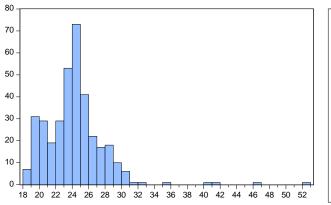
The big difference found in the results obtained in the Italian analysis using hourly data, compared to the daily data case, is that solar comes out significant in all zones of Italy. We obtain energy from solar panels only a few hours a day, therefore it turns out that the impact seems to be stronger on an hourly basis. However, wind has rather a daily impact, being wind generation more constant from day to day also not having such a plausible difference between hours as solar.

Given the EU policies, renewable capacity will continue to increase in Europe. Given the recently adopted renewable energy target, 2030 "Framework for climate and energy", based on the 2020 framework, renewable goals are set at a threshold of at least 27% share of energy consumption. The price impacts this work presents depend on the total load of production, energy generation and their variations. Hence, one might assume that the impacts become stronger unless the generation mix or market design changes. Therefore future research is necessary to investigate if lower electricity prices encourage new investments in electricity generation, and if renewable electricity regulation should be developed and adapted further towards a more market oriented structure that remunerates renewable electricity during phases of high electricity price.

Further extension of this work can entail the use of hourly data for generation mix and prices. The impossibility to get this kind of data for the gas price has induced to run the analysis using daily average (as done by Clò et al. [1]) in order to take also into account gas price variable. Even so, a secondary analysis using hourly data has been done (limited to the data and with a respectively limited model) and results have been presented for each market zone of Italy.

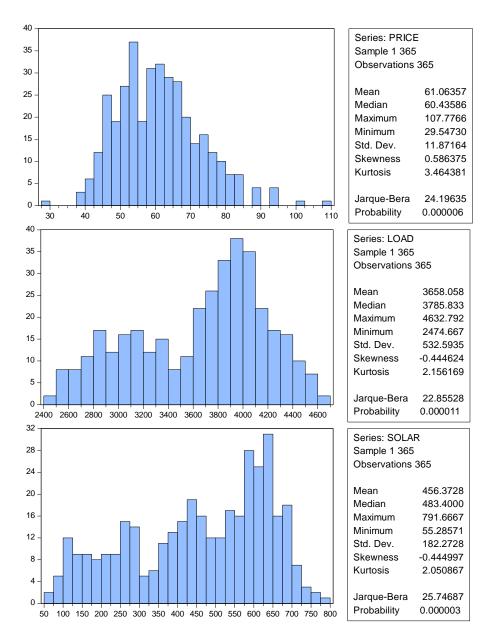
This work quantified now the impact of such intermittent and non-programmable generation on the electricity spot price. Since it is apparent however that such type of varying generation requires also a greater quantity of balancing and ancillary services, it would be interesting to quantify in a subsequent step the price impact on the named market of ancillary services. The constant balancing between loads and generation has indeed become a critical issue in recent years and it is set to worsen due to the increasing penetration of renewable energy sources. They are still disincentivised to supply dispatchment services because of their intermittent and not-predictable production.

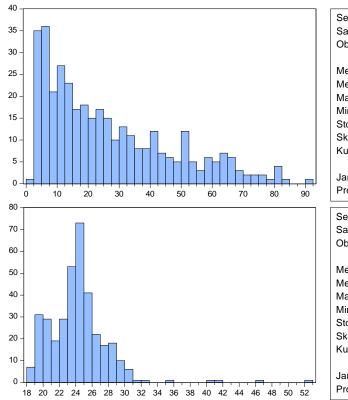

ACKNOWLEDGEMENTS


First of all, I would like to express my gratitude to Professor **Arturo Lorenzoni** for accepting to become my tutor and giving me the chance to work on one of his research field topics. Thanks to Ms. **Marina Bertolini**, Professor **Luigi Salmaso** and Mr. **Riccardo Ceccato** for the great help, feedback and precious advices on statistics. Especially on how to deal with the development of econometrics models. Thanks to Mr. **Marco Agostini** and all the members of the Laboratory of Electrical Systems for allowing me to be part of the team and giving me a place to work during the development of my thesis.

Finally my deep gratitude goes to **Jan Marc Schwidtal**, who from the very beginning has invested many hours of his time following me with this thesis work. For his indispensable and timeless help and support.

ANNEX


JARQUE BERA TEST



27869
15750
29500
68600
65892
15956
76261
9.082

CENTRAL NORTH

86

Series: WIND			
Sample 1 365 Observations 365			
31			
00			
00			
33			
51			
39			
88			
31			
0			
0			
0			
0			
0			
0 			
;9			
i9 i0			
i9 i0			
i9 i0 i0			
i9 i0 i0 i2			
i9 i0 i0 i2 i6			
i9 i0 i0 i2 i6			

60.93992

61.34578

107.7229 22.78792

11.02542

0.351928

3.762799

16.38359

0.000277

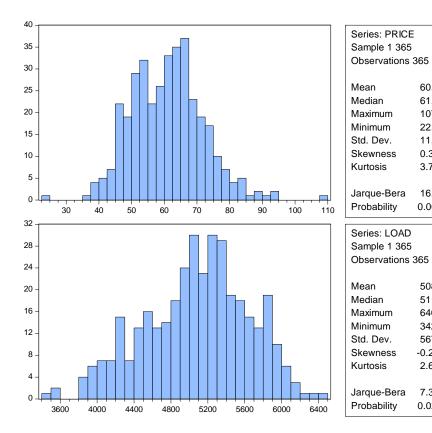
5081.511

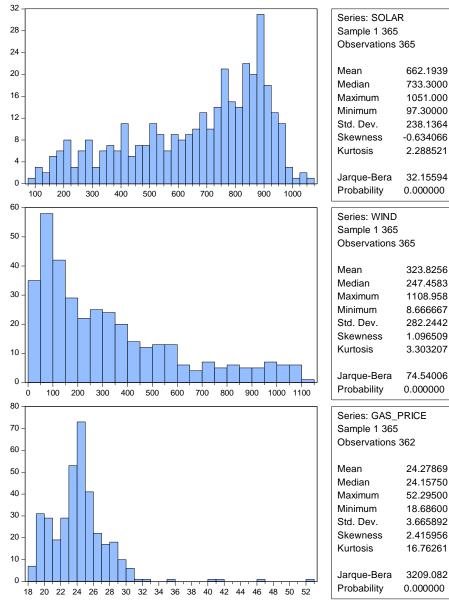
5117.458

6408.250

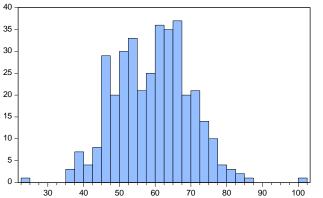
3425.833

567.5984

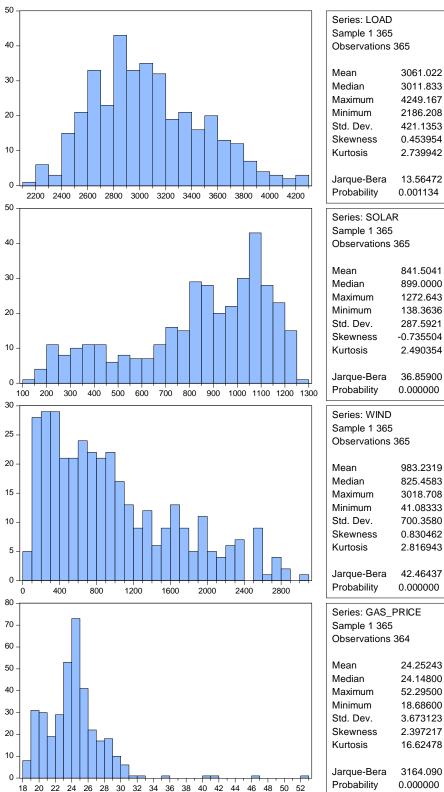

-0.298004

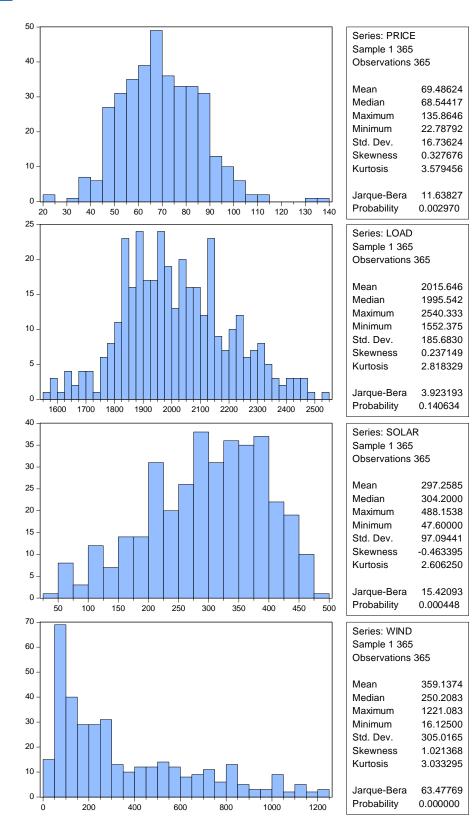

2.640179

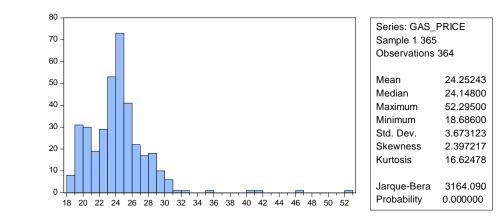
7.371425

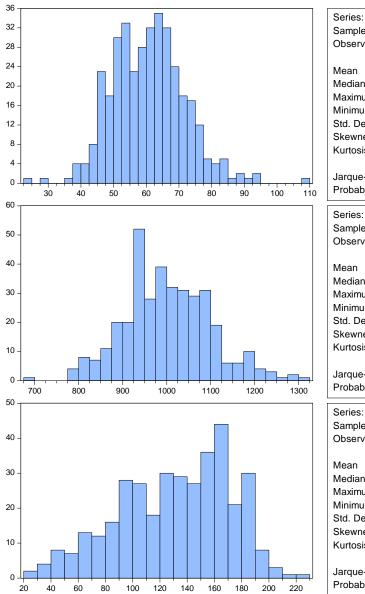

0.025079

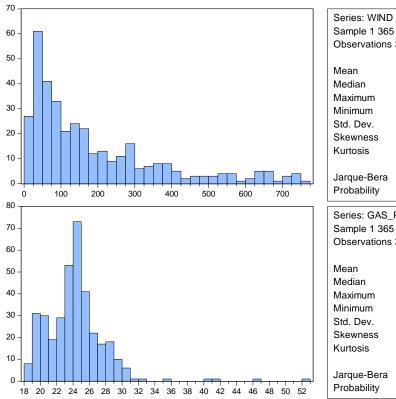
CENTRAL SOUTH



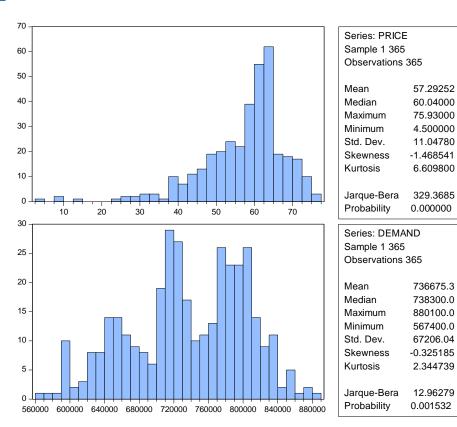

SOUTH

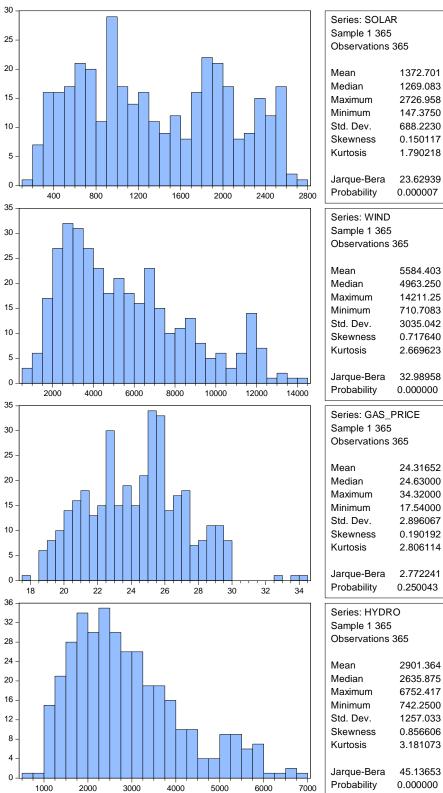

Series: PRICE			
Sample 1 365			
Observations	365		
Mean	59.37493		
Median	60.18167		
Maximum	102.0300		
Minimum	22.78792		
Std. Dev.	10.31943		
Skewness	0.055517		
Kurtosis	3.346923		
Jarque-Bera	2.017899		
Probability	0.364602		


13.56472 0.001134 841.5041 899.0000 1272.643 138.3636 287.5921 -0.735504 2.490354 36.85900 0.000000 983.2319 825.4583 3018.708 41.08333 700.3580 0.830462 2.816943 42.46437 0.000000 24.25243 24.14800 52.29500 18.68600 3.673123 **SICILY**


90

SARDINIA




Series: PRICE			
Sample 1 365			
Observations	365		
Mean	60.69124		
Median	60.93948		
Maximum	107.7229		
Minimum	22.78792		
-			
Std. Dev.	11.11699		
Skewness	0.332821		
Kurtosis	3.834545		
Jarque-Bera	17.33056		
Probability	0.000172		
Trobability	0.000172		
Series: LOAD)		
Sample 1 365			
Observations			
Observations	303		
Mean	1001.701		
Median	996.0417		
Maximum	1316.583		
Minimum	692.6250		
Std. Dev.	98.97019		
Skewness	0.225721		
Kurtosis	3.195253		
Jarque-Bera	3.679255		
Probability	0.158877		
Series: SOLA	R		
Sample 1 365	5		
Observations			
Observations	000		
Mean	130.9516		
Median	135.8462		
Maximum	220.2727		
Minimum	23.18182		
Std. Dev.	41.06586		
Skewness	-0.402648		
Kurtosis	2.415140		
Jarque-Bera	15.06482		
Probability	0.000535		
TODADIIIty	0.000335		

Observations	365
Mean	188.4342
Median	124.9167
Maximum	750.3750
	12.08333
Std. Dev.	180.9795
Skewness	1.396425
Kurtosis	4.191195
Jarque-Bera	140.2049
Probability	0.000000
Series: GAS_	PRICE
Sample 1 365	5
Observations	364
Mean	24.25243
Median	24.14800
Maximum	52.29500
Minimum	18.68600
Std. Dev.	3.673123
Skewness	2.397217
Kurtosis	16.62478
Jarque-Bera	3164.090
Probability	0.000000

SPAIN

an	5584.403
dian	4963.250
ximum	14211.25
imum	710.7083
. Dev.	3035.042
wness	0.717640
tosis	2.669623
que-Bera	32.98958
bability	0.000000
ies: GAS_F	PRICE
mple 1 365	
servations	365
an	24.31652
dian	24.63000
ximum	34.32000
imum	17.54000
. Dev.	2.896067
ewness	0.190192
tosis	2.806114
que-Bera	2.772241
bability	0.250043
ies: HYDR	0
	0
nple 1 365 servations 3	265
servations	505
an	2901.364
dian	2635.875
ximum	2035.075
	742.2500
imum	142.2500

SPEARMAN TEST

<u>NORTH</u>

Covariance Analysis: Spearman rank-order
Sample: 1 365
Included observations: 362

Correlation				
Probability	LOAD	SOLAR	WIND	GAS_PRICE
LOAD	1.000000			
SOLAR	-0.059872 0.2559	1.000000		
WIND	-0.046622 0.3765	-0.196021 0.0002	1.000000	
GAS_PRICE	0.152068 0.0037	0.157306 0.0027	-0.195748 0.0002	1.000000

CENTRAL NORTH

Covariance Analysis: Spearman rank-order Sample: 1 365 Included observations: 362

Correlation				
Probability	LOAD	SOLAR	WIND	GAS_PRICE
LOAD	1.000000			
SOLAR	-0.034885 0.5082	1.000000		
WIND	0.069798 0.1852	-0.415187 0.0000	1.000000	
GAS_PRICE	0.123209 0.0190	0.208011 0.0001	-0.093519 0.0756	1.000000

CENTRAL SOUTH

Covariance Analysis: Spearman rank-order Sample: 1 365 Included observations: 362

Correlation

Contelation	i .			
Probability	LOAD	SOLAR	WIND	GAS_PRICE
LOAD	1.000000			
SOLAR	-0.091012 0.0838	1.000000		
WIND	0.044007 0.4038	-0.223501 0.0000	1.000000	
GAS_PRICE	0.064734 0.2192	0.162973 0.0019	-0.129645 0.0136	1.000000

SOUTH

Covariance Analysis: Spearman rank-order
Sample: 1 365
Included observations: 364

Correlation				
Probability	LOAD	SOLAR	WIND	GAS_PRICE
LOAD	1.000000			
SOLAR	0.168593 0.0012	1.000000		
WIND	-0.084247 0.1086	-0.221560 0.0000	1.000000	
GAS_PRICE	0.384726 0.0000	0.019571 0.7098	-0.142308 0.0065	1.000000

SICILY

Covariance Analysis: Spearman rank-order Sample: 1 365 Included observations: 364

Correlation				
Probability	LOAD	SOLAR	WIND	GAS_PRICE
LOAD	1.000000			
SOLAR	0.099556 0.0577	1.000000		
WIND	-0.121725 0.0202	-0.377141 0.0000	1.000000	
GAS_PRICE	0.200207 0.0001	0.043136 0.4119	-0.223559 0.0000	1.000000

SARDINIA

Covariance Analysis: Spearman rank-order Sample: 1 365 Included observations: 364								
Correlation								
Probability	LOAD	SOLAR	WIND	GAS_PRICE				
LOAD	1.000000							
SOLAR	-0.108584 0.0384	1.000000						
WIND	-0.293840 0.0000	-0.249752 0.0000	1.000000					
GAS_PRICE	0.191881 0.0002	0.121585 0.0203	-0.140225 0.0074	1.000000				

<u>SPAIN</u>

-

Covariance Analysis: Spearman rank-order Sample: 1 365 Included observations: 365								
Correlation								
Probability	DEMAND	SOLAR	WIND	HYDRO	GAS_PRICE			
DEMAND	1.000000							
SOLAR	-0.006453 0.9022	1.000000						
WIND	0.118715 0.0233	-0.363190 0.0000	1.000000					
HYDRO	0.251266 0.0000	0.122136 0.0196	-0.050734 0.3338	1.000000				
GAS_PRICE	0.131907 0.0117	0.026210 0.6177	-0.247557 0.0000	-0.370557 0.0000	1.000000			

=

UNIT ROOT TEST

<u>NORTH</u>

UNIT ROOT TEST RESULTS TABLE (ADF)

Null Hypothesis: the variable has a unit root

	At Loval					
	<u>At Level</u>	PRICE	LOAD	SOLAR	WIND	GAS_PRICE
With Constant	t-Statistic	-2.1516	-3.5936	-2.8467	-3.1056	-3.2645
	Prob.	0.2248	0.0064	0.0529	0.0270	0.0174
		n0	***	*	**	**
UNIT ROOT TES						
Null Hypothesis:	the variable has	a unit root				
	<u>At Level</u>	55105				
With Constant	t-Statistic	PRICE -6.9078	LOAD -9.6788	SOLAR -8.0080	WIND -4.0038	GAS_PRICE -5.4072
With Constant	Prob.	0.0000	0.0000	0.0000	0.0016	0.0000
	PIOD.	***	***	***	***	***
CENTRAL NOR	<u>TH</u>					
UNIT ROOT TES	ST RESULTS T	ABLE (ADF)				
Null Hypothesis:	the variable has	a unit root				
	At Level					
With Constant	t-Statistic	PRICE -2.1109	LOAD -3.1081	SOLAR -1.7084	WIND	GAS_PRICE -3.2645
With Constant					-5.0506	
	Prob.	0.2406 n0	0.0269 **	0.4262 n0	0.0000 ***	0.0174 **
UNIT ROOT TES	ST RESULTS T					
Null Hypothesis:		. ,				
• •	At Level					
		PRICE	LOAD	SOLAR	WIND	GAS_PRICE
With Constant	t-Statistic	-6.4643	-8.6862	-10.7333	-9.5777	-5.4072
	Prob.	0.0000	0.0000	0.0000 ***	0.0000	0.0000
		***	***	***	***	* * *
CENTRAL SOU	тн					
UNIT ROOT TES	ST RESULTS T	ABLE (ADF)				
Null Hypothesis:						
i tuli i i j potitolisi	<u>At Level</u>	u unit 1000				
	ALLEVEL	PRICE	LOAD	SOLAR	WIND	GAS_PRICE
With Constant	t-Statistic	-2.4128	-3.1418	-2.3113	-10.4353	-3.2645
	Prob.	0.1389	0.0245	0.1690	0.0000	0.0174
		n0	**	n0	***	**
UNIT ROOT TES Null Hypothesis:						
	.1 • 1 1 1					

	At Level					
		PRICE	LOAD	SOLAR	WIND	GAS_PRICE
With Constant	t-Statistic	-6.0654	-11.4956	-11.3196	-10.4238	-5.4072
	Prob.	0.0000	0.0000	0.0000	0.0000	0.0000
		***	***	***	***	***

<u>SOUTH</u>

UNIT ROOT TEST RESULTS TABLE (ADF)

Null Hypothesis: the variable has a unit root

With Constant	<u>At Level</u> t-Statistic	PRICE -2.6411	LOAD -1.8567	SOLAR -3.7825	WIND -10.1128	GAS_PRICE -2.9811
	Prob.	0.0857 *	0.3528 n0	0.0034 ***	0.0000 ***	0.0377 **
UNIT ROOT TEST	RESULTS TA	ABLE (PP)				
Null Hypothesis: th	ne variable has	a unit root				
	<u>At Level</u>	PRICE	LOAD	SOLAR	WIND	GAS PRICE
With Constant	t-Statistic	-6.5826	-7.5454	-11.2342	-10.0056	-5.3857
	Prob.	0.0000 ***	0.0000 ***	0.0000 ***	0.0000 ***	0.0000 ***
<u>SICILY</u>						

UNIT ROOT TEST RESULTS TABLE (ADF)

Null Hypothesis: the variable has a unit root

With Constant	<u>At Level</u> t-Statistic	PRICE -3.7246	LOAD -2.4629	SOLAR -1.8651	WIND -5.1481	GAS_PRICE -2.9811
	Prob.	0.0041 ***	0.1256 n0	0.3487 n0	0.0000 ***	0.0377 **
UNIT ROOT TEST	RESULTS TA	ABLE (PP)				
Null Hypothesis: th	ne variable has	a unit root				
With Constant	<u>At Level</u> t-Statistic	PRICE -6.6389	LOAD -8.5996	SOLAR -12.8396	WIND -9.5087	GAS_PRICE -5.3857
	Prob.	0.0000 ***	0.0000 ***	0.0000 ***	0.0000 ***	0.0000 ***

SARDINIA

UNIT ROOT TEST RESULTS TABLE (ADF)

Null Hypothesis: the variable has a unit root

With Constant	<u>At Level</u> t-Statistic	PRICE -2.1769	LOAD -2.5275	SOLAR -3.9842	WIND -2.8046	GAS_PRICE -2.9811
	Prob.	0.2152 n0	0.1098 n0	0.0017 ***	0.0586 *	0.0377 **
UNIT ROOT TEST	RESULTS TA	ABLE (PP)				
Null Hypothesis: th	e variable has	a unit root				
With Constant	<u>At Level</u> t-Statistic	PRICE -6.0695	LOAD -7.5929	SOLAR -12.0341	WIND -10.1444	GAS_PRICE -5.3857
	Prob.	0.0000 ***	0.0000 ***	0.0000 ***	0.0000 ***	0.0000 ***

SPAIN

UNIT ROOT TEST RESULTS TABLE (ADF)

Null Hypothesis: the variable has a unit root

	<u>At Level</u>						
		PRICE	DEMAND	SOLAR	WIND	HYDRO	GAS_PRICE
With Constant	t-Statistic	-1.7247	-2.2069	-2.3518	-2.8579	-1.9826	-1.6634
	Prob.	0.4179 n0	0.2043 n0	0.1565 n0	0.0514 *	0.2946 n0	0.4490 n0
UNIT ROOT TES	ST RESULTS '	TABLE (PP)					
Null Hypothesis:	the variable ha	as a unit root					
	At Level						
		PRICE	DEMAND	SOLAR	WIND	HYDRO	GAS_PRICE
With Constant	t-Statistic	-6.1758	-14.0592	-4.4969	-7.6375	-5.5620	-2.5793
	Prob.	0.0000 ***	0.0000 ***	0.0002 ***	0.0000 ***	0.0000 ***	0.0982 *

RESULTS

NORTH

Dependent Variable: PRICE
Method: Least Squares
Sample: 1 365
Included observations: 365
White-Hinkley (HC1) heteroskedasticity consistent standard errors and
covariance

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	22.82470	2.988521	7.637457	0.0000
LOAD	0.001581	0.000125	12.65182	0.0000
DAY=2	1.014379	4.775469	0.212415	0.8319
DAY=3	-3.055967	3.558260	-0.858838	0.3911
DAY=4	-2.463384	3.346926	-0.736014	0.4623
DAY=5	-2.953840	3.547436	-0.832669	0.4056
DAY=6	-1.972222	3.481499	-0.566486	0.5715
DAY=7	-4.098495	3.526947	-1.162052	0.2461
DAY=8	-4.814854	3.330016	-1.445895	0.1492
DAY=9	-4.134983	3.404395	-1.214601	0.2254
DAY=10	-2.631593	3.428708	-0.767517	0.4433
DAY=11	-1.675287	3.453498	-0.485099	0.6279
DAY=12	-3.459316	3.551354	-0.974084	0.3307
DAY=13	-1.797177	3.422282	-0.525140	0.5998
DAY=14	-2.721071	3.354353	-0.811206	0.4178
DAY=15	-1.904845	3.195536	-0.596096	0.5515
DAY=16	-1.993136	3.193373	-0.624148	0.5330
DAY=17	0.007644	3.479852	0.002197	0.9982
DAY=18	-2.373596	3.200933	-0.741532	0.4589
DAY=19	-2.252258	3.330069	-0.676340	0.4993
DAY=20	-0.839569	3.388318	-0.247783	0.8045
DAY=21	1.187234	3.552815	0.334167	0.7385
DAY=22	0.782762	3.603404	0.217229	0.8282
DAY=23	-1.381033	3.453214	-0.399927	0.6895
DAY=24	-0.247309	3.443252	-0.071824	0.9428

DAY=25 DAY=26 DAY=27 DAY=28 DAY=29 DAY=30 DAY=31 MONTH="Aug" MONTH="Dec" MONTH="Dec" MONTH="Jan" MONTH="June" MONTH="June" MONTH="June" MONTH="Mar" MONTH="May" MONTH="Nov" MONTH="Nov"	-2.236562 0.668702 2.437238 -1.237721 -2.829155 -0.925536 -1.874771 16.43796 14.08633 3.132233 -3.275203 6.439361 3.114229 6.069507 1.276473 15.02210 24.00523 24.54920	3.120019 4.228427 5.140436 3.951499 3.258321 3.409490 3.673873 1.194223 1.322491 2.690950 1.430839 1.311872 1.209949 2.047423 1.342470 1.430823 1.405674 1.473213	-0.716842 0.158144 0.474131 -0.313228 -0.868286 -0.271459 -0.510298 13.76457 10.65136 1.163988 -2.289010 4.908526 2.573852 2.964461 0.950839 10.49892 17.07738 16.66372	0.4740 0.8744 0.6357 0.7543 0.3859 0.7862 0.6102 0.0000 0.2453 0.0227 0.0000 0.0105 0.0033 0.3424 0.0000 0.0000 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic) Prob(Wald F-statistic)	0.739316 0.705314 6.540870 13776.12 -1180.533 21.74315 0.000000 0.000000	Mean depend S.D. depende Akaike info c Schwarz crite Hannan-Quir Durbin-Watso Wald F-statis	ent var riterion erion nn criter. on stat	60.71154 12.04913 6.704288 7.163728 6.886875 0.857818 35.51127

Dependent Variable: PRICE Method: ARMA Maximum Likelihood (OPG - BHHH) Sample: 1 365 Included observations: 365 Convergence achieved after 37 iterations Coefficient covariance computed using outer product of gradients

-

_

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	23.13596	3.511917	6.587844	0.0000
LOAD	0.001592	0.000119	13.34071	0.0000
DAY=2	1.163305	1.208056	0.962956	0.3363
DAY=3	-2.825469	2.017261	-1.400646	0.1623
DAY=4	-2.179518	2.341444	-0.930843	0.3526
DAY=5	-2.650582	2.419864	-1.095344	0.2742
DAY=6	-1.646855	2.426921	-0.678578	0.4979
DAY=7	-3.755479	2.859120	-1.313508	0.1900
DAY=8	-4.461433	2.907844	-1.534275	0.1260
DAY=9	-3.783243	2.886284	-1.310766	0.1909
DAY=10	-2.276353	2.653859	-0.857752	0.3917
DAY=11	-1.318698	2.443199	-0.539742	0.5898
DAY=12	-3.113867	2.250951	-1.383356	0.1675
DAY=13	-1.443967	3.049924	-0.473444	0.6362
DAY=14	-2.359429	3.251217	-0.725706	0.4685
DAY=15	-1.541158	3.250043	-0.474196	0.6357
DAY=16	-1.634638	4.059170	-0.402702	0.6874
DAY=17	0.365297	3.131005	0.116671	0.9072
DAY=18	-2.018030	3.251868	-0.620576	0.5353
DAY=19	-1.913493	3.274400	-0.584380	0.5594
DAY=20	-0.501088	3.456256	-0.144980	0.8848
DAY=21	1.528842	2.845474	0.537289	0.5914
DAY=22	1.113704	2.466064	0.451612	0.6519
DAY=23	-1.073263	2.437376	-0.440335	0.6600
DAY=24	0.035230	2.717867	0.012962	0.9897
DAY=25	-2.002161	3.356360	-0.596527	0.5512
DAY=26	0.787834	2.573469	0.306137	0.7597
DAY=27	2.386991	2.535268	0.941514	0.3472
DAY=28	-1.571862	2.313592	-0.679403	0.4974

DAY=30 DAY=31 MONTH="Aug" MONTH="Dec" MONTH="Feb" MONTH="Jan" MONTH="July" MONTH="June" MONTH="June" MONTH="May" MONTH="May" MONTH="Nov" MONTH="Cot" MONTH="Sept" AR(1) SIGMASQ	0.556461 0.288132 15.41857 13.77108 1.127930 -3.092249 5.929330 2.179723 4.572783 0.705967 14.10686 22.56812 22.96966 0.584123	2.569223 2.294262 3.661269 3.537204 3.029018 3.172853 3.771701 4.149757 3.113185 3.574477 3.921043 3.979988 3.489978 0.038478	0.216587 0.125588 4.211263 3.893210 0.372375 -0.974596 1.572057 0.525265 1.468844 0.197502 3.597731 5.670400 6.581606 15.18087 14.82804	0.8287 0.9001 0.0000 0.7099 0.3305 0.1169 0.5998 0.1429 0.8436 0.0004 0.0000 0.0000 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.825805 0.801853 5.363511 9205.522 -1107.169 34.47776 0.000000 .58	Mean depend S.D. depende Akaike info c Schwarz crite Hannan-Quir Durbin-Watso	ent var riterion erion nn criter.	60.71154 12.04913 6.313257 6.794066 6.504337 2.207998

_

Dependent Variable: PRICE Method: Least Squares Sample: 1 365 Included observations: 365 White-Hinkley (HC1) heteroskedasticity consistent standard errors and covariance

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	26.84924	3.086853	8.697935	0.0000
LOAD	0.001585	0.000122	13.00014	0.0000
RES	-0.003346	0.000711	-4.707855	0.0000
DAY=2	1.328601	4.711090	0.282016	0.7781
DAY=3	-2.442038	3.553855	-0.687152	0.4925
DAY=4	-1.345960	3.219923	-0.418010	0.6762
DAY=5	-2.042934	3.456863	-0.590979	0.5550
DAY=6	-1.716346	3.405310	-0.504021	0.6146
DAY=7	-3.413236	3.465580	-0.984896	0.3254
DAY=8	-3.418854	3.184051	-1.073743	0.2837
DAY=9	-2.758045	3.277584	-0.841487	0.4007
DAY=10	-1.406307	3.391058	-0.414711	0.6786
DAY=11	-1.156692	3.265318	-0.354236	0.7234
DAY=12	-2.565633	3.524116	-0.728022	0.4671
DAY=13	-0.581230	3.289518	-0.176692	0.8599
DAY=14	-0.925897	3.246883	-0.285165	0.7757
DAY=15	-1.007056	3.126677	-0.322085	0.7476
DAY=16	-0.785281	3.129112	-0.250960	0.8020
DAY=17	1.034522	3.359302	0.307957	0.7583
DAY=18	-1.081334	3.201650	-0.337743	0.7358
DAY=19	-0.819413	3.223874	-0.254170	0.7995
DAY=20	0.526314	3.284246	0.160254	0.8728
DAY=21	2.816553	3.509702	0.802505	0.4229
DAY=22	2.009910	3.591836	0.559577	0.5762
DAY=23	-0.031484	3.263862	-0.009646	0.9923
DAY=24	1.266119	3.379846	0.374608	0.7082
DAY=25	-1.089940	3.046232	-0.357799	0.7207

Dependent Variable: PRICE

Method: ARMA Conditional Least Squares (Gauss-Newton / Marquardt steps)

Sample (adjusted): 2 365

-

Included observations: 364 after adjustments Convergence achieved after 7 iterations White-Hinkley (HC1) heteroskedasticity consistent standard errors and covariance

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	25.59284	3.409239	7.506907	0.0000
LOAD	0.001588	0.000112	14.20701	0.0000
RES	-0.002280	0.000680	-3.350779	0.0009
DAY=2	1.619845	2.597929	0.623514	0.5334
DAY=3	-2.024094	2.581443	-0.784094	0.4336
DAY=4	-0.958604	2.639726	-0.363145	0.7167
DAY=5	-1.520264	2.805787	-0.541831	0.5883
DAY=6	-0.940585	2.815191	-0.334111	0.7385
DAY=7	-2.746816	2.700114	-1.017296	0.3098
DAY=8	-2.963067	2.678884	-1.106083	0.2695
DAY=9	-2.290363	2.705114	-0.846679	0.3978
DAY=10	-0.885100	2.895572	-0.305674	0.7601
DAY=11	-0.407622	2.979509	-0.136808	0.8913
DAY=12	-1.939586	3.337514	-0.581147	0.5616
DAY=13	-0.053934	2.854054	-0.018897	0.9849
DAY=14	-0.579273	2.691913	-0.215190	0.8298
DAY=15	-0.373530	2.590308	-0.144203	0.8854
DAY=16	-0.252834	2.474671	-0.102169	0.9187
DAY=17	1.623961	2.805973	0.578752	0.5632
DAY=18	-0.577983	2.707917	-0.213442	0.8311
DAY=19	-0.369147	2.660681	-0.138741	0.8897
DAY=20	0.995654	2.602553	0.382568	0.7023
DAY=21	3.199472	2.849484	1.122825	0.2624
DAY=22	2.509740	3.299581	0.760624	0.4474
DAY=23	0.407674	3.077770	0.132458	0.8947
DAY=24	1.621422	2.872523	0.564459	0.5728
DAY=25	-0.675115	2.620876	-0.257591	0.7969
DAY=26	2.454839	3.507572	0.699868	0.4845

DAY=27 DAY=28 DAY=29 DAY=30 DAY=31 MONTH="Aug" MONTH="Dec" MONTH="Feb" MONTH="Feb" MONTH="Jun" MONTH="June" MONTH="Mar" MONTH="May" MONTH="Nov"	3.713801 -0.221881 -0.338972 1.529678 0.937798 15.97010 11.80268 -0.567642 -5.558414 6.584347 2.832073 2.974881 0.556754 11.96925	3.544496 2.971446 2.448811 2.091699 2.247939 2.386450 2.734190 4.297180 3.023423 2.422601 2.177851 3.312007 2.373775 2.600077	1.047766 -0.074671 -0.138423 0.731309 0.417181 6.691989 4.316701 -0.132096 -1.838451 2.717883 1.300398 0.898211 0.234544 4.603423	0.2955 0.9405 0.8900 0.4651 0.6768 0.0000 0.0000 0.8950 0.0669 0.0069 0.1944 0.3698 0.8147 0.0000
MONTH="Oct" MONTH="Sept" AR(1)	21.81667 23.72003 0.573684	2.472922 2.756256 0.093003	4.003423 8.822222 8.605888 6.168412	0.0000 0.0000 0.0000 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.8373084 0.830437 0.807049 5.288104 8920.531 -1098.704 35.50706 0.000000	Mean depend S.D. depende Akaike info c Schwarz crite Hannan-Quir Durbin-Watso	dent var ent var riterion erion on criter.	60.75378 12.03863 6.284087 6.765878 6.475576 2.176024
Inverted AR Roots	.57			

Dependent Variable: PRICE Method: Least Squares Sample: 1 365 Included observations: 365 White-Hinkley (HC1) heteroskedasticity consistent standard errors and covariance =

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	27.64515	2.942422	9.395373	0.0000
LOAD	0.001578	0.000121	13.01969	0.0000
SOLAR	-0.003424	0.000704	-4.861613	0.0000
WIND	-0.094676	0.076536	-1.237018	0.2170
DAY=2	1.356666	4.686424	0.289488	0.7724
DAY=3	-2.463234	3.533335	-0.697141	0.4862
DAY=4	-1.357240	3.216422	-0.421972	0.6733
DAY=5	-2.109715	3.433599	-0.614432	0.5394
DAY=6	-1.876430	3.367848	-0.557160	0.5778
DAY=7	-3.619578	3.423177	-1.057374	0.2911
DAY=8	-3.624858	3.138761	-1.154869	0.2490
DAY=9	-2.792675	3.257258	-0.857370	0.3919
DAY=10	-1.382262	3.358133	-0.411616	0.6809
DAY=11	-1.249915	3.250672	-0.384510	0.7009
DAY=12	-2.590622	3.488501	-0.742618	0.4583
DAY=13	-0.493015	3.270607	-0.150741	0.8803
DAY=14	-0.862596	3.239132	-0.266305	0.7902
DAY=15	-0.960555	3.123871	-0.307489	0.7587
DAY=16	-0.693508	3.122319	-0.222113	0.8244
DAY=17	1.177535	3.360913	0.350362	0.7263
DAY=18	-0.914597	3.206475	-0.285234	0.7756
DAY=19	-0.830461	3.206447	-0.258997	0.7958
DAY=20	0.657555	3.295479	0.199532	0.8420
DAY=21	3.016388	3.510567	0.859231	0.3909
DAY=22	2.121576	3.587242	0.591422	0.5547
DAY=23	0.034158	3.267596	0.010453	0.9917

DAY=24 DAY=25 DAY=26 DAY=27 DAY=28 DAY=30 DAY=30 DAY=31 MONTH="Aug" MONTH="Dec" MONTH="Jan" MONTH="Jan" MONTH="July" MONTH="June" MONTH="Mar" MONTH="Mar" MONTH="May" MONTH="Nov" MONTH="Cot" MONTH="Sept"	1.415943 -0.800724 2.469218 3.557910 0.006176 -1.855435 0.223347 -1.356500 17.20569 10.99700 0.819652 -5.438905 7.154003 7.474639 4.077180 1.383199 12.19936 23.17705 25.42297	3.392960 3.092403 4.279951 5.110102 3.883928 3.232278 3.441650 3.677968 1.076610 1.354368 2.666072 1.300624 1.206294 2.901924 1.827309 1.286005 1.393126 1.307893 1.363934	0.417318 -0.258932 0.576927 0.696250 0.001590 -0.574033 0.064895 -0.368818 15.98136 8.119656 0.307438 -4.181765 5.930563 2.575753 2.231248 1.075578 8.756823 17.72090 18.63944	0.6767 0.7959 0.5644 0.4868 0.9987 0.5663 0.9483 0.7125 0.0000 0.0000 0.7587 0.0000 0.0105 0.0264 0.2829 0.0000 0.0000 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic) Prob(Wald F-statistic)	0.752682 0.718676 6.390858 13069.78 -1170.927 22.13366 0.000000 0.000000	Mean depend S.D. depende Akaike info c Schwarz crite Hannan-Quir Durbin-Watse Wald F-statis	ent var riterion erion on criter. on stat	60.71154 12.04913 6.662613 7.143422 6.853693 0.894585 37.70695

Dependent Variable: PRICE Method: ARMA Conditional Least Squares (Gauss-Newton / Marquardt steps)

Sample (adjusted): 2 365 Included observations: 364 after adjustments Convergence achieved after 7 iterations

White-Hinkley (HC1) heteroskedasticity consistent standard errors and covariance

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	25.94298	3.437415	7.547235	0.0000
LOAD	0.001586	0.000112	14.15129	0.0000
SOLAR	-0.002319	0.000690	-3.358849	0.0009
WIND	-0.044122	0.074891	-0.589151	0.5562
DAY=2	1.641048	2.591636	0.633209	0.5271
DAY=3	-2.021476	2.582564	-0.782740	0.4344
DAY=4	-0.948689	2.654322	-0.357413	0.7210
DAY=5	-1.535757	2.813325	-0.545887	0.5855
DAY=6	-0.998632	2.810935	-0.355267	0.7226
DAY=7	-2.824824	2.688323	-1.050775	0.2942
DAY=8	-3.039767	2.663747	-1.141162	0.2547
DAY=9	-2.288930	2.707817	-0.845304	0.3986
DAY=10	-0.856813	2.900868	-0.295364	0.7679
DAY=11	-0.433749	2.980572	-0.145525	0.8844
DAY=12	-1.934981	3.329340	-0.581191	0.5615
DAY=13	0.003423	2.849666	0.001201	0.9990
DAY=14	-0.532109	2.697045	-0.197293	0.8437
DAY=15	-0.334794	2.603578	-0.128590	0.8978
DAY=16	-0.193407	2.494235	-0.077542	0.9382
DAY=17	1.706684	2.829857	0.603099	0.5469
DAY=18	-0.484163	2.744887	-0.176387	0.8601
DAY=19	-0.357706	2.662994	-0.134325	0.8932
DAY=20	1.072541	2.633865	0.407212	0.6841
DAY=21	3.308876	2.882391	1.147962	0.2518
DAY=22	2.578523	3.338574	0.772342	0.4405
DAY=23	0.455376	3.103416	0.146734	0.8834

DAY=24	1.708679	2.914182	0.586332	0.5581
DAY=25	-0.523464	2.697134	-0.194081	0.8462
DAY=26	2.545156	3.531056	0.720792	0.4716
DAY=27	3.708979	3.546496	1.045815	0.2964
DAY=28	-0.212743	2.977606	-0.071448	0.9431
DAY=29	-0.294090	2.464948	-0.119309	0.9051
DAY=30	1.619754	2.128130	0.761116	0.4472
DAY=31	0.977549	2.258704	0.432792	0.6655
MONTH="Aug"	15.84379	2.395586	6.613744	0.0000
MONTH="Dec"	11.73645	2.742055	4.280166	0.0000
MONTH="Feb"	-0.499435	4.271599	-0.116920	0.9070
MONTH="Jan"	-5.557098	3.001160	-1.851650	0.0650
MONTH="July"	6.430455	2.442034	2.633238	0.0089
MONTH="June"	4.302339	3.341733	1.287457	0.1989
MONTH="Mar"	3.083411	3.297633	0.935038	0.3505
MONTH="May"	0.461652	2.388692	0.193266	0.8469
MONTH="Nov"	11.96703	2.601563	4.599938	0.0000
MONTH="Oct"	21.83555	2.460249	8.875340	0.0000
MONTH="Sept"	23.66305	2.746115	8.616919	0.0000
AR(1)	0.572427	0.092616	6.180632	0.0000
R-squared	0.830573	Mean depend	dent var	60.75378
Adjusted R-squared	0.806598	S.D. depende		12.03863
S.E. of regression	5.294287	Akaike info c		6.288778
Sum squared resid	8913.372	Schwarz crite	erion	6.781276
Log likelihood	-1098.558	Hannan-Quir	nn criter.	6.484524
F-statistic	34.64265	Durbin-Watso	on stat	2.180291
Prob(F-statistic)	0.000000			
Inverted AR Roots	.57			

_

Dependent Variable: PRICE Method: Least Squares Sample: 1 365 Included observations: 362 White-Hinkley (HC1) heteroskedasticity consistent standard errors and covariance

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	-4.714922	4.145280	-1.137419	0.2562
LOAD	0.001188	7.79E-05	15.23634	0.0000
SOLAR	-0.002875	0.000558	-5.152769	0.0000
WIND	-0.092227	0.056977	-1.618657	0.1065
GAS_PRICE	1.660478	0.172469	9.627685	0.0000
DAY=2	0.583599	2.311645	0.252460	0.8008
DAY=3	-0.624400	1.742265	-0.358384	0.7203
DAY=4	1.624166	1.719389	0.944618	0.3456
DAY=5	0.023377	1.476584	0.015832	0.9874
DAY=6	1.665989	1.571934	1.059834	0.2900
DAY=7	-0.097710	1.703609	-0.057355	0.9543
DAY=8	-0.516896	1.543791	-0.334823	0.7380
DAY=9	0.583359	1.600367	0.364516	0.7157
DAY=10	1.692695	1.733592	0.976409	0.3296
DAY=11	1.770865	1.860481	0.951832	0.3419
DAY=12	0.663553	1.662624	0.399100	0.6901
DAY=13	2.116490	1.728064	1.224775	0.2216
DAY=14	1.185963	1.679295	0.706227	0.4806
DAY=15	1.244111	1.413631	0.880081	0.3795
DAY=16	1.418539	1.400304	1.013022	0.3118
DAY=17	3.362032	1.845337	1.821906	0.0694
DAY=18	1.243127	1.570029	0.791786	0.4291
DAY=19	1.329261	1.424902	0.932879	0.3516

DAY=20 DAY=21 DAY=22 DAY=23 DAY=24 DAY=25 DAY=26 DAY=27 DAY=28 DAY=29 DAY=30 DAY=30 DAY=31 MONTH="Aug" MONTH="Aug" MONTH="Feb" MONTH="June" MONTH="June" MONTH="June" MONTH="June" MONTH="Mar" MONTH="Mar" MONTH="Mar" MONTH="Nov" MONTH="Nov"	2.923066 4.690603 3.494629 1.649694 3.198270 0.457071 1.602174 3.872417 0.732311 1.017983 2.871544 1.640045 11.41636 6.243859 1.040508 -0.993607 4.360525 4.805944 2.630457 -0.753871 8.393565 15.09302 14.10710	1.613953 2.034407 2.298831 1.621018 1.731692 1.390191 1.824785 2.237652 1.700585 1.601790 1.892797 1.994947 1.152441 1.400892 1.407164 1.262835 1.152036 2.257129 1.278225 1.189073 1.440899 1.398306 1.688725	1.811122 2.305637 1.520177 1.017690 1.846904 0.328783 0.878007 1.730571 0.430623 0.635528 1.517091 0.822100 9.906246 4.457058 0.739436 -0.786807 3.785060 2.129229 2.057899 -0.633998 5.825227 10.79379 8.353701	0.0711 0.0218 0.1295 0.3096 0.0657 0.7425 0.3806 0.0845 0.6670 0.5255 0.1302 0.4116 0.0000 0.4602 0.4320 0.0002 0.0340 0.0404 0.5265 0.0000 0.0400
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic) Prob(Wald F-statistic)	0.888944 0.873129 4.283640 5798.465 -1015.696 56.20923 0.000000 0.000000	Mean depend S.D. depende Akaike info c Schwarz crite Hannan-Quir Durbin-Watso Wald F-statis	ent var riterion erion nn criter. on stat	60.82267 12.02631 5.865725 6.360243 6.062314 1.615639 54.19303

Dependent Variable: PRICE Method: ARMA Conditional Least Squares (Gauss-Newton / Marquardt steps) Sample (adjusted): 4 365

Included observations: 358 after adjustments Convergence achieved after 5 iterations

White-Hinkley (HC1) heteroskedasticity consistent standard errors and covariance

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	-4.755340	4.409260	-1.078489	0.2817
LOAD	0.001221	8.33E-05	14.65442	0.0000
SOLAR	-0.002683	0.000586	-4.582629	0.0000
WIND	-0.090952	0.061953	-1.468083	0.1431
GAS_PRICE	1.608028	0.185746	8.657111	0.0000
DAY=2	0.991386	2.103574	0.471286	0.6378
DAY=3	-0.944939	1.577179	-0.599133	0.5495
DAY=4	1.248557	1.785357	0.699332	0.4849
DAY=5	0.141383	1.495924	0.094512	0.9248
DAY=6	1.872823	1.551026	1.207473	0.2282
DAY=7	0.111614	1.635254	0.068255	0.9456
DAY=8	-0.328284	1.540738	-0.213070	0.8314
DAY=9	0.753046	1.617674	0.465512	0.6419
DAY=10	1.883292	1.773917	1.061657	0.2892
DAY=11	2.008916	1.936866	1.037199	0.3004
DAY=12	0.847871	1.803810	0.470045	0.6387
DAY=13	2.313618	1.662973	1.391254	0.1651
DAY=14	1.380699	1.596253	0.864963	0.3877
DAY=15	1.494066	1.406301	1.062408	0.2889
DAY=16	1.642513	1.368384	1.200330	0.2309
DAY=17	3.594131	1.855441	1.937076	0.0536
DAY=18	1.457790	1.579170	0.923137	0.3567

DAY=19 DAY=20	1.510093 3.109744	1.409860 1.590335	1.071094 1.955401	0.2850 0.0514
DAY=20	4.897141	1.977004	2.477052	0.0138
DAY=22	3.738368	2.308392	1.619469	0.1064
DAY=23	1.872168	1.576636	1.187444	0.2360
DAY=24	3.420068	1.705992	2.004739	0.0459
DAY=25	0.734416	1.411067	0.520468	0.6031
DAY=26	1.886421	1.776828	1.061679	0.2892
DAY=27	4.151388	2.257828	1.838664	0.0669
DAY=28	1.006164	1.637722	0.614368	0.5394
DAY=29	1.371833	1.494978	0.917628	0.3595
DAY=30	3.684199	1.739078	2.118478	0.0349
DAY=31	1.925732	1.738635	1.107611	0.2689
MONTH="Aug"	11.59876	1.310553	8.850283	0.0000
MONTH="Dec"	6.762089	1.624059	4.163696	0.0000
MONTH="Feb"	1.242011	1.724703	0.720130	0.4720
MONTH="Jan"	-1.131683	1.482439	-0.763393	0.4458
MONTH="July"	4.441304	1.327989	3.344384	0.0009
MONTH="June"	4.823841	2.486087	1.940335	0.0532
MONTH="Mar"	2.783103	1.540044	1.807157	0.0717
MONTH="May"	-0.604073	1.391053	-0.434256	0.6644
MONTH="Nov"	8.696968	1.649301	5.273125	0.0000
MONTH="Oct"	15.43736	1.570684	9.828426	0.0000
MONTH="Sept"	14.48297	1.852899	7.816387	0.0000
AR(1)	0.177037	0.063090	2.806081	0.0053
R-squared	0.894395	Mean depen		60.93280
Adjusted R-squared	0.878775	S.D. depende		12.03389
S.E. of regression	4.189889	Akaike info c	riterion	5.825055
Sum squared resid	5459.657	Schwarz crite		6.334511
Log likelihood	-995.6849	Hannan-Quir		6.027666
F-statistic	57.25940	Durbin-Wats	on stat	1.965644
Prob(F-statistic)	0.000000			
Inverted AR Roots	.18			

TEST ON THE RESIDUALS

Breusch-Godfrey Serial Correlation LM Test:

F-statistic	0.008474	Prob. F(2,309)	0.9916
Obs*R-squared	0.019636	Prob. Chi-Square(2)	0.9902

Test Equation: Dependent Variable: RESID Method: Least Squares Sample: 4 365 Included observations: 358 Coefficient covariance computed using outer product of gradients Presample and interior missing value lagged residuals set to zero.

