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Abstract 

 

 
The primary objective of this thesis is to explore the distinct effects of monetary policy 

shocks and information shocks and to determine whether information shocks, followed by 

United States Federal Open Market Committee (FOMC) communications, can have significant 

impacts on key macroeconomic variables within European Union markets.  

This research entails a comprehensive analysis of the impact of these shocks on critical 

economic indicators. To achieve this, a VAR model is utilized, employing a recursive VAR 

framework used as a proxy for a structural VAR model. The analysis of results and the 

exploration of key research questions are conducted through the use of impulse response 

functions and forecast error variance decompositions.  

The dataset covers the period from 1991 to 2015, containing monthly data, and includes a 

range of economic indicators, such as inflation, unemployment rates, short and long-term 

interest rates, as well as variables used as a proxy for the global financial cycle and financial 

distress indicators.  

The VAR model includes seven variables and incorporates six lags to better understand the 

different impacts of monetary and information shocks and their implications for European 

macroeconomic variables. 
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Introduction 
 

 

In an increasingly interconnected global economy, the transmission of financial and 

economic information has become more rapid and influential than ever before. Financial 

markets around the world are intrinsically linked, and any event or piece of information 

originating in one part of the world can have a profound impact on markets elsewhere. This 

dynamic is particularly evident when considering the European markets and their relationship 

with the United States, a financial powerhouse that serves as a primary driver of global 

economic sentiment and information flow. 

This study aims to explore the connection between the United States and European financial 

markets, with a special focus on the effects of “surprising information” issued by the United 

States Federal Open Market Committee (FOMC).  

To get started, the work introduces and explain two distinct types of effects that occur when 

FOMC releases such information. The first is the standard “monetary policy” (MPI) impact, 

and the second is the “information shock” (INFO) impact. It's important to understand that they 

have completely different effects on financial markets.  

Starting with the research of Miranda - Agrippino and Ricco (2021) as well as Jarocinski 

and Karadi (2020), the aim is to deliver a comprehensive explanation of the development of 

these two impacts.  

Subsequently, building upon this initial description, my analysis will delve into the effects 

of these shocks on key macroeconomic variables in the European markets. In order to conduct 

this analysis, I will examine impulse response functions (IRFs) and forecast error variance 

decomposition (FEVD) calculated using a VAR model, specifically, a recursive VAR model, 

which serves as a proxy for the Structural VAR. To validate the results, a variety of robustness 

tests will be employed, accounting for different variables and proxies, to assess the presence or 

absence of significant impacts (Møller and Wolf, 2021). 

The dataset used includes both EU and US macroeconomic variables such as short and long-

term interest rates, inflation, unemployment, industrial production, and exchange rates. 

Additionally, an indicator of the global financial cycle (GFC) and a proxy for a financial distress 

indicator (Baa10Y) will also be incorporated. 

Ultimately, once the significance of the data sets has been rigorously tested and the different 

variables have been utilized to demonstrate the model's capacity to capture the impulse response 

of these shocks, a concluding analysis will be provided. This final commentary will endeavor 

to compare the results with conventional economic theory and offer thoughtful insights. 
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Chapter 1 
 

 

 

1.1 Introduction to information shocks. 
 

First of all, an “Information shock” (INFO) occurs when central banks release 

announcements with new and unexpected insights into the economic outlook. These 

announcements can affect financial markets by altering how investors see and expect future 

economic conditions. Unlike the more common “monetary policy shocks” (MPI), which are 

recognized when interest rates and stock prices move in opposite directions, “INFO shocks” 

are characterized by interest rates and stock prices moving together. 

During the late 1990s, these INFO shocks were not well-documented, puzzling 

macroeconomic researchers. For example, on March 20, 2001, the FOMC surprised the market 

by making a bigger than anticipated 50-basis-point cut in the federal funds rate. Conventional 

economic theory would predict that the S&P 500 stock market index should have gone up, but 

instead, it experienced a significant drop within just 30 minutes of the announcement. This kind 

of event is not unique; around one-third of FOMC announcements since 1990 have shown this 

unusual pattern of interest rates and stock market changes moving together. The main 

explanation for this deviation from standard economic theory is that the FOMC, in its 

communication, highlighted "substantial risks that demand and production could remain soft" 

in the foreseeable future. This pessimistic communication led to a decrease in stock values, 

regardless of the surprise rate cut (Jarocinski and Karadi, 2020). 

Miranda, Agrippino and Ricco (2021) have created a method to measure these information 

shocks and convert them into numerical data based on FOMC announcements over time. This 

allows them to distinguish between changes caused by policy decisions and those brought about 

by central bank information, helping them assess how these shocks impact asset prices and the 

broader economy. This method enables to use market prices to understand the hidden messages 

in central bank announcements, which are otherwise challenging for econometricians to 

uncover. 

More specifically, the approach used by Miranda, Agrippino, and Ricco (2021) aims to 

determine how policy changes and central bank information influence the economy over time 

using a Bayesian structural vector autoregression (VAR).  
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In their basic VAR model, using U.S. data, they add information from high-frequency 

financial market surprises that occur during monetary policy announcements to variables such 

as interest rates, the price level, economic activity, and financial indicators.  

This approach is closely connected to proxy VARs (Stock and Watson ,2012)  and (Mertens 

and Ravn ,2013), which use high-frequency interest rate surprises to detect monetary policy 

changes (Gertler and Karadi 2015).  

The novelty in their proposal is their use of sign restrictions on multiple high-frequency 

surprises, allowing them to identify multiple simultaneous shocks. In particular, they use the 

three-month fed funds futures to measure changes in expectations about short-term interest rates 

and the S&P 500 index to assess changes in stock values within a half-hour window around 

FOMC announcements.  

They assume that during this brief period, only two structural shocks - a monetary policy 

shock and a central bank information shock - systematically influence financial market surprises 

(Jarocinski and Karadi, 2020).  

 

 

 

1.2 Modeling imperfect information in economic models. 
 

 

In this exploration, I will venture into the methods and approaches employed by economists 

to dissect and quantify information shocks.  

The considerations highlighted in models of imperfect information are two:  

First, as observed in Coibion and Gorodnichenko (2015), for models of imperfect 

information, a commonly observed phenomenon is the slower response of average expectations 

to changes in economic fundamentals when compared to the variables being forecasted. This 

suggests that revisions in expectations, and notably, shifts in market prices, exhibit correlations 

over time. These correlations offer insights into both current and past structural shocks.  

Second, Melosi (2017) - Romer and Romer (2000), recognize the inherent information 

asymmetry between policymakers and market participants. This insight underscores that the 

actions taken by central banks, which are observable, can provide valuable information about 

underlying economic fundamentals.  

Miranda, Agrippino, and Ricco (2021) presented a model that incorporates noisy and 

asymmetric information dynamics into their research. Let's consider an economy where a 

k-dimensional vector representing macroeconomic fundamentals follows an autoregressive 

process.  
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Equation (1): 

 

 𝑋 = 	𝜌𝑋 +	𝜉 																			𝜉 ~	𝑁(0	, Σ ) 
  

 

Where ξt represents the vector of structural shocks. Each time period, denoted as t, is 

divided into two distinct stages: an opening stage 𝑡 and a closing stage  𝑡. During the opening 

stage 	𝑡 , structural shocks become realized. Notably, economic agents and central banks lack 

direct observation of the variable 𝑋 . Instead, they rely on a Kalman filter to form their 

expectations about 𝑋 , drawing from private, yet noisy, signals. Specifically, private agents 

receive 𝑆 , while the central bank receives 𝑆 . These signals inform their respective 

conditional forecasts, denoted as 	𝐹   and  𝐹 . 

Economic agents have the capacity to engage in securities trading, such as futures contracts, 

based on the policy rate realization at time 𝑡 + ℎ, denoted as P (𝑖 )	. The pricing of a futures 

contract for 𝑖  is a reflection of their collective expectations concerning the variable 𝑋 . This 

relationship can be described as follows. Equation (2): 

 

 𝑃 	(𝑖 ) = 	𝐹 𝑋 	 +	𝜇  

 

 

 

The term 𝜇  in this context represents a stochastic element, which could encompass factors 

such as the risk premium (Gürkaynak, Sack, and Swanson, 2005) or a stochastic process related 

to asset supply (Hellwig, 1980) and (Admati, 1985). 

At the closing stage 𝑡, and contingent on its internal forecast 𝐹 	𝑋 , the central bank 

formulates the interest rate 𝑖  for the ongoing period through the application of a Taylor rule. 

Equation (3):  

 𝑖 = 	𝜙 + 𝜙′ 𝐹 ,	 𝑋 +	𝑢 +𝑊 |  
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The variable 𝑢  represents the monetary policy shock. Additionally, at this point, the central 

bank has the option to either publicly announce or indirectly leak a deviation from the Taylor 

rule, marked 𝑊 |  .This deviation becomes effective at time 𝑡. 
Following the observation of the current policy rate, economic agents adjust their forecasts 

and engage in trading at 𝑡.  
When conditioned on the interest rate at time (𝑡 − 1), the act of observing the current 

interest rate is analogous to receiving a public signal, encompassing common noise,  𝑆  

disseminated by the central bank. 

Due to this forecast update stemming from the policy announcement, the pricing of futures 

contracts experiences a revision that is proportionate to the average adjustment of expectations 

across the population. This revision can be expressed as the Equation (4): 

 

 𝑃 	(𝑖 ) −	𝑃	 	(𝑖 ) ∝ 	 (𝐹 𝑋 	 −	𝐹	 𝑋 	)	 
 

 

The terms 𝐹	 	𝑥  and  𝐹 	𝑥   represent the average forecast updates that result from the 

signals 𝑆 	   and  𝑆  respectively.  

After a central bank policy announcement, aggregate revisions in expectations progress 

according to the equation (4). Equation (5): 

 (𝐹 𝑋 	 −	𝐹	 𝑋 	)= (1 − 𝐾 )(1 − 𝐾 )[𝐹
( )

𝑋 	 −	𝐹( )𝑋 	] + 𝐾 (1 − 𝐾 )𝜉 +	𝐾 [𝑣 	 − (1
− 𝐾 )𝜌𝑣 ,( )] +	𝐾 𝐾 𝜙 [𝑢 − 	𝜌(2 − 𝐾 − 𝐾 )𝑢 +	(1 − 𝐾 )(1
− 𝐾 )𝜌 𝑢 ] 

 

 

In this equation, 𝐾 		and  𝐾 		are the Kalman gains used by economic agents in forming their 

expectations through 𝐹	  and  𝐹   respectively.  𝐾 	, on the other hand, signifies the Kalman 

gain employed by the central bank. The variable 𝑢 		corresponds to the monetary policy shock, 

while 𝑣 , pertains to the observational noise originating from the central bank. These elements 

collectively contribute to the evolution of aggregate expectation revisions in response to 

monetary policy announcements. 
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Equation (5) reveals two crucial features of models operating under the assumption of 

imperfect information that have significant implications for identifying monetary policy shocks. 

The first feature is that average revisions in expectations (and consequently high-frequency 

surprises), which serve as a direct measure of shocks under conditions of complete information, 

are not orthogonal to their past values or past information. This is due to the gradual assimilation 

of new information over time. 

The second notable feature is that observable policy actions have the capacity to convey 

information about economic fundamentals from the policymaker to market participants. As 

seen in equation (5), economic agents update their expectations by extracting information about 

the structural shocks ξt from the policy announcement. This phenomenon is often referred to as 

the "Fed information effect," observed in the works of Romer and Romer (2000) and Nakamura 

and Steinsson (2018), or the "signaling channel," as discussed by Melosi (2017) and others like 

Tang (2013) and Hubert and Maule (2016).  

This implicit disclosure of information has a significant impact on the transmission of 

monetary impulses and the central bank's ability to stabilize the economy. Failure to account 

for this effect can result in both price and output puzzles, as illustrated by the fact that a policy 

rate increase can be interpreted differently by information-constrained agents. It can be viewed 

as either a deviation from the central bank's monetary policy rule, signifying a contractionary 

monetary shock, or as an endogenous response to anticipated inflationary pressures on the 

horizon. Despite both scenarios leading to a policy rate increase, they imply markedly different 

outcomes for macroeconomic aggregates and agents' expectations. 

Moreover, equation (5) offers testable predictions about market-based monetary surprises. 

In the presence of imperfect information, these surprises exhibit three key characteristics: they 

are (𝑖) serially correlated, (𝑖𝑖)	 predictable using other macroeconomic variables, and (𝑖𝑖𝑖)  
correlated with the central bank's projections of relevant economic indicators. These features 

offer valuable insights into the impact of imperfect information on the identification of 

monetary policy shocks and their effects on the economy (Miranda, Agrippino, and Ricco 

2021). 
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1.3 Testing serial correlation, predictive patterns, and the Fed's 

projections in monetary policy analysis. 
 

 

 

In this section, the empirical analysis aims to verify the three testable implications discussed 

earlier. Test for (𝑖) serial correlation, (𝑖𝑖)	predictability with lagged state variables for leading 

instruments for monetary policy shocks, and (𝑖𝑖𝑖) correlation with the Fed's internal forecasts. 

Table 1 examines the correlation between high-frequency market surprises in the fourth 

federal funds futures (FF4) and various economic forecasts. This analysis is based on 

movements in the fourth federal funds futures contracts surrounding (FOMC) announcements, 

as proposed by Gürkaynak, Sack, and Swanson (2005). Dataset from 1990 to 2009. 

The first column of Table 1 corresponds to a regression model similar to Romer and Romer 

(2004) and includes forecasts for output, inflation, and other economic indicators over various 

time horizons. The results show a statistically significant relationship between high-frequency 

market surprises and the Federal Reserve's Greenbook forecasts, in line with the intuition 

presented in the authors' model. However, interpreting individual coefficients is complicated 

due to multicollinearity among forecasts for the same variables at different horizons. 

