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Introduction

DeĄnition 0.0.1. Let Ω be a graph. We say that a vertex x in Ω is isolated if it is not
adjacent to any of the other vertices in the graph. On the other hand, we say that a
vertex y of the graph Ω is universal if it is adjacent to every other vertex in the graph.

We will work with the following concept in this work:

DeĄnition 0.0.2. Let F be a class of Ąnite groups and G a Ąnite group. We consider
the graph Λ̃F(G) whose vertices are the elements of G and where two vertices g, h ∈ G
are adjacent if and only if ⟨g, h⟩ ∈ F. The F-graph of G, denote by ΛF(G), is the graph
obtained by removing the isolated vertices from Λ̃F(G).

On the other hand, we consider the graph Γ̃F(G) whose vertices are the elements of
G and where two vertices g, h ∈ G are adjacent if and only if ⟨g, h⟩ /∈ F. We denote by
IF(G) the set of isolated vertices of the graph Γ̃F(G). The non-F graph of G, denote by
ΓF(G), is the graph obtained by removing the isolated vertices from Γ̃F(G).

In this work π(G) denotes the amount of different prime numbers dividing ♣G♣. We
will focus on the class F of Ąnite groups whose order is divisible by at most two different
primes, i.e., those groups with π(G) ≤ 2. We will be concerned specially about the non-F
graph of Ąnite groups G, which we will denote by Γ(G). The set of isolated vertices of
Γ(G) will be denoted as I(G).

The concept of distance will be of great interest; the distance between two vertices
x and y of a graph Ω is the length of the shortest path that connect the vertices x and
y. We will also talk about the diameter of a graph; this is length of the shortest path
between the most distanced vertices, i.e., the diameter of a graph Ω is the following:

diam(Ω) = max
x,y∈Ω

d(x, y).

In order to simplify the notation, we will use diam(G) instead of diam(Γ(G)) in this
particular case.

Taking as reference the investigations explained in Section 2, we aim to study pro-
perties about some graphs associated to Ąnite groups. In section 3 we give important
deĄnitions and preliminary results that will be useful during the work, such as the Hig-
man Theorem among others:

v



vi INTRODUCTION

Theorem 0.0.1. Let G be a solvable group all of whose elements have prime power order.
Then G has order divisible by at most two primes.

In section 4 will be concerned about the connectivity of the non-F graphs of Ąnite
groups with π(G) ≥ 3. First we will prove the connectivity result for solvable groups.

Lemma 0.0.2. Let G be a finite solvable group with π(G) ≥ 3, then Γ(G) is connected.

Using the information about the connectivity for the graphs of Ąnite solvable groups,
we get to one of the main theorems of this work:

Theorem 0.0.3. Let G be a finite group with π(G) ≥ 3, then Γ(G) is connected.

Once we have proved that these graphs are connected, it seems natural to ask which
is a bound for the diameter of these graphs, thing that we will study in Section 5. In
order to do this we have studied Ąrst the distances between elements that hold certain
properties, so that we can know how they behave when looking for the diameter. The
following is a helpful result:

Lemma 0.0.4. Let G be a solvable group such that I(G) ̸= G. Then for all x /∈ I(G),
d(x, y) ≤ 2 for some y with π(y) ≥ 2.

The following is also one of the main theorems in this work, since it stablishes a
connection between the diameter of a graph with the prime graph of the group. It is
important because the prime graph gives us information about the orders of the elements
and how many primes divide these orders in different cases. We are keen on being able to
obtain this information since we are working with the cardinality of the groups generated
by two elements of a given group, so it is useful to know as much as possible about the
order of those elements.

Theorem 0.0.5. Let G be a finite solvable group with π(G) = 3. If diam(G) > 4, then
the prime graph is of the form p − r − q.

Using all this information, we give bounds for the diameter of non-F graphs based on
the characteristics of groups.

Proposition 0.0.6. Let G be a finite group. If G is solvable and π(G) ≥ 4, then
diam(G) ≤ 3. If G is solvable and π(G) = 3, then diam(G) ≤ 5. If G is not solva-
ble, then diam(G) ≤ 6.

Our next aim is to know how sharp these bounds are. To that end, in section 5 we
would like to Ąnd groups with the highest diameter as possible, so we have written a
programme in GAP that computes the diameter of the non-F graph of Ąnite groups. The
group with the highest diameter we have been able to Ąnd has been G = C7 ⋊ H, where
H = (C3 × C3) ⋊ SL(2, 3) whose diameter is 3. Therefore, we guess that these are not
the sharpest possible bounds.
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Changing the focus to other properties about the non-F graphs, in section 6 we have
also studied the planarity of the non-F graphs. We say that a graph is planar if it can
be embedded in the plane, i.e., it can be drawn on the plane in such a way that its edges
intersect only at their endpoints. In other words, it can be drawn in such a way that no
edges cross each other.

Theorem 0.0.7. Let G be a finite group. The graph Γ(G) is planar if and only if it is
an edgeless graph.

Finally, we have also studied a bit the complement of the non-F graph, the F-graph,
and have discovered that these graphs are also connected:

Theorem 0.0.8. Let G be a finite group. Then the F-graph of G is connected.





Chapter 1

Survey

Let ΛF(G) be the F-graph of the group G as deĄned in the introduction. These graphs are
of great interest, and have been studied by several authors. For instance, one of the Ąrst
being studied was the commuting graph, which we will denote by Λ(G), where vertices
of the graph are non-central elements of a group G and two vertices are adjacent if the
group they generate is abelian. Notice the paralelism of the commuting graph with the
F-graph where F is the class of abelian groups; the Ąrst is a special case of the second
where we remove the universal vertices. Indeed, the F-graph and the non-F graph of a
group G are one the complement of the other, and the set of isolated vertices of Γ̃F(G)
coincide with the set of universal vertices of Λ̃F(G). Similarly, the set of universal vertices
of Γ̃F(G) is equal to the set of isolated vertices of Λ̃F(G). The commuting graphs have
been studied for example in [20], where they stated the followig about simple groups:

Theorem 1.0.1. Let G be a classical simple group defined over a field of order greater
that 5. If Λ(G) is connected then 4 ≤ diam(Λ(G)) ≤ 10.

The connectivity of the commuting graph of Ąnite simple groups can be compared
with the connectivity of the prime graph. In order to explain this let us introduce the
prime graphs Ąrst:

DeĄnition 1.0.1. Let G be a Ąnite group and construct its prime graph as follows: the
vertices are the primes dividing the order of the group, and two vertices p and q are
adjacent if and only if G contains an element of order pq.

In the papers [21] and [9] the connected components of the prime graphs of all simple
non-abelian groups are studied, so in [20] Y. Segev and G. M. Seitz mention that it is easy
to see that the commuting graph is connected if and only if the prime graph is connected.
Therefore, the simple non-abelian groups G for which Λ(G) is not connected are known.
Later in [10] the following result was proved for Ąnite groups:

Lemma 1.0.2. Let G be a finite group, Π(G) be the prime graph of G and Λ(G) be the
commuting graph of G. If Z(G) = ¶1♢, then Λ(G) is connected if and only if Π(G) is
connected.

Going back to the study of the commuting graph, the Theorem 1.0.1 gave rise to
thinking whether this result could be generalised for any Ąnite group. Inspired by it, A.
Iranmanesh and A. Jafarzadej in [10] presented the following conjecture:
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2 Chapter 1. Survey

Conjecture 1. There is a natural number b such that if G is a Ąnite non-abelian group
with Λ(G) connected, then the diameter of Λ(G) is smaller or equal than b.

The authors supported this conjecture with the following theorems that tell us about
the connectivity and the diameter of the commuting graph of symmetric and alternating
groups:

Theorem 1.0.3. Let Λ(G) be the commuting graph of G. For n ≥ 3, Λ(Sn) is connected
if and only if n and n−1 are not primes and in this case diam(Λ(Sn)) ≤ 5 and this bound
is sharp.

Similarly,

Theorem 1.0.4. Let Λ(G) be the commuting graph of G. For n ≥ 5, Λ(An) is connected
if and only if n, n − 1 and n − 2 are not primes and in this case diam(Λ(An)) ≤ 5 and
this bound is sharp.

However, P. Hegarty and D. Zhelezov tried to prove false the conjecture in [7] by
suggesting a construction of 2-groups motivated by probabilistic methods. Although they
did not succed at their goal, they inspired M. Giudici and C. Parker to prove the conjecture
incorrect in [5]:

Theorem 1.0.5. For all positive integers b, there exists a finite 2-group G such that the
commuting graph of G has diameter greater than b.

Nevertheless, M. Giudici and C. Parker belived that it might be true that the com-
muting graph of a Ąnite group with trivial center is either disconnected or has diameter
upper bounded by a constant, so they proposed the following cojecture:

Conjecture 2. There is an absolute constant b such that if G is a Ąnite group with trivial
center, then the commuting graph of G is either diconnected or has diameter at most b.

Motivated by this conjecture, G.L. Morgan and C.W. Parker went further in [17] and
gave the upper bound for the diameter of the connected components:

Theorem 1.0.6. Suppose that G is a finite group with trivial center. Then every connec-
ted component of the commuting graph G has diameter at most 10. In particular, if the
commuting graph of G is connected, then its diameter is at most 10.

The presented conjecture 2 was veriĄed by C. Parker in [19] for the case where G was
a solvable group with trivial center:

Theorem 1.0.7. Suppose that G is a finite solvable group with trivial center. Then

(i) Λ(G) is disconnected if and only if G is a Frobenius group or a 2- Frobenius group.