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	-0.003833	2.868746	-0.001336	0.9989
LOAD	-6.31E-07	8.40E-05	-0.007513	0.9940
SOLAR	-9.25E-07	0.000603	-0.001532	0.9988
WIND	-9.61E-05	0.060819	-0.001580	0.9987
GAS_PRICE	0.000847	0.095081	0.008907	0.9929
DAY=2	0.006781	1.655649	0.004096	0.9967
DATE2	0.003787	1.833049	0.004090	0.9907
DAY=3	0.013145	1.847864	0.007113	0.9943
DAY=4	0.046046	1.880982	0.024480	0.9805
DAY=5	0.042293	1.833083	0.023072	0.9816
DAY=6	0.020870	1.807903	0.011544	0.9908
DAY=7	0.013128	1.804231	0.007276	0.9942

DAY=8 DAY=9 DAY=10 DAY=11 DAY=12 DAY=13 DAY=13 DAY=14 DAY=15 DAY=16 DAY=17 DAY=18 DAY=19 DAY=20 DAY=21 DAY=22 DAY=23 DAY=23 DAY=23 DAY=24 DAY=25 DAY=25 DAY=26 DAY=27 DAY=28 DAY=29 DAY=30 DAY=31 MONTH="Aug" MONTH="Aug" MONTH="June" MONTH="June" MONTH="June" MONTH="June" MONTH="Mar" MONTH="May" MONTH="Nov"	0.010998 0.011041 0.010742 0.010326 0.011089 0.010703 0.010267 0.009945 0.010233 0.010268 0.010398 0.010813 0.010856 0.010340 0.009927 0.010177 0.010083 0.009477 0.009051 0.009251 0.009355 0.010777 0.009355 0.010777 0.009355 0.010777 0.009355 0.010777 0.007511 -0.032922 -0.014163 -0.017448 -0.017448 -0.017448 -0.01679 -0.012531 -0.012531 -0.012597 -0.015997 -0.015893	1.811616 1.810482 1.805233 1.795244 1.806924 1.806924 1.806190 1.814663 1.794111 1.801676 1.800405 1.806760 1.814314 1.813286 1.815694 1.801185 1.804645 1.804645 1.804645 1.804645 1.804645 1.804645 1.781417 1.864499 1.800911 1.953802 1.383726 1.485517 1.478766 1.500177 1.395636 2.578649 1.425502 1.337483 1.482701 1.432414	0.006071 0.006099 0.005950 0.005752 0.006137 0.005926 0.005658 0.005543 0.005703 0.005703 0.005755 0.005960 0.005987 0.005695 0.005576 0.005576 0.005246 0.004992 0.005780 0.005780 0.004171 -0.016850 -0.010236 -0.011745 -0.012632 -0.001113 -0.008979 -0.004348 -0.007781 -0.010282 -0.010789	0.9952 0.9951 0.9953 0.9954 0.9955 0.9955 0.9955 0.9955 0.9955 0.9955 0.9955 0.9955 0.9955 0.9956 0.9955 0.9956 0.9955 0.9956 0.9958 0.9954 0.9958 0.9958 0.9958 0.9958 0.9958 0.9959 0.9958 0.9959 0.9958 0.9958 0.9959 0.9959 0.9958 0.9959 0.9959 0.9958 0.9959 0.9959 0.9958 0.9959 0.9959 0.9959 0.9958 0.9959 0.9958 0.9959 0.9958 0.9959 0.9958 0.9958 0.9958 0.9958 0.9958 0.9959 0.9958 0.9958 0.9959 0.9958 0.9959 0.9958 0.9959 0.9958 0.9959 0.9958 0.9959 0.9958 0.9959 0.9959 0.9958 0.9959 0.9958 0.9959 0.9958 0.9959 0.9958 0.9959 0.9958 0.9959 0.9958 0.9959 0.9958 0.9959 0.99580 0.99580 0.99580 0.99580 0.99580 0.99580000000000000000000000000000000000
MONTH="Nov" MONTH="Oct"	-0.015997 -0.015893	1.482701 1.432414	-0.010789 -0.011095	0.9914 0.9912
MONTH="Sept" AR(1)	-0.019555 -0.044225	1.499008 0.347670	-0.013046 -0.127205	0.9896 0.8989
RESID(-1)	0.045692	0.353142	0.129388	0.8971
RESID(-2)	0.007070	0.086606	0.081632	0.9350
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.000055 -0.155276 4.203311 5459.357 -995.6750 0.000353 1.000000	Mean depend S.D. depende Akaike info c Schwarz crite Hannan-Quir Durbin-Watse	ent var riterion erion nn criter.	1.83E-09 3.910646 5.836173 6.367308 6.047406 1.966655

CENTRAL NORTH

MODEL 1

Dependent Variable: PRICE Method: Least Squares Sample: 1 365 Included observations: 365 White-Hinkley (HC1) heteroskedasticity consistent standard errors and covariance

C18.222223.8075174.7858550.LOAD0.0093630.00076212.293130.DAY=21.8917125.1035070.3706690.DAY=3-2.7054163.900124-0.6936750.DAY=4-1.4497353.820778-0.3794350.DAY=5-2.0455603.840932-0.5325690.	rob. 0000 7111 4884 7046 5947 7495 3500 2257 4580
LOAD0.0093630.00076212.293130.DAY=21.8917125.1035070.3706690.DAY=3-2.7054163.900124-0.6936750.DAY=4-1.4497353.820778-0.3794350.DAY=5-2.0455603.840932-0.5325690.	0000 7111 4884 7046 5947 7495 3500 2257
DAY=21.8917125.1035070.3706690.DAY=3-2.7054163.900124-0.6936750.DAY=4-1.4497353.820778-0.3794350.DAY=5-2.0455603.840932-0.5325690.	7111 4884 7046 5947 7495 3500 2257
DAY=21.8917125.1035070.3706690.DAY=3-2.7054163.900124-0.6936750.DAY=4-1.4497353.820778-0.3794350.DAY=5-2.0455603.840932-0.5325690.	4884 7046 5947 7495 3500 2257
DAY=3-2.7054163.900124-0.6936750.DAY=4-1.4497353.820778-0.3794350.DAY=5-2.0455603.840932-0.5325690.	4884 7046 5947 7495 3500 2257
DAY=4 -1.449735 3.820778 -0.379435 0. DAY=5 -2.045560 3.840932 -0.532569 0.	7046 5947 7495 3500 2257
DAY=5 -2.045560 3.840932 -0.532569 0.	5947 7495 3500 2257
	7495 3500 2257
DAY=6 -1.196317 3.743459 -0.319575 0.	3500 2257
	2257
	6512
	6022
	4110
	6031
	4579
	5564
	5995
	9034
	6252
DAY=19 -1.614726 3.786877 -0.426400 0.	6701
	8916
	6733
DAY=22 1.332802 3.974980 0.335298 0.	7376
DAY=23 -0.637483 3.804526 -0.167559 0.	8670
DAY=24 0.538562 3.756517 0.143367 0.	8861
DAY=25 -1.627495 3.506247 -0.464170 0.	6428
DAY=26 1.660708 4.384356 0.378780 0.	7051
DAY=27 3.221104 5.366833 0.600187 0.	5488
	9086
	5178
	9629
	7502
	0000
	0000
	2065
	0252
	0000
	0000
	0878
	0026
	0000
	0000
MONTH="Sept" 26.02803 1.449622 17.95504 0.	0000
R-squared 0.733058 Mean dependent var 61.0	6357
	7164
0	8330
	7770
	0918
	9687
	4368
Prob(Wald F-statistic) 0.000000	

Dependent Variable: PRICE Method: ARMA Conditional Least Squares (Gauss-Newton / Marquardt steps) Date: 03/25/20 Time: 12:28 Sample (adjusted): 2 365 Included observations: 364 after adjustments Convergence achieved after 7 iterations White-Hinkley (HC1) heteroskedasticity consistent standard errors and covariance

	0 11 1	011 5		
Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	19.14702	4.003893	4.782100	0.0000
LOAD	0.008832	0.000651	13.56473	0.0000
DAY=2	2.301348	2.895603	0.794773	0.4273
DAY=3	-2.025456	2.742223	-0.738618	0.4607
DAY=4	-0.677011	2.916766	-0.232110	0.8166
DAY=5	-1.127503	2.946461	-0.382663	0.7022
DAY=6	-0.279818	2.987186	-0.093673	0.9254
DAY=7	-2.620909	2.841058	-0.922512	0.3570
DAY=8	-3.521725	2.875392	-1.224781	0.2216
DAY=9	-1.843335	2.900707	-0.635478	0.5256
DAY=10	-0.789679	2.952814	-0.267433	0.7893
DAY=11	-1.032140	3.006947	-0.343252	0.7316
DAY=12	-2.203347	3.287797	-0.670159	0.5032
DAY=13	-1.042762	3.023229	-0.344917	0.7304
DAY=14	-1.899049	2.870412	-0.661595	0.5087
DAY=15	-1.234989	2.825358	-0.437109	0.6623
DAY=16	-0.960441	2.749602	-0.349302	0.7271
DAY=17	1.388188	3.019842	0.459689	0.6461
DAY=18	-0.803771	2.910918	-0.276123	0.7826
DAY=19	-0.547294	2.947598	-0.185675	0.8528
DAY=20	0.492985	2.875751	0.171428	0.8640
DAY=21	2.580467	3.187809	0.809480	0.4188
DAY=22	2.226597	3.435256	0.648160	0.5173
DAY=23	0.247276	3.232698	0.076492	0.9391
DAY=24	1.305702	3.016346	0.432875	0.6654
DAY=25	-1.019609	2.883954	-0.353546	0.7239
DAY=26	2.255102	3.606773	0.625241	0.5323
DAY=27	3.563145	3.820495	0.932640	0.3517
DAY=28	-0.596829	3.357959	-0.177736	0.8590
DAY=29	-0.704637	2.730214	-0.258088	0.7965
DAY=30	1.464335	2.282662	0.641503	0.5217
DAY=31	1.291571	2.448447	0.527506	0.5982
MONTH="Aug"	16.77193	2.575181	6.512911	0.0000
MONTH="Dec"	14.44077	2.942798	4.907155	0.0000
MONTH="Feb"	2.190703	4.407539	0.497035	0.6195
MONTH="Jan"	-2.723302	3.300366	-0.825152	0.4099
MONTH="July"	7.854879	2.621882	2.995893	0.0030
MONTH="June"	4.901541	2.553620	1.919448	0.0558
MONTH="Mar"	4.465632	3.624550	1.232051	0.2188
MONTH="May"	4.010504	2.666417	1.504080	0.1335
MONTH="Nov"	15.30560	2.725967	5.614742	0.0000
MONTH="Oct"	24.39323	2.641530	9.234506	0.0000
MONTH="Sept"	25.10801	3.070955	8.175963	0.0000
AR(1)	0.581680	0.093026	6.252861	0.0000
R-squared	0.820227	Mean depend	dent var	61.10682
Adjusted R-squared	0.796070	S.D. depende		11.85915
S.E. of regression	5.355431	Akaike info c		6.307025
Sum squared resid	9177.804	Schwarz crite		6.778109
Log likelihood	-1103.878	Hannan-Quir		6.494259
F-statistic	33.95395	Durbin-Watso		2.148898
Prob(F-statistic)	0.000000			2.1 10000
Inverted AR Roots	.58			

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	20.18809	4.645064	4.346138	0.000
LOAD	0.009306	0.000771	12.06955	0.000
RES	-0.004124	0.003818	-1.080024	0.280
DAY=2	2.143976	5.056266	0.424024	0.671
DAY=3	-2.526573	3.831423	-0.659435	0.510
DAY=4	-1.217832	3.720218	-0.327355	0.743
DAY=5	-1.733328	3.728797	-0.464849	0.642
DAY=6	-1.045143	3.655467	-0.285912	0.775
DAY=7	-3.228941	3.706404	-0.871179	0.384
DAY=8	-3.917990	3.518812	-1.113441	0.266
DAY=9	-2.354748	3.603349	-0.653489	0.513
DAY=10	-1.060726	3.650976	-0.290532	0.771
DAY=11	-1.597913	3.601704	-0.443655	0.657
DAY=12	-2.869366	3.850574	-0.745179	0.456
DAY=13	-1.513253	3.769797	-0.401415	0.688
DAY=14	-2.305461	3.647231	-0.632113	0.527
DAY=15	-1.592830	3.475041	-0.458363	0.647
DAY=16	-1.604226	3.533810	-0.453965	0.650
DAY=17	0.714201	3.708447	0.192588	0.847
DAY=18	-1.201265	3.488867	-0.344314	0.730
DAY=19	-1.155122	3.686901	-0.313304	0.754
DAY=20	0.040293	3.631385	0.011096	0.991
DAY=21	2.235955	3.832463	0.583425	0.560
DAY=22	1.707494	3.918460	0.435756	0.663
DAY=23	-0.073430	3.664532	-0.020038	0.984
DAY=24	1.031275	3.649818	0.282555	0.777
DAY=25	-1.058910	3.388350	-0.312515	0.754
DAY=26	2.426406	4.225370	0.574247	0.566
DAY=27	4.044913	5.046593	0.801514	0.423
DAY=28	0.102479	4.185384	0.024485	0.980
DAY=29	-1.822874	3.505524	-0.520000	0.603
DAY=30	0.265510	3.603721	0.073676	0.941
DAY=31	-1.005212	3.876485	-0.259310	0.795
MONTH="Aug"	16.77302	1.168316	14.35657	0.000
MONTH="Dec"	12.85006	1.446202	8.885386	0.000
MONTH="Feb"	2.690232	2.911387	0.924038	0.356
MONTH="Jan"	-3.846998	1.444858	-2.662544	0.008
MONTH="July"	7.112835	1.333217	5.335091	0.000
MONTH="June"	5.604518	1.188399	4.716022	0.000
MONTH="Mar"	2.968740	1.901290	1.561434	0.119
MONTH="May"	3.907255	1.345122	2.904759	0.003
MONTH="Nov"	14.55863	1.444820	10.07644	0.000
MONTH="Oct"	24.30419	1.270443	19.13049	0.000
MONTH="Sept"	26.35348	1.479652	17.81060	0.000
R-squared	0.734891	Mean depend	dent var	61.0635
Adjusted R-squared	0.699378	S.D. depende		11.8716
S.E. of regression	6.509106	Akaike info c	riterion	6.69692
	13600.27	Schwarz crite	erion	7.16704
Sum squared resid			•.	
Sum squared resid Log likelihood	-1178.188	Hannan-Quir	nn criter.	0.003/0
		Hannan-Quir Durbin-Watso		
Log likelihood	-1178.188		on stat	6.88375 0.85908 36.2990

Dependent Variable: PRICE Method: ARMA Conditional Least Squares (Gauss-Newton / Marquardt steps) Sample (adjusted): 2 365 Included observations: 364 after adjustments Convergence achieved after 8 iterations White-Hinkley (HC1) heteroskedasticity consistent standard errors and covariance

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	21.89166	4.498793	4.866118	0.0000
LOAD	0.008715	0.000680	12.82425	0.0000
RES	-0.005182	0.002893	-1.791325	0.0742
DAY=2	2.624680	2.841162	0.923805	0.3563
DAY=3	-1.785912	2.740878	-0.651584	0.5305
DAY=4	-0.370015	2.884122	-0.128294	0.8980
DAY=5	-0.710776	2.889221	-0.246009	0.8058
DAY=6	-0.067097	2.879918	-0.023298	0.9814
DAY=7	-2.205165	2.762023	-0.798388	0.4252
DAY=8	-2.867287	2.810902	-1.020059	0.3085
DAY=9	-1.298158	2.800664	-0.463518	0.6433
DAY=10	0.041161	2.899737	0.014195	0.9887
DAY=11	-0.575561	2.918138	-0.197236	0.8438
DAY=12	-1.712460	3.209941	-0.533486	0.5941
DAY=13	-0.365619	2.946183	-0.124099	0.9013
DAY=14	-1.243541	2.791615	-0.445456	0.6563
DAY=15	-0.553797	2.740109	-0.202108	0.8400
DAY=16	-0.562406	2.683641	-0.209568	0.8341
DAY=17	1.729534	2.978896	0.580596	0.5619
DAY=18	-0.085053	2.864721	-0.029690	0.9763
DAY=10 DAY=19	0.065256	2.898913	0.023030	0.9703
DAY=20	1.218739	2.840709	0.429026	0.6682
DAY=21	3.324757	3.113912	1.067711	0.2865
DAY=22	2.720721	3.408863	0.798132	0.4254
DAY=23	0.981550	3.188081	0.307881	0.7584
DAY=24	1.946162	2.981096	0.652834	0.5143
DAY=25	-0.286506	2.839931	-0.100885	0.9197
DAY=26	3.254477	3.434910	0.947471	0.3441
DAY=27	4.651013	3.610683	1.288126	0.1986
DAY=28	0.233785	3.140966	0.074431	0.9407
DAY=29	0.077120	2.591872	0.029755	0.9763
DAY=30	2.059100	2.217020	0.928769	0.3537
DAY=31	1.633952	2.378976	0.686830	0.4927
MONTH="Aug"	17.11494	2.538270	6.742758	0.0000
MONTH="Dec"	13.24234	2.967778	4.462039	0.0000
MONTH="Feb"	1.479279	4.626754	0.319723	0.7494
MONTH="Jan"	-3.809684	3.369163	-1.130751	0.2590
MONTH="July"	8.387672	2.628765	3.190727	0.2330
MONTH="June"	5.079536	2.535112	2.003673	0.0460
MONTH="Mar"	3.639770	3.516544	1.035042	0.3014
MONTH="May"	3.485616	2.716552	1.283103	0.2004
MONTH="Nov"	14.16244	2.789985	5.076169	0.0000
MONTH="Oct"	23.97844	2.635003	9.099966	0.0000
MONTH="Sept"	25.31690	3.054112	8.289448	0.0000
AR(1)	0.588072	0.097084	6.057376	0.0000
R-squared	0.823161	Mean depend	dent var	61.10682
Adjusted R-squared	0.798770	S.D. depende		11.85915
S.E. of regression	5.319859	Akaike info c		6.296061
Sum squared resid	9027.988	Schwarz crite		6.777852
Log likelihood	-1100.883	Hannan-Quir		6.487551
F-statistic	33.74782	Durbin-Watse	on stat	2.135308
Prob(F-statistic)	0.000000			
Inverted AR Roots	.59			

Dependent Variable: PRICE
Method: Least Squares
Sample: 1 365
Included observations: 365
White-Hinkley (HC1) heteroskedasticity consistent standard errors and
covariance

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	20.69207	4.745050	4.360770	0.000
LOAD	0.009350	0.000767	12.19803	0.000
WIND	-0.023875	0.022472	-1.062419	0.288
SOLAR	-0.004319	0.003889	-1.110580	0.267
DAY=2	2.181869	5.058367	0.431339	0.666
DAY=3	-2.378066	3.823751	-0.621920	0.534
DAY=4	-1.136952	3.717226	-0.305860	0.759
DAY=5	-1.834546	3.689112	-0.497287	0.619
DAY=6	-1.248552	3.637932	-0.343204	0.731
DAY=7	-3.417981	3.680884	-0.928576	0.353
DAY=8	-4.064468	3.468813	-1.171717	0.242
DAY=9	-2.501218	3.565798	-0.701447	0.483
DAY=10	-1.223372	3.601632	-0.339672	0.734
DAY=11	-1.743483	3.562268	-0.489430	0.624
DAY=12	-2.957187	3.807574	-0.776659	0.437
DAY=13	-1.538838	3.739428	-0.411517	0.681
DAY=14	-2.430664	3.627411	-0.670082	0.503
DAY=15	-1.530424	3.469931	-0.441053	0.659
DAY=16	-1.611413	3.515660	-0.458353	0.647
DAY=17	0.668382	3.681377	0.181558	0.856
DAY=18	-1.157997	3.473123	-0.333417	0.739
DAY=19	-1.201904	3.651826	-0.329124	0.742
DAY=20	0.051476	3.614645	0.014241	0.988
DAY=21	2.327822	3.808500	0.611217	0.541
DAY=22	1.842493	3.921619	0.469830	0.638
DAY=23	0.000589	3.660248	0.000161	0.999
DAY=24	1.013668	3.649274	0.277772	0.781
DAY=25	-1.056011	3.374995	-0.312893	0.754
DAY=26	2.488092	4.222285	0.589276	0.556
DAY=27	3.995148	5.040373	0.792629	0.428
DAY=28	0.034804	4.146336	0.008394	0.993
DAY=29	-1.856879	3.462108	-0.536344	0.592
DAY=30	0.225344	3.583429	0.062885	0.949
DAY=31	-1.012553	3.820296	-0.265046	0.791
MONTH="Aug"	16.60537	1.152595	14.40695	0.000
MONTH="Dec"	12.92264	1.425741	9.063811	0.000
MONTH="Feb"	2.860553	2.896465	0.987601	0.324
MONTH="Jan"	-3.806934	1.452538	-2.620885	0.009
MONTH="July"	6.826423	1.292918	5.279857	0.000
MONTH="June"	5.434294	1.160564	4.682460	0.000
MONTH="Mar"	3.239703	1.848071	1.753019	0.000
MONTH="May"	3.669153	1.368946	2.680276	0.007
MONTH= May MONTH="Nov"	14.64066	1.437273	10.18642	0.007
MONTH= Nov MONTH="Oct"	24.44869	1.258473	19.42726	0.000
MONTH="Sept"	26.12995	1.444557	18.08856	0.000
R-squared	0.735684	Mean depend	dent var	61.0635
Adjusted R-squared	0.699340	S.D. depende		11.8716
S.E. of regression	6.509508	Akaike info c		6.69940
		Schwarz crite		7.18021
	13559.58		-	
Sum squared resid	13559.58 -1177.641	Hannan-Quir	nn criter.	6.89048
Sum squared resid Log likelihood				
Sum squared resid	-1177.641	Hannan-Quir	on stat	6.89048 0.85232 35.9438

Dependent Variable: PRICE Method: ARMA Conditional Least Squares (Gauss-Newton / Marquardt steps) Sample (adjusted): 2 365 Included observations: 364 after adjustments Convergence achieved after 8 iterations White-Hinkley (HC1) heteroskedasticity consistent standard errors and covariance

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	22.77780	4.584498	4.968439	0.0000
LOAD	0.008812	0.000681	12.94142	0.0000
WIND	-0.040347	0.020013	-2.015996	0.0446
SOLAR	-0.005646	0.002963	-1.905811	0.0576
DAY=2	2.707215	2.824826	0.958365	0.3386
DAY=3	-1.503559	2.738772	-0.548990	0.5834
DAY=4	-0.199309	2.889549	-0.068976	0.9451
DAY=5	-0.859471	2.873337	-0.299120	0.7650
DAY=6	-0.397343	2.870326	-0.138431	0.8900
DAY=7	-2.502673	2.745044	-0.911706	0.3626
DAY=8	-3.081296	2.748169	-1.121218	0.2630
DAY=9	-1.514507	2.766121	-0.547520	0.5844
DAY=10	-0.196230	2.878160	-0.068179	0.9457
DAY=11	-0.790597	2.893749	-0.273209	0.7849
DAY=12	-1.828506	3.155757	-0.579419	0.5627
DAY=13	-0.365162	2.897547	-0.126025	0.8998
DAY=14	-1.417384	2.762808	-0.513023	0.6083
DAY=15	-0.393136	2.729245	-0.144046	0.8856
DAY=16	-0.533867	2.656872	-0.200938	0.8409
DAY=17	1.688649	2.943075	0.573770	0.5665
DAY=18	0.039665	2.845433	0.013940	0.9889
DAY=19	0.022968	2.862304	0.008024	0.9936
DAY=20	1.283677	2.813311	0.456287	0.6485
DAY=21	3.535823	3.065157	1.153554	0.2495
DAY=22	3.002334	3.433101	0.874526	0.3825
DAY=23	1.158933	3.195356	0.362693	0.7171
DAY=24	1.960631	2.974012	0.659255	0.5102
DAY=25	-0.231281	2.856614	-0.080963	0.9355
DAY=26	3.415414	3.391502	1.007051	0.3147
DAY=27	4.619064	3.561300	1.297016	0.1956
DAY=28	0.173261	3.085864	0.056147	0.9553
DAY=29	0.102426	2.556226	0.040069	0.9681
DAY=30	2.070884	2.200231	0.941212	0.3473
DAY=31	1.622464	2.340229	0.693293	0.4886
MONTH="Aug"	16.80461	2.580280	6.512706	0.0000
MONTH="Dec"	13.33236	2.939479	4.535618	0.0000
MONTH="Feb"	1.816831	4.618377	0.393392	0.6943
MONTH="Jan"	-3.871063	3.348423	-1.156085	0.2485
MONTH="July"	7.956160	2.663073	2.987586	0.0030
MONTH="June"	4.694905	2.534458	1.852430	0.0649
MONTH="Mar"	4.094880	3.481584	1.176154	0.2404
MONTH="May"	2.953216	2.768412	1.066755	0.2869
MONTH="Nov"	14.17117	2.752190	5.149055	0.0000
MONTH="Oct"	24.17599	2.590625	9.332104	0.0000
MONTH="Sept"	24.86773	3.081071	8.071132	0.0000
AR(1)	0.593986	0.098730	6.016269	0.0000
R-squared	0.825104	Mean depend	hent var	61.10682
Adjusted R-squared	0.800354	S.D. depende		11.85915
S.E. of regression	5.298874	Akaike info c		6.290511
Sum squared resid	5.296674 8928.826	Schwarz crite		6.783008
Log likelihood	-1098.873	Hannan-Quir		6.486256
F-statistic				
Prob(F-statistic)	33.33822 0.000000	Durbin-Watso	JII SIdl	2.147387
Inverted AR Roots	.59			

Dependent Variable: PRICE
Method: Least Squares
Sample: 1 365
Included observations: 362
White-Hinkley (HC1) heteroskedasticity consistent standard errors and
covariance

DAY=11 1.579903 1.714944 0.921256 0.3576 DAY=12 0.990176 1.730121 0.572316 0.5675 DAY=13 2.058180 1.948699 1.056182 0.2917 DAY=14 0.375362 1.824340 0.205752 0.8371 DAY=15 1.600537 1.586079 1.009116 0.3137 DAY=16 1.275832 1.626553 0.784377 0.4334 DAY=17 3.420169 1.937690 1.765075 0.0785 DAY=18 2.125675 1.581804 1.343829 0.1800 DAY=219 1.951716 1.661909 1.174382 0.2411 DAY=22 3.338745 1.743147 1.915354 0.06852 DAY=21 5.149524 2.040308 2.523896 0.0121 DAY=22 4.173955 2.417002 1.726915 0.852 DAY=23 2.622870 1.817692 1.442967 0.1500 DAY=24 3.563071 1.855358 1.920422 0.0579					
LOAD 0.006582 0.000456 14.44049 0.0000 WIND -0.064595 0.014222 -4.542021 0.0000 SOLAR -0.008102 0.001930 -4.197721 0.0000 GAS_PRICE 1.784382 0.176677 10.09971 0.0000 DAY=2 2.111224 2.322679 0.908961 0.3641 DAY=3 0.036345 1.661973 0.021868 0.9826 DAY=4 2.671215 2.101093 1.271345 0.2046 DAY=5 0.726995 1.543031 0.471147 0.6379 DAY=6 2.321394 1.641521 1.41473 0.1583 DAY=7 0.535510 1.722784 0.310400 0.7561 DAY=8 -0.209501 1.56214 -0.134019 0.8935 DAY=10 2.522666 1.798655 1.402529 0.1617 DAY=11 1.579903 1.714944 0.921756 0.8371 DAY=13 2.068180 1.948699 1.069116 0.337 <td< td=""><td>Variable</td><td>Coefficient</td><td>Std. Error</td><td>t-Statistic</td><td>Prob.</td></td<>	Variable	Coefficient	Std. Error	t-Statistic	Prob.
LOAD 0.006582 0.000456 14.44049 0.0000 WIND -0.064595 0.014222 -4.542021 0.0000 SOLAR -0.008102 0.001930 -4.197721 0.0000 GAS_PRICE 1.784382 0.176677 10.09971 0.0000 DAY=2 2.111224 2.322679 0.908961 0.3641 DAY=3 0.036345 1.661973 0.021868 0.9826 DAY=4 2.671215 2.101093 1.271345 0.2046 DAY=5 0.726995 1.543031 0.471147 0.6379 DAY=6 2.321394 1.641521 1.41473 0.1583 DAY=7 0.535510 1.722784 0.310400 0.7561 DAY=8 -0.209501 1.56214 -0.134019 0.8935 DAY=10 2.522666 1.798655 1.402529 0.1617 DAY=11 1.579903 1.714944 0.921756 0.8371 DAY=13 2.068180 1.948699 1.069116 0.337 <td< td=""><td>C</td><td>-8 779490</td><td>4 452162</td><td>-1 971961</td><td>0 0495</td></td<>	C	-8 779490	4 452162	-1 971961	0 0495
WIND -0.064595 0.014222 -4.542021 0.0000 GAS_PRICE 1.784382 0.176677 10.09971 0.0000 DAY=2 2.111224 2.322679 0.908961 0.3641 DAY=3 0.036345 1.661973 0.021868 0.9826 DAY=4 2.671275 2.101093 1.271345 0.2045 DAY=5 0.726995 1.543031 0.471147 0.6379 DAY=6 2.321394 1.641521 1.414173 0.1583 DAY=7 0.535510 1.722784 0.310840 0.7561 DAY=8 -0.209501 1.563214 -0.134019 0.8935 DAY=9 1.470306 1.622345 0.906285 0.3657 DAY=10 2.522666 1.798655 1.402529 0.1617 DAY=12 0.990176 1.730121 0.572316 0.5675 DAY=13 2.05810 1.948699 1.056182 0.2917 DAY=14 0.37532 1.626533 0.784377 0.4334 <t< td=""><td></td><td></td><td></td><td></td><td></td></t<>					
SOLAR -0.008102 0.001930 -4.197721 0.0000 GAS_PRICE 1.784382 0.176677 10.09971 0.0000 DAY=2 2.11122 2.322679 0.098961 0.3641 DAY=3 0.036345 1.661973 0.021868 0.9826 DAY=4 2.671215 2.101093 1.271345 0.2049 DAY=5 0.726995 1.543031 0.471147 0.6379 DAY=6 2.321394 1.641521 1.414173 0.1583 DAY=7 0.535510 1.722784 0.310840 0.7561 DAY=9 1.470306 1.622345 0.906285 0.3655 DAY=10 2.522666 1.798655 1.402529 0.1617 DAY=11 1.579903 1.714944 0.921752 0.8371 DAY=13 2.068180 1.948699 1.056182 0.2917 DAY=14 0.37562 1.824340 0.205752 0.8371 DAY=15 1.600537 1.586079 1.009116 0.3137 <t< td=""><td></td><td></td><td></td><td></td><td></td></t<>					
GAS_PRICE 1.784382 0.176677 10.09971 0.0000 DAY=2 2.111224 2.322679 0.908961 0.3641 DAY=3 0.036345 1.661973 0.021868 0.9826 DAY=4 2.671215 2.101093 1.271345 0.2045 DAY=5 0.726995 1.543031 0.471147 0.6373 DAY=6 2.321394 1.641521 1.414173 0.1583 DAY=7 0.535510 1.722784 0.310840 0.7561 DAY=8 -0.209501 1.563214 -0.134019 0.8935 DAY=9 1.470306 1.622345 0.906285 0.3655 DAY=10 2.522666 1.798655 1.402529 0.1617 DAY=11 1.579903 1.714944 0.92156 0.6575 DAY=13 2.058180 1.948699 1.056182 0.2917 DAY=15 1.600537 1.586079 1.09116 0.3137 DAY=17 3.420169 1.937690 1.765075 0.07855 <					
DAY=2 2.111224 2.322679 0.908961 0.3641 DAY=3 0.036345 1.661973 0.021688 0.9826 DAY=4 2.671215 2.101093 1.271345 0.2045 DAY=5 0.726995 1.543031 0.471147 0.6379 DAY=6 2.321394 1.641521 1.414173 0.16333 DAY=7 0.535510 1.722784 0.310840 0.7561 DAY=8 -0.209501 1.563214 -0.134019 0.8935 DAY=9 1.470306 1.622345 0.906285 0.3655 DAY=10 2.522666 1.798655 1.402529 0.1617 DAY=12 0.990176 1.730121 0.57752 0.8371 DAY=13 2.058180 1.948699 1.056182 0.2917 DAY=14 0.375362 1.824340 0.205752 0.8371 DAY=15 1.600537 1.586079 1.009116 0.3137 DAY=17 3.42169 1.937690 1.765075 0.784377 0.4334 <					
DAY=3 0.036345 1.661973 0.021868 0.9826 DAY=4 2.671215 2.101093 1.271345 0.2045 DAY=5 0.726995 1.543031 0.471147 0.6379 DAY=6 2.321394 1.641521 1.414173 0.1583 DAY=7 0.535510 1.722784 0.310840 0.7561 DAY=8 -0.209501 1.562314 -0.134019 0.8935 DAY=9 1.470306 1.622345 0.906285 0.3655 DAY=10 2.522666 1.798655 1.402529 0.1617 DAY=11 1.579903 1.714944 0.921256 0.3576 DAY=13 2.058180 1.948699 1.056182 0.2917 DAY=14 0.375362 1.824340 0.205752 0.8371 DAY=15 1.600537 1.581804 1.343829 0.1800 DAY=18 2.125675 1.581804 1.343829 0.2411 DAY=20 3.338745 1.743147 1.915354 0.0563 <t< td=""><td></td><td></td><td></td><td></td><td></td></t<>					
DAY=4 2.671215 2.101093 1.271345 0.2045 DAY=5 0.726995 1.543031 0.471147 0.6379 DAY=6 2.321394 1.641521 1.414173 0.1683 DAY=7 0.535510 1.722784 0.310840 0.7561 DAY=8 -0.209501 1.563214 -0.134019 0.8935 DAY=9 1.470306 1.622345 0.906285 0.3655 DAY=10 2.522666 1.798655 1.402529 0.1617 DAY=11 1.579903 1.714944 0.921256 0.3576 DAY=12 0.90176 1.730121 0.572316 0.5675 DAY=13 2.058180 1.948699 1.056182 0.2917 DAY=14 0.375362 1.824340 0.205752 0.8371 DAY=15 1.600537 1.586079 1.009116 0.3137 DAY=16 1.275822 1.626533 0.784377 0.4334 DAY=21 5.149524 2.040308 2.523896 0.0121 <t< td=""><td></td><td></td><td></td><td></td><td></td></t<>					
DAY=5 0.726995 1.543031 0.471147 0.6379 DAY=6 2.321394 1.641521 1.414173 0.1583 DAY=7 0.535510 1.722784 0.310840 0.7561 DAY=8 -0.209501 1.563214 -0.134019 0.8935 DAY=9 1.470306 1.622345 0.906285 0.3655 DAY=10 2.522666 1.798655 1.402529 0.1617 DAY=11 1.579903 1.714944 0.921256 0.3576 DAY=13 2.058180 1.948699 1.056182 0.2917 DAY=14 0.375362 1.824340 0.205752 0.8371 DAY=15 1.600537 1.586079 1.009116 0.3137 DAY=16 1.275832 1.626553 0.784377 0.4334 DAY=17 3.420169 1.937690 1.765075 0.0812 DAY=20 3.38745 1.743147 1.915354 0.0653 DAY=22 5.149524 2.040308 2.523896 0.0121 <					
DAY=6 2.321394 1.641521 1.414173 0.1583 DAY=7 0.535510 1.722784 0.310840 0.7561 DAY=8 -0.209501 1.563214 -0.134019 0.8935 DAY=9 1.470306 1.622345 0.906285 0.3655 DAY=10 2.522666 1.798655 1.402529 0.1617 DAY=11 1.579903 1.714944 0.92176 0.5675 DAY=12 0.900176 1.730121 0.5752 0.8371 DAY=13 2.058180 1.948699 1.056182 0.2917 DAY=14 0.375362 1.8264340 0.205752 0.8371 DAY=15 1.600537 1.586079 1.009116 0.3137 DAY=18 2.125675 1.581804 1.343829 0.1800 DAY=20 3.38745 1.743147 1.915354 0.0652 DAY=22 4.173955 2.417002 1.726915 0.0852 DAY=23 2.622870 1.817692 1.442967 0.1500 <t< td=""><td></td><td></td><td></td><td></td><td></td></t<>					
DAY=7 0.535510 1.722784 0.310840 0.7561 DAY=8 -0.209501 1.563214 -0.134019 0.8935 DAY=9 1.470306 1.622345 0.906285 0.3655 DAY=10 2.522666 1.798655 1.402529 0.1617 DAY=12 0.990176 1.714944 0.921256 0.3576 DAY=12 0.990176 1.730121 0.572316 0.5675 DAY=14 0.375362 1.824340 0.205752 0.8371 DAY=15 1.600537 1.586079 1.009116 0.3137 DAY=16 1.275832 1.626553 0.784377 0.4334 DAY=17 3.420169 1.937690 1.765075 0.0785 DAY=18 2.125675 1.581804 1.343829 0.1800 DAY=21 5.149524 2.040308 2.523896 0.0121 DAY=22 4.139555 2.417002 1.726915 0.0852 DAY=23 2.622870 1.817692 1.442967 0.1500					
DAY=8 -0.209501 1.563214 -0.134019 0.8935 DAY=9 1.470306 1.622345 0.906285 0.3655 DAY=10 2.522666 1.798655 1.402529 0.1617 DAY=11 1.579903 1.714944 0.921256 0.3576 DAY=12 0.990176 1.730121 0.56182 0.2917 DAY=13 2.058180 1.948699 1.005182 0.2917 DAY=14 0.375362 1.824340 0.205752 0.8371 DAY=15 1.600537 1.586079 1.009116 0.3137 DAY=16 1.275832 1.626553 0.784377 0.4334 DAY=17 3.420169 1.937690 1.765075 0.0785 DAY=18 2.125675 1.581804 1.343829 0.1800 DAY=21 5.149522 2.41703 2.523896 0.0121 DAY=22 4.173955 2.417002 1.726915 0.682 DAY=23 2.622870 1.817692 1.442967 0.1500					
DAY=9 1.470306 1.622345 0.906285 0.3655 DAY=10 2.522666 1.798655 1.402529 0.1617 DAY=11 1.579903 1.714944 0.921256 0.3576 DAY=12 0.990176 1.730121 0.572316 0.5675 DAY=13 2.058180 1.948699 1.056182 0.2917 DAY=14 0.375362 1.824340 0.205752 0.8371 DAY=15 1.600537 1.586079 1.009116 0.3137 DAY=16 1.275832 1.626553 0.784377 0.4334 DAY=17 3.420169 1.937690 1.765075 0.0785 DAY=18 2.125675 1.581804 1.343829 0.1800 DAY=21 5.149524 2.040308 2.523896 0.0121 DAY=22 4.173955 2.417002 1.726915 0.0852 DAY=23 2.622870 1.817692 1.422967 0.1550 DAY=24 3.653071 1.855358 1.920422 0.0557					
DAY=10 2.522666 1.798655 1.402529 0.1617 DAY=11 1.579903 1.714944 0.921256 0.3576 DAY=12 0.990176 1.730121 0.572316 0.5675 DAY=13 2.058180 1.948699 1.056182 0.2977 DAY=14 0.375362 1.824340 0.205752 0.8371 DAY=15 1.600537 1.586079 1.009116 0.3137 DAY=16 1.275832 1.626553 0.784377 0.4334 DAY=17 3.420169 1.937690 1.765075 0.0785 DAY=18 2.125675 1.581804 1.343829 0.1800 DAY=21 5.149524 2.040308 2.523896 0.0121 DAY=22 4.173955 2.417002 1.726915 0.0852 DAY=23 2.622870 1.817692 1.442967 0.1500 DAY=24 3.66071 1.855358 1.920422 0.0557 DAY=25 0.922139 1.660288 0.555409 0.5790					
DAY=11 1.579903 1.714944 0.921256 0.3576 DAY=12 0.990176 1.730121 0.572316 0.5675 DAY=13 2.058180 1.948699 1.056182 0.2917 DAY=14 0.375362 1.824340 0.205752 0.8371 DAY=15 1.600537 1.586079 1.009116 0.3137 DAY=16 1.275832 1.626553 0.784377 0.4334 DAY=17 3.420169 1.937690 1.765075 0.0785 DAY=19 1.951716 1.661909 1.174382 0.2411 DAY=20 3.338745 1.743147 1.915354 0.0563 DAY=21 5.14952 2.417002 1.726915 0.0852 DAY=22 4.173955 2.417002 1.726915 0.0579 DAY=23 2.622870 1.817692 1.442967 0.1500 DAY=24 3.663071 1.855358 1.920422 0.0579 DAY=25 0.922139 1.660288 0.555108 0.4507	DAY=9	1.470306	1.622345	0.906285	0.3655
DAY=12 0.990176 1.730121 0.572316 0.5675 DAY=13 2.058180 1.948699 1.056182 0.2917 DAY=14 0.375362 1.824340 0.205752 0.8371 DAY=15 1.600537 1.586079 1.009116 0.3137 DAY=16 1.275832 1.626553 0.784377 0.4334 DAY=17 3.420169 1.937690 1.765075 0.0785 DAY=18 2.125675 1.581804 1.343829 0.2401 DAY=20 3.338745 1.743147 1.915354 0.0563 DAY=21 5.149524 2.040308 2.523896 0.0121 DAY=22 4.173955 2.417002 1.726915 0.0852 DAY=23 2.622870 1.817692 1.442967 0.1500 DAY=24 3.563071 1.855358 1.920422 0.0577 DAY=25 0.922139 1.660288 0.555409 0.5790 DAY=27 5.065658 2.194117 2.308746 0.0216	DAY=10	2.522666	1.798655	1.402529	0.1617
DAY=13 2.058180 1.948699 1.056182 0.2917 DAY=14 0.375362 1.824340 0.205752 0.8371 DAY=15 1.600537 1.586079 1.009116 0.3137 DAY=16 1.275832 1.626553 0.784377 0.4334 DAY=17 3.420169 1.937690 1.765075 0.0785 DAY=18 2.125675 1.581804 1.343829 0.1800 DAY=19 1.951716 1.661909 1.174382 0.2411 DAY=20 3.338745 1.743147 1.915354 0.0652 DAY=21 5.149524 2.040308 2.523896 0.0121 DAY=22 4.173955 2.417002 1.726915 0.0852 DAY=23 2.622870 1.817692 1.442967 0.1500 DAY=24 3.563071 1.855358 1.920422 0.0579 DAY=25 0.922139 1.660288 0.555409 0.5790 DAY=27 5.065658 2.194117 2.308746 0.0216	DAY=11	1.579903	1.714944	0.921256	0.3576
DAY=14 0.375362 1.824340 0.205752 0.8371 DAY=15 1.600537 1.586079 1.009116 0.3137 DAY=16 1.275832 1.626553 0.784377 0.4334 DAY=17 3.420169 1.937690 1.765075 0.0785 DAY=18 2.125675 1.581804 1.343829 0.1800 DAY=19 1.951716 1.661909 1.174382 0.2411 DAY=20 3.338745 1.743147 1.915354 0.0563 DAY=21 5.149524 2.040308 2.523896 0.0121 DAY=22 4.173955 2.417002 1.726915 0.0852 DAY=23 2.622870 1.817692 1.442967 0.1500 DAY=24 3.563071 1.855358 1.920422 0.0557 DAY=25 0.922139 1.660288 0.555409 0.5790 DAY=26 2.597765 1.840997 1.411064 0.1592 DAY=27 5.065658 2.194117 2.308746 0.0216	DAY=12	0.990176	1.730121	0.572316	0.5675
DAY=14 0.375362 1.824340 0.205752 0.8371 DAY=15 1.600537 1.586079 1.009116 0.3137 DAY=16 1.275832 1.626553 0.784377 0.4334 DAY=17 3.420169 1.937690 1.765075 0.0785 DAY=18 2.125675 1.581804 1.343829 0.1800 DAY=20 3.338745 1.743147 1.915354 0.0663 DAY=21 5.149524 2.040308 2.523896 0.0121 DAY=22 4.173955 2.417002 1.726915 0.0852 DAY=23 2.622870 1.817692 1.442967 0.1500 DAY=24 3.563071 1.855358 1.920422 0.0579 DAY=25 0.922139 1.660288 0.555409 0.5790 DAY=26 2.597765 1.840997 1.411064 0.1592 DAY=27 5.065658 2.194117 2.308746 0.0216 DAY=30 3.408334 1.914182 1.780570 0.0759	DAY=13	2.058180	1.948699	1.056182	0.2917
DAY=15 1.600537 1.586079 1.009116 0.3137 DAY=16 1.275832 1.626553 0.784377 0.4334 DAY=17 3.420169 1.937690 1.765075 0.0785 DAY=18 2.125675 1.581804 1.343829 0.1800 DAY=19 1.951716 1.661909 1.174382 0.2411 DAY=20 3.338745 1.743147 1.915354 0.0563 DAY=21 5.149524 2.040308 2.523896 0.0121 DAY=22 4.173955 2.417002 1.726915 0.0852 DAY=23 2.622870 1.817692 1.442967 0.1500 DAY=24 3.563071 1.855358 1.920422 0.0557 DAY=25 0.922139 1.660288 0.555409 0.5790 DAY=26 2.597765 1.840997 1.411064 0.1592 DAY=27 5.065658 2.194117 2.308746 0.0216 DAY=30 3.408334 1.914182 1.780570 0.0759	DAY=14	0.375362	1.824340		0.8371
DAY=16 1.275832 1.626553 0.784377 0.4334 DAY=17 3.420169 1.937690 1.765075 0.0785 DAY=18 2.125675 1.581804 1.343829 0.1800 DAY=19 1.951716 1.661909 1.174382 0.2411 DAY=20 3.338745 1.743147 1.915354 0.0563 DAY=21 5.149524 2.040308 2.523896 0.0121 DAY=22 4.173955 2.417002 1.726915 0.0852 DAY=23 2.622870 1.817692 1.442967 0.1500 DAY=24 3.563071 1.855358 1.920422 0.0577 DAY=25 0.922139 1.660288 0.555409 0.5790 DAY=27 5.065658 2.194117 2.308746 0.0216 DAY=28 1.404335 1.859780 0.755108 0.4507 DAY=29 1.550846 1.667222 0.930198 0.3530 DAY=31 2.448403 1.746512 1.401881 0.1619					
DAY=17 3.420169 1.937690 1.765075 0.0785 DAY=18 2.125675 1.581804 1.343829 0.1800 DAY=19 1.951716 1.661909 1.174382 0.2411 DAY=20 3.338745 1.743147 1.915354 0.0653 DAY=21 5.1495524 2.040308 2.523896 0.0121 DAY=22 4.173955 2.417002 1.726915 0.0852 DAY=23 2.622870 1.817692 1.442967 0.1500 DAY=24 3.563071 1.855358 1.920422 0.0579 DAY=25 0.922139 1.660288 0.555409 0.5790 DAY=26 2.597765 1.840997 1.411064 0.1592 DAY=27 5.065658 2.194117 2.308746 0.0216 DAY=28 1.404335 1.86572 0.930198 0.3530 DAY=30 3.408334 1.914182 1.780570 0.0759 DAY=31 2.448403 1.746512 1.401881 0.1619					
DAY=18 2.125675 1.581804 1.343829 0.1800 DAY=19 1.951716 1.661909 1.174382 0.2411 DAY=20 3.338745 1.743147 1.915354 0.0563 DAY=21 5.149524 2.040308 2.523896 0.0121 DAY=22 4.173955 2.417002 1.726915 0.0852 DAY=23 2.622870 1.817692 1.442967 0.1500 DAY=24 3.563071 1.855358 1.920422 0.0557 DAY=25 0.922139 1.660288 0.555409 0.5790 DAY=26 2.597765 1.840997 1.411064 0.1592 DAY=27 5.065658 2.194117 2.308746 0.0216 DAY=28 1.404335 1.859780 0.755108 0.4507 DAY=29 1.550846 1.667222 0.930198 0.3530 DAY=30 3.408334 1.914182 1.780570 0.0759 DAY=31 2.448403 1.746512 1.401881 0.1619	-				
DAY=19 1.951716 1.661909 1.174382 0.2411 DAY=20 3.338745 1.743147 1.915354 0.0563 DAY=21 5.149524 2.040308 2.523896 0.0121 DAY=22 4.173955 2.417002 1.726915 0.0852 DAY=23 2.622870 1.817692 1.442967 0.1500 DAY=24 3.563071 1.855358 1.920422 0.0557 DAY=25 0.922139 1.660288 0.555409 0.5790 DAY=26 2.597765 1.840997 1.411064 0.1592 DAY=28 1.404335 1.859780 0.755108 0.4507 DAY=29 1.550846 1.667222 0.930198 0.3530 DAY=30 3.408334 1.914182 1.780570 0.0759 DAY=31 2.448403 1.746512 1.401881 0.1619 MONTH="Aug" 10.82999 1.159441 9.340698 0.0000 MONTH="Jun" 2.746083 1.382657 1.986091 0.0479					
DAY=20 3.338745 1.743147 1.915354 0.0563 DAY=21 5.149524 2.040308 2.523896 0.0121 DAY=22 4.173955 2.417002 1.726915 0.0852 DAY=23 2.622870 1.817692 1.442967 0.1500 DAY=24 3.563071 1.855358 1.920422 0.0557 DAY=25 0.922139 1.660288 0.555409 0.5790 DAY=26 2.597765 1.840997 1.411064 0.1592 DAY=28 1.404335 1.859780 0.755108 0.4507 DAY=29 1.550846 1.667222 0.930198 0.3530 DAY=30 3.408334 1.914182 1.780570 0.0759 DAY=31 2.448403 1.746512 1.401881 0.1619 MONTH="Aug" 10.82999 1.159441 9.340698 0.0000 MONTH="July" 4.382971 1.164540 3.763693 0.0002 MONTH="July" 4.382971 1.164540 3.763693 0.0002 <td></td> <td></td> <td></td> <td></td> <td></td>					
DAY=21 5.149524 2.040308 2.523896 0.0121 DAY=22 4.173955 2.417002 1.726915 0.0852 DAY=23 2.622870 1.817692 1.442967 0.1500 DAY=24 3.563071 1.855358 1.920422 0.0557 DAY=25 0.922139 1.660288 0.555409 0.5790 DAY=26 2.597765 1.840997 1.411064 0.1592 DAY=27 5.065658 2.194117 2.308746 0.0216 DAY=28 1.404335 1.859780 0.755108 0.4507 DAY=29 1.550846 1.667222 0.930198 0.3530 DAY=31 2.448403 1.746512 1.401881 0.1619 MONTH="Aug" 10.82999 1.159441 9.340698 0.0000 MONTH="Dec" 6.936666 1.261754 5.497636 0.0000 MONTH="Jan" 0.170579 1.271007 0.134207 0.8933 MONTH="June" 2.934615 1.066527 2.751562 0.0063					
DAY=22 4.173955 2.417002 1.726915 0.0852 DAY=23 2.622870 1.817692 1.442967 0.1500 DAY=24 3.563071 1.855358 1.920422 0.0557 DAY=25 0.922139 1.660288 0.555409 0.5790 DAY=26 2.597765 1.840997 1.411064 0.1592 DAY=27 5.065658 2.194117 2.308746 0.0216 DAY=28 1.404335 1.859780 0.755108 0.4507 DAY=29 1.550846 1.667222 0.930198 0.3530 DAY=30 3.408334 1.914182 1.780570 0.0759 DAY=31 2.448403 1.746512 1.401881 0.1619 MONTH="Aug" 10.82999 1.159441 9.340698 0.0000 MONTH="Dec" 6.936666 1.261754 5.497636 0.0000 MONTH="Jan" 0.170579 1.271007 0.134207 0.8933 MONTH="June" 2.934615 1.066527 2.751562 0.0063			-		
DAY=23 2.622870 1.817692 1.442967 0.1500 DAY=24 3.563071 1.855358 1.920422 0.0557 DAY=25 0.922139 1.660288 0.555409 0.5790 DAY=26 2.597765 1.840997 1.411064 0.1592 DAY=27 5.065658 2.194117 2.308746 0.0216 DAY=28 1.404335 1.859780 0.755108 0.4507 DAY=29 1.550846 1.667222 0.930198 0.3530 DAY=30 3.408334 1.914182 1.780570 0.0759 DAY=31 2.448403 1.746512 1.401881 0.1619 MONTH="Aug" 10.82999 1.159441 9.340698 0.0000 MONTH="Feb" 2.746083 1.382657 1.986091 0.0479 MONTH="Jun" 2.934615 1.066527 2.751562 0.0063 MONTH="June" 2.934615 1.066527 2.751562 0.0003 MONTH="Mar" 2.154660 1.085044 1.985781 0.479					
DAY=24 3.563071 1.855358 1.920422 0.0557 DAY=25 0.922139 1.660288 0.555409 0.5790 DAY=26 2.597765 1.840997 1.411064 0.1592 DAY=27 5.065658 2.194117 2.308746 0.0216 DAY=28 1.404335 1.859780 0.755108 0.4507 DAY=29 1.550846 1.667222 0.930198 0.3530 DAY=30 3.408334 1.914182 1.780570 0.0759 DAY=31 2.448403 1.746512 1.401881 0.1619 MONTH="Aug" 10.82999 1.159441 9.340698 0.0000 MONTH="Dec" 6.936666 1.261754 5.497636 0.0000 MONTH="Jan" 0.170579 1.271007 0.134207 0.8933 MONTH="Jan" 0.170579 1.271007 0.134207 0.8933 MONTH="Jan" 2.154660 1.085044 1.985781 0.0479 MONTH="Mar" 2.154660 1.085044 1.985781 0.0479					
DAY=25 0.922139 1.660288 0.555409 0.5790 DAY=26 2.597765 1.840997 1.411064 0.1592 DAY=27 5.065658 2.194117 2.308746 0.0216 DAY=28 1.404335 1.859780 0.755108 0.4507 DAY=29 1.550846 1.667222 0.930198 0.3530 DAY=30 3.408334 1.914182 1.780570 0.0759 DAY=31 2.448403 1.746512 1.401881 0.1619 MONTH="Aug" 10.82999 1.159441 9.340698 0.0000 MONTH="Jan" 0.170579 1.271007 0.134207 0.8933 MONTH="Jan" 0.170579 1.271007 0.134207 0.8933 MONTH="June" 2.934615 1.066527 2.751562 0.0063 MONTH="Mar" 2.154660 1.085044 1.985781 0.0479 MONTH="May" 0.628989 1.237807 0.508148 0.6117 MONTH="Nov" 9.615500 1.299899 7.397111					
DAY=26 2.597765 1.840997 1.411064 0.1592 DAY=27 5.065658 2.194117 2.308746 0.0216 DAY=28 1.404335 1.859780 0.755108 0.4507 DAY=29 1.550846 1.667222 0.930198 0.3530 DAY=30 3.408334 1.914182 1.780570 0.0759 DAY=31 2.448403 1.746512 1.401881 0.1619 MONTH="Aug" 10.82999 1.159441 9.340698 0.0000 MONTH="Dec" 6.936666 1.261754 5.497636 0.0000 MONTH="Jan" 0.170579 1.271007 0.134207 0.8933 MONTH="June" 2.934615 1.066527 2.751562 0.0063 MONTH="Mar" 2.154660 1.085044 1.985781 0.0479 MONTH="Mar" 2.154660 1.085044 1.985781 0.0479 MONTH="Mar" 2.154660 1.085044 1.985781 0.0479 MONTH="Mar" 2.154660 1.299899 7.397111					
DAY=27 5.065658 2.194117 2.308746 0.0216 DAY=28 1.404335 1.859780 0.755108 0.4507 DAY=29 1.550846 1.667222 0.930198 0.3530 DAY=30 3.408334 1.914182 1.780570 0.0759 DAY=31 2.448403 1.746512 1.401881 0.1619 MONTH="Aug" 10.82999 1.159441 9.340698 0.0000 MONTH="Dec" 6.936666 1.261754 5.497636 0.0000 MONTH="Feb" 2.746083 1.382657 1.986091 0.0479 MONTH="Jan" 0.170579 1.271007 0.134207 0.8933 MONTH="June" 2.934615 1.066527 2.751562 0.0063 MONTH="Mar" 2.154660 1.085044 1.985781 0.0479 MONTH="Mar" 2.154660 1.299899 7.397111 0.0000 MONTH="Mar" 2.154660 1.299899 7.397111 0.0000 MONTH="Sept" 13.90460 1.744870 7.968846					
DAY=28 1.404335 1.859780 0.755108 0.4507 DAY=29 1.550846 1.667222 0.930198 0.3530 DAY=30 3.408334 1.914182 1.780570 0.0759 DAY=31 2.448403 1.746512 1.401881 0.1619 MONTH="Aug" 10.82999 1.159441 9.340698 0.0000 MONTH="Dec" 6.936666 1.261754 5.497636 0.0000 MONTH="Feb" 2.746083 1.382657 1.986091 0.0479 MONTH="Jan" 0.170579 1.271007 0.134207 0.8933 MONTH="July" 4.382971 1.164540 3.763693 0.0002 MONTH="Mar" 2.154660 1.085044 1.985781 0.0479 MONTH="Mar" 2.154660 1.085044 1.985781 0.0479 MONTH="Mar" 2.154660 1.085044 1.985781 0.0479 MONTH="Mar" 2.154660 1.299899 7.397111 0.0000 MONTH="Sept" 13.90460 1.744870 7.968846 </td <td></td> <td></td> <td></td> <td></td> <td></td>					
DAY=29 1.550846 1.667222 0.930198 0.3530 DAY=30 3.408334 1.914182 1.780570 0.0759 DAY=31 2.448403 1.746512 1.401881 0.1619 MONTH="Aug" 10.82999 1.159441 9.340698 0.0000 MONTH="Dec" 6.936666 1.261754 5.497636 0.0000 MONTH="Feb" 2.746083 1.382657 1.986091 0.0479 MONTH="Jan" 0.170579 1.271007 0.134207 0.8933 MONTH="July" 4.382971 1.164540 3.763693 0.0002 MONTH="June" 2.934615 1.066527 2.751562 0.0063 MONTH="Mar" 2.154660 1.085044 1.985781 0.0479 MONTH="Mar" 2.154660 1.085044 1.985781 0.0479 MONTH="Mar" 2.154660 1.299899 7.397111 0.0000 MONTH="Nov" 9.615500 1.299899 7.397111 0.0000 MONTH="Sept" 13.90460 1.744870 7.96					
DAY=30 3.408334 1.914182 1.780570 0.0759 DAY=31 2.448403 1.746512 1.401881 0.1619 MONTH="Aug" 10.82999 1.159441 9.340698 0.0000 MONTH="Dec" 6.936666 1.261754 5.497636 0.0000 MONTH="Feb" 2.746083 1.382657 1.986091 0.0479 MONTH="Jan" 0.170579 1.271007 0.134207 0.8933 MONTH="July" 4.382971 1.164540 3.763693 0.0002 MONTH="June" 2.934615 1.066527 2.751562 0.0063 MONTH="Mar" 2.154660 1.085044 1.985781 0.0479 MONTH="Mar" 2.154660 1.085044 1.985781 0.0479 MONTH="Mar" 0.628989 1.237807 0.508148 0.6117 MONTH="Nov" 9.615500 1.299899 7.397111 0.0000 MONTH="Sept" 13.90460 1.744870 7.968846 0.0000 MONTH="Sept" 13.90460 1.744870 <t< td=""><td></td><td></td><td></td><td></td><td></td></t<>					
DAY=31 2.448403 1.746512 1.401881 0.1619 MONTH="Aug" 10.82999 1.159441 9.340698 0.0000 MONTH="Dec" 6.936666 1.261754 5.497636 0.0000 MONTH="Feb" 2.746083 1.382657 1.986091 0.0479 MONTH="Jan" 0.170579 1.271007 0.134207 0.8933 MONTH="July" 4.382971 1.164540 3.763693 0.0002 MONTH="July" 4.382971 1.164540 3.763693 0.0022 MONTH="Mar" 2.154660 1.085044 1.985781 0.0479 MONTH="Mar" 2.154660 1.085044 1.985781 0.0479 MONTH="Mar" 0.628989 1.237807 0.508148 0.6117 MONTH="Nov" 9.615500 1.299899 7.397111 0.0000 MONTH="Nov" 9.615500 1.299899 7.397111 0.0000 MONTH="Sept" 13.90460 1.744870 7.968846 0.0000 MONTH="Sept" 13.90460 1.744870					
MONTH="Aug" 10.82999 1.159441 9.340698 0.0000 MONTH="Dec" 6.936666 1.261754 5.497636 0.0000 MONTH="Feb" 2.746083 1.382657 1.986091 0.0479 MONTH="Jan" 0.170579 1.271007 0.134207 0.8933 MONTH="July" 4.382971 1.164540 3.763693 0.0002 MONTH="June" 2.934615 1.066527 2.751562 0.0063 MONTH="Mar" 2.154660 1.085044 1.985781 0.0479 MONTH="Mar" 2.154660 1.085044 1.985781 0.0479 MONTH="Mar" 0.628989 1.237807 0.508148 0.6117 MONTH="Nov" 9.615500 1.299899 7.397111 0.0000 MONTH="Cot" 15.75292 1.362331 11.56321 0.0000 MONTH="Sept" 13.90460 1.744870 7.968846 0.0000 MONTH="Sept" 13.90460 1.744870 7.968846 0.0000 S.E. of regression 4.123434 Akaike					
MONTH="Dec" 6.936666 1.261754 5.497636 0.0000 MONTH="Feb" 2.746083 1.382657 1.986091 0.0479 MONTH="Jan" 0.170579 1.271007 0.134207 0.8933 MONTH="July" 4.382971 1.164540 3.763693 0.0002 MONTH="July" 4.382971 1.164540 3.763693 0.0002 MONTH="June" 2.934615 1.066527 2.751562 0.0063 MONTH="Mar" 2.154660 1.085044 1.985781 0.0479 MONTH="Mar" 2.154660 1.085044 1.985781 0.0479 MONTH="Mar" 0.628989 1.237807 0.508148 0.6117 MONTH="Nov" 9.615500 1.299899 7.397111 0.0000 MONTH="Nov" 9.615500 1.299899 7.397111 0.0000 MONTH="Ct" 15.75292 1.362331 11.56321 0.0000 MONTH="Sept" 13.90460 1.744870 7.968846 0.0000 S.E. of regression 4.123434 Akaike i					
MONTH="Feb" 2.746083 1.382657 1.986091 0.0479 MONTH="Jan" 0.170579 1.271007 0.134207 0.8933 MONTH="July" 4.382971 1.164540 3.763693 0.0002 MONTH="July" 4.382971 1.164540 3.763693 0.0002 MONTH="June" 2.934615 1.066527 2.751562 0.0063 MONTH="Mar" 2.154660 1.085044 1.985781 0.0479 MONTH="Mar" 2.154660 1.085044 1.985781 0.0479 MONTH="Mar" 0.628989 1.237807 0.508148 0.6117 MONTH="Nov" 9.615500 1.299899 7.397111 0.0000 MONTH="Ct" 15.75292 1.362331 11.56321 0.0000 MONTH="Sept" 13.90460 1.744870 7.968846 0.0000 MONTH="Sept" 13.90460 1.744870 7.968846 0.0000 S.E. of regression 4.123434 Akaike info criterion 5.789491 Sum squared resid 5372.856 Schwarz crit					
MONTH="Jan" 0.170579 1.271007 0.134207 0.8933 MONTH="July" 4.382971 1.164540 3.763693 0.0002 MONTH="June" 2.934615 1.066527 2.751562 0.0063 MONTH="Mar" 2.154660 1.085044 1.985781 0.0479 MONTH="Mar" 2.154660 1.299899 7.397111 0.0000 MONTH="Nov" 9.615500 1.299899 7.397111 0.0000 MONTH="Ct" 15.75292 1.362331 11.56321 0.0000 MONTH="Sept" 13.90460 1.744870 7.968846 0.0000 MONTH="Sept" 13.90460 1.744870 7.968846 0.0000 R-squared 0.893896 Mean dependent var 61.17761 Adjusted R-squared 0.878787 S.D. dependent var 11.84360 S.E. of regression 4.123434 Akaike info criterion 5.789491 Sum squared resid 5372.856 Schwarz criterion 6.284010 Log likelihood -1001.898 Hannan-Quinn criter. 5.986081<					
MONTH="July" 4.382971 1.164540 3.763693 0.0002 MONTH="June" 2.934615 1.066527 2.751562 0.0063 MONTH="Mar" 2.154660 1.085044 1.985781 0.0479 MONTH="Mar" 0.628989 1.237807 0.508148 0.6117 MONTH="Nov" 9.615500 1.299899 7.397111 0.0000 MONTH="Ct" 15.75292 1.362331 11.56321 0.0000 MONTH="Sept" 13.90460 1.744870 7.968846 0.0000 R-squared 0.893896 Mean dependent var 61.17761 Adjusted R-squared 0.878787 S.D. dependent var 11.84360 S.E. of regression 4.123434 Akaike info criterion 5.789491 Sum squared resid 5372.856 Schwarz criterion 6.284010 Log likelihood -1001.898 Hannan-Quinn criter. 5.986081 F-statistic 59.16041 Durbin-Watson stat 1.657490 Prob(F-statistic) 0.00000 Wald F-statistic 61.51888					
MONTH="June" 2.934615 1.066527 2.751562 0.0063 MONTH="Mar" 2.154660 1.085044 1.985781 0.0479 MONTH="Mar" 0.628989 1.237807 0.508148 0.6117 MONTH="Nov" 9.615500 1.299899 7.397111 0.0000 MONTH="Ct" 15.75292 1.362331 11.56321 0.0000 MONTH="Sept" 13.90460 1.744870 7.968846 0.0000 R-squared 0.893896 Mean dependent var 61.17761 Adjusted R-squared 0.878787 S.D. dependent var 11.84360 S.E. of regression 4.123434 Akaike info criterion 5.789491 Sum squared resid 5372.856 Schwarz criterion 6.284010 Log likelihood -1001.898 Hannan-Quinn criter. 5.986081 F-statistic 59.16041 Durbin-Watson stat 1.657490 Prob(F-statistic) 0.00000 Wald F-statistic 61.51888		0.170579			0.8933
MONTH="Mar" 2.154660 1.085044 1.985781 0.0479 MONTH="May" 0.628989 1.237807 0.508148 0.6117 MONTH="Nov" 9.615500 1.299899 7.397111 0.0000 MONTH="Oct" 15.75292 1.362331 11.56321 0.0000 MONTH="Sept" 13.90460 1.744870 7.968846 0.0000 R-squared 0.893896 Mean dependent var 61.17761 Adjusted R-squared 0.878787 S.D. dependent var 11.84360 S.E. of regression 4.123434 Akaike info criterion 5.789491 Sum squared resid 5372.856 Schwarz criterion 6.284010 Log likelihood -1001.898 Hannan-Quinn criter. 5.986081 F-statistic 59.16041 Durbin-Watson stat 1.657490 Prob(F-statistic) 0.00000 Wald F-statistic 61.51888					0.0002
MONTH="May" 0.628989 1.237807 0.508148 0.6117 MONTH="Nov" 9.615500 1.299899 7.397111 0.0000 MONTH="Oct" 15.75292 1.362331 11.56321 0.0000 MONTH="Sept" 13.90460 1.744870 7.968846 0.0000 R-squared 0.893896 Mean dependent var 61.17761 Adjusted R-squared 0.878787 S.D. dependent var 11.84360 S.E. of regression 4.123434 Akaike info criterion 5.789491 Sum squared resid 5372.856 Schwarz criterion 6.284010 Log likelihood -1001.898 Hannan-Quinn criter. 5.986081 F-statistic 59.16041 Durbin-Watson stat 1.657490 Prob(F-statistic) 0.00000 Wald F-statistic 61.51888	MONTH="June"	2.934615	1.066527	2.751562	0.0063
MONTH="Nov" 9.615500 1.299899 7.397111 0.0000 MONTH="Oct" 15.75292 1.362331 11.56321 0.0000 MONTH="Sept" 13.90460 1.744870 7.968846 0.0000 R-squared 0.893896 Mean dependent var 61.17761 Adjusted R-squared 0.878787 S.D. dependent var 11.84360 S.E. of regression 4.123434 Akaike info criterion 5.789491 Sum squared resid 5372.856 Schwarz criterion 6.284010 Log likelihood -1001.898 Hannan-Quinn criter. 5.986081 F-statistic 59.16041 Durbin-Watson stat 1.657490 Prob(F-statistic) 0.00000 Wald F-statistic 61.51888	MONTH="Mar"	2.154660	1.085044	1.985781	0.0479
MONTH="Nov" 9.615500 1.299899 7.397111 0.0000 MONTH="Oct" 15.75292 1.362331 11.56321 0.0000 MONTH="Sept" 13.90460 1.744870 7.968846 0.0000 R-squared 0.893896 Mean dependent var 61.17761 Adjusted R-squared 0.878787 S.D. dependent var 11.84360 S.E. of regression 4.123434 Akaike info criterion 5.789491 Sum squared resid 5372.856 Schwarz criterion 6.284010 Log likelihood -1001.898 Hannan-Quinn criter. 5.986081 F-statistic 59.16041 Durbin-Watson stat 1.657490 Prob(F-statistic) 0.00000 Wald F-statistic 61.51888	MONTH="May"	0.628989	1.237807	0.508148	0.6117
MONTH="Oct" MONTH="Sept" 15.75292 1.362331 11.56321 0.0000 R-squared 0.893896 Mean dependent var 61.17761 Adjusted R-squared 0.878787 S.D. dependent var 11.84360 S.E. of regression 4.123434 Akaike info criterion 5.789491 Sum squared resid 5372.856 Schwarz criterion 6.284010 Log likelihood -1001.898 Hannan-Quinn criter. 5.986081 F-statistic 59.16041 Durbin-Watson stat 1.657490 Prob(F-statistic) 0.00000 Wald F-statistic 61.51888					0.0000
MONTH="Sept" 13.90460 1.744870 7.968846 0.0000 R-squared 0.893896 Mean dependent var 61.17761 Adjusted R-squared 0.878787 S.D. dependent var 11.84360 S.E. of regression 4.123434 Akaike info criterion 5.789491 Sum squared resid 5372.856 Schwarz criterion 6.284010 Log likelihood -1001.898 Hannan-Quinn criter. 5.986081 F-statistic 59.16041 Durbin-Watson stat 1.657490 Prob(F-statistic) 0.000000 Wald F-statistic 61.51888					0.0000
Adjusted R-squared 0.878787 S.D. dependent var 11.84360 S.E. of regression 4.123434 Akaike info criterion 5.789491 Sum squared resid 5372.856 Schwarz criterion 6.284010 Log likelihood -1001.898 Hannan-Quinn criter. 5.986081 F-statistic 59.16041 Durbin-Watson stat 1.657490 Prob(F-statistic) 0.00000 Wald F-statistic 61.51888	MONTH="Sept"				0.0000
Adjusted R-squared 0.878787 S.D. dependent var 11.84360 S.E. of regression 4.123434 Akaike info criterion 5.789491 Sum squared resid 5372.856 Schwarz criterion 6.284010 Log likelihood -1001.898 Hannan-Quinn criter. 5.986081 F-statistic 59.16041 Durbin-Watson stat 1.657490 Prob(F-statistic) 0.00000 Wald F-statistic 61.51888	R-squared	0.893896	Mean depend	dent var	61.17761
S.E. of regression4.123434Akaike info criterion5.789491Sum squared resid5372.856Schwarz criterion6.284010Log likelihood-1001.898Hannan-Quinn criter.5.986081F-statistic59.16041Durbin-Watson stat1.657490Prob(F-statistic)0.000000Wald F-statistic61.51888					11.84360
Sum squared resid5372.856Schwarz criterion6.284010Log likelihood-1001.898Hannan-Quinn criter.5.986081F-statistic59.16041Durbin-Watson stat1.657490Prob(F-statistic)0.000000Wald F-statistic61.51888		4.123434			
Log likelihood -1001.898 Hannan-Quinn criter. 5.986081 F-statistic 59.16041 Durbin-Watson stat 1.657490 Prob(F-statistic) 0.00000 Wald F-statistic 61.51888					
F-statistic59.16041Durbin-Watson stat1.657490Prob(F-statistic)0.000000Wald F-statistic61.51888					
Prob(F-statistic) 0.000000 Wald F-statistic 61.51888					
					51.01000
		0.00000			