Subsequent columns (2 to 5) evaluate the predictive content of forecasts and forecast 

revisions grouped by horizon. The null hypothesis of joint non significance of coefficients is 

rejected for all horizons up to one quarter ahead. This suggests that the information transfer 

primarily pertains to the central bank's short-term macroeconomic outlook. Furthermore, output 

forecasts have significant and positive coefficients, indicating their role in capturing aggregate 

demand shocks and their effects on prices through the Phillips curve. On the other hand, 

negative coefficients on inflation forecasts may reflect the impact of supply shocks to which 

the central bank might respond differently. 

The authors also address concerns about the influence of unscheduled FOMC meetings, 

which might attract market attention during times of economic distress. To address this concern, 

they re-run the regression using data only from scheduled FOMC meetings and confirm the 

robustness of the results (Miranda, Agrippino, and Ricco 2021). 
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Miranda – Agrippino – Ricco (2021) 

 

 

Table 2 presents the results of tests conducted to assess autocorrelation in both high-

frequency and narrative instruments used to measure monetary policy shocks. High-frequency 

surprises are aggregated at a monthly frequency using various methods, and the findings are as 

follows:  

The first column reports the results for an instrument created by summing all 𝐹𝐹4 surprises 

registered between 1990 and 2009 within each month. These surprises are derived from high-

frequency movements in financial markets following Federal Open Market Committee 

(FOMC) announcements.  

The second column, only scheduled FOMC meetings are considered. It excludes 

unscheduled meetings.  

The third column the results are reported for an instrument introduced by Gertler and Karadi 

in 2015. Their method involves monthly aggregation that takes into account the date of the 

FOMC meeting within each month and assigns weights based on the assumption of a one-month 

duration for each event.  

The fourth column presents findings related to the narrative instrument introduced by Romer 

and Romer in 2004 (referred to as MPNt). This narrative instrument is constructed by running 

a regression that links the change in the policy rate to central bank forecasts, using an empirical 

Taylor rule. The residuals from this regression are used as a measure of monetary policy shocks. 

The results reveal that serial correlation is present in the series of high-frequency surprises 

that are registered around scheduled FOMC meetings only (denoted as 𝐹𝐹4 ). This 

observation aligns with the theoretical framework presented above. It is important to note that 
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this analysis is somewhat limited due to the relatively small number of scheduled FOMC 

meetings each year, which results in missing data points in the regression. 

The serial correlation structure is weaker for the series that includes both scheduled and 

unscheduled FOMC meetings (𝐹𝐹4 ). This is likely due to the more unsystematic nature of 

unscheduled events. 

In contrast, the high-frequency instrument of Gertler and Karadi (2015) exhibits strong 

autocorrelation. This is partially attributed to the weighting scheme used in their monthly 

aggregation, as also observed in studies by Stock and Watson (2012) and Ramey (2016). 

While these findings are not entirely conclusive, they provide evidence that supports the 

presence of information frictions in the economy. Additionally, the null hypothesis is strongly 

rejected for the narrative series of Romer and Romer (2004), indicating the importance of 

narrative instruments in capturing monetary policy shocks, as demonstrated by Stock and 

Watson (2012). 

 

 

 

Miranda – Agrippino – Ricco (2021) 

 

 

In Table 3, the authors introduce a test to evaluate the predictability of monetary policy 

shocks using historical information. Specifically, they project various measures of monetary 

policy shocks onto a set of lagged macro-financial factors, which are derived from a 

comprehensive dataset of over 130 monthly economic and financial variables compiled by 
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McCracken and Ng (2015). These variables cover key macroeconomic indicators and financial 

metrics. The regressions take into account data with a one-month lag. 

 

 

 

Miranda – Agrippino – Ricco (2021) 

 

 

The results presented in Table 3 confirm that market-based monetary surprises can be 

predicted using past information. This finding indicates that past data is valuable in 

understanding and forecasting monetary policy shocks. Additionally, the analysis demonstrates 

that narrative measures of "unanticipated" changes in interest rates are also predictable using 

state variables. These state variables are influenced by past structural shocks. 

This outcome is consistent with the earlier observation of serial correlation in Table 2, which 

suggested the presence of information frictions in the economy. Furthermore, the fact that 



 21 

factors are estimated using the latest available data, which may include revisions to initial 

releases, underscores the idea that imperfect information plays a role in economic dynamics.  

In a world of perfect information, markets would efficiently aggregate data, and there would 

be no need for data revisions or the involvement of national accounting offices. 

In conclusion, these findings highlight the significance of considering the Fed's internal 

forecasts, the serial correlation of high-frequency surprises, and the predictability of market-

based monetary surprises using historical data and state variables. Taking into account this 

evidence, the following section of the study proposes an instrument to account for the presence 

of information frictions in the economy. 

 

 

 

1.4 Monetary policy shocks in focus: an instrument accounting for 

information dynamics. 
 

 

 

To address the presence of information frictions and define monetary policy shocks, the 

research proposes an instrument that considers both the gradual absorption of information 

within the economy and the signaling channel of monetary policy, arising from the differing 

information sets of the central bank and market participants. 

The instrument for monetary policy shocks is constructed by isolating the component of 

high-frequency market surprises triggered by policy announcements that is orthogonal to both 

the central bank's economic projections and past market surprises. This process unfolds in three 

steps.  

First, they project high-frequency market-based surprises in the fourth federal funds futures 

around FOMC announcements onto Greenbook forecasts and forecast revisions for real output 

growth, inflation (measured as the GDP deflator), and the unemployment rate, following a 

methodology similar to Romer and Romer (2004). This approach allows to control for the 

influence of the central bank's private information, thereby accounting for the central bank 

information channel. The following regression is conducted at the frequency of FOMC 

meetings. Equation (6): 

 

 

𝐹𝐹4 = 𝛼 +	 𝜃 𝐹 𝑥 +	 𝜗 [𝐹 𝑥 − 𝐹 𝑥 ] +	𝑀𝑃𝐼  
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In this process, 𝐹𝐹4 		, represents the high-frequency market-based monetary surprise 

computed around the FOMC announcement indexed by 𝑚,  𝐹 𝑥   represents Greenbook 

forecasts for the vector of variables 𝑥 at the horizon 𝑞	 + 	𝑗, which are compiled before each 

meeting, and (𝐹 𝑥 ) 	−	(𝐹 𝑥 )			represents revisions to forecasts between 

consecutive meetings. 

These forecasts are typically released approximately a week before each scheduled FOMC 

meeting and serve as a proxy for the information available to the FOMC when making policy 

decisions.  

The latest available forecast is used for each surprise. This first step yields an instrument 

for monetary policy shocks (𝑀𝑃𝐼𝑚) at the frequency of FOMC meetings, which accounts for 

the implicit transfer of information that occurs at the time of FOMC announcements. 

Next, they create a monthly instrument by aggregating the daily (𝑀𝑃𝐼𝑚) within each 

month. In most cases, there is only one surprise per month, in which case the monthly surprise 

is simply the sum of the daily values. For months without FOMC meetings, a value of zero is 

assigned. Similar aggregation methods are employed in studies such as Stock and Watson 

(2012) and Caldara and Herbst (2019).  

To address the characteristic slow absorption of information by economic agents, a common 

feature in models of imperfect information (Coibion and Gorodnichenko, 2015), they eliminate 

the autoregressive component from the monthly surprises. Let  𝑀𝑃𝐼𝑡  represent the outcome of 

the monthly aggregation explained in the previous step. Our monthly monetary policy 

instrument 𝑀𝑃𝐼𝑡   is formed by the residuals of the following regression. Equation (7): 

 

 

𝑀𝑃𝐼 = 	𝜙 +	 𝜙 𝑀𝑃𝐼 +𝑀𝑃𝐼  

 

 

 

The regression defined in equation (7) use only data corresponding to non-zero 𝑀𝑃𝐼𝑡 
observations for the dependent variable. In months without FOMC meetings, MPIt is set to 

zero. 

The conceptual model presented above provides the rationale for constructing the 

instrument as described in equation (6) to equation (7). Greenbook forecasts (and revisions) 
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have a direct influence on the central bank's information set, and therefore, they account for the 

macroeconomic information transmitted to economic agents through policy announcements. 

Even if there are potential misrepresentations in the empirical Taylor rule used in equation 

(6), the central bank's forecasts for output, inflation, and unemployment are expected to 

encompass the macroeconomic shocks that guide the monetary authority's policy decisions. 

This, in conjunction with the lagged surprises, helps mitigate the reliance of high-frequency 

instruments on other concurrent and previous macroeconomic shocks. 

In Figure 1, the monthly aggregation of the market monetary surprise obtained by summing 

daily surprises (𝐹𝐹4 		, orange line) alongside the instrument produced using our approach 

(MPIt, blue line). It's important to note that differences between the two series are especially 

conspicuous during periods of economic distress (Miranda, Agrippino, and Ricco 2021).  

 

 

 

 

 

Figure 1 - Miranda – Agrippino – Ricco (2021) 

 

 

In the upcoming section of this thesis, I will leverage the insights gained from the results of 

the market monetary surprise instrument. The goal is to employ a Vector Autoregression (VAR) 

model, which allows us to analyze the dynamic interactions among various economic variables. 

Specifically, I will create an Impulse Response Function (IRF) and perform Forecast Error 

Variance Decomposition (FEVD) to gain a deeper understanding of how these monetary policy 

shocks impact both European and US financial markets. 
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The VAR model will help us examine how these shocks affect key macroeconomic 

indicators such as inflation, unemployment rates, short-term and long-term interest rates. 

Additionally, I will explore their impact on the business cycle and indicators of financial 

distress. 
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Chapter 2 
 

 

 

What is the impact of information shocks on short-term interest rates in the US and the EU? 

How does a monetary policy shock influence the unemployment rate? What effects do INFO 

shocks have on exchange rates and the global financial cycle? In the upcoming chapters, I will 

delve into these and related questions through a quantitative exploration employing a series of 

VAR models. It will be provided a detailed description of the VAR world, introduced the 

underlying theory and the approach used by VAR researchers. This foundation is essential for 

a comprehensive understanding of the subsequent analysis. 

 

 

 

2.1 VAR models 
 

 

Two decades ago, Christopher Sims (1980) introduced the concept of vector autoregressions 

(VARs), which offered a novel framework for macroeconometric analysis. Unlike univariate 

autoregressions that explain a single variable based on its own past values, VARs are multi-

equation models. In a VAR, each variable is explained by its own past values and the current 

and past values of the other variables in the system.  

This framework provides a structured way to capture complex dynamics across multiple 

time series, and the accompanying statistical tools made it user-friendly and interpretable. 

As highlighted by Sims (1980) and other influential early researchers, VARs held the 

potential to offer a unified and credible approach for tasks like data description, forecasting, 

structural inference, and policy analysis (Stock and Watson, 2001). 

VAR models come in three main varieties: reduced form, recursive, and structural. 

In a reduced form VAR, each variable is expressed as a linear function of its own lagged 

values, as well as the lagged values of all other variables considered in the model. For instance, 

in a three-variable VAR there would be three equations. These equations, estimated using 

ordinary least squares (OLS) regression, capture the relationships between the variables over 

time. The error terms in these regressions represent the unexpected or "surprise" movements in 
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each variable after considering its past values. These errors can be correlated across equations 

if the variables are correlated (Stock and Watson, 2001). 

In a recursive VAR (Vector Autoregressive) model, the error terms in each regression 

equation are intentionally constructed to be uncorrelated with the error terms from previous 

equations. This is achieved by incorporating contemporaneous values of other variables as 

regressors in each equation. Recursive VARs are employed to perform regressions of a specific 

variable on all the other variables within the system. This process essentially quantifies how the 

dependent variable is influenced by not only its own historical values but also by the historical 

values of the other variables in the system. The key objective is to reveal the interdependencies 

among these variables while maintaining the model's structural integrity through the sequential 

imposition of causal orderings. Estimating each equation using OLS results in residuals that are 

uncorrelated across equations (Stock and Watson, 2001). 

In a structural VAR (SVAR), economic theory guides the identification of causal links 

among the variables. This approach requires "identifying assumptions" that permit the 

interpretation of correlations as causal relationships. Identifying assumptions can apply to the 

entire VAR model or specific equations within it. These assumptions yield instrumental 

variables that enable the estimation of contemporaneous links through instrumental variables 

regression. Researchers can create numerous structural VARs by selecting different identifying 

assumptions based on their research objectives. 

The choice of VAR type depends on the research goals, the relationships between variables, 

and the availability of economic theory to inform the model's structure and assumptions. Each 

VAR type has its own strengths and limitations in capturing the dynamics of multivariate time 

series data. 

In this specific case, on the basis of the scenario that will be analyzed, I will employ a 

SVAR. Given the intricate nature of structural shocks and the complexities involved in their 

direct identification, as mentioned above, will be used a proxy, in the form of a Recursive VAR. 

This approach, inspired by the work of Plagborg - Møller and Wolf (2021), will enable to 

indirectly estimate and analyze the effects of structural shocks.  

Leveraging the source of MATLAB codes provided by Ambrogio Cesa – Bianchi, will be 

demonstrated how these shocks manifest their presence and influence both the European and 

United States markets. 
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2.2 Vector Autoregression 
 

 

This section is designed to provide a comprehensive understanding of the technical aspects 

of VAR analysis. We will explore the underlying methodologies, mathematical formulations, 

and the key steps involved in implementing VAR models.  

A VAR model can be understood as a linear mathematical model consisting of a set of n-

equations, n-variables, and p-lag terms. In this model, each variable is influenced by its own 

historical values (lags) and the current and past values of the remaining n − 1 variables. The 

maximum number of lags considered is commonly referred to as the "lag-order" or simply the 

"order" of the VAR model.  

