
UNIVERSITÀ DEGLI STUDI DI PADOVA
Dipartimento di Ingegneria Industriale DII

Corso di Laurea Magistrale in Ingegneria dei Materiali

Acceleration of FEM Procedures in
Python: Application to the RVE Analysis

of Composite Materials

Relatore Laureando
ch.mo Prof. Angelo Simone Pietro Fumiani

matr: 1157334

Anno Accademico 2019/2020

Abstract

In this thesis project, an originally very simple Finite Element Method (FEM) code writ-
ten in Python is accelerated using well-known techniques: sparse format for matrices
and vectorization of operations. The estimate of the transverse elastic modulus of uni-
directional fiber-reinforced composite is used as a real-world testing situation for the
FEM package called feat [9]. For this purpose, a simple Representative Volume Ele-
ment (RVE) analysis is created. The performance of the FEM code is very satisfying,
the code being able to solve a 2D problem in linear elasticity with about 1 million de-
grees of freedom in around 30 seconds. Regarding the transverse modulus estimate,
taking into account all the simplifications employed in the modeling, we can consider
the result as reasonable. This project shows that a very good computational perfor-
mance can be achieved even with a simple didactic code as a starting point.

i

Riassunto

In questo lavoro di tesi, un codice FEM inizialmente molto semplice scritto in Python
viene accelerato usando tecniche note: memorizzazione in formato sparso per le ma-
trici e vettorizzazione delle operazioni. La stima del modulo elastico trasversale di un
composito rinforzato con fibre unidirezionali viene usata come situazione reale di test
per il pacchetto FEM che prende il nome di feat [9]. Per questo scopo viene realiz-
zata una semplice analisi del Representative Volume Element (RVE). La prestazione
ottenuta dal codice FEM è molto soddisfacente (un problema 2D di elasticità lineare
con 1 milione di gradi di libertà viene risolto in circa 30 secondi). Per quanto riguarda la
stima del modulo trasversale, tenendo presente tutte le semplificazioni utilizzate nella
modellazione, possiamo considerare i risultati ottenuti come ragionevoli. Questo pro-
getto mostra che si possono raggiungere prestazioni molto buone anche partendo da
un codice scritto in un contesto didattico.

ii

Contents

Preface iv

1 Micromechanical Estimates 1
1.1 Transverse Modulus . 1
1.2 Analytical Micromechanical Models . 1

1.2.1 Reuss Model . 2
1.2.2 Halpin-Tsai Equation . 3

2 Numerical and Coding Tools 5
2.1 Finite Element Method . 5
2.2 RVE Analysis . 8
2.3 Python . 13
2.4 Gmsh . 14
2.5 Hardware . 14

3 Acceleration 15
3.1 Base Implementation . 15
3.2 Sparse Format for Matrices . 17
3.3 Vectorized Assembly . 21

4 Results and discussion 25
4.1 FEM Acceleration . 25
4.2 RVE Analysis Results . 28
4.3 Conclusions . 31

Bibliography 33

iii

Preface

This project was born with a mainly educational objective. During the Computational
Mechanics of Materials course a very simple finite element code has been developed.
It was the first time for me writing code to complete a certain task. By the end of the
course I realized that I got interested in the study of Finite Element Method and in pro-
gramming. With the supervisor, we decided that work on FEM coding for my master
thesis project could be a good chance to develop my newly discovered interest. The
idea is to start from the code developed during the course and try to accelerate its per-
formance. The plan is to find out how far a code indipendently written by a student
can go. Sometimes, Finite Element commercial software packages are considered as
irreplaceable tools with super powers. They are surely reliable instruments for a large
number of tasks in different branches of engineering, but with this work we hope to
point out that it is possible to obtain good performance also from code developed by
a student. To test the developed package (feat [9]) on a real task we decided to focus
our attention on the estimation of the elastic properties of composite materials. A pro-
cedure to get an estimate of the elastic modulus has been implemented. The present
methodology uses some simplifications to make implementation easier. For this rea-
son we want to point out that the accuracy of the obtained estimate is not the goal of
this work. The main purpose of this work is to develop a deeper knowledge of FEM by
trying to improve the performance of our program.

Pietro Fumiani
Venezia

July 2020

iv

Chapter 1

Micromechanical Estimates

1.1 Transverse Modulus

The determination of elastic moduli is a critical task for the mechanics of composite
materials. Stiffness, together with strength, is a fundamental factor in structural de-
sign procedures [18]. Moreover the estimate of the different moduli that characterize
a composite material is essential for material design too. In other words, the capabil-
ity of computing moduli is useful to understand how to achieve the desired mechanical
properties combining different materials in the best proportion and using the best spa-
tial structure.
This work focuses on the determination of the transverse Young’s modulus of unidirec-
tional fiber-reinforced composite. A schematic representation of the material (Figure
1.1) is used in order to define the transverse modulus. Fibers are embedded in the ma-
trix and aligned in direction 1. The transverse modulus is the apparent Young’s modu-
lus of the material in the direction transverse to the fibers, i.e., direction 2. The symbol
used to indicate this modulus is E2.
Usually the evaluation of effective elastic properties of composite is handled using the
micromechanics of composite materials. In the context of this theory the transverse
modulus is defined by Jones [18] as a matrix-dominated property. This term is used to
underline the fact that the matrix modulus can influence the value of E2 much more
than the fiber modulus. The following section gives a simple definition of microme-
chanics of composite and its primary tools: analytical models.

1.2 Analytical Micromechanical Models

As Stated by Jones [18]: “Micromechanics — The study of composite material behavior
wherein the interaction of the constituent materials is examined in detail as part of the
definition of the behavior of the heterogeneous composite material.”. Micromechanics
employs a variety of different analytical models that are mainly based on two different
theoretical methods:

• mechanics of material;

• elasticity.

The main purpose of these analytical models is the prediction of the composite lamina
elastic moduli. The estimate is based on the constituents moduli, materials arrange-

1

�

�

�

Figure 1.1: Unidirectional fiber-reinforced composite with principal coordinate sys-
tem.

ment in space, and relative proportions between constituents. Moduli resulting from
these models need to be validated through a comparison with elasticity properties ob-
tained from experimental measures. Thereafter, the real benefit of these mathematical
tools can be really appreciated. Indeed these models make it possible to define a rough
estimate of the elastic modulus without the need to manufacture the material and test
it.
Although these models are widely used, around their employment there has always
been a certain controversy as to which of the models was the most suitable for differ-
ent situations. This debate is also caused by the fact that the accuracy of the microme-
chanical models is quite low for properties controlled by matrix elasticity quantities. In
this sense, micromechanics analysis should be considered mainly as providers of qual-
itative information rather than as quantitative data. Micromechanics is surely a guide
for composite materials design but it is in general incorrect to think that an analytical
model can return exact quantitative prediction about material performance [18, 12].
In the rest of this section an overview of the main analytical models is given focusing
not only on features but also on drawbacks. The following description deals only with
models for the prediction of the transverse elastic modulus (E2).

1.2.1 Reuss Model

The first and simplest model for transverse modulus determination is the Reuss model
or inverse rule of mixtures, this model is based on the mechanics of material approach.
The modulus computed with this model is also known as the lower-bound modulus
because Paul in 1960 showed that the inverse rule of mixtures is actually the lower

2

bound on E2 [12]. The expression to compute the transverse modulus is:

E2 = EfEm

VmEf +VfEm
. (1.1)

The fundamental assumption in the development of this model is that both fibers and
matrix are subject to the same stress when loaded in the direction normal to the fibers.
Even though the Reuss model is very simple to use, its main hypothesis leads to a large
difference between its estimate, numerical results, and experimental results. Jones [18]
underlines that the equality between stress in the fiber and stress in the matrix is not
realistic because the two Poisson’s ratios are usually different. Additionally the differ-
ence in Poisson’s ratios determine also che presence of longitudinal stresses in both
constituents combined with shearing stresses at the boundary between the different
materials. For these reasons the model clearly underestimates the value of E2 com-
pared with experimental values. This inaccuracy has been confirmed also by recent
studies such as that of Goudarzi and Simone [13]. They compared transverse modulus
values obtained with a FEM analysis and the estimate given by the inverse rule of mix-
tures. The model is generally in bad agreement with the more accurate computational
result and the error grows as the matrix Poisson’s ratio approach 0.5, i.e., towards the
incompressibility limit of the matrix material.

