
PARITORRENT: SEEDING STRATEGIES

RELATORE: Ch.mo Prof. Enoch Peserico Stecchini Negri De Salvi

CORRELATORE: Ing. Michele Bonazza

LAUREANDO: Dario Turchetto

Corso di laurea in Ingegneria Informatica

A.A. 2010-2011

UNIVERSITÀ DEGLI STUDI DI PADOVA

Dipartimento di Ingegneria dell’Informazione

Corso di Laurea in Ingegneria Informatica

TESI DI LAUREA

PARITORRENT: SEEDING

STRATEGIES

RELATORE: Prof. Enoch Peserico Stecchini Negri De Salvi

CORRELATORE: Ing. Michele Bonazza

LAUREANDO: Dario Turchetto

A.A. 2010-2011

To all the people I have met,

since every single one of them

has taught me something.

Contents

Abstract 1

Acknowledgments 3

1 PariPari 7

1.1 PariPari and its structure . 7

1.2 Inner-circle plugins . 8

1.2.1 Core . 9

1.2.2 Connectivity NIO . 9

1.2.3 Credits . 9

1.2.4 DHT . 11

1.3 Outer-circle plugins . 11

2 The BitTorrent protocol 13

2.1 Introduction to the protocol . 13

2.2 Trackers and torrents . 14

2.3 Peer-wire protocol . 15

2.4 Choking and unchoking . 18

2.4.1 Rational unchoking . 18

2.4.2 Optimistic unchoking . 18

2.5 Extensions to the main protocol 19

2.5.1 Protocol encryption . 19

2.5.2 Extension Protocol . 19

2.5.3 Fast Extension . 20

2.6 Distributed Hash Table . 20

v

INDEX

3 The Torrent plugin 23

3.1 Introduction to Torrent . 23

3.2 Plugin structure . 23

3.2.1 Configuration file . 24

3.3 Communication with inner-circle plugins 27

3.4 Supported features . 28

3.4.1 Multitracker support . 28

3.4.2 Extension protocol and Peer Exchange 28

3.4.3 Protocol Encryption . 29

3.4.4 Azureus Messaging Protocol 29

3.4.5 Extension Negotiation Protocol 29

3.4.6 File Preview . 29

3.4.7 DHT . 30

3.4.8 Metadata Transfer . 30

3.4.9 Multi-file torrents . 31

4 Seeding with BitTorrent 33

4.1 What is seeding . 33

4.2 BitTorrent basic download strategy 34

4.3 BitTorrent basic upload strategy 35

4.4 Super-seeding . 35

4.5 The problem of free-riders . 37

4.6 Damaging free-riders as leechers 37

4.6.1 Sorting-based unchoking algorithm 38

4.7 How to make seeders aware of free-riders 40

4.7.1 Checking algorithm effectiveness 41

4.8 Improving protocol fairness . 42

4.8.1 Pairwise Block-Level Tit-for-Tat 43

5 Implementation 45

5.1 Updating the peer list . 45

5.2 Suggest Piece Sender . 46

5.3 uTorrent Peer Exchange Refactoring 47

5.4 Super-seeding . 48

5.5 Sorting-based unchoking algorithm 49

5.6 PeerChecking algorithm . 49

5.7 Pairwise Block-Level Tit-for-Tat 50

vi

0.0

6 Team management 52

6.1 Working as a team . 52

6.2 Code versioning . 53

6.3 Testing . 54

Conclusions 55

A BEncode 57

A.1 Integers . 57

A.2 Byte strings . 58

A.3 Lists . 58

A.4 Dictionaries . 58

Bibliography 59

List of Figures 61

List of Tables 63

vii

Abstract

One of the most widely adopted peer-to-peer protocols nowadays is BitTorrent,

of which numerous implementations exist. The Torrent plugin developed in the

PariPari project is a BitTorrent client written in Java that supports many of the

functionalities provided by the most common clients now available freely on the

Internet.

In this thesis we will mainly discuss some methods that aim at optimizing

the uploading efficiency of the pieces, in order to maximize uplink utilization,

therefore reducing the download time for the peers that are participating at the

download of the same .torrent file, while at the same time penalizing the mali-

cious peers that do not upload pieces to the network (also known as freeriders).

Sommario

Uno dei protocolli peer-to-peer più diffusi ai nostri giorni è BitTorrent, di cui

esistono numerose implementazioni. Il plugin Torrent sviluppato all’interno del

progetto PariPari è un client BitTorrent scritto in Java che supporta molte delle

funzionalità fornite dai client più comuni disponibili gratuitamente su Internet.

In questa tesi discuteremo principalmente alcuni metodi che mirino ad otti-

mizzare l’efficienza dell’upload dei pezzi che compongono un .torrent, al fine

di massimizzare l’utilizzo del canale di upload, riducendo cos̀ı i tempi di down-

load per i peer che stanno condividendo lo stesso file .torrent, penalizzando al

contempo i peer malevoli (noti anche come free-rider) che non effettuano upload

nella rete.

Acknowledgments

Show gratitude. – Randy Pausch

First and foremost, I’d like to thank my family for all the support they ga-

ve me during these five years: mom and dad for putting up with my frequent

complaints about more or less everything (the food, the weather, the books, the

girls and so on) and for always giving me precious advices (such as “No sta ’ndar

sui pericoi” and “Always think twice about selling this house, because, look: if

you build a wall here and...”); my brother Riccardo, for everything he has taught

(and is still teaching) me; my sister-in-law Tracy, for being so kind by informing

me about job offers in California and for putting up with my and my family’s

peculiarities every time she comes to Italy.

I really, really need to thank my friends and coursemates, because I still think

I would never have gotten this far without them: Martina, for the cakes, the

piadinas, the Skype chats, the many (and I do mean many) emails, the impor-

tant reminders she constantly gave me (if you have her around you don’t need

calendars or post-it notes) and for the patience of having read through all of this

thesis; Elisa, for her hilarious text-messages and for making even the most boring

classes funny; Giacomo, for the extremely appreciated frequent hospitality in his

apartment and for the TV series he suggests me (Blue Mountain State above

all); Lorenzo, for the frequent car lifts, the talks at odd hours of the night, the

ping-pong games and the unforgettable party nights.

3

If I was to remember one by one all the people and situations at the Saint

Justin College that cheered up my days I would need at least ten pages, so I can

only make a short list and apologize for the people that are not mentioned here.

I believe there aren’t many other places in which you can find someone ready to

jump in a shopping cart before being thrown into a wall made of chairs, or offers

to play PC games with you until 4 a.m., or has the idea of writing inappropriate

words addressed to the monks with bricks on the grass, or throws fruit inside

the windows of military buildings, or... Well, you get the idea. Many thanks to

Anthony Pauletto, Francesco “Poker” de Simoi, Alberto Bittolo, Matteo “Lel-

lo” Filippi, Stefano Pletti, Marco Vallar, Alberto Gobbato (John McGivern was

really a great idea), Guido Morina, Matteo Pachera, Enrico Cappelletti, Alberto

Gozzo (the most laid back engineering student I’ve ever seen), Andrea Sterzi,

Roberto Brasola, Luca Lorenzato, Francesco Gava, Francesco “non capisc’ più

nienda” Testa and Alberto Boschiero, who deserves a special thank for the many

talks and beers in the loggia, the chess games, the guitar lessons, the various

experiments, for greeting me with songs and strange noises every time I got back

from the department and for trying to kill me by taking me to the Buso della

Rana cave. Many thanks also to the former members of the Saint Justin College,

who contributed to make the place as it is today and with whom I have spent

pleasant hours: Paolo Girardello, Nicola Barbon, Massimo “Bobo” Verona, Piero

Veronese, Francesco Cavallin, Tommaso Stecca, Stefano Poletti, Giorgio Quer,

Giorgio Ruaro, Giulio Cisamolo, Michelangelo Cao, Enrico Garbuio.

Another bunch of thanks goes to the people in the ACG Laboratory, since I’ve

managed to interrupt their work every once in a while with my silly questions and

requests: Marco Bressan, Paolo Bertasi, Michele Bonazza (who gave me precious

advices and corrections for this thesis) and Federica Bogo (for the weekly drinks

and the funny anecdotes she tells me); thanks to EP too, for the advices he gave

me, especially in this last year.

Thanks also to the people in the PariPari project, in particular the ones who

didn’t kill me even if I kept forgetting things as their team leader: Andrea Al-

degheri, Eugenio Valente, Felix Mendoza, Matteo Fincato, Alessandro Dal Corso

and Paolo Martin. Special thanks to the tutors of the Software Engineering class:

Francesco Peruch, Francesco Mattia, Vincenzo Cappelleri and Mattia Samory, for

being so kind every time I bugged them with some question or another.

4

Life in San Donà is not very exciting compared to the one in Padova, but if I

had some funny days even there is mainly thanks to Roberta, for the drinks and

the walks and the long talks, and Carlo and his company, for all the barbecues

and the nights out that almost always start or end with someone taking out a

bottle of red wine.

Finally, I want to thank my teddy bears Tizio, Caio, Sempronio and Spelo,

with whom I have spent many joyful hours as a child.

5

6

1
PariPari

In this Chapter we will describe the PariPari project: what it is, how it’s struc-

tured, the plugins that are part of it and the basic messages that are exchanged

between plugins in order to make it fully functional in a modular fashion.

1.1 PariPari and its structure

PariPari is a software engineering project currently in development at the Depart-

ment of Information Engineering of the University of Padua. It is being developed

mainly by students belonging to the Information Engineering and Computer En-

gineering courses; at the present time there are about 40 of them involved in the

project. Every student is assigned to a specific group working on a plugin – we

will see briefly that PariPari is composed in a modular fashion that provides its

own practical advantages.