(ii) If Λ(G) is connected, then Λ(G) has diameter at most 8.
Furthermore, there exist solvable groups G with trivial center such that Γ(G) has
diameter 8.
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As a generalisation of the commuting graphs, in [3] T. C. Burness, A. Lucchini and D.
Nemmi studied the following graphs, which they named solvable graphs: the vertices of
the graph are the elements of G \ R(G) where R(G) is the solvable radical of G, and two
vertices x and y are adjacent if and only if ⟨x, y⟩ is solvable. It is mentionable that the
elements in the solvable radical are the universal vertices of the previosly deĄned F-graph
ΛF(G), where F is the class of solvable groups. This fact was proved by R. Guralnick, B.
Kunyavskĭı, E. Plotkin and A. Shalev in [6]. We will denote this graph by Λ̃(G). One of
the main results in this paper would be the following:

Theorem 1.0.8. Let G be a finite insolvable group. Then Λ̃(G) is connected and the
diameter is at most 5.

Notice that the solvable graph is a generalisation of the commuting graph. Since the
class of nilpotent groups is bigger than the one of abelian groups but smaller than the
one of solvable groups, in [3] the authors found interesting studying the nilpotent graph
ΛN(G) constructed analogously to the commuting and solvable graphs. That is, let G be
a Ąnite group. The vertices of the nilpotent graph of G are the elements of G \ I where I
is the set of isolated vertices of the non-N graph where N is the class of nilpotent groups,
and two vertices x and y are adjacent if and only if the group they generate is nilpotent.
In the paper [2] the authors prove that the set I is the hypercenter of G, denoted by
Z∞(G), which is the last term in the upper central series of G.

In the paper [3] the following theorem is presented:

Theorem 1.0.9. Let G be a finite non-nilpotent group. Then each connected component
of the nilpotent graph ΛN(G) has diameter at most 10.

On the prove of the theorem they mention that if x and y are adjacent vertices in
the nilpotent graph of a Ąnite group G, then those vertices have distance at most two
in the commuting graph. This is because for any non-trivial element z ∈ Z(⟨x, y⟩) there
is a path x − z − y in the commuting graph. Therefore, the commuting graph and the
nilpotent graph of a given Ąnite group have the same connected components.

In this paper they also study the metacyclic graph constructed in the same way as all
of the previous ones, and they check that in general it is not a connected graph either. Ta-
king into account that the commuting, nilpotent and metacyclic graphs are not connected,
but the solvable graph is connected, the following question arises: Which is the smallest
class F for which the F-graph constructed by removing the universal vertices is connected?

Let us consider now the complement of the F-graph, the non-F graph ΓF(G) of the
group G as deĄned in the introduction. The Ąrst time these kind of graphs were intro-
duced was by Paul Erdös. He proposed the following question ∗ about graphs where the
vertices are elements of the group and two vertices are adjacent if and only if they do

∗At the 15th Summer Research Institute of the Australian Mathematical Society, at the University of

New South Wales, 13 January-14 February 1975.
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not commute, also known as the non-commuting graph: Let G be such that the non-
commuting graph contains no inĄnite complete subgraph; is there a Ąnite bound on the
cardinality of complete subgraphs of the non-commuting graph? This question was an-
swered affirmatively by B. H. Neumann in [18]. Moreover, they proved that the class of
groups whose graph contains no inĄnite complete subgraph coincides with the class of
groups whose center has Ąnite index.

P. ErdösŠ question and B. H. NeumannŠs answer inspired several mathematicians to
ask similar question. In [1] A. Abdollahi, S. Akbari and H.R. Maimani wanted to study
how the graph theoretical properties of the non-commuting graph of G had effect in the
group theoretical properties of G. They also asked the following question:

Question 1. For which group property P , if G and H are two non-abelian groups such
that their non-comuting graphs are isomorphic, and G has property P , then H has also
property P?

They also proposed the following conjectures:

Conjecture 3. Let G and H be two non-abelian Ąnite groups such that their non-
commuting graphs are isomorphic. Then, ♣G♣ = ♣H♣.

Conjecture 4. Let S be a Ąnite non-abelian simple group and G is a group such that
the non-commuting graphs os S and G are isomorphic. Then, G ∼= S.

Moreover, in the preliminary section they prove the next results:

Proposition 1.0.10. For a non-abelian group G, the diameter of the non-commuting
graph of G is equal to 2. In particular, the non-commuting graph of G is connected.

There are also papers in non-nilpotent graphs i.e., the non-F graph ΓF(G) where F is
the class of nilpotent groups. For example, in [2] A. Abdollahi and M. Zarrin proved the
following theorem:

Theorem 1.0.11. Let G be a finite non-nilpotent group. Then the non-nilpotent graph
is connected and its diameter is at most 6. In particular, every two vertices x and y with
π(x) ̸= π(y) are connected by a path of length at most 4.

However, this result was improved by A. Lucchini and D. Nemmi in [13] where they
proved the following result:

Theorem 1.0.12. Let G be a finite group. Then the non-nilpotent graph has diameter at
most 3.

As far as non-solvable graphs are concerned, they were studied in the previously men-
tioned paper [6]. One of their main interest in this paper was to prove that the solvable
radical R(G) of a group G coincides with the elements y ∈ G such that ⟨x, y⟩ is solvable
for any x ∈ G, i.e., R(G) is the set of universal vertices of the F-graph or the set of isolated
vertices of the non-F graph, where F is the class of solvable groups. However, they also
proved interesting results about the non-F graph ΓF(G), where F is the class mentioned
before, such as:
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Theorem 1.0.13. Let G be a finite group. Suppose that x and y are not in R(G). Then
there exists s ∈ G such that ⟨x, s⟩ and ⟨y, s⟩ are not solvable.

This theorem will be of great interest in this work, since it proves that the non-solvable
graph of a group G is connected, and that the diameter of such graph is at most 2.

Notice that non-commuting, non-nilpotent and non-solvable graphs are connected.

In order to generalize for which classes F the non-F graph is connected let us give the
following deĄnitions:

DeĄnition 1.0.2. The class F is said to be semiregular if IF(G) is a subgroup of G for
every Ąnite group G.

DeĄnition 1.0.3. A class of groups F is a formation if F has the following two properties:

1. If G ∈ F and N ⊴ G, then G/N ∈ F.

2. If N1, N2 ⊴ G with N1 ∩ N2 = 1 and G/N1, G/N2 ∈ F, then G ∈ F.

It can be proved that the classes of abelian, nilpotent or solvable groups are semiregular
formations. Moreover, in the paper [14] A. Lucchini and D. Nemmi wrote the following
theorem, for which we need to know that a formation F is connected if the non-F graph
ΓF(G) is connected:

Theorem 1.0.14. The following formations are semiregular:

1. The formation of finite supersolvable groups.

2. The formation of the finite groups with nilpotent derived subgroup.

3. The formation of the finite groups with Fitting length less or equal than t, for any
t ∈ N.

4. The formation of the finite groups G with G/Op(G) with Fitting length less or equal
than t, for any t ∈ N.

All of these formations are connected.

In order to understand the previous theorem we might need the following deĄnition:

DeĄnition 1.0.4. Let G be a Ąnite group. Let Fit(G) denote the Fitting subgroup of G.
The upper Fitting series is

F0 ≤ F1 ≤ . . . ≤ Fn . . . ,

where F0 = 1 and Fi = Fit(G/Fi−1) for all i > 0.
The Fitting length is the length of the upper Fitting series, i.e. the number of distinct

elements in the chain minus one.
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That is, what they saw is that often semiregular formations are connected. Besides the
ones mentioned in the previous theorems, this also occurs for formations of abelian, nilpo-
tent or solvable groups as we could have noticed previously. This is why they adressed
a more general question in [15]: suppose that F is a class containig only solvable groups
and groups closed under taking subgroups, and that a Ąnite group G has the property
that IF(H) is a subgroup of H for any H ≤ G. Does this imply that ΓF(G) is connected?

The main theorem of that paper says the following concerning the previous question:

Theorem 1.0.15. Let F be a class with the following properties:

1. All the groups in F are solvable.

2. F is closed under taking subgroups.

Suppose that G is a finite group which is minimal with respect to the following properties:
G is F-semiregular and the graph ΓF(G) is not connected. Then G is solvable and there
exists an epimorphism

π : G → (V1 × · · · × Vt) ⋊ H,

where H is 2-generated and there exists a faithful irreducible H-module V with Vi
∼= V

for 1 ≤ i ≤ t and t = 1 + dimEndH(V )(V ).

Moreover let W be the set of the H-submodules of V1 × · · · × Vt that are H-isomorphic
to V t−1. There exists one and only one W ∈ W with the property that M = π−1(W⋊H) /∈
F2. If g1, g2 ∈ G and ⟨g1, g2⟩ /∈ F, then either ⟨g1, g2⟩ ≤ Mx, for some x ∈ G, or H is
cyclic of prime order and ⟨g1, g2⟩ ≤ π−1(V1 × · · · × Vt).

In the previous theorem F2 is the class of the Ąnite groups G with the property that
any 2-generated subgroup of G is in F.

What they saw with the previous theorem is that the answer to the dropped question
is affirmative in every case but in the ones explained in the theorem.

This theorem can be used for example to prove that the graphs ΓF(G) are connected
for any Ąnite group G when F is the class of p-groups for any prime p. However, there is
an easier way to prove this as we can see in the following theorem:

Theorem 1.0.16. Let G be a finite group with π(G) ≥ 2, and F the class of groups whose
order is divisible by just one prime. Then ΓF(G) is connected.

Proof. Let us assume that there exists g ∈ G such that π(g) ≥ 2. In this case the vertex
g is adjacent to any vertex h ∈ G, implying that the graph ΓF(G) is connected.

Suppose then that π(g) = 1 for all g ∈ G. Let x, y ∈ G be non-isolated vertices. If
the prime dividing the order of x is different from the prime dividing the order of y, then
these two vertices are clearly adjacent. On the other hand, if the prime dividing the order
of these elements is the same, call it p, there exists z ∈ G whose order is divisible by a
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different prime q ̸= p, and thus z is adjacent to both x and y. Therefore, the graph is
connected with diameter at most 2.