1.2.2 Halpin-Tsai Equation

Halpin and Tsai [15] developed a simple approximate relation starting from the more
complicated Herrmanns’ micromechanical solution [16]. The equation for the evalua-
tion of the transverse modulus is given by

E2

Em
= 1+ξηVf

1−ηVf
, (1.2)

with the parameter

η= (Ef/Em)−1

(Ef/Em)+ξ
. (1.3)

The quantity indicated with ξ is a curve fitting parameter and can be considered as a
measure of the reinforcement given by fibers to the material. The value to use for ξ in
the particular case of transverse modulus is usually ξ = 2. The reason for this is that
the two authors observed a very good agreement with the finite difference method so-
lution developed by Adams and Doner [1, 2]. This solution, used as a reference for the
interpolation, is related to the evaluation of the transverse modulus for a square array
of circular fibers with a particular fiber volume fraction of 0.55. Halpin and Tsai tested
their work also against results obtained by Foye [8] for a diamond array of rectangular
fibers. They found out that to have an excellent fit with Foye’s solution it was necessary
to change the value of ξ from 2 to

ξ= 2
a

b
, (1.4)

where a/b is the rectangular cross-section aspect ratio. This difference in the value of ξ
means that the estimate of transverse modulus given by Halpin-Tsai equation changes
according to the geometry of the cross-section (circular or rectangular) and the spa-
tial arrangement (square array or diamond array) of the fibers. According to Jones[18],
the fact that the predictions made by the Halpin-Tsai equation vary for different arrays

3

implies that it is not possible to obtain a precise measure of the transverse modulus us-
ing (1.2). Both fiber arrays previously described and used for fitting are characterized
by a periodic structure. This kind of spatial arrangement is nearly impossible to ob-
serve in a real-world material. Observing the structure of fiber reinforced specimens
(e.g., see [12, 26]) the random nature of fiber-packing geometry is evident. Although
the Halpin-Tsai equations has been widely and successfully used in composite materi-
als design for a long time, it has to be considered as an approximation.

4

Chapter 2

Numerical and Coding Tools

The main task of this work is to create a fast computational framework. As an applica-
tion, the framework is employed to provide a rough estimate of E2 for unidirectional
fiber-reinforced composite materials. In the previous section it has been shown that
commonly used micromechanical models contain somehow a certain approximation
that causes inaccuracy. The common alternative to analytical instruments is the use of
numerical methods like finite difference and finite element. The instruments adopted
in this work are described in the following sections and can be divided into two cate-
gories:

• theoretical tools:

– Finite Element method (FEM);

– Representative Volume Element (RVE) Analysis;

• operative tools:

– Python programming language;

– Gmsh finite element mesh generator.

2.1 Finite Element Method

Only a simple summary of necessary informations of the Finite Element Method is
provided. For a comprehensive account on this widely adopted and powerful tool see
[3].
FEM is used to get an approximate solution for field problems described by differential
equations. In linear elasticity problems the primary field is the displacement field and
the differential equation is the equilibrium equation. In this work we deal with a plane
strain problem which involves the following equations:⎡⎣ exx

ey y

2ex y

⎤⎦=
⎡⎣∂/∂x 0

0 ∂/∂y
∂/∂y ∂/∂x

⎤⎦[︃
ux

uy

]︃
, strain-displacement equation (2.1)

⎡⎣σxx

σy y

σx y

⎤⎦=
⎡⎣E11 E12 E13

E12 E22 E23

E13 E23 E33

⎤⎦⎡⎣ exx

ey y

2ex y

⎤⎦ , constitutive equation (2.2)

5

[︃
∂/∂x 0 ∂/∂y

0 ∂/∂y ∂/∂x

]︃⎡⎣σxx

σy y

σx y

⎤⎦+
[︃

bx

by

]︃
=

[︃
0
0

]︃
. equilibrium equation (2.3)

In Equation (2.3), bx and by are the component of the body force vector. The matrix of
elastic constants in Equation (2.2) for plane strain is given by:

E =
⎡⎣E11 E12 E13

E12 E22 E23

E13 E23 E33

⎤⎦= E

(1+ν)(1−2ν)

⎡⎣1−ν ν 0
1 1−ν 0
0 0 1−2ν

2

⎤⎦ . (2.4)

Equations (2.1)–(2.3) can be expressed in a more compat fashion using their matrix
equivalent form as follows:

e = Du, σ= Ee, DT σ+b = 0. (2.5)

The variational formulation is based on the Minimum Potential Energy principle. The
total potential energy (TPE) of a body is given by

Π=U −W, (2.6)

where U is the internal energy and is represented by the elastic strain energy

U = 1

2

∫︂
Ω

hσT edΩ= 1

2

∫︂
Ω

h eT EedΩ , (2.7)

where h is the thickness of the body. Note that the second form in the equation is
obtained inserting Equation (2.2) into che first form. The term W indicates the external
energy that includes the contributions from interior (body) and boundary forces:

W =
∫︂
Ω

h uT bdΩ+
∫︂
Γt

h uT t̂dΓ . (2.8)

In these equations, Ω and Γ are respectivley the plane domain and its boundary. In
particular, Γt is the portion of the boundary where traction forces t̂ are applied. Using
the Minimun Potential Energy principle the fact that the solution u∗(x) satisfies the
governing equations results in the potential energy Π being stationary:

δΠ= δU −δW = 0 (2.9)

with respect to variations u = u∗+δu of the exact displacement u∗(x). Now applying
the finite element discretization of the domain it is possible to decompose the TPE
functional into a sum of terms each related to one element of the discretized domain.
The same operation is applied also to the stationary condition (2.9). Then, for a certain
element e we have:

δΠe = δUe −δW e = 0. (2.10)

The finite element method is based on the fact that the domain is discretized into
a set of element that create a mesh that represent the domain geometrically. If we
consider a generic element the method involves replacing the exact displacement with
an approximation:

u∗(x) ≈ ue (x) . (2.11)

6

The approximate displacement field obtained by the interpolation of the nodal dis-
placement and it is expressed as follows:

ux(x, y) =
n∑︂

i=1
N e

i (x, y)uxi , uy (x, y) =
n∑︂

i=1
N e

i (x, y)uyi . (2.12)

N e
i (x, y) are the element shape functions. Each shape function must have certain

properties: it has to be continuous, it has a value of one at the node it is associated
with and zero at all other nodes. The last equation is represented in a more convenient
way using matrix form:

u(x, y) =
[︃

ux(x, y)
uy (x, y)

]︃
=

[︃
N e

1 0 N e
2 0 · · · N e

n 0
0 N e

1 0 N e
2 · · · 0 N e

n

]︃
ue = Nue . (2.13)

From the finite element displacement field the strain field is also obtained as:

e(x, y) =

⎡⎢⎢⎢⎢⎣
∂N e

1
∂x 0

∂N e
2

∂x 0 · · · ∂N e
n

∂x 0

0
∂N e

1
∂y 0

∂N e
2

∂y · · · ∂N e
n

∂y
∂N e

1
∂y

∂N e
1

∂x
∂N e

2
∂y

∂N e
2

∂x · · · ∂N e
n

∂y
∂N e

n
∂x

⎤⎥⎥⎥⎥⎦ue = B ue , (2.14)

where B is called the strain-displacement matrix and is defined as B = DN. If we insert
relations (2.13), (2.14) and the matrix form of (2.2) into equations (2.8) and (2.7) for the
generic element we obtain:

U e = 1

2

∫︂
Ωe

h eT Ee dΩe = 1

2

∫︂
Ωe

h uT BT EBu dΩe , (2.15)

W e =
∫︂
Ωe

h uT NT bdΩe +
∫︂
Γe

h uT NT t̂dΓe . (2.16)

We define two quantities that are fundamental for the final form of the problem: the
element stiffness matrix:

Ke =
∫︂
Ωe

hBT EB dΩe , (2.17)

and the nodal force vector:

fe =
∫︂
Ωe

hNT b dΩe +
∫︂
Γe

hNT t̂ dΓe . (2.18)

Then the TPE becomes:

Πe =U −W = 1

2
ueT Ke ue −ueT fe (2.19)

and if we take the variation of the preeceding expression with respect to the displace-
ments the resulting expression is

δΠe = (δue)T ∂Πe

∂ue
= (δue)T [Ke ue − fe] = 0. (2.20)

The variation ue is arbitrary so the term inside brakets mush be zero, therefore

Ke ue = fe (2.21)

7

This expression represent the discrete version of the equilibrium equation that needs
to be assembled into the global system together with contributions from every other
element in the mesh. The assembly process is resposible for the construction of the
global stiffness equation that is later solved to obtain the solution: the vector of nodal
displacements u. This is done using global node numbering to map element degrees
of freedom with global degrees of freedom (see Section 3.1). After the assembly of the
global stiffness matrix the system is ready for the application of the boundary condi-
tions. In the end, the the global system of equations, represented in matrix format by

Ku = f, (2.22)

can be solved for the displacement vector. For the present work the solution vector
is the starting point for the computation of the transverse modulus of the composite
material domain. The employed method is described in the follwing section.

2.2 RVE Analysis

In this work, a procedure based on the concept of Representative Volume Element
(RVE) is used. Hill probably gave the first formal definition of RVE in 1963 [17] saying
that the RVE :

• “is structurally entirely typical of the whole mixture on average”,

• “contains a sufficient number of inclusions for the apparent overall moduli to be
effectively independent of the surface values of traction and displacement. . . ”.

Drugan and Willis [6] give another interesting definition of this term: “It is the smallest
material volume element of the composite for which the usual spatially constant (over-
all modulus) macroscopic constitutive representation is a sufficiently accurate model
to represent mean constitutive response.”

The approach developed in this project is based on the work of Terada et al. [26].
They proposed to analyze a series of simulations carried out on domains (RVEs) of in-
creasing size. The key concept here is that if the RVE is too small the positioning of
fibers inside the domain is still able to influence the obtained elastic properties. The
size of the domain is not sufficient to make its own elastic properties independent from
that particular configuration of the fibers in matrix. Namely, the domain is not an RVE,
it is not representative of the overall material. In their paper, Terada et al. [26] studied
the convergence of the norm of the elasticity matrix (stress-strain matrix). This ma-
trix is calculated using a homogenization procedure that is not employed in this work.
The resuts of their work are well summarized by Figure 2.1. In the graph three differ-
ent curves have been plotted, each representing the result obtained applying different
boundary conditions to the same domain. This is useful to us because it proves that it
is possible to reach the same result with all types of boundary conditions.