PariPari is a multi-functional platform based on decentralized services, such

as peer-to-peer file sharing, VoIP1, instant messaging, distributed storage of data

and so on. It is entirely written in the Java programming language, since it allows

PariPari to be instantly available for all the major operating systems (thanks to

the portability of the Java environment).

PariPari is completely serverless and decentralized, that means that there

aren’t privileged nodes. This makes the network robust against DoS2 attacks,

whose aim is precisely to block the service offered by a central node, thus impair-

ing all the nodes relying on it.

PariPari is developed with a modular structure in mind: in this way it will

be easier for future plugins to be developed and benefit from the services offered

1Voice over IP
2Denial of Service

7

1. PARIPARI

by the already existing plugins. Also, in this way a user can get a customized

PariPari clients on its machine, since he doesn’t need to load all the available

modules but just the ones he likes to have. Loading a plugin is very easy: writing

add plugin name through the available console is all that is needed to add the

plugin called plugin name.

For structural and functional reasons, plugins can be divided into two cate-

gories: inner- and outer-circle plugins. All the plugins need to interface them-

selves with the Core module, which is the one that manages all the communica-

tion between plugins.

1.2 Inner-circle plugins

These plugins are the ones that mainly offer services and resources (such as TCP

and UDP sockets and disk storage space) to the other plugins. The following is

a list of the inner-circle plugins:

• Connectivity This plugin offers and manages connectivity services, in par-

ticular it provides a wide range of socket APIs (TCP3, UDP4, blocking,

non-blocking) that are necessary for the outer-circle plugins in order to

work properly. Its latest version, developed using Java NIO5, provides non-

blocking calls based on channels and selectors.

• Credits The Credits system is embedded in the Core and is the one that

manages the credits, the currency used in PariPari. We will describe shortly

how it works and why it is important in a separate Section.

• Local Storage This is another fundamental plugin, since it is the one that

lets every other plugin write and read data to and from mass storage (for

example the hard disk).

• DHT This is the plugin that implements a Distributed Hash Table, with the

usual node and resource lookup based on the XOR metrics (as in Kadem-

lia). We will briefly describe how it works in a separate Section, since it is

fundamentally the way it works in BitTorrent.

3Transmission Control Protocol.
4User Datagram Protocol.
5New Input/Output.

8

1.2 INNER-CIRCLE PLUGINS

Figure 1.1: The PariPari logo.

1.2.1 Core

The latest version of the Core is also called T.A.L.P.A., which stands for The

Ancronym for Lightweight Plug-in Architecture. It manages the various plugin,

as we already said, providing a common set of interfaces with which programmers

must comply in order to make their plugin work (this set of interfaces is in package

paripari.API) and including the Credits feature, which we will very soon talk

about in more detail.

More information about PariCore can be found in [6].

1.2.2 Connectivity NIO

The Connectivity plugin has been recently refactored using Java NIO, which is

a collection of APIs that offer features for intensive I/O operations. One of the

main advantages of NIO is the availability of objects such as buffers, channels

and selectors, which provide an effective communication system that in some cases

does not need to use the CPU to transfer data and, most importantly, lets the

programmer design his code in a non-blocking fashion, which is highly desirable

when dealing with file-sharing systems, for example.

For more information about Connectivity NIO see [4].

1.2.3 Credits

As we said, the Credits system is the one that manages the PariPari currency

called credits. Inspired by real world economies, every plugin that needs resources

has to spend some credits to buy them: if it has the necessary credits, it will spend

9

1. PARIPARI

Figure 1.2: Representation of the plugins divided into the inner and outer circles.

10

1.3 OUTER-CIRCLE PLUGINS

them and they will be subtracted by its total amount of credits, otherwise it will

not be able to get them. Also, credits can be used between mutiple PariPari

nodes.

We can then divide the credits in two categories:

• Intra-peer credits used between the plugins that constitute a single node,

to buy and sell resources

• Inter-peer credits used between different PariPari nodes

Why do we need a credits system in PariPari? Because otherwise we would

not be able to provide resources to plugins in a proportional manner, granting

for example lots of sockets to a plugin that is not using them effectively while

others are starving for bandwidth that would otherwise let them download huge

amounts of data. Credits aim at solving this unfairness problem.

1.2.4 DHT

PariDHT is the plugin that implements a DHT based on an address space of

256 bit (in order to minimize collisions when choosing the key of a resource).

The metric employed is the usual XOR metric, defined as d(x, y) = x⊕ y, which

calculates the distance between two nodes as the binary XOR between their 256

bits identifiers.

Looking for a node in the DHT (the operation also known as node lookup)

requires at most O(logN) steps, where N is the number of active nodes in the

network.

1.3 Outer-circle plugins

Next up are the outer-circe plugins; we list here a few of them:

• Torrent We will describe in fairly good detail this plugin in Chapter 3;

here we just say that it is a client for the BitTorrent protocol.

• Mulo This plugin is a client for the eMule protocol and network. It is a

fully functional client that supports many of the most important features

provided by the most common clients available nowadays, including some

features if its own. More information about this plugin and some of its

features (including Kad support) can be found in [13], [14] and [15].

11

1. PARIPARI

• IM6 and IRC7 These plugins are both clients for instant messaging (also

colloquially known as chat). They are based on the Jabber protocol, now

known as XMPP8, which is a series of open protocols and technologies

specifically designed for instant messaging.

• Web This plugin is a distributed web server; this means that pages are not

saved on a single machine but they are distributed over the network and

requests are served by the appropriate node.

• GUI This very important plugin provides the Graphical User Interface that

lets the average user enjoy PariPari without the pain caused by the com-

mand line (which is very far from what modern-day users are accustomed

to). This plugin is still in its experimental phase, but much is expected

from it.

6Instant Messaging
7Internet Relay Chat
8Extensible Messaging and Presence Protocol, http://xmpp.org/

12

2
The BitTorrent protocol

In this Chapter we will present the BitTorrent protocol, in order to give an

overview of the essential concepts that will let the reader understand what we

have done to improve it.

2.1 Introduction to the protocol

BitTorrent is a peer-to-peer file sharing protocol used for distributing large amounts

of data over the Internet. It was designed by Bram Cohen in April 2001 and in

July 2001 a first version of the client, programmed in Python by Bram Cohen

himself, was released free-of-charge. BitTorrent quickly grew to be one the most

widely adopted protocols for transferring files over the Internet, even becoming

a company of its own (registered as BitTorrent, Inc.); current estimates1 claim

that at least 40% of the internet traffic (depending on geographical location) can

be attributed to BitTorrent.

Lots and lots of BitTorrent clients now exist2, written in a number of pro-

gramming languages; the very first BitTorrent client, developed by Bram Cohen,

almost does not circulate anymore, replaced by the very efficient and lightweight

uTorrent, since the BitTorrent company acquired the uTorrent source code.3.

Over the years, many other clients appeared and some important extensions

to the original protocol were designed and developed. Let’s see how the original

protocol works, since it is still the basis of the actual file distribution.

1http://torrentfreak.com/bittorrent-still-dominates-global-internet-traffic-101026/
2http://en.wikipedia.org/wiki/Comparison_of_BitTorrent_clients
3http://torrentfreak.com/bittorrent-inc-buys-utorrent/

13

2. THE BITTORRENT PROTOCOL

Figure 2.1: Official BitTorrent logo.

2.2 Trackers and torrents

In order to begin downloading a file (or a group of files) distributed with Bit-

Torrent, a client needs to acquire the .torrent file for that download. This

can be done in several ways, and we will discuss later some of the most recent

advancements regarding this step.

The .torrent file is composed of:

• a list of trackers : these are some URLs to contact in order to get the initial

list of peers from which the client will begin downloading

• the pieces’ hashes : the data to be distributed is divided into many pieces

(the size of which usually depends on the size of the whole data) and for

each piece its SHA-1 hash is computed and written on the .torrent file for

future error-checking

Figure 2.2: Example of hash computation for every piece composing a torrent.

A .torrent file is not written in clear text; instead, it is coded with a partic-

ular encoding called BEncode, which we described in Appendix A.

The client then begins parsing the .torrent file and contacting the trackers

(through HTTP or UDP) in the order in which they are listed. But what are

these trackers?

A tracker is a server machine with the appropriate software that lets it man-

age the peers associated with a given .torrent file. When a tracker receives a

request from a peer that is trying to participate in the download of a .torrent, it

14

2.3 PEER-WIRE PROTOCOL

Figure 2.3: A client sends its first request to the tracker.

sends the peer a list of at most 50 randomly chosen peers which are downloading

or uploading the same .torrent file. The peer can then begin contacting the

received peers in order to start the download.

When a peer has finished downloading a file it sends a message to the tracker

stating that it has completed the download; the tracker will then register it to the

list of peer that have the complete data associated with a .torrent file (these

peers are also called seeders).

Let us now have a look at how a peer communicates with other peers.