A VAR model of order p, often denoted as VAR(p), takes into account the lagged 

observations of the data series up to the pi lag. It's important to note that the data frequency 

typically used for VAR models is monthly or quarterly (Kilian and Lütkepohl, 2017). To better 

understand, let's visualize this function. Equation (8): 

 

 𝑋 	= 𝐴 𝑋 +	··· +𝐴 𝑋 + 𝑈 	 
 

 

Denoting  𝑋 	= 	 (𝑥 	, … , 𝑥 )   as an (𝑛𝑥1) vector containing the values that n variables 

assume at date t and 𝑈 	= 	 (𝑢 	, … , 𝑢 )′ are the errors with zero mean. Additionally, is 

assumed that the series 𝑋  exhibits covariance stationarity, which implies:  

 

 

constant mean:  𝐸[𝑋 ] = 	µ , 
constant variance:  𝑣𝑎𝑟[𝑋 ] 	= 	𝜎 , 

constant autocovariance: cov[𝑋 , 𝑋 ] 	= 	 γ (τ). 
 

 

In this context, 𝑋  represents the vector collecting the current values of model variables, 𝑋 	gathering the values at a lag of 1, up to 𝑋 	that encompass the values at a lag n. We also 

have matrices (𝐴 …	𝐴 ) representing the coefficients associated with the first lags up to the pi 

lag of the variables, respectively. These matrices can be represented as follows.  
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Equation (9): 

 

 𝑋⋮𝑋 = 𝑎 ⋯ 𝑎⋮ ⋱ ⋮𝑎 ⋯ 𝑎
𝑥 ⋮𝑥 + ⋯+	 𝑎 ⋯ 𝑎⋮ ⋱ ⋮𝑎 ⋯ 𝑎

𝑥 ⋮𝑥 + 𝑢⋮𝑢  

 

 

In our case, in the final analysis of this thesis, a system of 7 variables will be used, and each 

variable will consider its own past values up to 6 lags. 

Next step transforms equation (8) in a structural VAR. This transformation allows for a 

clearer and more interpretable understanding of the data. Considering the SVAR(p) model 

presented above. Equation (10): 

 

 

 𝐵 𝑋 	= 	𝐵 𝑋 +··· +𝐵 𝑋 + 𝑤 	 
 

 

𝑋  represents the vector of the time series of interest, as described in equation (8), 𝐵 			collects the slope coefficients at the ith lag, similar to 𝐴 			in equation (8), 𝑤 			is the vector of 

the so-called structural residuals or shocks, and 𝐵  is the matrix whose elements capture the 

contemporaneous relationship between the variables in the model (Kilian and Lütkepohl, 2017). 

Unlike reduced form VARs, SVARs allow for immediate relationships among model 

variables. Additionally, SVARs assume that the structural shocks are zero-mean white noise 

processes (WN), and these shocks are serially and mutually uncorrelated. 

This assumption results in the covariance matrix of the structural shocks, denoted as ∑𝑤 , 

taking the form of a full-rank diagonal matrix. Notably, the number of variables aligns with the 

number of shocks. This mutual uncorrelation among structural shocks allows for distinctive 

economic interpretations to be associated with each shock, making them inherently "structural". 

Furthermore, the absence of correlation among these structural shocks simplifies the 

computation of Impulse Response Functions (IRFs) in SVARs as straightforward functions of 

the structural shocks. As a consequence, it becomes possible to interpret every fluctuation 

observed in the data series of a stable VAR as being generated by these structural innovations 

(Kilian and Lütkepohl, 2017). 
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SVARs and reduced form VARs share a crucial relationship: reduced form VARs can be 

seen as the data generated by an underlying SVAR. You can easily transform a SVAR model 

into the corresponding VAR representation by multiplying both sides of equation (10) by 𝐵 . 
Equation (11): 

 

 

 𝑋 	= 	𝐵 𝐵 𝑋 +··· +𝐵 	𝐵 𝑋 + 𝐵 𝑤 	 
 

 

This operation results in 𝑆  = 𝐵 𝐵 			 and 		𝑢  = 𝐵 𝑤 . The innovations in the reduced form 

are, in fact, linear combinations of the structural innovations. Conversely, knowing the matrix 𝐵  or its inverse, is all that's necessary to recover the SVAR process underlying an estimated 

VAR model.  

By normalizing 𝐸[𝑤 𝑤 ′] ≡ ∑𝑤 = 𝐼 , without any loss of generality, this equation can be 

employed to retrieve 𝐵 . Equation (12): 

 

 

𝐸[𝑢 𝑢′] = 𝑢 =	 𝐵 		𝐵 ′ 
 

 

This represents a system of nonlinear equations, with the unknown parameters being the 

elements of 𝐵 . It can only be solved if the number of unknown parameters does not exceed 

the number of independent equations provided by ∑𝑢 . This condition is known as the order 

condition and is essential for the precise identification of structural shocks. However, it is not 

met in this equation. In fact, there are 𝑘² unknown parameters and only 𝑘(𝑘	 + 	1) ⁄ 2 

independent equations available. Consequently, to satisfy the order condition, it is necessary to 

impose certain restrictions on the elements of 𝐵 .  

Selecting appropriate economic constraints to uniquely identify 𝐵 , and consequently, the 

other structural parameters, is known as the “identification problem” in structural 

autoregressions. Over the years, various strategies have been developed to address this 

challenge (Kilian and Lütkepohl, 2017). 
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However, in this dissertation, I will focus on presenting only the strategies that will be 

employed in the empirical research of the upcoming chapters. These strategies include the 

widely used Cholesky decomposition, which leads to recursively identified models. Before 

delving into these approaches, the upcoming pages will provide explanations of key concepts 

such as Impulse Response Functions (IRF) and Forecast Error Variance Decomposition 

(FEVD). 

 

 

 

2.3 Structural Impulse Responses  
 

 

 

Economists often focus on a fundamental research question: how do economic aggregates 

react to unexpected changes in an economic variable? This question can be translated into 

assessing the effects of a one-time variation (or impulse) in the structural shocks 𝑤  on the 

model variables 𝑋 , following the identification of 𝑤  as described in equation (11). 

Once 𝐵  and 𝑢   are known, we can readily derive 𝑤 =	𝐵 𝑢 	. However, our primary 

interest typically lies not in the shocks themselves but in understanding how each component 

of 𝑋 	= 	 (𝑥 	, … , 𝑥 )  responds to a one-time impulse in  𝑤 	= 	 (𝑤 	, … , 𝑤 )′.  
This is commonly known as the structural impulse response of 𝑋 			to 		𝑤 			at horizon “i” 

and is denoted as 𝜃 , 		(Kilian and Lütkepohl, 2017). Equation (13): 

 

 

𝜃 , 	 =	𝜕𝑋 	 	𝜕𝑤 ,											ℎ = 0,1, … , 𝐻	 
 

 

 

The usual objective is to depict how each variable responds to each structural shock as time 

progresses. Given that there are K variables and K structural shocks, there are K2 impulse 

response functions (IRFs), each spanning a length of H + 1, where H represents the maximum 

horizon over which the shocks propagate. 

A valuable initial step in estimating the structural impulse responses 𝜃 , 	 is to consider the 

responses of 𝑋  to the reduced-form errors 𝑢 . These responses can be determined by 
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examining the VAR (1) representation of the VAR(p) process, which provides insight into the 

dynamic relationships among the variables. Equation (14): 

 

 𝑋 	= 𝐴𝑋 + 𝑈 	 
 

 

 

 

Where, Equation (15): 

 

 

𝑋 ≡ 𝑥⋮𝑥 		𝐴 ≡ 	 𝐴 ⋯ 𝐴𝐼 0 ⋮0 𝐼 0 			𝑈 ≡ 𝑢00  

 

 

If 𝑋  is covariance stationary, it can be represented as a weighted average of current and 

past shocks, with weights that decrease as the shocks move further into the past. This 

multivariate Moving Average (MA) representation is as follows. Equation (16): 

 

 

𝑋 = 	 Θ 𝑢 = 𝐵 𝐵 𝑢  

 

 

If the VAR being analyzed is not stable, the same method for calculating Θ  will still apply. 

However, in this case, the impulse responses may not approach zero as i → ∞, and they will no 

longer represent the coefficients of the structural Moving Average representation. 

The jkth element Θ 	denoted by 𝜃 , 	, where j and k represent variable indices and (i = 0, 1, 

..., H), signifies the response of variable j to structural shock k at the given horizon.  

It is also feasible to create linear combinations of structural impulse responses. For instance, 

in a VAR model, we might have responses 𝜃 , 	 for the nominal interest rate and 𝜃 , 	for the 

inflation rate. In this case, we can calculate the implied response of the real interest rate as 

(𝜃 , 		 −	𝜃 , 	), for (i = 0, 1, ..., H) (Kilian and Lütkepohl, 2017).   
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Similarly, we can derive implied responses from the inflation rate, such as the implied 

response of the log price level, denoted as Δ	𝑝𝑡, based on its response over time. 

In addition to linear transformations, it is also possible to compute non-linear 

transformations of impulse response functions, such as the "half-life" of responses. The half-

life is defined as the time it takes for a response to decline to half of the initial impact response 

in absolute value (Kilian and Zha, 2002). 

A consequence of the linearity of the VAR model is that responses to negative shocks are 

symmetric to responses to positive shocks. Furthermore, the magnitude of the structural shock 

does not affect the construction of IRFs.  

Rescaling the shock only rescales the entire IRF. Typically, it is chosen to scale 𝐵  such 

that the structural shocks represent one standard deviation of the time series of structural shocks. 

This is because such a shock is considered of typical magnitude, but this choice is a convention 

and not a strict requirement.  

It's also important to note that structural shocks, in general, are unit-free and do not have 

units of measurement associated with model variables. Only in specific cases will structural 

shocks be associated with a particular model variable (Kilian and Lütkepohl, 2017). 

 

 

 

2.4 Forecast Error Variance Decomposition  
 

 

A crucial question that a SVAR model can address is the allocation of forecast error 

variance decomposition (FEVD), or prediction mean squared error, of 𝑋  at the horizon 

(h = 0, 1, ..., H) to each of the structural shocks, 𝑤 , where (k = 1, ..., K).  In other words, it 

helps determine how each structural shock contributes to the deviations of individual variables 

from their predicted values at a given time horizon. 

In a stationary model, as the forecast horizon extends to infinity (h → ∞), the limit of the 

FEVD corresponds to the variance decomposition of 𝑋 . This is because the forecast error 

covariance matrix converges to the unconditional covariance matrix of 𝑋 . Therefore, for 

stationary systems, it is possible to construct an FEVD decomposition for an infinite forecast 

horizon. 

In integrated systems, the FEVD diverges as the forecast horizon approaches infinity. 

However, the FEVD remains valid up to a finite maximum horizon of H. To compute this 
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decomposition, we can leverage the i matrices, which we have already calculated for the 

structural impulse response analysis (Kilian and Lütkepohl, 2017). Equation (17): 

FEVD at horizon h is: 

 

 

𝐹𝐸𝑉𝐷(ℎ) = 	 Φ Φ ′ 
 

 

Where Φ  refers to the structural impulse matrix at a specific horizon, denoted as i. 

Employing the notation established in the previous section, the determination of how shock 

q contributes to the mean squared prediction error FEVD of the variable 𝑋  at horizon h can be 

expressed as follows.  

Equation (18): 

 

 𝐹𝐸𝑉𝐷 (ℎ) = 𝜃 , 	 +⋯+	𝜃 , 	 

 

 

 

As a result, the cumulative mean squared prediction error FEVD of the variable 𝑋   at 

horizon h can be expressed as follows. Equation (19): 

 

 

 

𝐹𝐸𝑉𝐷 (ℎ) = 𝐹𝐸𝑉𝐷 (ℎ) 
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For a given h and k, the decomposition is as follows. Equation (20): 

 

 

 

1 = 	𝐹𝐸𝑉𝐷 (ℎ)𝐹𝐸𝑉𝐷 (ℎ) + 𝐹𝐸𝑉𝐷 (ℎ)𝐹𝐸𝑉𝐷 (ℎ) + ⋯+ 𝐹𝐸𝑉𝐷 (ℎ)𝐹𝐸𝑉𝐷 (ℎ)	 
 

 

 

One key aspect of interest is the patterns across horizons. When examining FEVD, we aim 

to understand how different structural shocks impact the forecast error variance of a particular 

variable over time. For instance, at shorter horizons, certain shocks may have a relatively small 

impact on the forecast error variance, while their importance might grow over the long term. 

This evolving pattern provides information about the strength and persistence of the 

relationship between specific shocks and the variable under consideration. 

Additionally, researchers may want to explore the relative contributions of different shocks 

at a given horizon. This analysis can help understand which shocks dominate in explaining the 

forecast error variance at a particular point in time (Kilian and Lütkepohl, 2017). 

 

 

 

2.5 Cholesky identification 
 

 

 

A widely used method for uniquely identifying the structural shocks is by employing the 

lower-triangular Cholesky decomposition of ∑𝑢 . We begin by defining a k x k lower-

triangular matrix denoted as 𝑃, characterized by a positive main diagonal and satisfying the 

condition ∑𝑢 = 𝑃𝑃′. This matrix P is commonly referred to as the lower-triangular Cholesky 

decomposition of ∑𝑢. It is crucial to note that the relationship ∑𝑢 = 𝐵 𝐵 ′ immediately 

implies that one potential solution for recovering 𝑤  is 𝐵 = 𝑃. Since P is lower triangular, it 

possesses 𝑘(𝑘−1) ⁄ 2 parameters that are zero. 

Consequently, the order condition necessary for the precise identification of unknown 

parameters in 𝐵 is met. An important implication of this context is that if 𝐵 is lower 

triangular, then 𝐵 	is also lower triangular (Kilian and Lütkepohl, 2017). 
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In essence, this identification strategy enforces 𝑘(𝑘−1) ⁄ 2 zero restrictions on the elements 

of both 𝐵  and 𝐵 . This approach serves two primary purposes: it ensures that the reduced-

form errors are mutually uncorrelated and introduces a specific recursive order or causal chain 

between the structural shocks and the model variables (Kilian and Lütkepohl, 2017). 