Here, the focus is on the computation of the transverse modulus of unidirectional
fiber-reinforced composite materials and, because of the parallelism of fibers, a two-
dimensional model is used to describe the material. The domain is a square in which
fibers are modeled as disks and the remaining surface is considered as matrix material.
As verified by Terada et al. [26] and Goudarzi and Simone [13], the best approach to
estimate elastic constants (e.g. E2) is the application of periodic boundary conditions

8

Figure 2.1: Convergence associated with orthotropy and isotropy for homogenized
elasticity matrix. (from Terada et al. [26])

within a periodic mesh. One of the reasons because periodic conditions are preferred
is clear in Figure 2.1. The convergence of effective elastic properties is faster in the case
of periodic boundary conditions respect to the case of displacement or traction condi-
tions. That is to say, convergence is reached for smaller RVE, which in turn represent an
easier problem to be solved from the computational point of view. Nevertheless the im-
plementation of periodic boundary conditions is considered an unnecessary task for
the purpose of this thesis. Hence the estimate of the transverse modulus is performed
using a simplified procedure based on that used by Dong [5]. His method make use
of the periodic boundary conditions but here we employ normal Dirichlet (essential)
boundary conditions. A graphical representation of the geometry of a generic RVE do-
main is given in Figure 2.2. The bottom left corner of the RVE is locked, the rest of the
left side is not allowed to move in direction 2. The mechanical load is applied on the
model through an imposed constant displacement ū over the whole right-hand side of
the square.
Now let’s see how the transverse modulus is computed for a generic RVE. The imposi-

tion of homogeneus Dirichlet boundary conditions (ū = 0) generates support reactions
for all degrees of freedom (DOFs) subject to that conditions. Using global sitffness ma-
trix K rows relative to that constrained DOFs along with the displacements vector, it
is possible to compute reaction forces for the above mentioned degrees of freedom.
The useful data from K are lost during boundary conditions imposition, therefore they
must be saved before this operation. In this way it is possible to compute the reaction
forces using the following matrix relation:

f∗ = KRu (2.23)

where KR indicate the rows of the stiffness matrix related to degrees of freedom for

9

�

�

Figure 2.2: RVE domain geometry and boundary conditions.

which ū = 0, that is to say degrees of freedom that present a reaction force. Then, as-
suming for the domain a condition of plane strain, the stress in the direction transverse
to the fibers can be evaluated as:

σ2 = R

A
= R

L h
(2.24)

where

R =
m∑︂

i=1
f ∗

i (2.25)

is the sum of all contributions of nodal reaction forces, L is the side lenght of the RVE
and h is the thickness of the domain. The strain can be calculated as:

ε2 =
L f −Li

L
= ū

L
(2.26)

using the imposed displacement value ū and the side of the RVE. Finally a rough es-
timate of the transverse modulus of the RVE is given by the constitutive equation 2.2:

E2 = σ2

ε2
. (2.27)

These steps to obtain an estimate of E2 are performed in the post-processing phase
of each FEM simulation because the displacements vector u, which is unknown un-
til the final solution of the main FEM system, is the starting point. To ensure that the
approximate solution obtained with FEM is accurate, a mesh refinement study is es-
sential. This operation, here done through h-refinement, consists of a certain number

10

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
DOFs number 1e6

11.95

12.00

12.05

12.10

12.15

12.20

E 2
 [G

Pa
]

Figure 2.3: Example of mesh refinement procedure that leads to convergence.

of subsequent finite element analyses in which the element size is gradually reduced.
Therefore, increasing the total number of elements in the mesh by downsizing the sin-
gle element, allows the analysis result to get closer to the exact solution of the problem.
As depicted in Figure 2.3 at some point a threshold is reached and any further mesh re-
finement takes to the same numerical results. Now that the process to obtain E2 for
a given RVE has been explained, we procede with the description of the RVE Analysis.
The key concept used for the analysis are the “sample” and the “step”. A sample con-
sists of a sequence of domains called steps. Domains that belongs to a sample are all
created starting from the so called “main step”. All the other steps (domains) are ob-
tained by “cutting” a square of the desired size from the main step (see Figure 2.5). This
cut operation is performed so that all steps and the main step share the same center.
We can say that steps are a set of “concentric” squares evenly spaced and sorted by in-
creasing side lenght. The input data for an RVE analysis are: the fibers volume fraction
V f , the radius of the fibers R and the side lenght of the main step L. The arrangement
of the fibres must be random to accurately reproduce the microstructure of the mate-
rial. For this reason, each sample is associated to a particular numerical seed that is
used to initialize a random number generator. The generator is employed by the do-
main creation algorithm. The most common and simple algorithm to create randomly
distributed fibers is the Random Sequential Absortion (RSA) followed for example by
Kari [19]. Unfortunately the maximum volume fraction that is possible to obtain us-
ing RSA is about 54.7% [29, 27]. This is the saturation that is practically impossible to
reach in a reasonable number of iterations. The RSA algorithm has been implemented
but it has confirmed to be realiable for V f until 40–45%. The majority of experimen-
tal data found in literature are related to materials with fibers volume fractions from
50% to 60%. It is important to have the possibility to compare the numerical results of

11

Figure 2.4: Sample meshes obtained during a mesh convergence procedure. The size
of the elements in the meshes, from right to left, is: 0.5, 0.25, 0.12. At the interface
between fiber and matrix each mesh is refined and element size is halved.

Figure 2.5: Main step (green) with other steps obtained from it. One of the yellow
steps, highlighted in orange, is selected and extracted to undergo the meshing process
and FEM analysis.

our RVE analysis with experimental data. For these reasons, the alternative algorithm
suggested by Ge et al. [10] has been implemented and used to generate domain with
V f up to 60%. The routine used for this phase of the analysis gives as output the list of
coordinates of all centers needed to reach the desired volume fraction. These data are
saved in a text file that is read during the creation of the step domain meshes. In this
way the positions of fibers is defined once for each sample and used throughout all its
steps (see Figure 2.5). The drawback of this choice is that the desired volume fraction
is actually imposed only on the main step domain. Then, V f , for all domains (steps)
that are actually used for calculation,is not strictly precise. Back to the procedure, for
each step the mesh refinement is completed to obtain an accurate value of modulus.
As already explained, to reach FEM convergence the implemented strategy consists of
reducing the size of finite elements. To verify the convergence at least one refinement
step is required, that is to say, at least two simulation needs to be executed: the first on
the base mesh and the second one on the first refined mesh. Mesh element sizes are

12

constants for the different steps and samples. The code needs a quantitative condition
to check if convergence has been reached, for this purpose the following quantity is
used:

∆E2,i (%) = |E2,i −E2,i−1|
E2,i−1

, (2.28)

where the index
i = 2, . . . , M

indicates the current mesh, and M is the number of available element sizes. The con-
dition used inside the program is the following:

∆E2,i (%) < 0.0025, (2.29)

i.e., if the relative change of E2 from the current mesh i and the preceding mesh i −1 is
lower than 0.25% we consider that result as converged.
The RVE analysis script obtains and saves in the output file a converged value of E2

for each of the S steps and for each of the P samples. The data from a single sample
constitutes by themselves a RVE convergence study because they are able to show that
increasing the size of the domain the predicted E2 gradually stabilizes around a certain
value. Here we performed the same convergence study using a set of different samples
because in this way it is possible to show that the value obtained from each RVE anal-
ysis is independent from the random distribution of fibers inside the material. This
fact can also confirm in some way that it is possible to take a portion of material that is
really representative of the features of the material indipendently from that particular
sample. Since results from different samples are very close to each other but they still
form a certain range of values, as the final answer given by the RVE analysis we are tak-
ing the mean value and the standard deviation of the main step (i.e. the largest step)
of each sample. Coupling these two quantities provide a good description of the final
result, giving information about the value of the estimate and its dispersion.

2.3 Python

Python [7] is the programming language selected for the implementation of the RVE
analysis. This choice has been guided by two main factors: readibility and productivity.
Python’s design phylosophy is based on the capability of writing clear and comprehen-
sible code. The simplicity of the language cuts down develpment time respect to other
languages that are more suitable for numerical programming. The biggest drawback in
using Python is, indeed, the fact that it is not as fast as other languages such as C, C++
and Fortran. The fact that Python is an interpreted language and not a compiled lan-
guage has a strong impact on its performance. The decision to use Python as language
for investigating code speed and optimization might seem a contraditiction. However,
as explained in preface, the purpose of this thesis is to inspect the performance gain
and acceleration with respect to a sample basic implementation. The aim is not to
establish a speed record for the present optimized implementation.

The most important packages used in this project are:

• Numpy [21], the fundamental package for numerical computations using its pow-
erfull arrays and matrices;

13

• Scipy [28], a library that includes several algorithms and tools to manipulate nu-
merical data in different domains;

• meshio [24], a package capable of handling input and output operations for many
different mesh formats, including Gmsh .msh files;

• tuna [23], a modern, lightweight Python profile viewer inspired by SnakeViz.