Dependent Variable: PRICE Method: ARMA Conditional Least Squares (Gauss-Newton / Marquardt steps) Sample (adjusted): 4 365 Included observations: 358 after adjustments Convergence achieved after 5 iterations White-Hinkley (HC1) heteroskedasticity consistent standard errors and covariance

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	-8.655460	4.769751	-1.814657	0.0705
LOAD	0.006648	0.000502	13.24698	0.0000
WIND	-0.064743	0.014879	-4.351371	0.0000
SOLAR	-0.007684	0.001912	-4.017984	0.0001
GAS_PRICE	1.738622	0.191094	9.098276	0.0000
DAY=2	2.422126	2.197224	1.102357	0.2712
DAY=3	-0.067021	1.646774	-0.040698	0.9676
DAY=4	2.114124	2.141298	0.987310	0.3243
DAY=5	0.804636	1.556459	0.516966	0.6055
DAY=6	2.476079	1.641828	1.508123	0.1325
DAY=7	0.683485	1.680478	0.406721	0.6845
DAY=8	-0.069695	1.588436	-0.043876	0.9650
DAY=9	1.615248	1.645048	0.981885	0.3269
DAY=10	2.653152	1.816419	1.460650	0.1451
DAY=11	1.746726	1.776545	0.983215	0.3263
DAY=12 DAY=13	1.146913	1.794908 1.894578	0.638981 1.169244	0.5233
DAY=13 DAY=14	2.215223 0.544018	1.749959	0.310875	0.2432 0.7561
DAY=14 DAY=15	1.772895	1.591552	1.113941	0.2662
DAY=15 DAY=16	1.469227	1.604919	0.915453	0.2002
DAY=10 DAY=17	3.617326	1.954130	1.851119	0.0651
DAY=18	2.292308	1.598321	1.434198	0.1525
DAY=10	2.125361	1.648168	1.289530	0.1923
DAY=20	3.504359	1.747911	2.004884	0.0458
DAY=21	5.329674	2.041715	2.610391	0.0095
DAY=22	4.386038	2.412898	1.817747	0.0701
DAY=23	2.807797	1.744528	1.609488	0.1085
DAY=24	3.746817	1.834500	2.042419	0.0420
DAY=25	1.113950	1.693653	0.657721	0.5112
DAY=26	2.829150	1.782448	1.587227	0.1135
DAY=27	5.258297	2.301963	2.284266	0.0230
DAY=28	1.602617	1.821840	0.879669	0.3797
DAY=29	1.829275	1.631224	1.121413	0.2630
DAY=30	3.977466	1.859303	2.139224	0.0332
DAY=31	2.619102	1.722723	1.520327	0.1294
MONTH="Aug"	11.23438	1.309821	8.577033	0.0000
MONTH="Dec"	7.534350	1.432153	5.260856	0.0000
MONTH="Feb"	3.140443	1.642612	1.911859	0.0568
MONTH="Jan"	0.342164	1.465240	0.233521	0.8155
MONTH="July"	4.751600	1.324372	3.587814	0.0004
MONTH="June"	3.197890	1.218646	2.624133	0.0091
MONTH="Mar"	2.549364	1.245275	2.047230	0.0415
MONTH="May"	0.992067	1.427487	0.694975	0.4876
MONTH="Nov"	10.04978	1.455474	6.904812	0.0000
MONTH="Oct"	16.30181	1.513397	10.77167	0.0000
MONTH="Sept"	14.45223	1.901102	7.602026	0.0000
AR(1)	0.158790	0.066743	2.379122	0.0180
R-squared	0.897850	Mean depend	dent var	61.29230
Adjusted R-squared	0.882741	S.D. depende		11.84535
S.E. of regression	4.056210	Akaike info c		5.760205
Sum squared resid	5116.832	Schwarz crite		6.269660
Log likelihood	-984.0766	Hannan-Quir		5.962816
F-statistic	59.42504	Durbin-Watso		1.954687
Prob(F-statistic)	0.000000			

TEST ON THE RESIDUALS

Breusch-Godfrey Serial Correlation LM Test:

F-statistic	0.062895	Prob. F(2,309)	0.9391
Obs*R-squared	0.145677	Prob. Chi-Square(2)	0.9298

Test Equation: Dependent Variable: RESID Method: Least Squares Date: 03/25/20 Time: 12:33 Sample: 4 365 Included observations: 358 Coefficient covariance computed using outer product of gradients Presample and interior missing value lagged residuals set to zero.

·				
Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	-0.008257	2.769080	-0.002982	0.9976
LOAD	-6.23E-06	0.000504	-0.012362	0.9901
WIND	-2.25E-05	0.013867	-0.001621	0.9987
SOLAR	-7.62E-05	0.001862	-0.040926	0.9674
GAS_PRICE	0.004638	0.092368	0.050214	0.9600
DAY=2	-0.026814	1.617511	-0.016577	0.9868
DAY=3	0.012450	1.788199	0.006963	0.9944
DAY=4	0.013831	1.791941	0.007718	0.9938
DAY=5	0.048022	1.779387	0.026988	0.9785
DAY=6	0.011656	1.747746	0.006669	0.9947
DAY=7	0.002553	1.745632	0.001463	0.9988
DAY=8	0.002160	1.748196	0.001236	0.9990
DAY=9	0.000259	1.745478	0.000149	0.9999
DAY=10	0.003487	1.756621	0.001985	0.9984
DAY=11	-0.002642	1.738587	-0.001520	0.9988
DAY=12	-0.001648	1.748661	-0.000943	0.9992
DAY=13	-0.000359	1.748380	-0.000205	0.9998
DAY=14	-0.001530	1.742293	-0.000878	0.9993
DAY=15	-0.001645	1.741292	-0.000945	0.9992
DAY=16	-0.005758	1.733262	-0.003322	0.9974
DAY=17	-0.006487	1.731409	-0.003746	0.9970
DAY=18	-0.000973	1.746335	-0.000557	0.9996
DAY=19	-0.002654	1.752462	-0.001514	0.9988
DAY=10 DAY=20	-0.000970	1.751412	-0.000554	0.9996
DAY=20	-0.002137	1.745651	-0.001224	0.9990
DAY=21 DAY=22	-0.006977	1.735298	-0.004021	0.9968
DAY=22	-0.002719	1.744744	-0.001558	0.9988
DAY=23	-0.003088	1.737183	-0.001777	0.9986
DAY=24	-0.003166	1.738776	-0.001821	0.9985
DAY=25	-0.005828	1.753774	-0.001821	0.9985
DAY=20	-0.001840	1.757008	-0.001047	0.9992
DAY=28	-0.006794	1.728934	-0.003930	0.9969
DAY=20	-0.031230	1.809888	-0.017255	0.9862
DAY=29	-0.020983	1.745974	-0.012018	0.9902
DAY=30 DAY=31	-0.046603	1.903527	-0.024482	0.9904
MONTH="Aug"	-0.032123	1.311708	-0.024490	0.9805
MONTH= Aug MONTH="Dec"		1.388037	-0.052992	
MONTH= Dec MONTH="Feb"	-0.073554	1.370592	-0.032992	0.9578
MONTH= Feb MONTH="Jan"	-0.066863	1.407273	-0.048784	0.9611 0.9806
MONTH= Jah MONTH="July"	-0.034284	1.348591	-0.024362	0.9808
	-0.033946	4 007404	0 000 175	
MONTH="June" MONTH="Mar"	-0.030685 -0.027276	1.307181 1.329943	-0.023475 -0.020509	0.9813 0.9837
MONTH= Mar MONTH="May"		1.286691		0.9837
,	-0.041329		-0.032120	
MONTH="Nov"	-0.052652 -0.059786	1.364632	-0.038583 -0.043808	0.9692
MONTH="Oct"		1.364714		0.9651
MONTH="Sept"	-0.055130 -0.068966	1.438197 0.382480	-0.038333 -0.180312	0.9694
AR(1)	-0.000900	0.302400	-0.100312	0.8570

RESID(-1)	0.073870	0.387890	0.190441	0.8491
RESID(-2)	-0.006986	0.087194	-0.080116	0.9362
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.000407 -0.154870 4.068487 5114.750 -984.0038 0.002621 1.000000	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watsc	ent var iterion rion n criter.	4.94E-09 3.785877 5.770971 6.302105 5.982204 1.961790

CENTRAL SOUTH

Dependent Variable: PRICE
Method: Least Squares
Sample: 1 365
Included observations: 365
White-Hinkley (HC1) heteroskedasticity consistent standard errors and
covariance

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	16.13053	5.317372	3.033553	0.0026
LOAD	0.007496	0.000864	8.679216	0.0000
DAY=2	2.472117	5.221624	0.473438	0.6362
DAY=3	-1.005917	4.454011	-0.225845	0.8215
DAY=4	-0.401834	4.347358	-0.092432	0.9264
DAY=5	-0.908697	4.335411	-0.209599	0.8341
DAY=6	-1.563240	4.297933	-0.363719	0.7163
DAY=7	-1.959735	4.347135	-0.450811	0.6524
DAY=8	-3.854116	4.093229	-0.941583	0.3471
DAY=9	-2.339494	4.236365	-0.552241	0.5812
DAY=10	-1.509295	4.330982	-0.348488	0.7277
DAY=11	-1.165865	4.298626	-0.271218	0.7864
DAY=12	-1.862814	4.376617	-0.425629	0.6707
DAY=13	-2.447019	4.262756	-0.574046	0.5663
DAY=14	-2.206039	4.211349	-0.523832	0.6008
DAY=15	-1.435091	4.133641	-0.347174	0.7287
DAY=16	-1.530433	4.169905	-0.367019	0.7138
DAY=17	-1.111028	4.171622	-0.266330	0.7902
DAY=18	-2.042203	4.067051	-0.502134	0.6159
DAY=19	-0.031403	4.227323	-0.007429	0.9941
DAY=20	0.339596	4.244920	0.080000	0.9363
DAY=21	2.249515	4.360911	0.515836	0.6063
DAY=22	1.360098	4.307207	0.315773	0.7524
DAY=23	0.494799	4.318585	0.114574	0.9089
DAY=24	1.525282	4.246205	0.359211	0.7197
DAY=25	-1.551565	4.052245	-0.382890	0.7021
DAY=26	2.779014	4.792430	0.579876	0.5624
DAY=27	2.895062	5.766788	0.502023	0.6160
DAY=28	0.490221	4.725118	0.103748	0.9174
DAY=29	-1.799625	4.078986	-0.441194	0.6594
DAY=30	0.112837	4.129147	0.027327	0.9782
DAY=31	-2.073099	4.818498	-0.430238	0.6673
MONTH="Aug"	14.34079	1.369878	10.46866	0.0000
MONTH="Dec"	10.20643	1.479663	6.897812	0.0000
MONTH="Feb"	-0.693524	2.552597	-0.271694	0.7860
MONTH="Jan"	-6.955656	1.453494	-4.785472	0.0000
MONTH="July"	5.128133	1.439109	3.563407	0.0004
MONTH="June"	6.715378	1.517732	4.424615	0.0000
MONTH="Mar"	0.386249	2.004490	0.192692	0.8473
MONTH="May"	3.259884	1.467864	2.220836	0.0271

MONTH="Nov"	12.67734	1.534308	8.262579	0.0000
MONTH="Oct"	19.16678	1.364572	14.04600	0.0000
MONTH="Sept"	22.79371	1.548617	14.71875	0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic) Prob(Wald F-statistic)	0.666971 0.623532 6.764863 14735.81 -1192.823 15.35434 0.000000 0.000000	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watso Wald F-statist	nt var iterion rion n criter. n stat	60.93992 11.02542 6.771632 7.231072 6.954219 0.834663 26.23368

Dependent Variable: PRICE Method: ARMA Conditional Least Squares (Gauss-Newton / Marquardt steps)

Sample (adjusted): 2 365 Included observations: 364 after adjustments Convergence achieved after 9 iterations White-Hinkley (HC1) heteroskedasticity consistent standard errors and covariance

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	15.32840	5.751646	2.665046	0.0081
LOAD	0.007476	0.000713	10.47975	0.0000
DAY=2	2.671037	2.910263	0.917799	0.3594
DAY=3	-0.685039	2.699628	-0.253753	0.7998
DAY=4	-0.008407	3.017989	-0.002786	0.9978
DAY=5	-0.468636	3.277467	-0.142987	0.8864
DAY=6	-1.095868	3.443123	-0.318277	0.7505
DAY=7	-1.477713	3.294093	-0.448595	0.6540
DAY=8	-3.364362	3.176898	-1.059008	0.2904
DAY=9	-1.842709	3.207360	-0.574525	0.5660
DAY=10	-1.007420	3.330296	-0.302502	0.7625
DAY=11	-0.663731	3.402585	-0.195067	0.8455
DAY=12	-1.355290	3.408417	-0.397630	0.6912
DAY=13	-1.940338	3.255892	-0.595947	0.5516
DAY=14	-1.701827	3.150510	-0.540175	0.5895
DAY=15	-0.933027	3.186369	-0.292818	0.7699
DAY=16	-1.027571	3.156045	-0.325588	0.7449
DAY=17	-0.608997	3.190154	-0.190899	0.8487
DAY=18	-1.543398	3.142718	-0.491103	0.6237
DAY=19	0.465824	3.199529	0.145592	0.8843
DAY=20	0.828622	3.135479	0.264273	0.7917
DAY=21	2.723698	3.497984	0.778648	0.4368
DAY=22	1.813530	3.552371	0.510513	0.6100
DAY=23	0.913593	3.500789	0.260968	0.7943
DAY=24	1.883995	3.412425	0.552099	0.5813
DAY=25	-1.290052	3.276077	-0.393780	0.6940
DAY=26	2.890354	3.909094	0.739392	0.4602
DAY=27	2.753433	4.037390	0.681984	0.4957
DAY=28	-0.070566	3.561917	-0.019811	0.9842
DAY=29	-0.624981	3.006711	-0.207862	0.8355
DAY=30	1.209242	2.653633	0.455693	0.6489
DAY=31	0.502722	2.997960	0.167688	0.8669
MONTH="Aug"	15.13099	3.469015	4.361754	0.0000
MONTH="Dec"	10.89500	3.744013	2.909979	0.0039
MONTH="Feb"	-1.917712	4.949242	-0.387476	0.6987
MONTH="Jan"	-5.716975	3.895640	-1.467532	0.1432
MONTH="July"	7.195411	3.816127	1.885527	0.0603
MONTH="June"	5.742298	3.577006	1.605337	0.1094
MONTH="Mar"	2.218031	4.664396	0.475524	0.6347
MONTH="May"	3.528238	3.395090	1.039218	0.2995
MONTH="Nov"	12.92587	3.578278	3.612316	0.0004
MONTH="Oct"	19.51675	3.354679	5.817770	0.0000

MONTH="Sept" AR(1)	22.26560 0.607520	3.787972 0.084500	5.877975 7.189617	0.0000 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.782416 0.753178 5.469687 9573.591 -1111.563 26.76037 0.000000	Mean depend S.D. depende Akaike info ci Schwarz crite Hannan-Quin Durbin-Watso	ent var riterion erion n criter.	60.98315 11.00958 6.349245 6.820330 6.536480 2.116508
Inverted AR Roots	.61			

Dependent Variable: PRICE Method: Least Squares Sample: 1 365 Included observations: 365 White-Hinkley (HC1) heteroskedasticity consistent standard errors and covariance

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	24.35576	5.188504	4.694177	0.0000
LOAD	0.007307	0.000801	9.124496	0.0000
RES	-0.007681	0.001275	-6.022950	0.0000
DAY=2	3.315931	4.813752	0.688845	0.4914
DAY=3	-0.134173	3.876504	-0.034612	0.9724
DAY=4	-0.865731	3.813190	-0.227036	0.8205
DAY=5	-1.214753	3.756634	-0.323362	0.7466
DAY=6	-1.893789	3.851027	-0.491762	0.6232
DAY=7	-1.882916	3.843024	-0.489957	0.6245
DAY=8	-3.594182	3.562707	-1.008835	0.3138
DAY=9	-2.315890	3.703858	-0.625264	0.5322
DAY=10	-1.251938	3.772397	-0.331868	0.7402
DAY=11	-1.919762	3.788743	-0.506702	0.6127
DAY=12	-1.469635	3.776661	-0.389136	0.6974
DAY=13	-1.665734	3.600406	-0.462652	0.6439
DAY=14	-2.537865	3.577393	-0.709417	0.4786
DAY=15	-0.882453	3.530636	-0.249942	0.8028
DAY=16	-0.952337	3.662078	-0.260054	0.7950
DAY=17	-1.236060	3.686465	-0.335297	0.7376
DAY=18	-0.800672	3.570680	-0.224235	0.8227
DAY=19	0.266162	3.689447	0.072141	0.9425
DAY=20	0.322397	3.794687	0.084960	0.9323
DAY=21	2.406736	3.771175	0.638193	0.5238
DAY=22	1.668386	3.843032	0.434133	0.6645
DAY=23	1.322891	3.628172	0.364616	0.7156
DAY=24	2.320193	3.668684	0.632432	0.5276
DAY=25	0.202073	3.470264	0.058230	0.9536
DAY=26	5.008906	4.409485	1.135939	0.2568
DAY=27	4.355896	5.515782	0.789715	0.4303
DAY=28	1.131084	4.119618	0.274560	0.7838
DAY=29	-0.982012	3.482913	-0.281951	0.7782
DAY=30	0.364447	3.559375	0.102391	0.9185
DAY=31	-1.089096	4.227042	-0.257650	0.7968
MONTH="Aug"	14.35679	1.299723	11.04604	0.0000
MONTH="Dec"	9.213623	1.248325	7.380790	0.0000
MONTH="Feb"	-1.571189	2.447092	-0.642064	0.5213
MONTH="Jan"	-7.704113	1.308845	-5.886194	0.0000
MONTH="July"	5.934746	1.403264	4.229243	0.0000
MONTH="June"	7.891826	1.347247	5.857742	0.0000
MONTH="Mar"	1.881959	1.910831	0.984890	0.3254
MONTH="May"	1.665044	1.356662	1.227309	0.2206

MONTH="Nov"	11.23937	1.420253	7.913642	0.0000
MONTH="Oct"	19.18657	1.276628	15.02910	0.0000
MONTH="Sept"	23.22526	1.512135	15.35925	0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic) Prob(Wald F-statistic)	0.705683 0.666258 6.369433 13022.87 -1170.271 17.89912 0.000000 0.000000	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watso Wald F-statist	nt var iterion rion n criter. n stat	60.93992 11.02542 6.653538 7.123662 6.840371 0.851176 29.88062

Dependent Variable: PRICE Method: ARMA Conditional Least Squares (Gauss-Newton / Marquardt steps)

Sample (adjusted): 2 365 Included observations: 364 after adjustments Convergence achieved after 8 iterations White-Hinkley (HC1) heteroskedasticity consistent standard errors and covariance

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	21.48281	5.620786	3.822030	0.0002
LOAD	0.007469	0.000697	10.71234	0.0000
RES	-0.006242	0.000999	-6.246190	0.0000
DAY=2	3.392206	2.939657	1.153946	0.2494
DAY=3	0.070346	2.649888	0.026547	0.9788
DAY=4	-0.321081	2.893812	-0.110954	0.9117
DAY=5	-0.662144	3.015140	-0.219607	0.8263
DAY=6	-1.307666	3.115419	-0.419740	0.6750
DAY=7	-1.343370	2.999663	-0.447840	0.6546
DAY=8	-3.063610	2.830969	-1.082177	0.2800
DAY=9	-1.740846	2.914466	-0.597312	0.5507
DAY=10	-0.726105	3.061586	-0.237166	0.8127
DAY=11	-1.190011	3.142005	-0.378742	0.7051
DAY=12	-0.980240	3.038581	-0.322598	0.7472
DAY=13	-1.239176	2.913744	-0.425286	0.6709
DAY=14	-1.885968	2.792623	-0.675339	0.4999
DAY=15	-0.384797	2.824639	-0.136229	0.8917
DAY=16	-0.470744	2.816979	-0.167110	0.8674
DAY=17	-0.629015	2.929249	-0.214736	0.8301
DAY=18	-0.448970	2.808298	-0.159873	0.8731
DAY=19	0.771351	2.836836	0.271905	0.7859
DAY=20	0.883642	2.888900	0.305875	0.7599
DAY=21	2.938809	3.109859	0.944998	0.3454
DAY=22	2.153976	3.250691	0.662621	0.5081
DAY=23	1.683837	3.210245	0.524520	0.6003
DAY=24 DAY=25	2.661547 0.309467	3.095059	0.859934 0.104842	0.3905
DAY=25	4.873012	2.951741	1.338352	0.9166
DAY=26 DAY=27	4.073012	3.641054 3.826942	1.083090	0.1817 0.2796
DAY=27 DAY=28	0.726270	3.217785	0.225705	0.2790
DAY=20 DAY=29	0.172447	2.737273	0.225705	0.8218
DAY=29 DAY=30	1.480956	2.458754	0.602320	0.9498
DAY=30 DAY=31	0.947017	2.686473	0.352513	0.7247
MONTH="Aug"	14.80287	3.322434	4.455431	0.0000
MONTH= Aug MONTH="Dec"	9.975278	3.422201	2.914872	0.0008
MONTH= Dec MONTH="Feb"	-2.291389	4.689073	-0.488666	0.6254
MONTH="Jan"	-7.298111	3.664758	-1.991431	0.0234
MONTH="July"	7.443498	3.717508	2.002282	0.0473
MONTH="June"	6.213136	3.314346	1.874619	0.0401
MONTH="Mar"	2.916208	4.407522	0.661643	0.5087
MONTH="May"	1.800652	3.357603	0.536291	0.5921
MONTH= May MONTH="Nov"	11.58369	3.384701	3.422368	0.0007
	111000000	5.00 11 01	5.122000	0.0001

MONTH="Oct" MONTH="Sept" AR(1)	19.19791 22.45974 0.600340	3.208177 3.629986 0.093157	5.984056 6.187280 6.444386	0.0000 0.0000 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.805634 0.778825 5.177724 8552.015 -1091.025 30.05074 0.000000	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watso	ent var riterion erion n criter.	60.98315 11.00958 6.241898 6.723689 6.433388 2.135764
Inverted AR Roots	.60			

Dependent Variable: PRICE
Method: Least Squares
Date: 03/25/20 Time: 12:40
Sample: 1 365
Included observations: 365
White-Hinkley (HC1) heteroskedasticity consistent standard errors and
covariance

covariance				
Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	22.98466	5.326784	4.314922	0.0000
LOAD	0.007325	0.000796	9.196648	0.0000
SOLAR	-0.004734	0.002169	-2.183197	0.0297
WIND	-0.009141	0.001510	-6.051859	0.0000
DAY=2	3.050084	4.794269	0.636194	0.5251
DAY=3	-0.185158	3.913482	-0.047313	0.9623
DAY=4	-1.269659	3.868041	-0.328243	0.7429
DAY=5	-1.758447	3.862329	-0.455282	0.6492
DAY=6	-2.389087	3.906768	-0.611525	0.5413
DAY=7	-2.401296	3.862214	-0.621741	0.5346
DAY=8	-4.310152	3.622341	-1.189880	0.2350
DAY=9	-3.006403	3.814240	-0.788205	0.4312
DAY=10	-2.185379	3.876427	-0.563761	0.5733
DAY=11	-2.623174	3.845984	-0.682055	0.4957
DAY=12	-1.917189	3.799556	-0.504582	0.6142
DAY=13	-2.436608	3.688926	-0.660520	0.5094
DAY=14	-3.185374	3.655420	-0.871411	0.3842
DAY=15	-1.376570	3.596905	-0.382709	0.7022
DAY=16	-1.388224	3.696638	-0.375537	0.7075
DAY=17	-1.742607	3.732893	-0.466825	0.6409
DAY=18	-1.235520	3.607789	-0.342459	0.7322
DAY=19	-0.165827	3.731827	-0.044436	0.9646
DAY=20	-0.236657	3.885789	-0.060903	0.9515
DAY=21	1.819256	3.860365	0.471265	0.6378
DAY=22	1.326878	3.845167	0.345077	0.7303
DAY=23	0.835791	3.720456	0.224647	0.8224
DAY=24	1.766524	3.773250	0.468170	0.6400
DAY=25	-0.355119	3.515471	-0.101016	0.9196
DAY=26	4.512814	4.391050	1.027730	0.3049
DAY=27	3.559397	5.299646	0.671629	0.5023
DAY=28	0.445569	4.116784	0.108232	0.9139
DAY=29	-1.725481	3.563595	-0.484197	0.6286
DAY=30	-0.278700	3.628773	-0.076803	0.9388
DAY=31	-1.305036	4.186588	-0.311718	0.7555
MONTH="Aug"	13.86433	1.392211	9.958497	0.0000
MONTH="Dec"	10.18161	1.314262	7.747022	0.0000
MONTH="Feb"	-0.674727	2.667070	-0.252984	0.8004
MONTH="Jan"	-6.760245	1.348293	-5.013928	0.0000
MONTH="July"	5.529655	1.471260	3.758447	0.0002
MONTH="June"	7.783366	1.348291	5.772764	0.0000

MONTH="Mar"	2.835276	1.928264	1.470377	0.1424
MONTH="May"	1.850875	1.322772	1.399239	0.1627
MONTH="Nov"	11.99003	1.383507	8.666400	0.0000
MONTH="Oct"	19.64367	1.240865	15.83062	0.0000
MONTH="Sept"	23.01089	1.577834	14.58385	0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic) Prob(Wald F-statistic)	0.709534 0.669595 6.337507 12852.48 -1167.867 17.76542 0.000000 0.000000	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watsc Wald F-statist	ent var iterion rion n criter. on stat	60.93992 11.02542 6.645847 7.126656 6.836927 0.851141 29.38756

Dependent Variable: PRICE Method: ARMA Conditional Least Squares (Gauss-Newton / Marquardt steps) Sample (adjusted): 2 365 Included observations: 364 after adjustments Convergence achieved after 8 iterations White-Hinkley (HC1) heteroskedasticity consistent standard errors and covariance

covariance				
Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	20.04028	5.723780	3.501233	0.0005
LOAD	0.007550	0.000707	10.68261	0.0000
SOLAR	-0.003907	0.001499	-2.606936	0.0096
WIND	-0.007712	0.001328	-5.807384	0.0000
DAY=2	3.204426	2.932615	1.092686	0.2754
DAY=3	0.075761	2.637190	0.028728	0.9771
DAY=4	-0.647543	2.929837	-0.221017	0.8252
DAY=5	-1.108625	3.102154	-0.357373	0.7210
DAY=6	-1.711723	3.159528	-0.541766	0.5884
DAY=7	-1.748609	3.048908	-0.573520	0.5667
DAY=8	-3.625756	2.888814	-1.255102	0.2104
DAY=9	-2.290588	3.041433	-0.753128	0.4519
DAY=10	-1.484187	3.200292	-0.463766	0.6431
DAY=11	-1.770179	3.209552	-0.551535	0.5817
DAY=12	-1.322958	3.059291	-0.432439	0.6657
DAY=13	-1.845328	2.946451	-0.626288	0.5316
DAY=14	-2.406745	2.844466	-0.846115	0.3981
DAY=15	-0.742478	2.861356	-0.259485	0.7954
DAY=16	-0.783383	2.823432	-0.277458	0.7816
DAY=17	-1.024688	2.957318	-0.346492	0.7292
DAY=18	-0.743851	2.832463	-0.262616	0.7930
DAY=19	0.442160	2.876839	0.153696	0.8779
DAY=20	0.437847	2.938668	0.148995	0.8817
DAY=21	2.480731	3.174916	0.781353	0.4352
DAY=22	1.911528	3.278203	0.583102	0.5602
DAY=23	1.330003	3.280535	0.405422	0.6854
DAY=24	2.260365	3.153086	0.716874	0.4740
DAY=25	-0.056654	2.997234	-0.018902	0.9849
DAY=26	4.556908	3.600004	1.265806	0.2065
DAY=27	3.542574	3.730816	0.949544	0.3431
DAY=28	0.196711	3.199875	0.061475	0.9510
DAY=29	-0.421499	2.752573	-0.153129	0.8784
DAY=30	0.979347	2.490462	0.393239	0.6944
DAY=31	0.778727	2.703690	0.288024	0.7735
MONTH="Aug"	14.45569	3.418442	4.228735	0.0000
MONTH="Dec"	10.86584	3.426606	3.171021	0.0017
MONTH="Feb"	-1.439092	4.793237	-0.300234	0.7642
MONTH="Jan"	-6.644688	3.689990	-1.800733	0.0727
MONTH="July"	7.169590	3.769792	1.901853	0.0581
MONTH="June"	6.270102	3.329834	1.883007	0.0606

MONTH="Mar" MONTH="May" MONTH="Nov" MONTH="Oct" MONTH="Sept" AR(1)	3.994145 2.028781 12.36612 19.62278 22.39724 0.599116	4.508274 3.357927 3.388385 3.191725 3.695421 0.091521	0.885959 0.604177 3.649563 6.148017 6.060810 6.546213	0.3763 0.5462 0.0003 0.0000 0.0000 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.808148 0.780999 5.152215 8441.413 -1088.656 29.76720 0.000000	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watsc	ent var riterion erion n criter.	60.98315 11.00958 6.234375 6.726873 6.430121 2.157094
Inverted AR Roots	.60			

Dependent Variable: PRICE Method: Least Squares Sample: 1 365 Included observations: 362 White-Hinkley (HC1) heteroskedasticity consistent standard errors and covariance

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	-3.679440	5.712440	-0.644110	0.5200
LOAD	0.004856	0.000457	10.61778	0.0000
SOLAR	-0.004585	0.001369	-3.348642	0.0009
WIND	-0.008283	0.000994	-8.333861	0.0000
GAS_PRICE	1.633417	0.201988	8.086725	0.0000
DAY=2	2.855409	2.852965	1.000857	0.3177
DAY=3	1.686329	2.399594	0.702756	0.4827
DAY=4	1.934598	2.723667	0.710292	0.4780
DAY=5	0.500573	2.309162	0.216777	0.8285
DAY=6	1.343438	2.492565	0.538978	0.5903
DAY=7	1.388050	2.475001	0.560828	0.5753
DAY=8	-0.920828	2.372783	-0.388079	0.6982
DAY=9	0.612741	2.469695	0.248104	0.8042
DAY=10	1.369991	2.606842	0.525537	0.5996
DAY=11	0.578098	2.497111	0.231507	0.8171
DAY=12	1.561314	2.375660	0.657213	0.5115
DAY=13	0.558627	2.436837	0.229243	0.8188
DAY=14	-0.615817	2.324786	-0.264892	0.7913
DAY=15	0.952899	2.371048	0.401889	0.6880
DAY=16	0.933831	2.461083	0.379439	0.7046
DAY=17	0.787283	2.405685	0.327259	0.7437
DAY=18	1.107989	2.323531	0.476856	0.6338
DAY=19	2.164187	2.302551	0.939908	0.3480
DAY=20	2.301269	2.623043	0.877328	0.3810
DAY=21	3.885268	2.597508	1.495767	0.1357
DAY=22	3.039809	2.738616	1.109980	0.2679
DAY=23	2.662715	2.444785	1.089141	0.2769
DAY=24	3.698513	2.479249	1.491788	0.1368
DAY=25	0.826066	2.408601	0.342965	0.7319
DAY=26	3.593850	2.676280	1.342853	0.1803
DAY=27	3.969706	2.969925	1.336635	0.1823
DAY=28	1.416333	2.413810	0.586762	0.5578
DAY=29	0.982659	2.491951	0.394333	0.6936
DAY=30	2.472172	2.458646	1.005501	0.3154
DAY=31	1.889797	2.766674	0.683058	0.4951
MONTH="Aug"	8.796067	1.361626	6.459973	0.0000
MONTH="Dec"	5.561886	1.272512	4.370794	0.0000
MONTH="Feb"	-0.066695	1.497220	-0.044546	0.9645

MONTH="Jan" MONTH="July" MONTH="June" MONTH="Mar" MONTH="May" MONTH="Nov" MONTH="Oct" MONTH="Sept"	-2.073503 3.667117 5.159263 1.503806 -0.268323 7.845478 11.51081 11.91184	1.314347 1.292936 1.367040 1.222188 1.280994 1.343962 1.460434 2.001768	-1.577592 2.836271 3.774039 1.230421 -0.209465 5.837573 7.881771 5.950659	0.1157 0.0049 0.2195 0.8342 0.0000 0.0000 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic) Prob(Wald F-statistic)	0.867322 0.848428 4.278336 5784.114 -1015.248 45.90469 0.000000 0.000000	Mean depend S.D. depende Akaike info c Schwarz crite Hannan-Quir Durbin-Watso Wald F-statis	ent var riterion erion in criter. on stat	61.05294 10.98919 5.863247 6.357765 6.059836 1.658350 55.40304

Dependent Variable: PRICE Method: ARMA Conditional Least Squares (Gauss-Newton / Marquardt steps) Sample (adjusted): 4 365 Included observations: 358 after adjustments Convergence achieved after 7 iterations White-Hinkley (HC1) heteroskedasticity consistent standard errors and covariance

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	-3.708355	6.164234	-0.601592	0.5479
LOAD	0.005112	0.000529	9.670197	0.0000
SOLAR	-0.004467	0.001378	-3.242188	0.0013
WIND	-0.008367	0.001024	-8.174337	0.0000
GAS_PRICE	1.557921	0.223553	6.968919	0.0000
DAY=2	3.283482	2.600278	1.262743	0.2076
DAY=3	1.668198	2.370946	0.703600	0.4822
DAY=4	1.680160	2.716047	0.618605	0.5366
DAY=5	0.632582	2.316316	0.273098	0.7850
DAY=6	1.470810	2.464718	0.596746	0.5511
DAY=7	1.534392	2.438771	0.629166	0.5297
DAY=8	-0.746581	2.336422	-0.319540	0.7495
DAY=9	0.770534	2.483540	0.310256	0.7566
DAY=10	1.510521	2.601400	0.580657	0.5619
DAY=11	0.758647	2.518241	0.301261	0.7634
DAY=12	1.707248	2.349006	0.726796	0.4679
DAY=13	0.724088	2.393465	0.302527	0.7625
DAY=14	-0.405923	2.278839	-0.178127	0.8587
DAY=15	1.191257	2.345081	0.507981	0.6118
DAY=16	1.162824	2.391346	0.486263	0.6271
DAY=17	0.999382	2.386135	0.418829	0.6756
DAY=18	1.332398	2.290958	0.581590	0.5613
DAY=19	2.368768	2.264137	1.046212	0.2963
DAY=20	2.495208	2.553799	0.977057	0.3293
DAY=21	4.114528	2.585600	1.591324	0.1126
DAY=22	3.292669	2.689208	1.224401	0.2217
DAY=23	2.904185	2.415004	1.202559	0.2301
DAY=24	3.954761	2.464110	1.604945	0.1095
DAY=25	1.139586	2.420938	0.470721	0.6382
DAY=26	3.975353	2.642348	1.504478	0.1335
DAY=27	4.267358	3.048091	1.400010	0.1625
DAY=28	1.678563	2.377831	0.705922	0.4808
DAY=29	1.220102	2.432424	0.501599	0.6163
DAY=30	2.779598	2.394137	1.161002	0.2465
DAY=31	2.098859	2.709363	0.774669	0.4391
MONTH="Aug"	9.204522	1.683500	5.467493	0.0000
MONTH="Dec"	6.039195	1.590348	3.797406	0.0002

MONTH="Feb" MONTH="Jan" MONTH="July" MONTH="June" MONTH="Mar" MONTH="May"	0.054703 -2.378932 3.941791 5.308520 1.816205 0.039968	1.960209 1.644978 1.667227 1.625868 1.627001 1.629604	0.027907 -1.446179 2.364280 3.265037 1.116290 0.024526	0.9778 0.1491 0.0187 0.0012 0.2652 0.9804
MONTH="Nov"	8.206860	1.652782	4.965483	0.0000
MONTH="Oct" MONTH="Sept" AR(1)	12.08636 12.58326 0.178538	1.755269 2.314729 0.080992	6.885759 5.436172 2.204393	0.0000 0.0000 0.0282
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.871367 0.852341 4.219109 5536.075 -998.1729 45.79865 0.000000	Mean depend S.D. depende Akaike info c Schwarz crite Hannan-Quir Durbin-Watso	ent var riterion erion an criter.	61.17419 10.97972 5.838955 6.348410 6.041566 1.986709
Inverted AR Roots	.18			

TEST ON THE RESIDUALS

_

Breusch-Godfrey Serial Correlation LM Test:

F-statistic	0 627612	Prob. F(2,310)	0.5345
Obs*R-squared		Prob. Chi-Square(2)	0.4858
-			

Test Equation: Dependent Variable: RESID Method: Least Squares Date: 03/25/20 Time: 12:43 Sample: 4 365 Included observations: 358 Coefficient covariance computed using outer product of gradients Presample and interior missing value lagged residuals set to zero.