2.3 Peer-wire protocol

The set of rules and messages which lets the peers communicate with each other

is called the peer-wire protocol. It consists of 11 messages (the structure of these

messages can be found in table 2.1):

• handshake It’s the first message sent to a peer that has been found avail-

able for connection

• keep-alive Sent generally every two minutes if no other messages have been

exchanged, in order to keep the connection open

15

2. THE BITTORRENT PROTOCOL

message length id payload

keep-alive 0000 - -

choke 0001 0 -

unchoke 0001 1 -

interested 0001 2 -

not interested 0001 3 -

have 0005 4 <piece index>

bitfield 0001+X 5 <bitfield>

request 0013 6 <index><begin><length>

piece 0009+X 7 <index><begin><block>

cancel 00013 8 <index><begin><length>

Table 2.1: The typical messages forming the peer-wire protocol

• choke Sent to a peer to inform it that we are going to stop uploading to it

• unchoke Sent to a peer to inform it that we are going to begin uploading

to it

• interested Sent to a peer that has pieces we need

• not interested Sent to a peer to inform it that is doesn’t have pieces we

need

• have It contains the number of a piece we possess

• bitfield Its payload is an array of bits: every element is set to 0 if we don’t

have the corresponding piece, otherwise it is set to 1. This message must

be sent immediately after the handshake phase

• request Request for a given piece

• piece Its payload is the chunk of a piece we requested

• cancel Sent to a peer if we no longer need a piece we previously requested

from it

The typical download cycle is shown in figure 2.4.

16

2.4 PEER-WIRE PROTOCOL

Handshake

Bitfield

Select piece

Request

End

Figure 2.4: Torrent download workflow.

Figure 2.5: After a peer has received other peers’ IP addresses by the tracker, it

begins contacting them.

17

2. THE BITTORRENT PROTOCOL

2.4 Choking and unchoking

We have seen that a peer A can begin downloading from another peer B only if

B has unchoked A. By unchoking we mean that B has sent an Unchoke message

to A, stating that A can begin asking pieces to B. How does B choose A over one

other arbitrary peer, say C? And how many peers can B unchoke at the same

time?

The traditional unchoking algorithm implemented in various BitTorrent clients

allocates 5 slots for unchoking peers: 5 of these slots are used by what we will

call the rational unchoking algorithm, while the remaining slot is reserved for the

so-called optimistic unchoking.

2.4.1 Rational unchoking

As we will see in the following Chapters, numerous variants exist to the standard

unchoking algorithm; here we will discuss its main and most popular implemen-

tation.

In rational unchoking, a peer A first sorts the peers it is connected to in a way

that’s convenient for itself; there are many ways to do so, for example the peers

could be sorted based on their upload rates or the interesting pieces they have.

After A has finished sorting its known peers, it sends Unchoke messages to

the first 4, in order to let them upload from it. This operation is repeated every

10 seconds; it is of course possibile that, in the following round, one or more of

the 4 previously unchoken peers gets unchoken again (or, to be more precise, it

stays unchoken).

2.4.2 Optimistic unchoking

This is a particular kind of unchoking method described by the official protocol

that, although at first may seem counter-intuitive, is all to the advantage of the

peers that send the Unchoke message.

Consider this scenario: a peer A knows peers B, C, D, E and F . A has

unchoken B, C, D and E and it is fairly pleased with them: they upload to him

interesting pieces at a decent rate, so why bother to even take F into account?

Well, the wise reader may think, what if F has both interesting pieces and an

extraordinarily high upload rate? It would be stupid for A not to make profit of

such a good peer.

This is exactly what optimistic unchoking was designed for: to widen the view

18

2.5 EXTENSIONS TO THE MAIN PROTOCOL

of a peer in order to get a taste, here and there, of possibily interesting peers –

even more interesting than the peers it is already connected to.

The optimistic unchoking algorithm is usually called once every 30 seconds

(instead of 10, as in the rational unchoking).

2.5 Extensions to the main protocol

Now that we have seen how the basic BitTorrent protocol works, we will discuss

some of the most important extensions that have been designed in the last decade

in order to make it more efficient and secure.

2.5.1 Protocol encryption

Since BitTorrent occupies a large share of the Internet’s traffic and it is frequently

used for the illegal distribution of copyrighted material, some ISPs4 began throt-

tling BitTorrent’s traffic. The main and most effective counter-measure adopted

by some developers was the creation of an encryption system that would mask

the content of the packets sent by the various clients, making it look as generic

TCP traffic.

Various versions of the protocol have been designed, but the one adopted

nowadays5 lets a client encode the header of the packets (which suffices as a

bandwidth-throttling counter-measure), the payload or both. In order to achieve

complete randomness from the first byte on, the protocol uses a Diffie-Hellman

key exchange.

More information about the encryption algorithm can be found in [8].

2.5.2 Extension Protocol

The Extension Protocol6 is a layer that aims at simplifying the introduction of

subsequent extensions. It operates by activating one the reserved bytes in the

handshake message, so that the peers exchanging the handshake can see whether

a peer supports a given extension or not.

The vast majority of modern clients support this extension, in particular the

very useful Peer Exchange (also known as PEX), which lets two peers exchange

two lists of peers each: one of these lists contains the IP addresses of good peers,

4Internet Service Providers
5http://wiki.vuze.com/w/Message_Stream_Encryption
6http://www.bittorrent.org/beps/bep_0010.html

19

2. THE BITTORRENT PROTOCOL

which are available for contact and are uploading good data, while the other list

contains the IP addresses of bad peers, which are unreachable or upload data

that does not pass the hash check. Each of these lists can contain a maximum of

50 peers.

More information on the extension protocol and the Peer Exchange can be

found in [11].

2.5.3 Fast Extension

Fast Extension7 is an official extension to the BitTorrent protocol. It consists of

an extended set of messages that aims at making the protocol more efficient and,

as the name says, fast, in order to achieve faster downloads.

The messages forming this extension are:

• Have all

• Have none

• Suggest piece

• Reject request

• Allowed fast

The most interesting of these messages is the Allowed fast, which contains

the index of a piece of a given torrent and is sent to a piece when we want to tell

him: you can ask me this piece and I will send it to you even if you are choked.

The purpose of this message is to shorten the duration of the start-up phase

of a peer which has no pieces and therefore can’t participate in the traditional

tit-for-tat for receiving pieces it needs.

More information about Fast Extension can be found in [11].

2.6 Distributed Hash Table

The proposed8 Distributed Hash Table (DHT) for BitTorrent works as a standard

Kademlia-based DHT, with a 160-bit addressing space. When a peer bootstraps

7http://www.bittorrent.org/beps/bep_0006.html
8http://www.bittorrent.org/beps/bep_0005.html

20

2.6 DISTRIBUTED HASH TABLE

into the DHT, it can start looking for peers which are downloading the same tor-

rent, connect to them and then exchange the traditional peer-wire messages. The

lookup for peers and resources is based on the XOR metric defined for Kademlia.

The DHT extension is now widely adopted by the majority of clients since it

is the foundation of the so-called trackerless torrents, which are becoming

the most effective counter-measure to the various lawsuits that have led to the

shutdown of major public trackers (such as The Pirate Bay).

21

2. THE BITTORRENT PROTOCOL

22

3
The Torrent plugin

In this Chapter we will talk about the plugin: what it is and what it does, its

structure and organization. We will also see the typical workflow for the download

of a torrent, in order to understand the basic details that enable it to participate

in a download in the BitTorrent network.

3.1 Introduction to Torrent

The Torrent plugin is the PariPari module responsible for the management of

.torrent files. It is a BitTorrent client that complies with all the core features

and rules of the BitTorrent protocol that we described in Chapter 2, but it also

implements some of the most widely used extensions to the protocol itself, such as

the Extension Protocol, the Fast Extension, protocol encryption and the Azureus

Messaging Protocol.

Some important features are now being actively developed, such as the meta-

data transfer and the BitTorrent DHT. These are of fundamental importance for

the trackerless torrents we talked about earlier; through the DHT a peer can find

the resources it needs, and in particular through the metadata transfer it can

obtain the .torrent file it needs to initiate the data download.

3.2 Plugin structure

The Torrent plugin is composed of a series of packets containing the various

classes and interfaces that make the communication with other BitTorrent peers

(and consequently the download) possible. In table 3.1 we have listed the main

packages that constitute the Torrent plugin and their contents, in order to give

23

3. THE TORRENT PLUGIN

the reader a rough idea of how the plugin is structured.

The main package, called torrent, contains 5 classes:

• TorrentConsole

• TorrentCore

• TorrentID

• TorrentListener

• TorrentLogger

The most important of these 5 classes is TorrentCore, whose job is to in-

stantiate all the necessary classes for a download, whereas the TorrentConsole

interprets the input given by the user through the PariPari terminal.

The basic workflow is the following: the user starts PariPari, then adds

the Torrent plugin through the command add torrent, which loads the Tor-

rent JAR file and starts TorrentCore. At this point, the user can reload

pre-existing downloads or add new torrents (by having them saved on disk or

directly by URL, through the addUrl command). Once a torrent file has been

added (and the associated instance of DownloadTorrent has been created), the

user can start the download, which creates the TorrentMessageSender and

TorrentMessageReceiver instances which, together with the HTTPConnection

instance, begin contacting the tracker and the peers that are downloading/u-

ploading the same torrent.

It is worth noting that TorrentMessageSender and TorrentMessageReceiver

are written using Java NIO1, the library provided by Sun Microsystems that,

among other things, provide methods for asynchronous I/O. More information

about the introduction of Java NIO for Torrent can be found in [9].

3.2.1 Configuration file

The XML configuration file for Torrent is a handy tool when we want to tune

some parameter without modifying the source code directly. We just need to

open the XML file (called TorrentConfig.XML), change the settings, save the file

and restart PariPari. The changes will be immediately visible, without having to

modify the source code and recompile it.

1http://en.wikipedia.org/wiki/New_I/O

24

3.2 PLUGIN STRUCTURE

TorrentMessageSender

TorrentMessageReceiver

DownloadTorrent 1

DownloadTorrent 2

DownloadTorrent N

HTTPConnection

Core

Connectivity

..

.

Figure 3.1: Interaction of the main Torrent threads for a download with Core and

Connectivity.