Apart from these, other modules from python standard library are used for some par-
ticular operation like logging and profiling.

2.4 Gmsh

Gmsh [11] is an open source finite element mesh generator. In this work its role is
to generate the mesh starting from RVE geometry. The geometry is created using the
simple Python library called pygmsh [25], that “provide useful abstractions from the
Gmsh scripting language” to easily write a .geo file. The OpenCASCADE kernel can
use several different elements of various order. Here only 3-node triangular elements
(T3) are employed since our modeling domain is 2D. The obtained mesh file (.msh) is
passed as input to the meshio library that can read that file format and parse all data
into a Mesh object. The latter is then used to get all essential data for the finite element
analysis like nodal coordinates in space and element connectivity map.

2.5 Hardware

In this work two machines are used to run the simulations. One desktop workstation
and a dedicated remote server. Let’s see their hardware specifications in detail.
Workstation:

• Intel® Core™ i7-6700K CPU @ 4.00GHz (4 core, 8 thread),

• 16.0 GB RAM,

• OS: Windows 10 Pro (1903).

Server:

• Intel® Xeon® E5-1630 v3 CPU @ 3.70GHz (4 core, 8 thread),

• 64.0 GB RAM,

• OS: Windows Server 2016 Standard.

For all performance measurement the workstation is used, only for some RVE analysis
with main step larger than 70 it is necessary to use the dedicated server due to low
memory issues using the workstation.

14

Chapter 3

Acceleration

The acceleration procedures employed in this work mainly regard the portion of the
code responsible for carrying out the Finite Element Analysis and not the RVE Analy-
sis. This is due to the far superior applicability of techniques that speed up FEM sim-
ulations in different context. In other words, their implementation is more instructive,
more useful to improve the knowledge of the finite element method.

3.1 Base Implementation

This section describe che first and simplest version of the code and use the results ob-
tained from time profiling as guideline to turn the focus to the most heavy sections of
the numerical procedures. The profiling tools used to investigate the performance of
the numerical procedure are described by the end of this section. The code developed
for this thesis is mainly included in a package and some scripts. The python package is
called feat [9] and contains some modules related to the different components of the
library. Functions and classes belonging to the package are used mainly by the script
called fem.py. In this file all different functions that represent the variants of the same
FEM analysis are implemented. These are then imported into the RVE analysis script
that puts everything together. The base implementation is essentially the standard Fi-
nite Element Method procedure translated into Python code. The functions related
to this version of the code live in the module: base.py. Inside this module the main
function is called assembly; it consists on a practical level in the insertion of local Ke

entries in their respective position of the global stiffness matrix. This process is com-

1 def assembly(K, num_elem, elem, coord, mat_map, E_mat, h, elem_type):

2 for e in range(num_elem):

3 k = stiffness_matrix(e, elem, coord, mat_map, E_mat, h, elem_type)

4 element_dof = compute_global_dof(e, elem, elem_type)

5 for i in range(2 * elem[0].shape[0]): # range(6) for T3

6 I = element_dof[i]

7 for j in range(2 * elem[0].shape[0]): # range(6) for T3

8 J = element_dof[j]

9 K[I, J] += k[i, j]

10 return K

Listing 1: Base version of the assembly function.

15

pleted by means of one main for loop over mesh elements and two more nested for

loops that cover all entries of the local stiffness matrix. Obviously the local quantities
are obtained by using equation 2.17 before their placement in the global matrix. The
Ke matrix is computed using the function presented in Listing 1. For the simple case
of the 3-node triangular element (CST), the matrices B and E are constant and the first
one takes the following form:

B = 1

2A

⎡⎣y23 0 y31 0 y12 0
0 x32 0 x13 0 x21

x32 y23 x13 y31 x21 y12

⎤⎦ . (3.1)

Also the thickness h is considered constant over the element so everything can be taken
out of the integral in 2.17. Therefore a closed form for Ke has been obtained as

Ke = A h BT EB , (3.2)

where A is the area of the triangular element. The stiffness_matrix function returns
the matrix that has to be added into the global matrix one entry at a time. For this pur-
pose it is necessary to know the global degrees of freedom related to the local ones for
the current element. The two loops with index i and j inside the main loop, scan all
local entries and place them in the right position of the global stiffness matrix using
the global degree of freedom numbers indicated as I and J. As already mentioned this
operation is repeated for each element and the runtime directly depends on the mesh
size in terms of elements numerosity. After the assembly, the problem system is ready
for the application of boundary conditions and in the end for the solution. There are
other operations performed at the end of the base_analysis function. These are re-
lated to the estimate of the transverse Young’s modulus of the domain starting from
the solution array of displacements. Basically the last steps are the calculation of the
reactions and the evaluation of E2 with the function compute_modulus that follows the
procedure illustrated in Section 2.2.
The Python language comes with a built-in profiler called cProfile. It is a C extension
that provide deterministic profiling with a reasonable overhead. This awesome tool
can measure the time spent for the execution of each function called inside the code.
This is a key step in understanding which parts of the program need an inprovement
or a complete rewrite. cProfile and Tuna are employed to investigate the performance
of the base_analysis function.
For this performance test the code is solving the elasticity problem for a domain with
50 fibers and 17820 nodes (35640 dofs). The complete runtime for this FE analysis
is 169.105 seconds without the use of cProfile and about 190 seconds with its little
overhead. All partial runtime data come from profiling so that they contain the over-
head due to the profiling operation itself. However, all different implementations un-
dergo the same performance test that allow us to compare them. For every perfor-
mance test, only the runtime related to the call of the main fem function for that par-
ticular implementation is considered. For the base implementation this function is
base_analysis, every other runtime measured by profiling (usually libraries initial-
ization and import) has been neglected. The majority of runtime is spent during the
execution of numpy linear algebra solve function (over 90%). The main reason for this
is that all matrics are memorized in full format so the solver deals with a very large
number of entries. The second call ordering by decreasing runtime is the assembly

procedure. This step takes 2.437 seconds to complete. The speed of this basic version

16

base_analysis: 185.427 s
solve: 182.686 s
assembly: 2.449 s
dirichlet BC: 0.232 s
other: 0.06 s

Figure 3.1: Runtime related to the main phases of the analysis represented as fractions
of the total time required by the base implementation.

of the code is not satisfying because the domain used in this test is relatively small re-
spect to the expected necessary dimension to reach RVE convergence. The RVE anal-
ysis procedure implies a series of finite element simulations to get the result. If the
time for a single analysis is more than 3 minutes how long will it take to complete the
whole process? It is easy to understand that a software with this performance is not
so useful. Another critical issue is that for medium-sizes problems with, say, 100 fibers
in the domain, which corresponds to about 7× 104 degrees of freedom, the memory
capacity (RAM) is not enough to allocate such large arrays. The default datatype for
numpy arrays is the float64 which needs 8 bytes for each numerical value. Using a
simple expression we can get a rough estimate of the total memory required by the
global stiffness matrix in full format.

m = n2
do f ∗8 [bytes]∗ 1 [GB]

10243 [bytes]
≃ 37 [GB] (3.3)

The machine where all tests are executed has only 16 GB of memory so when the pro-
gram try to inizialize the global stiffness matrix array the intepreter raises an error (i.e.
MemoryError exception). The employment of matrices stored in full format has proven
to be very expensive for both the resolution of the system and the memory usage.

3.2 Sparse Format for Matrices

The first step in the optimization of performance is the use of sparse format instead of
full format for matrices. There are some different formats for the representation and
storage of sparse matrices. The common feature between them is that they allow a sub-
stantial required memory reduction by storing only the non-zero entries. In the case of
local constitutive models the stiffness matrices usually have a banded structure so they
are actually very sparse, that is to say they present many zero entries. This idea is noth-
ing innovative, indeeed it is considered a "best practice". For these reasons a sparse
version of the code has been created. This variant has some differences in Dirichlet
boundary conditions application, other than that regarding the replacement of full
format arrays with sparse arrays. In the following listing the function sp_assembly

is displayed and later a detailed description of the procedure is given. As suggested

17

1 def sp_assembly(K, num_elem, num_nodes, elem, coord, mat_map, E_mat, h, elem_type):

2 data_tmp = []

3 row_data = []

4 col_data = []

5 for e in range(num_elem):

6 k = stiffness_matrix(e, elem, coord, mat_map, E_mat, h, elem_type)

7 k_data = np.ravel(k) # flattened 6x6 local matrix

8 data_tmp.append(k_data)

9

10 element_dof = compute_global_dof(e, elem, elem_type)

11 row_ind = np.repeat(element_dof, 6)

12 col_ind = np.tile(element_dof, 6)

13 row_data.append(row_ind)

14 col_data.append(col_ind)

15

16 row = np.concatenate(row_data)

17 col = np.concatenate(col_data)

18 data = np.concatenate(data_tmp)

19 K = sparse.coo_matrix((data,(row, col)), shape=(2*num_nodes, 2*num_nodes))

20 K = K.tocsc()

21 return K

Listing 2: Sparse version of the assembly function.