However, we cannot apply Theorem 1.0.15 to the class F of groups whose order is
divisible by at most two primes since it is not semiregular. Indeed, consider the group
G = D30. In the graph assosiated to this group the isolated vertices are the elements
of order 3 and 5, which is not a subgroup of G. This is why we are going to focus our
attention in this concrete class and prove the connectivity and more properties about it.

Notice that regarding the question asked before, although the answer is affirmative in
many cases, in Theorem 1.0.15 A. Lucchini and D. Nemmi stated some counterexamples.
That is, semiregularity is not a sufficient condition to ensure connectivity, and it is neither
necessary as we will see in this work.





Chapter 2

Preliminaries

In this chapter we will provide some deĄnitions and results that will show up frequently
during the work.

DeĄnition 2.0.1. Let Ω be a graph. We say that a vertex x in Ω is isolated if it is not
adjacent to any of the other vertices in the graph. On the other hand, we say that a
vertex y of the graph Ω is universal if it is adjacent to every other vertex in the graph.

DeĄnition 2.0.2. Let F be a class of Ąnite groups and G a Ąnite group. We consider
the graph Γ̃F(G) whose vertices are the elements of G and where two vertices g, h ∈ G
are adjacent if and only if ⟨g, h⟩ /∈ F. We denote by IF(G) the set of isolated vertices
of the graph Γ̃F(G). The non-F graph of G, denote by ΓF(G), is the graph obtained by
removing the isolated vertices from Γ̃F(G).

DeĄnition 2.0.3. Let G be a Ąnite group. The number π(G) is the amount of different
prime numbers dividing the cardinality of G. We say that G is a ¶p1, . . . , pt♢-group if the
primes p1, . . . , pt are the ones dividing the cardinality of G.
Let x ∈ G be an element in G. The number π(x) is the number that indicates the amount
of different prime numbers dividing the order of x.

From now on we are going to set F to be the class of Ąnite groups whose cardinality
is divisible by at most two primes if not stated contrarily, i.e., those groups G such that
π(G) ≤ 2. In this situation, we will denote I(G) := IF(G) and Γ(G) := ΓF(G). The
set I(G) does not need to be a subgroup of G. For example, if we consider the group
G = D30, the isolated vertices I(G) are the elements of order 3 and 5, which is not a
subgroup of G.

We say that an element x is a pq-element if the primes p and q divide the order of x.
Moreover, we will use the notation x−y to express that the elements x and y are adjacent
in a given graph.

DeĄnition 2.0.4. Let G be a Ąnite group and construct its prime graph as follows: the
vertices are the primes dividing the order of the group, and two vertices p and q are
adjacent if and only if G contains an element of order pq.

9
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Theorem 2.0.1 (Higman). Let G be a solvable group all of whose elements have prime
power order. Then G has order divisible by at most two primes.

Proof. If G was a simple group it would be isomorphic to a cyclic group of prime order
due to the fact that it is solvable, and we would be done. Suppose then that G is not
simple. In this case we can ensure that G contains a normal proper non-trivial p-subgroup
for some prime p (call it P ′), and cannot have a normal q-subgroup greater than 1 for
another prime q different from p. This is because otherwise, if we let x ∈ P ′ and y ∈ Q
where Q is the supposedly normal q-subgroup, as P ′ and Q are normal subgroups of G,
[x, y] ≤ P ′ ∩Q = ¶1♢, and thus the element xy would have order divisible by two different
primes, which is a contradiction with the statement.

Let P be the greatest normal p-subgroup of G. If G was nilpotent, it would be equal
to P since all its Sylow subgroups are normal in it and from the previous paragraph we
know that the only normal one is P , thus G would be a p-group and we would be done.
So assume that G is not nilpotent. In this case P ≨ G. Let q be a prime such that G/P
has a normal q-subgroup greater than 1, and let Q be a q-subgroup of G such that PQ/P
is the greatest normal q-subgroup of G/P .

If N is a minimal normal subgroup of G (which is contained in P ), the automorphism
on N induced by conjugation with an element of Q does not leave any of the elements of
N Ąxed other that 1 because otherwise there would exist n ∈ N such that [n, q] = 1 and
the order of nq would be divisible by the primes p and q, which is again a contradiction
with the statement. It follows ([4], 334-336) that Q has no elementary abelian subgroup
of order q2, and hence if q is odd, then Q is cyclic and if q = 2, Q is cyclic or generalized
quaternion. In any of the cases Q containes a characteristic subgroup of order q which we
will denote by Z.

Next step is to prove that C := CG(PZ/P ) is equal to PQ. Clearly Z ≤ Z(Q), which
implies that [PQ, PZ] ≤ P , and therefore PQ ≤ C. We now want to prove that C ≤ PQ.
To that end assume there exists an element g ∈ C \P such that gcd(♣g♣, q) = 1. As g ∈ C,
the element gP commutes with any element yP ∈ PZ/P , and thus the element gy would
have order divisible by two different primes, which is not possible. This means that any
element of C of coprime order to q must be contained in P , i.e., C/P is a q-group normal
in G/P , implying that C/P ≤ PQ/P , and consequently C ≤ PQ.

The action of conjugation of the elements of G/P over PZ/P implies that G/P
C/P

∼=

G/PQ is a subgroup of Aut(PZ/P ) ∼= Aut(Z). Therefore, G/PQ is cyclic because Z has
prime order, and its order must divide q − 1. Moreover, G/PQ has prime power order
because otherwise, as it is cyclic and consequently abelian, it would contain an element
divisible by two different primes. Clearly this prime cannot be q itself. Assume there
exists a third prime r such that r divides the order of G/PQ and let x ∈ G with order
r. Then the conjugation of the elements of PQ with x induce an automorphism of PQ
that does not Ąx any element but the identity, and hence PQ is a nilpotent group ([8],
Theorem 4). Note that this is not possible because we are assuming that G is not nilpotent.
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All in all, we have proved that G/PQ if a p-group, and therefore the order of G is
divisible by at most two different primes.

Proposition 2.0.2. Let G be a solvable group with π(G) ≥ 3, and N ∼= Cd
t a minimal

normal subgroup where t is a prime number. Let x, y ∈ G be such that two primes p, q
divide the cardinality of ⟨x, y⟩ but t does not divide it. Then there exist n, m ∈ N such
that t divides the cardinality of ⟨xn, ym⟩. Consequently the three primes p, q, t divide the
cardinality of ⟨xn, ym⟩.

Proof. Call S := ⟨x, y⟩N . We can assume that N is a minimal normal subgroup of S,
because if it is not there exists M a normal subgroup of S inside N such that N/M is
a minimal normal subgroup of S/M and we could work in the quotient and transfer the
information to the group.

So suppose that t does not divide ♣⟨x, y⟩♣ and that N is a minimal normal subgroup of
S. We want to prove that there exist two elements n, m ∈ N such that t divides the order
of ⟨xn, ym⟩. For any n1, n2 ∈ N we have that S = ⟨xn1, yn2⟩N . Moreover, ⟨xn1, yn2⟩ ∩
N ⊴ ⟨xn1, yn2⟩ and ⟨xn1, yn2⟩∩N ⊴ N because N is abelian, so ⟨xn1, yn2⟩∩N ⊴ S, which
by the minimality of N implies that either ⟨xn1, yn2⟩ ∩ N = ¶1♢ or ⟨xn1, yn2⟩ ∩ N = N .
If there exist n1, n2 ∈ N such that we are in the latest case, then ⟨xn1, yn2⟩ = N and
thus t divides its cardinality as we wanted to prove. Assume, on the other hand, that for
any n1, n2 ∈ N the equality ⟨xn1, yn2⟩ ∩ N = ¶1♢ holds. If ⟨xn1, yn2⟩ = ⟨xm1, ym2⟩, then
n−1

1 m1, n−1
2 m2 ∈ ⟨xn1, yn2⟩ ∩ N , i.e., n1 = m1 and n2 = m2. Consequently, there are ♣N ♣2

complements for N in S, but by Schur-Zassenhaus we know that all the complements must
be conjugate, and this is an amount of at most ♣N ♣ complements, which is a contradiction.
Therefore, there must exist n, m ∈ N such that t divides the cardinality of ⟨xn, ym⟩.

Proposition 2.0.3. Let G be a finite group, N ⊴ G a normal subgroup, and x ∈ G. If x
acts fixed point free on N , i.e., CN(x) = ¶1♢, then xN = ¶xn♣n ∈ N♢.

Proof. If n ̸= 1, then xn = x[x, n] where 1 ̸= [x, n] ∈ N because x acts Ąx point free in N
and N is normal in G. Then, xn = xm where m ∈ N . Moreover, ♣xN ♣ = ♣N : CN(x)♣ =
♣N ♣, which equals ♣¶xn♣n ∈ N♢♣, and thus xN = ¶xn♣n ∈ N♢.

Two other concepts that we will use during the work will be the distance and the
diameter of a graph:

DeĄnition 2.0.5. The distance between two vertices of a graph Ω is a map d : Ω×Ω → N
where for any x, y ∈ Ω, d(x, y) is the number of edges in a shortest path connecting the
vertices x and y.

Notice that the distance deĄned above is indeed a distance function, since it satisĄes
all the axioms of a metric function.
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DeĄnition 2.0.6. The diameter of a connected component Ω of a graph Γ(G) is the
length of the shortest path between the most distanced vertices of the subgraph Ω. In
case Γ(G) is connected (which we will see it is), we will denote the diameter of the graph
Γ(G) as diam(G). That is,

diam(G) = max
x,y∈Γ(G)

d(x, y).