Variable	Coefficient	Std. Error	t-Statistic	Prob.
LOAD	4.07E-05	0.000446	0.091344	0.9273
SOLAR	0.000108	0.001255	0.085807	0.9317
WIND	6.79E-05	0.000985	0.068966	0.9451
GAS_PRICE	-0.013207	0.086741	-0.152261	0.8791
DAY=2	0.192116	1.633973	0.117576	0.9065
DAY=3	0.041654	1.796969	0.023180	0.9815
DAY=4	0.334110	1.815932	0.183988	0.8541
DAY=5	0.308341	1.800281	0.171274	0.8641
DAY=6	0.155625	1.769711	0.087938	0.9300
DAY=7	0.100172	1.757769	0.056988	0.9546
DAY=8	0.087392	1.755954	0.049769	0.9603
DAY=9	0.083799	1.758441	0.047655	0.9620
DAY=10	0.077577	1.785781	0.043441	0.9654
DAY=11	0.095121	1.752830	0.054267	0.9568
DAY=12	0.078027	1.776048	0.043933	0.9650
DAY=13	0.076410	1.786767	0.042764	0.9659
DAY=14	0.095700	1.754471	0.054547	0.9565
DAY=15	0.090604	1.744997	0.051922	0.9586
DAY=16	0.089262	1.752665	0.050930	0.9594
DAY=17	0.094173	1.753154	0.053716	0.9572
DAY=18	0.081314	1.763936	0.046098	0.9633
DAY=19	0.089130	1.771458	0.050315	0.9599
DAY=20	0.090436	1.770534	0.051078	0.9593
DAY=21	0.094034	1.761241	0.053391	0.9575
DAY=22	0.096849	1.755819	0.055159	0.9560

DAY=23	0.089008	1.766136	0.050397	0.9598
DAY=24	0.090946	1.750587	0.051952	0.9586
DAY=25	0.089512	1.754054	0.051032	0.9593
DAY=26	0.098056	1.792675	0.054698	0.9564
DAY=27	0.094562	1.787349	0.052906	0.9578
DAY=28	0.111863	1.748513	0.063976	0.9490
DAY=29	0.207446	1.828278	0.113465	0.9097
DAY=30	0.092853	1.755514	0.052892	0.9579
DAY=31	-0.092586	1.937660	-0.047783	0.9619
MONTH="Aug"	-0.072997	1.404804	-0.051963	0.9586
MONTH="Dec"	-0.051231	1.453288	-0.035251	0.9719
MONTH="Feb"	-0.076544	1.504114	-0.050890	0.9594
MONTH="Jan"	-0.066073	1.485192	-0.044488	0.9645
MONTH="July"	-0.105460	1.442447	-0.073112	0.9418
MONTH="June"	-0.123516	1.391134	-0.088788	0.9293
MONTH="Mar"	-0.163519	1.451135	-0.112684	0.9104
MONTH="May"	-0.056249	1.355925	-0.041484	0.9669
MONTH="Nov"	-0.054795	1.434300	-0.038203	0.9696
MONTH="Oct"	-0.032583	1.465730	-0.022230	0.9823
MONTH="Sept"	-0.047504	1.521325	-0.031225	0.9751
AR(1)	-0.399528	0.609052	-0.655984	0.5123
RESID(-1)	0.394391	0.613766	0.642575	0.5210
RESID(-2)	0.131160	0.130410	1.005750	0.3153
R-squared	0.004004	Mean depend	dent var	-0.021146
Adjusted R-squared	-0.147002	S.D. depende		3.946003
S.E. of regression	4.226097	Akaike info c	riterion	5.844630
Sum squared resid	5536.567	Schwarz crite	erion	6.364925
Log likelihood	-998.1889	Hannan-Quir	nn criter.	6.051553
Durbin-Watson stat	1.971391			

<u>SOUTH</u>

Dependent Variable: PRICE Method: Least Squares Sample: 1 365 Included observations: 365

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	17.65501	4.670301	3.780272	0.0002
LOAD	0.012353	0.001550	7.967437	0.0000
DAY=2	3.369545	2.921634	1.153308	0.2496
DAY=3	0.554859	2.924330	0.189739	0.8496
DAY=4	1.735871	2.921739	0.594123	0.5528
DAY=5	0.516069	2.928091	0.176248	0.8602
DAY=6	1.534270	2.921661	0.525136	0.5998
DAY=7	1.559165	2.921942	0.533606	0.5940
DAY=8	-1.971055	2.922757	-0.674382	0.5006
DAY=9	1.047561	2.922095	0.358497	0.7202
DAY=10	1.031664	2.922259	0.353037	0.7243
DAY=11	1.425307	2.921671	0.487840	0.6260
DAY=12	0.389671	2.923177	0.133304	0.8940
DAY=13	0.830200	2.921799	0.284140	0.7765
DAY=14	0.160633	2.921724	0.054979	0.9562
DAY=15	0.212260	2.922575	0.072628	0.9421
DAY=16	2.063929	2.924025	0.705852	0.4808
DAY=17	0.479705	2.922887	0.164120	0.8697
DAY=18	-0.618237	2.922805	-0.211522	0.8326
DAY=19	0.971105	2.923011	0.332228	0.7399
DAY=20	2.770895	2.921651	0.948400	0.3436
DAY=21	3.642417	2.922228	1.246452	0.2135
DAY=22	2.622035	2.921651	0.897450	0.3701

DAY=23 DAY=24 DAY=25 DAY=26 DAY=27 DAY=28 DAY=30 DAY=30 DAY=31 MONTH="Aug" MONTH="Dec" MONTH="Dec" MONTH="Jan" MONTH="Jan" MONTH="June" MONTH="June" MONTH="Mar" MONTH="May"	$\begin{array}{c} 1.768839\\ 2.427438\\ -0.209605\\ 0.120150\\ 1.355213\\ 0.716815\\ -3.808903\\ 0.509975\\ -0.936278\\ 1.138325\\ 6.044294\\ -1.086579\\ -7.559824\\ -0.705870\\ 2.050657\\ -1.517658\\ 3.504989\\ 8.560096\\ 14.87721\end{array}$	2.922773 2.921639 2.927928 2.921635 2.921746 2.921782 2.989899 2.990124 3.423763 2.593456 1.988566 2.005813 1.927240 2.409000 2.045385 1.895000 1.838521 1.930540 1.830168	0.605192 0.830848 -0.071588 0.041124 0.463837 0.245335 -1.273924 0.170553 -0.273465 0.438922 3.039524 -0.541715 -3.922616 -0.293014 1.002578 -0.800875 1.906418 4.434043 7.955014	0.5455 0.4067 0.9430 0.9672 0.6431 0.8064 0.2036 0.8647 0.7847 0.6610 0.0026 0.5884 0.0001 0.7697 0.3168 0.4238 0.0575 0.0000 0.0000
MONTH="Oct" MONTH="Sept"	14.87721 10.85747	1.870168 2.197187	7.955014 4.941532	0.0000 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.574553 0.519059 7.156513 16491.45 -1213.365 10.35358 0.000000	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		59.37493 10.31943 6.884193 7.343633 7.066781 0.873456

Dependent Variable: PRICE Method: ARMA Conditional Least Squares (Gauss-Newton / Marquardt Method: ARMA Conditional Least Squares (Gauss-Newton / Marquardt steps)
 Sample (adjusted): 2 365
 Included observations: 364 after adjustments
 Convergence achieved after 7 iterations
 White-Hinkley (HC1) heteroskedasticity consistent standard errors and

covariance

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	22.24024	6.354296	3.500033	0.0005
LOAD	0.010188	0.001514	6.729795	0.0000
DAY=2	3.646590	2.689670	1.355776	0.1761
DAY=3	1.173993	2.638010	0.445030	0.6566
DAY=4	2.312030	3.106760	0.744193	0.4573
DAY=5	1.386912	3.215148	0.431368	0.6665
DAY=6	2.185394	3.357671	0.650866	0.5156
DAY=7	2.153920	3.205807	0.671881	0.5021
DAY=8	-1.418187	3.268993	-0.433830	0.6647
DAY=9	1.648195	3.411039	0.483194	0.6293
DAY=10	1.624607	3.183729	0.510284	0.6102
DAY=11	2.084654	3.299929	0.631727	0.5280
DAY=12	1.203422	3.294267	0.365308	0.7151
DAY=13	1.555419	3.389067	0.458952	0.6466
DAY=14	0.810902	3.248618	0.249614	0.8030
DAY=15	0.790837	3.262776	0.242382	0.8086
DAY=16	2.580498	3.298029	0.782436	0.4345
DAY=17	1.040898	3.292253	0.316166	0.7521
DAY=18	-0.054775	3.555914	-0.015404	0.9877
DAY=19	1.772330	3.462662	0.511840	0.6091
DAY=20	3.455352	3.262870	1.058992	0.2904
DAY=21	4.222242	3.413977	1.236752	0.2171
DAY=22	3.255653	3.381890	0.962673	0.3364
DAY=23	2.505230	3.376660	0.741926	0.4587
DAY=24	3.000713	3.296742	0.910206	0.3634

Inverted AR Roots	.59			
Log likelihood F-statistic Prob(F-statistic)	-1137.746 18.51647 0.000000	Hannan-Quir Durbin-Watso		6.680347 2.032538
Sum squared resid	11054.92	Schwarz crite		6.964197
S.E. of regression	5.877638	Akaike info c	riterion	6.493112
Adjusted R-squared	0.674792	S.D. depende		10.30676
R-squared	0.713315	Mean depend	dent var	59.41386
AR(1)	0.592161	0.078941	7.501346	0.0000
MONTH="Sept"	11.47584	4.109850	2.792277	0.0055
MONTH="Oct"	15.20288	4.003170	3.797711	0.0002
MONTH="Nov"	9.899126	3.468776	2.853781	0.0046
MONTH="May"	3.651954	3.755753	0.972363	0.3316
MONTH= Julie MONTH="Mar"	0.636761	4.620025	0.137826	0.8905
MONTH="July" MONTH="June"	2.000427	3.840543	0.566390	0.5295
MONTH="Jan"	-5.605047 2.606427	3.909393 4.140504	-1.433739 0.629495	0.1526 0.5295
MONTH="Feb"	-0.995240	4.929789	-0.201883	0.8401
MONTH="Dec"	7.643827	3.981678	1.919750	0.0558
MONTH="Aug"	5.815905	3.956523	1.469954	0.1426
DAY=31	1.433281	3.058579	0.468610	0.6397
DAY=30	1.866529	2.775003	0.672622	0.5017
DAY=29	-2.408859	3.315190	-0.726613	0.4680
DAY=28	0.519670	3.888605	0.133639	0.8938
DAY=27	1.577355	4.305271	0.366378	0.7143
DAY=26	0.511333	4.021949	0.127136	0.8989
DAY=25	0.031787	3.311407	0.009599	0.9923

_

Dependent Variable: PRICE Method: Least Squares Sample: 1 365 Included observations: 365 White-Hinkley (HC1) heteroskedasticity consistent standard errors and covariance

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	27.80879	5.288180	5.258669	0.0000
LOAD	0.012042	0.001469	8.196266	0.0000
RES	-0.005588	0.000574	-9.742623	0.0000
DAY=2	4.135069	4.331007	0.954759	0.3404
DAY=3	2.415895	3.614858	0.668324	0.5044
DAY=4	1.289447	3.389203	0.380457	0.7039
DAY=5	0.190409	3.420229	0.055671	0.9556
DAY=6	1.495099	3.367835	0.443935	0.6574
DAY=7	2.038927	3.329080	0.612460	0.5407
DAY=8	-0.342624	3.228911	-0.106111	0.9156
DAY=9	1.196689	3.587742	0.333549	0.7389
DAY=10	0.654309	3.179303	0.205803	0.8371
DAY=11	0.924161	3.429413	0.269481	0.7877
DAY=12	0.335642	3.322988	0.101006	0.9196
DAY=13	1.158496	3.379387	0.342812	0.7320
DAY=14	-0.649190	3.234871	-0.200685	0.8411
DAY=15	1.113174	3.203255	0.347513	0.7284
DAY=16	2.945002	3.197899	0.920918	0.3578
DAY=17	0.040037	3.344038	0.011973	0.9905
DAY=18	0.876061	3.422887	0.255942	0.7982
DAY=19	1.813512	3.301633	0.549277	0.5832
DAY=20	2.353919	3.278025	0.718091	0.4732
DAY=21	3.619710	3.321143	1.089899	0.2766
DAY=22	3.313637	3.250811	1.019326	0.3088
DAY=23	2.836945	3.469369	0.817712	0.4141

DAY=24 DAY=25 DAY=26 DAY=27 DAY=28 DAY=29 DAY=30 DAY=31 MONTH="Aug" MONTH="Dec" MONTH="Dec" MONTH="Jan" MONTH="Jan" MONTH="July" MONTH="July" MONTH="Mar" MONTH="Mar" MONTH="May" MONTH="Nov" MONTH="Nov"	4.379420 1.586691 3.189410 2.962736 2.254063 -2.297239 0.698744 0.887159 0.129966 6.653126 -0.613794 -6.821579 1.058720 3.766370 1.493186 2.244859 6.715290 14.50438 10.97751	3.438877 3.391959 3.749690 5.011162 4.271163 4.082284 3.615093 4.032778 2.033299 1.305948 2.188203 1.308813 1.725258 1.303001 1.881406 1.344611 1.238581 1.838263 1.706367	1.273503 0.467780 0.850580 0.591227 0.527740 -0.562734 0.193285 0.219987 0.063919 5.094479 -0.280501 -5.212033 0.613659 2.890536 0.793654 1.669524 5.421762 7.890261 6.433263	0.2038 0.6403 0.3956 0.5548 0.5980 0.5740 0.8469 0.8260 0.9491 0.0000 0.7793 0.0000 0.5399 0.0041 0.4280 0.0960 0.0000 0.0000 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic) Prob(Wald F-statistic)	0.684962 0.642760 6.167876 12211.71 -1158.534 16.23078 0.000000 0.000000	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat Wald F-statistic		59.37493 10.31943 6.589226 7.059351 6.776060 0.919392 31.57784

Dependent Variable: PRICE Method: ARMA Conditional Least Squares (Gauss-Newton / Marquardt steps) Sample (adjusted): 2 365 Included observations: 364 after adjustments Convergence achieved after 7 iterations White-Hinkley (HC1) heteroskedasticity consistent standard errors and

covariance

_

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	27.50319	5.827917	4.719214	0.0000
LOAD	0.011251	0.001380	8.154933	0.0000
RES	-0.004920	0.000489	-10.05947	0.0000
DAY=2	4.448395	2.779922	1.600187	0.1105
DAY=3	2.895208	2.642730	1.095537	0.2741
DAY=4	2.120756	2.831744	0.748922	0.4545
DAY=5	1.171167	2.849619	0.410991	0.6814
DAY=6	2.385992	2.806930	0.850036	0.3959
DAY=7	2.861905	2.740008	1.044488	0.2971
DAY=8	0.335603	2.710419	0.123820	0.9015
DAY=9	2.074940	3.092111	0.671043	0.5027
DAY=10	1.595243	2.842929	0.561127	0.5751
DAY=11	1.906738	2.975167	0.640884	0.5221
DAY=12	1.324546	2.865126	0.462299	0.6442
DAY=13	2.068253	2.847036	0.726458	0.4681
DAY=14	0.368310	2.796670	0.131696	0.8953
DAY=15	1.898723	2.672938	0.710350	0.4780
DAY=16	3.709261	2.690070	1.378871	0.1689
DAY=17	0.979325	2.882351	0.339766	0.7343
DAY=18	1.584704	3.026878	0.523544	0.6010
DAY=19	2.690701	2.921526	0.920992	0.3578
DAY=20	3.336449	2.771715	1.203749	0.2296
DAY=21	4.513693	2.848185	1.584761	0.1140
DAY=22	4.140013	2.841009	1.457233	0.1460
DAY=23	3.652317	2.967369	1.230827	0.2193

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	26.00563	5.458568	4.764186	0.0000
LOAD	0.012103	0.001461	8.285897	0.0000
SOLAR	-0.003640	0.001891	-1.925253	0.0551
WIND	-0.005701	0.000582	-9.796658	0.0000
DAY=2	4.138025	4.350816	0.951092	0.3423
DAY=3	2.515389	3.674392	0.684573	0.4941
DAY=4	1.156078	3.429293	0.337118	0.7362
DAY=5	0.035839	3.493798	0.010258	0.9918
DAY=6	1.391738	3.415326	0.407498	0.6839
DAY=7	1.806572	3.350073	0.539264	0.5901
DAY=8	-0.686341	3.245422	-0.211480	0.8326
DAY=9	0.929300	3.632564	0.255825	0.7983
DAY=10	0.447968	3.199253	0.140023	0.8887
DAY=11	0.484845	3.434265	0.141179	0.8878
DAY=12	-0.056339	3.330503	-0.016916	0.9865
DAY=13	0.961256	3.409933	0.281899	0.7782
DAY=14	-0.793136	3.267804	-0.242712	0.8084
DAY=15	1.107239	3.250717	0.340614	0.7336
DAY=16	2.815457	3.232805	0.870902	0.3845
DAY=17	-0.081302	3.373670	-0.024099	0.9808
DAY=18	0.708906	3.441987	0.205958	0.8370
DAY=19	1.572438	3.320169	0.473602	0.6361
DAY=20	2.193791	3.296317	0.665528	0.5062

DAY=21 DAY=22 DAY=23 DAY=24 DAY=25 DAY=26 DAY=27 DAY=28 DAY=29 DAY=30 DAY=30 DAY=31 MONTH="Aug" MONTH="Dec" MONTH="Dec" MONTH="Jan" MONTH="Jan" MONTH="June" MONTH="June" MONTH="June" MONTH="May" MONTH="May" MONTH="May"	3.458642 3.194656 2.856782 4.054595 1.368598 3.019800 2.769113 2.002933 -2.632398 0.367681 0.567027 0.013506 7.386596 0.108795 -6.223360 0.758981 3.845340 1.961617 2.299878 7.545599 14.88179 10.80550	3.338522 3.278978 3.497242 3.453411 3.399731 3.802534 5.080528 4.235721 4.099071 3.640120 4.040629 2.033772 1.477756 2.250772 1.453708 1.717311 1.310760 1.854693 1.342111 1.473465 1.693372 1.719125	1.035980 0.974284 0.816867 1.174084 0.402561 0.794155 0.545044 0.472867 -0.642194 0.140331 0.006641 4.998521 0.048337 -4.281024 0.44337 -4.281024 0.441959 2.933671 1.057651 1.713627 5.120989 8.788257 6.285464	0.3010 0.3307 0.4146 0.2412 0.6875 0.4277 0.5861 0.6366 0.5212 0.9196 0.8885 0.9947 0.0000 0.9615 0.0000 0.6588 0.0036 0.2910 0.0876 0.0000 0.0000 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic) Prob(Wald F-statistic)	0.686762 0.643691 6.159834 12141.94 -1157.488 15.94513 0.000000 0.000000	Mean depende S.D. depende Akaike info cl Schwarz crite Hannan-Quir Durbin-Watso Wald F-statis	dent var ent var riterion erion nn criter. on stat	59.37493 10.31943 6.588976 7.069785 6.780056 0.904442 31.06699

Dependent Variable: PRICE Method: ARMA Conditional Least Squares (Gauss-Newton / Marquardt steps) Sample (adjusted): 2 365

=

Included observations: 364 after adjustments Convergence achieved after 7 iterations

White-Hinkley (HC1) heteroskedasticity consistent standard errors and covariance

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	24.43679	5.930273	4.120685	0.0000
LOAD	0.011491	0.001379	8.335414	0.0000
SOLAR	-0.001856	0.001345	-1.379948	0.1686
WIND	-0.005174	0.000500	-10.35291	0.0000
DAY=2	4.441770	2.694577	1.648411	0.1003
DAY=3	3.038382	2.627420	1.156413	0.2484
DAY=4	1.866237	2.882097	0.647527	0.5178
DAY=5	0.868312	2.959216	0.293426	0.7694
DAY=6	2.187330	2.884833	0.758217	0.4489
DAY=7	2.468493	2.828457	0.872735	0.3835
DAY=8	-0.217630	2.761316	-0.078814	0.9372
DAY=9	1.623114	3.179906	0.510428	0.6101
DAY=10	1.236041	2.925919	0.422445	0.6730
DAY=11	1.166838	3.003754	0.388460	0.6979
DAY=12	0.656564	2.890594	0.227138	0.8205
DAY=13	1.724896	2.904496	0.593871	0.5530
DAY=14	0.100983	2.864763	0.035250	0.9719
DAY=15	1.880752	2.746925	0.684675	0.4940
DAY=16	3.496103	2.730158	1.280550	0.2013
DAY=17	0.758876	2.903185	0.261394	0.7940
DAY=18	1.315219	3.053458	0.430731	0.6670
DAY=19	2.276977	2.938587	0.774854	0.4390

DAY=20	3.043285	2.802639	1.085864	0.2784
DAY=21	4.229307	2.890140	1.463357	0.1444
DAY=22	3.925953	2.919214	1.344866	0.1796
DAY=23	3.654595	3.070371	1.190278	0.2348
DAY=24	4.478276	2.886870	1.551257	0.1218
DAY=25	1.736935	2.938126	0.591171	0.5548
DAY=26	3.271728	3.447314	0.949066	0.3433
DAY=27	3.007402	3.949583	0.761448	0.4470
DAY=28	1.902435	3.489218	0.545232	0.5860
DAY=29	-1.381332	2.963056	-0.466185	0.6414
DAY=30	1.716734	2.567734	0.668579	0.5042
DAY=31	2.309434	2.636293	0.876015	0.3817
MONTH="Aug"	2.785485	3.660362	0.760986	0.4472
MONTH="Dec"	8.616418	3.321891	2.593829	0.0099
MONTH="Feb"	0.485860	4.419638	0.109932	0.9125
MONTH="Jan"	-5.600407	3.518377	-1.591759	0.1124
MONTH="July"	1.808678	3.782336	0.478191	0.6328
MONTH="June"	3.117087	3.284065	0.949155	0.3433
MONTH="Mar"	3.584520	4.338084	0.826291	0.4093
MONTH="May"	2.344450	3.494099	0.670974	0.5027
MONTH="Nov"	9.354099	3.255232	2.873559	0.0043
MONTH="Oct"	14.72975	3.544214	4.156000	0.0000
MONTH="Sept"	10.55587	3.670248	2.876065	0.0043
AR(1)	0.576407	0.086406	6.670941	0.0000
R-squared	0.784403	Mean depend	dent var	59.41386
Adjusted R-squared	0.753894	S.D. depende		10.30676
S.E. of regression	5.113084	Akaike info c	riterion	6.219127
Sum squared resid	8313.673	Schwarz crite	erion	6.711625
Log likelihood	-1085.881	Hannan-Quir	nn criter.	6.414872
F-statistic	25.71059	Durbin-Watso	on stat	2.161445
Prob(F-statistic)	0.000000			
Inverted AR Roots	.58			

_

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	-1.695126	5.894074	-0.287598	0.7738
LOAD	0.008098	0.000996	8.134220	0.0000
SOLAR	-0.000156	0.001265	-0.123434	0.9018
WIND	-0.005377	0.000437	-12.30023	0.0000
GAS_PRICE	1.528343	0.188079	8.126055	0.0000
DAY=2	2.976928	2.554606	1.165318	0.2448
DAY=3	4.248328	2.544144	1.669846	0.0959
DAY=4	3.380346	2.622003	1.289223	0.1983
DAY=5	1.473086	2.413299	0.610403	0.5420
DAY=6	3.718233	2.531133	1.468999	0.1428
DAY=7	4.012213	2.447235	1.639488	0.1021
DAY=8	1.003888	2.461339	0.407863	0.6836
DAY=9	3.022002	2.722693	1.109931	0.2679
DAY=10	2.404350	2.370517	1.014272	0.3112
DAY=11	2.062997	2.466469	0.836417	0.4035
DAY=12	1.739060	2.371192	0.733412	0.4638
DAY=13	2.547041	2.613343	0.974630	0.3305
DAY=14	0.670551	2.357042	0.284489	0.7762
DAY=15	2.571934	2.407973	1.068091	0.2863
DAY=16	3.782557	2.369497	1.596355	0.1114

DAY=17 DAY=18 DAY=19 DAY=20 DAY=21 DAY=22 DAY=23 DAY=24 DAY=25 DAY=26 DAY=26 DAY=27 DAY=28 DAY=29 DAY=30 DAY=30 DAY=31 MONTH="Aug" MONTH="Dec" MONTH="Feb" MONTH="Jan" MONTH="June" MONTH="June" MONTH="June" MONTH="Mar" MONTH="May" MONTH="Nov" MONTH="Nov"	1.139518 1.685850 2.505583 3.356893 4.215231 3.769889 3.982865 4.794423 1.559742 1.270718 2.177745 1.751342 -1.195348 1.922354 2.443388 -0.567582 5.162706 1.594346 -0.906782 0.414462 2.987267 1.139594 0.361701 5.695153 8.170574 2.554731	2.482298 2.659449 2.428425 2.398991 2.425033 2.456061 2.441155 2.509897 2.526050 2.815722 3.009548 2.970822 3.201740 2.691051 2.833679 1.468097 1.293900 1.464512 1.406762 1.413832 1.210638 1.295430 1.356534 1.277120 1.762346 1.842196	0.459058 0.633909 1.031773 1.399294 1.738216 1.534933 1.631550 1.910207 0.617463 0.451294 0.723612 0.589514 -0.373343 0.714350 0.862267 -0.386611 3.990035 1.088654 -0.644588 0.293148 2.467514 0.879703 0.266636 4.459373 4.636191 1.386786	0.6465 0.5266 0.3030 0.1627 0.0831 0.1258 0.1038 0.0570 0.5374 0.6521 0.4698 0.5559 0.7091 0.4755 0.3892 0.6993 0.0001 0.2771 0.7696 0.0141 0.3797 0.7899 0.0000 0.0000 0.0000 0.1665
MONTH="Sept"	2.554731	1.842196	1.386786	0.1665
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic) Prob(Wald F-statistic)	0.841932 0.819564 4.387260 6120.881 -1030.154 37.63989 0.000000 0.000000	Mean depend S.D. depende Akaike info c Schwarz crite Hannan-Quir Durbin-Watso Wald F-statis	ent var riterion erion nn criter. on stat	59.39217 10.32837 5.912932 6.405429 6.108677 1.615542 48.92926

=

Dependent Variable: PRICE Method: ARMA Conditional Least Squares (Gauss-Newton / Marquardt steps) Date: 04/01/20 Time: 13:52 Sample (adjusted): 2 365

Included observations: 362 after adjustments

Convergence achieved after 7 iterations White-Hinkley (HC1) heteroskedasticity consistent standard errors and covariance

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	-1.438005	6.410539	-0.224319	0.8227
LOAD	0.008407	0.001095	7.680726	0.0000
SOLAR	-0.000319	0.001182	-0.269763	0.7875
WIND	-0.005328	0.000438	-12.16775	0.0000
GAS_PRICE	1.452217	0.207750	6.990219	0.0000
DAY=2	3.473194	2.236333	1.553075	0.1214
DAY=3	4.781638	2.530549	1.889565	0.0597
DAY=4	3.376287	2.593024	1.302066	0.1938
DAY=5	1.862317	2.376423	0.783664	0.4338
DAY=6	4.143900	2.455665	1.687486	0.0925
DAY=7	4.459730	2.406871	1.852916	0.0648
DAY=8	1.472823	2.417741	0.609173	0.5428
DAY=9	3.483785	2.731368	1.275472	0.2031
DAY=10	2.877848	2.361853	1.218470	0.2240
DAY=11	2.559644	2.463760	1.038918	0.2996
DAY=12	2.211083	2.344606	0.943051	0.3464
DAY=13	3.024623	2.553000	1.184733	0.2370

DAY=14 DAY=15 DAY=16 DAY=17 DAY=18 DAY=19 DAY=20 DAY=21 DAY=22 DAY=23 DAY=23 DAY=23 DAY=24 DAY=25 DAY=25 DAY=26 DAY=27 DAY=28 DAY=29 DAY=30 DAY=30 DAY=31 MONTH="Aug" MONTH="Hau" MONTH="June" MONTH="June" MONTH="June" MONTH="May" MONTH="May"	1.169152 3.051519 4.293453 1.649895 2.187989 3.007053 3.864275 4.743305 4.294580 4.465958 5.302049 2.106636 1.885559 2.750524 2.315788 -0.701822 2.346660 2.821344 -0.279443 5.509204 1.723192 -1.289712 0.605733 3.073208 1.473918 0.703244 6.049793 8.645682	2.311292 2.337099 2.336090 2.457079 2.637851 2.378014 2.354880 2.408302 2.427188 2.435154 2.432388 2.513505 2.773008 3.135310 2.899225 2.938502 2.484216 2.706294 1.848517 1.633739 1.936906 1.735292 1.875549 1.566345 1.760213 1.793428 1.613787 2.094396	0.505843 1.305687 1.837880 0.671486 0.829459 1.264523 1.640965 1.969564 1.769365 1.833953 2.179771 0.838127 0.679969 0.877273 0.798761 -0.238837 0.944628 1.042512 -0.151171 3.372144 0.889663 -0.743224 0.322963 1.962026 0.837352 0.392123 3.748818 4.128007	0.6133 0.1926 0.0670 0.5024 0.4075 0.2070 0.1018 0.0498 0.0778 0.0676 0.0300 0.4026 0.4970 0.3810 0.4250 0.8114 0.3456 0.2980 0.8799 0.0008 0.3743 0.4579 0.7469 0.0506 0.4030 0.6952 0.0002
MONTH="Nov"	6.049793	1.613787	3.748818	0.0002
MONTH="Oct" MONTH="Sept" AR(1)	8.645682 3.138201 0.197956	2.094396 2.223850 0.092376	4.128007 1.411157 2.142931	0.0000 0.1592 0.0329
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.848984 0.826931 4.296980 5816.171 -1016.248 38.49718 0.000000	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		59.43891 10.32888 5.874299 6.379567 6.075161 1.982503
Inverted AR Roots	.20			

TEST ON THE RESIDUALS

Breusch-Godfrey Serial Correlation LM Test:

F-statistic	0.538014	Prob. F(2,313)	0.5844
Obs*R-squared		Prob. Chi-Square(2)	0.5379

Test Equation: Dependent Variable: RESID Method: Least Squares Sample: 2 365 Included observations: 362 Coefficient covariance computed using outer product of gradients Presample and interior missing value lagged residuals set to zero.

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	-0.120632	3.774380	-0.031961	0.9745
LOAD	0.000106	0.001064	0.100096	0.9203
SOLAR	4.52E-05	0.001136	0.039810	0.9683
WIND	2.53E-05	0.000408	0.062053	0.9506
GAS_PRICE	-0.008801	0.098546	-0.089304	0.9289
DAY=2	0.324160	1.669093	0.194213	0.8461
DAY=3	0.072488	1.846545	0.039256	0.9687
DAY=4	0.140845	1.873094	0.075194	0.9401

DAY=5	0.215555	1.848580	0.116606	0.9072
DAY=6	0.112455	1.837312	0.061206	0.9512
DAY=7	0.065450	1.839506	0.035580	0.9716
DAY=8	0.048543	1.847059	0.026281	0.9790
DAY=9	0.050185	1.839767	0.027278	0.9783
DAY=10	0.054380	1.837303	0.029598	0.9764
DAY=11	0.050298	1.845724	0.027251	0.9783
DAY=12	0.041829	1.843561	0.022689	0.9819
DAY=13	0.047949	1.835206	0.026127	0.9792
DAY=14	0.058399	1.834150	0.031840	0.9746
DAY=15	0.054652	1.836567	0.029758	0.9763
DAY=16	0.057629	1.837317	0.031366	0.9750
DAY=17	0.061539	1.834449	0.033546	0.9733
DAY=18	0.051817	1.839207	0.028174	0.9775
DAY=19	0.045147	1.836551	0.024582	0.9804
DAY=20	0.056074	1.833097	0.030590	0.9756
DAY=21	0.059906	1.833774	0.032668	0.9740
DAY=22	0.055435	1.833454	0.030235	0.9759
DAY=23	0.048104	1.835183	0.026212	0.9791
DAY=24	0.043851	1.844486	0.023774	0.9810
DAY=25	0.059588	1.846176	0.032276	0.9743
DAY=26	0.055300	1.852523	0.029851	0.9762
DAY=27	0.056427	1.835298	0.030745	0.9755
DAY=28	0.065921	1.821223	0.036196	0.9711
DAY=29	0.133578	1.869912	0.071435	0.9431
DAY=30	0.025727	1.787154	0.014395	0.9885
DAY=31	-0.014781	1.975789	-0.007481	0.9940
MONTH="Aug"	-0.177004	1.869033	-0.094703	0.9246
MONTH="Dec"	-0.103948	1.561900	-0.066552	0.9470
MONTH="Feb"	-0.092064	1.568917	-0.058680	0.9532
MONTH="Jan"	-0.023699	1.536488	-0.015424	0.9877
MONTH="July"	-0.184984	1.761614	-0.105008	0.9164
MONTH="June"	-0.156311	1.540803	-0.101448	0.9193
MONTH="Mar"	-0.160270	1.475913	-0.108591	0.9136
MONTH="May"	-0.080804	1.406283	-0.057460	0.9542
MONTH="Nov"	-0.101460	1.547113	-0.065580	0.9478
MONTH="Oct"	-0.066196	1.501368	-0.044090	0.9649
MONTH="Sept"	-0.126320	1.707587	-0.073976	0.9411
AR(1)	-0.334716	0.448468	-0.746354	0.4560
RESID(-1)	0.331879	0.453616	0.731629	0.4649
RESID(-2)	0.110059	0.107664	1.022238	0.3075
	0.1100000	0.107004	1.022200	0.0010
R-squared	0.003426	Mean depend	dent var	-2.15E-11
Adjusted R-squared	-0.149403	S.D. depende		4.013885
S.E. of regression	4.303296	Akaike info c		5.881917
Sum squared resid	5796.244	Schwarz crite		6.408686
Log likelihood	-1015.627	Hannan-Quir		6.091327
F-statistic	0.022417	Durbin-Wats		1.971334
Prob(F-statistic)	1.000000	Durbin-wals	on stat	1.37 1334
	1.000000			

SICILY

MODEL 1

Dependent Variable: PRICE
Method: Least Squares
Sample: 1 365
Included observations: 365

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	-29.75389	9.866402	-3.015678	0.0028
LOAD	0.046217	0.005234	8.830595	0.0000
DAY=2	1.119901	4.714205	0.237559	0.8124
DAY=3	-0.160218	4.734213	-0.033843	0.9730
DAY=4	4.497376	4.721255	0.952581	0.3415
DAY=5	9.400072	4.730850	1.986973	0.0478
DAY=6	5.641428	4.722198	1.194661	0.2331
DAY=7	0.435767	4.729967	0.092129	0.9267
DAY=8	2.536315	4.717798	0.537606	0.5912
DAY=9	4.512053	4.751110	0.949684	0.3430
DAY=10	4.307247	4.743962	0.907943	0.3646
DAY=11	4.132719	4.726790	0.874318	0.3826
DAY=12	3.184905	4.749919	0.670518	0.5030
DAY=13	-1.122860	4.747844	-0.236499	0.8132
DAY=14	-0.660275	4.734002	-0.139475	0.8892
DAY=15	-1.513334	4.717408	-0.320798	0.7486
DAY=16	3.129096	4.723835	0.662406	0.5082
DAY=17	-0.697169	4.725744	-0.147526	0.8828
DAY=18	-1.542241	4.726388	-0.326304	0.7444
DAY=19	1.883444	4.744603	0.396966	0.6917
DAY=20	2.897843	4.740988	0.611232	0.5415
DAY=21	1.264640	4.729530	0.267392	0.7893
DAY=22	-0.176874	4.734459	-0.037359	0.9702
DAY=23	-2.325610	4.739839	-0.490652	0.6240
DAY=24	-1.254281	4.727906	-0.265293	0.7910
DAY=25	-2.272538	4.712711	-0.482215	0.6300
DAY=26	-4.324668	4.717922	-0.916647	0.3600
DAY=27	-3.163231	4.719633	-0.670228	0.5032
DAY=28	-0.181453	4.720638	-0.038438	0.9694
DAY=29	-2.373164	4.824412	-0.491907	0.6231
DAY=30	-1.797419 -2.562911	4.833505	-0.371867	0.7102
DAY=31 MONTH="Aug"		5.537768	-0.462806	0.6438
MONTH= Aug MONTH="Dec"	21.59190	3.462419	6.236075 3.907440	0.0000
MONTH= Dec MONTH="Feb"	12.63128 -8.157780	3.232623 3.551529	-2.296977	0.0001
MONTH= Feb MONTH="Jan"	-3.311985	3.222416	-2.290977	0.0223 0.3048
MONTH= Jah MONTH="July"	2.252073	3.953001	0.569712	0.5693
MONTH= June"	1.888716	3.112112	0.606892	0.5693
MONTH= June MONTH="Mar"	-7.581435	3.072646	-2.467396	0.0444
MONTH= Mar MONTH="May"	8.213682	2.974805	2.761083	0.0141
MONTH= May MONTH="Nov"	12,18280	2.993391	4.069900	0.0001
MONTH="Oct"	11.24625	3.038368	3.701412	0.0001
MONTH="Sept"	11.32011	3.440742	3.290021	0.0003
P. squared	0.570164	Moon donor	dont vor	60 49624
R-squared Adjusted R-squared	0.579161 0.524269	Mean depend S.D. depende		69.48624 16.73624
				7.840398
S.E. of regression Sum squared resid	11.54353	Akaike info criterion Schwarz criterion		8.299838
Log likelihood	42907.49 -1387.873	Hannan-Quir		8.022985
F-statistic		Durbin-Wats		
Prob(F-statistic)	10.55091 0.000000	Durbin-wals	UN SIAL	0.870606
	0.000000			

Dependent Variable: PRICE Method: ARMA Conditional Least Squares (Gauss-Newton / Marquardt steps) Sample (adjusted): 2 365 Included observations: 364 after adjustments Convergence achieved after 7 iterations White-Hinkley (HC1) heteroskedasticity consistent standard errors and covariance

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	-8.630692	10.32305	-0.836060	0.4037
LOAD	0.034049	0.004991	6.822545	0.0000
DAY=2	1.431875	3.461524	0.413654	0.6794
DAY=3	0.934947	3.236696	0.288858	0.7729
DAY=4	5.216133	4.120487	1.265902	0.2065
DAY=5	10.42607	5.297128	1.968249	0.0499
DAY=6	6.405286	4.873956	1.314186	0.1897
DAY=7	1.443891	4.704740	0.306901	0.7591
DAY=8	3.118435	5.323021	0.585839	0.5584
DAY=9	5.984529	5.075710	1.179053	0.2393
DAY=10	5.642683	4.678288	1.206143	0.2287
DAY=11	5.052907	4.199093	1.203333	0.2297
DAY=12	4.636152	4.414016	1.050325	0.2944
DAY=13	0.289211	4.618819	0.062616	0.9501
DAY=14	0.454377	4.086106	0.111200	0.9115
DAY=15	-0.950129	4.727248	-0.200990	0.8408
DAY=16	3.954051	5.058983	0.781590	0.4350
DAY=17	0.188532	4.894958	0.038516	0.9693
DAY=18	-0.638685	4.411971	-0.144762	0.8850
DAY=19	3.224222	5.252059	0.613897	0.5397
DAY=20	4.158374	4.385600	0.948188	0.3437
DAY=21	2.240795	4.680790	0.478721	0.6325
DAY=22	0.910739	4.513364	0.201787	0.8402
DAY=23	-1.140722	4.043089	-0.282141	0.7780
DAY=24	-0.408915	4.515321	-0.090562	0.9279
DAY=25	-2.316712	4.212727	-0.549932	0.5827
DAY=26	-4.036023	5.452172	-0.740260	0.4597
DAY=27	-2.998176	5.407659	-0.554431	0.5797
DAY=28	-0.311566	4.470643	-0.069692	0.9445
DAY=29	-1.555842	3.860009	-0.403067	0.6872
DAY=30	-0.619202	3.246296	-0.190741	0.8488
DAY=31	0.555825	3.660873	0.151829	0.8794
MONTH="Aug"	25.32728	5.904700	4.289342	0.0000
MONTH="Dec"	15.19101	6.481378	2.343793	0.0197
MONTH="Feb"	-7.183742	7.067248	-1.016484	0.3102
MONTH="Jan"	2.947437	6.726908	0.438156	0.6616
MONTH="July"	8.546354	5.311596	1.608999	0.1086
MONTH="June"	3.953791	4.587702	0.861824	0.3894
MONTH="Mar"	-4.300823	5.311940	-0.809652	0.4187
MONTH="May"	7.337310	4.988159	1.470946	0.1423
MONTH="Nov"	12.73630	4.280142	2.975671	0.0031
MONTH="Oct"	13.57655	4.953869	2.740594	0.0065
MONTH="Sept"	14.16210	5.970451	2.372032	0.0183
AR(1)	0.599272	0.061312	9.774137	0.0000
R-squared	0.718839	Mean depen	dent var	69.55281
Adjusted R-squared	0.681058	S.D. depende		16.71082
S.E. of regression	9.437431	Akaike info c		7.440170
Sum squared resid	28500.83	Schwarz crite		7.911255
Log likelihood	-1310.111	Hannan-Quir	nn criter.	7.627405
F-statistic	19.02646	Durbin-Wats		1.904969
Prob(F-statistic)	0.000000			

ncluded observations: White-Hinkley (HC1) he covariance		ity consistent s	standard erro	rs and
Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	-5.797085	8.904194	-0.651051	0.515
LOAD	0.042379	0.004997	8.480707	0.000
RES	-0.024601	0.002194	-11.21409	0.000
DAY=2	1.758529	4.615922	0.380970	0.703
DAY=3	-0.327304	4.180609	-0.078291	0.937
DAY=4 DAY=5	4.179632 8.287929	4.152961 5.948261	1.006422 1.393336	0.315 0.164
DAY=6	4.701437	5.336787	0.880949	0.104
DAY=0 DAY=7	1.412108	4.509255	0.313158	0.754
DAY=8	2.005589	5.058243	0.396499	0.692
DAY=9	1.462273	4.081319	0.358284	0.720
DAY=10	3.533145	4.283754	0.824778	0.410
DAY=11	2.855055	3.984384	0.716561	0.474
DAY=12	-0.911624	4.135792	-0.220423	0.825
DAY=13	-2.702111	4.660024	-0.579849	0.562
DAY=14	-1.887120	4.433364	-0.425663	0.670
DAY=15	-2.870735	4.745238	-0.604972	0.545
DAY=16	1.868452	4.537296	0.411799	0.680
DAY=17	-0.742338	4.192059	-0.177082	0.859
DAY=18	-2.821872	4.052678	-0.696298	0.486
DAY=19	-1.602112	4.640551	-0.345242	0.730
DAY=20	-1.076296	4.149075	-0.259406	0.795
DAY=21	-2.483141	4.255008	-0.583581	0.559
DAY=22 DAY=23	-3.465370 -2.187564	3.911111 3.901311	-0.886032 -0.560725	0.376 0.575
DAY=24	-1.657537	4.498355	-0.368476	0.712
DAY=24	-4.284693	4.351521	-0.984643	0.325
DAY=26	-3.329566	5.260928	-0.632886	0.527
DAY=27	-1.057925	5.582403	-0.189511	0.849
DAY=28	-0.910102	4.743379	-0.191868	0.848
DAY=29	-3.618801	4.592391	-0.787999	0.431
DAY=30	-4.127481	3.838418	-1.075308	0.283
DAY=31	-2.527653	4.346244	-0.581572	0.561
MONTH="Aug"	18.65855	3.173581	5.879335	0.000
MONTH="Dec"	14.91103	2.481816	6.008112	0.000
MONTH="Feb"	-3.152363	2.906839	-1.084464	0.279
MONTH="Jan"	1.104440	2.160909	0.511100	0.609
MONTH="July"	4.350954	3.181118	1.367744	0.172
MONTH="June"	2.252969	1.858453	1.212282	0.226
MONTH="Mar" MONTH="May"	-1.356449 6.308285	2.227460 2.387325	-0.608967 2.642407	0.543 0.008
MONTH= "Nov"	12.48262	1.971010	6.333108	0.000
MONTH="Oct"	10.83666	1.884233	5.751234	0.000
MONTH="Sept"	9.024191	3.552312	2.540371	0.011
R-squared	0.706939	Mean depen	dent var	69.4862
djusted R-squared	0.667682	S.D. depende		16.7362
S.E. of regression	9.647943	Akaike info c		7.48400
Sum squared resid	29879.58	Schwarz crite		7.95413
.og likelihood	-1321.831	Hannan-Quir		7.67084
-statistic	18.00783	Durbin-Wats		0.88072
Prob(F-statistic)	0.000000	Wald F-statis		23.6542
Prob(Wald F-statistic)	0.000000			

Dependent Variable: PRICE Method: ARMA Conditional Least Squares (Gauss-Newton / Marquardt steps) Sample (adjusted): 2 365 Included observations: 364 after adjustments Convergence achieved after 7 iterations White-Hinkley (HC1) heteroskedasticity consistent standard errors and covariance

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	5.076681	8.910721	0.569727	0.5693
LOAD	0.035371	0.004320	8.187675	0.0000
RES	-0.022301	0.002266	-9.840953	0.0000
DAY=2	1.799652	2.426020	0.741813	0.4587
DAY=3	0.210889	2.960393	0.071237	0.9433
DAY=4	4.472791	3.560431	1.256250	0.2099
DAY=5	8.822778	4.907056	1.797978	0.0731
DAY=6	5.050411	4.390860	1.150210	0.2509
DAY=7	1.723244	4.730586	0.364277	0.7159
DAY=8	2.195746	4.749991	0.462263	0.6442
DAY=9	2.424626	4.406214	0.550274	0.5825
DAY=10	4.198387	4.305682	0.975081	0.3303
DAY=11	3.315088	4.039915	0.820584	0.4125
DAY=12	0.132883	4.073233	0.032623	0.9740
DAY=13	-1.917040	4.094822	-0.468162	0.6400
DAY=14	-1.315429	3.922318	-0.335370	0.7376
DAY=15	-2.621143	4.083502	-0.641886	0.5214
DAY=16	2.266869	4.059593	0.558398	0.5770
DAY=17	-0.421725	4.081966	-0.103314	0.9178
DAY=18	-2.376641	4.393531	-0.540941	0.5889
DAY=19	-0.688622	4.657432	-0.147854	0.8826
DAY=20	-0.170217	4.059538	-0.041930	0.9666
DAY=21	-1.778002	4.268998	-0.416492	0.6773
DAY=22	-2.748548	4.188826	-0.656162	0.5122
DAY=23	-1.753927	3.926750	-0.446661	0.6554
DAY=23	-1.415713	4.289288	-0.330058	0.7416
DAY=24	-4.493405	4.387713	-1.024088	0.3066
DAY=26	-3.723399	5.409187	-0.688347	0.4917
DAY=27	-1.808898	4.763043	-0.379778	0.7044
DAY=28	-1.876928	4.410015	-0.425606	0.6707
DAY=29	-3.307051	3.811141	-0.867732	0.3862
DAY=30	-2.892021	3.002441	-0.963223	0.3362
DAY=31	-0.359938	3.053028	-0.117895	0.9062
MONTH="Aug"	21.16828	5.456222	3.879658	0.0001
MONTH="Dec"	15.68491	5.082588	3.086008	0.0022
MONTH="Feb"	-4.350252	5.864484	-0.741796	0.4588
MONTH="Jan"	4.008942	4.997991	0.802111	0.4231
MONTH="July"	8.100350	4.763767	1.700409	0.0900
MONTH="June"	3.165170	4.064398	0.778755	0.4367
MONTH="Mar"	1.843502	5.188774	0.355287	0.7226
MONTH="May"	5.341540	4.509937	1.184393	0.2371
MONTH="Nov"	12.81728	3.891751	3.293449	0.0011
	12.42255			
MONTH="Oct"		4.016602	3.092801	0.0022
MONTH="Sept"	10.88710	5.098136	2.135505	0.0335
AR(1)	0.594450	0.062145	9.565561	0.0000
R-squared	0.801916	Mean depend	dent var	69.55281
Adjusted R-squared	0.774594	S.D. depende		16.71082
S.E. of regression	7.933797	Akaike info c		7.095430
Sum squared resid	20079.50	Schwarz crite		7.577221
Log likelihood	-1246.368	Hannan-Quir		7.286920
F-statistic	29.35055	Durbin-Watso		2.018877
Prob(F-statistic)	0.000000	Durbin-walso	Jin Stat	2.010011
	0.000000			
Inverted AR Roots	.59			

Dependent Variable: Pl Method: Least Squares Sample: 1 365 ncluded observations: White-Hinkley (HC1) he covariance	365	ity consistent s	standard erro	rs and
Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	-10.16617	9.361680	-1.085935	0.2783
LOAD	0.042595	0.005013	8.496073	0.0000
SOLAR	-0.011812	0.006507	-1.815299	0.0704
WIND	-0.024596	0.002184	-11.26018	0.000
DAY=2	1.966346	4.642284	0.423573	0.672
DAY=3	-0.228388	4.276191	-0.053409	0.957
DAY=4	4.008244	4.295079	0.933218	0.351
DAY=5	7.993768	6.038137	1.323880	0.186
DAY=6	4.325099	5.404539	0.800272	0.424
DAY=7	0.804619	4.562612	0.176350	0.860
DAY=8	1.433761	5.112540	0.280440	0.779
DAY=9	1.312311	4.153174	0.315978	0.752
DAY=10	3.167078	4.318502	0.733374	0.463
DAY=11	2.151698	4.060734	0.529879	0.596
DAY=12	-1.392731	4.213738	-0.330522	0.741
DAY=13	-2.840025	4.754694	-0.597310	0.550
DAY=14	-1.708564	4.555132	-0.375086	0.707
DAY=15	-3.067389	4.784715	-0.641081	0.521
DAY=16	1.271121	4.564454	0.278483	0.780
DAY=17	-0.854814	4.200392	-0.203508	0.838
DAY=18	-2.784804	4.071309	-0.684007	0.494
DAY=19	-1.940697	4.676466	-0.414992	0.678
DAY=20	-0.915051	4.174839	-0.219182	0.826
DAY=21	-2.743675	4.282233	-0.640711	0.522
DAY=22	-3.634865	3.904715	-0.930891	0.352
DAY=23	-2.373005	3.989688	-0.594785	0.552
DAY=24	-2.212585	4.467323	-0.495282	0.620
DAY=25	-4.261325	4.363506	-0.976583	0.329
DAY=26	-3.659225	5.279299	-0.693127	0.488
DAY=27	-1.623574	5.617002	-0.289046	0.772
DAY=28	-0.952287	4.786319	-0.198960	0.842
DAY=29	-4.041208	4.637419	-0.871435	0.384
DAY=30	-4.863929	3.923897	-1.239566	0.216
DAY=31	-2.852682	4.349498	-0.655865	0.512
MONTH="Aug" MONTH="Dec"	18.47870	3.203443	5.768385 6.439321	0.000
MONTH= Dec MONTH="Feb"	16.08368 -1.752106	2.497730 2.989882	-0.586012	0.000 0.558
MONTH= Feb MONTH="Jan"	2.369649	2.213565	1.070513	0.556
MONTH= Jah MONTH="July"	3.234014	3.270153	0.988949	0.285
MONTH= July MONTH="June"	1.859195	1.883377	0.988949	0.323
MONTH="Mar"	-0.819838	2.235060	-0.366808	0.714
MONTH= Mar MONTH="May"	6.147980	2.235060	2.529171	0.714
MONTH= May MONTH="Nov"	13.70508	2.430828	6.494126	0.000
MONTH="Oct"	12.00798	1.852319	6.482672	0.000
MONTH="Sept"	8.808709	3.561627	2.473226	0.000
	0.0007.00	0.001021	2.170220	0.010
R-squared	0.709915	Mean depend	dent var	69.48624
djusted R-squared	0.670028	S.D. depende		16.7362
S.E. of regression	9.613833	Akaike info c		7.47928
Sum squared resid	29576.25	Schwarz crite		7.96009
.og likelihood	-1319.969	Hannan-Quir		7.67036
-statistic	17.79826	Durbin-Wats		0.85888
Prob(F-statistic)	0.000000	Wald F-statis		22.8796
Prob(Wald F-statistic)	0.000000			

Dependent Variable: PRICE Method: ARMA Conditional Least Squares (Gauss-Newton / Marquardt steps) Sample (adjusted): 2 365 Included observations: 364 after adjustments Convergence achieved after 7 iterations White-Hinkley (HC1) heteroskedasticity consistent standard errors and covariance

Variable	Coefficient	Std. Error	t-Statistic	Prob.
vanable	COEIIICIEIII		เ-อเลแรแต	
С	-0.917065	9.339946	-0.098187	0.9218
LOAD	0.035883	0.004358	8.234209	0.0000
SOLAR	-0.005743	0.005598	-1.025863	0.3057
WIND	-0.022609	0.002265	-9.983473	0.0000
DAY=2	2.125454	2.395377	0.887315	0.3756
DAY=3	0.394801	2.896794	0.136289	0.8917
DAY=4	4.324341	3.639801	1.188071	0.2357
DAY=5	8.505640	4.936616	1.722970	0.0859
DAY=6	4.639141	4.344893	1.067723	0.2865
DAY=7	1.029532	4.721197	0.218066	0.8275
DAY=8	1.541664	4.794493	0.321549	0.7480
DAY=9	2.276001	4.554195	0.499759	0.6176
DAY=10	3.797527	4.313249	0.880433	0.3793
DAY=11	2.472663	4.040715	0.611937	0.5410
DAY=12	-0.464129	4.119018	-0.112680	0.9104
DAY=13	-2.028175	4.146590	-0.489119	0.6251
DAY=14	-0.997791	3.927770	-0.254035	0.7996
DAY=15	-2.787741	4.146699	-0.672280	0.5019
DAY=16	1.566766	4.021361	0.389611	0.6971
DAY=17	-0.468329	3.999411	-0.117099	0.9069
DAY=18	-2.242575	4.237298	-0.529246	0.5970
DAY=19	-1.088945	4.652598	-0.234051	0.8151
DAY=20	0.083421	4.039719	0.020650	0.9835
DAY=21	-2.073013	4.185345	-0.495303	0.6207
DAY=22	-2.922314	4.118897	-0.709489	0.4785
DAY=23	-1.910244	3.917878	-0.487571	0.6262
DAY=24	-2.062815	4.173982	-0.494208	0.6215
DAY=25	-4.382553	4.305137	-1.017982	0.3095
DAY=26	-4.052599	5.290100	-0.766072	0.4442
DAY=27	-2.436029	4.690211	-0.519386	0.6039
DAY=28	-1.840559	4.329687	-0.425102	0.6710
DAY=29	-3.647356	3.791650	-0.961944	0.3368
DAY=30	-3.690470	2.991046	-1.233839	0.2182
DAY=31	-0.591623	3.060352	-0.193319	0.8468
MONTH="Aug"	20.67686	5.581516	3.704524	0.0002
MONTH="Dec"	17.33336	5.094774	3.402185	0.0008
MONTH="Feb"	-2.393619	5.916393	-0.404574	0.6861
MONTH="Jan"	5.331715	4.844717	1.100522	0.2719
MONTH="July"	6.476256	4.818126	1.344144	0.1799
MONTH="June"	2.654648	4.154245	0.639021	0.5233
MONTH="Mar"	2.595798	5.360286	0.484265	0.6285
MONTH="May"	4.894484	4.620422	1.059315	0.2903
MONTH="Nov"	14.11200	3.967665	3.556752	0.0004
MONTH="Oct"	13.86480	3.963376	3.498229	0.0005
MONTH="Sept"	10.41553	5.166199	2.016091	0.0446
AR(1)	0.604353	0.060883	9.926433	0.0000
R-squared	0.807693	Mean depend	dent var	69.55281
Adjusted R-squared	0.780479	S.D. depende		16.71082
S.E. of regression	7.829529	Akaike info c		7.071327
Sum squared resid	19493.88	Schwarz crite		7.563824
Log likelihood	-1240.981	Hannan-Quir		7.267072
F-statistic	29.68006	Durbin-Wats		2.014426
Prob(F-statistic)	0.000000			2.017720
Inverted AR Roots	.60			

White-Hinkley (HC1) heteroskedasticity consistent standard errors and covariance					
Variable	Coefficient	Std. Error	t-Statistic	Prob.	
С	-27.75378	8.900019	-3.118396	0.002	
LOAD	0.036242	0.004519	8.019681	0.000	
SOLAR	-0.010903	0.006109	-1.784793	0.075	
WIND	-0.024748	0.001985	-12.47019	0.000	
GAS_PRICE	1.244905	0.153669	8.101198	0.000	
DAY=2	1.244138	2.738865	0.454253	0.650	
DAY=3	1.139091	2.906470	0.391916	0.695	
DAY=4	6.230269	3.190691	1.952639	0.051	
DAY=5	9.384350	5.238850	1.791300	0.074	
DAY=6	6.646689	4.465162	1.488566	0.137	
DAY=7	3.464346	3.307105	1.047546	0.295	
DAY=8	3.750352	3.956782	0.947829	0.343	
DAY=9	4.174563	2.833787	1.473139	0.141	
DAY=10	5.746799	3.116399	1.844051	0.066	
DAY=11	4.358189	2.714999	1.605227	0.109	
DAY=12	1.004471	2.919411	0.344066	0.731	
DAY=13 DAY=14	-0.666811	3.576869 3.415102	-0.186423	0.852	
DAY=14 DAY=15	0.206424		0.060445	0.951	
DAY=15 DAY=16	-1.408165 2.877718	3.637588 3.527310	-0.387115 0.815839	0.698 0.415	
DAY=10 DAY=17	0.861824	3.075448	0.280227	0.413	
DAY=17 DAY=18	-1.060605	2.716585	-0.390418	0.696	
DAY=10 DAY=19	-0.395870	3.506398	-0.112899	0.030	
DAY=20	0.797570	2.954107	0.269987	0.787	
DAY=21	-1.360612	3.101692	-0.438668	0.661	
DAY=22	-2.430039	2.544363	-0.955068	0.340	
DAY=23	-0.979546	2.481864	-0.394681	0.693	
DAY=24	-0.639933	3.232267	-0.197983	0.843	
DAY=25	-3.263429	3.367448	-0.969110	0.333	
DAY=26	-4.402974	3.931945	-1.119796	0.263	
DAY=27	-1.524614	4.108521	-0.371086	0.710	
DAY=28	-0.343309	3.846843	-0.089244	0.928	
DAY=29	-2.121282	3.556267	-0.596491	0.551	
DAY=30	-2.965329	2.699011	-1.098673	0.272	
DAY=31	-0.618877	2.997106	-0.206491	0.836	
MONTH="Aug"	16.38546	3.167499	5.172997	0.000	
MONTH="Dec"	13.56173	2.392065	5.669468	0.000	
MONTH="Feb"	-0.391885	2.416671	-0.162159	0.871	
MONTH="Jan"	6.541885	2.172738	3.010894	0.002	
MONTH="July"	3.304675	3.038946	1.087441	0.277	
MONTH="June"	0.475047	1.850950	0.256650	0.797	
MONTH="Mar"	-1.663575	1.750998	-0.950072	0.342	
MONTH="May"	4.633333	2.484436	1.864944	0.063	
MONTH="Nov"	10.38987	2.114147	4.914450	0.000	
MONTH="Oct"	6.322262	1.897568	3.331770	0.001	
MONTH="Sept"	1.922031	3.613565	0.531893	0.595	
R-squared	0.750258	Mean depend	dent var	69.5312	
djusted R-squared	0.714918	S.D. depende		16.7371	
S.E. of regression	8.936478	Akaike info c		7.33580	
Sum squared resid	25395.68	Schwarz crite		7.82830	
og likelihood	-1289.117	Hannan-Quir		7.53155	
-statistic	21.22925	Durbin-Wats		0.93188	
Prob(F-statistic)	0.000000	Wald F-statis		30.9647	
Prob(Wald F-statistic)	0.000000				

Dependent Variable: PRICE

Method: ARMA Conditional Least Squares (Gauss-Newton / Marquardt steps) Sample (adjusted): 2 365

Included observations: 362 after adjustments Convergence achieved after 7 iterations White-Hinkley (HC1) heteroskedasticity consistent standard errors and covariance