by the scipy documentation the best sparse format to efficiently construct finite ele-
ment matrices is the Coordinate format (COO) also known as "triplet" format. In this
format one entry is identified by a list including three items: row index, column index
and entry value. The COO format is suitable for building the matrix but does not sup-
port arithmetic operations. Fortunately COO sparse matrices are quickly converted to
other formats (CSC and CSR) that allow arithmetic operations. The procedure repro-
duced by the function in listing 2 is presented by Piedade Neto, Ferreira, and Proença
[22] in their paper about parallelization of GFEM through multiprocessing in python.
Their code has been used as trace to create an analogous function that fits well into the
rest of the code. The sparse procedure maintains the same loop over elements present
in the base version. This time the 6-by-6 local stiffness matrix is flattened into a one-
dimensional array of 36 entries. Using global degrees of freedom row and column in-
dices arrays related to that 36 entries. All these arrays are stored into some temporary
lists (data_tmp, row_tmp, col_tmp). At the end of the for loop these temporary lists
contain one array for each element in the mesh and they are concatenated to form a
single one. These three final array are then used to construct the global sparse stiffness
matrix in a single operation. The main advantage of this version over the basic one is
the memory required by the global matrix K . In the base version the stiffness matrix
is a square matrix stored in full format. It is possible to express the number of entries
stored in memory for both the base and the sparse version of the assembly function.
The expressions,found in table 3.1, are valid taking the assumption that all entries in
local stiffness matrix are non-zero so that are all saved in sparse format. So for the full
format matrix the number of entries depends on the square of the number of nodes
while for the sparse matrix the dependance is related to the number of elements but
the situation is a little bit more complex due to the presence of three arrays with dif-
ferent data types for the COO storage. Let’s make the assumption that the number
of nodes in a mesh of 3-node triangles is the double of the number of elements (i.e.

18

array type bytes numpy data type

base K 2D d 2n2 ∗8 = 32n2 float64

sparse K

1D (data) d 2p2e ∗8 = 288e float64
1D (row) d 2p2e ∗4 = 144e int32
1D (col) d 2p2e ∗4 = 144e int32

total= 576e

Table 3.1: where the symbols represent the following quantities: d , the number of DOF
per node (2 for 2D elasticity); n, the number of nodes in mesh; p, the number of nodes
in each element (3 for CST element); e, the number of elements in mesh.

e = 2n). This is not exactly true but in the meshes used in this work the ratio between
nodes and elements is close to two. With these assumption the relations in Table 3.1
can be expressed in terms of n and the ratio between the two memory requirements
can be evaluated as

sparse

base
= 576(2n)

32n2
= 1152n

32n2
= 36

n
. (3.4)

From this last expression it is easy to see that if n = 36 the ratio in (3.4) is equal to 1
so that the memory required by the full format K is the same for the sparse format
global matrix. This implies that starting from 36 nodes, the more n grows the more
the sparse format is saving memory respect to what happens using full format. This
is even clearer if we plot occupied memory as a function of the number of nodes as in
Figure 3.2. In the graph the intersection between the parabola (full) and the straight
line (sparse) is exactly n = 36. From that point on, the sparse format needs less mem-
ory. This means that the sparse format is almost always better than full format except
for extremely small, and useless, problems.
The sparse implementation of the FEM analysis undergoes the same performance test
used for the basic version. The domain is exactly the one employed before: 50 fibers
embedded in matrix material with a total of 17820 nodes. The problem is solved in
2.230 seconds by the sparse code and in 2.552 seconds if we use cProfile to run the
code. In both cases the difference with the base implementation is impressive. During
the profiling of the base version it has been discovered that the most of the time has
been spent for the resolution of the assembled system, here the situation is reversed.
It is evident from the graph that the majority of runtime is used for assembly proce-

dure and only a very small fraction of the overall time is related to the execution of the
sparse solver.

Even though the sparse program is much faster than the basic one in particular
contexts its speed can be limiting. Even if it is not necessary a large growth in the size
of the domain the problem could anyway reach very large magnitude. In our case the
problem geometry and characteristics are simplified but in other situations the do-
main can present stress concentrations zones for its geometrical or microstructural
features. In this situation could be essential to do a mesh refinement in the above-
mentioned zones. This operation generate an increment in the number of elements
that can easily reach the order of 105. In this situation the time required to complete a
single analysis using sparse code is around 20 seconds. For this reason the search for
further performance improvements is not yet complete. A complete comparison be-
tween all the different procedures explained in this chapter is presented in Chapter 4.

19

0 20 40 60 80 100
n (number of nodes)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

m
em

or
y

us
ag

e
[b

yt
es

]

1e5

base
sparse

Figure 3.2: Memory usage related to K for base and sparse implementations.

sp_base_analysis: 2.547 s
solve: 0.261 s
assembly: 2.201 s
dirichlet BC: 0.036 s
other: 0.049 s

Figure 3.3: Runtime related to the main phases of the analysis represented as fractions
of the total time required by the sparse implementation.

20

3.3 Vectorized Assembly

As seen during the profiling of the sparse function the most expensive operation per-
formed during the analysis is the assembly. Luckily the problem of assembly efficiency
has already been studied in the past taking into account also specifically the context
of Python and other "vector language". In particular the work of Cuvelier, Japhet, and
Scarella [4] is employed in this section. In their article they define the term "vector"
related to a programming language meaning that the language contain element-wise
operations and functions on multidimensional arrays. Python does not have this fea-
ture built-in its standard library but vectorization is one of the most apppreciated and
useful tools of numpy arrays. Vectorization is the removal of some loops from a program
in favor of element-wise operations. Usually in Python and other high level program-
ming languages the usage of loops can negatively affect the performance.

The assembly operation is usually represented by a loop over the elements that
becomes very large as the mesh size is increased. It is clear that the vectorization is
particularly appropriate for the purpose of improving the speed of the assembly of
the stiffness matrix. In the present code the vectorized approach is contained in the
vector.py module. The implementation is an adaptation of the algorithm OPTVS
proposed in [4] and not its exact reproduction. In particular for the calculation of
the entries of the stiffness matrix a different approach is followed. The description
of the vectorized procedure of assembly is carried out for the 3-node triangle case. The
reason for this choice lies in its simplicity ease and the direct link between code and
explanation. The local K for the CST is a 6-by-6 symmetric matrix. During the usual
assembly the local K is computed sequentially for every element and then assembled
into the global one using global degree of freedom numbers. The key concept from the
work of Cuvelier, Japhet, and Scarella [4] is that it is possible to compute a single entry
of the local K for every element with a single vectorized operation. Let’s say it is needed
to compute ki j = k16 of the local matrix, once the analytical expression for each entry
is available, the same matematical operations can be performed element-wise along
arrays containing elements’ data (i.e. connectivity table, nodal coordinates). For the
3-node triangle element it is relatively easy to obtain a closed form of the local stiffness
matrix. Local entries depend only on material elasticity properties and nodal coordi-
nates (see Equation (3.2)). The starting point for reaching a generic expression of ki j

comes from an article written by Griffiths, Huang, and Schiermeyer [14] in 2008. In
their paper they give an integral expression for the generic entry of the local stiffness
matrix. Since in Python and numpy arrays the numbering of item in a sequence (list,
array, tuple) is zero-based, it is necessary to manipulate their expression in order to be
compatible with python code indexing but the form reported here is equivalent.

ki j = 2A
∫︂1

0

∫︂1−ζ2

0
h

(︁
E0

(︁
B0i B0 j +B1i B1 j

)︁+E1
(︁
B0i B1 j +B1i B0 j

)︁+E5B2i B2 j
)︁

dζ1dζ2

(3.5)
The authors used this equation along with Maple, a CAS program, in order to solve
the integral analitically. For the simple case of the CST element, as already said, that
integral is trivial because B matrix and elasticity tensor are constants. So all the terms
in equation 3.5 can be taken out of the integral. The remaining integral represents
simply the area of the natural (isoparametric) element:∫︂1

0

∫︂1−ζ2

0
h dζ1dζ2 = 1

2
h . (3.6)

21

Equation (3.5) then becomes:

ki j = h A
(︁
E0

(︁
B0i B0 j +B1i B1 j

)︁+E1
(︁
B0i B1 j +B1i B0 j

)︁+E5B2i B2 j
)︁

. (3.7)

Currently, ki j is expressed using the usual form for the B matrix (see Equation (3.1)).
This form for 3-node triangle is composed of 18 entries (3 rows, 6 column), but the
unique entries are only 6 of the overall. For this reason in the present implementation
a different storage for these data is used. The six needed entries are saved into a smaller
array b and the common factor 1/2A to all entries is treated separately.

b =
[︃

y12 y20 y01

x21 x02 x10

]︃
(3.8)

Array b contains the same data of B, except for the 2A factor, but in less "space". Due
to the shape change from B to b the creation of new indices is needed to access the
correct data. Moreover the first and the second term inside parentheses in equation
3.7 are alternately zero because of the "checkered" structure of B. This alternating be-
tween non-zero and zero values inside B creates this interchange between the terms
containing respectively E0 and E1. It is easy to check that:

B0i = 0 if i is odd

B1i = 0 if i is even.
(3.9)

For this reason for each combination of (i , j) some B terms survive and others are null,
therefore depending on the parity of

(︁
i , j

)︁
the surviving term in equation (3.7) is either

the one containing E0 or E1. The resulting pattern is a "checkered" structure of the
entries of the local stiffness matrix: E0 and E1 terms alternate themself as in boxes of
a chessboard. To avoid the useless evaluation of terms that are known to be zero, a
little bit of work is done with indices so that they can handle this "parity-dependant"
behaviour. The resulting expression of the generic entry of the local stiffness matrix
(ki j) is the following:

ki j = h

4A
(EnbAB bC D +E5bEF bG H) (3.10)

where:
n = (︁

i + j
)︁

% 2

A = i % 2 E = int(i % 2 == 0)

B = i + (−i //2) F = (i + (−1)i)+ (−(i + (−1)i)//2)

C = j % 2 G = int
(︁

j % 2 == 0
)︁

D = j + (︁− j //2
)︁

H = (j + (−1) j)+ (−(j + (−1) j)//2)

(3.11)

In the preceding relation the symbols % and // indicate respectively the modulus (re-
mainder of the division between the two operands) and the integer division (floor di-
vision). The expression i nt (a == b) indicates a combination of two operations: first
check of equality between a and b returning a boolean value (True or False in Python)
and then conversion of the boolean value to integer value (True= 1 and False= 0).