Chapter 3

Connectivity and diameter

In this chapter we aim to prove that the non-F graph is connected, and wish to Ąnd the
sharpest upper bound for the diameter as possible for this connected graph.

Theorem 3.0.1. Let G be a finite group with π(G) ≥ 3, then Γ(G) is connected.

In order to prove this theorem, we are going to Ąrst prove the result for Ąnite solvable
groups.

Lemma 3.0.2. Let G be a finite solvable group with π(G) ≥ 3 , then Γ(G) is connected.

Proof. Let G be a Ąnite solvable group. Assume, by contradiction, that G is a solvable
group with minimal order with respect to the property that Γ(G) is not connected.

If there exists g ∈ G such that π(g) ≥ 3, then ⟨g, h⟩ /∈ F for all h ∈ G, which implies
that Γ(G) is connected. Instead, take g, h ∈ G such that π(g) = π(h) = 2. In the case
where the primes dividing the orders of g and h are the same, we know that there exists
a third element a ∈ G such that gcd(♣g♣, ♣a♣) = gcd(♣h♣, ♣a♣) = 1 which implies that a is
adjacent to both g and h, and thus they are all contained in the same connected compo-
nent of Γ(G). On the other hand, if there exists a prime number dividing the order of g
but not dividing the order of h, or viceversa then clearly g and h are adjacent vertices
and they are contained in the same connected component of Γ(G). Thus, all elements
of G whose cardinality is divisible by more than one prime are contained in the same
connected component of Γ(G), which we will denote by Ω.

Since we are assuming that Γ(G) is not connected, there must exist an element x ∈ G
such that x /∈ I(G), x /∈ Ω, thus π(x) = 1. In this case there exists y ∈ G such that x
and y are adjacent vertices in Γ(G), and we may assume that y /∈ Ω, thus π(y) = 1.

In this situation deĄne the subgroup H := ⟨x, y⟩. As x and y are adjacent vertices,
π(H) ≥ 3, thus by Theorem 2.0.1 there exists an element z ∈ H such that π(z) ≥ 2,
which implies that z ∈ Ω. Clearly x is not an isolated vertex of H, and neither is z since
π(H) ≥ 3. Assume H ≨ G. Note that Γ(H) must be connected by the minimality of G,

13
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and as x and z are not isolated points of Γ(H), they must be connected in Γ(H), and con-
sequently in Γ(G). Moreover, z ∈ Ω which implies that x ∈ Ω, and this is a contradicition.

We may therefore assume that G = H = ⟨x, y⟩. If G was simple, it would be a p-group,
but we are assuming that π(G) ≥ 3, so we can ensure the existance of a proper minimal
normal subgroup N of G. As G is solvable, N ∼= Cd

r where r > 0 is a prime integer and d
a natural number.

Suppose π(G/N) ≩ 2. By Theorem 2.0.1 there exists zN ∈ G/N such that π(zN) ≥ 2,
and thus zN is not an isolated point of Γ(G/N). Moreover, xN is neither an isolated
point of Γ(G/N), otherwise we would have that ⟨xN, gN⟩N/N ∈ F for all gN ∈ G/N .
In particular, ⟨xN, yN⟩N/N ∼= G/N ∈ F, which is a contradiction with our assumption.
On the other hand, by the minimality of G the graph Γ(G/N) must be connected, and
consequently xN and zN are connected in that graph, and thus x and z are connected
in Γ(G). However, π(zN) ≥ 2 implies that π(z) ≥ 2 as well, and therefore z ∈ Ω, then
x ∈ Ω, which is again a contradiction.

So we may assume that G/N is a ¶p, q♢-grpup and G is a ¶p, q, r♢-group, which implies
that N is the Sylow r-subgroup of G. Note that we can choose x to be a p-element or a
q-element because if it was an r-element we would have that π(G) = 2. Without loss of
generality assume that x is a p-element.

We may assume that x acts Ąxed point free on N , i.e., CN(x) = ¶1♢. Otherwise,
[x, n] = 1 for some 1 ̸= n ∈ N . In this case we could write G = ⟨xn, y⟩N , and thus the
cardinality of G divides ♣⟨xn, y⟩♣♣N ♣. This implies that at least p and q divide the order
of ⟨xn, y⟩. However, note that ⟨xn⟩ is a subgroup of ⟨xn, y⟩, and since [x, n] = 1, the
order of xn is ♣xn♣ = ♣x♣♣n♣ = parb. Therefore, ⟨xn, y⟩ /∈ F. As a consequence, the vertice
y is adjacent to x and to xn, where the latest is an element of Ω since π(xn) = 2, which
implies that x ∈ Ω, a contradicition.

Suppose now that there exists an elements z ∈ G such that pq divides ♣z♣. It is clear
that the primes p and q divide the cardinality of ⟨x, z⟩. If r divides it as well, x and
z would be adjacent vertices in Γ(G) and thus x ∈ Ω, so we may assume that r does
not divide the order of ⟨x, z⟩. In this case we can apply Proposition 2.0.2 to the ele-
ments x, z ∈ G, and therefore there exist n, m ∈ N such that r divides the cardinality of
⟨xn, zm⟩. As pq divides the cardinality of z, note that ⟨xn, zm⟩ /∈ F and that xn ∈ Ω.

By Proposition 2.0.3 we know that there exists n′ ∈ N such that xn = x(n′)−1

, or
equivalently, x = (xn)n′

. It is easy to see that there is a bijection between ⟨xn, zm⟩
and ⟨(xn)n′

, (zm)n′

⟩ which implies that they both have the same cardinality. Therefore,
(xn)n′

= x and (zm)n′

are adjacent vertices in Γ(G), and as the orders of (zm)n′

and
zm are the same, (zm)n′

∈ Ω, and hence x ∈ Ω as well. This means that there are no
elements of order divisible by pq in G.
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Assume now that there exists an element g ∈ G such that qr divides the order of g.
Then qr divides ♣⟨x, g⟩♣, and p divides ♣⟨x, g⟩♣ as well. Hence ⟨x, g⟩ /∈ F, but as π(g) ≥ 2,
g is in Ω, and as it is adjacent to x, x is in Ω as well, a contradiction. Thus, there are no
elements in G whose order is divisible by qr.

By Theorem 2.0.1 there must exist an element g ∈ G such that π(g) ≥ 2, thus pr
must divide the order of this element g. As a consequence this element g is adjacent with
any element of G whose order is divisible by q, and therefore Ω contains all the elements
whose order is divisible by q.

Let 1 ̸= v be a q-element in G. Clearly the primes p and q divide the order of ⟨x, v⟩. If
r does divide that order either, then x and v are adjacent vertices in Γ(G), and as v ∈ Ω,
x is contained in Ω as well. So we may consider that r does not divide the order of ⟨x, v⟩.
Then, by Proposition 2.0.2 there exist n1, n2 ∈ N such that r divides ♣⟨xn1, vn2⟩♣. Clearly
p and q also divide ♣⟨xn1, vn2⟩♣. As vn2 ∈ Ω, xn1 is also contained in Ω. By Proposition
2.0.3 x and xn1 are conjugated, implying x ∈ Ω, a contradiction.

Proof of Theorem 3.0.1. If G is solvable we are done by Lemma 3.0.2, so let G be a Ą-
nite non-solvable group. Denote by R := R(G) the solvable radical of G. It follows [6]
that R = IS(G) where S is the class of Ąnite solvable groups. Consequently, taking
x ∈ G \ R, there exists y ∈ G such that ⟨x, y⟩ /∈ S, and thus ⟨x, y⟩ /∈ F as F ⊆ S. As the
non-solvable graph of G is connected [15], all the elements of G \ R belong to the same
connected component of Γ(G).

Consider the following sets: A = I(G), B = I(R) \ I(G), C = R \ I(R), D = G \ R
and note that G = A∪̇B∪̇C∪̇D.

By deĄnition, for each b ∈ B there exists d ∈ D such that b and d are adjacent vertices
of the graph Γ(G). Moreover, we know that all the elements of D belong to the same
connected component of Γ(G), therefore B ∪ D ⊆ Ω, where Ω is a connected component
of Γ(G).

Assume that B ̸= ∅. Consider b ∈ B, d ∈ D such that b and d are adjacent vertices in
Γ(G) and deĄne H := R⟨d⟩. As R is solvable, H is solvable as well, so it is a Ąnite proper
solvable subgroups of G. Thus, by Lemma 3.0.2, Γ(H) is connected.

Note that b, d ∈ H and they are connected so b, d ∈ H \I(H). Moreover, C ⊆ H \I(H)
as well. Since Γ(H) is connected, ¶b, d, C♢ is contained in the unique connected compo-
nent of Γ(H), so ¶b, d, C♢ is contained in the same connected component of Γ(G), which
must be Ω since D ⊆ Ω. Therefore, Ω = B ∪ C ∪ D, and thus we conclude that Γ(G) is
connected.

We may now assume that B = ∅. This implies that I(R) = I(G). As R is a Ąnite
solvable subgroup of G, Γ(R) is connected by Lemma 3.0.2. Thus, in order to prove that
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Γ(G) is connected we just need to show that an element of G \ R and an element of
R \ I(R) are connected in Γ(G).

Assume there exists an element g ∈ R such that π(g) = 2. As G is not solvable, G/R
is not solvable either which implies that π(G/R) ≥ 3. Then there exists x ∈ G \ R such
that gcd(♣g♣, ♣x♣) = 1. Moreover, ♣g♣ and ♣x♣ divide the cardinality of ⟨g, x⟩, which implies
that ⟨g, x⟩ /∈ F. Therefore, x and g are adjacent vertices in Γ(G) which implies that Γ(G)
is connected.

In the case where π(g) ≤ 1 for all g ∈ R by Theorem 2.0.1 π(R) ≤ 2, which implies
that R = I(R) = I(G) and thus the vertices of Γ(G) are just the elements of G \ R which
we already know that are contained in the same connected component of Γ(G), so it is
connected.