25

3. THE TORRENT PLUGIN

name contents

config The classes that read from and write to an XML file the configura-

tions for the plugin (fundamental variables such as the port number,

the maximum number of concurrent downloads, etc.)

crypto The classes that define the basics for the protocol encryption as

defined by the standars we talked about in the previous chapter.

file Class TorrentFile defines the structure and the contents of a

.torrent file, while class FileManager deals with reading and writ-

ing data to and from the selected storage device.

ltep This package contains the necessary classes for the management of

the Peer Exchange mechanism defined by uTorrent and the libTor-

rent extensions (not Azureus/Vuze).

manager The most important class here is DownloadTorrent, which manages

the communication with all the connected peers and calls, whenever

appropriate, public methods from other classes (such as saving of

a received piece to disk or updating the peer list).

messages This package contains the two main threads for the exchange

of messages to and from the other peers. In particular,

TorrentMessageSender deals with sending the messages and

TorrentMessageReceiver deals with receiving the messages, while

TorrentMessageParser parses (as the name says) the received mes-

sages, separating header and ID from the more interesting payload

(if present).

peer.messages Here are all the messages defined by the peer-wire protocol and the

classes that generate them, MessageFactory in particular.

tracker Class HTTPConnection contains all the methods necessary to es-

tablish an HTTP connection with the tracker, sending requests to

it and receiving the responses. On the other hand, since the track-

ers’ responses are lists of peers, class PeerListUpdater contains

the methods that parse the received peer-list and store them in the

peer database for future contact.

Table 3.1: The main Torrent packages and their contents.

26

3.3 COMMUNICATION WITH INNER-CIRCLE PLUGINS

The configuration file is very useful also when we want to change some default

settings without having to type something into the console every time we start

PariPari. It will also be useful for the user when he will be able to modify it

through the GUI, changing settings at runtime.

Figure 3.2: The XML configuration file for Torrent at the present state of devel-

opment.

3.3 Communication with inner-circle plugins

Torrent, being an outer-circle plugin, must obtain resources from the inner-circle

plugins. In particular, it needs storage methods provided by LocalStorage, sockets

provided by Connectivity and credits provided by Credits (even though this is

still an experimental plugin). It does so by forwarding requests not directly to

the Core but through PluginSender, a plugin which was purposely created for

making the request procedures easier. Thus, PluginSender provides a wrapper for

the Core methods needed to ask resources to the other plugins (every request must

pass through the Core), sometimes being very handy because it automatically

27

3. THE TORRENT PLUGIN

manages things such as the Credits requests’ renewal.

That’s basically everything Torrent needs from the inner-circle plugins; some

peculiar cases consist in saving to mass storage torrents with multiple files: in

this case the requests to LocalStorage have to be properly handled every time

Torrent needs to read from or write to disk in order to avoid getting exceptions

on console.

3.4 Supported features

In this Section we will list all the major features supported by Torrent. We

already talked in Chapter 2 of some of these, so we will briefly review them and

describe how they are implemented in Torrent.

3.4.1 Multitracker support

This is a minor extension but it’s very widespread and useful, since in the very

early times of BitTorrent a .torrent file could contain a single tracker. Nowadays

it is very common to insert more than a tracker in the .torrent file, so that if the

first tracker doesn’t work, the client can pass on to the following, try contacting

it, and so on.

3.4.2 Extension protocol and Peer Exchange

Torrent supports the extension protocol and the peer exchange that is so impor-

tant in contacting a large number of peers in order to get high download rates.

The classes that define the extension protocol messages can be found in

the package torrent.peer.messages.ltep, while the classes that manage the

Peer Exchange can be found in torrent.ltep, which contains the two classes

UtPeerExchangeManager and UtPeerExchangeSender whose job is to keep track

of the peers with which we are enabling the Peer Exchange and to divide the

peers we get into the two lists of added and dropped peers (in fact, there are four

lists: two for IPv4 and two for IPv6).

The class UtPeerExchangeSender is a class that associates itself with an

instance of DownloadTorrent and sends a PEX message to all the due peers every

60 seconds (the standard time interval between two consecutive PEX messages).

28

3.4 SUPPORTED FEATURES

3.4.3 Protocol Encryption

As previously stated said, protocol encryption is necessary to hide the payload

or the header of the packets (or both) in order to avoid getting throttled by the

ISPs that check the traffic travelling on their networks.

Protocol encryption can be eitherdisabled, enabled or forced : when we enable

the encryption protocol it means that we support it and we can initiate a crypted

handshake if the other peers wants to do so; when we are forcing the encryption it

means that we will only accept encrypted connections (outbound and inbound).

The main classes that manage the protocol encryption can be found in the

package torrent.crypto.

3.4.4 Azureus Messaging Protocol

The developers of the Azureus/Vuze BitTorrent client have developed a particular

set of messages which works only between two Azureus clients. In this way,

whenever we receive a Azureus handshake message and we are able to parse it,

we can begin communicating with that set of messages, and that only.

The classes that define the Azureus messages can be found in torrent.peer.

messages.azmp.

Since the two extensions of the Azureus Messaging Protocol (AZMP) and the

libTorrent Extension Protocol (LTEP) are mutually exclusive, we need to have

a method for choosing between them. This is why the Extension Negotiation

Protocol was developed.

3.4.5 Extension Negotiation Protocol

This simple extension lets a client choose between the two extension protocol of

AZMP and LTEP. It works using two of the reserved bits of the handshake (bits

47 and 48, precisely), which can of course each be set to 0 or to 1. Depending

on the combination of these two bits (00, 01, 10, 11) the client acts accordingly,

enabling one extension or the other. In Torrent this all happens when we receive

a handshake message, inside class DownloadTorrent.

3.4.6 File Preview

This is another simple feature that is implemented in Torrent: how many times

were we downloading something fairly large (on the order of the hundreds of

MegaBytes) that turned out not to be what we were expecting?

29

3. THE TORRENT PLUGIN

00 Force LTEP

01 Prefer LTEP

10 Prefer AZMP

11 Force AZMP

Table 3.2: The conventional table for the Extension Negotiation Protocol.

With file preview it is possible to check directly from within PariPari wether

the file we are downloading interests us or not, since what the file preview does is

to recognize the most common file types (audio or video, for example) and open

them with the appropriate file player/viewer.

3.4.7 DHT

The Distributed Hash Table for Torrent is currently in development but it’s not

very far from being completed. It is a very important extension for Torrent since

nowadays more and more torrents are becoming trackerless, and without a DHT

it is impossible to download them, since we don’t even have the .torrent file

sometimes.

It’s a very large and consistent piece of code that is being developed on a sep-

arate branch with its own threads; the very next step after completion is going to

be the integration of the DHT in the present Torrent source code and the coor-

dination of its threads with the standard downloads through DownloadTorrent.

3.4.8 Metadata Transfer

Metadata Transfer is a natural extension to the DHT, since otherwise we would

not be able to retrieve the list of pieces’ hash values that we need to possess in

order to check if we are downloading good data or not. Metadata Transfer then

mediates the transfer between two peers connected to the DHT of the .torrent file,

without trackers. Metadata Transfer relies on magnet URI, which are particular

links that let the client bootstrap into the DHT and begin retrieving the metadata.

All of this is almost completed in Torrent, the only thing missing is the DHT

to which the Metadata Transfer code needs to be coupled: either they work

together or they are both useless.

30

3.4 SUPPORTED FEATURES

3.4.9 Multi-file torrents

Very frequently a torrent comes as a bundle of files, but it is not so obvious that

we want to download all those files. It may be, in fact, that we only need one or

two of the files, and it doesn’t seem convenient to us that we need to wait for the

whole download to complete in order to get the two files we need.

Here comes into play the ability to choose which files to download: since we

know which pieces belong to which file, by selecting a file we mean that we will

only request the pieces belonging to that file, so we will obviously be served only

those pieces and not the others.

This feature is still in development in Torrent but we hope it will be completed

soon, since it comes very handy for the final user.

31

3. THE TORRENT PLUGIN

32

4
Seeding with BitTorrent

In this chapter we will talk about seeding: what it is, how it works and how it

can be improved. Seeding is crucial to the BitTorrent protocol since it’s what

actually enables the distribution of data, so it is important to come up with good

seeding strategies.

4.1 What is seeding

Seeding is the word used in BitTorrent networks to indicate the uploading of

pieces to other peers. There is a distiction to be made:

• seeding is the act of uploading pieces done by peers who have the complete

data

• uploading is the act of giving pieces to other peers done by peers that are

still downloading the data

Let’s introduce some more terminology:

• seeder: a peer who has the complete data belonging to a certain torrent.

This kind of peer can only upload pieces

• leecher: a peer who is downloading the data belonging to a certain torrent.

This kind of peer can both upload and download pieces

• free-rider: a peer who is downloading the data belonging to a certain

torrent but it only downloads pieces, it does not upload a single piece to

other peers

33

4. SEEDING WITH BITTORRENT

Figure 4.1: Example of piece overlap.

We can easily see that free-riders can be considered as malicious peers, since

they do not contribute to the distribution of data in the network – what BitTor-

rent was specifically designed for.

Thus, what we - as peers in a BitTorrent network, downloading a torrent -

want is to limit the impact of free-riders, in such a way that we do not waste

upload bandwidth to peers which do not give back to us and concentrate on

uploading to peers that can be useful to our download phase.

4.2 BitTorrent basic download strategy

As an introductory concept, we note that the distribution of pieces of a given

torrent in the network contributes heavily on the download times of that torrent.

In Figure 4.1 we can see that there may be more copies of some piece than of

some other. This is what is called piece overlap. The higher the piece overlap,

the longer the average download time for that torrent, because when a peer gets

to the end of the download (i.e. it has to download the last pieces) it will, on

average, have to wait some time before connecting to a peer that has them, since

the pieces are not distributed equally. Vice versa, if the piece overlap is low, it

means that the pieces are distributed fairly equally between the peers, and thus

it won’t take much longer to download some pieces rather than some others.