At this point, Equation 3.10 can be used inside a vectorized function that permits
to compute the local stiffness entry of row i and column j for all elements in the mesh
with a single operation. Of course each of the local entries corresponds to a particular
global entry which is characterized by a couple of global indices. Once the global in-
dices are computed using mesh node numbering, the entries for all elements related

22

1 def assembly(num_elem, num_nod, elem, coord, E_array, h):

2 c = coord

3 e = elem

4 J = X(c,e,1,0) * Y(c,e,2,0) - X(c,e,2,0) * Y(c,e,1,0)

5 b = np.array([

6 [Y(c,e,1,2), Y(c,e,2,0), Y(c,e,0,1)],

7 [X(c,e,2,1), X(c,e,0,2), X(c,e,1,0)],

8])

9 K = sparse.csc_matrix((2 * num_nod, 2 * num_nod))

10

11 # compute entries in the upper triangular matrix (without diagonal)

12 for (row, col) in zip(*np.triu_indices(6, k=1)):

13 k_data = compute_K_entry(row, col, coord, elem, b, J, E_array, h)

14 row_ind, col_ind = compute_global_dof(num_elem, elem, row, col)

15 K += sparse.csc_matrix(

16 (k_data, (row_ind, col_ind)),

17 shape=(2*num_nod, 2*num_nod),

18)

19

20 # copy previously computed entries in the lower triangular part

21 K = K + K.transpose()

22

23 # compute the diagonal entries

24 for (row, col) in zip(*np.diag_indices(6)):

25 k_data = compute_K_entry(row, col, coord, elem, b, J, E_array, h)

26 row_ind, col_ind = compute_global_dof(num_elem, elem, row, col)

27 K += sparse.csc_matrix(

28 (k_data, (row_ind, col_ind)),

29 shape=(2*num_nod, 2*num_nod),

30)

31

32 return K

Listing 3: Vectorized version of the assembly function.

to the local indices (i , j) can be assembled into the global sparse stiffness matrix. The
following listing shows the key functions that are involved in the vectorized assembly
procedure. The function assembly consists of 3 main steps. The first step is the calcu-
lation and assembly of all entries that belongs to the upper triangular part of the local
stiffness matrix. This is done with a for loop in which (r ow,col) represent (i , j). The
loop computes the data for all elements for a local entry and assembles them into the
sparse matrix right away. Taking advantage of the simmetry to get the lower triangular
part of the global K , it is sufficient to “in-place” add its transposition (2nd step). The
last step is the calculation of data related to the entries inside the main diagonal. This
is done following the same procedure for the upper triangular part of the matrix except
that this time the loop runs over a different set of indices. At this point one might wan-
der why for loops are still in use also in this vectorized procedure if they were depicted
as something to be avoided? Here the point is that these loops iterate over a sequence
of indices (r ow,col) = (i , j) that does not depend on the number of elements in the do-
main but only on the type of element. In the present case of 3-node triangle the local
stiffness matrix is a 6-by-6 matrix so the number of iteration is bounded by the "shape"
of the local K characteristic of the actual finite element. The code inside the first loop
runs 15 times to compute the data for the 15 entries in the upper triangular (excluding

23

vector_analysis: 0.441 s
solve: 0.270 s
assembly: 0.119 s
dirichlet BC: 0.035 s
other: 0.017 s

Figure 3.4: Runtime related to the main phases of the analysis represented as fractions
of the total time required by the vectorized implementation.

diagonal) and the code in the second loop runs only 6 times for the 6 diagonal entries.
Therefore we call the vectorized functions 21 times in total, and this number remains
the same if the domain size increases or decreases. This is the reason why these loops
are not a problem while the main loop employed in the base implementation is a real
obstacle. To give proof of the effective advantage obtained using vectorization also this
version of the FE analysis is tested solving the 50 fibers domain used also for the other
implementations. The problem, characterized by 35640 degrees of freedom, is solved
in 0.441 seconds. The assembly procedure and the solution of the system are the most
demanding in term of runtime. In any case it is undeniable that this last version repre-
sents an additional improvement respect to the sparse implementation. Further com-
parisons are developed in the next chapter to sum up all differences and advantages of
each variant from the previous ones.

24

Chapter 4

Results and discussion

4.1 FEM Acceleration

A sequence of methodologies has been added to the base version of the program. For
each new feature a remarkable performance improvement has been achieved. This
first section is devoted to the presentation of the numerical results in order to quantify
the improvements. Often, the best way to notice and understand the meaning of nu-
merical data is to take advantage of a graphical representation. Figure 4.1 shows the
time spent to complete a single FEM analysis as function of the number of degrees of
freedom in the problem. Each analysis, as explained before, gives as output the com-
puted modulus for that particular domain. The plotted times do not include any mesh
refinement. To give more realistic values of runtime also the time to load mesh data
is included in these data, a time that can be non-negligible if the mesh becomes large.
This is the reason why in this graph and in the following table, the reader could notice
some mismatch in execution times respect to previously given data (see Chapter 3).
The first thing to note is how fast the runtime of the base code increases with respect
to the other versions. This is probably due to the full format of the global matrix that
requires a very long time to be solved. As expected, the vectorized code is the best in
terms of runtime. Also the sparse implementation performs well but the disadvantage
in using it instead of the vector version is remarkable. It seems that, for sparse and
vector codes, the dependency of runtime from the the number of DOFs is similar. The
small difference is that vector runtime grows slightly faster than sparse runtime. The
vectorized implementation runtime, for the smallest measured domain, is two orders
of magnitude smaller that the basic not optimized code. To show the difference in per-
formance between implementations even better, we present a table and a figure that
represent the speedup. To measure the speedup of implementation j respect to the
runtime of implementation i , the following expression is used:

Si j = ti

t j
. (4.1)

The speedup factor of sparse and vector respect to the base implementation are very
high. As described earlier the reason for this lies into the system resolution step. Be-
tween the sparse and the vector codes the global system resolution function employed
is the same so the runtime of this operation should be the same in the two cases. The
main improvement of the vectorized version respect to the sparse one is the optimized
assembly procedure. To verifiy the actual improvement of this particular step inside

25

105 106

DOFs number

100

101

102

Ti
m

e
[s

]

base
sparse
vector

Figure 4.1: Runtime comparison between the three implementions performed for dif-
ferently sized problems.

DOFs number base (1) sparse (2) vector (3)
time [s] time [s] S21 time [s] S31 S32

17652 22.34 1.09 20.5 × 0.25 89.36 × 4.36 ×
35640 184.24 2.21 83.37 × 0.57 323.23 × 3.88 ×
70654 - 4.47 - 1.26 - 3.55 ×

282564 - 19.17 - 5.73 - 3.35 ×
1131098 - 83.22 - 29.83 - 2.79 ×

Table 4.1: Total runtime and speedup evaluated for problems of various size.

26

17652 35640 70654 282564 1131098
DOFs number

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0
S p

vectorized assembly Sp

Figure 4.2: Speedup of the vectorized assembly compared with the assembly of the
sparse analysis.

the complete simulation it is correct to analyze the time spent for the assembly oper-
ation. Here, the speedup of the vectorized assembly respect to the sparse assembly it
is used. From Figure 4.2, the real impact of vectorization on performance is evident.
For all different-sized meshes the speedup factor is almost ×15. The assembly opti-
mization is effectively resposible for the overall performance improvement showed in
Figure 4.1 and in Table 4.1. The variability of the speedup factor has not been inves-
tigated but could be caused by the combination of two opposite effects. Maybe for
the second mesh there is some step in the process that start to slow down the sparse
version much more that the vector version. Perhaps, for larger problems this effect is
gradually decreasing due to the fact that the vectorized code runtime increase a little
faster than sparse code.

To establish the key differences between implementations and their feature we em-
ploy another type of comparison. This time we represent the runtime for each key
phase of the FEM analysis expressed as percentage of the total runtime. The result is
presented in Figure 4.3. The base implementation is completely unbalanced toward
the resolution phase which occupy the most of the total runtime. As already discussed
,this is due to the extreme numerical cost related to the solution of a system in dense
format. For the sparse version, the most expensive phase of the analysis is the assem-
bly. This effect is caused by the sequential nature of the assembly that follows the stan-
dard procedure implementing the main loop over all elements. The vectorized code
is the most balanced in terms of the weight that the main phases have on the over-
all execution time. The solver phase is the slowest one but the difference between the
other steps of the analysis is smaller in this case. For all implementations the boundary
condition application (Dirichlet BC in figure) require a small fraction of total runtime.