Once we have proved the strong result that says that the non-F graph is connected,
it seems natural to try to Ąnd the smallest upper bound for the diameter.

Proposition 3.0.3. Let G be a finite group with π(G) ≥ 3. If G is solvable and π(G) ≥ 4,
then diam(G) ≤ 3. If G is solvable and π(G) = 3, then diam(G) ≤ 5. If G is not solvable,
then diam(G) ≤ 6.

We will use the following lemma in order to prove the stated bounds of the diameter:

Lemma 3.0.4. Let G be a solvable group such that I(G) ̸= G. Then for all x /∈ I(G),
d(x, y) ≤ 2 for some y with π(y) ≥ 2.

Proof. We are going to prove it by induction on ♣G♣. Let x ∈ G \ I(G). If π(x) ≥ 2 the
statement is clear, so assume that π(x) = 1. As x /∈ I(G), there exists y ∈ G such that x
and y are adjacent, i.e., ⟨x, y⟩ /∈ F. May distinguish two cases.

First assume that ⟨x, y⟩ ̸= G. By induction there exists z ∈ ⟨x, y⟩, with π(z) ≥ 2,
such that d(x, z) ≤ 2.

For the second case assume that G = ⟨x, y⟩. Let N be a minimal normal subgroup
of G, which implies that N ∼= Cd

r for a prime r. If π(G/N) ≩ 2, by Theorem 2.0.1
there exists zN ∈ G/N such that π(zN) ≥ 2, so by induction d(xN, zN) ≤ 2 and thus
d(x, z) ≤ 2. On the other hand, if π(G/N) = 2, would have that G/N is a ¶p, q♢-group
and N is an ¶r♢-group which implies that N is the Sylow r-subgroup of G. Without loss
of generality we may assume that x is a p-element.

If there exists 1 ̸= n ∈ N such that [x, n] = 1, then in the same way as in the connec-
tivity proof π(xn) = 2 and xn is adjacent to y, implying d(x, xn) = 2.

Suppose now that x acts Ąxed point free on N , i.e., CN(x) = ¶1♢. Since π(G) ≥ 3,
there exists an element z ∈ G with π(z) ≥ 2. If the order of this element z ∈ G is divisible
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by pq, and r divides ⟨x, z⟩, then x and z are adjacent vertices and we are done. Contra-
rily, if r does not divide the order of ⟨x, z⟩, by Proposition 2.0.2 there exist n1, n2 ∈ N
such that xn1 is adjacent to zn2. By Proposition 2.0.3 there exists n ∈ N such that
x = (xn1)

n and therefore there exists an element z′ = (zn2)
n ∈ G with π(z′) ≥ 2 such

that d(x, z′) = 1.

If otherwise, the primes q and r are the ones dividing the order of z ∈ G, then clearly
⟨x, z⟩ /∈ F, and thus d(x, z) = 1 ≤ 2 with π(z) ≥ 2.

Finally, if the order of z ∈ G is divisible by pr, note that z is adjacent to any element
whose order is divisible by q. Let v ∈ G be a q-element. If r divides ♣⟨x, v⟩♣, then
d(x, z) ≤ d(x, v) + d(v, z) = 2, and we would be done. If otherwise r does not divide
the order of ⟨x, v⟩, by Proposition 2.0.2 there exist n1, n2 ∈ N such that ⟨xn1, vn2⟩ /∈ F.
By Proposition 2.0.3 the vertex x is adjacent to (zn2)

n for some n ∈ N , whose order is
divisible by two different primes. Therefore, we found an element z′ = (zn2)

n such that
π(z′) ≥ 2 and d(x, z′) = 1, so we are done.

We also need the following information about the prime graph to prove the case where
G is a solvable graph with π(G) = 3:

Theorem 3.0.5. Let G be a finite solvable group with π(G) = 3. If diam(G) > 4, then
the prime graph is of the form p − r − q.

Proof. DeĄne the set Σ = ¶(p1, p2) ♣ G contains a p1p2-element♢. Our aim is to prove
that if π(G) = 3 and diam(G) > 4, then Σ = ¶(p, r), (r, q)♢. To that end we will see that
if Σ = ¶(p, q), (p, r), (r, q)♢ or Σ = ¶(p, q)♢, then diam(G) ≤ 4.

Call p, q and r the only primes dividing the order of G. If Σ = ¶(p, q), (p, r), (r, q)♢, it
is easy to see that diam(G) ≤ 3.

Assume that Σ = ¶(p, q)♢. In this case the prime graph of G has two components:
¶p, q♢ and ¶r♢. Then G is Frobenius or 2-Frobenius and the prime graph of G has exactly
two components, one of which consist of the primes dividing the lower Frobenius comple-
ment ([21], Corollary page 487).

We distinguish two cases:

1) G is a Frobenius group, i.e., G = N ⋊ H where N is nilpotent and H acts Ąxed
point free on N .

2) G has normal subgroups N and K such that K is a Frobenius group with Frobenius
kernel N , and G/N is a Frobenius group with Frobenius kernel K/N , i.e., K = N ⋊K/N
and G/N = K/N ⋊ G/K.

We can again divide the Ąrst case in two:

a) N is a ¶p, q♢-group and H is an r-group.
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b) N is an r-group and H is a ¶p, q♢-group.

In case 1a all the p-elements and q-elements are isolated. Indeed, let x be a p-element,
then x ∈ N . For any element g ∈ N we have that ⟨x, g⟩ ≤ N ∈ F, so x is not adjacent
to any of the elements in N . Let g ∈ G \ N . Notice that ♣g♣ is a power of r because
we are assuming that Σ = ¶(p, q)♢. From the fact that N is a normal subgroup of G we
deduce that ⟨g, x⟩ ≤ ⟨g⟩P where P is the unique Sylow p-subgroup of N . Since ⟨g⟩P is
an ¶r, p♢-group, x cannot be adjacent to any element g ∈ G, so it is isolated. Same thing
happens with q-elements.

From the previous fact we deduce that the vertices of Γ(G) can just be r-elements or
pq-elements, which implies that diam(G) ≤ 2.

For the case 1b, we know that all r-elements are adjacent to every pq-element, so
we need to study the non-isolated p- and q-elements. Note that some minimal normal
subgroup of G must be contained in N , call it M .

Let x be a non-isolated vertex of order a power of p or a power of q. Assume x is
adjacent to y, which implies by 2.0.1 that there exists z ∈ ⟨x, y⟩ which is a pq-element.
Then by Proposition 2.0.2 there exist n1, n2 ∈ M ≤ N such that xn1 is adjacent to zn2.
Since H acts Ąxed point free on N , by Proposition 2.0.3 xn1 is a conjugate to x, so x
is adjacent to an element of order equal to ♣zn2♣, which is a pq-element. This proves
that all p-elements and q-elements that are not isolated are adjacent to some pq-element.
Therefore, diam(G) ≤ 4.

Let us move to case 2). We also have to divide this case in two:

a) K/N is a nilpotent ¶p, q♢-group and G/K and N are r-groups.

b) K/N is an r-group and G/K and N are ¶p, q♢-groups.

In case 2a we can argue as in case 1b and we are done taking into account that some
minimal normal subgroup of G must be contained in N .

For case 2b, the p-elements and q-elements that are inside N are isolated for the same
reason as in 1a. Assume G/K contains a pq-element, call it zK. We aim to prove that
any non-isolated p-element is adjacent to a pq-element. Let x be a non-isolated p-element
which is outside N , consequently outside K, and assume r does not divide ⟨zN, xN⟩N/N ,
otherwise x would be adjacent to z which is a pq-element and we would be done. Since K
is normal in G, K/N must contain a minimal normal subgroup of G/N , thus by Propo-
sition 2.0.2 there must exist k1N, k2N ∈ K/N such that xKk1N is adjacent to zKk2N ,
which is a pq-element. If we assume that xN does not act Ąxed point free over K/N , then
there must exist an element kN ∈ K/N such that [xN, kN ] = 1, and thus the element
xNkN would have order divisible by p and r, which is impossible. Therefore, xN acts
Ąxed point free over K/N , and so by Proposition 2.0.3, there exists k′N ∈ K/N such
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that xNk1N = xNk′N . This implies that xN is adjacent to (zNk2N)(k′−1N), which is a
pq-element, and therefore x is also adjacent to a pq-element. So as in case 1b, diam(G) ≤ 4.

Now assume that G/K does not contain a pq-element, then G/K is a p-group. This
is because all Sylow subgroups of a Frobenius complement are either cyclic groups or
generalized quaternions ([11], Corollary 6.17), i.e., all Sylow subgroups of G/K and
K/N are cyclic or generalized quaternions. Since K/N is an r-group, it is equal to
its unique Sylow r-subgroup. If it is cyclic, then G/K is abelian. This is because

G/K

CG/K(K/N)
≤ Aut(K/N) = (Z/rbZ)∗ where ♣K/N ♣ = rb for some b ∈ N, and since

G/K acts Ąxed point free on K/N the centralizer CG/K(K/N) is trivial. Therefore if
G/K was not a p-group it would contain elements of order divisible by pq, which is a
contradiction. On the other hand, if K/N is a generalized quaternion, from the fact that
G/K and K/N have coprime orders, we deduce that G/K is a Frobenius complement of
odd order. Hence, by ([19], Lemma 2.4) any two elements of coprime order commute, so
if p and q both divide the order of G/K, then there must be an element whose order is
divisible by pq, which is again a contradiction. Hence, G/K must be a p-group.

The vertices of Γ(G) are pq-element, r-elements and p-elements. Note that all q-
elements are contained in N , hence they are isolated. We claim that a non-isolated
p-element g that is not contained in N is adjacent to an r-element or to a pq-element. If
this is the case, then diam(G) ≤ 4.