One widely employed method for disentangling the structural innovations, denoted as 𝑤 , 

from the reduced-form innovations, is represented by 𝑢 , and it involves the process of 

'orthogonalization'. 

In this context, orthogonalization entails rendering the errors mutually uncorrelated. To 

achieve this, a mechanical procedure is employed, as outlined below. 

It is crucial to bear in mind that the process of orthogonalizing reduced-form residuals, using 

Cholesky decomposition, is only suitable when the underlying recursive structure represented 

by matrix P can be economically justified.  

The distinctive characteristic of orthogonalization through Cholesky decomposition is that 

it results in a structural model that is recursive, particularly conditional on lagged variables. 

Essentially, researchers establish a specific causal chain by imposing this approach, rather 

than learning about the causal relationships from the data itself. In essence, they solve the 

problem of identifying which structural shock is responsible for the variation in 𝑢  by imposing 

a particular solution.  

However, it is important to note that this mechanical solution lacks economic significance 

without a plausible economic interpretation for the chosen recursive ordering (Kilian and 

Lütkepohl, 2017). 

The seemingly neutral and scientific term 'orthogonalization' might obscure the fact that 

they make strong assumptions about the error term in the VAR model.  

In the early 1980s, many users of VAR models did not fully grasp this point and believed 

that the data alone could provide all the necessary insights. Such “atheoretical” VAR models 

quickly faced criticism (Cooley and LeRoy, 1985).  

This critique led to a more rigorous examination of the economic foundations of recursive 

models. It was demonstrated that, in specific cases, a recursive model could be given a structural 

or semi-structural interpretation (Bernanke and Blinder 1992). This critique also spurred the 

development of structural VAR models that impose non-recursive identifying restrictions 

(Sims, 1986), (Bernanke, 1986), (Blanchard and Watson, 1986). 

It became widely acknowledged that the structural VAR model is simply a specific instance 

of the Dynamic Stochastic General Equilibrium Model, with the primary distinguishing feature 

being the nature of its identifying restrictions. 
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In practical terms, for each arrangement of the K variables in the VAR model, there exists 

a different matrix P.  

Some argue that sensitivity analysis should be conducted based on alternative orderings of 

these variables. However, this proposal encounters three key challenges: 

1. The economic justification for different orderings may vary significantly, making it 

difficult to draw robust conclusions. 

2. Changing the ordering might alter the interpretation of the structural shocks, 

potentially leading to different economic insights. 

3. The range of possible orderings can become quite extensive in larger models, 

complicating the sensitivity analysis. 

These considerations underscore the need for careful deliberation and economic reasoning 

when selecting an appropriate orthogonalization strategy in VAR modeling (Kilian and 

Lütkepohl, 2017). 
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Chapter 3 
 

 

3.1 Variable selection 

 
The analysis encompasses a set of nine key macroeconomic variables and two policy 

shocks. The dataset comprises: 

  

1. Short-term and long-term interest rates US. 

2. Consumer Price Index US. 

3. Unemployment rate US. 

4. U.S. Dollars to Euro Spot Exchange Rate. 

5. Short-term and long-term interest rates EU. 

6. Consumer Price Index EU. 

7. Unemployment rate EU. 

8. Global Financial Cycle Proxy (GFC). 

9. Financial distress Proxy (Baa10Y). 

 

In addition, the two instruments used to represent monetary policy shocks are: 

 

1. Monetary policy shock (MPI). 

2. Central bank information shock (INFO). 

 

The inflation variables for both the US and UE are expressed as log differences. This choice 

of using log transformations in time series regressions and macroeconomic analyses is rooted 

in the conventional normality assumption of classical econometric methodologies, as outlined 

by Mayr and Ulbricht (2007).  
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Chapter 4 
 

 

 

 

4.1 Empirical results 
 

 

 

This chapter presents the empirical estimates obtained by implementing our VAR model. I 

analyze the results using impulse response functions (IRF) and forecast error variance 

decompositions (FEVD). IRFs are drawn from a VAR (7) with a time horizon of 24 months 

and 6 lags. In the figures that follow, the solid lines represent the mean impulse response 

functions, while the confidence intervals correspond to a 68% level of confidence.  

Figures 13 and 14 first illustrate the distinct impacts of MPI and INFO shocks. As stated 

in the initial part of this thesis, MPI represents a contractionary shock. Following its occurrence, 

there is a response from the FED, resulting in a gradual increase in the short-term interest rate 

by approximately 25-50 basis points within 3-8 months. Subsequently, there is a negative 

impulse on inflation and an increase in the unemployment rate. A key variable observed in these 

figures is the EU 3-month interest rate. As we can observe, according to macroeconomic theory, 

the impact of the U.S. market is significant enough to prompt the ECB to respond to the increase 

in interest rates in the U.S. This aligns with the theory of capital outflows, which pose a risk of 

devaluing the euro if interest rates do not ensure parity returns. 

Moving on to Figure 14, there is a crucial result for our research. As suggested by  Miranda-

Agrippino and Ricco (2021), INFO shocks appear to be positive for the economy. They 

stimulate economic growth, and in response, the Fed increases the short-term interest rate by 

approximately 50 basis points within 5 months to slow down the economy. Additionally, the 

global financial cycle experiences a positive impulse following the manifestation of these 

shocks, and the results confirm the positive impact on U.S. CPI and a reduction on U.S. 

unemployment rates. Finally, as our thesis proposes, INFO shocks have the capability to 

influence EU markets. The ECB responds with a substantial increment in the short-term interest 

rate, around 75 basis points within 3 months. 

In the appendix, Figure 27 will illustrate the FEVD, percentage of the variance in forecasting 

errors attributed to a specific shock at a given horizon. At a forecast horizon of 3 months, 

approximately 5 percent of the variation in EU 3-month rate forecast errors can be attributed to 
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the INFO shock. This implies that economic shocks will have a moderate direct impact on 

3-month EU rate forecasts in the short term. 

 

 

 

Figure 13: IRF of MPI shock on EU - short term policy rate. 

 

 

 

Figure 14: IRF of INFO shock on EU - short term policy rate.  
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Figures 15 and 16 present the same results as previously discussed but with a different time 

horizon for interest rates. Specifically, the analysis includes a 10-year interest rate for the EU. 

This addition allows us to assess whether the impact of IRFs is significant and if it has financial 

implications. As observed, the results reaffirm the INFO shocks' capacity to influence European 

markets, which remains evident. 

However, in the long run, there is only a 68% probability of observing a response in interest 

rates on a longer horizon in Europe. It's important to note that the significance of these results 

falls within the 68% confidence bands. 

On the other hand, for MPI shocks, it is evident that their impact is substantial, leading to 

an increase of 50 basis points in long-term interest rates within 2-3 months of lags. 

Regarding the FEVD, the appendix figure 29 demonstrates that INFO shocks account for 

approximately 8% of the variation in long-term interest rates in Europe. 

 

 

 

  



 53 

 

 

Figure 15: IRF of MPI shock on EU - Long term policy rate. 

 

 

 

Figure 16: IRF of INFO shock on EU - Long term policy rate. 
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Lastly, Figures 17 and 18 depict the IRFs of INFO shocks on unemployment and inflation 

in the EU. Once again, INFO shocks, as suggested by Miranda Agrippino and Ricco (2021), 

reinforce the idea that FOMC communications occasionally provide a positive impulse to the 

markets. 

This further aids in addressing the primary question of this thesis. It appears to be validated 

that INFO shocks initially impact US macroeconomic variables and that these impacts are 

robust enough to be transmitted to the EU. The results support the significance of the data, with 

confidence bands reaching up to 68%. 
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Figure 17: IRF of INFO shock on EU – Unemployment. 

 

 

 

Figure 18: IRF of INFO shock on EU – Consumer price index. 
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4.2 Robustness Checks 
 

 

 

 

There are various methods to evaluate the robustness of a VAR model. In this context, I will 

employ one of the most prevalent approaches, which involves assessing the model's 

performance using alternative variables. Specifically, I will incorporate a financial distress 

indicator (baa10Y) and the industrial production index for both the US and EU as alternatives. 

Additionally, I will examine the impact of other key economic variables such as unemployment, 

short and long-term interest rates, and inflation on the financial distress indicator (baa10Y).  

Figures 19 and 20 display the IRFs of both MPI and INFO shocks, using the Baa10Y as a 

proxy for the financial distress indicator. The results confirm the restrictive impacts associated 

with MPI shocks. Within a short timeframe of 1 month, the Baa10Y indicator experiences a 2% 

increase. Given that this indicator reflects the spread between corporate and government bonds, 

such an increase indicates a rise in financial distress. 

Similar confirmation is observed for INFO shocks, with their IRFs demonstrating a 

reduction in the spread between corporate and government bonds, signaling a decrease in 

financial distress. Once again, these robustness checks reaffirm the ability of INFO shocks in 

generating a notably significant impact on the 3-month interest rate. In terms of the FEVD, at 

3-month horizon around 8 percent of the variability in EU short term interest rate can be 

attributed to the INFO shock. This suggests that economic shocks will exert a moderate and 

direct influence on EU policy rate. 

Furthermore, I introduce additional variables, including EU industrial production and US 

industrial production, to assess the impacts of the shocks. As shown in Figure 21 and 22, INFO 

shocks once again exhibit their typical positive effects on the markets, resulting in a significant 

increase in industrial production. This reaffirms the ability of INFO shocks to influence the 

European market, as the significant impacts extend to the European context. 

Figures 23, 24, and 25 continue this analysis, demonstrating the impact on EU variables, 

such as the growth of long-term interest rates, the reduction in unemployment, and the increase 

in inflation 
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Figure 19: IRF of MPI shock on EU – - short term policy rate. Robustness check include Baa10Y 

 

 

 

Figure 20: IRF of INFO shock on EU – - short term policy rate. Robustness check include Baa10Y 
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Figure 21: IRF of INFO shock on EU – - Industrial production. Robustness check include US industrial production. 

 

 

 

Figure 22: IRF of INFO shock on EU – - Industrial production. Robustness check include Baa10Y. 
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Figure 23: IRF of INFO shock on EU – - Long term policy rate. Robustness check include Baa10Y. 

 

 

 

Figure 24: IRF of INFO shock on EU – - Consumer price index. Robustness check include Baa10Y. 
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Figure 25: IRF of INFO shock on EU – - unemployment rate. Robustness check include Baa10Y. 
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and their capacity to influence economic agents' expectations. I acknowledge that using a 68% 

confidence level is justified due to the complexity of the model, which includes 7 coefficients, 

6 lags, and a linearized quadratic trend. This complexity can result in some loss of information 

during the estimation of IRFs, making it challenging to achieve high levels of significance. 

Nevertheless, our approach is consistent with Stock and Watson (2001), who employ a 66% 

confidence interval for validating the Taylor rule. 
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Conclusion 
 

 

 

The main questions addressed in this thesis were as follows: What are INFO shocks, and 

how do they differ from classical MPI shocks? Do FOMC communications have the capacity 

to generate real effects on the markets, particularly in Europe? 

To investigate these questions, I leveraged the results of MPI and INFO shocks as presented 

in the work of Miranda - Agrippino and Ricco (2021) and Jarocinski - Karadi (2020). They 

employed analytical tools, as detailed in the first chapter, to transform FOMC communications 

into a dataset, which was subsequently used to analyze the IRFs and FEVD within the VAR 

models applied in this research. 

In addressing the main questions, I employed a recursive VAR as a proxy for a SVAR, as 

discussed in Chapter 2. This approach allowed me to bypass the complexities associated with 

directly estimating an SVAR, following the work of Plagborg-Møller and Wolf (2021). The 

VAR model consistently included 7 variables and was lagged for 6 periods, with a time horizon 

extending to 24 months. 

The key variables included INFO and MPI shocks, in addition to standard U.S. 

macroeconomic indicators such as inflation, unemployment, and short and long-term interest 

rates. These were used to measure the impacts of the shocks within the U.S. market. 

Additionally, I incorporated standard EU macroeconomic indicators, including inflation, 

unemployment, and short and long-term interest rates, to assess the intensity of the shocks' 

influence on foreign markets. I also utilized two proxies for financial conditions: a global 

financial cycle (GFC) indicator to gain insights into broader financial effects and a spread 

indicator that takes into account Moody's Seasoned Baa Corporate Bond and the 10-Year 

Treasury Constant Maturity (BC10Y). The latter serves as a proxy for assessing financial 

distress within the markets. 

Furthermore, I introduced U.S. and EU industrial production indicators to assess whether 

the data continued to support the observed impacts on the standard key macroeconomic 

variables.  

The results presented in Chapter 4 affirmed the presence of distinct types of shocks between 

INFO and MPI and demonstrated that INFO shocks are sufficiently robust to transmit their 

influence to European markets. So, in conclusion, I can provide a positive answer to the main 
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question of this thesis, thereby confirming the existence and differentiation in the impacts of 

these shocks. 
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APPENDIX 
 

 

 
Figure 26: FEVD of MPI shock on EU – - short term policy rate 

 

 

 

 
Figure 27: FEVD of INFO shock on EU – - short term policy rate.  
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Figure 28: FEVD of MPI shock on EU – - Long term policy rate.  

 

 

 

 

 
Figure 29: FEVD of INFO shock on EU – - Long term policy rate.  

 

  

MPshocks

5 10 15 20
0

20

40

60

80

100
GFC

5 10 15 20
0

20

40

60

80

100
US3mth

5 10 15 20
0

20

40

60

80

100

cpiUS

5 10 15 20
0

20

40

60

80

100
unempUS

5 10 15 20
0

20

40

60

80

100
USDto1euro

5 10 15 20
0

20

40

60

80

100

EU10Y

5 10 15 20
0

20

40

60

80

100

MPshocks GFC US3mth cpiUS unempUS USDto1euro EU10Y

INFOshocks

5 10 15 20
0

20

40

60

80

100
GFC

5 10 15 20
0

20

40

60

80

100
US3mth

5 10 15 20
0

20

40

60

80

100

cpiUS

5 10 15 20
0

20

40

60

80

100
unempUS

5 10 15 20
0

20

40

60

80

100
USDto1euro

5 10 15 20
0

20

40

60

80

100

EU10Y

5 10 15 20
0

20

40

60

80

100

INFOshocks GFC US3mth cpiUS unempUS USDto1euro EU10Y



 69 

 

 
Figure 30: FEVD of MPI shock on EU – - Short term policy rate. - Robustness check include 

Baa10Y  
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MATLAB codes 
 

 

 

In this section, I will present the MATLAB codes employed for obtaining the results of this 

empirical research. Specifically, the following MATLAB files will be provided: 

1. The first file contains comprehensive codes used to plot Impulse Response Functions 

(IRFs), generate tables for Forecast Error Variance Decomposition (FEVD), and create 

the figures described in Chapter 4. 