So what we want to look for when designing a protocol for distributing data

between peers (such as BitTorrent) is to minimize the piece overlap. In the

download phase, this is done by the code that regulates the download strategy of

the peers. Usually BitTorrent clients operate (or at least should operate) based

on what is known as the Local Rarest First (LRF) algorithm: based on the

peers that a client see in the network, it can calculate the frequency of each piece

(since every peer sends its bitfield immediately after the handshake) and begin

asking the rarest pieces first. If every peer acts in this way, the piece overlap is

34

4.4 BITTORRENT BASIC UPLOAD STRATEGY

automatically minimized, since there won’t be pieces that are much more popular

than others.

This is a very basic way to achieve good (in the sense of low) piece overlap.

As a note, it has been proved in [12] that if a peer asks pieces he needs in a

random way, the resulting piece overlap will be very close to the one provided by

the LRF algorithm.

4.3 BitTorrent basic upload strategy

It might be perceived as an overkill to devote a whole section to this, but it’s

better to be totally clear: as long as a peer is unchoken by an uploader, the

uploader will give the peer the pieces it will ask. No headache on that.

Now, to elaborate a little bit: how does a peer get unchoken by an uploader?

First of all we recall that, on average, a client has 5 upload slots: 4 of these are

used for rational unchoking, which we described in Section 2.4.1 of Chapter 2,

and the remaining one is used for optimistic unchoking. We distinguish now two

cases:

1. the uploader is a leecher : In this case the 4 voluntarily unchoken peers

are chosen based on which pieces they have: if they look interesting to the

uploader than he will unchoke them in the hope that they will unchoke him,

otherwise he discards them and chooses some more useful peers.

2. the uploader is a seeder : In this case the uplader will (on average) not follow

a specific strategy for voluntarily unchoking some peers in favor of others,

since he already has all the pieces he needs, therefore he cannot favor one

peer over another based on what pieces they have

It is then fairly easy to see that the average seeder will unchoke a peer more

or less randomly, upload to it for some time, then choke it, choose another peer

to unchoke, and so forth. In this way all peers are equal in the eyes of the seeder,

they have neither merits nor demerits.

4.4 Super-seeding

Let’s suppose we are a seeder and we want to upload some data to the BitTorrent

network for the first time (we are the creators of a new .torrent file). How do

we do it?

35

4. SEEDING WITH BITTORRENT

The first part, creating the .torrent, is fairly easy, since almost every popular

client provides an intuitive procedure that lets user create a .torrent file from

scratch. Then we put the newly generated .torrent file to some websites (they

may be trackers or indexes1, or both) in order to let people download them.

Suppose some peers are connecting to us and are asking us pieces of that data:

since we have all the pieces it is natural that we give it to them, isn’t it?

BitTorrent developers have thought of a better way. It has been experimen-

tally shown that in this way some pieces have to be uploaded over and over again,

thus wasting the seeder’s bandwidth. This is why BitTorrent developers proposed

a new algorithm, called super-seeding.

What super-seeding does is at the same time very simple and very effective.

The algorithm works like this:

while there are pieces to be uploaded for the first time do

i← the index of the first piece yet to be uploaded

create a fake bitfield containing only i

if peer A connects to us then

send A the fake bitfield

while we see a peer B 6= A having piece i do

do not inform A of other pieces

end while

end if

end while

So if a peer connects to us we present him the fake bitfield indicating that we

possess only one piece, and that forces the peer to ask us that piece and we will

not advertise other pieces until we see that another peer has got that same piece.

Super-seeding is a very effective seeding mode that preserves the precious

seeder’s bandwidth by reducing the uploaded data from the standard 150-200%

of the total size of a torrent to the more “intuitive” 105%.

1A webserver that only lists the .torrent files it knows and lets users download them; it

does not usually act as a tracker, too.

36

4.6 THE PROBLEM OF FREE-RIDERS

4.5 The problem of free-riders

It is well known that some peers, called free-riders as we said before, do not

bother to upload a single piece to the network they are connected to (in the case

of BitTorrent, the set of peers which are downloading the same .torrent file is

called swarm), either because they set the upload bandwidth to zero or because

they are programmed in a way that prevents uploading.

These peers are particularly dangerous because not only they do not con-

tribute to the distribution of the data they are downloading, but because they

waste precious uploaders’ bandwidth, damaging other more honest peers. Some-

times, they even get faster downloads than honest peers.

A natural question comes to mind: is there a way to prevent (or at least limit)

the free-riding phenomenon?

Free-rider

Honest Peer

?

Figure 4.2: Free-riders do not upload pieces to other peers.

4.6 Damaging free-riders as leechers

Various researchers have proposed many methods to prevent the free-riding phe-

nomen, some of which happens to be easily applicable and effective, while many

others in our opinion do not provide significant improvements to the standard

implementations ([3], [5] and [7]).

We reviewed some of such algorithms and techniques that claimed to improve

download times for honest clients and to reduce the performance of bad clients

(such as free-riders); after reading a decent amount of papers in the subject,

we picked the ones that looked most promising in terms of real effectiveness

concerning the damage to free-riders – without causing longer download times

for standard peers.

37

4. SEEDING WITH BITTORRENT

4.6.1 Sorting-based unchoking algorithm

As described in [10], “Availability of seeding capacity can have a significant effect

on BT, e.g., it can compensate for the asymmetric bandwidth scenarios in the

Internet. At the same time, it can degrade the fairness and incentive properties of

the system, as free-riders can finish their downloads with reasonable performance

by relying on the seeds. (Not only do they not contribute to the systems’ upload

capacity, they also effectively reduce the performance gains that seeds provide.)

Thus, intuitively, appropriate use of seeding capacity can have a significant effect

on performance of both, contributing leechers as well as free-riders.”

The authors compare in figure 4.3 the average download time with respect to

the average seeding time of some data. It is evident that free-riders have average

download times equal, if not better, to those of honest peers. This is enough to

indicate clearly that free-riders exploit the seeders’ upload bandwidth, damaging

honest peers.

Figure 4.3: Average download time compared to average seeding time.

A solution to this is to “prioritize the use of seeding capacity to only certain

portions of a file’s downloading process”. In figure 4.4 we can see that free-riders

are damaged by the algorithm because they rely much more heavily on seeders

than the honest peers.

There are many practical approaches to the implementation of this intuition,

and the authors propose the following two:

• Sort-based (N): In this scheme peers are sorted based on the number of

pieces they have, then the client unchokes N of them.

• Threshold-based (K,N): This is very similar to the previous scheme, but

38

4.7 DAMAGING FREE-RIDERS AS LEECHERS

here N peers are unchoked that have either [0...K
2

]% or [
(
100− K

2

)
...100]%

of the pieces composing the torrent

Figure 4.4: Effects of seeding prioritizing on free-riders and standard peers.

Some experiments were conducted on a PlanetLab2 testbed to evaluate the

proposed algorithms; the results are shown in figure 4.5. It can be easily seen that,

on average, the algorithm that both damages free-riders without causing lower

download rates to honest peers is the sort-based algorithm described above, so

that’s the one we decided to implement for Torrent and its implementation will

be described in the following chapter.

Figure 4.5: Average download rate of peer compared to the number of neighbors

they have.

2http://www.planet-lab.org/

39

4. SEEDING WITH BITTORRENT

4.7 How to make seeders aware of free-riders

We have seen how leechers can damage free-riders by checking the respective

number of uploaded pieces, but how can a seeder damage a free-rider? It is in the

interest of honest peers making seeders aware of the fact that they’re uploading

pieces to a free-rider, since the free-rider is stealing precious bandwidth that could

speed up the leechers’ download, in some cases getting better average download

rates than the honest peers downloading the same torrent (as demonstrated in

[17]).

Literature focuses on the leecher’s perspective, since it is indeed easier to

identify a free-rider when it is possible to check the number of pieces it uploads

(which, in the strict sense of free-rider, will be zero). Still, some attempts at

detecting free-riders have been researched and implemented, as the BarterCast

protocol described in [18], which is based on a reputation mechanism for peers

and the Ford-Fulkerson algorithm for the computation of maxflow in graphs.

We decided to try a simpler approach, that doesn’t require any modifications

to the protocol itself, since it makes use of the already-widespread Peer Exchange

mechanism as a transport layer.

First of all, we note that the majority of free-riders does not change the

BitTorrent protocol to their advantage, but they simply refuse to upload pieces

to other peers (setting the upload bandwidth to 0 KB/s, for example). This

means that they keep sending usual messages such as Choke and Unchoke.

We then keep track of all the peers to which we send a Request message after

they have unchoken us, saving also the time at which we sent the message. If,

after a given time interval (that, through some experimentation, proved to be

optimal at around 2 minutes) the peer has yet to send us the piece we requested,

we label it as a free-rider and we save in the dropped list of the Peer Exchange

message to be sent next. Then we will send, as usual, the PEX message to all the

peers we are connected to that support the PEX extension (nowadays supported

by the vast majority of clients); the peers that receive it will find the IP and port

of the free-rider we found, so they’ll save it in their database of bad peers and,

hopefully, propagate the information by means of other PEX messages. In this

way, part of the network will soon be flooded with PEX messages that classify

the free-rider as a bad peer and it is likely that some seeders will get those PEX

messages, so they can save the IP of the free-rider and refuse to connect to it

when they find it.

If the supposed free-rider was instead a honest peer with a dynamic IP address

40

4.8 HOW TO MAKE SEEDERS AWARE OF FREE-RIDERS

Free-rider

Honest Peer

?