In order to prove the claim let y be an element of order r. If g is adjacent to y we are
done, so assume that ⟨g, y⟩ is a ¶p, r♢-group. Note that the equality gNK/N = ¶gN · hN ♣
hN ∈ K/N♢ holds because of the fact that G/K acts Ąxed point free over K/N . This
implies that gy = gxn for some x ∈ G and n ∈ N .

On the other hand, let Q be the Sylow q-subgroup of N , and let Z = Z(Q) be the
center of Q. Assume [gy, z] = 1 for some 1 ̸= z ∈ Z, then ⟨g, gyz⟩ = ⟨g, yz⟩. Note that
gyz is a pq-element (because gy commutes with z, thus ♣gy♣, which is divisible by p, and
♣z♣ = qb, for some b ∈ N, divide the order of gyz) and yz is an r-element (because if
yz ∈ N then y ∈ N which is a contradiction since y is an r-element, thus yz ∈ K \ N and
it is an r-element). This implies that the three primes p, q and r divide the cardinali-
ties of ⟨g, gyz⟩ and ⟨g, yz⟩ therefore g is adjacent to both gyz and yz and we would be done.

We may assume then that gy acts Ąxed point free over Z. Thus, for any 1 ̸= z ∈ Z
note that 1 ̸= [gy, z] = [gxn, z] = [gx, z]n · [n, z] = [gx, z]n. The last equality follows
from the fact that [N, Z] = 1. Notice that [N, Z] = 1 because since N is nilpotent then
N = P ×Q where P and Q are the Sylow p- and q-subgroups of N , respectively. Then, the
elements of Q commute with the elements of P , and consequently all the elements in Z
commute with all the elements in N . Therefore, we get that 1 ̸= [gx, z]n and consequently
[gx, z] ̸= 1, which implies that gx acts Ąxed point free on Z. It can be easily checked that
this implies g acting Ąxed point free over Z as well.
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Note that Q is a normal subgroup of G because for any q ∈ Q and g ∈ G, ♣qg♣ is a
q-number, thus it must be contained in Q. Since Z is characteristic in Q, Z is normal in
G, and therefore it contains a minimal normal subgroup of G. Then, by Proposition 2.0.2
there exist z1, z2 ∈ Z such that ⟨gz1, yz2⟩ /∈ F, i.e. gz1 is adjacent to an r-element. But
from the fact that g acts Ąxed point free over Z we deduce that g and gz1 are conjugate,
implying that g is adjacent to an r-element.

Proof of Theorem 3.0.3. Assume π(G) ≥ 4. Let x, y ∈ G\I(G). If π(x) ≥ 2 and π(y) ≥ 2,
then d(x, y) ≤ 2. If π(x) = 1, say it is a p-element, and two primes different from p divide
the order of y, then x and y are adjacent vertices. If p and another prime, say q, divide
the order of y, then there exists an element z ∈ G such that its order is either qr, qt or
rt (Proposition 1, [16]), where p, q, r and t are prime numbers dividing ♣G♣. In any of
the cases d(x, y) ≤ d(x, z) + d(z, y) = 1 + 1 = 2. Assume Ąnally that π(y) = 1 as well.
If the prime dividing the order of y is the same as the one dividing the order of x, say
they are both p-elements, then there exists an element z ∈ G such that ♣z♣ is either qr,
qt or rt (Proposition 1, [16])where q, r and t are three primes different from p and from
each other dividing the order of G, and so d(x, y) ≤ 2. Finally, assume the prime dividing
the order of x and the one dividing the order of y are distinct, for instance say x is a
p-element and y is a q-element. There exist z, s ∈ G such that the order of z is either pr,
pt or rt, so d(y, z) = 1, and the order of s is either qr,qt or rt, hence d(x, s) = 1. Note
that d(s, z) ≤ 2. In the case where d(s, z) = 1, then d(x, y) = 3. The only case where
d(s, z) = 2 is when both s and z are rt-elements, but in that case we have the paths
x − s − y and x − z − y impliying that d(x, y) = 2. Thus, diam(G) ≤ 3.

On the other hand, assume G is a Ąnite solvable group with π(G) = 3. We have seen
in Theorem 3.0.5 that if the prime graph of G is complete or of the form p − q, then
diam(G) ≤ 4, so assume that the prime graph is of the form p − r − q.

Let Σ = ¶g ∈ G ♣ π(g) = 2♢. By Lemma 3.0.4 for any x ∈ G there exists y ∈ Σ
such that d(x, y) ≤ 2, and d(h, g) ≤ 2 for any h, g ∈ Σ. Our Ąrst claim is that if g is not
an r-element, then d(g, z) = 1 for some z ∈ Σ. Indeed, note that if p divides ♣g♣, then
g is adjacent to an rq-element, and if q divides the order of g, then this is adjacent to
a pr-element. Thus, if x and y are non-isolated vertices and x is not an r-element, then
d(x, y) ≤ 5.

Assume now that g is a non-isolated r-element that is adjacent to an element x which
is not an r-element. Then d(g, y) ≤ 5 for every non-isolated vertex y ∈ G. This is because
if π(x) ≥ 2, then d(g, y) ≤ 5, so assume that x is a p-element, and let z ∈ Σ such that
d(y, z) ≤ 2. There are two possibilities: the Ąrst one is that z is a qr-element which
implies that d(g, y) ≤ 4, and the second possibility is that z is a pr-element, implying
that d(g, y) ≤ 5.
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For the last case let Ω be the set of non-isolated r-elements that are adjacent only to r-
elements. The claim is that if g ∈ Ω, then either there exist a1, a2 ∈ G with a1 a qr-element
and a2 with order divisible by p such that d(g, a1) = d(g, a2) = 2, or there exist b1, b2 ∈ G
with b1 a pr-element and b2 with order divisible by q, and such that d(g, b1) = d(g, b2) = 2.

In order to prove the claim assume g is adjacent to the r-element z. Let H = ⟨g, z⟩
and N = Or(H). We will work modulo N , and will use the notation H = H/N and
h = hN for every h ∈ H. Notice that g, z /∈ N since π(⟨n, h⟩) ≤ 2 for all n ∈ N and
h ∈ H.

Let A be a minimal normal subgrop of H. Note that if ♣A♣ is an r-number, then
N = A, so A is either a p-group or a q-group. We will assume that it is a p-group, but it
is done in the same way in the other case.

The element z acts Ąxed point free on A. Indeed, if otherwise [z, a] = 1 for some
1 ̸= a ∈ A, the order of za is divisible by ♣za♣ = ♣z♣ · ♣a♣ which is divisible by r and
p. On the other hand, we have that H = ⟨g, z⟩ = ⟨g, z⟩A = ⟨g, za⟩A, and since A is
a ¶p, r♢-group, q must divide ♣⟨g, za⟩♣, and since the order of za is divisible by pr, g is
adjacent to a pr-element, which is a contradiction with g ∈ Ω.

If h is an r-element and h acts Ąxed point free on A, then h is adjacent to u, where
u is an element whose order is divisible by q. This is because if we let v be an element
of order q in H, by Proposition 2.0.2 there exist a, b ∈ A such that p divides ⟨ha, vb⟩.

Since h acts Ąxed point free on A, by Proposition 2.0.3 ha = h
t

= ht for some t ∈ A
and so ht is adjacent to vb, and hence h is adjacent to (vb)t−1

, whose order is divisible by q.

By the previous paragraph g cannot act Ąxed point free over A, so [g, a] = 1 for some
a ∈ A, i.e., [g, a] ̸= N for some a ∈ A \ N . Thus, we have a path g − z − ga with ga a
pr-element. Moreover, z acts Ąxed point free over A, thus we have a path g − z − u with
q dividing the order of u, so we have proved the claim.

Finally, let us prove that if y1, y2 ∈ Ω, then d(y1, y2) ≤ 5. Choose z1, z2 ∈ Σ such that
d(y1, z1) = d(y2, z2) = 2. In the case where z1 is a pr-element and z2 is a qr-element,
clearly d(z1, z2) = 1, thus d(y1, y2) = 5. Thus, we need to study the case when the primes
dividing the order of z1 and z2 are equal. If both are pr-elements, according to the claim
there exists either an element u whose order is divisible by q and d(y1, u) = 2, or there ex-
ists a qr-element with d(y1, v) = 2. In any of the cases we have that d(u, z2) = d(v, z2) = 1,
which imlpies that d(y1, y2) = 5. On the other hand, if z1 and z2 are qr-elements, the
argument is the same, so we have proved that diam(G) ≤ 5.

Turning to the case where G is not solvable, deĄne the following sets: A = I(G),
B = I(R) \ I(G), C = R \ I(R), D = G \ R where R = R(G) is the solvable radical of G,
and note that G = A∪̇B∪̇C∪̇D. We also deĄne the set E = ¶g ∈ G \ I(G) ♣ π(g) ≥ 2♢.
We have the following information:
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a) The distance d(x1, x2) ≤ 2 for any x1, x2 ∈ D, which follows from Theorem 6.4 of [6].

b) By deĄnition, for each b ∈ B there exists d ∈ D such that b and d are adjacent
vertices in Γ(G). This implies that if b ∈ B the distance d(b, d) = 1 for some d ∈ D.

c) Let x ∈ C, then d(x, y) ≤ 2 for some y ∈ E. This is because there exists z ∈ C such
that H = ⟨x, z⟩ /∈ F, i.e., π(H) ≥ 3. Moreover, H ≤ R⟨z⟩ so H is solvable, and applying
Lemma 3.0.4 there exists y ∈ E such that d(x, y) ≤ 2.

d) Clearly d(x, y) ≤ 2 for any x, y ∈ E.

e) Let x ∈ D and y ∈ E, then d(x, y) ≤ 3. In order to prove this, we may assume
that π(y) = ¶p, q♢. If a prime r different from p and q divides the order of x, or if
π(x) ≥ 2, then d(x, y) ≤ 2, and we would be done. Therefore, we may suppose that x
is a p-element. Since G is not solvable, G/R is not solvable either, thus there exists an
element z ∈ G \ R = D whose order is divisible by r. Hence, d(x, z) ≤ 2 and d(z, y) ≤ 1,
implying d(x, y) ≤ 3.