2. The second file includes the codes necessary to perform AIC (Akaike Information 

Criterion) and Schwarz Bayesian Information Criterion (BIC) tests. 

3. The third file is employed to set up trend models, such as a constant and quadratic trend. 

4. The forth file is used for the VAR estimations as described in Chapter 2. 

 

Please note that I utilized the third version of the VAR toolbox developed by Ambrogio 

Cesa-Bianchi (2020). The VAR toolbox can be freely downloaded at: 

https://github.com/ambropo/VAR-Toolbox/tree/main/v3dot0/Primer 

Modifications have been applied to these code sets in order to generate the results 

mentioned. 
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% Plot VD  

VARvdplot(VDbar,VARopt); 

 
%% Print Table 1.B on screen 
%========================================================================== 
% Retrieve Forecast Error Variance Decomposition 
FEVD_Table(1, :) = VD(1,:,1); 
FEVD_Table(2, :) = VD(4,:,1); 
FEVD_Table(3, :) = VD(8,:,1); 
FEVD_Table(4, :) = VD(12,:,1); 
FEVD_Table(5, :) = VD(1,:,2); 
FEVD_Table(6, :) = VD(4,:,2); 
FEVD_Table(7, :) = VD(8,:,2); 
FEVD_Table(8, :) = VD(12,:,2); 
FEVD_Table(9, :) = VD(1,:,3); 
FEVD_Table(10,:) = VD(4,:,3); 
FEVD_Table(11,:) = VD(8,:,3); 
FEVD_Table(12,:) = VD(12,:,3); 
% Print on screen 
disp(' ') 
disp('Variance Decomposition of Inflation (t=1,4,8,12)') 
disp('---------------------------------------------------') 
mprint(FEVD_Table(1:4,:)); 
disp('Variance Decomposition of Unemployment (t=1,4,8,12)') 
disp('---------------------------------------------------') 
mprint(FEVD_Table(5:8,:)); 
disp('Variance Decomposition of Fed Funds (t=1,4,8,12)') 
disp('---------------------------------------------------') 
mprint(FEVD_Table(9:12,:)); 
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25/10/23 11.27 /Users/francescosimeone/Downloads/V.../VARlag.m  

function [AIC, SBC, logL] = VARlag(ENDO,maxlag,const,EXOG,lag_ex) 
% ======================================================================= 
% Determine VAR lag length with Akaike (AIC) and Schwarz Bayesian 
% Criterion (SBC)criterion. 
% ======================================================================= 
% [AIC, SBC, logL] = VARlag(ENDO,maxlag,const,EXOG,lag_ex) 
% ----------------------------------------------------------------------- 
% INPUT 
% 
% 
% 
% ----------------------------------------------------------------------- 
% OPTIONAL INPUT 
- ENDO: an (nobs x nvar) matrix of endogenous variables. 
- maxlag: the maximum lag length over which Akaike information 
criterion is computed 

• %    - const: 0 no constant; 1 constant ; 2 constant and trend; 

•  
• %            3 constant and trend^2; [dflt = 1] 

•  
• %    - EXOG: optional matrix of variables (nobs x nvar_ex) 

•  
• %    - nlag_ex: number of lags for exogeonus variables (dflt = 0) 

• % ----------------------------------------------------------------------- 

• % OUTPUT 

•  

• %    - AIC: preferred lag lenghth according to AIC 

•  
• %    - SBC: preferred lag lenghth according to SBC 

•  
• %    - logL: vector [maxlag x 1] of loglikelihood 

• % ----------------------------------------------------------------------- 

• % EXAMPLE 

•  

• %  x=[12;34;56;78;910];  
• %    OUT = VARmakelags(x,2) 

• % ======================================================================= 

• % VAR Toolbox 3.0 

• % Ambrogio Cesa-Bianchi 

• % ambrogiocesabianchi@gmail.com 

• % March 2012. Updated November 2020 

• % ----------------------------------------------------------------------- 

• %% Check inputs 

• %========================================================= 

• [nobs, ~] = size(ENDO); 

• % Check if ther are constant, trend, both, or none 

• if ~exist('const','var') 

•     const = 1; 

• end  
• % Check if there are exogenous variables 

• if exist('EXOG','var') 

•     [nobs2, num_ex] = size(EXOG); 

•     % Check that ENDO and EXOG are conformable 

•     if (nobs2 ~= nobs) 

•         error('var: nobs in EXOG-matrix not the same as y-matrix'); 

•     end 
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•     clear nobs2 

• else 

num_ex = 0;  

end  

% Check if there is lag order of EXOG, otherwise set it to 0 
if ~exist('lag_ex','var') 
    lag_ex = 0; 

end  

% number of exogenous variables per equation 
nvar_ex = num_ex*(lag_ex+1); 
%% Compute log likelihood and Akaike criterion 
%========================================================= 
logL = zeros(maxlag,1); 
AIC  = zeros(maxlag,1); 

 
SBC  = zeros(maxlag,1); 
for i=1:maxlag 
    X = ENDO(maxlag+1-i:end,:); 
    aux = VARmodel(X,i,const); 
    if nvar_ex>0 
        Y = EXOG(maxlag+1-i:end,:); 
        aux = VARmodel(X,i,const,Y,lag_ex); 

end  

    NOBSadj = aux.nobs; 
    NOBS = aux.nobs + i; 
    NVAR = aux.nvar; 
    NTOTCOEFF = aux.ntotcoeff; 
    RES = aux.resid; 
    % VCV of the residuals (use dof adjusted denominator) 
    SIGMA = (1/(NOBSadj)).*(RES)'*(RES); 
    % Log-likelihood 
    logL(i) = -(NOBS/2)* (NVAR*(1+log(2*pi)) + log(det(SIGMA))); 
    % AIC: �2*LogL/T + 2*n/T, where n is total number of parameters (ie, 
NVAR*NTOTCOEFF) 
    AIC(i) = -2*(logL(i)/NOBS) + 2*(NVAR*NTOTCOEFF)/NOBS; 
    % SBC: �2*LogL/T + n*log(T)/T 
    SBC(i) = -2*(logL(i)/NOBS) + (NVAR*NTOTCOEFF)*log(NOBS)/NOBS; 

end  

% Find the min of the info criteria 
AIC = find(AIC==min(AIC)); 
SBC = find(SBC==min(SBC)); 
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nlag_ex = 0;  

end  

    ARDL.EXOG = EXOG; 

else  

end  

%% Save some parameters and create data matrices 
%=============================================== 

nvar_ex = 0; 
nlag_ex = 0; 
ARDL.EXOG = []; 
nobse 
ARDL.nobs 
ARDL.nlag 
ARDL.nlag_ex = nlag_ex; 
ncoeff       = nlag; 
ARDL.ncoeff  = ncoeff; 
= nobs - max(nlag,nlag_ex); 
= nobse; 
= nlag; 
ncoeff_ex 
nvar 
ARDL.nvar 
ARDL.nvar_ex = nvar_ex; 
ARDL.const   = const; 
= nvar_ex + nvar_ex*nlag_ex; 
= ncoeff + ncoeff_ex + const; 
= nvar; 
% Create independent vector and lagged dependent matrix 
[Y, X] = VARmakexy(ENDO,nlag,const); 
% Create (lagged) exogenous matrix 
if exist('EXOG','var') 
    X_EX  = VARmakelags(EXOG,nlag_ex); 
    if nlag == nlag_ex 
        X = [X X_EX]; 
    elseif nlag > nlag_ex 
        diff = nlag - nlag_ex; 
        X_EX = X_EX(diff+1:end,:); 
        X = [X X_EX]; 
    elseif nlag < nlag_ex 
        diff = nlag_ex - nlag; 
        Y = Y(diff+1:end,:); 
        X = [X(diff+1:end,:) X_EX]; 

end end  

ARDL.meth = 'ols'; 
ARDL.y = Y; 
ARDL.x = X; 
% xpxi = (X'X)^(-1) 
if nobse < 10000 
  [~, r] = qr(X,0); 
  xpxi = (r'*r)\eye(nvar); 

else  

  xpxi = (X'*X)\eye(nvar); 
end; 
% OLS estimator 
beta = xpxi*(X'*Y); 
ARDL.beta = beta; 
% Predicted values & residuals 
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ARDL.yhat = X*ARDL.beta; 
ARDL.resid = Y - ARDL.yhat; 
% Covariance matrix of residuals 
sigu = ARDL.resid'*ARDL.resid; 
ARDL.sige = sigu/(nobse-nvar); 
% Covariance matrix of beta 
sigbeta = ARDL.sige*xpxi; 
ARDL.sigbeta = sigbeta; 
% Std errors of beta, t-stats, and intervals 
tmp = (ARDL.sige)*(diag(xpxi)); 
bstd = sqrt(tmp); 
ARDL.bstd = bstd; 
tcrit=-tdis_inv(.025,nobse); 
ARDL.bint=[ARDL.beta-tcrit.*bstd, ARDL.beta+tcrit.*bstd]; 
ARDL.tstat = ARDL.beta./(sqrt(tmp)); 
ARDL.tprob = tdis_prb(ARDL.tstat,nobs); 

% R2  

ym = Y - mean(Y); 
rsqr1 = sigu; 
rsqr2 = ym'*ym; 
ARDL.rsqr = 1.0 - rsqr1/rsqr2; % r-squared 
rsqr1 = rsqr1/(nobse-nvar); 
rsqr2 = rsqr2/(nobse-1.0); 
if rsqr2 ~= 0 
    ARDL.rbar = 1 - (rsqr1/rsqr2); % rbar-squared 
else 
    ARDL.rbar = ARDL.rsqr; 
end; 
% Durbin-Watson 
ediff = ARDL.resid(2:nobse) - ARDL.resid(1:nobse-1); 
ARDL.dw = (ediff'*ediff)/sigu; % durbin-watson 
ARDL.const = const; 

% F-test  

if const>0 
    fx = X(:,1); 
    fxpxi = (fx'*fx)\eye(1); 
    fbeta = fxpxi*(fx'*Y); 
    fyhat = fx*fbeta; 
    fresid = Y - fyhat; 
    fsigu = fresid'*fresid; 
    fym = Y - mean(Y); 
    frsqr1 = fsigu; 
    frsqr2 = fym'*fym; 
    frsqr = 1.0 - frsqr1/frsqr2; % r-squared 
    ARDL.F = ((frsqr-ARDL.rsqr)/(1-nvar)) / ((1-ARDL.rsqr)/(nobse-nvar)); 

end  

% % Long-run coefficients 
% q = ncoeff_ex; 
% p = ncoeff; 
% 
% sumendo = sum(beta(const+1:const+p)); % sum of lagged endo 
% sumexog = sum(beta(const+p+1:end)); % sum of cont and lagged exog 
% 
% theta = sumexog/(1-sumendo); 
% ARDL.theta = theta; 
% 
% aux1(1:p,1) = sumexog/((1-sumendo)^2); 
% aux2(1:q,1) = 1/(1-sumendo); 
% dtheta = [aux1; aux2]; 
% sigbeta_noconst = sigbeta(const+1:nvar,const+1:nvar); 
% ARDL.sigtheta = dtheta'*sigbeta_noconst*dtheta;  
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end  