Seeder

Request
?

PEX

Figure 4.6: With our proposed algorithm a seeder will refuse to connect to a

free-rider it knows through a PEX message it received.

that didn’t send us the piece we requested because it disconnected from the

network, we don’t cause unjustified damage to it, since the next time it will

reconnect to the network it will get, with very high probability, a different IP

address. In the case of peers with a static IP address we could slightly modify

the traditional Peer Exchange protocol by blocking the peer for a period of time

and then sending a PEX message containing the IP address of the peer in the list

of added peers, thus switching the peer’s reputation back to good. If the peer is

indeed a free-rider, the frequent switching from good to bad and viceversa would

effectively lower its download rate.

Note that if the peer sends us bad pieces (that is, pieces that fail the hash

check) twice, it will be inserted in the dropped list anyway, since Torrent already

provides this feature (known as Smart ban algorithm).

4.7.1 Checking algorithm effectiveness

One thing that we want to avoid at all costs is to label as free-riders perfectly

honest peers just because they didn’t have enough time to send us some pieces.

We then implemented, as a control mechanism in the testing phase of our proce-

dure, a linked list to keep track of all the peers we classified as free-riders: every

time we received a piece we would check if the linked list contained the peer that

sent us the piece; if so, we would print a message informing us of the problem.

After some experiments with the time interval used as a timeout, we found

out that 2 minutes is plenty of time for a peer to send us a piece if it’s willing to

do so, without the risk of getting erroneously labeled as free-rider (we observed

that 1 minute was too little in some rare cases).

41

4. SEEDING WITH BITTORRENT

4.8 Improving protocol fairness

Another interesting problem concerns the protocol fairness, that in the case of

peer-to-peer applications can be defined as the number of pieces a peer downloads

versus the number of pieces it uploads. So, as we defined it, the fairness can be:

• < 1: In this case, a peer uploads more than it downloads

• = 1: The case of ideal fairness; a peer gets as much as it gives

• > 1: In this lucky case a peer downloads more than it uploads

Protocol fairness can be enforced by the rules that govern the protocol itself:

if a protocol is designed in such a way that a peer can receive a piece if and only

if it has uploaded a piece, then every peer is bound to be generous in uploading

if it wants to achieve high download rates.

In [16] the authors conduct a series of experiments on the BitTorrent protocol;

when discussing its fairness, they state that the BitTorrent protocol is far from

being fair, as can be seen in figure 4.7

Figure 4.7: Number of pieces uploaded with various uploading algorithms.

The line of the plot labeled as Vanilla BitTorrent says that a peer has to

upload up to 7 copies of a given piece to the network while receiving only one

(the results of the plot are already normalized). A ratio of 7 to 1 is not what we

think of when we want to define fairness for a peer-to-peer protocol.

The authors then propose the following modifications to the uploading algo-

rithm in order to make the protocol more fair:

42

4.8 IMPROVING PROTOCOL FAIRNESS

• Quick Bandwidth Estimation: Instead, if a node were able to quickly

estimate the upload bandwidth for all its d peers, optimistic unchokes would

not be needed. The node could simply unchoke the u peers out of a total

of d that offer the highest upload bandwidth.

• Pairwise Block-Level Tit-for-Tat: The basic idea here is to enforce

fairness directly in terms of blocks transferred rather than depending on

rate-based TFT to match peers based on their upload rates.

We chose to implement the second option since it looked more consistent and

effective, not requiring any modifications to the other peers, so we will now focus

on that.

4.8.1 Pairwise Block-Level Tit-for-Tat

Here is the mechanism that regulates the experimental uploading algorithm: sup-

pose that node A has uploaded Uab blocks to node B and downloaded Dab blocks

from B. With pairwise block-level TFT, A allows a block to be uploaded to B

if and only if Uab ≤ Dab + δ, where δ represents the unfairness threshold on this

peer-to-peer connection. This ensures that the maximum number of extra blocks

served by a node (in excess of what it has downloaded) is bounded by dδ, where

d is the size of its neighborhood.

Of course, one basic restriction implies that δ must be at least one, so that

new nodes can start exchanging pieces (similarly to what the optimistic unchoke

does). It is also easy to see that the pairwise algorithm is very strict in terms of

how many pieces we can give to a peer without having anything in return, so as

soon as the above mentioned condition is not satistified, we will stop uploading

pieces to the peer, thus reducing on average our uplink utilization. We then come

at a crossroads: choose fairness in favor of upload speed or vice-versa?

To complete the view provided by figure 4.7, we show in figure 4.8 the mean

upload utilization for the various uploading methods. We can easily see that the

lowest uplink utilization is provided by the pairwise block-level tit-for-tat, since

it is a fundamental part of its design the strict enforcement of the “1 piece for 1

piece” rule that necessarily slows down the upload rate.

So we now have a dilemma: good fairness or good uplink utilization? We

thought of a solution: we see from the plot in figure 4.7 that the standard up-

load algorithm causes some peers to upload from 6 to 8 times the data they

receive (they are usually high-bandwidth peers), so we propose to use as a fair-

ness threshold (the δ in the formula) a value between 1 and 7, in order to achieve

43

4. SEEDING WITH BITTORRENT

Figure 4.8: Mean upload utilization for the three different methods in analysis.

a trade-off between fairness and uplink utilization. 3 seems to be a good choice

for δ, but of course this can be changed if a user feels more generous about its

upload bandwidth.

Supporting our argument is again figure 4.8, which shows the uplink utilization

for the pairwise algortihm when δ is set to 2. It seems to us still too inefficient

though, when the number of peers we are connected to is low (5 to 20 peers); in

fact, we usually reserve no more than 5 slots for uploading, so we have a very bad

case when using the pairwise algorithm with low values of δ. Also, keep in mind

that very rarely a node in the BitTorrent network uses all of its upload bandwidth

– a much more common situation is to set the limit at a very small fraction of

it. So when raising that threshold a little bit, setting it to 3 as we said, we get

an uplink utilization that’s fairly close to the one we would have when using the

standard algorithm, but with a gain of about 100% in the protocol fairness.

44

5
Implementation

In this chapter we will talk about the implementation of the algorithms and

techniques described in chapter 4 for limiting the free-riding phenomenon and

improving the protocol fairness. We will also describe some other modifications

we made to the Torrent code in order to make it more efficient.

5.1 Updating the peer list

This is a very trivial modification but it’s what allowed us to contact up to 60-70

peers at a time and to reach download rates around 200-300 KB/s, whereas with

the previous code the plugin could hardly be seen going over 100 KB/s.

In class DownloadTorrent there is a method called updatePeerList() that

gets called when we receive the tracker’s response containing the list of (at most)

50 peers sharing the torrent we need. This method contains the lines that ef-

fectively try to contact the peers we have in a data structure we call the peer

database, defined in class PeerDatabase, inside the package torrent.manager.

The problem with updatePeerList(), though, is that it is called only when we

receive a tracker’s response, which happens on average every two minutes; that’s

clearly a waste of time, especially if we have enabled extensions such as the Peer

Exchange, which gives us new peers almost every 5 seconds.

What we have done is very simple: every time we receive a new PEX message,

containing a list of good peers, we call the lines that update the peer database

and try to contact the first peers, until we reach the maximum number of peers

we can simultaneously be connected to (this value is set to 60 by default).

Even though this is a minor change, it allows Torrent to have a full connection

list almost all the times, which translates into much higher download rates for a

45

5. IMPLEMENTATION

given torrent.

5.2 Suggest Piece Sender

As we said in Section 2.5.3 of Chapter 2 when talking about Fast Extension, we

said that the Suggest Piece message contains as its payload the index of a piece

that it’s suggested to a peer for download; usually this piece coincides with the

rarest piece we have seen, in order to adhere to the LRF (Local Rarest First)

algorithm.

Of course, this is a message that cannot be sent once in a lifetime, since our

view of the rarest piece updates with every new peer we come in contact with;

we figured that we needed some kind of timed operation that would calculate

the rarest piece and send a Suggest Piece message every, say, 30 seconds. One

lightweight option proved to be the TimerTask class provided by Java, which con-

tains an internal timer that activates the assigned Task periodically (the period

can of course be set by the programmer).

Thus we created the SuggestPieceSender class inside the

torrent.peer.messages.fastextensions package, extending the TimerTask

class. SuggestPieceSender contains a boolean variable running that is used

to start or stop sending the messages to the peers. It also has a method,

called buildSuggestPieceMessage(), that finds the rarest piece and invokes

the MessageSender to send this message to every connected peer that supports

fast Extension.

A TreeMap data structure called peerSet is used to keep track of all the peers

that support Fast Extension, and we have provided add() and remove() metods

for peers that connect or disconnect from us.

The computation of the rarest piece takes place inside DownloadTorrent,

by means of the calculateSuggestedPiece() method, which very simply takes

all the connected peers, checks which pieces they have and keeps the count for

every piece in an array called totalPieces; after that, the array is scanned from

beginning to end in order to find the index with the lowest number of occurrences.

The creation of the SuggestPieceSender instance associated with a given

torrent happens inside DownloadTorrent, immediately after connecting to a peer

that supports Fast Extension – if subsequent peers support Fast Extension they

are only added to the peerSet. After that the schedule method of the TimerTask

class is invoked.

We set the time interval for the schedule() method to 60 seconds (1 minute),

46

5.4 UTORRENT PEER EXCHANGE REFACTORING

figuring that’s enough for the calculated piece to be fairly accurate (based on the

peers we have seen) and not too CPU-consuming.

All of this is done as an attempt to keep the piece overlap for a given torrent

as low as possible.