C -18.04358 9.487786 -1.901769 0.0581 LOAD 0.031573 0.004312 7.321562 0.0000 SOLAR -0.008169 0.005455 -1.497535 0.1033 WIND -0.023102 0.002170 -10.64726 0.0000 GAS_PRICE 1.130521 0.250644 4.510463 0.0001 DAY=2 1.254340 2.475417 0.506719 0.6127 DAY=3 1.530794 2.857215 0.535765 0.5925 DAY=4 6.362875 3.390822 1.876499 0.0615 DAY=5 9.596164 4.61257 2.080425 0.0383 DAY=6 6.535395 3.729498 1.752352 0.0807 DAY=7 3.228698 4.064735 0.794369 0.4276 DAY=10 5.747899 3.593679 1.277144 0.2025 DAY=10 5.747859 3.251976 0.073143 0.9417 DAY=13 -0.52044 3.402563 0.4135 DAY=14 0.2	Variable	Coefficient	Std. Error	t-Statistic	Prob.
SOLAR -0.008169 0.005455 -1.497535 0.1353 WIND -0.023102 0.002170 -10.64726 0.0000 GAS_PRICE 1.130521 0.250644 4.510463 0.0001 DAY=2 1.254340 2.475417 0.506719 0.6127 DAY=3 1.530794 2.857215 0.535765 0.5925 DAY=4 6.363395 3.729498 1.752352 0.0803 DAY=5 9.596164 4.612597 2.080425 0.0383 DAY=6 6.535395 3.729498 1.752352 0.0807 DAY=7 3.228898 4.064735 0.794369 0.4276 DAY=8 3.425148 4.131103 0.829112 0.4077 DAY=10 5.747893 3.593679 1.599447 0.1107 DAY=12 1.276258 3.422563 0.372895 0.7095 DAY=13 -0.52044 3.47709 -0.152343 0.8790 DAY=14 0.237859 3.251976 0.073143 0.9417	С	-18.04358	9.487786	-1.901769	0.0581
WIND -0.023102 0.002170 -10.64726 0.0000 DAY=2 1.254340 2.475417 0.506719 0.6127 DAY=3 1.530794 2.857215 0.535765 0.5925 DAY=4 6.362875 3.390822 1.876499 0.0615 DAY=5 9.596164 4.612597 2.080425 0.0383 DAY=6 6.535395 3.729498 1.752352 0.0807 DAY=7 3.228898 4.064735 0.794369 0.4276 DAY=8 3.425148 4.131103 0.829112 0.4077 DAY=9 4.392606 3.839746 1.143984 0.2535 DAY=10 5.747899 3.593679 1.599447 0.1107 DAY=11 4.201660 3.289759 1.277194 0.2025 DAY=12 1.276258 3.422663 0.372895 0.79343 DAY=14 0.237859 3.251976 0.071343 0.9417 DAY=15 1.630366 3.430528 -0.475211 0.6350 <td< td=""><td>LOAD</td><td>0.031573</td><td>0.004312</td><td>7.321562</td><td>0.0000</td></td<>	LOAD	0.031573	0.004312	7.321562	0.0000
GAS_PRICE 1.130521 0.250644 4.510463 0.0000 DAY=2 1.254340 2.475417 0.506719 0.6127 DAY=3 1.530794 2.857215 0.53765 0.5925 DAY=4 6.362875 3.390822 1.876499 0.0615 DAY=5 9.596164 4.612597 2.080425 0.0383 DAY=6 6.535395 3.729498 1.752352 0.0807 DAY=7 3.228898 4.064735 0.794369 0.4276 DAY=8 3.425148 4.131103 0.829112 0.4077 DAY=9 4.392606 3.839746 1.143984 0.2525 DAY=10 5.747899 3.593679 1.599447 0.1107 DAY=11 4.201660 3.289759 1.277194 0.2025 DAY=13 -0.529044 3.472709 -0.152343 0.8790 DAY=14 0.237857 3.340539 0.818873 0.4135 DAY=16 2.735477 3.340539 0.818873 0.4135 <					
DAY=2 1.254340 2.475417 0.506719 0.6127 DAY=3 1.530794 2.857215 0.535765 0.5925 DAY=4 6.362875 3.390822 1.876499 0.0615 DAY=5 9.596164 4.612597 2.080425 0.0383 DAY=6 6.535395 3.729498 1.752352 0.0807 DAY=7 3.228884 4.064735 0.794369 0.4276 DAY=9 4.392606 3.839746 1.143984 0.2255 DAY=10 5.747899 3.593679 1.599447 0.1107 DAY=11 4.201660 3.289759 1.277194 0.2025 DAY=12 1.276258 3.251976 0.073143 0.9417 DAY=15 -1.630366 3.430828 -0.475211 0.6350 DAY=14 0.236637 0.31481 0.9749 DAY=15 -1.630366 3.430828 -0.475211 0.6350 DAY=14 0.276131 3.341574 0.321481 0.9749 DAY=21 <td< td=""><td></td><td></td><td></td><td></td><td></td></td<>					
DAY=3 1.530794 2.857215 0.535765 0.5925 DAY=4 6.362875 3.390822 1.876499 0.0615 DAY=5 9.596164 4.612597 2.080425 0.0807 DAY=6 6.535395 3.729498 1.752352 0.0807 DAY=7 3.228988 4.064735 0.794369 0.4276 DAY=9 4.322606 3.839746 1.143984 0.2535 DAY=10 5.747899 3.593679 1.599447 0.1107 DAY=11 4.201660 3.289759 1.277194 0.2025 DAY=12 1.276258 3.42263 0.372895 0.7095 DAY=13 -0.529044 3.472709 -0.152343 0.8790 DAY=14 0.237859 3.251976 0.073143 0.9417 DAY=15 -1.630366 3.430828 -0.475211 0.63505 DAY=16 2.735477 3.340539 0.818873 0.4135 DAY=18 -1.117942 3.5629862 -0.342201 0.7324					
DAY=4 6.362875 3.390822 1.876499 0.0615 DAY=5 9.596164 4.612597 2.080425 0.0383 DAY=6 6.53595 3.729498 1.752352 0.0807 DAY=7 3.228898 4.064735 0.794369 0.4276 DAY=8 3.425148 4.131103 0.829112 0.4077 DAY=9 4.392606 3.839746 1.143984 0.2535 DAY=11 5.747899 3.593679 1.577194 0.2025 DAY=12 1.276258 3.422563 0.372895 0.7095 DAY=12 1.276258 3.4251976 0.073143 0.9417 DAY=15 -1.630366 3.430528 -0.475211 0.6350 DAY=16 2.735477 3.340539 0.818873 0.4135 DAY=17 0.701331 3.341660 0.209875 0.8339 DAY=18 -1.117942 3.562298 -0.31481 0.9749 DAY=20 1.093561 3.343674 0.327063 0.7426					
DAY=5 9.596164 4.612597 2.080425 0.0383 DAY=6 6.535395 3.729498 1.752352 0.0807 DAY=7 3.228898 4.064735 0.794369 0.4276 DAY=8 3.425148 4.131103 0.829112 0.4077 DAY=9 4.392606 3.839746 1.143984 0.2535 DAY=10 5.747899 3.593679 1.599447 0.1107 DAY=11 4.201660 3.289759 1.277194 0.2025 DAY=12 1.276258 3.422563 0.372895 0.7095 DAY=13 -0.529044 3.472709 -0.152343 0.8710 DAY=14 0.237859 3.251976 0.073143 0.9417 DAY=15 -1.630366 3.430828 -0.475211 0.6350 DAY=17 0.710131 3.341660 0.209875 0.3382 DAY=17 0.71248 -0.031481 0.9749 DAY=20 1.093561 3.343574 0.327063 0.7426 DAY=21					
DAY=6 6.535395 3.729498 1.752352 0.0807 DAY=7 3.228898 4.064735 0.794369 0.4276 DAY=8 3.425148 4.131103 0.829112 0.4077 DAY=9 4.392606 3.839746 1.143984 0.2535 DAY=10 5.747899 3.593679 1.599447 0.1107 DAY=11 4.201660 3.289759 1.277194 0.2025 DAY=12 1.276258 3.422563 0.372895 0.7095 DAY=13 -0.529044 3.472709 -0.152343 0.8790 DAY=14 0.237859 3.251976 0.073143 0.9417 DAY=15 -1.63066 3.430628 -0.475211 0.63550 DAY=17 0.701331 3.341660 0.209875 0.8339 DAY=18 -1.117942 3.562298 -0.313826 0.7539 DAY=20 1.093561 3.343574 0.327063 0.7448 DAY=22 -2.244081 3.361758 -0.667532 0.50449					
DAY=7 3.228898 4.064735 0.794369 0.4276 DAY=8 3.425148 4.131103 0.829112 0.4077 DAY=9 4.392606 3.839746 1.143984 0.2535 DAY=10 5.747899 3.593679 1.599447 0.1107 DAY=11 4.201660 3.289759 1.277194 0.2025 DAY=12 1.276258 3.422563 0.372895 0.8799 DAY=14 0.237859 3.251976 0.073143 0.9417 DAY=15 -1.630366 3.430828 -0.475211 0.6350 DAY=16 2.735477 3.340539 0.818873 0.4135 DAY=17 0.701331 3.341660 0.209875 0.8339 DAY=18 -1.117942 3.552862 -0.31481 0.9749 DAY=20 1.093561 3.343574 0.327063 0.7438 DAY=21 -1.218189 3.559862 -0.342201 0.7324 DAY=22 -2.244081 3.61758 -0.667532 0.5049					
DAY=8 3.425148 4.131103 0.829112 0.4077 DAY=9 4.392606 3.839746 1.143984 0.2535 DAY=10 5.747899 3.593679 1.599447 0.1107 DAY=11 4.201660 3.289759 1.277194 0.2025 DAY=12 1.276258 3.422563 0.372895 0.7095 DAY=13 -0.529044 3.472709 -0.152343 0.8170 DAY=14 0.237859 3.251976 0.073143 0.9417 DAY=15 -1.630366 3.430828 -0.475211 0.6339 DAY=16 2.735477 3.340539 0.818873 0.4135 DAY=17 0.701331 3.341660 0.209875 0.3389 DAY=17 0.701331 3.341680 0.7338 0.7438 DAY=20 1.093561 3.343574 0.327063 0.7438 DAY=21 -1.218189 3.55962 -0.342201 0.7249 DAY=22 -2.244081 3.361758 0.666752 0.50499					
DAY=9 4.392606 3.839746 1.143984 0.2535 DAY=10 5.747899 3.593679 1.599447 0.1107 DAY=11 4.201660 3.289759 1.277194 0.2025 DAY=12 1.276258 3.422563 0.372895 0.7095 DAY=13 -0.529044 3.472709 -0.152343 0.8790 DAY=14 0.237859 3.251976 0.073143 0.9417 DAY=15 -1.630366 3.430828 -0.475211 0.6350 DAY=17 0.701331 3.341660 0.209875 0.8339 DAY=18 -1.117942 3.562298 -0.31826 0.7539 DAY=20 1.093561 3.343574 0.327063 0.7438 DAY=21 -1.218189 3.559862 -0.342201 0.7324 DAY=22 -2.244081 3.361758 -0.667532 0.5049 DAY=23 -0.998957 3.039697 -0.328637 0.7426 DAY=24 -0.836131 3.449744 -0.242375 0.8086					
DAY=10 5.747899 3.593679 1.599447 0.1107 DAY=11 4.201660 3.289759 1.277194 0.2025 DAY=12 1.276258 3.422563 0.372895 0.7095 DAY=13 -0.529044 3.472709 -0.152343 0.8790 DAY=14 0.237859 3.251976 0.073143 0.9417 DAY=15 -1.630366 3.430828 -0.475211 0.6350 DAY=16 2.735477 3.340539 0.818873 0.4135 DAY=17 0.701331 3.341660 0.209875 0.8339 DAY=18 -1.117942 3.559862 -0.31481 0.9749 DAY=20 1.093561 3.53574 0.327063 0.7438 DAY=21 -1.218189 3.559862 -0.342201 0.7324 DAY=22 -2.244081 3.61758 -0.667532 0.5049 DAY=23 -0.998957 3.039697 -0.322637 0.7826 DAY=24 -0.86131 3.449744 -0.242375 0.8686					
DAY=11 4.201660 3.289759 1.277194 0.2025 DAY=12 1.276258 3.422563 0.372895 0.7095 DAY=13 -0.529044 3.472709 -0.152343 0.8790 DAY=14 0.237859 3.251976 0.073143 0.9417 DAY=15 -1.630366 3.430828 -0.475211 0.6350 DAY=16 2.735477 3.340539 0.818873 0.4135 DAY=17 0.701331 3.341660 0.209875 0.8339 DAY=18 -1.117942 3.562298 -0.313826 0.7539 DAY=20 1.093561 3.343574 0.327063 0.7438 DAY=21 -1.218189 3.559862 -0.342201 0.7324 DAY=22 -2.244081 3.661758 -0.67532 0.5049 DAY=23 -0.99857 3.039697 -0.328637 0.7426 DAY=24 -0.836131 3.449744 -0.242375 0.8086 DAY=25 -3.666863 3.696529 -0.91975 0.3220					
DAY=12 1.276258 3.422563 0.372895 0.7095 DAY=13 -0.529044 3.472709 -0.152343 0.8790 DAY=14 0.237859 3.251976 0.073143 0.9417 DAY=15 -1.630366 3.430539 0.818873 0.4135 DAY=16 2.735477 3.340539 0.818873 0.4135 DAY=17 0.701331 3.341660 0.209875 0.8339 DAY=18 -1.117942 3.562298 -0.31826 0.7438 DAY=20 1.093561 3.343574 0.327063 0.7438 DAY=21 -1.218189 3.559862 -0.342201 0.7324 DAY=22 -2.244081 3.361758 -0.667532 0.5049 DAY=23 -0.998957 3.039697 -0.328637 0.7426 DAY=24 -0.836131 3.449744 -0.242375 0.8086 DAY=25 -3.666863 3.696529 -0.919175 0.3220 DAY=26 -4.760610 4.334648 -1.098269 0.2779 <td></td> <td></td> <td></td> <td></td> <td></td>					
DAY=13 -0.529044 3.472709 -0.152343 0.8790 DAY=14 0.237859 3.251976 0.073143 0.9417 DAY=15 -1.630366 3.430828 -0.475211 0.6350 DAY=16 2.735477 3.340539 0.818873 0.4135 DAY=17 0.701331 3.341660 0.209875 0.8339 DAY=18 -1.117942 3.562298 -0.313826 0.7539 DAY=20 1.093561 3.343574 0.327063 0.7438 DAY=22 -2.244081 3.361758 -0.667532 0.5049 DAY=23 -0.998957 3.039697 -0.328637 0.7426 DAY=24 -0.836131 3.449744 -0.242375 0.8086 DAY=25 -3.666863 3.696529 -0.91975 0.3220 DAY=26 -4.760610 4.334648 -1.098269 0.2729 DAY=27 -2.177757 3.769687 -0.577702 0.5639 DAY=28 -1.071371 3.379221 -0.317047 0.7514 <					
DAY=14 0.237859 3.251976 0.073143 0.9417 DAY=15 -1.630366 3.430828 -0.475211 0.6350 DAY=16 2.735477 3.340539 0.818873 0.4135 DAY=17 0.701331 3.341660 0.209875 0.8339 DAY=18 -1.117942 3.562298 -0.313826 0.7539 DAY=20 1.093561 3.343574 0.327063 0.7438 DAY=21 -1.218189 3.559862 -0.342201 0.7426 DAY=22 -2.244081 3.61758 -0.667532 0.5049 DAY=22 -0.99857 3.039697 -0.328637 0.7426 DAY=23 -0.99857 3.039697 -0.328637 0.7426 DAY=24 -0.836131 3.449744 -0.242375 0.8086 DAY=25 -3.666863 3.696529 -0.991975 0.3220 DAY=26 -4.760610 4.334648 -1.098269 0.2729 DAY=27 -2.774061 3.095028 -0.886603 0.3760 <td></td> <td></td> <td></td> <td></td> <td></td>					
DAY=15 -1.630366 3.430828 -0.475211 0.6350 DAY=16 2.735477 3.340539 0.818873 0.4135 DAY=17 0.701331 3.341660 0.209875 0.8339 DAY=18 -1.117942 3.562298 -0.313826 0.7539 DAY=20 1.093561 3.343574 0.327063 0.7438 DAY=21 -1.218189 3.559862 -0.342201 0.7324 DAY=23 -0.998957 3.039697 -0.328637 0.7426 DAY=24 -0.836131 3.449744 -0.242375 0.8086 DAY=25 -3.666863 3.696529 -0.991975 0.3220 DAY=26 -4.760610 4.334648 -1.098269 0.2729 DAY=28 -1.071371 3.379221 -0.317047 0.7514 DAY=29 -2.744061 3.095028 -0.86603 0.3760 DAY=30 -2.911917 2.515090 -1.157778 0.2478 DAY=31 -0.186229 2.779135 -0.067010 0.9466					
DAY=16 2.735477 3.340539 0.818873 0.4135 DAY=17 0.701331 3.341660 0.209875 0.8339 DAY=18 -1.117942 3.562298 -0.313826 0.7539 DAY=19 -0.126617 4.021938 -0.031481 0.9749 DAY=20 1.093561 3.343574 0.327063 0.7438 DAY=21 -1.218189 3.559862 -0.342201 0.7324 DAY=22 -2.244081 3.361758 -0.667532 0.5049 DAY=23 -0.998957 3.039697 -0.328637 0.7426 DAY=24 -0.836131 3.449744 -0.242375 0.8086 DAY=25 -3.666863 3.696529 -0.991975 0.3220 DAY=26 -4.760610 4.334648 -1.098269 0.2729 DAY=28 -1.071371 3.379221 -0.317047 0.7514 DAY=30 -2.911917 2.515090 -1.157778 0.2478 DAY=31 -0.18629 2.779135 -0.06710 0.9466					
DAY=17 0.701331 3.341660 0.209875 0.8339 DAY=18 -1.117942 3.562298 -0.313826 0.7539 DAY=19 -0.126617 4.021938 -0.031481 0.9749 DAY=20 1.093561 3.343574 0.327063 0.7438 DAY=21 -1.218189 3.559862 -0.342201 0.7324 DAY=22 -2.244081 3.361758 -0.667532 0.5049 DAY=23 -0.998957 3.039697 -0.328637 0.7426 DAY=24 -0.836131 3.449744 -0.242375 0.8086 DAY=25 -3.666863 3.696529 -0.991975 0.3220 DAY=26 -4.760610 4.334648 -1.098269 0.2729 DAY=28 -1071371 3.379221 -0.317047 0.7514 DAY=29 -2.744061 3.095028 -0.886603 0.3760 DAY=31 -0.186229 2.779135 -0.06710 0.9466 MONTH="Aug" 18.08303 5.341053 3.385667 0.0026					
DAY=18 -1.117942 3.562298 -0.313826 0.7539 DAY=19 -0.126617 4.021938 -0.031481 0.9749 DAY=20 1.093561 3.343574 0.327063 0.7438 DAY=21 -1.218189 3.559862 -0.342201 0.7324 DAY=22 -2.244081 3.361758 -0.667532 0.5049 DAY=23 -0.998957 3.039697 -0.328637 0.7426 DAY=24 -0.836131 3.449744 -0.242375 0.8086 DAY=25 -3.666863 3.696529 -0.991975 0.3220 DAY=26 -4.760610 4.334648 -1.098269 0.2729 DAY=28 -1.071371 3.379221 -0.317047 0.7514 DAY=29 -2.744061 3.095028 -0.886603 0.3760 DAY=31 -0.186229 2.779135 -0.067010 0.9466 MONTH="Aug" 18.08303 5.341053 3.385667 0.0008 MONTH="Jul" 5.793994 4.604767 1.258260 0.20					
DAY=19 -0.126617 4.021938 -0.031481 0.9749 DAY=20 1.093561 3.343574 0.327063 0.7438 DAY=21 -1.218189 3.559862 -0.342201 0.7324 DAY=22 -2.244081 3.361758 -0.667532 0.5049 DAY=23 -0.998957 3.039697 -0.328637 0.7426 DAY=24 -0.836131 3.449744 -0.242375 0.8086 DAY=25 -3.666863 3.696529 -0.991975 0.3220 DAY=26 -4.760610 4.334648 -1.098269 0.2729 DAY=27 -2.177757 3.769687 -0.577702 0.5639 DAY=28 -1.071371 3.379221 -0.317047 0.7514 DAY=29 -2.744061 3.095028 -0.886603 0.3760 DAY=31 -0.186229 2.779135 -0.067010 0.9466 MONTH="Aug" 18.08303 5.341053 3.385667 0.0008 MONTH="Jun" 1.69302 4.580051 1.783671 0.075					
DAY=20 1.093561 3.343574 0.327063 0.7438 DAY=21 -1.218189 3.559862 -0.342201 0.7324 DAY=22 -2.244081 3.361758 -0.667532 0.5049 DAY=23 -0.988957 3.039697 -0.328637 0.7426 DAY=24 -0.836131 3.449744 -0.242375 0.8086 DAY=25 -3.666863 3.696529 -0.991975 0.3220 DAY=26 -4.760610 4.334648 -1.098269 0.2729 DAY=27 -2.177757 3.769687 -0.577702 0.5639 DAY=28 -1.071371 3.379221 -0.317047 0.7514 DAY=29 -2.744061 3.095028 -0.886603 0.3760 DAY=30 -2.911917 2.515090 -1.157778 0.2478 DAY=31 -0.186229 2.779135 -0.067101 0.9466 MONTH="Aug" 18.08303 5.341053 3.385667 0.0008 MONTH="Jan" 8.169302 4.580051 1.783671 0.07		-			
DAY=21 -1.218189 3.559862 -0.342201 0.7324 DAY=22 -2.244081 3.361758 -0.667532 0.5049 DAY=23 -0.998957 3.039697 -0.328637 0.7426 DAY=24 -0.836131 3.449744 -0.242375 0.8086 DAY=25 -3.666863 3.696529 -0.991975 0.3220 DAY=26 -4.760610 4.334648 -1.098269 0.2729 DAY=27 -2.177757 3.769687 -0.577702 0.5639 DAY=28 -1.071371 3.379221 -0.317047 0.7514 DAY=29 -2.744061 3.095028 -0.886603 0.3760 DAY=30 -2.911917 2.515090 -1.157778 0.2478 DAY=31 -0.186229 2.779135 -0.067010 0.9466 MONTH="Aug" 18.08303 5.341053 3.385667 0.0008 MONTH="Jan" 8.169302 4.580051 1.783671 0.0754 MONTH="Jan" 8.169302 4.580051 1.788741 <td< td=""><td></td><td></td><td>3.343574</td><td></td><td></td></td<>			3.343574		
DAY=23 -0.998957 3.039697 -0.328637 0.7426 DAY=24 -0.836131 3.449744 -0.242375 0.8086 DAY=25 -3.666863 3.696529 -0.991975 0.3220 DAY=26 -4.760610 4.334648 -1.098269 0.2729 DAY=27 -2.177757 3.769687 -0.577702 0.5639 DAY=28 -1.071371 3.379221 -0.317047 0.7514 DAY=29 -2.744061 3.095028 -0.886603 0.3760 DAY=30 -2.911917 2.515090 -1.157778 0.2478 DAY=31 -0.186229 2.779135 -0.067010 0.9466 MONTH="Aug" 18.08303 5.341053 3.385667 0.0008 MONTH="Sug" 14.65069 4.81878 3.032091 0.0026 MONTH="Jan" 8.169302 4.580051 1.783671 0.0754 MONTH="June" 1.364906 3.961523 0.344541 0.7307 MONTH="Mar" 0.853397 4.543186 0.187841				-0.342201	
DAY=24 -0.836131 3.449744 -0.242375 0.8086 DAY=25 -3.666863 3.696529 -0.991975 0.3220 DAY=26 -4.760610 4.334648 -1.098269 0.2729 DAY=27 -2.177757 3.769687 -0.577702 0.5639 DAY=28 -1.071371 3.379221 -0.317047 0.7514 DAY=29 -2.744061 3.095028 -0.886603 0.3760 DAY=30 -2.911917 2.515090 -1.157778 0.2478 DAY=31 -0.186229 2.779135 -0.067010 0.9466 MONTH="Aug" 18.08303 5.341053 3.385667 0.0008 MONTH="Sug" 14.65069 4.81878 3.032091 0.0026 MONTH="Jan" 8.169302 4.580051 1.783671 0.0754 MONTH="Jun" 1.364906 3.961523 0.344541 0.7307 MONTH="Mar" 0.853397 4.543186 0.187841 0.8511 MONTH="May" 3.932406 4.275925 0.919662	DAY=22	-2.244081	3.361758	-0.667532	0.5049
DAY=25 -3.666863 3.696529 -0.991975 0.3220 DAY=26 -4.760610 4.334648 -1.098269 0.2729 DAY=27 -2.177757 3.769687 -0.577702 0.5639 DAY=28 -1.071371 3.379221 -0.317047 0.7514 DAY=29 -2.744061 3.095028 -0.886603 0.3760 DAY=30 -2.911917 2.515090 -1.157778 0.2478 DAY=31 -0.186229 2.779135 -0.067010 0.9466 MONTH="Aug" 18.08303 5.341053 3.385667 0.0008 MONTH="Dec" 14.65069 4.831878 3.032091 0.0026 MONTH="Jan" 8.169302 4.580051 1.783671 0.0754 MONTH="June" 1.364906 3.961523 0.344541 0.7307 MONTH="Mar" 0.853397 4.543186 0.187841 0.8511 MONTH="Mar" 0.853397 4.543186 0.187841 0.8511 MONTH=Way" 3.932406 4.275925 0.919662	DAY=23	-0.998957	3.039697	-0.328637	0.7426
DAY=26-4.7606104.334648-1.0982690.2729DAY=27-2.1777573.769687-0.5777020.5639DAY=28-1.0713713.379221-0.3170470.7514DAY=29-2.7440613.095028-0.8866030.3760DAY=30-2.9119172.515090-1.1577780.2478DAY=31-0.1862292.779135-0.0670100.9466MONTH="Aug"18.083035.3410533.3856670.0008MONTH="Dec"14.650694.8318783.0320910.0026MONTH="Feb"-0.7918634.882984-0.1621680.8713MONTH="Jan"8.1693024.5800511.7836710.0754MONTH="June"1.3649063.9615230.3445410.7307MONTH="June"1.3649063.9615230.3445410.7307MONTH="Mar"0.8533974.5431860.1878410.8511MONTH="May"3.9324064.2759250.9196620.3585MONTH="Nov"10.677003.8820652.7503400.0063MONTH="Nov"0.5577340.0662618.4171880.0000MONTH="Sept"4.3904065.2514620.8360350.4038AR(1)0.5577340.0662618.4171880.0000R-squared0.796964S.D. dependent var69.62217Adjusted R-squared0.796964S.D. dependent var69.62217Adjusted R-squared0.796964S.D. dependent var69.62217Adjusted R-squared17897.36Schwarz crite		-0.836131	3.449744	-0.242375	0.8086
DAY=27 -2.177757 3.769687 -0.577702 0.5639 DAY=28 -1.071371 3.379221 -0.317047 0.7514 DAY=29 -2.744061 3.095028 -0.886603 0.3760 DAY=30 -2.911917 2.515090 -1.157778 0.2478 DAY=31 -0.186229 2.779135 -0.067010 0.9466 MONTH="Aug" 18.08303 5.341053 3.385667 0.0008 MONTH="Dec" 14.65069 4.831878 3.032091 0.0026 MONTH="Feb" -0.791863 4.882984 -0.162168 0.8713 MONTH="Jan" 8.169302 4.580051 1.783671 0.0754 MONTH="June" 1.364906 3.961523 0.344541 0.7307 MONTH="Mar" 0.853397 4.543186 0.187841 0.8511 MONTH="May" 3.932406 4.275925 0.919662 0.3585 MONTH="Nov" 10.67700 3.882065 2.750340 0.0063 MONTH="Sept" 4.390406 5.251462 0.8	DAY=25	-3.666863	3.696529	-0.991975	0.3220
DAY=28-1.0713713.379221-0.3170470.7514DAY=29-2.7440613.095028-0.8866030.3760DAY=30-2.9119172.515090-1.1577780.2478DAY=31-0.1862292.779135-0.0670100.9466MONTH="Aug"18.083035.3410533.3856670.0008MONTH="Dec"14.650694.8318783.0320910.0026MONTH="Dec"14.650694.8318783.0320910.0026MONTH="Feb"-0.7918634.882984-0.1621680.8713MONTH="Jan"8.1693024.5800511.7836710.0754MONTH="June"1.3649063.9615230.3445410.7307MONTH="June"1.3649063.9615230.3445410.7307MONTH="Mar"0.8533974.5431860.1878410.8511MONTH="Mar"0.8533974.5431860.1878410.8511MONTH="Nov"10.677003.8820652.7503400.0063MONTH="Nov"10.677003.8820652.7503400.0063MONTH="Sept"4.3904065.2514620.8360350.4038AR(1)0.5577340.0662618.4171880.0000R-squared0.822835Mean dependent var69.62217Adjusted R-squared0.796964S.D. dependent var16.72832S.E. of regression7.537706Akaike info criterion6.998310Sum squared resid17897.36Schwarz criterion7.503579Log likelihood-1219.694Hannan-		-4.760610	4.334648	-1.098269	0.2729
DAY=29 -2.744061 3.095028 -0.886603 0.3760 DAY=30 -2.911917 2.515090 -1.157778 0.2478 DAY=31 -0.186229 2.779135 -0.067010 0.9466 MONTH="Aug" 18.08303 5.341053 3.385667 0.0008 MONTH="Dec" 14.65069 4.831878 3.032091 0.0026 MONTH="Feb" -0.791863 4.882984 -0.162168 0.8713 MONTH="Jan" 8.169302 4.580051 1.783671 0.0754 MONTH="Jun" 1.364906 3.961523 0.344541 0.7307 MONTH="Mar" 0.853397 4.543186 0.187841 0.8511 MONTH="Mar" 0.857700 3.882065 <td< td=""><td>DAY=27</td><td>-2.177757</td><td>3.769687</td><td>-0.577702</td><td>0.5639</td></td<>	DAY=27	-2.177757	3.769687	-0.577702	0.5639
DAY=30-2.9119172.515090-1.1577780.2478DAY=31-0.1862292.779135-0.0670100.9466MONTH="Aug"18.083035.3410533.3856670.0008MONTH="Dec"14.650694.8318783.0320910.0026MONTH="Feb"-0.7918634.882984-0.1621680.8713MONTH="Jan"8.1693024.5800511.7836710.0754MONTH="July"5.7939944.6047671.2582600.2092MONTH="June"1.3649063.9615230.3445410.7307MONTH="Mar"0.8533974.5431860.1878410.8511MONTH="Mar"0.8533974.5431860.1878410.8511MONTH="Mar"0.8533974.5431860.1878410.8511MONTH="Nov"10.677003.8820652.7503400.0063MONTH="Nov"10.677003.8820652.7503400.0063MONTH="Sept"4.3904065.2514620.8360350.4038AR(1)0.5577340.0662618.4171880.0000R-squared0.796964S.D. dependent var69.62217Adjusted R-squared0.796964S.D. dependent var69.62217Adjusted R-squared0.796964S.D. dependent var69.98310Sum squared resid17897.36Schwarz criterion7.503579Log likelihood-1219.694Hannan-Quinn criter.7.199173F-statistic31.80448Durbin-Watson stat2.004504					
DAY=31 MONTH="Aug"-0.186229 18.083032.779135 5.341053-0.067010 0.094660.9466 0.0008MONTH="Dec" MONTH="Dec"14.65069 14.650694.831878 4.8829843.032091 0.00260.0026 0.0026MONTH="Feb" MONTH="Jan"-0.791863 8.1693024.882984 4.604767-0.162168 1.783671 0.07540.0754 0.0754MONTH="Jun" MONTH="June"1.364906 1.3649063.961523 3.9615230.344541 0.3445410.7307 0.0707MONTH="Mar" MONTH="Mar"0.853397 0.8533974.543186 4.2759250.187841 0.919662 0.35850.85359 0.919662 0.0063MONTH="Nov" MONTH="Nov" MONTH="Nov"10.67700 0.67700 0.882065 0.52514620.836035 0.4038 0.4038 0.0063MONTH="Sept" Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic0.822835 0.822835 0.822835Mean dependent var 0.796964 0.06626169.62217 0.998310 0.998310 0.0000R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood 0.1219.694 Hannan-Quinn criter. Hannan-Quinn criter. 7.199173 F-statistic0.182488 0.04504					
MONTH="Aug"18.083035.3410533.3856670.0008MONTH="Dec"14.650694.8318783.0320910.0026MONTH="Feb"-0.7918634.882984-0.1621680.8713MONTH="Jan"8.1693024.5800511.7836710.0754MONTH="July"5.7939944.6047671.2582600.2092MONTH="June"1.3649063.9615230.3445410.7307MONTH="Mar"0.8533974.5431860.1878410.8511MONTH="Mar"0.8533974.5431860.1878410.8511MONTH="May"3.9324064.2759250.9196620.3585MONTH="Nov"10.677003.8820652.7503400.0063MONTH="Nov"10.677003.8820652.7503400.0063MONTH="Sept"4.3904065.2514620.8360350.4038AR(1)0.5577340.0662618.4171880.0000R-squared0.822835Mean dependent var69.62217Adjusted R-squared0.796964S.D. dependent var16.72832S.E. of regression7.537706Akaike info criterion6.998310Sum squared resid17897.36Schwarz criterion7.503579Log likelihood-1219.694Hannan-Quinn criter.7.199173F-statistic31.80448Durbin-Watson stat2.004504					
MONTH="Dec"14.650694.8318783.0320910.0026MONTH="Feb"-0.7918634.882984-0.1621680.8713MONTH="Jan"8.1693024.5800511.7836710.0754MONTH="July"5.7939944.6047671.2582600.2092MONTH="June"1.3649063.9615230.3445410.7307MONTH="Mar"0.8533974.5431860.1878410.8511MONTH="Mar"0.8533974.5431860.1878410.8511MONTH="May"3.9324064.2759250.9196620.3585MONTH="Nov"10.677003.8820652.7503400.0063MONTH="Nov"10.677003.8820652.7503400.0063MONTH="Sept"4.3904065.2514620.8360350.4038AR(1)0.5577340.0662618.4171880.0000R-squared0.822835Mean dependent var69.62217Adjusted R-squared0.796964S.D. dependent var69.62217Adjusted R-squared0.796964S.D. dependent var69.98310Sum squared resid17897.36Schwarz criterion7.503579Log likelihood-1219.694Hannan-Quinn criter.7.199173F-statistic31.80448Durbin-Watson stat2.004504					
MONTH="Feb" MONTH="Jan"-0.7918634.882984 4.580051-0.1621680.8713MONTH="Jan"8.1693024.5800511.7836710.0754MONTH="July"5.7939944.6047671.2582600.2092MONTH="June"1.3649063.9615230.3445410.7307MONTH="Mar"0.8533974.5431860.1878410.8511MONTH="Mar"0.8533974.5431860.1878410.8511MONTH="May"3.9324064.2759250.9196620.3585MONTH="Nov"10.677003.8820652.7503400.0063MONTH="Oct"8.1508593.9581042.0592840.403MONTH="Sept"4.3904065.2514620.8360350.4038AR(1)0.5577340.0662618.4171880.0000R-squaredS.E. of regression7.537706Akaike info criterion6.998310Sum squared resid17897.36Schwarz criterion7.503579Log likelihood-1219.694Hannan-Quinn criter.7.199173F-statistic31.80448Durbin-Watson stat2.004504					
MONTH="Jan"8.1693024.5800511.7836710.0754MONTH="July"5.7939944.6047671.2582600.2092MONTH="June"1.3649063.9615230.3445410.7307MONTH="Mar"0.8533974.5431860.1878410.8511MONTH="May"3.9324064.2759250.9196620.3585MONTH="Nov"10.677003.8820652.7503400.0063MONTH="Oct"8.1508593.9581042.0592840.403MONTH="Sept"4.3904065.2514620.8360350.4038AR(1)0.5577340.0662618.4171880.0000R-squared0.822835Mean dependent var69.62217Adjusted R-squared0.796964S.D. dependent var16.72832S.E. of regression7.537706Akaike info criterion6.998310Sum squared resid17897.36Schwarz criterion7.503579Log likelihood-1219.694Hannan-Quinn criter.7.199173F-statistic31.80448Durbin-Watson stat2.004504					
MONTH="July"5.7939944.6047671.2582600.2092MONTH="June"1.3649063.9615230.3445410.7307MONTH="Mar"0.8533974.5431860.1878410.8511MONTH="May"3.9324064.2759250.9196620.3585MONTH="Nov"10.677003.8820652.7503400.0063MONTH="Oct"8.1508593.9581042.0592840.403MONTH="Sept"4.3904065.2514620.8360350.4038AR(1)0.5577340.0662618.4171880.0000R-squaredS.E. of regression7.537706Akaike info criterion6.998310Sum squared resid17897.36Schwarz criterion7.503579Log likelihood-1219.694Hannan-Quinn criter.7.199173F-statistic31.80448Durbin-Watson stat2.004504					
MONTH="June"1.3649063.9615230.3445410.7307MONTH="Mar"0.8533974.5431860.1878410.8511MONTH="May"3.9324064.2759250.9196620.3585MONTH="Nov"10.677003.8820652.7503400.0063MONTH="Oct"8.1508593.9581042.0592840.403MONTH="Sept"4.3904065.2514620.8360350.4038AR(1)0.5577340.0662618.4171880.0000R-squared0.822835Mean dependent var69.62217Adjusted R-squared0.796964S.D. dependent var16.72832S.E. of regression7.537706Akaike info criterion6.998310Sum squared resid17897.36Schwarz criterion7.503579Log likelihood-1219.694Hannan-Quinn criter.7.199173F-statistic31.80448Durbin-Watson stat2.004504					
MONTH="Mar"0.8533974.5431860.1878410.8511MONTH="May"3.9324064.2759250.9196620.3585MONTH="Nov"10.677003.8820652.7503400.0063MONTH="Oct"8.1508593.9581042.0592840.0403MONTH="Sept"4.3904065.2514620.8360350.4038AR(1)0.5577340.0662618.4171880.0000R-squared0.822835Mean dependent var69.62217Adjusted R-squared0.796964S.D. dependent var16.72832S.E. of regression7.537706Akaike info criterion6.998310Sum squared resid17897.36Schwarz criterion7.503579Log likelihood-1219.694Hannan-Quinn criter.7.199173F-statistic31.80448Durbin-Watson stat2.004504					
MONTH="May" MONTH="Nov"3.932406 10.677004.275925 3.8820650.919662 2.7503400.3585 0.0063MONTH="Nov" MONTH="Cot" MONTH="Sept"10.67700 8.1508593.958104 3.9581042.059284 2.0592840.0403 0.4038 0.4038MONTH="Sept" AR(1)4.390406 0.5577345.251462 0.0662610.836035 8.4171880.4038 0.0000R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic0.822835 7.537706Mean dependent var Akaike info criterion 6.998310 6.99831069.62217 6.998310 7.503579 7.503579 1.219.694					
MONTH="Nov" 10.67700 3.882065 2.750340 0.0063 MONTH="Oct" 8.150859 3.958104 2.059284 0.0403 MONTH="Sept" 4.390406 5.251462 0.836035 0.4038 AR(1) 0.557734 0.066261 8.417188 0.0000 R-squared 0.822835 Mean dependent var 69.62217 Adjusted R-squared 0.796964 S.D. dependent var 16.72832 S.E. of regression 7.537706 Akaike info criterion 6.998310 Sum squared resid 17897.36 Schwarz criterion 7.503579 Log likelihood -1219.694 Hannan-Quinn criter. 7.199173 F-statistic 31.80448 Durbin-Watson stat 2.004504					
MONTH="Oct" MONTH="Sept" AR(1) 8.150859 3.958104 2.059284 0.0403 MONTH="Sept" AR(1) 4.390406 5.251462 0.836035 0.4038 Noncession 0.557734 0.066261 8.417188 0.0000 R-squared 0.822835 Mean dependent var 69.62217 Adjusted R-squared 0.796964 S.D. dependent var 16.72832 S.E. of regression 7.537706 Akaike info criterion 6.998310 Sum squared resid 17897.36 Schwarz criterion 7.503579 Log likelihood -1219.694 Hannan-Quinn criter. 7.199173 F-statistic 31.80448 Durbin-Watson stat 2.004504					
MONTH="Sept" AR(1) 4.390406 5.251462 0.836035 0.4038 AR(1) 0.557734 0.066261 8.417188 0.0000 R-squared 0.822835 Mean dependent var 69.62217 Adjusted R-squared 0.796964 S.D. dependent var 16.72832 S.E. of regression 7.537706 Akaike info criterion 6.998310 Sum squared resid 17897.36 Schwarz criterion 7.503579 Log likelihood -1219.694 Hannan-Quinn criter. 7.199173 F-statistic 31.80448 Durbin-Watson stat 2.004504					
AR(1)0.5577340.0662618.4171880.0000R-squared0.822835Mean dependent var69.62217Adjusted R-squared0.796964S.D. dependent var16.72832S.E. of regression7.537706Akaike info criterion6.998310Sum squared resid17897.36Schwarz criterion7.503579Log likelihood-1219.694Hannan-Quinn criter.7.199173F-statistic31.80448Durbin-Watson stat2.004504					
R-squared0.822835Mean dependent var69.62217Adjusted R-squared0.796964S.D. dependent var16.72832S.E. of regression7.537706Akaike info criterion6.998310Sum squared resid17897.36Schwarz criterion7.503579Log likelihood-1219.694Hannan-Quinn criter.7.199173F-statistic31.80448Durbin-Watson stat2.004504					
Adjusted R-squared0.796964S.D. dependent var16.72832S.E. of regression7.537706Akaike info criterion6.998310Sum squared resid17897.36Schwarz criterion7.503579Log likelihood-1219.694Hannan-Quinn criter.7.199173F-statistic31.80448Durbin-Watson stat2.004504					
S.E. of regression7.537706Akaike info criterion6.998310Sum squared resid17897.36Schwarz criterion7.503579Log likelihood-1219.694Hannan-Quinn criter.7.199173F-statistic31.80448Durbin-Watson stat2.004504					
Sum squared resid17897.36Schwarz criterion7.503579Log likelihood-1219.694Hannan-Quinn criter.7.199173F-statistic31.80448Durbin-Watson stat2.004504					
Log likelihood-1219.694Hannan-Quinn criter.7.199173F-statistic31.80448Durbin-Watson stat2.004504					
F-statistic 31.80448 Durbin-Watson stat 2.004504					
Prod(F-StatiStic) U.UUUUUU			Durbin-Watse	on stat	2.004504
	Prod(F-statistic)	0.000000			

TEST ON THE RESIDUALS

-

Breusch-Godfrey Serial Correlation LM Test:

F-statistic	0.137499	Prob. F(2,313)	0.8716
Obs*R-squared	0.317769	Prob. Chi-Square(2)	0.8531

Test Equation: Dependent Variable: RESID Method: Least Squares Sample: 2 365 Included observations: 362 Coefficient covariance computed using outer product of gradients Presample and interior missing value lagged residuals set to zero.

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	-0.091737	8.740983	-0.010495	0.9916
LOAD	5.43E-06	0.004051	0.001341	0.9989
SOLAR	-9.76E-05	0.005587	-0.017465	0.9861
WIND	2.59E-05	0.001869	0.013857	0.9890
GAS_PRICE	-0.001095	0.212844	-0.005142	0.9959
DAY=2	0.099124	2.499343	0.039660	0.9684
DAY=3	0.055905	3.203425	0.017452	0.9861
DAY=4	0.126440	3.517436	0.035947	0.9713
DAY=5	0.105897	3.612201	0.029317	0.9766
DAY=6	0.099387	3.686137	0.026962	0.9785
DAY=7	0.099621	3.741638	0.026625	0.9788
DAY=8	0.103350	3.753005	0.027538	0.9780
DAY=9	0.104059	3.799738	0.027386	0.9782
DAY=10	0.105980	3.791734	0.027950	0.9777
DAY=11	0.111485	3.789340	0.029421	0.9765
DAY=12	0.113270	3.819256	0.029658	0.9764
DAY=13	0.108220	3.796192	0.028508	0.9773
DAY=14	0.105442	3.783329	0.027870	0.9778
DAY=15	0.109593	3.770899	0.029063	0.9768
DAY=16	0.113608	3.781904	0.030040	0.9761
DAY=17	0.107720	3.773721	0.028545	0.9772
DAY=18	0.107663	3.775977	0.028513	0.9773
DAY=19	0.113883	3.799690	0.029972	0.9761
DAY=20	0.109524	3.797856	0.028838	0.9770
DAY=21	0.113685	3.784652	0.030038	0.9761
DAY=22	0.112694	3.778942	0.029822	0.9762
DAY=23	0.109430	3.764310	0.029070	0.9768
DAY=24	0.113903	3.751602	0.030361	0.9758
DAY=25	0.111432	3.710461	0.030032	0.9761
DAY=26	0.115103	3.666341	0.031394	0.9750
DAY=27	0.118761	3.585309	0.033124	0.9736
DAY=28	0.122178	3.421627	0.035708	0.9715
DAY=29	0.157868	3.342705	0.047228	0.9624
DAY=30	0.095131	2.995957	0.031753	0.9747
DAY=31	0.168004	3.093093	0.054316	0.9567
MONTH="Aug"	0.039252	4.394591	0.008932	0.9929
MONTH="Dec"	0.048515	4.345617	0.011164	0.9911
MONTH="Feb"	0.085323	4.502474	0.018950	0.9849
MONTH="Jan"	-0.089319	4.501867	-0.019841	0.9842
MONTH="July"	0.038292	4.554038	0.008408	0.9933
MONTH="June"	0.065358	4.214647	0.015507	0.9876
MONTH="Mar"	-0.013557	4.070267	-0.003331	0.9973
MONTH="May"	-0.000711	3.984727	-0.000178	0.9999
MONTH="Nov"	-0.041570	4.220872	-0.009849	0.9921
MONTH="Oct"	-0.019812	4.337039	-0.004568	0.9964
MONTH="Sept"	0.085099	4.457350	0.019092	0.9904
AR(1)	-0.038575	0.154392	-0.249852	0.8029
RESID(-1)	0.030021	0.165304	0.181613	0.8560
RESID(-2)	0.046885	0.104096	0.450397	0.6527
				0.0021

R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(E-statistic)	0.000878 -0.152342 7.558431 17881.65 -1219.535 0.005729	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat	1.42E-11 7.041106 7.008481 7.535251 7.217891 1.991088
Prob(F-statistic)	1.000000		

SARDINIA

MODEL 1

Dependent Variable: PRICE Method: Least Squares Sample: 1 365 Included observations: 365

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	13.81087	5.487684	2.516704	0.0123
LOAD	0.038557	0.005502	7.008270	0.0000
DAY=2	3.058671	2.969833	1.029913	0.3038
DAY=3	1.045485	2.968864	0.352150	0.7250
DAY=4	1.491509	2.968990	0.502362	0.6158
DAY=5	1.182083	2.976911	0.397084	0.6916
DAY=6	0.739112	2.974992	0.248442	0.8040
DAY=7	0.662672	2.965586	0.223454	0.8233
DAY=8	-1.730484	2.964976	-0.583642	0.5599
DAY=9	-0.390471	2.970384	-0.131455	0.8955
DAY=10	0.607107	2.974263	0.204120	0.8384
DAY=11	0.301662	2.971353	0.101524	0.9192
DAY=12	0.150211	2.971070	0.050558	0.9597
DAY=13	0.120749	2.972826	0.040618	0.9676
DAY=14	-0.493657	2.971815	-0.166113	0.8682
DAY=15	-0.363678	2.971383	-0.122393	0.9027
DAY=16	1.324474	2.965017	0.446700	0.6554
DAY=17	0.208777	2.967806	0.070347	0.9440
DAY=18	0.720780	2.965476	0.243057	0.8081
DAY=19	4.707958	2.965368	1.587647	0.1133
DAY=20	2.958220	2.973629	0.994818	0.3206
DAY=21	3.495670	2.982359	1.172116	0.2420
DAY=22	4.032774	2.968848	1.358363	0.1753
DAY=23	3.100959	2.968015	1.044792	0.2969
DAY=24	3.129603	2.965931	1.055184	0.2921
DAY=25	-0.136972	2.965452	-0.046189	0.9632
DAY=26	3.947544	2.972273	1.328123	0.1851
DAY=27	4.287967	2.974650	1.441503	0.1504
DAY=28	2.490239	2.966581	0.839431	0.4019
DAY=29	-0.829806	3.036161	-0.273308	0.7848
DAY=30	0.359670	3.045148	0.118112	0.9061
DAY=31	-0.360901	3.482374	-0.103637	0.9175
MONTH="Aug"	7.206574	2.248883	3.204512	0.0015
MONTH="Dec"	9.808023	1.933405	5.072926	0.0000
MONTH="Feb"	-0.188225	2.086860	-0.090196	0.9282
MONTH="Jan"	-6.279397	1.910025	-3.287599	0.0011
MONTH="July"	5.580537	2.063510	2.704390	0.0072
MONTH="June"	6.116335	1.887810	3.239910	0.0013
MONTH="Mar"	3.682641	1.873793	1.965341	0.0502
MONTH="May"	2.759762	1.864620	1.480067	0.1398
MONTH= May MONTH="Nov"	13.61609	1.891448	7.198764	0.0000
MONTH="Oct"	20.54548	1.863151	11.02728	0.0000
MONTH="Sept"	20.34348	1.994484	10.11011	0.0000
R-squared	0.622459	Mean depen	dent var	60.69124
Adjusted R-squared	0.573215	S.D. depende		11.11699

S.E. of regression	7.262599	Akaike info criterion	6.913623
Sum squared resid	16984.00	Schwarz criterion	7.373063
Log likelihood	-1218.736	Hannan-Quinn criter.	7.096211
F-statistic	12.64019	Durbin-Watson stat	
Prob(F-statistic)	0.000000		0.002000

Dependent Variable: PRICE Method: ARMA Conditional Least Squares (Gauss-Newton / Marquardt steps) Sample (adjusted): 2 365 Included observations: 364 after adjustments Convergence achieved after 7 iterations White-Hinkley (HC1) heteroskedasticity consistent standard errors and covariance

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	22.09485	7.471728	2.957127	0.0033
LOAD	0.028559	0.006899	4.139511	0.0000
DAY=2	3.769091	2.879625	1.308883	0.1915
DAY=3	1.937312	2.850904	0.679543	0.4973
DAY=4	2.501798	3.598863	0.695164	0.4875
DAY=5	2.456150	3.694408	0.664829	0.5066
DAY=6	2.004993	3.708004	0.540720	0.5891
DAY=7	1.614090	3.434394	0.469978	0.6387
DAY=8	-0.907032	3.444366	-0.263338	0.7925
DAY=9	0.789441	3.569400	0.221169	0.8251
DAY=10	1.890618	3.722031	0.507953	0.6118
DAY=11	1.513489	3.796439	0.398660	0.6904
DAY=12	1.354848	3.795843	0.356929	0.7214
DAY=13	1.372329	3.646456	0.376346	0.7069
DAY=14	0.731955	3.491444	0.209643	0.8341
DAY=15	0.850172	3.475379	0.244627	0.8069
DAY=16	2.220627	3.371816	0.658585	0.5106
DAY=17	1.303478	4.171587	0.312466	0.7549
DAY=18	1.679872	3.711110	0.452660	0.6511
DAY=10 DAY=19	5.472054	3.650222	1.499102	0.1348
DAY=20	4.222861	3.436551	1.228808	0.2200
DAY=20	4.926247	3.878372	1.270184	0.2200
DAY=21 DAY=22	4.920247 5.143547	3.801020	1.353202	0.2049
DAY=22 DAY=23	4.158727	3.854623	1.078893	0.2814
DAY=23 DAY=24	4.040359	3.660504	1.103771	0.2705
DAY=24 DAY=25	0.458491	3.816765	0.120125	0.2705
DAY=25	4.878497	4.424415	1.102631	0.9045
DAY=20 DAY=27	5.007244	4.509849	1.1102031	0.2677
DAY=27 DAY=28	2.447867			
DAY=20 DAY=29	1.136791	4.091923 3.381228	0.598219 0.336206	0.5501 0.7369
DAY=30	2.617163	2.958325	0.884677	0.3770
DAY=31	2.541570	3.291600	0.772138	0.4406
MONTH="Aug" MONTH="Dec"	10.31495 10.65817	3.536945 3.665066	2.916345 2.908043	0.0038 0.0039
		4.555441		0.0039
MONTH="Feb"	0.017826		0.003913	
MONTH="Jan"	-5.375972 7.405536	3.665066	-1.466815 2.155926	0.1434
MONTH="July" MONTH="June"		3.434967 3.447566		0.0318
MONTH= June MONTH="Mar"	5.564748		1.614109	0.1075
	4.791701	4.405261	1.087722	0.2775 0.4927
MONTH="May"	2.366752	3.446279	0.686756	
MONTH="Nov"	13.63906	3.256965	4.187660	0.0000
MONTH="Oct"	20.32547	3.206266	6.339296	0.0000
MONTH="Sept"	20.54027	3.917772	5.242844	0.0000
AR(1)	0.533313	0.080852	6.596141	0.0000
R-squared	0.721878	Mean depend	dent var	60.73685
Adjusted R-squared	0.684505	S.D. depende		11.09804
S.E. of regression	6.233649	Akaike info c		6.610726
5				

Sum squared resid		Schwarz criterion	7.081811
Log likelihood		Hannan-Quinn criter.	6.797961
F-statistic Prob(F-statistic)	19.31565 0.000000	Durbin-Watson stat	2.102004

Inverted AR Roots .53

MODEL 2

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	19.73434	7.700822	2.562628	0.0108
LOAD	0.034257	0.007328	4.674877	0.0000
RES	-0.005311	0.002952	-1.799269	0.0729
DAY=2	3.343385	5.164709	0.647352	0.5179
DAY=3	1.461088	4.256450	0.343264	0.7316
DAY=4	1.522278	4.477152	0.340010	0.7341
DAY=5	0.964172	4.235077	0.227663	0.8201
DAY=6	0.556196	4.246891	0.130965	0.8959
DAY=7	0.493076	4.128893	0.119421	0.9050
DAY=8	-1.839429	3.937786	-0.467122	0.6407
DAY=9	-0.495953	4.158959	-0.119249	0.9052
DAY=10	0.387571	4.237401	0.091464	0.9272
DAY=11	0.156220	4.353571	0.035883	0.9714
DAY=12	0.258308	4.253350	0.060730	0.9516
DAY=13	0.124781	4.146015	0.030097	0.9760
DAY=14	-0.419442	4.070748	-0.103038	0.9180
DAY=15	-0.531041	3.984784	-0.133267	0.8941
DAY=16	1.154336	4.045299	0.285353	0.7756
DAY=17	0.356777	4.713369	0.075695	0.9397
DAY=18	0.652546	3.925893	0.166216	0.8681
DAY=19	4.331989	4.163724	1.040412	0.2989
DAY=20	2.768489	4.185238	0.661489	0.5088
DAY=21	3.543684	4.448139	0.796667	0.4262
DAY=22	4.307383	4.175601	1.031560	0.3031
DAY=23	3.095334	4.307991	0.718510	0.4730
DAY=24	3.057177	4.164334	0.734134	0.4634
DAY=25	-0.259720	4.247911	-0.061141	0.9513
DAY=26	4.015608	4.798975	0.836764	0.4033
DAY=27	4.348684	5.570838	0.780616	0.4356
DAY=28	2.164660	4.799424	0.451025	0.6523
DAY=29	-1.139600	3.977895	-0.286483	0.7747
DAY=30	0.024070	4.123692	0.005837	0.9953
DAY=31	-0.294490	4.767042	-0.061776	0.9508
MONTH="Aug"	7.540646	2.087940	3.611524	0.0004
MONTH="Dec"	10.16193	1.915724	5.304485	0.0000
MONTH="Feb"	0.163361	2.562987	0.063739	0.9492
MONTH="Jan"	-5.581098	1.603661	-3.480223	0.0006
MONTH="July"	5.757434	1.752661	3.284967	0.0011
MONTH="June"	5.680469	1.624714	3.496288	0.0005
MONTH="Mar"	4.552747	2.283409	1.993838	0.0470
MONTH="May"	2.195226	1.611839	1.361939	0.1742
MONTH="Nov"	13.39081	1.626841	8.231176	0.0000
MONTH="Oct"	20.56614	1.493772	13.76793	0.0000
MONTH="Sept"	20.18778	1.994232	10.12308	0.0000
P. aquarad	0 607400	Moon donce	doptycz	60 60104
R-squared Adjusted R-squared	0.627193	Mean depende S.D. depende		60.69124 11.11699
S.E. of regression	0.577253 7.228156	Akaike info c		6.906485
Sum squared resid	16771.04	Schwarz crite		6.906465 7.376609
Sum squared resid	10771.04	Schwarz chie		1.510008