% Open a figure of the desired size and plot the selected variables 
FigSize(26,8) 
for ii=1:Xnvar 
    subplot(1,2,ii) 
    H(ii) = plot(X(:,ii),'LineWidth',3,'Color',cmap(1)); 

end  

title(Xvnames_long(ii)); 
DatesPlot(datesnum(1),nobs,6,'q') % Set the x-axis labels 
grid on; 

end  

% Save figure  

SaveFigure('graphics/BIV_DATA',1) 
clf('reset') 
% Make a common sample by removing NaNs 
[X, fo, lo] = CommonSample(X); 
% Set the deterministic variable in the VAR (1=constant, 2=trend) 
det = 1; 
% Set number of lags 
nlags = 1; 
% Estimate VAR by OLS 
[VAR, VARopt] = VARmodel(X,nlags,det); 
% Print at screen the outputs of the VARmodel estimation 
format short 
disp(VAR) 
disp(VAR.F) 
disp(VAR.sigma) 
disp(VARopt) 
% Update the VARopt structure with additional details 
VARopt.vnames = Xvnames_long; 
% Print at screen VAR coefficients and create table 
[TAB    LE, beta] = VARprint(VAR,VARopt,2); 
%% 4. IDENTIFICATION WITH ZERO CONTEMPORANEOUS RESTRICTIONS 
%****************************************************************** 
% Identification with zero contemporaneous restrictions is achieved in two 
% steps: (1) set the identification scheme mnemonic in the structure 
% VARopt to the desired one, in this case "short"; (2) run VARir, VARvd or 
% VARhd functions. 
%------------------------------------------------------------------ 
% Update the VARopt structure to select zero short-run restrictions 
VARopt.ident = 'short'; 
% Update the VARopt structure with additional details 
VARopt.vnames = Xvnames_long; 
VARopt.nsteps = 12; 
VARopt.FigSize = [26,12]; 
VARopt.firstdate = datesnum(1); 
VARopt.frequency = 'q'; 
VARopt.snames = {'\epsilon^{Demand}',... % shock names 
    '\epsilon^{MonPol}'}; 
% Compute impulse response 
[IR, VAR] = VARir(VAR,VARopt); 
% Print at screen 
format short 
disp(VAR.B) 
disp(IR(1:4,:,2)) 
% Compute structural shocks (Tx2) 
eps_short = (VAR.B\VAR.resid')'; 
disp(corr(eps_short)) 
%% 5. IDENTIFICATION WITH ZERO LONG-RUN RESTRICTIONS 
%************************************************************************** 
% Identification with zero long-run restrictions is achieved in two 
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% steps: (1) set the identification scheme mnemonic in the structure 
% VARopt to the desired one, in this case "long"; (2) run VARir, VARvd or 
% VARhd functions. 
%------------------------------------------------------------------ 
% Update the VARopt structure to select zero long-run restrictions 
VARopt.ident = 'long'; 
% Update the VARopt structure with additional details 
VARopt.snames = {'\epsilon^{Supply}',... % shocks names 
    '\epsilon^{Demand}'}; 
% Compute impulse responses 
% variable names in plots 
% max horizon of IRF 
% size of window (figures) 
% first date in plots 
% frequency of the data 
[IR, VAR] = VARir(VAR,VARopt); 
% Print at screen 
format short 
disp(VAR.B) 
disp((eye(2)-VAR.Fcomp)\VAR.B) 
% Compute impulse responses in the very long-run and plot 
VARopt.nsteps = 150; 
[IR, VAR] = VARir(VAR,VARopt); 
FigSize(26,8) 
subplot(1,2,1) 
plot(cumsum(IR(:,1,2)),'LineWidth',2,'Marker','*','Color',cmap(1)); hold on 
plot(zeros(VARopt.nsteps),'--k','LineWidth',0.5); hold on 
xlim([1 VARopt.nsteps]); 
title('Cumulative response of GDP growth') 
subplot(1,2,2) 
plot(cumsum(IR(:,2,2)),'LineWidth',2,'Marker','*','Color',cmap(1)); hold on 
plot(zeros(VARopt.nsteps),'--k','LineWidth',0.5); hold on 
xlim([1 VARopt.nsteps]); 
title('Cumulative response of the 1-year rate') 
SaveFigure('graphics/longCum_',1); 
clf('reset') 
% Compute structural shocks (Tx2) 
eps_long = (VAR.B\VAR.resid')'; 

%% 6. IDENTIFICATION WITH SIGN RESTRICTIONS 
%************************************************************************** % 
Identification with sign restrictions is achieved in two steps: (1) 
% define a matrix with the sign restrictions that the impulse responses 
% have to satisfy; (2) run the SR function. %--------------------------------------
---------------------------- 
% Define sign restrictions 
% Positive 1, Negative -1, Unrestricted 0: 
SIGN=[1,1; %RealGDP  

         1,-1]; % 1-year rate 
% Update the VARopt structure with inputs to the sign restriction routine 
VARopt.ndraws = 500; 
VARopt.sr_hor = 1; 
VARopt.pctg = 68; 
% Update the VARopt structure with additional details 
VARopt.nsteps = 12; 
VARopt.figname= 'graphics/sign_'; 
VARopt.FigSize = [26 8]; 
VARopt.snames = {'\epsilon^{Demand}',... % shocks names 
    '\epsilon^{MonPol}'}; 
% Implement sign restrictions identification with SR routine 
SRout = SR(VAR,SIGN,VARopt); 
% Plot all Btilde 
FigSize(26,8) 
subplot(1,2,1) 
plot(squeeze(SRout.IRall(:,1,2,:))); hold on 
plot(zeros(VARopt.nsteps),'--k','LineWidth',0.5); hold on 
xlim([1 VARopt.nsteps]); 
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title('Response of GDP growth to \epsilon^{MonPol}') 
subplot(1,2,2) 
plot(squeeze(SRout.IRall(:,2,2,:))); hold on 
plot(zeros(VARopt.nsteps),'--k','LineWidth',0.5); hold on 
xlim([1 VARopt.nsteps]); 
title('Response of 1-year rate to \epsilon^{MonPol}') 
SaveFigure('graphics/signAll_',1); 
clf('reset') 
% Plot credible intervals 
VARirplot(SRout.IRmed,VARopt,SRout.IRinf,SRout.IRsup) 
% Compute structural shocks (Tx2) 
eps_sign = (SRout.B\VAR.resid')'; 
%% 7. IDENTIFICATION WITH EXTERNAL INSTRUMENTS 
% horizon of impulse responses 
% folder and file prefix 
% size of window (figures) 
%************************************************************************** 
% Identification with external instruments is achieved in three steps: (1) 
% update the VAR structure with the external instrument to be used in the 
% first stage; (2) set the identification scheme mnemonic in the structure 
% VARopt to the desired one, in this case "iv"; (3) run the VARir function 
%-------------------------------------------------------------------------- 
% Create artificial instrument (demand shock from eps_short + noise) 
rng(1); 
noise = randn(nobs,1);              % random vector from N(0,1) 
noise = noise(1+fo:end-lo);         % adjust to common sample 
iv = [NaN; eps_short(:,1)] + noise; % add noise to demand shock (eps_short) 
VAR.IV = iv;                        % update VAR structure 
% Update the options in VARopt 
VARopt.ident = 'iv'; 
VARopt.snames = {'\epsilon^{Demand}','\epsilon^{Other}'}; 
% Compute impulse responses 
[IR, VAR] = VARir(VAR,VARopt); 
% Plot impulse responses 
FigSize(26,8) 
for ii=1:Xnvar 
    subplot(1,2,ii); 
    plot(IR(:,ii),'LineWidth',2,'Marker','*','Color',cmap(1)); hold on; 
    plot(zeros(1,VARopt.nsteps),'--k','LineWidth',0.5); hold on 
    plot(1,IR(1,ii),'LineStyle','-','Color',cmap(5),'LineWidth',2,... 
        'Marker','p','MarkerSize',20,'MarkerFaceColor',cmap(5)); hold on 
    xlim([1 VARopt.nsteps]); 
    title([Xvnames_long{ii} ' to ' 
VARopt.snames{1}],'FontWeight','bold','FontSize',10); 
    set(gca, 'Layer', 'top'); 

end  

SaveFigure('graphics/iv_',1) 
clf('reset'); 
%% 8. IDENTIFICATION WITH EXTERNAL INSTRUMENTS AND SIGN RESTRICTIONS 
%************************************************************************** 
% Identification with external instruments and sign restrictions is 
% achieved in five steps: (1) update the VAR structure with the external 
% instrument to be used in the first stage; (2) set the identification 
% scheme mnemonic in the structure VARopt to the desired one, in this case 
% "iv"; (3) run the VARir function to get an estimate of Biv; (4) define a 
% matrix with the sign restrictions that the IRs have to satisfy, excluding 
% the first shock identified with external instruments; (5) run the SR 
% function. 
%-------------------------------------------------------------------------- 
% VAR structure has already been updated to include the first column of 
% the B matrix that we identified with the instrument in the previous 
% section: 
disp(VAR.Biv) 
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% Define sign restrictions to identify monetary policy shock % Positive 1, Negative 
-1, Unrestricted 0: 
SIGN=[1; %RealGDP  

        -1]; % 1-year rate 
% Update the VARopt structure with additional details 
VARopt.figname= 'graphics/iv_sign_'; 
VARopt.snames = {'\epsilon^{Demand}','\epsilon^{MonPol}'}; 
% Implement sign restrictions identification with SR routine 
% conditional on VAR.Biv being already identified 
SRIVout = SR(VAR,SIGN,VARopt); 
% Plot impulse responses 
VARirplot(SRIVout.IRmed,VARopt,SRIVout.IRinf,SRIVout.IRsup); 
m2tex('VARToolbox_Primer_v1.m') 
close all 
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• elseif (cols(x) > 1) 

•  error('adf cannot handle a matrix -- only vectors'); 

end;  

nobs = rows(x); 
% if ((nobs - 2*l)+1 < 1) 
%  error('nlags too large in adf, negative dof'); 
% end; 
dep = trimr(x,1,0); 
ch = tdiff(x,1); 
ch = trimr(ch,1,0); 

% Gerard van den Hout suggested the fix below % Erasmus University Rotterdam. 
% The Netherlands. 
k=0;  

z = []; 
while (k < l); 
    k = k+1; 
    z = [z lag(ch,k)]; 

end; 
z = trimr(z,k,0); 
dep = trimr(dep,k,0); 
if (p > -1) 
 z = [z ptrend(p,rows(z))]; 

end;  

ylag=lag(dep); 
ylag=trimr(ylag,1,0); 
z2=trimr(z,1,0); 
y2=trimr(dep,1,0); 
regressor=[ylag,z2]; 
results=ols(y2,regressor); 

• %       b       = inv(z'*z)*(z'*dep); 

•  
• %       % res     = dep - z*b ; 

•  
• %       % BUG fix suggested by 

• % % Nick Firoozye 

• % % Sanford C. Bernstein, Inc 

•  

%      res = detrend(dep,0) - detrend(z,0)*b; 
res=results.resid; 
     %so      = (res'*res)/(rows(y2)-cols(regressor)) 
     so=results.sige; 
     var_cov = so*inv(regressor'*regressor) ; 
     results.nlag = l; 
     results.alpha = results.beta(1,1); 
     results.adf = (results.beta(1,1)-1)/sqrt(var_cov(1,1)); 
     results.crit = ztcrit(nobs,p); 
     results.meth = 'adf'; 
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%============================================================= 
% Check size of vnames (and change it if necessary) 
htext = vnames; 
if size(htext,2)==1 
    htext = htext'; 
    nvars = size(htext,2); 

else  

end  

nvars = size(htext,2); 
% Check size of vnames_ex (and change it if necessary) 
if exist('vnames_ex','var') 
    if size(vnames_ex,2)==1 
        vnames_ex = vnames_ex'; 
        nvars_ex = size(vnames_ex,2); 

else  

end end  

%% Labels of deterministic components 
%=============================================== 
switch const 
    case 0 
        aux = []; 
    case 1 
        aux = {'c'}; 
    case 2 
        aux = {'c';'trend'}; 
    case 3 
        aux = {'c';'trend';'trend2'}; 

end  

vtext = {' '}; 
vtext = [vtext; aux]; 
clear aux 
%% Labels of lagged variables 
%=============================================== 
for jj=1:nlag 
    for ii=1:nvars 
        aux(ii,1) = {[vnames{ii} '(-' num2str(jj) ')' ]}; 

end  

    vtext = [vtext ; aux]; 

end  

clear aux  

%% Labels of exogenous variables 
%=============================================== 
if VAR.nvar_ex>0 
    vtext = [vtext ; vnames_ex']; 
    if nlag_ex > 0 
        for jj=1:nlag_ex 
            for ii=1:nvars_ex 
                aux(ii,1) = {[vnames_ex{ii} '(-' num2str(jj) ')' ]}; 
            end 
            vtext = [vtext ; aux]; 
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end  

clear aux end  

end  

%% Save 
%=============================================== 
% Save a beta table 
beta = roundnum2cell(VAR.Ft,approx); 
beta = [htext; beta]; 
beta = [vtext beta]; 
% Save a standard error table 
bstd = []; 
for ii=1:nvars 
    eval( ['aux = VAR.eq' num2str(ii) '.bstd;'] ); 
    bstd = [bstd aux]; 

end  

bstd = roundnum2cell(bstd,approx); 
bstd = [htext; bstd]; 
bstd = [vtext bstd]; 
nvars_ex = size(vnames_ex,2); 

clear aux  

% Save a tstat table 
tstat = []; 
for ii=1:nvars 
    eval( ['aux = VAR.eq' num2str(ii) '.tstat;'] ); 
    tstat = [tstat aux]; 

end  

tstat = roundnum2cell(tstat,2); 
tstat = [htext; tstat]; 
tstat = [vtext tstat]; 
clear aux 
% Save a p-value table 
tprob = []; 
for ii=1:nvars 
    eval( ['aux = VAR.eq' num2str(ii) '.tprob;'] ); 
    tprob = [tprob aux]; 

end  

tprob = roundnum2cell(tprob,approx); 
tprob = [htext; tprob]; 
tprob = [vtext tprob]; 
clear aux 
% Save a beta & tstat table 
nn = size(beta,1)-1; 
TABLE = {''}; 
index = 1; 
for ii=1:nn 
    for jj=1:nvars 
        TABLE(index,jj) = beta(1+ii,1+jj); 
        TABLE(index+1,jj) = bstd(1+ii,1+jj); 
        aux1 = cell2mat(tstat(1+ii,1+jj)); % get the numeric value from cell 
        aux2 = [ '[' num2str(aux1) ']' ];  % add parenthesis to t-stat value 
        TABLE{index+2,jj} = aux2; 
        TABLE(index+3,jj) = tprob(1+ii,1+jj); 

end  
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    index = index+4; 
end 
for jj=1:nvars 
    eval( ['aux = VAR.eq' num2str(jj) '.rsqr;'] ); TABLE(index,jj) = num2cell(aux); 
    eval( ['aux = VAR.eq' num2str(jj) '.rbar;'] ); TABLE(index+1,jj) = 
num2cell(aux); 
    TABLE(index+2,jj) = num2cell(VAR.nobs); 

end  

clear aux 
TABLE = [htext; TABLE]; 
% Create vertical label 
TAB_v = {''}; 
index = 2; 
for ii=1:nn 
    TAB_v(index,1) = vtext(1+ii); 
    TAB_v(index+1,1) = {['std(' vtext{1+ii} ')']}; 
    TAB_v(index+2,1) = {['t(' vtext{1+ii} ')']}; 
    TAB_v(index+3,1) = {['p(' vtext{1+ii} ')']}; 
    index = index + 4; 

end  

TAB_v(index,1) = {'R2'}; 
TAB_v(index+1,1) = {'R2bar'}; 
TAB_v(index+2,1) = {'Obs'}; 
TABLE = [TAB_v TABLE]; 
%% Print the table on screen (only beta) 
%=============================================== 
format short g 
info.cnames = char(htext); 
info.rnames = char(vtext); 
disp(' ') 
%disp('---------------------------------------------------------------------') 
disp(' ') 
disp('Reduced form VAR estimation:') 
disp(' ') 
mprint(VAR.Ft,info) 
%disp('---------------------------------------------------------------------') 
disp(' ') 
disp('VAR eigenvalues:') 
disp(eig(VAR.Fcomp)) 
disp(' ') 
disp('Reduced-form covariance matrix:') 
disp(VAR.sigma) 
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OLS.meth = 'ols'; 
OLS.y = y; 
OLS.x = x; 
OLS.nobs = nobs; 
OLS.nvar = nvar; 
% xpxi = (X'X)^(-1) 
if nobs < 10000 
  [~, r] = qr(x,0); 
  xpxi = (r'*r)\eye(nvar); 

else  

  xpxi = (x'*x)\eye(nvar); 
end; 
 