Once knowing this information we have the following cases:

Let b1, b2 ∈ B, then there exist d1, d2 ∈ D such that by b) d(b1, d1) = d(b2, d2) = 1.
Therefore, by a) d(b1, b2) ≤ d(b1, d1) + d(d1, d2) + d(d2, b2) ≤ 1 + 2 + 1 = 4.

Let b ∈ B and c ∈ C, there exist d ∈ D and e ∈ E such that by b) d(b, d) = 1 and by
c) d(c, e) ≤ 2. Moreover, by e) d(d, e) ≤ 3, so d(b, d) ≤ 6.

Let b ∈ B and d ∈ D. There exists d′ ∈ D such that d(b, d′) = 1 by b), and by a)
d(d, d′) ≤ 2, thus d(b, d) ≤ 3.

Let c1, c2 ∈ C. There exist e1, e2 ∈ E such that by c) d(c1, e1) ≤ 2 and d(c2, e2) ≤ 2.
Moreover, by d) d(e1, e2) ≤ 2, so d(c1, c2) ≤ 6.

Finally, let c ∈ C and d ∈ D. There exists e ∈ E such that by c) d(c, e) ≤ 2 and by
e) d(e, d) ≤ 3, so d(c, d) ≤ 5. Therefore, in the non-solvable case diam(G) ≤ 6.
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Programme and example

Once given bounds for the diameter of the groups we would like to check if these bounds
are sharp. In order to prove that we should Ąnd groups that hold the boundaries. To that
end, we have written a GAP programme that Ąnds which is the diameter of a given group.

In order to give the diameter of a group, note that it is enough to study which is
the distance from the vertices x ∈ Γ(G) with π(x) = 1 to the rest of the vertices. This
is because for those vertices g, h ∈ Γ(G) with π(g) = π(h) ≥ 2 we already know that
d(x, y) ≤ 2. Moreover, let x be a non-isolated vertex of order pa, and assume that the
element y = xpa−1

whose order is p is not an isolated vertex. Since x is not isolated, there
exists g ∈ Γ(G) such that ⟨x, g⟩ /∈ F, and note that ⟨y, g⟩ ≤ ⟨x, g⟩, i.e., x is adjacent
to any of the vertices that y is adjacent to, but the inverse is not true. Thus, we have
that d(y, h) ≥ d(x, h) for any vertex h that is adjacent to y. However, it could happen
that the vertex y is isolated. In this case, we should repeat the procedure in order to Ąnd
an element xb such that xb is not an isolated point and its order is the smallest as possible.

It is also enough to choose one element among the elements of a conjugacy class whose
elements have prime power order. Assume x and y are non-isolated vertices, have prime
power order and are contained in the same conjugacy class. This implies that both have
the same order and that there exists g ∈ G such that x = yg. As studied previously, there
is a bijection between ⟨y, h⟩ and ⟨yg, hg⟩ for any g ∈ G. Therefore, if d(x, h) = n for some
h ∈ H and n ∈ N, there exists h′ ∈ G such that d(y, h′) = n.

Taking into account this information we have written several programmes. The pro-
gramme named primeelem computes a list of representatives of conjugacy classes whose
elements have the smallest prime power order as possible. This programme has several
steps. First of all we create a list called "elem" of non-isolated representatives of conjugacy
classes whose order is a power of a prime. Note that if an element is isolated, then all the
elements in its conjugacy class are also isolated. In the second step we create another list
called "last". Using a loop "for" we study the elements x in the list "elem", and we check
whether y = xpa−1

is isolated or not, pa being the order of x. Notice that it is enough to
study just the representatives of the conjugacy classes, since if v and w are in the same
conjugacy class, then vqd−1

and wqd−1

, where qd is the order of v and w, are also in the
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same conjugacy class. In case y is not isolated, we add it to the list "last", otherwise we
add x to the list "last". In each step we check whether there is an element of the conjugacy
class of y or x in "last" in order to avoid having two representatives of the same conjugacy
class. In the last step we check whether there are elements of the form x and xb in "last",
and if this is the case we choose the one whose order is the smallest, and we add it to the
list "Ąnal". We have used several programmes in order to design this one. The Ąrst one is
called nonisolated, and computes the non-isolated vertices of Γ̃F(G), and the second one
is called power, and it computes the power of a prime, i.e., power(pa) would return the
value a.

We wrote another programme called isolated that computes the isolated vertices of a
graph Γ̃F(G), and we will use this one later on. The programme named distance com-
putes the maximum among the minimum distances from a given vertex x to the rest of
the vertices in Γ(G), and returns "isolated" if x is an isolated vertex. In order to do this,
if x is a non-isolated vertex, we compute a list with all the vertices that are adjacent to x,
and this list will be the second sublist of the list "adj", whose Ąrst component is the list
[x, 1] for computational reasons. Then we compute the list of vertices that are adjacent
to the vertices computed before, but that are not contained in the previous list, and add
a new sublist with these new vertices. We continue the procedure until we cannot Ąnd
more new vertices, and then we return the length of the list "adj" minus one unit, which is
the maximum among the minimum distances from the vertex x to the rest of the vertices
in Γ(G). Finally, the last programme named diameter returns the diameter of a given
group by applying the programme "distance" to all vertices the Ąrst programme returns.
Below are the used codes:

Listing 4.1: List of representatives of conjugacy classes with prime power order:

primeelem:=function(G)

local cl, repr, i, elem, j, a, b, x, c, d, p,z, last, k, l, w, noniso, final, v, n, m;

noniso:=nonisolated(G);

cl:=ConjugacyClasses(G);

repr:=[];

for i in [1..Length(cl)] do

a:=Representative(cl[i]);

Add(repr,a);

od;

elem:=[];

for j in [1..Length(repr)] do

b:=Order(repr[j]);

if Size(PrimeDivisors(b))=1 and repr[j] in noniso then

Add(elem, repr[j]);

fi;
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od;

last:=[];

for x in elem do

c:=Order(x);

p:=PrimeDivisors(c)[1];

d:=power(c);

if x^(p^(d-1)) in noniso then

k:=0;

for z in ConjugacyClass(G,x^(p^(d-1))) do

if z in last then

k:=k+1;

fi;

od;

if k=0 then

Add(last,x^(p^(d-1)));

fi;

else

l:=0;

for w in ConjugacyClass(G,x) do

if w in last then

l:=l+1;

fi;

od;

if l=0 then

Add(last,x);

fi;

fi;

od;

final:=[];

for v in last do

m:=0;

for n in [2..Order(v)-1] do

if v^n in final or GcdInt(Order(v),n)>1 then

m:=m+1;

fi;

od;

if m=0 then

Add(final,v);

fi;

od;

return(final);
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end;

quit;

Listing 4.2: List of the non-isolated vertices of the graph.

nonisolated:=function(G)

local i, nonisol, g, x, a;

nonisol:=[];

for g in G do

i:=0;

for x in G do

a:=Length(PrimeDivisors(Size(Group(g,x))));

if a>2 then

i:=1;

fi;

od;

if i>0 then

Add(nonisol,g);

fi;

od;

return(nonisol);

end;

quit;

Listing 4.3: Power of a prime power.

power:=function(b)

local p, i;

p:=PrimeDivisors(b)[1];

i:=1;

while b/p<>1 do

i:=i+1;

b:=b/p;

od;

return(i);

end;

quit;

Listing 4.4: List of the isolated vertices of the graph.

isolated:=function(G)
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local i, isol, g, x, a;

isol:=[];

for g in G do

i:=0;

for x in G do

a:=Length(PrimeDivisors(Size(Group(g,x))));

if a>2 then

i:=1;

fi;

od;

if i=0 then

Add(isol,g);

fi;

od;

return(isol);

end;

quit;

Listing 4.5: Maximum out of the minimum distances from a given vertex to any other
vertex.

distance:=function(G,x)

local iso, adj, max, adj2, adj3, i, indicator, g, a;

indicator:=2;

iso:=isolated(G);

adj:=[[x,1]];

max:=0;

adj2:=[x];

adj3:=[x];

if x in iso then

return("isolated");

else

while Length(adj3)>0 do

x:=adj3[1];

adj3:=[];

for i in [2..indicator] do

for g in G do

if g in adj2 then

x:=x;

else

a:=Length(PrimeDivisors(Size(Group(g,x))));

if a>2 then

Add(adj3,g);

Add(adj2,g);
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fi;

fi;

od;

x:=adj[max+1][i];

od;

max:=max+1;

indicator:=Length(adj3);

Add(adj,adj3);

od;

return(max);

fi;

end;

quit;

Listing 4.6: Diameter of the group G.

diameter:=function(G)

local elem, x, diameter,a;

diameter:=[];

elems:=primeelem(G);

for x in elems do

a:=dist(G,x);

if IsInt(a) then

Add(diameter,a);

fi;

od;

return(Maximum(diameter));

end;

quit;

As mentioned in the introduction of this chapter, we aim to Ąnd a group with the
greatest diameter as possible. We have seen in Theorem 3.0.3 that the groups that are
most likely to have a bigger diameter if π(G) = 3. The biggest one we have found using
the previous programme is the group G = C7 ⋊ H where H = (C3 × C3) ⋊ SL(2, 3),
whose diameter is 3. This group contains elements of order 2, 3, 4, 6, 7, 14, 21 and 28. The
presentation of the group G is the following:

G = ⟨f1, f2, f3, f4, f5, f6, f7 ♣ f 3
1 , f−1

2 f−1
1 f2f1f

−1
5 f−1

3 f−1
2 , f−1

3 f−1
1 f3f1f

−1
2 , f−1

4 f−1
1 f4f1f

−1
4 ,

f−1
5 f−1

1 f5f1, f−1
6 f−1

1 f6f1f
−1
7 , f−1

7 f−1
1 f7f1, f2

2 f−1
5 , f−1

3 f−1
2 f3f2f

−1
5 , f−1

4 f−1
2 f4f2, f−1

5 f−1
2 f5f2,

f−1
6 f−1

2 f6f2f
−1
7 , f−1

7 f−1
2 f7f2f

−1
7 f−1

6 , f2
3 f−1

5 , f−1
4 f−1

3 f4f3, f−1
5 f−1

3 f5f3, f−1
6 f−1

3 f6f3f
−2
7 f−2

6 ,
f−1

7 f−1
3 f7f3f

−2
7 f−2

6 , f7
4 , f−1

5 f−1
4 f5f4, f−1

6 f−1
4 f6f4, f−1

7 f−1
4 f7f4, f2

5 , f−1
6 f−1

5 f6f5f
−1
6 ,

f−1
7 f−1

5 f7f5f
−1
7 , f3

6 , f−1
7 f−1

6 f7f6, f3
7 ⟩
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Our aim is to Ąnd elements x, y ∈ G such that d(x, y) = 3 = diam(G). For the reaso-
ning we have used in the explanation of the programme, we are going to consider elements
in the conjugation classes of those elements that the programme primeelem return. For
this particular example the programme primeelem returns the list [f7, f5, f4, f1, f1f6, f2

1 f6].

We are going to study each conjugation class. Using GAP it is easy to check that the
element f7 is adjacent to 378 elements. Moreover, since ♣f7♣ = 3, this element is clearly
adjacent to elements of order 14 and 28, which sums to a total amount of 378 elements,
i.e., y is adjacent to f7 if and only if its order is 14 or 28. The same thing happens with
all the elements in its conjugation class.

A similar thing happens with the elements in the conjugation class of f4. These ele-
ments are adjacent to 504 elements, and since ♣f4♣ = 7, they are adjacent to elements of
order 6, and turns out that there are just 504 elements of order 6. Thus, an element y is
adjacent to an element in the conjugation class of f4 if and only if it has order 6.

As for the case of f5, this element, and consequently any element in its conjugacy class,
is adjacent to 385 elements. Since the order of these elements is 2, they are adjacent to
elements of order 21, but there are just 48 elements of that order. Using GAP we can
check that these elements are adjacent to some elements of order 14 and 28.

Elements in the conjugacy class of f1 are adjacent to 1134 elements, and among those
elements we can Ąnd the ones with order 14 and 28, since ♣f1♣ = 3. However, these ele-
ments are also adjacent to some elements whose order is 3 or 6. The same thing occurs
for f1f6 and f 2

1 f6. An interesting thing is that the elements f1, f1f6 and f 2
1 f6 are adjacent

to the same elements, but they are not adjacent one to the other.

In order to Ąnd elements x, y ∈ G such that d(x, y) = 3, it is clear that π(x) = π(y) =
1, otherwise d(x, y) ≤ 2. If the prime dividing the order of x and y is the same, then
d(x, y) ≤ 2, because for any two primes dividing ♣G♣ there exists an element in G whose
order is divisible by those two primes. Hence, the prime dividing ♣x♣, and the one dividing
♣y♣ must be different. Once we know this, is seems natural to consider x = f7 since it
is just adjacent to elements of order 14 and 28. This implies that f7 is adjacent to f 3

4 f5

whose order is 14. For the same reason we could choose y = f4, since it is adjacent to
elements of order 6 only, for example f 2

1 f5. Clearly f 3
4 f5 and f 2

1 f5 are adjacent because
of their orders. Notice that neither f7 and f 2

1 f5, nor f4 and f 3
4 f5 are adjacent one to the

other because of the reason mentioned before. So we have found the two elements we
were looking for.
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Other properties

Once we have given an upper bound for the diameter of the non-F graph, let us study
more properties about this graph:

DeĄnition 5.0.1. A planar graph is a graph that can be embedded in the plane, i.e., it
can be drawn on the plane in such a way that its edges intersect only at their endpoints.
In other words, it can be drawn in such a way that no edges cross each other.

We will need the following deĄnition in the proof of Theorem 5.0.1.

DeĄnition 5.0.2. Let G be a Ąnite group. The generating graph of G is the graph whose
vertices are elements of G, and two vertices g, h ∈ G are adjacent if and only if ⟨g, h⟩ = G.

In the following theorem will prove that Γ(G) is not planar unless all its vertices are
isolated.

Theorem 5.0.1. Let G be a finite group. The graph Γ(G) is planar if and only if it is
an edgeless graph.

Proof. Suppose there exists g ∈ G such that π(g) ≥ 3, and let n be the order of this
element g. Let Ω = ¶x ∈ G ♣ ♣x♣ = n♢. The subgraph of Γ(G) induced by elements
of Ω is the complete graph Km where m = ♣Ω♣, i.e., all the elements of Ω are adjacent
to each other in Γ(G). Moreover, since π(g) ≥ 3, there exist at least φ(n) elements in
G whose order is n, the ones of the form ga, where gcd(a, n) = 1, for example. Thus,
m ≥ φ(n) ≥ φ(2 · 3 · 5) = 8. Taking into account that Kn is planar if and only if n < 5,
we conclude that Γ(G) is not planar.

So we may assume that π(g) ≤ 2 for every g ∈ G. Let x, y ∈ G such that ⟨x, y⟩ /∈ F,
i.e., x and y are adjacent vertices in Γ(G), and let H = ⟨x, y⟩. Note that π(H) ≥ 3.

Assume by contradiction that Γ(G) is planar. If h1, h2 ∈ H are adjacent in the gene-
rating graph of H, then ⟨h1, h2⟩ = H /∈ F, thus h1 and h2 are also adjacent in Γ(G). This
means that the generating graph of H is a subgraph of Γ(G), and thus it is also planar.
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Finite groups with planar generating graphs have been completely classiĄed in [12],
and from this classiĄcation we know that either H ∈ ¶S3, D6♢ or H is nilpotent. Since
π(H) ≥ 3, H needs to be nilpotent. This implies that H is the direct product of its Sylow
subgroups, i.e., H ∼= P1 × P2 × . . . × Pt, with t ≥ 3, ♣Pi♣ = pdi

i and ♣H♣ = pd1

1 . . . pdt

t with
p1, . . . , pt prime numbers. Let gi ∈ Pi be such that ♣gi♣ = p1, and note that the element
(g1, . . . , gt) ∈ P1 × P2 × . . . × Pt has order p1 . . . pt, and thus there exists at least one
element h ∈ H such that π(h) ≥ 3, which is a contradiction.

Let Λ̃F(G) be the complement graph of Γ̃F(G), i.e., the vertices of Λ̃F(G) are the ele-
ments of G, and two vertices are adjacent if and only if π(⟨x, y⟩) ≤ 2.

Our aim is to prove that the remaining graph ΛF(G) after removing the isolated ver-
tices of Λ̃F(G) is connected.

First of all note that the vertices g ∈ G with π(g) ≥ 3 are isolated vertices. If π(g) = 2,
then g is adjacent to all of its powers, so in particular g is adjacent to some element of
prime order. So in order to study the connectivity of ΛF(G), it would be enough to study
the connectivity of its subgraph Λ(G) where the vertices are the elements of G of prime
order and two elements x and y are adjacent if and only if π(⟨x, y⟩) ≤ 2.

Theorem 5.0.2. Let G be a finite group, then Λ(G) is connected, and consequently,
Λ̃F(G) is also connected.

Proof. Assume Ąrst that G is a solvable group, and let N ⊴ G be a minimal normal
subgroup of G. Then N ∼= Cd

r , where r is a prime number dividing ♣G♣ and d ∈ N.

All the non-trivial elements of N are universal vertices of Λ(G), that is, they are ad-
jacent to all the vertices of Λ(G). This is because if x ∈ G with ♣x♣ = p and n ∈ N with
♣n♣ = r, then ⟨x, n⟩ ≤ ⟨x⟩N , which implies that ⟨x, n⟩ ∈ F. Therefore, for any x, y ∈ G
with prime order there exists an element n ∈ N such that n is adjacent to both x and y,
and so d(x, y) ≤ 2.

On the other hand, assume G is not solvable. The distance from one vertex to another
in the solvable graph of G is at most 5 [3]. This means that there exist z1, z2, z3, z4 ∈ G
such that ⟨x, z1⟩, ⟨z1, z2⟩, ⟨z2, z3⟩, ⟨z3, z4⟩, ⟨z4, y⟩ are solvable groups, and note that we can
choose the elements zi to have prime order. Indeed, if π(zi) ≥ 2 and the prime t divides

the order of zi, say ai, then the element z
ai/t
i has prime order and is still adjacent to any

element that zi is adjacent to. By the remark in the previous paragraph, we get that
d(x, z1) ≤ 2, d(z1, z2) ≤ 2, d(z2, z3) ≤ 2, d(z3, z4) ≤ 2 and d(z4, y) ≤ 2, implying that
Λ(G) is connected with diameter at most 10.

However, if we remove the universal vertices from the F-graph ΛF(G), the graph is
not connected anymore in general. For instance, if G = D30 and we remove the universal
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vertices of ΛF(D30) then the graph has 15 vertices of order 2 and 8 of order 15, and the
elements of order 15 are adjacent only to the elements of order 15. Therefore, the graph
is not connected. An interesting question to answer would be the following: Consider the
graph obtained from Λ(G) by deleting the universal vertices. Is it connected?
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