Log likelihood	-1216.433	Hannan-Quinn criter.	7.093318
F-statistic	12.55897	Durbin-Watson stat	0.989065
Prob(F-statistic) Prob(Wald F-statistic)	0.000000 0.000000	Wald F-statistic	23.66504

Dependent Variable: PRICE

Method: ARMA Conditional Least Squares (Gauss-Newton / Marquardt

Sample (adjusted): 2 365
 Included observations: 364 after adjustments
 Convergence achieved after 7 iterations
 White-Hinkley (HC1) heteroskedasticity consistent standard errors and covariance

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	26.41674	7.467281	3.537665	0.0005
LOAD	0.025745	0.006790	3.791916	0.0002
RES	-0.004877	0.002660	-1.833430	0.0677
DAY=2	4.073557	2.801768	1.453924	0.1470
DAY=3	2.406201	2.740548	0.878000	0.3806
DAY=4	2.637784	3.553038	0.742403	0.4584
DAY=5	2.351613	3.587995	0.655411	0.5127
DAY=6	1.942848	3.558432	0.545984	0.5855
DAY=7	1.604753	3.291218	0.487586	0.6262
DAY=8	-0.843586	3.275875	-0.257515	0.7969
DAY=9	0.816948	3.424377	0.238568	0.8116
DAY=10	1.802321	3.602265	0.500330	0.6172
DAY=11	1.501742	3.658959	0.410429	0.6818
DAY=12	1.576954	3.644985	0.432636	0.6656
DAY=13	1.493636	3.504712	0.426179	0.6703
DAY=14 DAY=15	0.920715 0.818431	3.328511 3.349317	0.276615 0.244358	0.7823 0.8071
DAY=15 DAY=16	2.222406	3.258735	0.244356	0.8071
DAY=10 DAY=17	1.574888	4.080346	0.385969	0.6998
DAY=18	1.768067	3.588795	0.385969	0.6226
DAY=10 DAY=19	5.299707	3.542592	1.495997	0.0220
DAY=20	4.164621	3.347189	1.244214	0.1330
DAY=20	5.067266	3.764971	1.345898	0.2143
DAY=22	5.528449	3.663247	1.509166	0.1322
DAY=23	4.291229	3.764084	1.140046	0.2551
DAY=24	4.126053	3.558110	1.159619	0.2471
DAY=25	0.529417	3.732124	0.141854	0.8873
DAY=26	5.077853	4.331901	1.172200	0.2420
DAY=27	5.206387	4.394181	1.184837	0.2370
DAY=28	2.343783	3.966171	0.590944	0.5550
DAY=29	1.041194	3.277775	0.317653	0.7510
DAY=30	2.435283	2.864195	0.850250	0.3958
DAY=31	2.601135	3.129426	0.831186	0.4065
MONTH="Aug"	10.24879	3.449656	2.970961	0.0032
MONTH="Dec"	10.76912	3.566496	3.019523	0.0027
MONTH="Feb"	0.306146	4.465218	0.068562	0.9454
MONTH="Jan"	-5.029320	3.480171	-1.445136	0.1494
MONTH="July"	7.279672	3.347389	2.174731	0.0304
MONTH="June"	5.090878	3.366625	1.512161	0.1315
MONTH="Mar"	5.403692	4.276866	1.263470	0.2073
MONTH="May"	1.762866	3.403071	0.518022	0.6048
MONTH="Nov"	13.28554	3.137671	4.234204	0.0000
MONTH="Oct"	20.45787	3.092304	6.615738	0.0000
MONTH="Sept"	20.34168	3.838306	5.299649	0.0000
AR(1)	0.530971	0.082692	6.421094	0.0000
R-squared	0.725391	Mean depend		60.73685
Adjusted R-squared	0.687514	S.D. depende		11.09804
S.E. of regression	6.203856	Akaike info c	riterion	6.603509

Sum squared resid Log likelihood F-statistic Prob(F-statistic)	12277.62 -1156.839 19.15115 0.000000	Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat	7.085300 6.794999 2.130310
Inverted AR Roots	.53		

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	18.75457	9.679917	1.937472	0.053
LOAD	0.034549	0.007739	4.464483	0.000
SOLAR	-0.000746	0.016369	-0.045586	0.963
WIND	-0.005373	0.002886	-1.861530	0.063
DAY=2	3.307853	5.122383	0.645764	0.518
DAY=3	1.509301	4.310670	0.350131	0.726
DAY=4	1.589224	4.542325	0.349870	0.726
DAY=5	0.968808	4.267837	0.227002	0.820
DAY=6	0.529681	4.253991	0.124514	0.901
DAY=7	0.549471	4.198488	0.130873	0.896
DAY=8	-1.815639	3.976317	-0.456613	0.648
DAY=9	-0.592383	4.131131	-0.143395	0.886
DAY=10	0.412354	4.289090	0.096140	0.923
DAY=11	0.132587	4.357107	0.030430	0.975
DAY=12	0.197352	4.238401	0.046563	0.962
DAY=13	0.102090	4.157510	0.024556	0.980
DAY=14	-0.442311	4.086118	-0.108247	0.913
DAY=15	-0.516079	4.018797	-0.128416	0.897
DAY=16	1.165271	4.068459	0.286416	0.774
DAY=17	0.317706	4.722095	0.067281	0.946
DAY=18	0.622972	3.921834	0.158847	0.873
DAY=19	4.332877	4.194490	1.032992	0.302
DAY=20	2.739234	4.185669	0.654432	0.513
DAY=21	3.511140	4.454333	0.788253	0.431
DAY=22	4.246973	4.163346	1.020087	0.308
DAY=23	2.977119	4.265969	0.697876	0.485
DAY=24	2.935504	4.112387	0.713820	0.475
DAY=25	-0.311920	4.219649	-0.073921	0.941
DAY=26	3.901528	4.734134	0.824127	0.410
DAY=27	4.249550	5.421809	0.783788	0.433
DAY=28	2.131159	4.815435	0.442568	0.658
DAY=29	-1.228940	3.938461	-0.312035	0.755
DAY=30	-0.028882	4.106399	-0.007033	0.994
DAY=31	-0.351976	4.744084	-0.074193	0.940
MONTH="Aug"	7.517150	2.110309	3.562108	0.000
MONTH="Dec"	10.48051	2.004394	5.228769	0.000
MONTH="Feb"	0.419204	2.803850	0.149510	0.881
MONTH="Jan"	-5.357585	1.662590	-3.222434	0.001
MONTH="July"	5.752889	1.757110	3.274064	0.001
MONTH="June"	5.756634	1.646001	3.497345	0.000
MONTH="Mar"	4.730039	2.272559	2.081371	0.038
MONTH="May"	2.396955	1.730361	1.385234	0.166
MONTH="Nov"	13.63775	1.742236	7.827727	0.000
MONTH="Oct"	20.68430	1.533797	13.48569	0.000
MONTH="Sept"	20.19245	1.998269	10.10497	0.000
		Maan danan	dantvar	60 6012
R-squared Adjusted R-squared	0.627363	Mean depend	Jent var	60.6912

S.E. of regression	7.237794	Akaike info criterion	6.911509
Sum squared resid	16763.41	Schwarz criterion	7.392318
Log likelihood	-1216.350	Hannan-Quinn criter.	7.102589
F-statistic	12.24418	Durbin-Watson stat	0.985112
Prob(F-statistic)	0.000000	Wald F-statistic	22.89000
Prob(Wald F-statistic)	0.000000		

Dependent Variable: PRICE Method: ARMA Conditional Least Squares (Gauss-Newton / Marquardt steps) Sample (adjusted): 2 365 Included observations: 364 after adjustments Convergence achieved after 8 iterations White-Hinkley (HC1) heteroskedasticity consistent standard errors and covariance

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	23.26089	8.537977	2.724403	0.0068
LOAD	0.026334	0.007023	3.749740	0.0002
SOLAR	0.010791	0.011842	0.911289	0.3628
WIND	-0.005276	0.002592	-2.035785	0.0426
DAY=2	3.996666	2.708078	1.475831	0.1410
DAY=3	2.642388	2.752846	0.959875	0.3378
DAY=4	2.937787	3.499390	0.839514	0.4018
DAY=5	2.439644	3.589423	0.679676	0.4972
DAY=6	1.927269	3.595448	0.536030	0.5923
DAY=7	1.871103	3.333605	0.561285	0.5750
DAY=8	-0.690567	3.298545	-0.209355	0.8343
DAY=9	0.563214	3.442157	0.163622	0.8701
DAY=10	1.968944	3.644587	0.540238	0.5894
DAY=11	1.501070	3.654230	0.410776	0.6815
DAY=12	1.455348	3.681879	0.395273	0.6929
DAY=13	1.502715	3.529611	0.425745	0.6706
DAY=14	0.930912	3.355746	0.277408	0.7816
DAY=15	0.951380	3.401251	0.279715	0.7799
DAY=16	2.332490	3.268901	0.713539	0.4760
DAY=17	1.527668	4.106135	0.372045	0.7101
DAY=18	1.742535	3.613309	0.482255	0.6300
DAY=19	5.363799	3.605709	1.487585	0.1379
DAY=20	4.143910	3.361816	1.232640	0.2186
DAY=21	5.047347	3.784865	1.333561	0.1833
DAY=22	5.409883	3.694907	1.464146	0.1441
DAY=23	3.959522	3.796987	1.042806	0.2978
DAY=24	3.774118	3.577177	1.055055	0.2922
DAY=25	0.405866	3.742327	0.108453	0.9137
DAY=26	4.752569	4.287291	1.108525	0.2685
DAY=27	4.925595	4.304873	1.144191	0.2534
DAY=28	2.260960	3.980033	0.568076	0.5704
DAY=29	0.824574	3.279313	0.251447	0.8016
DAY=30	2.345102	2.852135	0.822227	0.4116
DAY=31	2.586290	3.118747	0.829272	0.4076
MONTH="Aug"	10.44258	3.463758	3.014812	0.0028
MONTH="Dec"	12.01800	3.641110	3.300641	0.0011
MONTH="Feb"	1.347620	4.712139	0.285989	0.7751
MONTH="Jan"	-4.135072	3.568849	-1.158657	0.2475
MONTH="July"	7.481438	3.379110	2.214026	0.0275
MONTH="June"	5.452023	3.417952	1.595114	0.1117
MONTH="Mar"	6.293352	4.303358	1.462428	0.1446
MONTH="May"	2.623790	3.379844	0.776305	0.4381
MONTH="Nov"	14.24528	3.176392	4.484738	0.0000
MONTH="Oct"	21.04732	3.163818	6.652507	0.0000
MONTH="Sept"	20.47912	3.898497	5.253081	0.0000
AR(1)	0.538225	0.080889	6.653839	0.0000
R-squared	0.727437	Mean depend	dent var	60.73685

151

Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.688867 6.190411 12186.14 -1155.478 18.86004 0.000000	S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat	11.09804 6.601525 7.094022 6.797270 2.130868
Inverted AR Roots	.54		

Variable Coefficient Std. Error t-Statistic Prob. C -6.299958 7.541546 -0.835367 0.4041 LOAD 0.018683 0.004841 3.859145 0.0001 SOLAR -0.007600 0.008619 -0.881751 0.3786 WIND -0.008035 0.00928 -4.167505 0.0000 DAY=2 2.611926 2.781710 0.938964 0.3485 DAY=3 3.436567 2.489027 1.380687 0.1683 DAY=4 4.657706 2.937966 1.585351 0.1139 DAY=5 2.831102 2.208692 1.281800 0.2008 DAY=7 3.762271 2.36303 1.592134 0.1123 DAY=7 3.762271 2.36303 1.526997 0.1278 DAY=8 1.09162 2.279107 0.486665 0.6288 DAY=9 3.004319 2.455969 1.223272 0.22121 DAY=13 2.812514 2.598373 1.082413 0.3972 <td< th=""><th>covariance</th><th></th><th></th><th></th><th></th></td<>	covariance				
LOAD 0.018683 0.004841 3.859145 0.0001 SOLAR -0.007600 0.008619 -0.881751 0.3786 WIND -0.008035 0.001928 -4.167505 0.0000 GAS_PRICE 1.799953 0.208971 8.613426 0.0000 DAY=2 2.611926 2.781710 0.938964 0.3485 DAY=3 3.436567 2.489027 1.380687 0.1683 DAY=4 4.657706 2.937966 1.585351 0.1139 DAY=5 2.831102 2.208692 1.281800 0.2008 DAY=6 3.938529 2.403600 1.638596 0.1023 DAY=7 3.762271 2.363036 1.592134 0.1139 DAY=9 3.004319 2.455969 1.223272 0.2221 DAY=10 3.676975 2.407978 1.526997 0.1278 DAY=11 3.199706 2.55486 1.252583 0.2113 DAY=13 2.812514 2.598373 1.082413 0.2799 <td< td=""><td>Variable</td><td>Coefficient</td><td>Std. Error</td><td>t-Statistic</td><td>Prob.</td></td<>	Variable	Coefficient	Std. Error	t-Statistic	Prob.
SOLAR -0.007600 0.008619 -0.881751 0.3786 WIND -0.008035 0.001928 -4.167505 0.0000 GAS_PRICE 1.799953 0.208971 8.613426 0.0000 DAY=2 2.611926 2.781710 0.938964 0.3485 DAY=3 3.436567 2.489027 1.380687 0.1683 DAY=4 4.657706 2.937966 1.585351 0.1123 DAY=5 2.831102 2.208692 1.281800 0.2008 DAY=6 3.938529 2.403600 1.638596 0.1023 DAY=7 3.762271 2.363036 1.592134 0.1123 DAY=8 1.109162 2.279107 0.486665 0.6268 DAY=9 3.004319 2.455969 1.223272 0.2221 DAY=11 3.199706 2.55486 1.252583 0.2113 DAY=12 3.213054 0.882111 0.3784 DAY=13 2.812514 2.598373 1.082413 0.2799 DAY=14	С	-6.299958	7.541546	-0.835367	0.4041
WIND -0.008035 0.001928 -4.167505 0.0000 GAS_PRICE 1.799953 0.208971 8.613426 0.0000 DAY=2 2.611926 2.781710 0.938964 0.3485 DAY=3 3.436567 2.489027 1.380687 0.1683 DAY=4 4.657706 2.937966 1.585351 0.1139 DAY=5 2.831102 2.208692 1.281800 0.2008 DAY=6 3.938529 2.403600 1.638596 0.1023 DAY=7 3.762271 2.363036 1.592134 0.1123 DAY=8 1.109162 2.279107 0.486665 0.6268 DAY=9 3.004319 2.455969 1.22372 0.2211 DAY=11 3.199706 2.554486 1.252583 0.2113 DAY=12 3.291305 2.525186 1.303391 0.1934 DAY=14 2.078862 2.451941 0.847843 0.3972 DAY=15 1.923385 2.460428 1.158976 0.2473 <td< td=""><td>LOAD</td><td>0.018683</td><td>0.004841</td><td>3.859145</td><td>0.0001</td></td<>	LOAD	0.018683	0.004841	3.859145	0.0001
GAS_PRICE 1.799953 0.208971 8.613426 0.0000 DAY=2 2.611926 2.781710 0.938964 0.3485 DAY=3 3.436567 2.489027 1.380687 0.1683 DAY=4 4.657706 2.937966 1.585351 0.1139 DAY=5 2.831102 2.208692 1.281800 0.2008 DAY=6 3.938529 2.403600 1.638596 0.1023 DAY=7 3.762271 2.363036 1.592134 0.1123 DAY=8 1.109162 2.279107 0.486665 0.6268 DAY=9 3.004319 2.455969 1.223272 0.2221 DAY=10 3.676975 2.407978 1.526997 0.1278 DAY=13 2.812514 2.598373 1.082413 0.2799 DAY=13 2.812514 2.598373 1.082413 0.3772 DAY=14 2.078862 2.451941 0.847843 0.3972 DAY=15 1.923385 2.180434 0.882111 0.37784 <	SOLAR	-0.007600	0.008619	-0.881751	0.3786
DĀY=2 2.611926 2.781710 0.938964 0.3485 DAY=3 3.436567 2.489027 1.380687 0.1683 DAY=4 4.657706 2.937966 1.585351 0.1139 DAY=5 2.831102 2.208692 1.281800 0.2008 DAY=6 3.938529 2.403600 1.638596 0.1023 DAY=7 3.762271 2.363036 1.592134 0.1123 DAY=8 1.109162 2.279107 0.486665 0.6268 DAY=9 3.004319 2.455969 1.223272 0.2221 DAY=10 3.676975 2.407978 1.526997 0.1278 DAY=11 3.199706 2.554486 1.252583 0.2113 DAY=12 3.291305 2.525186 1.30391 0.1934 DAY=13 2.812514 2.598373 1.082413 0.2792 DAY=14 2.078862 2.451941 0.847843 0.3972 DAY=15 1.923385 2.180434 0.882111 0.3784 DA	WIND	-0.008035	0.001928	-4.167505	0.0000
DAY=3 3.436567 2.489027 1.380687 0.1683 DAY=4 4.657706 2.937966 1.585351 0.1139 DAY=5 2.831102 2.208692 1.281800 0.2008 DAY=6 3.938529 2.403600 1.638596 0.1023 DAY=7 3.762271 2.363036 1.592134 0.1123 DAY=8 1.109162 2.279107 0.486665 0.6268 DAY=9 3.004319 2.455969 1.223272 0.2221 DAY=10 3.676975 2.407978 1.526997 0.1278 DAY=11 3.199706 2.554486 1.252583 0.2113 DAY=13 2.812514 2.598373 1.082413 0.3972 DAY=13 2.812514 0.847843 0.3972 DAY=15 1.923385 2.180434 0.882111 0.3784 DAY=16 2.954601 2.363664 1.250009 0.2122 DAY=17 2.625292 3.130054 0.884737 0.4022 DAY=16 2.	GAS_PRICE	1.799953	0.208971	8.613426	0.0000
DAY=3 3.436567 2.489027 1.380687 0.1683 DAY=4 4.657706 2.937966 1.585351 0.1139 DAY=5 2.831102 2.208692 1.281800 0.2008 DAY=6 3.938529 2.403600 1.638596 0.1023 DAY=7 3.762271 2.363036 1.592134 0.1123 DAY=8 1.109162 2.279107 0.486665 0.6268 DAY=9 3.004319 2.455969 1.223272 0.2221 DAY=10 3.676975 2.407978 1.526997 0.1278 DAY=11 3.199706 2.554486 1.252583 0.2113 DAY=13 2.812514 2.598373 1.082413 0.3972 DAY=13 2.812514 0.847843 0.3972 DAY=15 1.923385 2.180434 0.882111 0.3784 DAY=16 2.954601 2.363664 1.250009 0.2122 DAY=17 2.625292 3.130054 0.884737 0.4022 DAY=16 2.	DAY=2	2.611926	2.781710	0.938964	0.3485
DAY=4 4.657706 2.937966 1.585351 0.1139 DAY=5 2.831102 2.208692 1.281800 0.2008 DAY=6 3.938529 2.403600 1.638596 0.1023 DAY=7 3.762271 2.363036 1.592134 0.1123 DAY=8 1.109162 2.279107 0.486665 0.6268 DAY=9 3.004319 2.455969 1.223272 0.2221 DAY=10 3.676975 2.407978 1.526997 0.1278 DAY=11 3.199706 2.552186 1.30391 0.1934 DAY=13 2.812514 2.598373 1.082413 0.2799 DAY=14 2.078862 2.451941 0.847843 0.3972 DAY=15 1.923385 2.180434 0.882111 0.3722 DAY=16 2.954601 2.363664 1.250099 0.2122 DAY=18 2.619782 2.260428 1.158976 0.2473 DAY=21 5.713166 2.807108 2.035250 0.0427	DAY=3		2.489027		
DAY=6 3.938529 2.403600 1.638596 0.1023 DAY=7 3.762271 2.363036 1.592134 0.1123 DAY=8 1.109162 2.279107 0.486665 0.6268 DAY=9 3.004319 2.455969 1.223272 0.2221 DAY=10 3.676975 2.407978 1.526997 0.1278 DAY=11 3.199706 2.554486 1.252583 0.2113 DAY=12 3.291305 2.525186 1.303391 0.1934 DAY=13 2.812514 2.598373 1.082413 0.2799 DAY=15 1.923385 2.180434 0.882111 0.3784 DAY=16 2.954601 2.363664 1.250009 0.2122 DAY=17 2.625292 3.130054 0.838737 0.4022 DAY=18 2.619782 2.260428 1.158976 0.2473 DAY=20 4.806382 2.62590 1.830312 0.0681 DAY=21 5.713166 2.807108 2.035250 0.0427 <t< td=""><td>DAY=4</td><td></td><td>2.937966</td><td></td><td>0.1139</td></t<>	DAY=4		2.937966		0.1139
DAY=6 3.938529 2.403600 1.638596 0.1023 DAY=7 3.762271 2.363036 1.592134 0.1123 DAY=8 1.109162 2.279107 0.486665 0.6268 DAY=9 3.004319 2.455969 1.223272 0.2221 DAY=10 3.676975 2.407978 1.526997 0.1278 DAY=11 3.199706 2.554486 1.252583 0.2113 DAY=12 3.291305 2.525186 1.303391 0.1934 DAY=13 2.812514 2.598373 1.082413 0.2799 DAY=15 1.923385 2.180434 0.882111 0.3784 DAY=16 2.954601 2.363664 1.250009 0.2122 DAY=17 2.625292 3.130054 0.838737 0.4022 DAY=18 2.619782 2.260428 1.158976 0.2473 DAY=20 4.806382 2.62590 1.830312 0.0681 DAY=21 5.713166 2.807108 2.035250 0.0427 <t< td=""><td>DAY=5</td><td>2.831102</td><td>2.208692</td><td>1.281800</td><td>0.2008</td></t<>	DAY=5	2.831102	2.208692	1.281800	0.2008
DAY=7 3.762271 2.363036 1.592134 0.1123 DAY=8 1.109162 2.279107 0.486665 0.6268 DAY=9 3.004319 2.455969 1.223272 0.2221 DAY=10 3.676975 2.407978 1.526997 0.1278 DAY=11 3.199706 2.554486 1.252583 0.2113 DAY=12 3.291305 2.525186 1.303391 0.1934 DAY=13 2.812514 2.598373 1.082413 0.2799 DAY=14 2.078862 2.451941 0.847843 0.3972 DAY=15 1.923385 2.180434 0.882111 0.3784 DAY=16 2.954601 2.363664 1.250009 0.2122 DAY=18 2.619782 2.260428 1.158976 0.2473 DAY=19 5.358750 2.370235 2.260851 0.0244 DAY=21 5.713166 2.807108 2.033250 0.0467 DAY=23 4.556741 2.630900 1.732008 0.8422		3.938529	2.403600	1.638596	
DAY=8 1.109162 2.279107 0.486665 0.6268 DAY=9 3.004319 2.455969 1.223272 0.2221 DAY=10 3.676975 2.407978 1.526997 0.1278 DAY=11 3.199706 2.554486 1.252583 0.2113 DAY=12 3.291305 2.552186 1.303391 0.1934 DAY=13 2.812514 2.598373 1.082413 0.2799 DAY=14 2.078862 2.451941 0.847843 0.3972 DAY=15 1.923385 2.180434 0.882111 0.3784 DAY=16 2.954601 2.366644 1.250009 0.2122 DAY=17 2.625292 3.130054 0.838737 0.4022 DAY=18 2.619782 2.260428 1.158976 0.2473 DAY=20 4.806382 2.625990 1.830312 0.0681 DAY=21 5.713166 2.807108 2.0325250 0.0427 DAY=22 5.808544 2.663090 1.732008 0.0842					
DAY=9 3.004319 2.455969 1.223272 0.2221 DAY=10 3.676975 2.407978 1.526997 0.1278 DAY=11 3.199706 2.554866 1.252583 0.2113 DAY=12 3.291305 2.525186 1.303391 0.1934 DAY=13 2.812514 2.598373 1.082413 0.2799 DAY=15 1.923385 2.180434 0.882111 0.3784 DAY=16 2.954601 2.363664 1.250009 0.2122 DAY=17 2.625292 3.130054 0.838737 0.4022 DAY=18 2.619782 2.260428 1.158976 0.2443 DAY=20 4.806382 2.625990 1.830312 0.0681 DAY=21 5.713166 2.807108 2.035250 0.0427 DAY=22 5.808544 2.668553 2.176664 0.302 DAY=23 4.556741 2.630900 1.732008 0.842 DAY=24 4.873222 2.432591 2.003305 0.0460					
DAY=10 3.676975 2.407978 1.526997 0.1278 DAY=11 3.199706 2.554486 1.252583 0.2113 DAY=12 3.291305 2.525186 1.303391 0.1934 DAY=13 2.812514 2.598373 1.082413 0.2799 DAY=14 2.078862 2.451941 0.847843 0.3972 DAY=15 1.923385 2.180434 0.882111 0.3784 DAY=16 2.954601 2.363664 1.250009 0.2122 DAY=17 2.625292 3.130054 0.838737 0.4022 DAY=18 2.619782 2.260428 1.158976 0.2473 DAY=20 4.806382 2.625990 1.830312 0.0681 DAY=21 5.713166 2.807108 2.035250 0.0427 DAY=23 4.556741 2.630900 1.732008 0.842 DAY=23 4.556741 2.630900 1.732008 0.842 DAY=24 4.873222 2.432591 2.003305 0.0460	-				
DAY=11 3.199706 2.554486 1.252583 0.2113 DAY=12 3.291305 2.525186 1.303391 0.1934 DAY=13 2.812514 2.598373 1.082413 0.2799 DAY=14 2.078862 2.451941 0.847843 0.3972 DAY=15 1.923385 2.180434 0.882111 0.3784 DAY=16 2.954601 2.363664 1.250009 0.2122 DAY=17 2.625292 3.130054 0.838737 0.4022 DAY=18 2.619782 2.260428 1.158976 0.2473 DAY=19 5.358750 2.370235 2.260851 0.0244 DAY=20 4.806382 2.625990 1.830312 0.0681 DAY=21 5.713166 2.807108 2.035250 0.0427 DAY=23 4.556741 2.630900 1.732008 0.0842 DAY=24 4.873222 2.432591 2.003305 0.0460 DAY=25 0.947093 2.788936 0.339589 0.7344	-			-	-
DAY=12 3.291305 2.525186 1.303391 0.1934 DAY=13 2.812514 2.598373 1.082413 0.2799 DAY=14 2.078862 2.451941 0.847843 0.3972 DAY=15 1.923385 2.180434 0.882111 0.3784 DAY=16 2.954601 2.363664 1.250009 0.2122 DAY=17 2.652292 3.130054 0.838737 0.4022 DAY=18 2.619782 2.260428 1.158976 0.2473 DAY=19 5.358750 2.370235 2.260851 0.0244 DAY=20 4.806382 2.625990 1.830312 0.0681 DAY=21 5.713166 2.807108 2.035250 0.0427 DAY=23 4.556741 2.630900 1.732008 0.0842 DAY=23 4.556741 2.630900 1.732008 0.0842 DAY=24 4.873222 2.432591 2.003305 0.0460 DAY=25 0.947093 2.788936 0.339589 0.7344					
DAY=13 2.812514 2.598373 1.082413 0.2799 DAY=14 2.078862 2.451941 0.847843 0.3972 DAY=15 1.923385 2.180434 0.882111 0.3784 DAY=16 2.954601 2.363664 1.250009 0.2122 DAY=17 2.625292 3.130054 0.88737 0.4022 DAY=18 2.619782 2.260428 1.158976 0.2473 DAY=19 5.358750 2.370235 2.260851 0.0244 DAY=20 4.806382 2.625990 1.830312 0.0681 DAY=21 5.713166 2.807108 2.035250 0.0427 DAY=23 4.556741 2.630900 1.732008 0.0842 DAY=24 4.873222 2.432591 2.003305 0.0460 DAY=25 0.947093 2.788936 0.339589 0.7344 DAY=26 3.111322 2.637661 1.179576 0.2391 DAY=27 4.696690 2.661082 1.764955 0.0785					
DAY=14 2.078862 2.451941 0.847843 0.3972 DAY=15 1.923385 2.180434 0.882111 0.3784 DAY=16 2.954601 2.363664 1.250009 0.2122 DAY=17 2.625292 3.130054 0.838737 0.4022 DAY=18 2.619782 2.260428 1.158976 0.2473 DAY=19 5.358750 2.370235 2.260851 0.0244 DAY=20 4.806382 2.625990 1.830312 0.0681 DAY=21 5.713166 2.807108 2.035250 0.0427 DAY=22 5.808544 2.668553 2.176664 0.302 DAY=23 4.556741 2.630900 1.732008 0.0842 DAY=24 4.873222 2.432591 2.003305 0.0460 DAY=25 0.947093 2.788936 0.339589 0.7344 DAY=26 3.111322 2.637661 1.179576 0.2391 DAY=27 4.696690 2.661082 1.764955 0.00785					
DAY=15 1.923385 2.180434 0.882111 0.3784 DAY=16 2.954601 2.363664 1.250009 0.2122 DAY=17 2.625292 3.130054 0.838737 0.4022 DAY=18 2.619782 2.260428 1.158976 0.2473 DAY=19 5.358750 2.370235 2.260851 0.0244 DAY=20 4.806382 2.625990 1.830312 0.0681 DAY=21 5.713166 2.807108 2.035250 0.0427 DAY=22 5.808544 2.668553 2.176664 0.0302 DAY=23 4.556741 2.630900 1.732008 0.0842 DAY=24 4.873222 2.432591 2.003305 0.0460 DAY=25 0.947093 2.788936 0.339589 0.7344 DAY=26 3.111322 2.637661 1.179576 0.2391 DAY=27 4.696690 2.661082 1.764955 0.0785 DAY=28 2.644966 2.501660 1.057284 0.2912					
DAY=16 2.954601 2.363664 1.250009 0.2122 DAY=17 2.625292 3.130054 0.838737 0.4022 DAY=18 2.619782 2.260428 1.158976 0.2473 DAY=19 5.358750 2.370235 2.260851 0.0244 DAY=20 4.806382 2.625990 1.830312 0.0681 DAY=21 5.713166 2.807108 2.035250 0.0427 DAY=22 5.808544 2.668553 2.176664 0.0302 DAY=23 4.556741 2.630900 1.732008 0.0842 DAY=24 4.873222 2.432591 2.003305 0.0460 DAY=25 0.947093 2.788936 0.339589 0.7344 DAY=26 3.111322 2.637661 1.179576 0.2391 DAY=27 4.696690 2.661082 1.764955 0.0785 DAY=28 2.644966 2.501660 1.057284 0.2912 DAY=30 2.759751 2.366161 1.166341 0.2444					
DAY=17 2.625292 3.130054 0.838737 0.4022 DAY=18 2.619782 2.260428 1.158976 0.2473 DAY=19 5.358750 2.370235 2.260851 0.0244 DAY=20 4.806382 2.625990 1.830312 0.0681 DAY=21 5.713166 2.807108 2.035250 0.0427 DAY=22 5.808544 2.668553 2.176664 0.0302 DAY=23 4.556741 2.630900 1.732008 0.0842 DAY=24 4.873222 2.432591 2.003305 0.0460 DAY=25 0.947093 2.788936 0.339589 0.7344 DAY=26 3.111322 2.637661 1.179576 0.2391 DAY=27 4.696690 2.661082 1.764955 0.0785 DAY=28 2.644966 2.501660 1.057284 0.2912 DAY=29 1.562397 2.366345 0.660257 0.5096 DAY=30 2.759751 2.366161 1.166341 0.2444					
DAY=18 2.619782 2.260428 1.158976 0.2473 DAY=19 5.358750 2.370235 2.260851 0.0244 DAY=20 4.806382 2.625990 1.830312 0.0681 DAY=21 5.713166 2.807108 2.035250 0.0427 DAY=22 5.808544 2.668553 2.176664 0.0302 DAY=23 4.556741 2.630900 1.732008 0.0842 DAY=24 4.873222 2.432591 2.003305 0.0460 DAY=25 0.947093 2.788936 0.339589 0.7344 DAY=26 3.111322 2.637661 1.179576 0.2391 DAY=27 4.696690 2.661082 1.764955 0.0785 DAY=28 2.644966 2.501660 1.057284 0.2912 DAY=30 2.759751 2.366161 1.166341 0.2444 DAY=31 2.850535 2.842077 1.002976 0.3166 MONTH="Aug" 4.567501 1.612124 2.833219 0.0049					
DAY=19 5.358750 2.370235 2.260851 0.0244 DAY=20 4.806382 2.625990 1.830312 0.0681 DAY=21 5.713166 2.807108 2.035250 0.0427 DAY=22 5.808544 2.668553 2.176664 0.0302 DAY=23 4.556741 2.630900 1.732008 0.0842 DAY=24 4.873222 2.432591 2.003305 0.0460 DAY=25 0.947093 2.788936 0.339589 0.7344 DAY=26 3.111322 2.637661 1.179576 0.2391 DAY=27 4.696690 2.661082 1.764955 0.0785 DAY=28 2.644966 2.501660 1.057284 0.2912 DAY=30 2.759751 2.366161 1.166341 0.2444 DAY=31 2.850535 2.842077 1.002976 0.3166 MONTH="Aug" 4.567501 1.612124 2.833219 0.0049 MONTH="Dec" 5.468735 1.604366 3.408657 0.007 <					
DAY=20 4.806382 2.625990 1.830312 0.0681 DAY=21 5.713166 2.807108 2.035250 0.0427 DAY=22 5.808544 2.668553 2.176664 0.0302 DAY=23 4.556741 2.630900 1.732008 0.0842 DAY=24 4.873222 2.432591 2.003305 0.0460 DAY=25 0.947093 2.788936 0.339589 0.7344 DAY=26 3.111322 2.637661 1.179576 0.2391 DAY=27 4.696690 2.661082 1.764955 0.0785 DAY=28 2.644966 2.501660 1.057284 0.2912 DAY=29 1.562397 2.366345 0.660257 0.5096 DAY=31 2.850535 2.842077 1.002976 0.3166 MONTH="Aug" 4.567501 1.612124 2.833219 0.0049 MONTH="Aug" 4.567501 1.618711 0.525966 0.5993 MONTH="Jan" -0.645133 1.533369 -0.420729 0.6742 <td>-</td> <td></td> <td></td> <td></td> <td></td>	-				
DAY=21 5.713166 2.807108 2.035250 0.0427 DAY=22 5.808544 2.668553 2.176664 0.0302 DAY=23 4.556741 2.630900 1.732008 0.0842 DAY=24 4.873222 2.432591 2.003305 0.0460 DAY=25 0.947093 2.788936 0.339589 0.7344 DAY=26 3.111322 2.637661 1.179576 0.2391 DAY=27 4.696690 2.661082 1.764955 0.0785 DAY=28 2.644966 2.501660 1.057284 0.2912 DAY=29 1.562397 2.366345 0.660257 0.5096 DAY=30 2.759751 2.366161 1.166341 0.2444 DAY=31 2.850535 2.842077 1.002976 0.3166 MONTH="Aug" 4.567501 1.612124 2.833219 0.0049 MONTH="Dec" 5.468735 1.604366 3.408657 0.0007 MONTH="Jan" -0.645133 1.533369 -0.420729 0.6742 <td></td> <td></td> <td></td> <td></td> <td></td>					
DAY=22 5.808544 2.668553 2.176664 0.0302 DAY=23 4.556741 2.630900 1.732008 0.0842 DAY=24 4.873222 2.432591 2.003305 0.0460 DAY=25 0.947093 2.788936 0.339589 0.7344 DAY=26 3.111322 2.637661 1.179576 0.2391 DAY=27 4.696690 2.661082 1.764955 0.0785 DAY=28 2.644966 2.501660 1.057284 0.2912 DAY=29 1.562397 2.366345 0.660257 0.5096 DAY=30 2.759751 2.366161 1.166341 0.2444 DAY=31 2.850535 2.842077 1.002976 0.3166 MONTH="Aug" 4.567501 1.612124 2.833219 0.0049 MONTH="Dec" 5.468735 1.604366 3.408657 0.0007 MONTH="Jan" -0.645133 1.533369 -0.420729 0.6742 MONTH="June" 2.383510 1.497927 1.591206 0.1126					
DAY=23 4.556741 2.630900 1.732008 0.0842 DAY=24 4.873222 2.432591 2.003305 0.0460 DAY=25 0.947093 2.788936 0.339589 0.7344 DAY=26 3.111322 2.637661 1.179576 0.2391 DAY=27 4.696690 2.661082 1.764955 0.0785 DAY=28 2.644966 2.501660 1.057284 0.2912 DAY=29 1.562397 2.366345 0.660257 0.5096 DAY=30 2.759751 2.366161 1.166341 0.2444 DAY=31 2.850535 2.842077 1.002976 0.3166 MONTH="Aug" 4.567501 1.612124 2.833219 0.0049 MONTH="Aug" 4.567501 1.612124 2.833219 0.0049 MONTH="Dec" 5.468735 1.604366 3.408657 0.0007 MONTH="Jan" -0.645133 1.533369 -0.420729 0.6742 MONTH="June" 2.383510 1.497927 1.591206 0.1126 </td <td></td> <td></td> <td></td> <td></td> <td></td>					
DAY=24 4.873222 2.432591 2.003305 0.0460 DAY=25 0.947093 2.788936 0.339589 0.7344 DAY=26 3.111322 2.637661 1.179576 0.2391 DAY=27 4.696690 2.661082 1.764955 0.0785 DAY=28 2.644966 2.501660 1.057284 0.2912 DAY=29 1.562397 2.366345 0.660257 0.5096 DAY=30 2.759751 2.366161 1.166341 0.2444 DAY=31 2.850535 2.842077 1.002976 0.3166 MONTH="Aug" 4.567501 1.612124 2.833219 0.0049 MONTH="Dec" 5.468735 1.604366 3.408657 0.007 MONTH="Jan" -0.645133 1.533369 -0.420729 0.6742 MONTH="July" 3.552002 1.450349 2.449067 0.0149 MONTH="June" 2.383510 1.497927 1.591206 0.1126 MONTH="Mar" 2.651158 1.387800 1.910332 0.0					
DAY=25 0.947093 2.788936 0.339589 0.7344 DAY=26 3.111322 2.637661 1.179576 0.2391 DAY=27 4.696690 2.661082 1.764955 0.0785 DAY=28 2.644966 2.501660 1.057284 0.2912 DAY=29 1.562397 2.366345 0.660257 0.5096 DAY=30 2.759751 2.366161 1.166341 0.2444 DAY=31 2.850535 2.842077 1.002976 0.3166 MONTH="Aug" 4.567501 1.612124 2.833219 0.0049 MONTH="Dec" 5.468735 1.604366 3.408657 0.007 MONTH="Jan" -0.645133 1.533369 -0.420729 0.6742 MONTH="Jan" -0.645133 1.533369 -0.420729 0.6742 MONTH="June" 2.383510 1.497927 1.591206 0.1126 MONTH="Mar" 2.651158 1.387800 1.910332 0.0570 MONTH="May" -0.603483 1.457700 -0.413996					
DAY=26 3.111322 2.637661 1.179576 0.2391 DAY=27 4.696690 2.661082 1.764955 0.0785 DAY=28 2.644966 2.501660 1.057284 0.2912 DAY=29 1.562397 2.366345 0.660257 0.5096 DAY=30 2.759751 2.366161 1.166341 0.2444 DAY=31 2.850535 2.842077 1.002976 0.3166 MONTH="Aug" 4.567501 1.612124 2.833219 0.0049 MONTH="Dec" 5.468735 1.604366 3.408657 0.0007 MONTH="Feb" 0.851387 1.618711 0.525966 0.5993 MONTH="Jan" -0.645133 1.533369 -0.420729 0.6742 MONTH="July" 3.552002 1.450349 2.449067 0.0149 MONTH="June" 2.383510 1.497927 1.591206 0.1126 MONTH="Mar" 2.651158 1.387800 1.910332 0.0570 MONTH="May" -0.603483 1.457700 -0.413996					
DAY=27 4.696690 2.661082 1.764955 0.0785 DAY=28 2.644966 2.501660 1.057284 0.2912 DAY=29 1.562397 2.366345 0.660257 0.5096 DAY=30 2.759751 2.366161 1.166341 0.2444 DAY=31 2.850535 2.842077 1.002976 0.3166 MONTH="Aug" 4.567501 1.612124 2.833219 0.0049 MONTH="Dec" 5.468735 1.604366 3.408657 0.0007 MONTH="Feb" 0.851387 1.618711 0.525966 0.5993 MONTH="Jan" -0.645133 1.533369 -0.420729 0.6742 MONTH="July" 3.552002 1.450349 2.449067 0.0149 MONTH="June" 2.383510 1.497927 1.591206 0.1126 MONTH="Mar" 2.651158 1.387800 1.910332 0.0570 MONTH="May" -0.603483 1.457700 -0.413996 0.6792 MONTH="Nov" 8.388029 1.558700 5.381427 <td></td> <td></td> <td></td> <td></td> <td></td>					
DAY=28 2.644966 2.501660 1.057284 0.2912 DAY=29 1.562397 2.366345 0.660257 0.5096 DAY=30 2.759751 2.366161 1.166341 0.2444 DAY=31 2.850535 2.842077 1.002976 0.3166 MONTH="Aug" 4.567501 1.612124 2.833219 0.0049 MONTH="Dec" 5.468735 1.604366 3.408657 0.0007 MONTH="Feb" 0.851387 1.618711 0.525966 0.5993 MONTH="Jan" -0.645133 1.533369 -0.420729 0.6742 MONTH="June" 2.383510 1.497927 1.591206 0.1126 MONTH="Mar" 2.651158 1.387800 1.910332 0.0570 MONTH="Mar" 2.651158 1.387800 1.910332 0.0570 MONTH="May" -0.603483 1.457700 -0.413996 0.6792 MONTH="Nov" 8.388029 1.558700 5.381427 0.0000 MONTH="Oct" 11.08831 1.662218 6.67079	-				
DAY=29 1.562397 2.366345 0.660257 0.5096 DAY=30 2.759751 2.366161 1.166341 0.2444 DAY=31 2.850535 2.842077 1.002976 0.3166 MONTH="Aug" 4.567501 1.612124 2.833219 0.0049 MONTH="Dec" 5.468735 1.604366 3.408657 0.0007 MONTH="Feb" 0.851387 1.618711 0.525966 0.5993 MONTH="Jan" -0.645133 1.533369 -0.420729 0.6742 MONTH="July" 3.552002 1.450349 2.449067 0.0149 MONTH="June" 2.383510 1.497927 1.591206 0.1126 MONTH="Mar" 2.651158 1.387800 1.910332 0.0570 MONTH="Mar" 2.651158 1.387800 1.910332 0.0570 MONTH="May" -0.603483 1.457700 -0.413996 0.6792 MONTH="Nov" 8.388029 1.558700 5.381427 0.0000 MONTH="Oct" 11.08831 1.662218 6					
DAY=302.7597512.3661611.1663410.2444DAY=312.8505352.8420771.0029760.3166MONTH="Aug"4.5675011.6121242.8332190.0049MONTH="Dec"5.4687351.6043663.4086570.0007MONTH="Feb"0.8513871.6187110.5259660.5993MONTH="Jan"-0.6451331.533369-0.4207290.6742MONTH="July"3.5520021.4503492.4490670.0149MONTH="June"2.3835101.4979271.5912060.1126MONTH="Mar"2.6511581.3878001.9103320.0570MONTH="May"-0.6034831.457700-0.4139960.6792MONTH="Nov"8.3880291.5587005.3814270.0000MONTH="Oct"11.088311.6622186.6707950.0000	-				
DAY=312.8505352.8420771.0029760.3166MONTH="Aug"4.5675011.6121242.8332190.0049MONTH="Dec"5.4687351.6043663.4086570.0007MONTH="Feb"0.8513871.6187110.5259660.5993MONTH="Jan"-0.6451331.533369-0.4207290.6742MONTH="July"3.5520021.4503492.4490670.0149MONTH="June"2.3835101.4979271.5912060.1126MONTH="Mar"2.6511581.3878001.9103320.0570MONTH="May"-0.6034831.457700-0.4139960.6792MONTH="Nov"8.3880291.5587005.3814270.0000MONTH="Oct"11.088311.6622186.6707950.0000					
MONTH="Aug" 4.567501 1.612124 2.833219 0.0049 MONTH="Dec" 5.468735 1.604366 3.408657 0.0007 MONTH="Feb" 0.851387 1.618711 0.525966 0.5993 MONTH="Jan" -0.645133 1.533369 -0.420729 0.6742 MONTH="July" 3.552002 1.450349 2.449067 0.0149 MONTH="June" 2.383510 1.497927 1.591206 0.1126 MONTH="Mar" 2.651158 1.387800 1.910332 0.0570 MONTH="May" -0.603483 1.457700 -0.413996 0.6792 MONTH="Nov" 8.388029 1.558700 5.381427 0.0000 MONTH="Oct" 11.08831 1.662218 6.670795 0.0000					
MONTH="Dec" 5.468735 1.604366 3.408657 0.0007 MONTH="Feb" 0.851387 1.618711 0.525966 0.5993 MONTH="Jan" -0.645133 1.533369 -0.420729 0.6742 MONTH="July" 3.552002 1.450349 2.449067 0.0149 MONTH="June" 2.383510 1.497927 1.591206 0.1126 MONTH="Mar" 2.651158 1.387800 1.910332 0.0570 MONTH="May" -0.603483 1.457700 -0.413996 0.6792 MONTH="Nov" 8.388029 1.558700 5.381427 0.0000 MONTH="Oct" 11.08831 1.662218 6.670795 0.0000					
MONTH="Feb"0.8513871.6187110.5259660.5993MONTH="Jan"-0.6451331.533369-0.4207290.6742MONTH="July"3.5520021.4503492.4490670.0149MONTH="June"2.3835101.4979271.5912060.1126MONTH="Mar"2.6511581.3878001.9103320.0570MONTH="May"-0.6034831.457700-0.4139960.6792MONTH="Nov"8.3880291.5587005.3814270.0000MONTH="Oct"11.088311.6622186.6707950.0000			-		
MONTH="Jan" -0.645133 1.533369 -0.420729 0.6742 MONTH="July" 3.552002 1.450349 2.449067 0.0149 MONTH="June" 2.383510 1.497927 1.591206 0.1126 MONTH="Mar" 2.651158 1.387800 1.910332 0.0570 MONTH="May" -0.603483 1.457700 -0.413996 0.6792 MONTH="Nov" 8.388029 1.558700 5.381427 0.0000 MONTH="Oct" 11.08831 1.662218 6.670795 0.0000					
MONTH="July" 3.552002 1.450349 2.449067 0.0149 MONTH="June" 2.383510 1.497927 1.591206 0.1126 MONTH="Mar" 2.651158 1.387800 1.910332 0.0570 MONTH="May" -0.603483 1.457700 -0.413996 0.6792 MONTH="Nov" 8.388029 1.558700 5.381427 0.0000 MONTH="Oct" 11.08831 1.662218 6.670795 0.0000					
MONTH="June" 2.383510 1.497927 1.591206 0.1126 MONTH="Mar" 2.651158 1.387800 1.910332 0.0570 MONTH="May" -0.603483 1.457700 -0.413996 0.6792 MONTH="Nov" 8.388029 1.558700 5.381427 0.0000 MONTH="Oct" 11.08831 1.662218 6.670795 0.0000					
MONTH="Mar" 2.651158 1.387800 1.910332 0.0570 MONTH="May" -0.603483 1.457700 -0.413996 0.6792 MONTH="Nov" 8.388029 1.558700 5.381427 0.0000 MONTH="Oct" 11.08831 1.662218 6.670795 0.0000					
MONTH="May"-0.6034831.457700-0.4139960.6792MONTH="Nov"8.3880291.5587005.3814270.0000MONTH="Oct"11.088311.6622186.6707950.0000					
MONTH="Nov"8.3880291.5587005.3814270.0000MONTH="Oct"11.088311.6622186.6707950.0000					
MONTH="Oct" 11.08831 1.662218 6.670795 0.0000					
IVIUNTE Sept 8.843804 2.102571 4.207138 0.0000					
		0.040004	2.102371	4.20/130	0.0000

Dependent Variable: PRICE Method: ARMA Conditional Least Squares (Gauss-Newton / Marquardt Method: ARMA Conditional Least Squares (Gauss-Newton / Marquardt steps) Sample (adjusted): 2 365 Included observations: 362 after adjustments Convergence achieved after 5 iterations White-Hinkley (HC1) heteroskedasticity consistent standard errors and covariance

-

.,	0 11	0.1 =		
Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	-6.756303	8.292969	-0.814703	0.4159
LOAD	0.018822	0.005263	3.576425	0.0004
SOLAR	-0.005368	0.009026	-0.594728	0.5525
WIND	-0.007886	0.002002	-3.939665	0.0001
GAS_PRICE	1.765454	0.230977	7.643414	0.0000
DAY=2	3.016467	2.609532	1.155942	0.2486
DAY=3	3.943370	2.479769	1.590217	0.1128
DAY=4	4.456182	2.969003	1.500902	0.1344
DAY=5	3.197476	2.241572	1.426444	0.1547
DAY=6	4.336515	2.429092	1.785241	0.0752
DAY=7	4.197248	2.356719	1.780971	0.0759
DAY=8	1.530219	2.319753	0.659648	0.5100
DAY=9	3.374370	2.477837	1.361821	0.1742
DAY=10	4.112519	2.464535	1.668680	0.0962
DAY=11	3.613481	2.589004	1.395703	0.1638
DAY=12	3.682158	2.576213	1.429291	0.1539
DAY=13	3.231546	2.590805	1.247314	0.2132
DAY=14	2.498776	2.409198	1.037181	0.3004
DAY=15	2.366442	2.236365	1.058165	0.2908
DAY=16	3.395991	2.381366	1.426069	0.1548
DAY=17	3.035451	3.135440	0.968110	0.3337
DAY=18	3.039795	2.316475	1.312250	0.1904
DAY=19	5.810192	2.404747	2.416134	0.0163
DAY=20	5.240212	2.573963	2.035854	0.0426
DAY=21	6.144164	2.806801	2.189027	0.0293
DAY=22	6.222357	2.666802	2.333266	0.0203
DAY=23	4.950528	2.641776	1.873939	0.0619
DAY=24	5.256035	2.455522	2.140496	0.0331
DAY=25	1.364707	2.830942	0.482068	0.6301
DAY=26	3.555071	2.621149	1.356303	0.1760
DAY=27	5.120811	2.741627	1.867800	0.0627
DAY=28	3.060437	2.483796	1.232161	0.2188
DAY=29	2.009626	2.353865	0.853756	0.3939
DAY=30	3.173198	2.366580	1.340837	0.1809
DAY=31	3.143608	2.827586	1.111764	0.2671
MONTH="Aug"	5.038412	1.880310	2.679565	0.0078
MONTH="Dec"	6.040752	1.860466	3.246903	0.0013
MONTH="Feb"	1.297562	1.887866	0.687317	0.4924
MONTH="Jan"	-0.510683	1.781025	-0.286735	0.7745
MONTH="July"	3.973654	1.727319	2.300475	0.0221
MONTH="June"	2.738297	1.740370	1.573400	0.1166
MONTH="Mar"	3.104167	1.650283	1.880990	0.0609
MONTH="May"	-0.153394	1.716038	-0.089389	0.9288
MONTH="Nov"	8.864780	1.776476	4.990092	0.0000
MONTH="Oct"	11.63451	1.916880	6.069503	0.0000
MONTH="Sept"	9.416533	2.388989	3.941639	0.0001
•				

AR(1)	0.138274	0.063586	2.174584	0.0304
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.825793 0.800353 4.968337 7775.578 -1068.801 32.46070 0.000000	Mean depend S.D. depende Akaike info ci Schwarz crite Hannan-Quin Durbin-Watsc	ent var iterion rion n criter.	60.76921 11.11936 6.164644 6.669913 6.365507 1.997736
Inverted AR Roots	.14			

TEST ON THE RESIDUALS

Breusch-Godfrey Serial Correlation LM Test:

F-statistic	Prob. F(2,313)	0.7122
Obs*R-squared	Prob. Chi-Square(2)	0.6756

Test Equation: Dependent Variable: RESID Method: Least Squares Sample: 2 365 Included observations: 362 Coefficient covariance computed using outer product of gradients Presample and interior missing value lagged residuals set to zero.