% OLS estimator 
OLS.beta = xpxi*(x'*y); 
% Predicted values & residuals 
OLS.yhat = x*OLS.beta; 
OLS.resid = y - OLS.yhat; 
% Covariance matrix of residuals 
sigu = OLS.resid'*OLS.resid; 
OLS.sige = sigu/(nobs-nvar); 
% Covariance matrix of beta 
OLS.sigbeta = OLS.sige*xpxi; 
% Std errors of beta, t-stats, intervals, and p-values 
tmp = (OLS.sige)*(diag(xpxi)); 
sigb = sqrt(tmp); 
OLS.bstd = sigb; 
tcrit=-tdis_inv(.025,nobs); 
OLS.bint=[OLS.beta-tcrit.*sigb, OLS.beta+tcrit.*sigb]; 
OLS.tstat = OLS.beta./(sqrt(tmp)); 
OLS.tprob = tdis_prb(OLS.tstat,nobs); 

% R2  

ym = y - mean(y); 
rsqr1 = sigu; 
rsqr2 = ym'*ym; 
OLS.rsqr = 1.0 - rsqr1/rsqr2; % r-squared 
rsqr1 = rsqr1/(nobs-nvar); 
rsqr2 = rsqr2/(nobs-1.0); 
if rsqr2 ~= 0 
    OLS.rbar = 1 - (rsqr1/rsqr2); % rbar-squared 
else 
    OLS.rbar = OLS.rsqr; 

end  

% Durbin-Watson 
ediff = OLS.resid(2:nobs) - OLS.resid(1:nobs-1); 
OLS.dw = (ediff'*ediff)/sigu; % durbin-watson 
OLS.const = const; 

% F-test  

if const>0 
    fx = x(:,1); 
    fxpxi = (fx'*fx)\eye(1); 
    fbeta = fxpxi*(fx'*y); 
    fyhat = fx*fbeta; 
    fresid = y - fyhat; 
    fsigu = fresid'*fresid; 
    fym = y - mean(y); 
    frsqr1 = fsigu; 
    frsqr2 = fym'*fym; 
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    frsqr = 1.0 - frsqr1/frsqr2; % r-squared 
    OLS.F = ((frsqr-OLS.rsqr)/(1-nvar)) / ((1-OLS.rsqr)/(nobs-nvar)); 

end  
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    case 0 
        aux = []; 
    case 1 
        aux = {'c'}; 
    case 2 
        aux = {'c';'trend';}; 
    case 3 
        aux = {'c';'trend';'trend2'}; 

end  

vnames = [aux; vnames]; 
clear aux 
%% Table: regressors 
%============================================================= 
indexb = 1; indexs = 2; indext = 3; indexp = 4; 
for ii=1:r 
TAB(indexb,1) = OLS.beta(ii); 
TAB(indexs,1) = OLS.bstd(ii); 
TAB(indext,1) = OLS.tstat(ii); 
TAB(indexp,1) = OLS.tprob(ii); 
vtext(indexb,1) = vnames(ii); 
vtext(indexs,1) = {['std(' vnames{ii} ')']}; 
vtext(indext,1) = {['t(' vnames{ii} ')']}; 
vtext(indexp,1) = {['p(' vnames{ii} ')']}; 
indexb = indexb+4; 
indexs = indexs+4; 
indext = indext+4; 
indexp = indexp+4; 

end  

index = indexb; 
TAB(index) = OLS.rsqr; vtext(index) = {'R2'}; 
TAB(index) = OLS.rbar; vtext(index) = {'R2bar'}; index = index+1; 
if const>0 
    TAB(index) = OLS.F;    vtext(index) = {'F'}; 
    TAB(index) = [];    vtext(index) = {'F'}; 
TAB(index) = OLS.nobs; vtext(index) = {'Obs'}; 
%% Save 
%=============================================== 
beta = TabPrint(OLS.beta,ynames,vnames,approx); 
TABLE = TabPrint(TAB,ynames,vtext,approx); 
%% Print the TABLE on screen 
%=============================================== 
info.cnames = char(ynames); 
info.rnames = char([{''}; vtext]); 
disp(' ') 
disp('OLS estimation:') 
disp(' ') 
mprint(TAB,info) 
    index = index+1; 
 index = index+1; 
index = index+1; 

else end  

index = index+1; 
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nvar_ex = VAR.nvar_ex; 
trend) 
= VAR.sigma; 
= VAR.Fcomp; 
= VAR.const; 
= VAR.Ft'; 

= VAR.nvar;  

nvarXeq = VAR.nvar * VAR.nlag; 
nlag    = VAR.nlag; 
nlag_ex = VAR.nlag_ex; 
Y       = VAR.Y; 
X       = VAR.X(:,1+const:nvarXeq+const); % right-hand side (no exogenous) 
nobs    = size(Y,1);                      % number of observations 
%% Identification: Recover B matrix 
%========================================================================== 
% B matrix is recovered with Cholesky decomposition 
if strcmp(VARopt.ident,'short') 
    [out, chol_flag] = chol(sigma); 
    if chol_flag~=0; error('VCV is not positive definite'); end 
    B = out'; 
 
% B matrix is recovered with Cholesky on cumulative IR to infinity 
elseif strcmp(VARopt.ident,'long') 
    Finf_big = inv(eye(length(Fcomp))-Fcomp); % from the companion 
    Finf = Finf_big(1:nvar,1:nvar); 
    D  = chol(Finf*sigma*Finf')'; % identification: u2 has no effect on y1 in the 
long run 
    B = Finf\D; 
% B matrix is recovered with SR.m 
elseif strcmp(VARopt.ident,'sign') 
    if isempty(VAR.B) 
        error('You need to provide the B matrix with SR.m and/or 
SignRestrictions.m') 
    else 

B = VAR.B;  

end  

% B matrix is recovered with external instrument IV 
elseif strcmp(VARopt.ident,'iv') 
    disp('---------------------------------------------') 
    disp('Forecast error variance decomposition not available with') 
    disp('external instruments identification (iv)'); 
    disp('---------------------------------------------') 
    error('ERROR. See details above'); 
% If none of the above, you've done something wrong :) 

else  

end  

%% Compute historical decompositions 
%========================================================================== 
% Contribution of each shock 
eps = B\transpose(VAR.resid); % structural errors 
B_big = zeros(nvarXeq,nvar); 
B_big(1:nvar,:) = B; 
Icomp = [eye(nvar) zeros(nvar,(nlag-1)*nvar)]; 
HDshock_big = zeros(nlag*nvar,nobs+1,nvar); 
HDshock = zeros(nvar,nobs+1,nvar); 
for j=1:nvar % for each variable 
    eps_big = zeros(nvar,nobs+1); % matrix of shocks conformable with companion 
    eps_big(j,2:end) = eps(j,:); 
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    for i = 2:nobs+1 
        HDshock_big(:,i,j) = B_big*eps_big(:,i) + Fcomp*HDshock_big(:,i-1,j); 
        HDshock(:,i,j) =  Icomp*HDshock_big(:,i,j); 

end end  

% Initial value 
HDinit_big = zeros(nlag*nvar,nobs+1); 
HDinit = zeros(nvar, nobs+1); 
HDinit_big(:,1) = X(1,:)'; 
HDinit(:,1) = Icomp*HDinit_big(:,1); 
for i = 2:nobs+1 
    HDinit_big(:,i) = Fcomp*HDinit_big(:,i-1); 
    HDinit(:,i) = Icomp *HDinit_big(:,i); 

end  

% Constant  

HDconst_big = zeros(nlag*nvar,nobs+1); 
HDconst = zeros(nvar, nobs+1); 
CC = zeros(nlag*nvar,1); 
disp('---------------------------------------------') 
disp('Identification incorrectly specified.') 
disp('Choose one of the following options:'); 
disp('- short: zero contemporaneous restrictions'); 
disp('- long:  zero long-run restrictions'); 
disp('- sign:  sign restrictions'); 
disp('- iv:    external instrument'); 
disp('---------------------------------------------') 
error('ERROR. See details above'); 

 
if const>0 
    CC(1:nvar,:) = F(:,1); 
    for i = 2:nobs+1 
        HDconst_big(:,i) = CC + Fcomp*HDconst_big(:,i-1); 
        HDconst(:,i) = Icomp * HDconst_big(:,i); 

end end  

% Linear trend 
HDtrend_big = zeros(nlag*nvar,nobs+1); 
HDtrend = zeros(nvar, nobs+1); 
TT = zeros(nlag*nvar,1); 
if const>1 
    TT(1:nvar,:) = F(:,2); 
    for i = 2:nobs+1 
        HDtrend_big(:,i) = TT*(i-1) + Fcomp*HDtrend_big(:,i-1); 
        HDtrend(:,i) = Icomp * HDtrend_big(:,i); 

end end  

% Quadratic trend 
HDtrend2_big = zeros(nlag*nvar, nobs+1); 
HDtrend2 = zeros(nvar, nobs+1); 
TT2 = zeros(nlag*nvar,1); 
if const>2 
    TT2(1:nvar,:) = F(:,3); 
    for i = 2:nobs+1 
        HDtrend2_big(:,i) = TT2*((i-1)^2) + Fcomp*HDtrend2_big(:,i-1); 
        HDtrend2(:,i) = Icomp * HDtrend2_big(:,i); 

end end  

% Exogenous  
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HDexo_big = zeros(nlag*nvar,nobs+1); 
HDexo = zeros(nvar,nobs+1); 
EXO = zeros(nlag*nvar,nvar_ex*(nlag_ex+1)); 
if nvar_ex>0 
    for ii=1:nvar_ex 
        VARexo = VAR.X_EX(:,ii); 
        EXO(1:nvar,ii) = F(:,nvar*nlag+const+ii); % this is c in my notes 
        for i = 2:nobs+1 
            HDexo_big(:,i) = EXO(:,ii)*VARexo(i-1,:)' + Fcomp*HDexo_big(:,i-1); 
            HDexo(:,i,ii) = Icomp * HDexo_big(:,i); 

end end  

end  

% All decompositions must add up to the original data 
HDendo = HDinit + HDconst + HDtrend + HDtrend2 + sum(HDexo,3) + sum(HDshock,3); 
%% Save and reshape all HDs 
%========================================================================== 
HD.shock = zeros(nobs+nlag,nvar,nvar);  % [nobs x shock x var] 
    for i=1:nvar 
        for j=1:nvar 
            HD.shock(:,j,i) = [nan(nlag,1); HDshock(i,2:end,j)']; 

end end  

HD.init   = [nan(nlag-1,nvar); HDinit(:,1:end)'];    % [nobs x var] 
HD.const  = [nan(nlag,nvar);   HDconst(:,2:end)'];   % [nobs x var] 
HD.trend  = [nan(nlag,nvar);   HDtrend(:,2:end)'];   % [nobs x var] 
HD.trend2 = [nan(nlag,nvar);   HDtrend2(:,2:end)'];  % [nobs x var] 
HD.exo    = zeros(nobs+nlag,nvar,nvar_ex);           % [nobs x var x var_ex] 
    for i=1:nvar_ex 
        HD.exo(:,:,i) = [nan(nlag,nvar);   HDexo(:,2:end,i)']; 

end  

HD.endo   = [nan(nlag,nvar);   HDendo(:,2:end)'];    % [nobs x var] 
% Update VAR with structural impact matrix 

VAR.B = B;  
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%========================================================================== 
FigSize(VARopt.FigSize(1),VARopt.FigSize(2)) 
for ii=pick:nvars 
    H = AreaPlot(squeeze(HD.shock(:,:,ii))); hold on; 
    h = plot(sum(squeeze(HD.shock(:,:,ii)),2),'-k','LineWidth',2); 
    if ~isempty(VARopt.firstdate); 
DatesPlot(VARopt.firstdate,nsteps,8,VARopt.frequency); end 
    xlim([1 nsteps]); 
snames = VARopt.snames; 
nshocks = pick; 
    set(gca,'Layer','top'); 
    title([vnames{ii}], 'FontWeight','bold','FontSize',10); 
    % Save 
    FigName = [filename num2str(ii)]; 
    if quality 
        if suptitle==1 
            Alphabet = char('a'+(1:nvars)-1); 
            SupTitle([Alphabet(jj) ') HD of '  vnames{ii}]) 

end  

        opt = LegOption; opt.handle = [H(1,:) h]; 
        LegSubplot([snames {'Data'}],opt); 
        set(gcf, 'Color', 'w'); 
        export_fig(FigName,'-pdf','-painters') 

else  

        print('-dpdf','-r100',FigName); 
    end 
    clf('reset'); 
end 

close all  

legend([H(1,:) h],[vsnames {'Data'}]) 
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VAR.Fp = zeros(nvar,nvar,nlag); 
I = VAR.const+1; 
for ii=1:nsteps 
    if ii<=nlag 
        VAR.Fp(:,:,ii) = VAR.F(:,I:I+nvar-1); 

else  

end  

I = I + nvar;  