5.3 uTorrent Peer Exchange Refactoring

We talked in Section 2.5.2 about the importance of the Peer Exchange procedure:

it allows peers to send and receive information about peers they know and prop-

agate this information to their neighbors, dividing the peers they have come in

contact with in two categories, good or bad. In this way the peers that receive

the PEX message will know which peers to contact first (the good peers) and

which peers to avoid.

In the previous version of Torrent, there was a couple of classes, called UtPeer

ExchangeSender and UtPeerExchangeManager associated with a single peer.

Class UtPeer ExchangeSender used to extend the PariPariRunnable class, thus

creating new threads. Since there was an instance of UtPeerExchangeSender for

every peer we came in contact with that supported Peer Exchange, the number

of threads was approximately linear with the number of peers, which is obviously

a waste.

We decided to refactor the classes that manage the PEX procedure by associ-

ating the UtPeerExchangeSender and UtPeerExchangeManager classes not with

a single peer but the DownloadTorrent instance associated with a given torrent,

which seems more logical. Once we have done so, we needed to change the way

in which the UtPeerExchangeSender class was sending messaging to the peers,

since it was programmed to send the PEX messages only to the peer it was asso-

ciated with. Thus we inserted a for loop in the class that iterates on the list of

currently connected peers, for each it checks whether Peer Exchange is supported

(which can be easily done by reading the relative byte in the Peer instance of the

peer) and, if so, sends them the PEX message.

We also changed the class extended by UtPeerExchangeManager from Pari

PariRunnable to TimerTask, as for the Suggest Piece Sender, since we don’t

really need a thread for sending PEX messages once every minute. After hav-

ing implemented the run() method in UtPeerExchangeSender, it was sufficient

to schedule the task in DownloadTorrent with the same Timer object used for

SuggestPieceSender, since the two scheduled tasks work independently even if

they are created on the same Timer instance.

47

5. IMPLEMENTATION

5.4 Super-seeding

In order to implement the super-seeding algorithm in Torrent we had to modify

some lines of class DownloadTorrent, since that’s where the core of uploading

happens.

First of all, we created a boolean variable called superseeding, initially set to

false, that tells wether we are in super-seed more or not. Then we needed some-

thing to keep track of pieces we uploaded the first time and to which peer (meant

as a (IP, port) pair): for this purpose we created a TreeMap<Integer, IPeer>

object called superseedSentPieces which conveniently allows us to retrieve the

peer associated with a given piece index.

We also created an integer counter, called superseedCounter, that serves

as an incremental pointer to the index of the next piece we are considering for

advertising in the bitfield. After that comes the necessary bitfield, as a byte array,

called superseedBitfield.

When the constructor of DownloadTorrent gets called, all the variables and

objects we created for the super-seeding algorithm are initialized. Then, inside

the body of the parseMessageReceived(Message m) method, when we receive a

bitfield from a peer and we are going to reply with our bitfield, we first check if we

are in super-seed mode: if so, we send the peer our fake bitfield (containing, for

the first iteration, only the first piece), otherwise we send the complete bitfield.

We then implemented the checkCopiedPiece(IPeer p, int i) method, whose

job is to check, whenever we receive a bitfield or a Have message, the peers

we have uploaded in the first place the pieces we see. Then we increment the

superseedCounter by one and we inform them through a Have message that we

possess another piece.

The super-seeding feature is something that we let the user start or stop at

runtime; this is why we created the superseeding boolean variable (so that we

can check every time if we have enabled or disabled the super-seeding feature) and

we added the superseed command on console. The complete command defined

in TorrentConsole is: superseed [id], where id is the integer that identifies

the file we want to seed through super-seeding mode. There is no stop command

on console for the super-seed mode because the protocol states that we cannot

send different bitfields to the same peer so, instead of flooding it with a lot of

Have messages, it is advised that we close the client and reconnect to the network

in normal seeding mode.

48

5.6 SORTING-BASED UNCHOKING ALGORITHM

5.5 Sorting-based unchoking algorithm

We recall from Section 4.6.1 in Chapter 4 that the sorting-based unchoking algo-

rithm works by unchoking the first N peers sorted based on the number of pieces

they own; in particular, if a torrent has P pieces, we take the peers that are more

distant from the arithmetic mean P
2

.

The peer sorting algorithm that was used before was based on the download

and upload rate of each peer. Inside the package torrent.peer there are a cou-

ple of classes, namely DLRateComparator and ULRateComparator, whose job is

precisely to sort peers on the basis of the download and upload rate we have

registered for them. Each of these two classes implements the Java Comparator

interface, parametrized to the IPeer object. Every implementation of this in-

terface must provide a compare(Object a, Object b) method between two ob-

jects, that can conveniently be called afterwords by the sort() static method of

the Collections and Arrays classes.

In the same package of those two comparators we created a new class, called

PieceComparator, which implements a compare(IPeer a, IPeer b) method

that tells which one between A and B is the furthest away from the arithmetic

mean of the number of pieces composing the torrent. In order to get the number

of pieces A and B have, we implemented a getNumPieces() method in the Peer

and IPeer class that returns the number of pieces a peer has – which we can

see from the bitfield it sends us and from the subsequent Have messages that we

read; every Peer object has a counter which we use to keep track of the pieces

it has. We then proceeded to sort the array of peers for a given download in

DownloadTorrent, inside the unchokePeers method.

What if a user doesn’t like this experimental unchoking method and prefers

to stick with the more conventional one? We added a switch in the code that,

through the boolean variable expUnchoke, enables the experimental unchoking

algorithm or the standard one; but we don’t want a user to even read our code,

do we? So we also added a line on the XML configuration file of Torrent that

enables the activation or deactivation of the algorithm by simply setting to true

or false the experimental unchoke entry.

5.6 PeerChecking algorithm

As we described in Section 4.7 of Chapter 4, our proposed algorithm tries to iden-

tify free-riders through a timeout system and informs other peers of the discovered

49

5. IMPLEMENTATION

free-riders by means of a Peer Exchange mechanism.

First of all, we created a boolean variable in the Peer class that tells whether

the peer has sent us at least a piece or not. We then proceeded to insert into

DownloadTorrent the data structure that would contain the discovered free-

riders, in order to check that we weren’t going to damage honest peers. For the

task we used a LinkedList<IPeer> object called freeriders, since we just need

to list peers without a specific order. The PeerChecker instance associated with

a given download is created whenever the respective DownloadTorrent construc-

tor is called, then it is added to a Timer object through the usual schedule()

method. The task is called once every minute.

We then created the PeerChecker class inside package torrent.manager: this

is the class that does the job of checking whether a peer is a free-rider or not and

of putting it in the dropped list of the UtPeerExchangeManager associated with

the same DownloadTorrent instance of the PeerChecker.

As we already did for other classes that need to perform an action once every

given time interval (such as SuggestPieceSender and UtPeerExchangeSender,

in the creation of PeerChecker we extended the TimerTask class provided by

Java, in order to easily implement a scheduled action without using a separate

thread.

PeerChecker also contains a TreeMap<IPeer, Long> object called request

Map, which stores the peers to which we have sent a Request message and the time

at which we sent it, so when the checking algorithm wakes up it will subtract the

current system time from the time stored in the map for every entry: if the result

is greater than 2 minutes, the respective peer is classified as free-rider and put into

the freeriders linked list and the dropped list of the UtPeerExchangeSender

instance associated with the same download. In the other case (we receive a piece

before 2 minutes have passed) we remove the (IPeer, Long) pair from the map.

5.7 Pairwise Block-Level Tit-for-Tat

In Section 4.8.1 of Chapter 4 we described the proposed algorithm that tries to

improve the fairness of the BitTorrent protocol. As the reader can realize by

reading that Section, it is obvious that this algorithm is only applicable if we (as

uploaders) do not possess the whole data composing the torrent – in other words

we are leechers for that torrent. If it weren’t so (that is, if we were seeders) how

could we define the number of pieces we are downloading from a peer? It would

of course be zero, since we do not need any pieces; therefore, we would not be

50

5.7 PAIRWISE BLOCK-LEVEL TIT-FOR-TAT

uploading pieces to any peer. That’s obviously not how it is supposed to work.

In the DownloadTorrent class we created a new method, called upload

Procedure(IPeer peer, int piece, int begin, int length), that contains

an if statement in its body: if we are seeders, we are not concerned with the

number of pieces we have downloaded from a peer and we will simply upload the

requested piece to it; on the other hand, if we are leechers, we will begin looking

at the number of pieces we have download or uploaded to a peer in a given session.

This method is called whenever we receive a Request message from a peer, which

is asking us a piece.

The Peer class already provided the getDL() and getUL() methods, which

return the total amount of downloaded and uploaded bytes, respectively, for

that peer. We divide such numbers by the length of a piece for the torrent

we are considering (which can be done by accessing the torrent.pieceLength

variable). After that, we simply check if the condition Uab ≤ Dab + δ (which we

previously defined) holds: in the positive case we upload the desired piece to the

peer, otherwise we simply ignore its request.

What if a user wants to change the unfairness threshold we provided? It can

simply access the Torrent XML configuration file inside the PariPari/torrent/

conf/ folder and change the integer value associated with the

unfairness threshold key.

51

6
Team management

In this chapter we will discuss the main topics that concern the management of a

team working in a software engineering project like PariPari. We will talk about

the main problems that arise in the development of a plugin and the tools and

techniques that have been employed to deal with them.

6.1 Working as a team

The average student pursuing a Computer Science or Computer Engineering de-

gree is not used to developing software in a group. Course projects and personal

experiments accustom the student to solitary programming practices that do not

work well when applied to a multi-person working environment.