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.206990	5.126285	0.040378	0.9678
LOAD	3.40E-05	0.004374	0.007771	0.9938
SOLAR	-0.000777	0.008747	-0.088872	0.9292
WIND	-8.79E-05	0.001926	-0.045633	0.9636
GAS_PRICE	-0.006727	0.106338	-0.063263	0.9496
DAY=2	0.062699	1.963660	0.031930	0.9745
DAY=3	-0.027592	2.140209	-0.012892	0.9897
DAY=4	0.061466	2.157099	0.028495	0.9773
DAY=5	0.050323	2.138250	0.023535	0.9812
DAY=6	0.038043	2.111705	0.018015	0.9856
DAY=7	0.026845	2.109170	0.012728	0.9899
DAY=8	0.034956	2.105528	0.016602	0.9868
DAY=9	0.046998	2.112703	0.022245	0.9823
DAY=10	0.026371	2.109771	0.012499	0.9900
DAY=11	0.036757	2.105553	0.017457	0.9861
DAY=12	0.047552	2.108114	0.022557	0.9820
DAY=13	0.040557	2.104914	0.019268	0.9846
DAY=14	0.042986	2.104300	0.020428	0.9837
DAY=15	0.032768	2.104088	0.015574	0.9876
DAY=16	0.039122	2.100578	0.018625	0.9852
DAY=17	0.049126	2.103311	0.023356	0.9814
DAY=18	0.045898	2.100085	0.021855	0.9826
DAY=19	0.040714	2.102591	0.019364	0.9846
DAY=20	0.039838	2.103408	0.018940	0.9849
DAY=21	0.042815	2.108750	0.020303	0.9838
DAY=22	0.057303	2.105264	0.027219	0.9783
DAY=23	0.060714	2.107979	0.028802	0.9770
DAY=24	0.059682	2.108741	0.028302	0.9774
DAY=25	0.053163	2.101521	0.025297	0.9798
DAY=26	0.069153	2.109438	0.032783	0.9739
DAY=27	0.062381	2.105528	0.029627	0.9764
DAY=28	0.053506	2.085393	0.025658	0.9795
DAY=29	0.122476	2.146622	0.057055	0.9545
DAY=30	0.055654	2.088791	0.026644	0.9788
DAY=31	-0.011295	2.323536	-0.004861	0.9961
MONTH="Aug"	0.008850	1.783078	0.004963	0.9960

MONTH="Dec" MONTH="Feb" MONTH="Jan" MONTH="July" MONTH="June" MONTH="Mar" MONTH="May" MONTH="May" MONTH="Nov" MONTH="Nov" MONTH="Sept" AR(1) RESID(-1)	-0.015828 0.006238 -0.035268 0.016459 -0.007746 -0.040370 -0.013847 -0.035044 0.047806 0.018659 -0.017744 0.010797	1.704881 1.738707 1.647009 1.651887 1.560554 1.595687 1.582686 1.635810 1.637975 1.736243 0.546413 0.550804	-0.009284 0.003588 -0.021413 0.009964 -0.004964 -0.025300 -0.008749 -0.021423 0.029186 0.010747 -0.032474 0.019603	0.9926 0.9971 0.9829 0.9921 0.9960 0.9798 0.9930 0.9829 0.9767 0.9914 0.9741 0.9844
RESID(-2)	0.050687	0.095247	0.532156	0.5950
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.002167 -0.150856 4.978783 7758.731 -1068.408 0.014159 1.000000	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		-9.97E-10 4.641012 6.173525 6.700295 6.382935 1.983139

<u>SPAIN</u>

MODEL 1

Dependent Variable: PRICE Method: Least Squares Sample: 1 365 Included observations: 365

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.314144	3.923431	0.080069	0.9362
DEMAND	5.43E-05	5.12E-06	10.60373	0.0000
DAY=2	1.301276	2.323343	0.560088	0.5758
DAY=3	1.439809	2.327129	0.618706	0.5365
DAY=4	2.275679	2.324705	0.978911	0.3284
DAY=5	4.068491	2.332695	1.744117	0.0821
DAY=6	3.959943	2.326501	1.702102	0.0897
DAY=7	3.878123	2.325696	1.667511	0.0964
DAY=8	6.165858	2.325486	2.651428	0.0084
DAY=9	5.548909	2.329499	2.382018	0.0178
DAY=10	2.389314	2.327560	1.026532	0.3054
DAY=11	0.910321	2.324630	0.391598	0.6956
DAY=12	3.807295	2.332100	1.632561	0.1035
DAY=13	3.614493	2.332890	1.549363	0.1223
DAY=14	3.018345	2.326256	1.297512	0.1954
DAY=15	3.179550	2.321601	1.369551	0.1718
DAY=16	5.312370	2.324738	2.285148	0.0230
DAY=17	4.899836	2.324091	2.108280	0.0358
DAY=18	4.871726	2.323249	2.096946	0.0368
DAY=19	5.066865	2.331996	2.172759	0.0305
DAY=20	3.393212	2.331053	1.455656	0.1465
DAY=21	4.240971	2.325108	1.823989	0.0691
DAY=22	6.798277	2.324837	2.924194	0.0037
DAY=23	7.130231	2.328474	3.062190	0.0024
DAY=24	5.295053	2.324274	2.278153	0.0234
DAY=25	7.558739	2.319886	3.258238	0.0012
DAY=26	6.536252	2.330339	2.804851	0.0053
DAY=27	7.037663	2.330867	3.019332	0.0027
DAY=28	5.783262	2.325457	2.486935	0.0134
DAY=29	3.420339	2.375403	1.439898	0.1509
DAY=30	3.164580	2.375730	1.332046	0.1838
DAY=31	3.643009	2.721075	1.338812	0.1816

MONTH="Aug" MONTH="Dec" MONTH="Feb" MONTH="July" MONTH="June" MONTH="Mar" MONTH="May" MONTH="Mov" MONTH="Oct" MONTH="Sept"	18.66326 18.13408 6.781714 3.765066 15.95391 14.83828 -5.114070 13.10562 17.55043 22.80800 26.72870	1.483682 1.459562 1.576758 1.494437 1.488666 1.469358 1.477500 1.458680 1.475870 1.456892 1.477216	12.57902 12.42433 4.301048 2.519387 10.71692 10.09848 -3.461300 8.984569 11.89158 15.65524 18.09397	0.0000 0.0000 0.0122 0.0000 0.0000 0.0006 0.0000 0.0000 0.0000 0.0000 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.766153 0.735651 5.680215 10389.28 -1129.038 25.11826 0.000000	Mean depend S.D. depende Akaike info c Schwarz crite Hannan-Quir Durbin-Watso	ent var riterion erion an criter.	57.29252 11.04780 6.422126 6.881566 6.604713 0.871721

Dependent Variable: PRICE Method: ARMA Conditional Least Squares (Gauss-Newton / Marquardt steps)

Sample (adjusted): 2 365 Included observations: 364 after adjustments Convergence achieved after 7 iterations

White-Hinkley (HC1) heteroskedasticity consistent standard errors and covariance

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	8.719197	4.726847	1.844612	0.0660
DEMAND	4.83E-05	5.52E-06	8.739311	0.0000
DAY=2	0.149830	1.375466	0.108930	0.9133
DAY=3	-0.368055	1.923787	-0.191318	0.8484
DAY=4	0.040753	2.249910	0.018113	0.9856
DAY=5	1.725917	2.257886	0.764395	0.4452
DAY=6	1.425162	2.292089	0.621775	0.5345
DAY=7	1.268494	2.260644	0.561121	0.5751
DAY=8	3.518817	2.360341	1.490809	0.1370
DAY=9	2.938543	2.273356	1.292602	0.1971
DAY=10	-0.256244	2.119049	-0.120924	0.9038
DAY=11	-1.784759	3.049104	-0.585339	0.5587
DAY=12	1.208589	2.872738	0.420710	0.6742
DAY=13	1.022734	2.862293	0.357313	0.7211
DAY=14	0.343225	2.546567	0.134780	0.8929
DAY=15	0.418146	2.350671	0.177883	0.8589
DAY=16	2.612583	2.504785	1.043037	0.2977
DAY=17	2.188635	2.334542	0.937501	0.3492
DAY=18	2.144538	2.197425	0.975932	0.3298
DAY=19	2.461818	2.232629	1.102654	0.2710
DAY=20	0.776076	2.269955	0.341890	0.7327
DAY=21	1.541463	2.182142	0.706399	0.4805
DAY=22	4.089551	2.199734	1.859111	0.0639
DAY=23	4.465362	2.155311	2.071795	0.0391
DAY=24	2.551708	2.836675	0.899542	0.3690
DAY=25	4.678758	2.767824	1.690410	0.0919
DAY=26	3.793281	2.455415	1.544864	0.1234
DAY=27	4.199778	2.290835	1.833296	0.0677
DAY=28	2.687448	2.242844	1.198232	0.2317
DAY=29	0.602240	2.421878	0.248667	0.8038
DAY=30	0.782065	2.413964	0.323976	0.7462
DAY=31	1.877974	1.813492	1.035557	0.3012
MONTH="Aug"	17.41618	2.401624	7.251835	0.0000
MONTH="Dec"	16.82834	2.307167	7.293942	0.0000
MONTH="Feb"	4.723434	2.682910	1.760564	0.0793
MONTH="Jan"	4.959022	2.733187	1.814373	0.0706

MONTH="July" MONTH="June" MONTH="Mar" MONTH="May" MONTH="Nov" MONTH="Oct" MONTH="Sept" AR(1)	14.94190 13.28707 -6.678627 10.51992 16.41638 20.10579 25.09412 0.543947	2.295053 2.500995 4.098108 3.096699 2.523989 2.580259 2.431534 0.068644	6.510481 5.312713 -1.629686 3.397141 6.504142 7.792159 10.32029 7.924151	0.0000 0.0000 0.1042 0.0008 0.0000 0.0000 0.0000 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.843593 0.822576 4.528428 6562.131 -1042.822 40.13823 0.000000	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watso	ent var riterion erion an criter.	57.42893 10.75081 5.971552 6.442637 6.158787 1.887877
Inverted AR Roots	.54			

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	9.902763	5.183998	1.910256	0.0570
DEMAND	6.03E-05	6.00E-06	10.05090	0.0000
RES	-0.001644	0.000105	-15.72691	0.0000
DAY=2	2.158416	3.092240	0.698011	0.4857
DAY=3	1.933012	3.017031	0.640700	0.5222
DAY=4	1.725826	2.880664	0.599107	0.5495
DAY=5	2.345375	2.852759	0.822143	0.4116
DAY=6	3.077587	2.914052	1.056119	0.2917
DAY=7	1.854991	2.795935	0.663460	0.5075
DAY=8	2.739668	2.744240	0.998334	0.3189
DAY=9	4.163270	2.743773	1.517352	0.1302
DAY=10	2.332511	2.795390	0.834413	0.4047
DAY=11	0.993782	3.421972	0.290412	0.7717
DAY=12	2.144187	2.751632	0.779242	0.4364
DAY=13	2.302166	2.876160	0.800431	0.4241
DAY=14	2.765412	2.779207	0.995036	0.3205
DAY=15	2.071765	2.886957	0.717629	0.4735
DAY=16	3.987896	2.836271	1.406035	0.1607
DAY=17	3.098738	2.781872	1.113904	0.2662
DAY=18	3.391002	2.794319	1.213534	0.2258
DAY=19	3.479492	2.834644	1.227488	0.2205
DAY=20	3.446729	2.819271	1.222560	0.2224
DAY=21	3.223910	2.799634	1.151547	0.2504
DAY=22	4.553312	2.811467	1.619550	0.1063
DAY=23	3.428547	2.724468	1.258428	0.2092
DAY=24	2.754335	2.897325	0.950648	0.3425
DAY=25	4.302684	2.855628	1.506738	0.1329
DAY=26	4.308042	2.817369	1.529101	0.1272
DAY=27	4.414928	2.801053	1.576167	0.1160
DAY=28	3.775905	2.791297	1.352742	0.1771
DAY=29	2.125328	3.060504	0.694437	0.4879
DAY=30	0.776016	3.771645	0.205750	0.8371
DAY=31	-0.322692	3.968708	-0.081309	0.9352
MONTH="Aug"	16.09204	0.921831	17.45662	0.0000
MONTH="Dec"	16.37090	0.931372	17.57719	0.0000
MONTH="Feb"	6.892685	1.017050	6.777133	0.0000

MONTH="Jan"	3.878769	1.328663	2.919304	$\begin{array}{c} 0.0038\\ 0.0000\\ 0.5417\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ \end{array}$
MONTH="July"	12.66192	0.966279	13.10380	
MONTH="June"	11.27364	0.916303	12.30340	
MONTH="Mar"	1.037263	1.698063	0.610851	
MONTH="May"	10.87974	1.036487	10.49675	
MONTH="Nov"	16.25168	0.912611	17.80788	
MONTH="Cct"	21.79391	0.890146	24.48354	
MONTH="Sept"	22.22456	0.901230	24.66025	
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic) Prob(Wald F-statistic)	0.874906 0.858148 4.160954 5557.644 -1014.866 52.21077 0.000000 0.000000	Mean depende S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watsc Wald F-statist	ent var iterion rion n criter. on stat	57.29252 11.04780 5.802005 6.272130 5.988839 0.938819 54.10942

Dependent Variable: PRICE Method: ARMA Conditional Least Squares (Gauss-Newton / Marquardt steps)

Sample (adjusted): 2 365

Included observations: 364 after adjustments Convergence achieved after 7 iterations White-Hinkley (HC1) heteroskedasticity consistent standard errors and covariance

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	16.51079	3.537821	4.666937	0.0000
DEMAND	5.37E-05	4.52E-06	11.86861	0.0000
RES	-0.001507	9.78E-05	-15.40211	0.0000
DAY=2	1.133259	1.398270	0.810472	0.4183
DAY=3	0.432142	1.664875	0.259564	0.7954
DAY=4	-0.013399	1.769411	-0.007572	0.9940
DAY=5	0.666448	1.920430	0.347031	0.7288
DAY=6	1.176347	2.009786	0.585309	0.5588
DAY=7	-0.000669	1.978260	-0.000338	0.9997
DAY=8	0.978803	1.950359	0.501858	0.6161
DAY=9	2.279926	1.947720	1.170562	0.2426
DAY=10	0.307919	1.942731	0.158498	0.8742
DAY=11	-1.090217	2.718111	-0.401094	0.6886
DAY=12	0.306718	2.432619	0.126086	0.8997
DAY=13	0.443711	2.259042	0.196416	0.8444
DAY=14	0.733543	2.105056	0.348467	0.7277
DAY=15	0.022630	2.048320	0.011048	0.9912
DAY=16	2.020503	2.011045	1.004703	0.3158
DAY=17	1.159515	1.999435	0.579921	0.5624
DAY=18	1.408912	1.956392	0.720158	0.4720
DAY=19	1.632419	2.028435	0.804768	0.4216
DAY=20	1.451180	2.003337	0.724382	0.4694
DAY=21	1.233687	1.985538	0.621337	0.5348
DAY=22	2.657392	1.967650	1.350541	0.1778
DAY=23	1.701425	1.939469	0.877263	0.3810
DAY=24	0.853086	2.266322	0.376419	0.7069
DAY=25	2.324580	2.253305	1.031632	0.3030
DAY=26	2.389443	2.079479	1.149059	0.2514
DAY=27	2.431459	2.055172	1.183093	0.2377
DAY=28	1.460899	2.105322	0.693908	0.4882
DAY=29	0.122066	2.263672	0.053924	0.9570
DAY=30	-0.804037	2.326654	-0.345577	0.7299
DAY=31	-0.862010	1.733560	-0.497249	0.6194
MONTH="Aug"	15.56779	1.626426	9.571784	0.0000
MONTH="Dec"	15.67859	1.533521	10.22392	0.0000
MONTH="Feb"	5.858706	1.770658	3.308773	0.0010
MONTH="Jan"	4.848356	1.772494	2.735329	0.0066
MONTH="July"	12.30949	1.600102	7.692940	0.0000

MONTH="June" MONTH="Mar" MONTH="May" MONTH="Nov" MONTH="Oct" MONTH="Sept" AR(1)	10.69943 -0.302271 9.204697 15.69232 20.15606 21.27300 0.505083	1.574036 3.063883 2.254441 1.635356 1.580139 1.590859 0.091968	6.797452 -0.098656 4.082918 9.595660 12.75587 13.37202 5.491976	$\begin{array}{c} 0.0000\\ 0.9215\\ 0.0001\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ \end{array}$
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.914221 0.902390 3.358840 3598.896 -933.4972 77.26960 0.000000	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watsc	ent var riterion erion in criter.	57.42893 10.75081 5.376358 5.858149 5.567848 1.891351
Inverted AR Roots	.51			

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	9.849050	5.154696	1.910694	0.0569
DEMAND	6.03E-05	6.03E-06	10.00630	0.0000
SOLAR	-0.001597	0.000574	-2.784062	0.0057
WIND	-0.001645	0.000104	-15.74422	0.0000
DAY=2	2.163692	3.101622	0.697600	0.4859
DAY=3	1.934851	3.022699	0.640107	0.5226
DAY=4	1.727553	2.887389	0.598310	0.5501
DAY=5	2.350180	2.862147	0.821125	0.4122
DAY=6	3.082080	2.923593	1.054209	0.2926
DAY=7	1.858457	2.804119	0.662760	0.5080
DAY=8	2.746458	2.756506	0.996355	0.3198
DAY=9	4.171347	2.758933	1.511942	0.1315
DAY=10	2.341937	2.812103	0.832806	0.4056
DAY=11	1.002260	3.427461	0.292421	0.7702
DAY=12	2.150723	2.764250	0.778049	0.4371
DAY=13	2.301805	2.882067	0.798665	0.4251
DAY=14	2.768728	2.786096	0.993766	0.3211
DAY=15	2.070833	2.891426	0.716198	0.4744
DAY=16	3.980488	2.838396	1.402372	0.1618
DAY=17	3.089888	2.780605	1.111229	0.2673
DAY=18	3.389702	2.797085	1.211870	0.2265
DAY=19	3.475969	2.836287	1.225535	0.2213
DAY=20	3.445686	2.823602	1.220315	0.2232
DAY=21	3.220759	2.800942	1.149884	0.2511
DAY=22	4.542913	2.801667	1.621503	0.1059
DAY=23	3.425168	2.727308	1.255879	0.2101
DAY=24	2.747871	2.900283	0.947449	0.3441
DAY=25	4.301443	2.860548	1.503713	0.1336
DAY=26	4.303327	2.817024	1.527615	0.1276
DAY=27	4.410752	2.803476	1.573316	0.1166
DAY=28	3.775129	2.795552	1.350406	0.1778
DAY=29	2.119159	3.060750	0.692366	0.4892
DAY=30	0.779002	3.782514	0.205948	0.8370
DAY=31	-0.329656	3.957967	-0.083289	0.9337
MONTH="Aug"	16.06044	1.002362	16.02260	0.0000
MONTH="Dec"	16.40411	0.984426	16.66363	0.0000
MONTH="Feb"	6.910402	1.050264	6.579683	0.0000

MONTH="Jan"	3.913586	1.392959	2.809549	$\begin{array}{c} 0.0053\\ 0.0000\\ 0.5344\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ \end{array}$
MONTH="July"	12.61299	1.122772	11.23380	
MONTH="June"	11.24875	0.964295	11.66526	
MONTH="Mar"	1.059221	1.702798	0.622048	
MONTH="May"	10.86295	1.080794	10.05090	
MONTH="Nov"	16.29002	1.032678	15.77454	
MONTH="Cct"	21.80656	0.897355	24.30092	
MONTH="Sept"	22.21088	0.911105	24.37795	
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic) Prob(Wald F-statistic)	0.874909 0.857708 4.167402 5557.517 -1014.862 50.86655 0.000000 0.000000	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watsc Wald F-statist	ent var iterion rion n criter. on stat	57.29252 11.04780 5.807462 6.288271 5.998542 0.937695 52.86920

Dependent Variable: PRICE

Method: ARMA Conditional Least Squares (Gauss-Newton / Marquardt steps) Sample (adjusted): 2 365 Included observations: 364 after adjustments

_

Convergence achieved after 7 iterations

White-Hinkley (HC1) heteroskedasticity consistent standard errors and covariance

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	15.39264	3.605138	4.269640	0.0000
DEMAND	5.33E-05	4.49E-06	11.88920	0.0000
SOLAR	-0.000472	0.000489	-0.965345	0.3351
WIND	-0.001517	9.87E-05	-15.36514	0.0000
DAY=2	1.280555	1.401018	0.914018	0.3614
DAY=3	0.514569	1.651408	0.311594	0.7556
DAY=4	0.072384	1.768308	0.040934	0.9674
DAY=5	0.827720	1.920366	0.431022	0.6667
DAY=6	1.312979	2.010263	0.653138	0.5141
DAY=7	0.123224	1.990233	0.061914	0.9507
DAY=8	1.189244	1.976835	0.601590	0.5479
DAY=9	2.492449	1.982008	1.257537	0.2095
DAY=10	0.531852	1.980421	0.268555	0.7884
DAY=11	-0.889974	2.727912	-0.326247	0.7445
DAY=12	0.487736	2.460005	0.198266	0.8430
DAY=13	0.470704	2.305302	0.204183	0.8383
DAY=14	0.825673	2.117307	0.389964	0.6968
DAY=15	0.031520	2.056509	0.015327	0.9878
DAY=16	1.892569	2.009484	0.941818	0.3470
DAY=17	1.005885	2.023147	0.497188	0.6194
DAY=18	1.414789	1.968323	0.718779	0.4728
DAY=19	1.593402	2.047654	0.778160	0.4371
DAY=20	1.445306	2.025083	0.713702	0.4759
DAY=21	1.193338	1.968053	0.606355	0.5447
DAY=22	2.473967	1.936003	1.277873	0.2022
DAY=23	1.687746	1.956431	0.862666	0.3890
DAY=24	0.754678	2.291103	0.329395	0.7421
DAY=25	2.342578	2.284188	1.025562	0.3059
DAY=26	2.317027	2.090576	1.108320	0.2686
DAY=27	2.367514	2.088285	1.133712	0.2578
DAY=28	1.451992	2.136750	0.679533	0.4973
DAY=29	0.054052	2.258303	0.023935	0.9809
DAY=30	-0.661138	2.276492	-0.290419	0.7717
DAY=31	-0.861231	1.717109	-0.501559	0.6163
MONTH="Aug"	14.83441	1.696490	8.744175	0.0000
MONTH="Dec"	16.33272	1.569294	10.40769	0.0000
MONTH="Feb"	6.158419	1.821110	3.381684	0.0008

MONTH="Jan" MONTH="July" MONTH="June" MONTH="Mar" MONTH="May" MONTH="Nov" MONTH="Oct" MONTH="Sept" AR(1)	5.501560 11.22836 10.08403 -0.034020 8.727814 16.34530 20.35545 20.88211 0.520068	1.794034 1.711299 1.615439 3.136462 2.321844 1.652730 1.551508 1.632173 0.094077	3.066586 6.561312 6.242285 -0.010847 3.759000 9.889876 13.11979 12.79405 5.528141	0.0024 0.0000 0.9914 0.0002 0.0000 0.0000 0.0000 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.915140 0.903131 3.346051 3560.346 -931.5372 76.20765 0.000000	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watso	ent var riterion erion an criter.	57.42893 10.75081 5.371083 5.863581 5.566829 1.906464
Inverted AR Roots	.52			

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	-4.637218	5.730762	-0.809180	0.4190
DEMAND	5.08E-05	6.37E-06	7.965582	0.0000
SOLAR	-0.000770	0.000526	-1.464853	0.1439
WIND	-0.001577	0.000106	-14.92840	0.0000
GAS_PRICE	0.897159	0.234037	3.833411	0.0002
DAY=2	2.234775	2.983738	0.748985	0.4544
DAY=3	2.659194	2.831023	0.939305	0.3483
DAY=4	2.694119	2.718157	0.991157	0.3224
DAY=5	3.418002	2.667315	1.281439	0.2010
DAY=6	4.088700	2.789059	1.465979	0.1436
DAY=7	2.980563	2.656486	1.121995	0.2627
DAY=8	3.776104	2.589985	1.457964	0.1458
DAY=9	5.260977	2.591853	2.029813	0.0432
DAY=10	3.396998	2.653838	1.280032	0.2015
DAY=11	2.020625	3.278395	0.616346	0.5381
DAY=12	3.055429	2.615820	1.168058	0.2437
DAY=13	3.083497	2.793880	1.103661	0.2706
DAY=14	3.581478	2.664739	1.344026	0.1799
DAY=15	2.587703	2.828870	0.914748	0.3610
DAY=16	4.465160	2.772696	1.610404	0.1083
DAY=17	3.763735	2.756937	1.365187	0.1732
DAY=18	4.257937	2.692223	1.581569	0.1147
DAY=19	4.420382	2.682686	1.647745	0.1004
DAY=20	4.555470	2.687352	1.695152	0.0910
DAY=21	4.348025	2.660665	1.634187	0.1032
DAY=22	5.392327	2.702297	1.995460	0.0468
DAY=23	4.508844	2.618843	1.721693	0.0861
DAY=24	3.572781	2.768979	1.290288	0.1979
DAY=25	5.148589	2.737467	1.880786	0.0609
DAY=26	5.150646	2.695681	1.910703	0.0569
DAY=27	5.087574	2.706992	1.879420	0.0611
DAY=28	4.006716	2.831376	1.415112	0.1580
DAY=29	3.061887	2.912747	1.051203	0.2940
DAY=30	1.797954	3.419168	0.525846	0.5994
DAY=31	0.501726	3.491812	0.143687	0.8858

MONTH="Aug" MONTH="Dec" MONTH="Feb" MONTH="Juny" MONTH="June" MONTH="Mar" MONTH="May" MONTH="May" MONTH="Nov" MONTH="Oct"	11.38141 13.31833 6.594524 5.465596 8.833427 9.378034 -0.860739 9.319111 12.60826 16.77347 15.35754	$\begin{array}{c} 1.462825\\ 1.299610\\ 1.024654\\ 1.584334\\ 1.360313\\ 1.058602\\ 1.785474\\ 1.056025\\ 1.477460\\ 1.574944\\ 1.961451\end{array}$	7.780432 10.24794 6.435852 3.449774 6.493671 8.858885 -0.482079 8.824704 8.533741 10.65020 7.829684	0.0000 0.0000 0.0006 0.0000 0.0000 0.6301 0.0000 0.0000 0.0000 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic) Prob(Wald F-statistic)	0.887011 0.871073 3.966875 5019.815 -996.2909 55.65098 0.000000 0.000000	Mean depend S.D. depende Akaike info or Schwarz crite Hannan-Quin Durbin-Watso Wald F-statis	ent var riterion erion in criter. on stat	57.29252 11.04780 5.711183 6.202677 5.906509 1.022230 56.66456

Dependent Variable: PRICE Method: ARMA Conditional Least Squares (Gauss-Newton / Marquardt steps) Sample (adjusted): 2 365

Included observations: 364 after adjustments

Convergence achieved after 8 iterations White-Hinkley (HC1) heteroskedasticity consistent standard errors and covariance

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	-0.432261	6.673373	-0.064774	0.9484
DEMAND	4.51E-05	4.29E-06	10.51728	0.0000
SOLAR	-0.000162	0.000487	-0.333032	0.7393
WIND	-0.001444	9.82E-05	-14.70310	0.0000
GAS_PRICE	0.943537	0.294766	3.200968	0.0015
DAY=2	0.824685	1.283520	0.642518	0.5210
DAY=3	0.660608	1.530148	0.431728	0.6662
DAY=4	0.473607	1.583477	0.299093	0.7651
DAY=5	1.281248	1.694918	0.755935	0.4502
DAY=6	1.757254	1.774993	0.990006	0.3229
DAY=7	0.709674	1.743805	0.406968	0.6843
DAY=8	1.638003	1.665404	0.983547	0.3261
DAY=9	2.998621	1.661758	1.804487	0.0721
DAY=10	1.009026	1.656155	0.609258	0.5428
DAY=11	-0.424467	2.526504	-0.168006	0.8667
DAY=12	0.812999	2.066037	0.393507	0.6942
DAY=13	0.748273	2.005311	0.373145	0.7093
DAY=14	1.126775	1.779276	0.633277	0.5270
DAY=15	0.087628	1.755540	0.049915	0.9602
DAY=16	1.970674	1.688316	1.167242	0.2440
DAY=17	1.298668	1.764940	0.735814	0.4624
DAY=18	1.831835	1.678730	1.091203	0.2760
DAY=19	2.080922	1.717480	1.211613	0.2266
DAY=20	2.097034	1.692858	1.238754	0.2164
DAY=21	1.902577	1.639180	1.160688	0.2466
DAY=22	2.968453	1.649411	1.799705	0.0729
DAY=23	2.324289	1.670755	1.391161	0.1652
DAY=24	1.193842	1.992847	0.599064	0.5496
DAY=25	2.786360	1.943171	1.433924	0.1526
DAY=26	2.786978	1.737825	1.603716	0.1098
DAY=27	2.696292	1.706643	1.579881	0.1151
DAY=28	1.373670	1.783649	0.770146	0.4418
DAY=29	0.220145	1.964572	0.112057	0.9108
DAY=30	-0.469480	2.144708	-0.218902	0.8269
DAY=31	-0.942227	1.583331	-0.595092	0.5522

MONTH="Aug"	10.74324	2.123902	5.058255	0.0000
MONTH="Dec"	13.20710	1.849830	7.139632	0.0000
MONTH="Feb"	6.137844	1.568667	3.912776	0.0001
MONTH="Jan"	7.155834	1.495898	4.783638	0.0000
MONTH="July"	8.183448	1.936841	4.225152	0.0000
MONTH="June"	8.929957	1.558370	5.730318	0.0000
MONTH="Mar"	-1.455180	2.726663	-0.533685	0.5939
MONTH="May"	8.107852	1.927620	4.206147	0.0000
MONTH="Nov"	12.46509	2.045858	6.092844	0.0000
MONTH="Oct"	15.72830	2.205405	7.131705	0.0000
MONTH="Sept"	14.63293	2.675867	5.468480	0.0000
AR(1)	0.441549	0.084059	5.252834	0.0000
R-squared	0.920752	Mean depend	dent var	57.42893
Adjusted R-squared	0.909252	S.D. depende		10.75081
S.E. of regression	3.238616	Akaike info c		5.308159
Sum squared resid	3324.897	Schwarz crite		5.811363
Log likelihood	-919.0849	Hannan-Quir		5.508159
•				
F-statistic	80.06718	Durbin-Watso	on stat	1.912288
Prob(F-statistic)	0.000000			
Inverted AR Roots	.44			

TEST ON THE RESIDUALS

Breusch-Godfrey Serial Correlation LM Test:

F-statistic	1.414585	Prob. F(2,315)	0.2446
Obs*R-squared	3.240162	Prob. Chi-Square(2)	0.1979

Test Equation: Dependent Variable: RESID Method: Least Squares Sample: 2 365 Included observations: 364 Coefficient covariance computed using outer product of gradients Presample missing value lagged residuals set to zero.

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.149915	4.193233	0.035752	0.9715
DEMAND	2.84E-07	3.83E-06	0.074074	0.9410
SOLAR	2.40E-05	0.000538	0.044486	0.9645
WIND	-2.44E-05	9.24E-05	-0.264465	0.7916
GAS_PRICE	-0.006795	0.188598	-0.036031	0.9713
DAY=2	-0.429918	1.148209	-0.374425	0.7083
DAY=3	-0.383216	1.361268	-0.281514	0.7785
DAY=4	-0.274734	1.439025	-0.190917	0.8487
DAY=5	-0.193098	1.478350	-0.130617	0.8962
DAY=6	-0.118052	1.486937	-0.079393	0.9368
DAY=7	-0.099749	1.496767	-0.066643	0.9469
DAY=8	-0.094944	1.506345	-0.063030	0.9498
DAY=9	-0.057271	1.502616	-0.038114	0.9696
DAY=10	-0.031643	1.502128	-0.021065	0.9832
DAY=11	-0.026911	1.500315	-0.017937	0.9857
DAY=12	-0.052946	1.502471	-0.035239	0.9719
DAY=13	-0.054562	1.499062	-0.036397	0.9710
DAY=14	-0.034080	1.496507	-0.022773	0.9818
DAY=15	-0.046155	1.493599	-0.030902	0.9754
DAY=16	-0.057476	1.496208	-0.038415	0.9694
DAY=17	-0.066731	1.497943	-0.044549	0.9645
DAY=18	-0.054989	1.495968	-0.036758	0.9707
DAY=19	-0.062295	1.500705	-0.041511	0.9669
DAY=20	-0.038200	1.501402	-0.025443	0.9797
DAY=21	-0.053471	1.499377	-0.035662	0.9716

DAY=22 DAY=23 DAY=24 DAY=25 DAY=26 DAY=27 DAY=28 DAY=29 DAY=30 DAY=31 MONTH="Aug" MONTH="Aug" MONTH="Dec" MONTH="Dec" MONTH="Jan" MONTH="Jan" MONTH="Jan" MONTH="Jan" MONTH="Jan" MONTH="Mar" MONTH="Mar" MONTH="Mar" MONTH="Nov" MONTH="Nov" MONTH="Sept" AR(1) RESID(-1) DECSID(-2)	-0.076148 -0.091098 -0.075554 -0.077493 -0.072514 -0.077815 -0.064456 -0.071929 -0.075983 0.002630 -0.029123 0.009282 -0.005275 -0.453996 -0.107532 -0.018439 0.136449 -0.063012 0.087002 0.032114 -0.023772 -0.144218 0.177491	1.501303 1.508589 1.497480 1.495786 1.487430 1.469817 1.421103 1.412166 1.298207 1.383740 1.748036 1.634021 1.523618 1.583408 1.703147 1.510205 1.532239 1.444445 1.710147 1.790473 2.010434 0.097914 0.112272	-0.050721 -0.060386 -0.050454 -0.051807 -0.048751 -0.052942 -0.045356 -0.050935 -0.058529 0.001901 -0.016660 0.003462 -0.286721 -0.063137 -0.012210 0.089052 -0.043623 0.050874 0.017936 -0.011824 -1.472906 1.5809002	0.9596 0.9519 0.9598 0.9587 0.9611 0.9578 0.9639 0.9594 0.9534 0.9985 0.9857 0.9955 0.9972 0.7745 0.9497 0.9903 0.9291 0.9652 0.9595 0.9857 0.9906 0.1418 0.1149
RESID(-2)	0.092545	0.071969	1.285899	0.1994
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.008902 -0.142123 3.234389 3295.300 -917.4576 0.058941 1.000000	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		2.20E-11 3.026466 5.310206 5.834823 5.518718 1.980101

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	-1.520274	5.066385	-0.300071	0.7643
DEMAND	6.60E-05	7.65E-06	8.621467	0.0000
SOLAR	-0.000993	0.000524	-1.893253	0.0592
WIND	-0.001852	0.000124	-14.89912	0.0000
GAS_PRICE	0.855219	0.193325	4.423735	0.0000
HYDRO	-0.002272	0.000408	-5.566440	0.0000
DAY=2	2.722372	2.720666	1.000627	0.3178
DAY=3	3.528576	2.574854	1.370398	0.1715
DAY=4	2.949025	2.449970	1.203698	0.2296
DAY=5	3.972697	2.465048	1.611611	0.1080
DAY=6	4.337175	2.500434	1.734569	0.0838
DAY=7	3.262406	2.405095	1.356456	0.1759
DAY=8	3.703109	2.343669	1.580048	0.1151
DAY=9	5.088145	2.379914	2.137953	0.0333
DAY=10	3.677069	2.506958	1.466746	0.1434
DAY=11	3.298320	3.175473	1.038686	0.2997
DAY=12	4.398026	2.497707	1.760825	0.0792
DAY=13	3.833734	2.671267	1.435174	0.1522
DAY=14	4.158309	2.444162	1.701323	0.0899
DAY=15	3.327812	2.597221	1.281297	0.2010
DAY=16	5.439149	2.604231	2.088582	0.0375
DAY=17	4.792513	2.592915	1.848311	0.0655
DAY=18	5.365397	2.581893	2.078086	0.0385

DAY=19 DAY=20 DAY=21 DAY=22 DAY=23 DAY=24 DAY=25 DAY=26 DAY=27 DAY=28 DAY=29 DAY=30 DAY=31 MONTH="Aug" MONTH="Dec" MONTH="Dec" MONTH="Jan" MONTH="Jan" MONTH="Jan" MONTH="Jane" MONTH="Jane" MONTH="May" MONTH="May"	5.644485 6.033976 5.576012 6.045180 5.492316 4.125069 5.722762 5.779626 6.025236 4.727294 3.241421 2.087529 0.585338 3.455432 6.855590 -0.167236 -1.929834 2.60169284 4.964982 -1.232575 4.882515 5.391354 9.222702 7.528474	2.537977 2.589461 2.566727 2.527054 2.481166 2.566057 2.550367 2.508061 2.527728 2.603873 2.715642 3.218918 3.222274 1.942230 1.685330 1.811106 2.499519 1.737413 1.306211 1.77864 1.234672 1.887450 1.809190 2.121375	2.224010 2.330206 2.172421 2.392185 2.213602 1.607552 2.243897 2.304420 2.383657 1.815486 1.193611 0.648519 0.181654 1.779105 4.067803 -0.092339 -0.772082 1.497452 3.801057 -0.692900 3.954505 2.856423 5.097697 3.548866	0.0268 0.0204 0.0306 0.0173 0.0276 0.1089 0.0255 0.0218 0.0177 0.0704 0.2335 0.5171 0.8560 0.0762 0.0001 0.9265 0.4406 0.1353 0.0002 0.4889 0.0001 0.0046 0.0000
MONTH="Sept"	7.528474	2.121375	3.548866	0.0004
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic) Prob(Wald F-statistic)	0.897741 0.882948 3.779763 4543.142 -978.0821 60.68997 0.000000 0.000000	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat Wald F-statistic		57.29252 11.04780 5.616888 6.119067 5.816460 1.110481 58.46765

Dependent Variable: PRICE Method: ARMA Conditional Least Squares (Gauss-Newton / Marquardt steps) Sample (adjusted): 2 365

-

Included observations: 364 after adjustments Convergence achieved after 7 iterations White-Hinkley (HC1) heteroskedasticity consistent standard errors and covariance

Coefficient	Otd Errer	t Statiatia	Droh
Coefficient	Sta. Error	t-Statistic	Prob.
1.032002	6.094640	0.169329	0.8656
5.52E-05	5.05E-06	10.94627	0.0000
-0.000397	0.000489	-0.810617	0.4182
-0.001672	0.000113	-14.80693	0.0000
0.946026	0.254077	3.723391	0.0002
-0.001518	0.000387	-3.918445	0.0001
1.215677	1.173930	1.035561	0.3012
1.398913	1.356874	1.030982	0.3033
0.835779	1.361898	0.613686	0.5399
1.840922	1.504484	1.223624	0.2220
2.155197	1.529847	1.408767	0.1599
1.111402	1.494054	0.743883	0.4575
1.758256	1.407026	1.249626	0.2124
3.114548	1.451358	2.145955	0.0326
1.465280	1.467492	0.998493	0.3188
0.703648	2.396126	0.293661	0.7692
1.930715	1.887901	1.022678	0.3072
1.486098	1.810640	0.820758	0.4124
1.777038	1.500825	1.184041	0.2373
0.818623	1.491714	0.548780	0.5835
2.858786	1.488486	1.920600	0.0557
2.217887	1.542551	1.437805	0.1515
	5.52E-05 - 0.000397 - 0.001672 0.946026 - 0.001518 1.215677 1.398913 0.835779 1.840922 2.155197 1.111402 1.758256 3.114548 1.465280 0.703648 1.930715 1.486098 1.777038 0.818623 2.858786	1.032002 6.094640 5.52E-05 5.05E-06 -0.000397 0.000489 -0.001672 0.000113 0.946026 0.254077 -0.001518 0.000387 1.215677 1.173930 1.398913 1.356874 0.835779 1.361898 1.840922 1.504484 2.155197 1.529847 1.111402 1.494054 1.758256 1.407026 3.114548 1.451358 1.465280 1.467492 0.703648 2.396126 1.930715 1.887901 1.486098 1.810640 1.777038 1.500825 0.818623 1.491714 2.858786 1.488486	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

DAY=18	2.809349	1.488375	1.887528	0.0600
DAY=10	3.137527	1.507430	2.081374	0.0382
DAY=10	3.374611	1.526372	2.210870	0.0278
DAY=21	2.985918	1.463666	2.040027	0.0422
DAY=22	3.632673	1.448118	2.508548	0.0126
DAY=23	3.165370	1.475757	2.144912	0.0327
DAY=24	1.780871	1.769649	1.006341	0.3150
DAY=25	3.368844	1.722639	1.955629	0.0514
DAY=26	3.454579	1.501481	2.300782	0.0221
DAY=27	3.584309	1.453600	2.465814	0.0142
DAY=28	2.182934	1.472097	1.482874	0.1391
DAY=29	0.689582	1.774179	0.388677	0.6978
DAY=30	-0.164184	2.032499	-0.080779	0.9357
DAY=31	-0.778004	1.437869	-0.541081	0.5888
MONTH="Aug"	5.490547	2.430621	2.258907	0.0246
MONTH="Dec"	8.873429	2.089480	4.246717	0.0000
MONTH="Feb"	1.953567	1.938935	1.007547	0.3144
MONTH="Jan"	2.293262	1.965488	1.166765	0.2442
MONTH="July"	4.031313	2.141923	1.882100	0.0607
MONTH="June"	5.975189	1.706474	3.501483	0.0005
MONTH="Mar"	-1.601415	2.570975	-0.622882	0.5338
MONTH="May"	5.390457	1.905179	2.829371	0.0050
MONTH="Nov"	7.569574	2.319852	3.262956	0.0012
MONTH="Oct"	10.75215	2.434195	4.417127	0.0000
MONTH="Sept"	9.300277	2.832962	3.282880	0.0011
AR(1)	0.403398	0.084583	4.769249	0.0000
R-squared	0.923997	Mean depend	dent var	57.42893
Adjusted R-squared	0.912692	S.D. dependent var		10.75081
S.E. of regression	3.176634	Akaike info criterion		5.271846
Sum squared resid	3188.756	Schwarz criterion		5.785756
Log likelihood	-911.4759	Hannan-Quinn criter.		5.476102
F-statistic	81.73855	Durbin-Wats	on stat	1.894286
Prob(F-statistic)	0.000000			
Inverted AR Roots	.40			

TEST ON THE RESIDUALS

Breusch-Godfrey Serial Correlation LM Test:

DAY=4

DAY=5

DAY=6

DAY=7

F-statistic	1.603658	Prob. F(2,314)		0.2028		
Obs*R-squared	3.680443	Prob. Chi-Square(2)		0.1588		
Test Equation: Dependent Variable: RESID Method: Least Squares Date: 04/01/20 Time: 16:04 Sample: 2 365 Included observations: 364 Coefficient covariance computed using outer product of gradients						
Variable	Coefficient	Std. Error	t-Statistic	Prob.		
С	0.271205	4.023937	0.067398	0.9463		
DEMAND	5.97E-07	4.65E-06	0.128353	0.8980		
SOLAR	2.52E-05	0.000526	0.047924	0.9618		
WIND	-3.10E-05	0.000109	-0.285426	0.7755		
GAS_PRICE	-0.016866	0.178176	-0.094661	0.9246		
HYDRO	-3.41E-05	0.000408	-0.083604	0.9334		
DAY=2	-0.403545	1.148315	-0.351424	0.7255		
DAY=3	-0.306850	1.348624	-0.227528	0.8202		

-0.189523

-0.102650

-0.037003

-0.027144

1.401435

1.438397

1.439359

1.446862

-0.135235

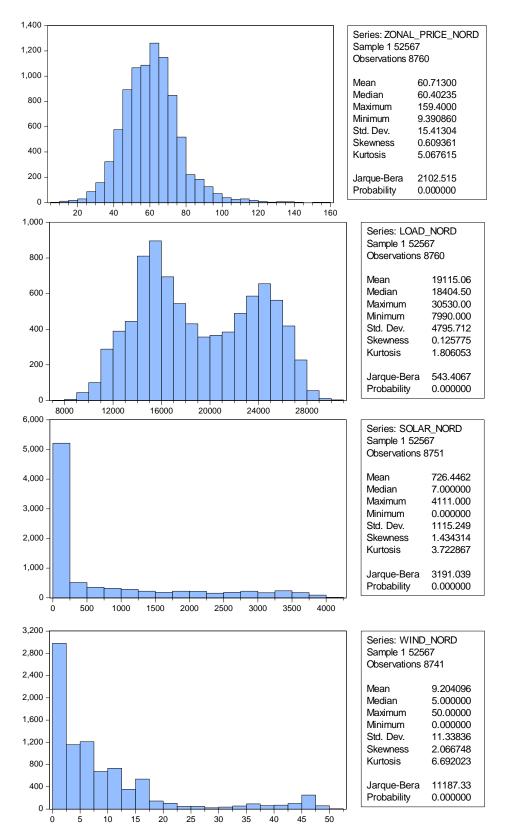
-0.071364

-0.025708

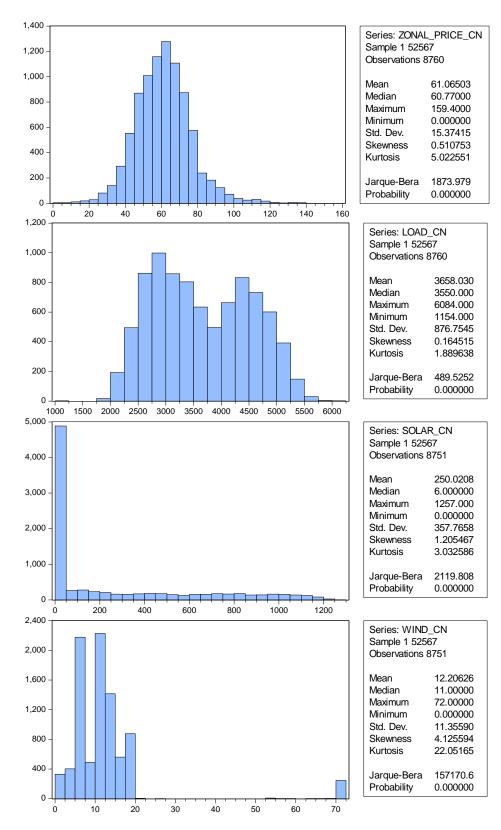
-0.018760

0.8925

0.9432 0.9795

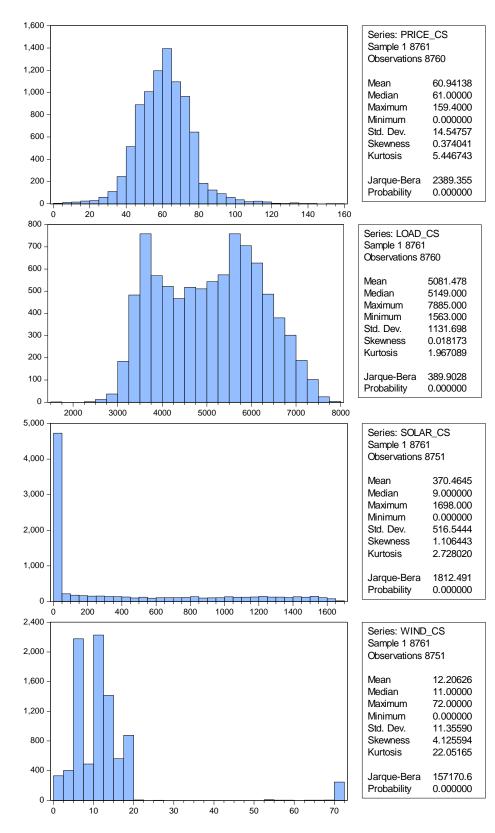

0.9850

DAY=8	-0.031771	1.451512	-0.021888	0.9826
DAY=9	0.002638	1.447338	0.001822	0.9985
DAY=10	0.034796	1.451632	0.023970	0.9809
DAY=11	0.053395	1.476140	0.036172	0.9712
DAY=12	0.027224	1.477801	0.018422	0.9853
DAY=13	0.015836	1.456581	0.010872	0.9913
DAY=14	0.034937	1.451148	0.024076	0.9808
DAY=15	0.026070	1.451252	0.017964	0.9857
DAY=16	0.016553	1.459806	0.011339	0.9910
DAY=17	0.005247	1.462665	0.003587	0.9971
DAY=18	0.018669	1.463701	0.012755	0.9898
DAY=19	0.011913	1.471918	0.008093	0.9935
DAY=20	0.040114	1.484713	0.027018	0.9785
DAY=21	0.019159	1.471703	0.013018	0.9896
DAY=22	-0.012445	1.455953	-0.008548	0.9932
DAY=23	-0.023677	1.470128	-0.016105	0.9872
DAY=24	-0.012072	1.450899	-0.008321	0.9934
DAY=25	-0.013108	1.450502	-0.009037	0.9928
DAY=26	-0.006862	1.446614	-0.004744	0.9962
DAY=27	-0.005721	1.441820	-0.003968	0.9968
DAY=28	0.010390	1.397857	0.007433	0.9941
DAY=29	-0.008702	1.384885	-0.006283	0.9950
DAY=30	0.002580	1.281704	0.002013	0.9984
DAY=31	0.100479	1.375234	0.073063	0.9418
MONTH="Aug"	-0.100267	2.146453	-0.046713	0.9628
MONTH="Dec"	-0.036178	1.896499	-0.019076	0.9848
MONTH="Feb"	-0.083912	1.817306	-0.046174	0.9632
MONTH="Jan"	-0.535529	1.974830	-0.271177	0.7864
MONTH="July"	-0.162552	1.940480	-0.083769	0.9333
MONTH="June"	-0.064076	1.610890	-0.039777	0.9683
MONTH="Mar"	0.200130	1.431362	0.139818	0.8889
MONTH="May"	-0.126796	1.545216	-0.082057	0.9347
MONTH="Nov"	0.044630	2.043364	0.021841	0.9826
MONTH="Oct"	-0.008326	2.121783	-0.003924	0.9969
MONTH="Sept"	-0.061748	2.346804	-0.026311	0.9790
AR(1)	-0.167678	0.105521	-1.589039	0.1131
RESID(-1)	0.211427	0.118405	1.785623	0.0751
RESID(-2)	0.071812	0.071776	1.000512	0.3178
P. aquarad	0.010111	Moon donce	dontver	1 125 10
R-squared	0.010111	Mean depend		1.43E-10
Adjusted R-squared S.E. of regression	-0.144362	S.D. depende Akaike info c		2.963858
	3.170583 3156.515	Schwarz crite		5.272672 5.807996
Sum squared resid Log likelihood	-909.6263	Hannan-Quir		5.807996
F-statistic	-909.6263	Durbin-Wats		5.465439 1.982430
Prob(F-statistic)	1.000000	Durbin-wals	บกรเลเ	1.902430
	1.000000			

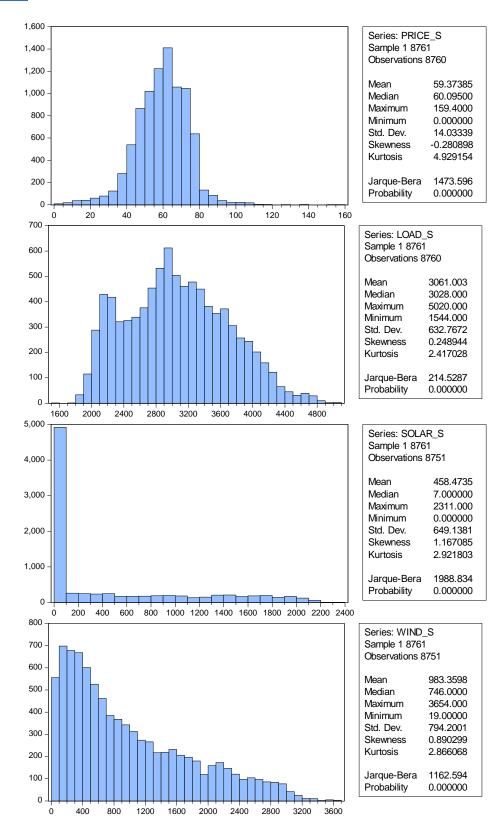

HOURLY DATA

JARQUE BERA TEST

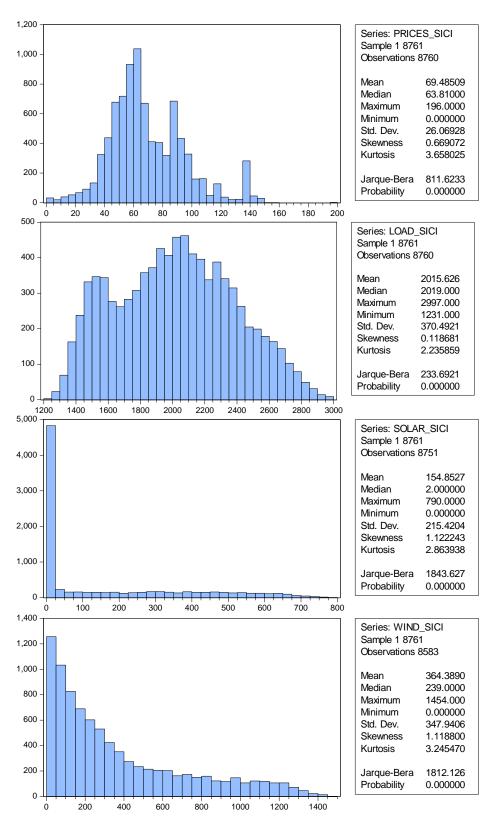
NORTH



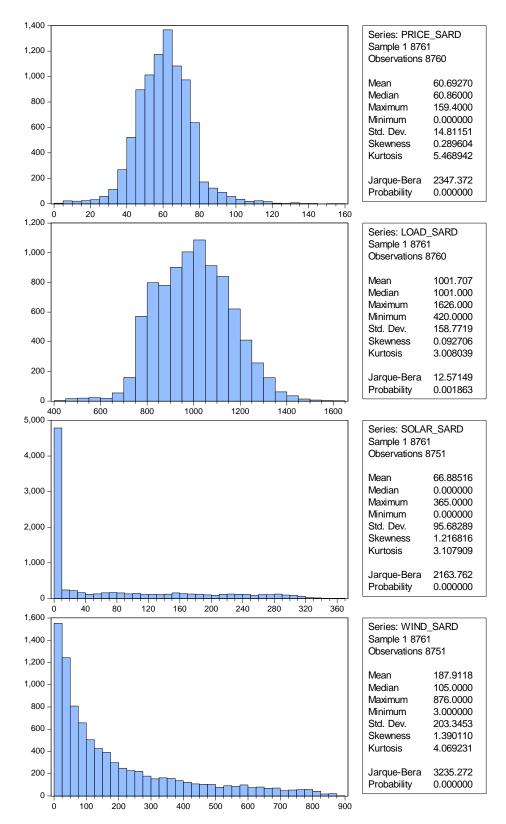
CENTRAL NORTH


169

CENTRAL SOUTH



170


SOUTH

SARDINIA

173

SPEARMAN TEST

NORTH

Covariance Analysis: Spearman rank-order Sample: 2 8762 Included observations: 8741

Correlation			
Probability	LOAD_NORD	SOLAR_NORD	WIND_NORD
LOAD_NORD	1.000000		
SOLAR_NORD	0.412661 0.0000	1.000000	
WIND_NORD	-0.045402 0.0000	-0.036089 0.0007	1.000000

CENTRAL NORTH

Covariance Analysis: Spearman rank-order Sample: 1 8761 Included observations: 8751

Correlation			
Probability	LOAD_CN	SOLAR_CN	WIND_CN
LOAD_CN	1.000000		
SOLAR_CN	0.467794 0.0000	1.000000	
WIND_CN	-0.062166 0.0000	-0.061032 0.0000	1.000000

CENTRAL SOUTH

Covariance Analysis: Spearman rank-order Sample: 1 8761 Included observations: 8751

Correlation			
Probability	LOAD_CS	SOLAR_CS	WIND_CS
LOAD_CS	1.000000		
SOLAR_CS	0.440071 0.0000	1.000000	
WIND_CS	-0.017766 0.0966	-0.058564 0.0000	1.000000

<u>SOUTH</u>

Covariance Analysis: Spearman rank-order
Sample: 1 8761
Included observations: 8751

Correlation			
Probability	LOAD_S	SOLAR_S	WIND_S
LOAD_S	1.000000		
SOLAR_S	0.244213	1.000000	
	0.0000		
WIND S	-0.034186	-0.070333	1.000000
	0.0014	0.0000	

SICILY

Covariance Analysis: Spearman rank-order Sample: 1 8761 Included observations: 8583

LOAD_SICI	SOLAR_SICI	WIND_SICI
1.000000		
0.254453	1.000000	
0.0000		
-0.002765	-0.016927	1.000000
0.7979	0.1169	
	1.000000 0.254453 0.0000 -0.002765	 0.254453 1.000000 0.0000 -0.002765 -0.016927

SARDINIA

Covariance Analysis: Spearman rank-order
Sample: 1 8761
Included observations: 8751

Correlation			
Probability	LOAD_SARD	SOLAR_SARD	WIND_SARD
LOAD_SARD	1.000000		
SOLAR_SARD	0.190675 0.0000	1.000000)
WIND_SARD	-0.154739 0.0000	-0.007637 0.4750	

UNIT ROOT TEST

NORTH

UNIT ROOT TEST RESULTS TABLE (ADF)

Null Hypothesis: the variable has a unit root

V 1					
	<u>At Level</u>	PRICE	LOAD	SOLAR	WIND
With Constant	t-Statistic	-6.8505	-12.4357	-5.6430	-4.4144
	Prob.	0.0000	0.0000 ***	0.0000 ***	0.0003 ***
UNIT ROOT TEST					
Null Hypothesis: th	ne variable has a u	nit root			
	<u>At Level</u>	PRICE	LOAD	SOLAR	WIND
With Constant	t-Statistic	-34.0723	-8.5766	-14.5764	-6.7524
	Prob.	0.0000	0.0000	0.0000	0.0000
CENTRAL NORTH UNIT ROOT TEST Null Hypothesis: th With Constant			LOAD -11.5836 <i>0.0000</i>	SOLAR -6.4603 <i>0.0000</i>	WIND -1.8819 0.3412
		***	***	***	n0
UNIT ROOT TEST	RESULTS TAB	LE (PP)			
Null Hypothesis: tl	ne variable has a u	init root			
With Constant	<u>At Level</u> t-Statistic	PRICE -34.2498	LOAD -9.3549	SOLAR -13.4059	WIND -5.2146
	Prob.	0.0000	0.0000	0.0000	0.0000
		***	***	***	***
CENTRAL SOUTH					

UNIT ROOT TEST RESULTS TABLE (ADF)

Null Hypothesis: the variable has a unit root

	At Level				
		PRICE_CS	LOAD_CS	SOLAR_CS	WIND_CS
With Constant	t-Statistic	-6.2341	-8.9224	-6.6834	-1.8819
	Prob.	0.0000 ***	0.0000 ***	0.0000 ***	0.3412 n0
UNIT ROOT TEST	RESULTS TAB	BLE (PP)			

Null Hypothesis: the variable has a unit root

	At Level				
		PRICE_CS	LOAD_CS	SOLAR_CS	WIND_CS
With Constant	t-Statistic	-37.6794	-12.3796	-12.2401	-5.2146
	Prob.	0.0000	0.0000 ***	0.0000 ***	0.0000 ***