27

assembly Dirichlet BC solve
FEM phase

0.0

0.2

0.4

0.6

0.8

1.0

%
 o

f t
ot

al
 ti

m
e

base
sparse
vector

Figure 4.3: Comparison between FEM phases runtime for different implementations.

material E [GPa] ν

T300 carbon fiber 15.0 0.07
BSL914C epoxy matrix 4.0 0.3

Table 4.2: Mechanical properties of materials used in the RVE analysis.

4.2 RVE Analysis Results

The output of an RVE analysis, as described in Section 2.2, is the mean of all values ob-
tained as estimated modulus for the largest domain (main step) of each sample. This
mean value is provided together with the standard deviation σ of the set of values. This
statistical quantity is used to quantify the dispersion of the set of E2 estimates that are
computed by the program. In the proposed RVE analyses, we used the same materials
involved in the numerical verification performed by Ge et al. [10]. The materials are
T300 carbon fibers and BSL914C epoxy resin as matrix. Their mechanical properties
are described in Table 4.2. The RVE analysis is executed with a main step with a side
lenght equal to 70 and with a fiber volume fraction V f of 30%. In this case the RVE
analysis is set up to compute 5 samples, each consisting of 5 steps (domains). The out-
put data set is plotted in Figure 4.4. Every sample present a convergence trend moving
from small RVE domain to large RVE side. The values to which each RVE convergence
sample tends are very close to each other. This is also confirmed by the quantities
displayed inside the box: the standard deviation of the data is very limited. The low
dispersion of final step data in some way confirms the fact that the size of the final
RVE is enough for it to be representative. The mechanical behavior resulting from the
analysis demonstrates to be independent from the arrangement of fibers, indeed we

28

20 30 40 50 60 70
RVE size

5.6

5.8

6.0

6.2

6.4

6.6

6.8

7.0

E 2
 [G

Pa
]

E2 = 6.397 GPa
 = 0.010 Gpa

sample 1
sample 2
sample 3
sample 4
sample 5

Figure 4.4: RVE analysis for composite material with V f = 30% and a 70×70 main step.

observe the same tendency for all samples. Ge et al. [10] in their paper display also
experimental data for the same combination of fiber and matrix but with V f = 60%. To
compare the our result with experimental values we execute the analysis with the same
materials , volume fraction. In this case the main step side lenght is 100. In Figure 4.5
we display the 5 steps that belong to the first sample. All domains are represented with
the same size for clarity but their true dimensions are progressively increased from 20
(label 1) to 100 units (label 5). The resulting data from this last run of the program are
displayed in Figure 4.6. The last step data for all samples are very close to each other.
This is not enough to affirm that the analysis reached a good convergence. The down-
ward trend of the last part of the curves suggests that the convergence value has not
yet been reached. A possible explanation for this behavior is that the volume fraction
affects the size of the domain. Seemingly, the current maximum RVE size (100x100) is
not enough for the domain to be representative. Unfortunately, the available machine
does not allow us to explore larger RVE size due to memory limitations. Then, we any-
way compare the result with experimental result considering that convergence has not
been reached for it. Moreover, the comparison is extended also to result obtained by
Ge et al. [10] and to analytical models described in 1.2. The numerical verification in
[10] is completed using a 3D FEM model along with volume average approach. E2 val-
ues and the percentage variations ∆ with respect to the preceding rows are summarize
in Table 4.3. It is evident that there is a certain difference (-19.2%) between the result
of the RVE analysis and the experimental value. The reasons for this inaccurate result
are probably related to the simplifications applied to the problem during the analysis.
Here, it is important underline that also the result obtained with the average volume
procedure followed by Ge et al. [10] has a certain error with respect to the experimental
measure. The same occurs for the Reuss model and the Halpin-Tsai model: the former

29

1 2

3 4

5

Figure 4.5: Steps generated for the first sample of the RVE analysis. The domain sizes
are 1) 20, 2) 40, 3) 60, 4) 80, and 5) 100.

30

20 30 40 50 60 70 80 90 100
RVE size

8.4

8.5

8.6

8.7

8.8

8.9

9.0

9.1

9.2
E 2

 [G
Pa

]

E2 = 8.886 GPa
 = 0.004 Gpa

sample 1
sample 2
sample 3
sample 4
sample 5

Figure 4.6: RVE analysis for composite material with V f = 60% and a 100× 100 main
step

has a strong difference from the experimental value, for the latter the discrepancy is
similar to that of the RVE analysis. A more detailed discussion of the causes leading to
this result is reported in the next section.

4.3 Conclusions

The actual RVE procedure used in this project has been choosen mainly for its im-
plementation simplicity. Other methods found in literature like homogenization and
volume averaging allow to obtain the complete elasticity matrix and they are much
more complex than our technique. The simplicity of our method has a cost in terms of
accuracy. The RVE procedure presented in this work provide only a rough estimate of

E2 [GPa] ∆% (a) ∆% (b)

Experimental 11.0 - -
Reuss model 7.143 −35.1% -
Halpin-Tsai model 8.829 −19.7% -
Ge-Wang FEM 9.838 −10.6% -
feat FEM RVE 8.886 −19.2% −10.7%

Table 4.3: Summary of transverse modulus experimental data and estimates obtained
from different procedures. Moreover, Percentage variations with respect to experimen-
tal data (a) and with respect to Ge et al. [10] (b) are computed.

31

the transverse modulus. This aspect it has been clear since the beginning. The result
obtained from the RVE analysis should be taken as an indicative estimate of the value
that would have been obtained using more appropriate numerical methods. The idea
of selecting domains with different size starting from the same portion of material used
by Terada et al. [26], seemed very close to a realistic situation. The difference of the RVE
result with respect to the experimental data is probably related to a number of differ-
ent factors. First, the present model is two-dimensional while the real sample used in
experimental test is obviously three-dimensional. However, the dimensionality can’t
be the only cause of the mismatch and this is proven by the fact that also the three-
dimensional model of Ge et al. [10] is characterized by a certain error. Another impor-
tant effect that is not taken into account by our model is the presence of defects. Inside
a real specimen there are a lot of different defects. The interface between fiber and ma-
trix is usually not perfect. This means that it presents debonded zones where the link
between fiber and matrix is weak or completely broken. Another phenomenon is the
formation of small voids near the interface of inside the matrix. Often fibers are not
perfectly aligned. All these effects create a situation in which the materials that form
the composite are far from being homogeneous. However, in our model the properties
of the matrix and the fiber are considered uniform. This important difference and the
fact that our modeling does not take into account the factor listed above, makes the
observed mismatch perfectlThis meay understandable. To address this kind of inaccu-
racy a complete study of the statistical distributions of defects and irregularities would
have been necessary. For each parameter, e.g. fiber arrangement, interface quality, de-
fect distribution, a separate study would have helped to identify which of them has a
relevant effect on the modulus. This kind of study is however not among the objec-
tives of this work. As stated in the preface one of the main goals of this project is the
acceleration of a basic FEM code.

After the discussion of performance data made in Section 4.1, we can safely say that
the results are positive. The sparse version and the vectorized version bring an obvious
improvement in performance compared to the starting code. The vectorization of the
assembly from Cuvelier, Japhet, and Scarella [4] demonstrates to be at least 15 times
faster than the standard sequential assembly (see Figure 4.2). The vectorized code can
analyze domains with more than 1 million degrees of freedom in about 30 seconds (see
Table 4.1), which is an extremely satisfying result. As already explained in Section 2.3,
the Python language is not the best choice if performance is critical. However, Python
is used in different fields for prototyping the software at first and later translate it in
another faster language. The main reason behind this practice is the ease that char-
acterize Python. In other word, this language allows the user to focus on what to do,
instead of how to do it. From this perspective the feat [9] package developed within
this project can be seen as a prototype code for future development. But before the
translation of feat in another language there are other acceleration techniques that
can be explored. Just to give a couple of quick examples: Python multiprocessing ca-
pabilites and Just In Time (JIT) compilation provided by Numba package [20].
Recalling the preface, the main purpose of this thesis is to learn something new. This
task has been certainly accomplished during the months of work on this project. From
technical knowledge of Finite Element Method to workflow organization, I think ev-
erything I’ve had to deal with could come in handy in the future.

32

Bibliography

[1] D. F. Adams and D. R. Doner. “Longitudinal shear loading of a unidirectional
composite”. In: Journal of Composite Materials 1.1 (1967), pp. 4–17.

[2] D. F. Adams and D. R. Doner. “Transverse normal loading of a unidirectional
composite”. In: Journal of composite Materials 1.2 (1967), pp. 152–164.

[3] R. D. Cook et al. Concepts and Applications of Finite Element Analysis. John Wiley
& Sons, Inc., 2001.

[4] F. Cuvelier, C. Japhet, and G. Scarella. “An efficient way to assemble finite ele-
ment matrices in vector languages”. In: BIT Numerical Mathematics 56.3 (2016),
pp. 833–864.