VAR.Fp(:,:,ii) = zeros(nvar,nvar); 
 
end  
% Compute multipliers 
PSI(:,:,1) = eye(nvar); 
for ii=2:nsteps 
    jj=1; 
    aux = 0; 
    while jj<ii 
        aux = aux + PSI(:,:,ii-jj)*VAR.Fp(:,:,jj); 

jj=jj+1;  

end  

    PSI(:,:,ii) = aux; 

end  

% Update VAR with Wold multipliers 
VAR.PSI = PSI; 
%% Identification: Recover B matrix 
%========================================================================== 
% B matrix is recovered with Cholesky decomposition 
if strcmp(VARopt.ident,'short') 
    [out, chol_flag] = chol(sigma); 
    if chol_flag~=0; error('VCV is not positive definite'); end 
    B = out'; 
% B matrix is recovered with Cholesky on cumulative IR to infinity 
elseif strcmp(VARopt.ident,'long') 
    Finf_big = inv(eye(length(Fcomp))-Fcomp); 
    Finf = Finf_big(1:nvar,1:nvar); 
    D  = chol(Finf*sigma*Finf')'; 
    B = Finf\D; 
% B matrix is recovered with SR.m 
elseif strcmp(VARopt.ident,'sign') 
    if isempty(VAR.B) 
        error('You need to provide the B matrix with SR.m and/or 
SignRestrictions.m') 
    else 

B = VAR.B;  

end  

% B matrix is recovered with external instrument IV 
elseif strcmp(VARopt.ident,'iv') 
    % Recover residuals (first variable is the one to be instrumented - order 
matters!) 
    up = VAR.resid(:,1);     % residuals to be instrumented 
    uq = VAR.resid(:,2:end); % residulas for second stage 
    % Make sample of IV comparable with up and uq 
    [aux, fo, lo] = CommonSample([up IV(VAR.nlag+1:end,:)]); 
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    p = aux(:,1); 
    q = uq(end-length(p)+1:end,:); pq = [p q]; 
    Z = aux(:,2:end); 
    % Run first stage regression and fitted 
    FirstStage = OLSmodel(p,Z); 
    p_hat = FirstStage.yhat; 
    % Recover first column of B matrix with second stage regressions 
    Biv(1,1) = 1;  % Start with impact IR normalized to 1 
    sqsp = zeros(size(q,2),1); 
    for ii=2:nvar 
        SecondStage = OLSmodel(q(:,ii-1),p_hat); 
        Biv(ii,1) = SecondStage.beta(2); 
        sqsp(ii-1) = SecondStage.beta(2); 

end  

    % Update size of the shock (ftn 4 of Gertler and Karadi (2015)) 
    sigma_b = (1/(length(pq)-VAR.ntotcoeff))*... 
        (pq-repmat(mean(pq),size(pq,1),1))'*... 
        (pq-repmat(mean(pq),size(pq,1),1)); 
    s21s11 = sqsp; 
    S11 = sigma_b(1,1); 
    S21 = sigma_b(2:end,1); 
    S22 = sigma_b(2:end,2:end); 
    Q = s21s11*S11*s21s11'-(S21*s21s11'+s21s11*S21')+S22; 
    sp = sqrt(S11-(S21-s21s11*S11)'*(Q\(S21-s21s11*S11))); 
    % Rescale Biv vector 
    Biv = Biv*sp; 
    B = zeros(nvar,nvar); 
    B(:,1) = Biv; 
% If none of the above, you've done somerthing wrong :) 

else  

end  

%% Compute the impulse response 
%========================================================================== 
for mm=1:nvar 
    % Set to zero a row of the companion matrix if "shut" is selected 
    if shut~=0 
        Fcomp(shut,:) = 0; 

end  

    % Initialize the impulse response vector 
    response = zeros(nvar, nsteps); 
    % Create the impulse vector 
    impulse = zeros(nvar,1); 
    % Set the size of the shock 
    if impact==0 
        impulse(mm,1) = 1; % one stdev shock 
    elseif impact==1 
        impulse(mm,1) = 1/B(mm,mm); % unitary shock 

else  

        error('Impact must be either 0 or 1'); 
    end 
    % First period impulse response (=impulse vector) 
    response(:,1) = B*impulse; 
    % Shut down the response if "shut" is selected 
    if shut~=0 
        response(shut,1) = 0; 

end  
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    % Recursive computation of impulse response 
    if strcmp(recurs,'wold') 
        for kk = 2:nsteps 
            response(:,kk) = PSI(:,:,kk)*B*impulse; 
        end 
    elseif strcmp(recurs,'comp') 
        for kk = 2:nsteps 
            FcompN = Fcomp^(kk-1); 
            response(:,kk) = FcompN(1:nvar,1:nvar)*B*impulse; 

end end  

    IR(:,:,mm) = response'; 

end  

% Update VAR with structural impact matrix 
VAR.B = B; 
if strcmp(VARopt.ident,'iv') 
    VAR.FirstStage = FirstStage; 
    VAR.sigma_b = sigma_b; 
    VAR.Biv = Biv; 

end  

disp('---------------------------------------------') 
disp('Identification incorrectly specified.') 
disp('Choose one of the following options:'); 
disp('- short: zero contemporaneous restrictions'); 
disp('- long:  zero long-run restrictions'); 
disp('- sign:  sign restrictions'); 
disp('- iv:  external instrument'); 
disp('---------------------------------------------') 
error('ERROR. See details above'); 
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IV = VAR.IV;  

INF = zeros(nsteps,nvar,nvar); 
SUP = zeros(nsteps,nvar,nvar); 
MED = zeros(nsteps,nvar,nvar); 
BAR = zeros(nsteps,nvar,nvar); 
%% Create the matrices for the loop 
%------------------------------------------------------------------------ 
y_artificial = zeros(nobs+nlag,nvar); 
%% Loop over the number of draws 
%------------------------------------------------------------------------ 
tt = 1; % numbers of accepted draws 
ww = 1; % index for printing on screen 
while tt<=ndraws 
    % Display number of loops 
    if tt==VARopt.mult*ww 
        disp(['Loop ' num2str(tt) ' / ' num2str(ndraws) ' draws']) 
        ww=ww+1; 

end  

%% STEP 1: choose the method and generate the residuals 
    if strcmp(method,'bs') 
        % Use the residuals to bootstrap: generate a random number bounded 
        % between 0 and # of residuals, then use the ceil function to select 
        % that row of the residuals (this is equivalent to sampling with 
replacement) 
        u = resid(ceil(size(resid,1)*rand(nobs,1)),:); 
    elseif strcmp(method,'wild') 
        % Wild bootstrap based on simple distribution (~Rademacher) 
        if strcmp(VARopt.ident,'iv') 
            rr = 1-2*(rand(nobs,size(IV,2))>0.5); 
            u = resid.*(rr*ones(size(IV,2),nvar)); 
            Z = [IV(1:nlag,:); IV(nlag+1:end,:).*rr]; 

else  

end else  

        error(['The method ' method ' is not available']) 
    end 
%% STEP 2: generate the artificial data 
    %% STEP 2.1: initial values for the artificial data 
    % Intialize the first nlag observations with real data 
    LAG=[]; 
    for jj = 1:nlag 
        y_artificial(jj,:) = ENDO(jj,:); 
        LAG = [y_artificial(jj,:) LAG]; 

end  

    % Initialize the artificial series and the LAGplus vector 
    T = [1:nobs]'; 
    if const==0 
        LAGplus = LAG; 
    elseif const==1 
        LAGplus = [1 LAG]; 
    elseif const==2 
        LAGplus = [1 T(1) LAG]; 
    elseif const==3 
        T = [1:nobs]'; 
        LAGplus = [1 T(1) T(1).^2 LAG]; 
    end 
    if nvar_ex~=0 
        LAGplus = [LAGplus VAR.X_EX(jj-nlag+1,:)]; 
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end  

    %% STEP 2.2: generate artificial series 
    % From observation nlag+1 to nobs, compute the artificial data 
    for jj = nlag+1:nobs+nlag 
        for mm = 1:nvar 
            % Compute the value for time=jj 
            y_artificial(jj,mm) = LAGplus * Ft(1:end,mm) + u(jj-nlag,mm); 

end  

        % now update the LAG matrix 
        if jj<nobs+nlag 
            LAG = [y_artificial(jj,:) LAG(1,1:(nlag-1)*nvar)]; 
            if const==0 
rr = 1-2*(rand(nobs,1)>0.5); 
u = resid.*(rr*ones(1,nvar)); 
                LAGplus = LAG; 
            elseif const==1 
                LAGplus = [1 LAG]; 
            elseif const==2 
                LAGplus = [1 T(jj-nlag+1) LAG]; 
            elseif const==3 
                LAGplus = [1 T(jj-nlag+1) T(jj-nlag+1).^2 LAG]; 
            end 
            if nvar_ex~=0 
                LAGplus = [LAGplus VAR.X_EX(jj-nlag+1,:)]; 

end end  

end  

%% STEP 3: estimate VAR on artificial data. 
    if nvar_ex~=0 
        [VAR_draw, ~] = VARmodel(y_artificial,nlag,const,EXOG,nlag_ex); 

else  

end  

    % If "iv" identification is selected, update VAR_draw with bootstrapped 
    %instrument 
    if exist('Z','var') 
        VAR_draw.IV = Z; 

end  

%% STEP 4: calculate "ndraws" impulse responses and store them 
    % Uses options from VARopt and parameters from VAR_draw (from step 3) 
    % to compute IRFs 
    [IR_draw, VAR_draw] = VARir(VAR_draw,VARopt); 
    if VAR_draw.maxEig<.9999 
        IR(:,:,:,tt) = IR_draw; 

tt=tt+1;  

end end  

disp('-- Done!'); 
disp(' '); 
%% Compute the error bands 
%------------------------------------------------------------------------ 
pctg_inf = (100-pctg)/2; 
pctg_sup = 100 - (100-pctg)/2; 
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INF(:,:,:) = prctile(IR(:,:,:,:),pctg_inf,4); 
SUP(:,:,:) = prctile(IR(:,:,:,:),pctg_sup,4); 
MED(:,:,:) = prctile(IR(:,:,:,:),50,4); 
BAR(:,:,:) = mean(IR(:,:,:,:),4); 
[VAR_draw, ~] = VARmodel(y_artificial,nlag,const); 
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    error('The selected shock is non valid') 
else 
    if pick==0 

pick=1;  

else  

end end  

% Define the rows and columns for the subplots 
row = round(sqrt(nvars)); 
col = ceil(sqrt(nvars)); 
snames = VARopt.snames; 
nshocks = pick; 
% Define a timeline 
steps = 1:1:nsteps; 
x_axis = zeros(1,nsteps); 
%% Plot 
%================================================ 
SwatheOpt = PlotSwatheOption; 
SwatheOpt.marker = '*'; 
SwatheOpt.trans = 1; 
FigSize(VARopt.FigSize(1),VARopt.FigSize(2)) 
for jj=pick:nshocks 
    for ii=1:nvars 
        subplot(row,col,ii); 
        plot(steps,IR(:,ii,jj),'LineStyle','-
','Color','k','LineWidth',2,'Marker',SwatheOpt. 
marker); hold on 
        if exist('INF','var') && exist('SUP','var') 
            PlotSwathe(IR(:,ii,jj),[INF(:,ii,jj) SUP(:,ii,jj)],SwatheOpt); hold on; 
        end 
        plot(x_axis,'--k','LineWidth',0.5); hold on 
        xlim([1 nsteps]); 
        title([vnames{ii} ' to ' snames{jj}], 'FontWeight','bold','FontSize',10); 
        set(gca, 'Layer', 'top'); 

end  

% Save  

    FigName = [filename num2str(jj)]; 
    if quality 
        if suptitle==1 
            Alphabet = char('a'+(1:nshocks)-1); 
            SupTitle([Alphabet(jj) ') IR to a shock to '  vnames{jj}]) 

end  

        set(gcf, 'Color', 'w'); 
        export_fig(FigName,'-pdf','-painters') 
    else 
        print('-dpdf','-r100',FigName); 
    end 
    clf('reset'); 
end 

close all  
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•         error('var: nobs in EXOG-matrix not the same as y-matrix'); 

•     end 

•     clear nobs2 

• else 

num_ex = 0;  

end  

% Check if there is lag order of EXOG, otherwise set it to 0 
if ~exist('lag_ex','var') 
    lag_ex = 0; 

end  

% number of exogenous variables per equation 
nvar_ex = num_ex*(lag_ex+1); 
%% Compute log likelihood and Akaike criterion 
%========================================================= 
logL = zeros(maxlag,1); 
AIC  = zeros(maxlag,1); 

SBC  = zeros(maxlag,1); 
for i=1:maxlag 
    X = ENDO(maxlag+1-i:end,:); 
    aux = VARmodel(X,i,const); 
    if nvar_ex>0 
        Y = EXOG(maxlag+1-i:end,:); 
        aux = VARmodel(X,i,const,Y,lag_ex); 

end  

    NOBSadj = aux.nobs; 
    NOBS = aux.nobs + i; 
    NVAR = aux.nvar; 
    NTOTCOEFF = aux.ntotcoeff; 
    RES = aux.resid; 
    % VCV of the residuals (use dof adjusted denominator) 
    SIGMA = (1/(NOBSadj)).*(RES)'*(RES); 
    % Log-likelihood 
    logL(i) = -(NOBS/2)* (NVAR*(1+log(2*pi)) + log(det(SIGMA))); 
    % AIC: �2*LogL/T + 2*n/T, where n is total number of parameters (ie, 
NVAR*NTOTCOEFF) 
    AIC(i) = -2*(logL(i)/NOBS) + 2*(NVAR*NTOTCOEFF)/NOBS; 
    % SBC: �2*LogL/T + n*log(T)/T 
    SBC(i) = -2*(logL(i)/NOBS) + (NVAR*NTOTCOEFF)*log(NOBS)/NOBS; 

end  

% Find the min of the info criteria 
AIC = find(AIC==min(AIC)); 
SBC = find(SBC==min(SBC)); 

 