<u>SOUTH</u>

UNIT ROOT TEST RESULTS TABLE (ADF)

Null Hypothesis: the variable has a unit root

	At Level				
With Constant	t-Statistic	PRICE -6.8038	LOAD -5.4969	SOLAR -6.9610	WIND -10.3796
	Prob.	0.0000 ***	<i>0.0000</i> ***	<i>0.0000</i> ***	0.0000 ***
UNIT ROOT TE	ST RESULTS	TABLE (PP)			
Null Hypothesis:	the variable h	as a unit root			
With Constant	<u>At Level</u> t-Statistic	PRICE -50.9559	LOAD -46.6500	SOLAR -12.7784	WIND -11.7219
	Prob.	0.0001 ***	0.0001 ***	0.0000 ***	0.0000 ***

SICILY

UNIT ROOT TEST RESULTS TABLE (ADF)

Null Hypothesis: the variable has a unit root

	<u>At Level</u>	PRICES	LOAD	SOLAR	WIND
With Constant	t-Statistic	-7.6596	-6.5251	-7.4649	-9.1859
	Prob.	0.0000 ***	0.0000 ***	0.0000 ***	0.0000 ***

UNIT ROOT TEST RESULTS TABLE (PP)

Null Hypothesis: the variable has a unit root

	Prob.	0.0001	0.0000	0.0000	0.0000
With Constant	t-Statistic	-53.3341	-23.8180	-12.5881	-9.9123
	<u>At Level</u>	PRICES	LOAD	SOLAR	WIND

SARDINIA

UNIT ROOT TEST RESULTS TABLE (ADF)

Null Hypothesis: the variable has a unit root

	At Level				
		PRICE	LOAD	SOLAR	WIND
With Constant	t-Statistic	-6.3395	-7.5795	-7.5350	-9.8133
	Prob.	0.0000 ***	0.0000 ***	0.0000 ***	0.0000 ***
UNIT ROOT TE	ST RESULTS	TABLE (PP)			
Null Hypothesis:	the variable has	as a unit root			
	At Level				
		PRICE	LOAD	SOLAR	WIND
With Constant	t-Statistic	-39.3399	-26.0833	-12.9517	-10.3652
	Prob.	0.0000 ***	0.0000 ***	0.0000 ***	0.0000 ***

RESULTS

NORTH

Dependent Variable: ZONAL_PRICE_NORD Method: ARMA Conditional Least Squares (Gauss-Newton / Marquardt steps) Sample (adjusted): 3 8762 Included observations: 8735 after adjustments Convergence achieved after 11 iterations White-Hinkley (HC1) heteroskedasticity consistent standard errors and covariance

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	10.09599	2.173163	4.645758	0.0000
LOAD_NORD	0.002725	7.36E-05	37.03467	0.0000
SOLAR_NORD	-0.001725	0.000248	-6.955691	0.0000
WIND_NORD	0.005353	0.023902	0.223971	0.8228
HOUR_NORD=2	-1.571384	0.171975	-9.137256	0.0000
HOUR_NORD=3	-2.943233	0.222039	-13.25547	0.0000
HOUR_NORD=4	-4.094670	0.264132	-15.50237	0.0000
HOUR_NORD=5	-4.271369	0.292409	-14.60750	0.0000
HOUR_NORD=6	-3.341323	0.331487	-10.07980	0.0000
HOUR_NORD=7	-2.502617	0.430841	-5.808673	0.0000
HOUR_NORD=8	-4.208703	0.559389	-7.523750	0.0000
HOUR_NORD=9	-4.075397	0.669689	-6.085507	0.0000
HOUR_NORD=10	-6.030962	0.773502	-7.796952	0.0000
HOUR_NORD=11	-7.631033	0.867599	-8.795579	0.0000
HOUR_NORD=12	-8.356626	0.940824	-8.882241	0.0000
HOUR_NORD=13	-8.015050	0.928636	-8.630994	0.0000
HOUR_NORD=14	-9.464338	0.949577	-9.966895	0.0000
HOUR_NORD=15	-9.674886	0.910321	-10.62799	0.0000
HOUR_NORD=16	-8.540324	0.837619	-10.19595	0.0000
HOUR_NORD=17	-7.022742 -5.640031	0.779806	-9.005761	0.0000
HOUR_NORD=18 HOUR_NORD=19	-3.902747	0.712719 0.668000	-7.913402 -5.842438	0.0000 0.0000
HOUR_NORD=19 HOUR_NORD=20	-3.902747 -1.241654	0.660000	-5.642436 -2.020538	0.0000
HOUR_NORD=20 HOUR_NORD=21	-2.649987	0.522184	-2.020556	0.0434
HOUR_NORD=21 HOUR_NORD=22	-4.225012	0.522164	-9.448308	0.0000
HOUR_NORD=22 HOUR_NORD=23	-2.814784	0.344800	-8.163521	0.0000
HOUR_NORD=23	-2.848093	0.272067	-10.46835	0.0000
DAY_NORD=2	-1.789709	2.087545	-0.857328	0.3913
DAY_NORD=3	-2.639113	2.012914	-1.311090	0.1899
DAY_NORD=4	-4.200769	2.061516	-2.037709	0.0416
DAY_NORD=5	-4.555092	1.937083	-2.351522	0.0187
DAY_NORD=6	-3.347802	2.040252	-1.640876	0.1009
DAY_NORD=7	-4.405949	1.917265	-2.298038	0.0216
DAY_NORD=8	-4.637287	1.865730	-2.485508	0.0130
DAY_NORD=9	-4.418295	1.822158	-2.424759	0.0153
DAY_NORD=10	-3.389482	1.880016	-1.802901	0.0714
DAY_NORD=11	-2.868283	1.946510	-1.473552	0.1406
DAY_NORD=12	-3.418203	1.843835	-1.853855	0.0638
DAY_NORD=13	-1.411767	1.783035	-0.791778	0.4285
DAY_NORD=14	-2.090824	1.797226	-1.163361	0.2447
DAY_NORD=15	-0.920266	1.763435	-0.521859	0.6018
DAY_NORD=16	-2.212951	1.786811	-1.238492	0.2156
DAY_NORD=17	-2.693742	1.874970	-1.436685	0.1508
DAY_NORD=18	-4.232636	1.808574	-2.340317	0.0193
DAY_NORD=19	-4.182127	1.847285	-2.263932	0.0236
DAY_NORD=20	-1.866980	1.873369	-0.996589	0.3190
DAY_NORD=21	0.145233	1.932967	0.075135	0.9401
DAY_NORD=22	1.245538	1.989575	0.626032	0.5313
DAY_NORD=23	-0.411082	1.885181	-0.218060	0.8274
DAY_NORD=24	0.542239	1.826316	0.296903	0.7665
DAY_NORD=25	0.061891	1.782316	0.034725	0.9723

DAY_NORD=26 DAY_NORD=27 DAY_NORD=28 DAY_NORD=29 DAY_NORD=30 DAY_NORD=31 MONTH_NORD="Aug" MONTH_NORD="Dec" MONTH_NORD="Dec" MONTH_NORD="Feb" MONTH_NORD="July" MONTH_NORD="July" MONTH_NORD="June" MONTH_NORD="Mar" MONTH_NORD="May" MONTH_NORD="May"	-0.004047 0.421775 -2.413367 -1.883009 -1.396594 -0.063276 16.40715 12.19699 -2.054783 -6.460021 1.782845 0.334623 2.343196 0.538996 11.20839 20.13752	1.835288 1.828442 1.672403 1.595717 1.367390 1.281815 1.620765 1.941075 1.981277 1.834290 1.738172 2.050661 1.986448 1.690274 1.987918 2.024538	-0.002205 0.230675 -1.443053 -1.180040 -1.021357 -0.049364 10.12309 6.283623 -1.037100 -3.521809 1.025701 0.163178 1.179591 0.318881 5.638255 9.946725	0.9982 0.8176 0.1490 0.2380 0.3071 0.9606 0.0000 0.2997 0.0004 0.3051 0.8704 0.2382 0.7498 0.0000 0.0000
MONTH_NORD="Sept" AR(1)	22.01689 0.894257	2.085463 0.013132	10.55732 68.09759	0.0000 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.931260 0.930720 4.049745 142126.2 -24577.03 1726.509 0.000000	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		60.66602 15.38596 5.643053 5.698941 5.662099 1.773551
Inverted AR Roots	.89			

CENTRAL NORTH

_

Dependent Variable: ZONAL_PRICE_CN Method: ARMA Conditional Least Squares (Gauss-Newton / Marquardt steps) Sample (adjusted): 2 8761 Included observations: 8748 after adjustments Convergence achieved after 8 iterations

White-Hinkley (HC1) heteroskedasticity consistent standard errors and covariance

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	13.16686	2.282228	5.769301	0.0000
LOAD_CN	0.013158	0.000417	31.57568	0.0000
SOLAR_CN	-0.010796	0.000703	-15.34866	0.0000
WIND_CN	-0.008621	0.022346	-0.385804	0.6997
HOUR=2	-1.500503	0.224593	-6.681003	0.0000
HOUR=3	-3.119333	0.294127	-10.60541	0.0000
HOUR=4	-4.224847	0.346548	-12.19122	0.0000
HOUR=5	-4.136171	0.365734	-11.30923	0.0000
HOUR=6	-2.703186	0.399726	-6.762595	0.0000
HOUR=7	-0.918619	0.459807	-1.997834	0.0458
HOUR=8	-1.345217	0.564916	-2.381270	0.0173
HOUR=9	-0.597562	0.703975	-0.848841	0.3960
HOUR=10	-2.313488	0.818413	-2.826797	0.0047
HOUR=11	-4.020344	0.885065	-4.542429	0.0000
HOUR=12	-4.615142	0.911142	-5.065226	0.0000
HOUR=13	-5.302960	0.882195	-6.011098	0.0000
HOUR=14	-5.472425	0.869121	-6.296506	0.0000
HOUR=15	-6.047698	0.840743	-7.193281	0.0000
HOUR=16	-5.789903	0.815352	-7.101112	0.0000
HOUR=17	-5.306558	0.793695	-6.685895	0.0000
HOUR=18	-4.818543	0.768556	-6.269607	0.0000
HOUR=19	-3.502223	0.738662	-4.741306	0.0000
HOUR=20	-0.940024	0.720929	-1.303907	0.1923
HOUR=21	-1.622471	0.623105	-2.603849	0.0092

DAY=30 -1.776079 1.730036 -1.022099 0.3003 DAY=31 -1.305660 1.492030 -0.875089 0.3815 MONTH="Aug" 17.12996 1.499591 11.42308 0.0000 MONTH="Dec" 11.53695 1.784189 6.466212 0.0000 MONTH="Eeb" -0.985331 1.811711 -0.543868 0.5865 MONTH="Jan" -5.833141 1.599807 -3.646152 0.0003 MONTH="June" 3.769242 1.791024 2.104518 0.0354 MONTH="Mar" 0.404926 1.821595 0.22292 0.8241 MONTH="Mar" 0.404926 1.821595 0.22292 0.8241 MONTH="May" 3.318994 1.676940 1.979197 0.0478 MONTH="Nov." 12.18469 1.775498 6.862689 0.0000 MONTH="Sept" 24.87067 1.885664 13.18934 0.0000 MONTH="Sept" 24.87067 1.885664 13.18934 0.0000 Acjusted R-squared 0.920572 S.D. depend	HOUR=22 HOUR=23 HOUR=24 DAY=2 DAY=3 DAY=4 DAY=5 DAY=6 DAY=7 DAY=8 DAY=9 DAY=10 DAY=10 DAY=10 DAY=11 DAY=12 DAY=13 DAY=13 DAY=14 DAY=15 DAY=16 DAY=17 DAY=16 DAY=17 DAY=18 DAY=19 DAY=20 DAY=21 DAY=22 DAY=23 DAY=23 DAY=25 DAY=26 DAY=27 DAY=28 DAY=29 DAY=30	-3.714733 -3.407496 -4.002817 -0.767010 -2.329912 -2.910094 -3.582322 -2.392641 -5.152514 -5.152514 -5.169388 -3.500234 -2.087236 -2.619982 -3.841015 -2.553909 -3.309799 -1.722569 -3.365214 -2.618407 -3.908233 -3.365347 -1.638286 0.528939 0.843851 -0.319055 0.178973 -0.800831 0.430974 1.075449 -1.194823 -2.370453 -1.776079	0.533492 0.409429 0.302544 1.796144 1.763620 1.845839 1.797286 1.892945 1.840502 1.801456 1.842286 1.775079 1.765522 1.764147 1.752547 1.755354 1.712016 1.756918 1.852655 1.795219 1.978184 1.853305 1.935731 1.995519 1.907173 1.799569 1.822019 1.939082 1.850071 1.770405 1.785430 1.736658	-6.963055 -8.322551 -13.23051 -0.427032 -1.321096 -1.576570 -1.993184 -1.263978 -2.799516 -2.869560 -1.899941 -1.175856 -1.483970 -2.177265 -1.457255 -1.885545 -1.006164 -1.915407 -1.413327 -2.177023 -1.701230 -0.883981 0.273250 0.422873 -0.167292 0.099453 -0.439530 0.222257 0.581302 -0.674887 -1.327665 -1.022699	0.0000 0.0000 0.6694 0.1865 0.1149 0.0463 0.2063 0.0051 0.0041 0.0575 0.2397 0.1379 0.0295 0.1451 0.0594 0.3144 0.0555 0.1576 0.0295 0.1576 0.0295 0.1576 0.0295 0.1576 0.0295 0.1576 0.0295 0.1576 0.0295 0.1576 0.0295 0.1576 0.0295 0.1576 0.0295 0.1576 0.0295 0.1576 0.0295 0.1576 0.0295 0.1576 0.0295 0.1576 0.0295 0.1576 0.0295 0.1576 0.0295 0.1576 0.0295 0.1576 0.0295 0.0889 0.3767 0.7847 0.6724 0.8671 0.9208 0.8241 0.9208 0.8241 0.5611 0.4998 0.1843 0.3065
MONTH="Jan" MONTH="July"-5.8331411.599807 1.646152-3.646152 0.00030.0003 0.0015MONTH="June" MONTH="Mar"3.7692421.7910242.1045180.0354MONTH="Mar" MONTH="May"0.4049261.8215950.2222920.8241MONTH="May" MONTH="Nov."3.3189941.6769401.9791970.0478MONTH="Nov." MONTH="Cct."12.184691.7754986.8626890.0000MONTH="Cot." MONTH="Sept"24.870671.88566413.189340.0000MONTH="Sept" AR(1)0.8650390.01015585.182070.0000R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic0.921190 162731.1Mean dependent var Schwarz criterion Schwarz criterion Schwarz criterion 5.77692661.05062 5.832743Log likelihood F-statistic-25199.28 0.0000Hannan-Quinn criter. 1.8761245.795946 5.795946	MONTH="Dec"	11.53695	1.784189	6.466212	0.0000
MONTH="July" 5.447984 1.719661 3.168058 0.0015 MONTH="June" 3.769242 1.791024 2.104518 0.0354 MONTH="Mar" 0.404926 1.821595 0.222292 0.8241 MONTH="May" 3.318994 1.676940 1.979197 0.0478 MONTH="Nov." 12.18469 1.775498 6.862689 0.0000 MONTH="Oct." 21.93811 1.754263 12.50559 0.0000 MONTH="Sept" 24.87067 1.885664 13.18934 0.0000 AR(1) 0.865039 0.010155 85.18207 0.0000 R-squared 0.921190 Mean dependent var 61.05062 Adjusted R-squared 0.920572 S.D. dependent var 15.36435 S.E. of regression 4.330126 Akaike info criterion 5.776926 Sum squared resid 162731.1 Schwarz criterion 5.832743 Log likelihood -25199.28 Hannan-Quinn criter. 5.795946 F-statistic 1491.856 Durbin-Watson stat 1.876124 <td></td> <td></td> <td></td> <td></td> <td></td>					
MONTH="June" 3.769242 1.791024 2.104518 0.0354 MONTH="Mar" 0.404926 1.821595 0.222292 0.8241 MONTH="May" 3.318994 1.676940 1.979197 0.0478 MONTH="Nov." 12.18469 1.775498 6.862689 0.0000 MONTH="Oct." 21.93811 1.754263 12.50559 0.0000 MONTH="Sept" 24.87067 1.885664 13.18934 0.0000 MONTH="Sept" 24.87067 1.885664 13.18934 0.0000 AR(1) 0.865039 0.010155 85.18207 0.0000 R-squared 0.921190 Mean dependent var 61.05062 Adjusted R-squared 0.920572 S.D. dependent var 15.36435 S.E. of regression 4.330126 Akaike info criterion 5.776926 Sum squared resid 162731.1 Schwarz criterion 5.832743 Log likelihood -25199.28 Hannan-Quinn criter. 5.795946 F-statistic 1491.856 Durbin-Watson stat 1.876124 <td></td> <td></td> <td></td> <td></td> <td></td>					
MONTH="May" MONTH="Nov."3.318994 1.2.184691.676940 1.7754981.979197 6.8626890.0478 0.0000MONTH="Nov." MONTH="Oct."21.93811 24.870671.754263 1.88566412.50559 1.8856640.0000 0.0000MONTH="Sept" AR(1)24.87067 0.8650391.885664 0.01015513.18934 85.182070.0000 0.0000R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic0.921190 1.62731.1 25199.28 Hannan-Quinn criter. Durbin-Watson statMean dependent var 1.5795946 5.795946 Durbin-Watson stat61.05062 5.795946	MONTH="June"	3.769242	1.791024	2.104518	0.0354
MONTH="Nov." 12.18469 1.775498 6.862689 0.0000 MONTH="Oct." 21.93811 1.754263 12.50559 0.0000 MONTH="Cot." 24.87067 1.885664 13.18934 0.0000 AR(1) 0.865039 0.010155 85.18207 0.0000 R-squared 0.921190 Mean dependent var 61.05062 Adjusted R-squared 0.920572 S.D. dependent var 15.36435 S.E. of regression 4.330126 Akaike info criterion 5.776926 Sum squared resid 162731.1 Schwarz criterion 5.832743 Log likelihood -25199.28 Hannan-Quinn criter. 5.795946 F-statistic 1491.856 Durbin-Watson stat 1.876124					
MONTH="Oct." 21.93811 1.754263 12.50559 0.0000 MONTH="Sept" 24.87067 1.885664 13.18934 0.0000 AR(1) 0.865039 0.010155 85.18207 0.0000 R-squared 0.921190 Mean dependent var 61.05062 Adjusted R-squared 0.920572 S.D. dependent var 15.36435 S.E. of regression 4.330126 Akaike info criterion 5.776926 Sum squared resid 162731.1 Schwarz criterion 5.832743 Log likelihood -25199.28 Hannan-Quinn criter. 5.795946 F-statistic 1491.856 Durbin-Watson stat 1.876124					
MONTH="Sept" AR(1) 24.87067 1.885664 13.18934 0.0000 AR(1) 0.865039 0.010155 85.18207 0.0000 R-squared Adjusted R-squared S.E. of regression 0.921190 Mean dependent var 4.330126 61.05062 Sum squared resid Log likelihood 162731.1 Schwarz criterion 162731.1 5.776926 F-statistic 1491.856 Durbin-Watson stat 1.876124					
AR(1) 0.865039 0.010155 85.18207 0.0000 R-squared 0.921190 Mean dependent var 61.05062 Adjusted R-squared 0.920572 S.D. dependent var 15.36435 S.E. of regression 4.330126 Akaike info criterion 5.776926 Sum squared resid 162731.1 Schwarz criterion 5.832743 Log likelihood -25199.28 Hannan-Quinn criter. 5.795946 F-statistic 1491.856 Durbin-Watson stat 1.876124					
R-squared Adjusted R-squared0.921190 0.920572Mean dependent var S.D. dependent var Akaike info criterion61.05062 15.36435S.E. of regression4.330126 162731.1Akaike info criterion Schwarz criterion5.776926 5.832743Log likelihood F-statistic-25199.28 1491.856Hannan-Quinn criter. Durbin-Watson stat5.795946 1.876124					
Adjusted R-squared S.E. of regression0.920572 4.330126S.D. dependent var Akaike info criterion15.36435 5.776926Sum squared resid Log likelihood F-statistic162731.1 1491.856Schwarz criterion Durbin-Watson stat5.776926 5.775946Prob(F-statistic)0.0000000.0000000.000000	AN(1)	0.805059	0.010155	85.18207	0.0000
S.E. of regression4.330126Akaike info criterion5.776926Sum squared resid162731.1Schwarz criterion5.832743Log likelihood-25199.28Hannan-Quinn criter.5.795946F-statistic1491.856Durbin-Watson stat1.876124Prob(F-statistic)0.0000001.876124	R-squared	0.921190	Mean depend	dent var	61.05062
Sum squared resid162731.1Schwarz criterion5.832743Log likelihood-25199.28Hannan-Quinn criter.5.795946F-statistic1491.856Durbin-Watson stat1.876124Prob(F-statistic)0.0000001.876124					
Log likelihood-25199.28Hannan-Quinn criter.5.795946F-statistic1491.856Durbin-Watson stat1.876124Prob(F-statistic)0.000000					
F-statistic1491.856Durbin-Watson stat1.876124Prob(F-statistic)0.000000					
Prob(F-statistic) 0.000000					
			Durbin-wats	JII STAT	1.876124
Inverted AR Roots .87		0.000000			
	Inverted AR Roots	.87			

CENTRAL SOUTH

Dependent Variable: PRICE_CS Method: ARMA Conditional Least Squares (Gauss-Newton / Marquardt steps) Sample (adjusted): 2 8761 Included observations: 8748 after adjustments Convergence achieved after 8 iterations Coefficient covariance computed using outer product of gradients

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	10.13831	1.935712	5.237509	0.0000
LOAD_CS	0.011172	0.000277	40.28256	0.0000
SOLAR_CS	-0.009139	0.000481	-18.98628	0.0000
WIND_CS	-0.037059	0.022633	-1.637394	0.1016
HOUR=2	0.102933	0.254100	0.405090	0.6854
HOUR=3	-0.488418	0.356480	-1.370114	0.1707
HOUR=4	-1.176101	0.418282	-2.811739	0.0049
HOUR=5	-1.309903	0.456809	-2.867505	0.0041
HOUR=6	-0.289557	0.474398	-0.610368	0.5416
HOUR=7	0.654478	0.481883	1.358170	0.1744
HOUR=8	-0.481811	0.527778	-0.912905	0.3613
HOUR=9	-0.343866	0.624608	-0.550530	0.5820
HOUR=10	-3.856457	0.728329	-5.294939	0.0000
HOUR=11	-6.186002	0.786862	-7.861608	0.0000
HOUR=12	-7.754642	0.817612	-9.484505	0.0000
HOUR=13	-10.08534	0.828066	-12.17939	0.0000
HOUR=14	-10.25078	0.804073	-12.74858	0.0000
HOUR=15	-10.28543	0.775837	-13.25721	0.0000
HOUR=16	-9.691558	0.737938	-13.13330	0.0000
HOUR=17	-8.823630	0.700977	-12.58762	0.0000
HOUR=18	-8.498203	0.692725	-12.26778	0.0000
HOUR=19	-8.278427	0.690949	-11.98123	0.0000
HOUR=20	-6.853513	0.708721	-9.670250	0.0000
HOUR=21	-8.715675	0.673688	-12.93727	0.0000
HOUR=22	-9.694046	0.572269	-16.93966	0.0000
HOUR=23	-8.510252	0.435839	-19.52614	0.0000
HOUR=24	-7.123281	0.276739	-25.74008	0.0000
DAY=2	-0.300251	1.110484	-0.270378	0.7869
DAY=3	-1.988742	1.366072	-1.455810	0.1455
DAY=4	-2.586195	1.480355	-1.747010	0.0807
DAY=5	-3.511865	1.535442	-2.287201	0.0222
DAY=6	-3.263762	1.563084	-2.088027	0.0368
DAY=7	-4.112922	1.577123	-2.607864	0.0091
DAY=8	-5.100466	1.583956	-3.220081	0.0013
DAY=9	-4.340652	1.587807	-2.733741	0.0063
DAY=10	-3.514197	1.590319	-2.209744	0.0271
DAY=11	-3.131070	1.591119	-1.967841	0.0491
DAY=12	-3.543953	1.592105	-2.225954	0.0260
DAY=13	-3.192424	1.592961	-2.004082	0.0451
DAY=14	-3.421726	1.592400	-2.148785	0.0317
DAY=15	-2.454624	1.592870	-1.541007	0.1234
DAY=16	-4.121820	1.594464	-2.585083	0.0098
DAY=17	-4.513990	1.601653	-2.818332	0.0048
DAY=18	-4.401996	1.604226	-2.743999	0.0061
DAY=19	-2.986406	1.597111	-1.869880	0.0615
DAY=20	-1.547687	1.594489	-0.970647	0.3318
DAY=21	-0.907819	1.591855	-0.570290	0.5685
DAY=22	0.582505	1.590068	0.366339	0.7141
DAY=23	-0.694072	1.588152	-0.437031	0.6621
DAY=24	0.718255	1.584799	0.453215	0.6504
DAY=25	-0.427281	1.579113	-0.270583	0.7867
DAY=26	1.524493	1.564088	0.974685	0.3297
DAY=27	0.113477	1.535869	0.073884	0.9411
DAY=28	-0.834754	1.474158	-0.566258	0.5712

R-squared Adjusted R-squared0.910755 0.910055Mean dependent var S.D. dependent var 4.35943860.92680 14.53592S.E. of regression Sum squared resid Log likelihood F-statistic1.359438 164941.8Akaike info criterion Schwarz criterion 4.3594385.790420 5.846236Log likelihood Prob(F-statistic)-25258.30 0.000000Hannan-Quinn criter. 1.9246085.809440 1.924608	DAY=29 DAY=30 DAY=31 MONTH="Aug" MONTH="Dec" MONTH="Jeb" MONTH="Jan" MONTH="July" MONTH="June" MONTH="June" MONTH="Mar" MONTH="Mar" MONTH="Mar" MONTH="Nov." MONTH="Nov." MONTH="Sept" AR(1)	-2.379991 -1.824420 -2.792835 15.19509 7.934283 -6.324744 -10.30935 4.300701 6.821465 -2.250798 1.357582 9.205641 16.75934 21.76071 0.870831	1.450492 1.307182 1.377260 1.666575 1.780176 1.715966 1.709734 1.682305 1.668688 1.624948 1.614952 1.679371 1.669973 1.670848 0.005297	-1.640816 -1.395690 -2.027819 9.117555 4.457021 -3.685821 -6.029800 2.556434 4.087921 -1.385150 0.840633 5.481601 10.03570 13.02375 164.3888	0.1009 0.1628 0.0426 0.0000 0.0002 0.0000 0.0106 0.0000 0.1660 0.4006 0.0000 0.0000 0.0000 0.0000
Inverted AK Roots 87	Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic	0.910055 4.359438 164941.8 -25258.30 1302.494	S.D. depende Akaike info c Schwarz crite Hannan-Quir	ent var riterion erion an criter.	14.53592 5.790420 5.846236 5.809440

<u>SOUTH</u>

Dependent Variable: PRICE_S Method: ARMA Conditional Least Squares (Gauss-Newton / Marquardt steps)

_

Sample (adjusted): 2 8761 Included observations: 8748 after adjustments Convergence achieved after 7 iterations

White-Hinkley (HC1) heteroskedasticity consistent standard errors and covariance

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	26.14137	3.035080	8.613076	0.0000
LOAD_S	0.010793	0.000866	12.46833	0.0000
SOLAR_S	-0.005981	0.000461	-12.97938	0.0000
WIND_S	-0.002029	0.000347	-5.852177	0.0000
HOUR=1	4.647696	0.411858	11.28471	0.0000
HOUR=2	2.819365	0.557439	5.057709	0.0000
HOUR=3	0.760328	0.640402	1.187268	0.2352
HOUR=4	-0.257487	0.644739	-0.399367	0.6896
HOUR=5	-0.420001	0.637409	-0.658918	0.5100
HOUR=6	1.598935	0.609251	2.624429	0.0087
HOUR=7	5.411456	0.550524	9.829642	0.0000
HOUR=8	7.917661	0.511501	15.47928	0.0000
HOUR=9	9.458281	0.631621	14.97462	0.0000
HOUR=10	7.752537	0.727204	10.66074	0.0000
HOUR=11	5.711407	0.784310	7.282082	0.0000
HOUR=12	3.683751	0.808938	4.553813	0.0000
HOUR=13	1.506487	0.798518	1.886603	0.0592
HOUR=14	0.400433	0.758958	0.527608	0.5978
HOUR=15	0.848105	0.698070	1.214929	0.2244
HOUR=16	1.921636	0.621711	3.090883	0.0020
HOUR=17	3.346778	0.589408	5.678198	0.0000
HOUR=18	4.014421	0.643538	6.238053	0.0000
HOUR=19	4.727577	0.702273	6.731822	0.0000
HOUR=20	6.588027	0.759917	8.669401	0.0000
HOUR=21	4.582565	0.764029	5.997890	0.0000
HOUR=22	2.416934	0.576723	4.190806	0.0000
HOUR=23	1.508501	0.310722	4.854824	0.0000

MONTH="Mar" -0.905381 1.878347 -0.482009 0.6298 MONTH="May" 1.357722 2.071438 0.655449 0.5122 MONTH="Nov." 6.479032 1.743480 3.716149 0.0002 MONTH="Oct." 13.13879 2.093539 6.275876 0.0000 MONTH="Sept" 11.25828 2.279097 4.939797 0.0000 MONTH="Sept" 11.25828 2.279097 4.939797 0.0000 AR(1) 0.870792 0.009469 91.95932 0.0000 R-squared 0.902322 Mean dependent var 59.38036 Adjusted R-squared 0.901557 S.D. dependent var 14.03346 S.E. of regression 4.403088 Akaike info criterion 5.810346 Sum squared resid 168261.4 Schwarz criterion 5.866162 Log likelihood -25345.45 Hannan-Quinn criter. 5.829366 F-statistic 1179.035 Durbin-Watson stat 1.839705 Prob(F-statistic) 0.000000 1000000 1000000	DAY=2 DAY=3 DAY=4 DAY=5 DAY=6 DAY=7 DAY=8 DAY=9 DAY=10 DAY=11 DAY=12 DAY=12 DAY=13 DAY=14 DAY=15 DAY=16 DAY=17 DAY=16 DAY=17 DAY=18 DAY=19 DAY=20 DAY=21 DAY=22 DAY=23 DAY=22 DAY=23 DAY=22 DAY=23 DAY=24 DAY=25 DAY=26 DAY=27 DAY=28 DAY=29 DAY=20 DAY=27 DAY=28 DAY=29 DAY=30 DAY=31 MONTH="Dec" MONTH="Dec" MONTH="Jun" MONTH="Jun"	0.469779 -0.837938 -0.759492 -2.165858 -1.756541 -1.798823 -3.123841 -2.761935 -1.527129 -1.100578 -1.445718 -0.988109 -2.136075 -1.212802 -2.552616 -2.902400 -2.452142 -1.645972 0.028399 0.156236 0.699983 -0.386844 0.287554 -1.431410 -0.333122 -1.833247 -2.569364 -5.185108 -1.820480 -3.271717 3.465388 6.269248 -2.530846 -7.473930 1.881818 3.420152	2.140211 2.004671 2.081853 2.062942 2.206087 2.209768 2.077718 2.096640 2.021875 2.031974 2.041057 2.081603 2.220923 2.070081 2.030332 2.137491 2.277984 2.268628 2.220403 2.207241 2.253865 2.112292 2.084467 2.161770 2.315333 2.227173 2.144159 2.221014 2.232955 2.433375 2.092083 1.837860 2.066720 1.878565 2.147992 2.313928	0.219501 -0.417993 -0.364815 -1.049888 -0.796225 -0.814033 -1.503496 -1.317315 -0.755303 -0.541630 -0.708319 -0.474686 -0.961796 -0.585872 -1.257241 -1.357854 -1.076453 -0.725536 0.012790 0.070784 0.310570 -0.183140 0.137951 -0.662147 -0.143877 -0.143877 -0.823127 -1.198308 -2.334568 -0.815278 -1.344519 1.656430 3.411167 -1.224571 -3.978531 0.876083 1.478075	0.8263 0.6760 0.7153 0.2938 0.4259 0.4156 0.1327 0.1878 0.4501 0.5881 0.4788 0.6350 0.3362 0.5580 0.2087 0.1745 0.2818 0.4681 0.9898 0.9436 0.7561 0.8547 0.8903 0.5079 0.8856 0.4105 0.2308 0.0196 0.4149 0.1788 0.0977 0.0006 0.2208 0.0001 0.3810 0.1394 0.6208
MONTH="May" 1.357722 2.071438 0.655449 0.5122 MONTH="Nov." 6.479032 1.743480 3.716149 0.0002 MONTH="Oct." 13.13879 2.093539 6.275876 0.0000 MONTH="Sept" 11.25828 2.279097 4.939797 0.0000 MONTH="Sept" 11.25828 2.279097 4.939797 0.0000 AR(1) 0.870792 0.009469 91.95932 0.0000 R-squared 0.902322 Mean dependent var 59.38036 Adjusted R-squared 0.901557 S.D. dependent var 14.03346 S.E. of regression 4.403088 Akaike info criterion 5.810346 Sum squared resid 168261.4 Schwarz criterion 5.866162 Log likelihood -25345.45 Hannan-Quinn criter. 5.829366 F-statistic 1179.035 Durbin-Watson stat 1.839705 Prob(F-statistic) 0.000000 0.000000 1.839705	MONTH="June"	3.420157	2.313928	1.478075	0.1394
MONTH="Oct." MONTH="Sept" 13.13879 2.093539 6.275876 0.0000 MONTH="Sept" AR(1) 11.25828 2.279097 4.939797 0.0000 R-squared Adjusted R-squared 0.902322 Mean dependent var 59.38036 S.E. of regression Sum squared resid Log likelihood 0.403088 Akaike info criterion 168261.4 58.806162 Log likelihood -25345.45 Hannan-Quinn criter. 5.829366 F-statistic 1179.035 Durbin-Watson stat 1.839705	MONTH="May"				
MONTH="Sept" AR(1) 11.25828 2.279097 4.939797 0.0000 AR(1) 0.870792 0.009469 91.95932 0.0000 R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic 0.902322 Mean dependent var 4.403088 59.38036 Log likelihood F-statistic 168261.4 Schwarz criterion 179.035 5.866162 Prob(F-statistic) 0.000000 1.839705					
AR(1) 0.870792 0.009469 91.95932 0.0000 R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic 0.902322 1.403088 Mean dependent var 0.901557 59.38036 S.D. dependent var 14.03346 Num squared resid Log likelihood F-statistic 0.902322 1.403088 Mean dependent var 14.03346 59.38036 1.403088 Num squared resid Log likelihood F-statistic 0.901557 1.79.035 S.D. dependent var 1.839705 5.866162 Prob(F-statistic) 0.000000 0.000000 1.839705					
Adjusted R-squared S.E. of regression0.901557 4.403088S.D. dependent var Akaike info criterion14.03346 5.810346Sum squared resid Log likelihood F-statistic168261.4 -25345.45Schwarz criterion Hannan-Quinn criter.5.866162 5.829366Prob(F-statistic)0.0000000.0000001.839705	•				
S.E. of regression4.403088Akaike info criterion5.810346Sum squared resid168261.4Schwarz criterion5.866162Log likelihood-25345.45Hannan-Quinn criter.5.829366F-statistic1179.035Durbin-Watson stat1.839705Prob(F-statistic)0.000000					
Sum squared resid168261.4Schwarz criterion5.866162Log likelihood-25345.45Hannan-Quinn criter.5.829366F-statistic1179.035Durbin-Watson stat1.839705Prob(F-statistic)0.000000					
Log likelihood-25345.45Hannan-Quinn criter.5.829366F-statistic1179.035Durbin-Watson stat1.839705Prob(F-statistic)0.000000					
F-statistic1179.035Durbin-Watson stat1.839705Prob(F-statistic)0.000000					
		1179.035	Durbin-Wats	on stat	1.839705
Inverted AR Roots	Prob(F-statistic)	0.000000			
	Inverted AR Roots	.87			

SICILY

Dependent Variable: PRICES_SICI

Method: ARMA Conditional Least Squares (Gauss-Newton / Marquardt steps)

Steps) Sample (adjusted): 2 8761 Included observations: 8541 after adjustments Convergence achieved after 7 iterations White-Hinkley (HC1) heteroskedasticity consistent standard errors and covariance

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	-0.552319	3.629138	-0.152190	0.8790
LOAD_SICI	0.035987	0.001551	23.19903	0.0000
SOLAR_SICI	-0.033433	0.002205	-15.15904	0.0000
WIND_SICI	-0.015257	0.001179	-12.94138	0.0000
HOUR=2	-2.846577	0.554497	-5.133619	0.0000
HOUR=3	-4.379303	0.698851	-6.266437	0.0000
HOUR=4	-4.998638	0.764118	-6.541711	0.0000
HOUR=5	-5.072197	0.807344	-6.282572	0.0000
HOUR=6	-3.913954	0.836664	-4.678047	0.0000
HOUR=7	-1.107568	0.865411	-1.279818	0.2006
HOUR=8	3.167625	1.000817	3.165039	0.0016
HOUR=9	7.413926	1.263751	5.866602	0.0000
HOUR=10	4.694742	1.396248	3.362398	0.0008
HOUR=11	1.010609	1.500699	0.673425	0.5007
HOUR=12	-1.683335	1.526478	-1.102758	0.2702
HOUR=13	-3.443265	1.509431	-2.281167	0.0226
HOUR=14	-3.811902	1.456218	-2.617672	0.0089
HOUR=15	-2.769916	1.384797	-2.000232	0.0455
HOUR=16	-1.404037	1.325942	-1.058898	0.2897
HOUR=17	-0.495857	1.321302	-0.375279	0.7075
HOUR=18	2.771228	1.334108	2.077214	0.0378
HOUR=19	6.080184	1.413678	4.300967	0.0000
HOUR=20	9.082351	1.495484	6.073186	0.0000
HOUR=21	9.359828	1.499171	6.243337	0.0000
HOUR=22	8.714653	1.330754	6.548657	0.0000
HOUR=23	6.102916	1.076723	5.668044	0.0000
HOUR=24	1.272685	0.787301	1.616517	0.1060
DAY=2	1.287677	2.531438	0.508674	0.6110
DAY=3	2.218975	3.195258	0.694459	0.4874
DAY=4	3.877105	3.038778	1.275876	0.2020
DAY=5	6.437014	2.955741	2.177801	0.0294
DAY=6	4.753174	3.010322	1.578959	0.1144
DAY=7	3.700449	2.919263	1.267597	0.2050
DAY=8	2.795555	3.217696	0.868806	0.3850
DAY=9	2.209703	3.228628	0.684409	0.4937
DAY=10	4.857433	3.289265	1.476753	0.1398
DAY=11	1.657717	3.265081	0.507711	0.6117
DAY=12	1.843192	3.118902	0.590975	0.5546
DAY=13	-1.707169	3.154748	-0.541143	0.5884
DAY=14	0.504931	3.068520	0.164552	0.8693
DAY=15	-0.109689	3.051163	-0.035950	0.9713
DAY=16	-0.650626	3.122678	-0.208355	0.8350
DAY=17	1.342745	3.256629	0.412311	0.6801
DAY=18	3.550630	3.756489	0.945199	0.3446
DAY=19	0.271669	4.030461	0.067404	0.9463
DAY=20	0.654330	3.580443	0.182751	0.8550
DAY=21	-4.521678	3.335597	-1.355583	0.1753
DAY=22	-2.570000	3.405106	-0.754749	0.4504
DAY=23	-1.484133	3.475217	-0.427062	0.6693
DAY=24	-2.343267	3.450446	-0.679120	0.4971
DAY=25	-2.766266	3.196945	-0.865284	0.3869
DAY=26 DAY=27	-1.636772 -1.442644	3.504207	-0.467088	0.6404
	-	3.559382	-0.405307	0.6853
DAY=28	-0.634795	3.820705	-0.166146	0.8680

DAY=29 DAY=30 DAY=31 MONTH="Aug" MONTH="Dec" MONTH="Feb" MONTH="Jan"	-2.682420 -4.862708 0.292280 23.71228 14.80433 -5.498238 0.479736	3.623369 2.983868 3.682568 2.752317 2.370774 2.490024 2.559287	-0.740311 -1.629666 0.079369 8.615388 6.244512 -2.208106 0.187449	0.4591 0.1032 0.9367 0.0000 0.0000 0.0273 0.8513
MONTH="July" MONTH="June" MONTH="Mar" MONTH="May" MONTH="Nov." MONTH="Oct." MONTH="Sept" AR(1)	8.151247 4.602047 -3.469393 6.017339 10.85085 9.987168 9.009195 0.819185	2.827845 2.127768 2.021693 2.066675 1.926935 1.886106 2.614558 0.009113	2.882494 2.162851 -1.716083 2.911604 5.631145 5.295126 3.445782 89.89352	0.0040 0.0306 0.0862 0.0036 0.0000 0.0000 0.0000 0.0006 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.890152 0.889271 8.726887 645215.3 -30587.81 1009.602 0.000000	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		69.21919 26.22575 7.178740 7.235716 7.198179 1.903662
Inverted AR Roots	.82			

SARDINIA

Dependent Variable: PRICE_SARD Method: ARMA Conditional Least Squares (Gauss-Newton / Marquardt steps)

Sample (adjusted): 2 8761 Included observations: 8748 after adjustments Convergence achieved after 5 iterations

White-Hinkley (HC1) heteroskedasticity consistent standard errors and covariance

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	24.39837	3.032290	8.046186	0.0000
LOAD_SARD	0.032708	0.002544	12.85499	0.0000
SOLAR_SARD	-0.029769	0.002734	-10.88878	0.0000
WIND_SARD	-0.003541	0.001418	-2.497189	0.0125
HOUR=2	-2.400611	0.265553	-9.040058	0.0000
HOUR=3	-4.448289	0.342684	-12.98074	0.0000
HOUR=4	-5.559592	0.385494	-14.42201	0.0000
HOUR=5	-5.673727	0.397989	-14.25599	0.0000
HOUR=6	-3.697021	0.421759	-8.765725	0.0000
HOUR=7	0.069445	0.477505	0.145433	0.8844
HOUR=8	1.976358	0.584335	3.382233	0.0007
HOUR=9	5.378880	0.735539	7.312837	0.0000
HOUR=10	4.616083	0.801494	5.759346	0.0000
HOUR=11	3.495805	0.844362	4.140172	0.0000
HOUR=12	2.561958	0.877075	2.921024	0.0035
HOUR=13	0.410527	0.890338	0.461091	0.6447
HOUR=14	-0.816025	0.854842	-0.954592	0.3398
HOUR=15	0.015349	0.815629	0.018818	0.9850
HOUR=16	1.616599	0.776606	2.081621	0.0374
HOUR=17	3.408884	0.746487	4.566567	0.0000
HOUR=18	4.362572	0.772110	5.650196	0.0000
HOUR=19	4.562481	0.821575	5.553334	0.0000
HOUR=20	6.240908	0.893576	6.984197	0.0000
HOUR=21	2.911382	0.902555	3.225713	0.0013
HOUR=22	-0.163992	0.760688	-0.215584	0.8293
HOUR=23	-1.742604	0.571351	-3.049971	0.0023
HOUR=24	-3.799284	0.402432	-9.440812	0.0000

DAY=2 DAY=3 DAY=4 DAY=5 DAY=6 DAY=7 DAY=8 DAY=9 DAY=10 DAY=10 DAY=11 DAY=12 DAY=13 DAY=13 DAY=14 DAY=15 DAY=16 DAY=17	-0.389178 -0.948175 -1.143478 -1.628671 -1.605603 -1.982943 -3.182147 -3.001758 -1.888792 -1.100398 -2.004404 -1.673181 -1.953696 -1.460785 -1.699555 -2.858940	2.546292 2.217521 2.205614 2.090940 2.188987 2.126123 2.080656 2.071332 2.104386 2.088151 2.109531 2.125178 2.222743 2.113739 2.090219 2.242783	-0.152841 -0.427583 -0.518440 -0.778918 -0.733491 -0.932657 -1.529396 -1.449192 -0.897550 -0.526972 -0.950166 -0.787314 -0.878957 -0.691090 -0.813099 -1.274729	0.8785 0.6690 0.6042 0.4360 0.4633 0.3510 0.1262 0.1473 0.3695 0.5982 0.3421 0.4311 0.3794 0.4895 0.4162 0.2024
DAY=18	-1.536776	2.315190	-0.663780	0.5068
DAY=19	0.967345	2.355924	0.410601	0.6814
DAY=20	1.128304	2.344427	0.481270	0.6303
DAY=21	0.376765	2.314384	0.162793	0.8707
DAY=22	2.485522	2.335246	1.064351	0.2872
DAY=23 DAY=24	0.955109 1.979090	2.228797 2.214353	0.428531 0.893756	0.6683 0.3715
DAY=24 DAY=25	0.361527	2.214353	0.893756	0.3713
DAY=26	1.880814	2.331875	0.806567	0.4199
DAY=27	0.433289	2.197561	0.197168	0.8437
DAY=28	0.271885	2.074426	0.131065	0.8957
DAY=29	-1.753673	2.115465	-0.828977	0.4071
DAY=30	-1.453376	1.991636	-0.729740	0.4656
DAY=31	-1.594409	1.851067	-0.861346	0.3891
MONTH="Aug"	8.909996	1.872004	4.759603	0.0000
MONTH="Dec"	9.044490	1.865362	4.848652	0.0000
MONTH="Feb"	-1.455296	1.984535	-0.733319	0.4634
MONTH="Jan"	-6.645071	1.813288	-3.664652	0.0002
MONTH="July"	6.223319	1.840368	3.381563	0.0007
MONTH="June"	4.743189	1.969402	2.408441	0.0160
MONTH="Mar"	3.423427	1.902079	1.799835	0.0719
MONTH="May" MONTH="Nov."	1.573080 11.55460	1.908931 1.918537	0.824063 6.022608	0.4099 0.0000
MONTH = NOV. MONTH="Oct."	19.06181	1.984185	9.606873	0.0000
MONTH="Sept"	19.67111	2.187660	9.000873 8.991846	0.0000
AR(1)	0.867890	0.010005	86.74681	0.0000
R-squared	0.896696	Mean dependent var		60.67778
Adjusted R-squared	0.895887	S.D. dependent var		14.80018
S.E. of regression	4.775511	Akaike info criterion		5.972735
Sum squared resid	197929.0	Schwarz criterion		6.028552
Log likelihood	-26055.74	Hannan-Quinn criter.		5.991755
F-statistic	1107.873	Durbin-Watson stat		1.840756
Prob(F-statistic)	0.000000			
Inverted AR Roots	.87			

REFERENCES

- S. Clò, A. Cataldi, and P. Zoppoli, "The merit-order effect in the Italian power market: The impact of solar and wind generation on national wholesale electricity prices," *Energy Policy*, vol. 77, pp. 79–88, Feb. 2015, doi: 10.1016/j.enpol.2014.11.038.
- [2] "Terna spa." [Online]. Available: https://www.terna.it/en. [Accessed: 10-Mar-2020].
- [3] "GME Gestore dei Mercati Energetici SpA." [Online]. Available: http://www.mercatoelettrico.org/En/Default.aspx. [Accessed: 15-Mar-2020].
- [4] "OMIE." [Online]. Available: https://www.omie.es/en. [Accessed: 15-Mar-2020].
- [5] "ENSTO-E." [Online]. Available: https://www.entsoe.eu/. [Accessed: 12-Mar-2020].
- [6] "Legge 6 dicembre 1962, n 1643." [Online]. Available: https://www.normattiva.it/urires/N2Ls?urn:nir:stato:legge:1962-12-06;1643. [Accessed: 13-Mar-2020].
- [7] "Legge n 308 of 1982." [Online]. Available: https://www.normattiva.it/urires/N2Ls?urn:nir:stato:legge:1982-05-29;308!vig=. [Accessed: 13-Mar-2020].
- [8] "Legge 9/91: Norme per l'attuazione del Piano energetico nazionale."
- [9] "Legge 14 novembre 1995, n.481." [Online]. Available: https://www.normattiva.it/uri-res/N2Ls?urn:nir:stato:legge:1995-11-14;481!vig=. [Accessed: 03-Apr-2020].
- [10] U. Farinelli, "Renewable energy policies in Italy," Energy Sustain. Dev., 2004, doi: 10.1016/S0973-0826(08)60391-9.
- [11] "DIRETTIVA 96/92/CE DEL PARLAMENTO EUROPEO E DEL CONSIGLIO," 1996.
- [12] "Decreto Bersani." [Online]. Available: https://www.camera.it/parlam/leggi/deleghe/99079dl.htm. [Accessed: 13-Mar-2020].
- [13] "Legge 3 agosto 2007."
- [14] C. Económico Social, EL SECTOR ELÉCTRICO EN ESPAÑA INFORME EL SECTOR ELÉCTRICO EN ESPAÑA. .
- [15] E. Marco and L. Estable, "RED ELÉCTRICA DE ESPAÑA," 1988.
- [16] "BOE.es Documento BOE-A-1987-3278." [Online]. Available: https://www.boe.es/eli/es/rd/1987/02/06/162. [Accessed: 03-Apr-2020].
- [17] "Directive 90/547/EEC." [Online]. Available: https://eur-lex.europa.eu/legalcontent/EN/TXT/PDF/?uri=CELEX:31990L0547&from=EN. [Accessed: 03-Apr-2020].
- [18] J. María and M. Fano, "Historia y panorama actual del sistema eléctrico español. ."
- [19] "Law 54/1997 from Electricity sector." [Online]. Available: https://boe.es/boe/dias/1997/11/28/pdfs/A35097-35126.pdf. [Accessed: 03-Apr-2020].
- [20] "¿Quiénes Somos? Comisión Nacional de Energía." [Online]. Available: https://www.cne.gob.do/sobre-nosotros/quienes-somos/. [Accessed: 03-Apr-2020].
- [21] "Directive 2003/54/EC of the European Parliament and of the Council of 26 June 2003 concerning common rules for the internal market in electricity and repealing Directive 96/92/EC Statements made with regard to decommissioning and waste management activities Publications Office of the EU." [Online]. Available: https://op.europa.eu/en/publication-detail/-/publication/caeb5f68-61fd-4ea8-b3b5-00e692b1013c/. [Accessed: 03-Apr-2020].
- [22] "Plan de Fomento de las Energias Renovables en España." [Online]. Available: https://www.idae.es/uploads/documentos/documentos_4044_PFER2000-10_1999_1cd4b316.pdf. [Accessed: 03-Apr-2020].
- [23] "Ministerio para la Transición Ecológica y el Reto Demográfico Plan de Energías Renovables 2005-2010." [Online]. Available: https://energia.gob.es/desarrollo/EnergiaRenovable/Plan/Paginas/planRenovables. aspx. [Accessed: 03-Apr-2020].
- [24] "Spain's National Renewable Energy Action Plan." [Online]. Available:

http://pvtrin.eu/assets/media/PDF/EU_POLICIES/National Renewable Energy Action Plan/202.pdf. [Accessed: 03-Apr-2020].

- [25] J. Del Estado, "Disposición 13645 del BOE núm. 310 de 2013," 2013.
- [26] "DIRECTIVE 2009/28/EC of the European Parliament and of the council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC (Text with EEA relevance," 2009.
- [27] "Decreto legislativo 3 marzo 2011, n 28."
- [28] D. Generale, P. La, S. Dell'approvvigionamento, and E. Le, "MINISTERO DELLO SVILUPPO ECONOMICO LA SITUAZIONE ENERGETICA NAZIONALE NEL 2018."
- [29] G. Dei *et al.*, "RAPPORTO STATISTICO 2018," 2019.
- [30] IRENA, International Renewable Energy Agency. Renewable Power Generation Costs in 2017. 2018.
- [31] "Italy Electricity Demand." [Online]. Available: https://www.ceicdata.com/en/italy/electricity-demand. [Accessed: 10-Mar-2020].
- [32] M. Díaz de la Cruz, "Las energías renovables en el sistema eléctrico español en el 2018," p. 260, 2019.
- [33] "Home | CNMC." [Online]. Available: https://www.cnmc.es/. [Accessed: 15-Mar-2020].
- [34] GME, "TESTO INTEGRATO DELLA DISCIPLINA DEL MERCATO ELETTRICO."
- [35] "Il nuovo modello di mercato infragiornaliero."
- [36] "CES Consejo Económico y Social Inicio." [Online]. Available: http://www.ces.es/. [Accessed: 15-Mar-2020].
- [37] "Ministerio de Industria, Comercio y Turismo Bienvenido al Portal de Ministerio de Industria, Comercio y Turismo." [Online]. Available: https://www.mincotur.gob.es/es-es/Paginas/Index.aspx. [Accessed: 15-Mar-2020].
- [38] "EEX Homepage." [Online]. Available: https://www.eex.com/en#/en. [Accessed: 28-Mar-2020].
- [39] "Mercados y precios | ESIOS electricidad · datos · transparencia." [Online]. Available: https://www.esios.ree.es/es/mercados-y-precios. [Accessed: 28-Mar-2020].
- [40] "MIBGAS | Mercado Ibérico del Gas." [Online]. Available: http://www.mibgas.es/en/gas-markets. [Accessed: 28-Mar-2020].
- [41] L. Gelabert, X. Labandeira, and P. Linares, "An ex-post analysis of the effect of renewables and cogeneration on Spanish electricity prices," *Energy Econ.*, vol. 33, no. SUPPL. 1, pp. S59–S65, 2011, doi: 10.1016/j.eneco.2011.07.027.
- [42] S. Tunali and I. Batmaz, "Dealing with the least squares regression assumptions in simulation metamodeling," *Comput. Ind. Eng.*, vol. 38, no. 2, pp. 307–320, Jul. 2000, doi: 10.1016/S0360-8352(00)00046-2.
- [43] A. Edwards, "An introduction to linear regression and correlation," 1984.
- [44] T. Cleff, *Exploratory data analysis in business and economics: An introduction using spss, stata, and excel.* Springer International Publishing, 2014.
- [45] C. M. Jarque and A. K. Bera, "Efficient tests for normality, homoscedasticity and serial independence of regression residuals," *Econ. Lett.*, vol. 6, no. 3, pp. 255–259, Jan. 1980, doi: 10.1016/0165-1765(80)90024-5.
- [46] D. A. Dickey and W. A. Fuller, "Distribution of the Estimators for Autoregressive Time Series With a Unit Root," J. Am. Stat. Assoc., vol. 74, no. 366, p. 427, Jun. 1979, doi: 10.2307/2286348.
- [47] W. Fuller, Introduction to Statistical Time Series (Wiley Series in Probability and Statistics). Wiley-Interscience, 1996.
- [48] C. K. Woo, I. Horowitz, J. Moore, and A. Pacheco, "The impact of wind generation on the electricity spot-market price level and variance: The Texas experience," *Energy Policy*, vol. 39, no. 7, pp. 3939–3944, Jul. 2011, doi: 10.1016/j.enpol.2011.03.084.

- [49] J. C. Ketterer, "The impact of wind power generation on the electricity price in Germany," *Energy Econ.*, vol. 44, pp. 270–280, 2014, doi: 10.1016/j.eneco.2014.04.003.
- [50] Peter C.B. Phillips and Pierre Perron, "Testing for a unit root in time series regression," 1987.
- [51] J. G. Mackinnon, "Approximate Asymptotic Distribution Functions for Unit Roots and Cointegration Tests," 1992.
- [52] J. Durbin and G. S. Watson, "Testing for Serial Correlation in Least Squares Regression: I," *Biometrika*, vol. 37, no. 3/4, p. 409, Dec. 1950, doi: 10.2307/2332391.
- [53] J. D. and G. S. Watson, "Testing for Serial Correlation in Least Squares Regression: II," 1950.