[5] C. Dong. “Effects of Process-Induced Voids on the Properties of Fibre Reinforced
Composites”. In: Journal of Materials Science & Technology 32.7 (2016), pp. 597–
604. ISSN: 1005-0302. DOI: https : / / doi . org / 10 . 1016 / j . jmst . 2016 .
04.011. URL: http://www.sciencedirect.com/science/article/pii/
S100503021630038X.

[6] W.J. Drugan and J.R. Willis. “A micromechanics-based nonlocal constitutive equa-
tion and estimates of representative volume element size for elastic composites”.
In: Journal of the Mechanics and Physics of Solids 44.4 (1996), pp. 497–524. ISSN:
0022-5096. DOI: https://doi.org/10.1016/0022-5096(96)00007-5.

[7] Python Software Foundation. The Python Programming Language. URL: https:
//www.python.org/.

[8] R. L. Foye. “An evaluation of various engineering estimates of the transverse
properties ofunidirectional composites”. In: Proceedings of the Tenth National
SAMP E Symposiwn-Advanced Fibrous Reinforced composites (1966), pp. 9–11.

[9] P. Fumiani. basic-ph/feat. URL: https://github.com/basic-ph/feat.

[10] W. Ge et al. “An efficient method to generate random distribution of fibers in
continuous fiber reinforced composites”. In: Polymer Composites 40.12 (2019),
pp. 4763–4770. DOI: 10 . 1002 / pc . 25344. URL: https : / / onlinelibrary .
wiley.com/doi/abs/10.1002/pc.25344.

[11] C. Geuzaine and J. Remacle. “Gmsh: A 3-D finite element mesh generator with
built-in pre- and post-processing facilities”. In: International Journal for Numer-
ical Methods in Engineering 79.11 (2009), pp. 1309–1331. DOI: 10.1002/nme.
2579. URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.
2579.

[12] R. F. Gibson. Principles of Composite Material Mechanics. 4th Edition. Boca Ra-
ton: CRC Press, 2016. DOI: https://doi.org/10.1201/b19626.

33

https://doi.org/https://doi.org/10.1016/j.jmst.2016.04.011
https://doi.org/https://doi.org/10.1016/j.jmst.2016.04.011
http://www.sciencedirect.com/science/article/pii/S100503021630038X
http://www.sciencedirect.com/science/article/pii/S100503021630038X
https://doi.org/https://doi.org/10.1016/0022-5096(96)00007-5
https://www.python.org/
https://www.python.org/
https://github.com/basic-ph/feat
https://doi.org/10.1002/pc.25344
https://onlinelibrary.wiley.com/doi/abs/10.1002/pc.25344
https://onlinelibrary.wiley.com/doi/abs/10.1002/pc.25344
https://doi.org/10.1002/nme.2579
https://doi.org/10.1002/nme.2579
https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.2579
https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.2579
https://doi.org/https://doi.org/10.1201/b19626

[13] M. Goudarzi and A. Simone. “Fiber neutrality in fiber-reinforced composites:
Evidence from a computational study”. In: International Journal of Solids and
Structures 156-157 (2019), pp. 14–28. DOI: https://doi.org/10.1016/j.
ijsolstr.2018.07.023.

[14] D. V. Griffiths, J. Huang, and R. P. Schiermeyer. “Elastic stiffness of straight-sided
triangular finite elements by analytical and numerical integration”. In: Commu-
nications in Numerical Methods in Engineering 25.3 (2009), pp. 247–262. DOI:
10.1002/cnm.1124. URL: https://onlinelibrary.wiley.com/doi/abs/10.
1002/cnm.1124.

[15] J. C. Halpin. Effects of environmental factors on composite materials. Tech. rep.
AFML-TR-67-423. Air Force Materials Lab Wright-Patterson AFB OH, June 1969.

[16] L. R. Herrmann and K. S. Pister. “Composite properties of filament-resin sys-
tems”. In: ASME Paper 63-WA (1963), p. 239.

[17] R. Hill. “Elastic properties of reinforced solids: Some theoretical principles”. In:
Journal of the Mechanics and Physics of Solids 11.5 (1963), pp. 357–372. ISSN:
0022-5096. DOI: https://doi.org/10.1016/0022-5096(63)90036-X. URL:
http://www.sciencedirect.com/science/article/pii/002250966390036X.

[18] R. M. Jones. Mechanics Of Composite Materials. 2nd Edition. Boca Raton: CRC
Press, 1999. DOI: https://doi.org/10.1201/9781498711067.

[19] S. Kari, H. Berger, and U. Gabbert. “Numerical evaluation of effective material
properties of randomly distributed short cylindrical fibre composites”. In: Com-
putational Materials Science 39.1 (2007), pp. 198–204. DOI: https://doi.org/
10.1016/j.commatsci.2006.02.024.

[20] S. K. Lam, A. Pitrou, and S. Seibert. “Numba: A LLVM-Based Python JIT Com-
piler”. In: Proceedings of the Second Workshop on the LLVM Compiler Infrastruc-
ture in HPC. LLVM ’15. Austin, Texas: Association for Computing Machinery, 2015.
ISBN: 9781450340052. DOI: 10.1145/2833157.2833162. URL: https://doi.
org/10.1145/2833157.2833162.

[21] T. E. Oliphant. A guide to NumPy. USA: Trelgol Publishing, 2006.

[22] D. Piedade Neto, M. D. C. Ferreira, and S. P. B. Proença. “Generalized finite ele-
ment method computation: parallelization using python multiprocessing pack-
age”. In: Mecánica Computacional (2011).

[23] N. Schlömer. nschloe/tuna. URL: https://github.com/nschloe/tuna.

[24] N. Schlömer et al. nschloe/meshio v4.0.8. Version v4.0.8. Feb. 2020. DOI: 10.5281/
zenodo.3691940. URL: https://doi.org/10.5281/zenodo.3691940.

[25] N. Schlömer et al. nschloe/pygmsh v6.1.1. Version v6.1.1. Apr. 2020. DOI: 10 .
5281/zenodo.3764683. URL: https://doi.org/10.5281/zenodo.3764683.

[26] K. Terada et al. “Simulation of the multi-scale convergence in computational
homogenization approaches”. In: International Journal of Solids and Structures
37.16 (2000), pp. 2285–2311. DOI: https://doi.org/10.1016/S0020-7683(98)
00341-2.

34

https://doi.org/https://doi.org/10.1016/j.ijsolstr.2018.07.023
https://doi.org/https://doi.org/10.1016/j.ijsolstr.2018.07.023
https://doi.org/10.1002/cnm.1124
https://onlinelibrary.wiley.com/doi/abs/10.1002/cnm.1124
https://onlinelibrary.wiley.com/doi/abs/10.1002/cnm.1124
https://doi.org/https://doi.org/10.1016/0022-5096(63)90036-X
http://www.sciencedirect.com/science/article/pii/002250966390036X
https://doi.org/https://doi.org/10.1201/9781498711067
https://doi.org/https://doi.org/10.1016/j.commatsci.2006.02.024
https://doi.org/https://doi.org/10.1016/j.commatsci.2006.02.024
https://doi.org/10.1145/2833157.2833162
https://doi.org/10.1145/2833157.2833162
https://doi.org/10.1145/2833157.2833162
https://github.com/nschloe/tuna
https://doi.org/10.5281/zenodo.3691940
https://doi.org/10.5281/zenodo.3691940
https://doi.org/10.5281/zenodo.3691940
https://doi.org/10.5281/zenodo.3764683
https://doi.org/10.5281/zenodo.3764683
https://doi.org/10.5281/zenodo.3764683
https://doi.org/https://doi.org/10.1016/S0020-7683(98)00341-2
https://doi.org/https://doi.org/10.1016/S0020-7683(98)00341-2

[27] S. Torquato, O. U. Uche, and F. H. Stillinger. “Random sequential addition of
hard spheres in high Euclidean dimensions”. In: Phys. Rev. E 74 (6 Dec. 2006),
p. 061308. DOI: 10.1103/PhysRevE.74.061308. URL: https://link.aps.org/
doi/10.1103/PhysRevE.74.061308.

[28] P. Virtanen et al. “SciPy 1.0: Fundamental Algorithms for Scientific Computing
in Python”. In: Nature Methods 17 (2020), pp. 261–272. DOI: https://doi.org/
10.1038/s41592-019-0686-2.

[29] G. Zhang and S. Torquato. “Precise algorithm to generate random sequential
addition of hard hyperspheres at saturation”. In: Physical Review E 88.5 (2013),
p. 053312.

35

https://doi.org/10.1103/PhysRevE.74.061308
https://link.aps.org/doi/10.1103/PhysRevE.74.061308
https://link.aps.org/doi/10.1103/PhysRevE.74.061308
https://doi.org/https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/https://doi.org/10.1038/s41592-019-0686-2

	Preface
	Micromechanical Estimates
	Transverse Modulus
	Analytical Micromechanical Models
	Reuss Model
	Halpin-Tsai Equation

	Numerical and Coding Tools
	Finite Element Method
	RVE Analysis
	Python
	Gmsh
	Hardware

	Acceleration
	Base Implementation
	Sparse Format for Matrices
	Vectorized Assembly

	Results and discussion
	FEM Acceleration
	RVE Analysis Results
	Conclusions

	Bibliography