One of the biggest problems we have faced is the very diversified habit of

writing comments into the source code and of choosing variable names. Names

should be expressive of what the variable is and/or what is does, what’s its

purpose, and names such as temp, n, array should be avoided like the plague. It

may look easy but it requires some effort to get rid of such negative habits.

Another problem is posed by the comments to the source code: they should be

inserted whenever the code is not straightforward to understand, they should be

like guidelines to the programmer that faces those lines of code for the first time

and is trying to figure out what is going on there. On the other hand, comments

should be succint, not invading the code (we are still writing computer programs,

not books) and as clear as possible, making it easy for the programmer reading

the code for the first time to understand its inner workings.

When working with university students we come across other kinds of prob-

lems, too. One big issue is time management: students work at the project when

they have time, between one exam and the other and between one party and the

52

6.2 CODE VERSIONING

next, so their contribution to the work is intrinsically discontinue. One way to

solve this issue is to set mid-term goals and keep track of how the work advances

more or less once a week, in order to see if there are some problems causing

significant delay.

Like in every other cooperative endeavor, communication is of fundamental

importance. The preferred media is private email or online groups like the ones

provided by Google, while for more timely help instant messaging of any kind

proved to be very handy. Once in a while, like once a month or when discussing

important issues for the plugin’s development, meetings are arranged in order to

have a better view on the state of the work and also to keep a sense of belonging

to the team.

6.2 Code versioning

When working for a software development project like PariPari it is fundamental

to have a version control system, or code version control, that is a system for

efficiently managing the changes to documents, programs, and other information

stored as computer files. It is in fact common for the software developers to be

working simultaneously on updates, which at the very least can lead to synchro-

nization problems (programmers working on versions of the code which are not

updated).

Version control provides a system for easily retrieving different versions of the

code software in order to identify the sources of bugs and to prevent developers

to step into each other’s way when writing code. In PariPari the working copy of

a plugin is stored in a folder called trunk, while the copies which are adding new

features and need some testing before being accredited as finely working copies

are stored in a folder called branches.

In order to begin working on the software developers need to checkout the

desidered branch or trunk version of the plugin they need to modify. This creates

a local copy of the software which they can modify as much as they like; when

they’re satisfied with their work (which doesn’t need to be the total completion of

their task) they can commit their changes in order to let everyone else see them

if they want to and to prevent losing everything if something goes wrong on the

machine they are working on.

In PariPari the versioning system of choice is Subversion (also known by

its abbreviation SVN), which is very convenient because it comes with a plugin

for Eclipse, the editor used by every PariPari developer. In this way students

53

6. TEAM MANAGEMENT

involved in the project can easily perform checkouts and commits of their code,

see changes from one version to another, revert to an older version if something

has gone wrong, and many other useful things.

Figure 6.1: Main folder organization for the PariPari SVN repository.

6.3 Testing

Testing is of fundamental importance for every software project, since it is easy

even for not-so-complex programs to behave in an unexpected way when provided

with some input or after some time of execution. Every PariPari developer is then

taught how to perform some automated tests, in order to catch and fix the most

apparent bugs before releasing the code.

PariPari adopts the eXtreme programming (XP) software development method-

ology, which is a type of agile software development1 developed by Kent Beck

during his work on the Chrysler Comprehensive Compensation System payroll

project. Some of the pillars of the XP methodology are unit testing and pair

programming, and we tried to apply these techniques when working for Torrent.

Unit testing is a method by which individual units of code are tested to deter-

mine if they are fit for use. Since PariPari is written in Java, a class is considered

a unit and the testing for that unit involves testing for all its methods, especially

edge cases (such as invalid input, null parameters, and so on). In PariPari we

use JUnit, written by Kent Beck himself, as the unit testing framework of choice.

Pair programming is a metholody in which two programmers work at the same

workstation: while one developer is writing the code, the other reviews each line as

it is typed in. For obvious organizational reasons (students having different time-

tables) it is hardly feasible to get two programmers working together at the same

time (the only time we were able to do so was during the Software Engineering

class in which students were working for the various PariPari plugins), so we

adopted a slightly different strategy: one developed writes the code and another

1A group of software development methodologies based on iterative and incremental devel-

opment.

54

6.3 TESTING

one writes the tests for it, so the first developer is not tempted to write ad-hoc

tests in order to show that his code works properly. The spirit remains the same,

because writing tests requires some amount of knowledge of the code being tested,

so the developer writing the tests will inevitably check the code sometimes. In

this way we can reduce the number of bugs released with new versions of the

plugin.

55

Conclusions

We have seen that free-riders do pose a problem to the BitTorrent protocol, since

they do not upload pieces to the network and they consume precious uploaders’

bandwidth, sometimes getting lower download times than the average honest

peer. We have seen some ways in which the free-riding phenomenon can be

constricted to some extent, while at the same time improving the protocol fairness

(number of uploaded pieces versus number of downloaded pieces). In this way

we were able to get upload rates comparable with the previous version of Torrent

but with the added feature of at least not favoring free-riders.

We also dealt with how a simple change to the lines of code that manage the

update of the peer list boosted the average download rate for Torrent by a factor

of 2 to 3, moving the plugin performance closer to the widely popular BitTorrent

clients such as uTorrent and Azureus/Vuze.

Much can still be done, though: important extensions such as the DHT and

the Metadata Transfer have yet to be completed and integrated into the official

code, download rates can certainly be improved and, maybe most importantly,

Torrent still needs a fully functional GUI.

Nonetheless, we think that our work has led to some fair improvements in

the plugin’s performance (whose fundamental job is to download and upload

data) and to advance, even if just a little, the state of the BitTorrent network by

damaging selfish peers.

56

A
BEncode

Bencode is the encoding used by the peer-to-peer file sharing system BitTorrent

for storing and transmitting loosely structured data. It supports four different

types of values:

• byte strings

• integers

• lists

• dictionaries

While less efficient than a pure binary encoding, bencoding is simple and

(because numbers are encoded in decimal notation) is unaffected by endianness,

which is important for a cross-platform application like BitTorrent. It is also

fairly flexible, as long as applications ignore unexpected dictionary keys, so that

new ones can be added without creating incompatibilities.

A.1 Integers

An integer is encoded as i<number in base 10 notation>e. Leading zeros are

not allowed (although the number zero is still represented as 0). Negative values

are encoded by prefixing the number with a minus sign. The number 42 would

thus be encoded as i42e, 0 as i0e, and -42 as i-42e. Negative zero is not

permitted.

57

Bencode

A.2 Byte strings

A byte string (a sequence of bytes, not necessarily characters) is encoded as

<length>:<contents>. The length is encoded in base 10, like integers, but must

be non-negative (zero is allowed); the contents are just the bytes that make up the

string. The string spam would be encoded as 4:spam. The specification does not

deal with encoding of characters outside the ASCII set; to mitigate this, some

BitTorrent applications explicitly communicate the encoding (most commonly

UTF-8) in various non-standard ways.

A.3 Lists

A list of values is encoded as l<contents>e. The contents consist of the bencoded

elements of the list, in order, concatenated. A list consisting of the string spam

and the number 42 would be encoded as: l4:spami42ee. Note the absence of

separators between elements.

A.4 Dictionaries

A dictionary is encoded as d<contents>e. The elements of the dictionary are

encoded each key immediately followed by its value. All keys must be byte

strings and must appear in lexicographical order. A dictionary that associates

the values 42 and spam with the keys foo and bar, respectively, would be encoded

as follows: d3:bar4:spam3:fooi42ee. (This might be easier to read by inserting

some spaces: d 3:bar 4:spam 3:foo i42e e.)

There are no restrictions on what kind of values may be stored in lists and

dictionaries; they may (and usually do) contain other lists and dictionaries. This

allows for arbitrarily complex data structures to be encoded.

58

Bibliography

[1] The BitTorrent Protocol Specification http://www.bittorrent.org/beps/

bep 0003.html.

[2] Bittorrent Protocol Specification v1.0 http://wiki.theory.org/BitTorrent

Specification.

[3] M. Coates, R. Thommes, BitTorrent Fairness: Analysis and Improvements.

In WITSP ’05, December 2005.

[4] F. Peruch, Paripari: Connectivity optimization, 2011

[5] M. Piatek, T. Isdal, T. Anderson, A. Krishnamurthy, A. Venkataramani,

Do incentives build robustness in BitTorrent?. In Proc. 4th USENIX/ACM

NSDI, April 2007.

[6] M. Bonazza, PariCore, 2009

[7] Chi-Jen Wu, Cheng-Ying Li, Jan-Ming Ho, Improving the Download Time

of BitTorrent-like Systems. In Proc. of IEEE International Conference on

Communications, 2007.

[8] A. Gallo, PariPari: Crittografia Torrent, 2009

[9] A. Aldegheri, Paritorrent: performance refactoring, 2010

[10] A. Chow, L. Golubchik, V. Misra, Improving BitTorrent: A Simple Ap-

proach. In Proc. of the IPTPS, 2008.

[11] D. Turchetto, PariPari Torrent: libTorrent and Fast Extension, 2009

59

BIBLIOGRAPHY

[12] A. Legout, G. Urvoy-Keller, and P. Michiardi, Rarest First and Choke Algo-

rithms are Enough. In Proc. of IMC, 2006.

[13] R. Ampezzan, PariMulo 2009, 2009

[14] M. Muscarella, PariMulo: Reengineering, 20011

[15] F. Mattia, PariMulo: Kad, 2011

[16] A.R. Bharambe, C. Herley, Analyzing and Improving BitTorrent Perfor-

mance. Microsoft Research Technical Report, February 2005.

[17] M. Sirivianos, J.H. Park, R. Chen, X. Yang, Free-Riding in BitTorrent Net-

works with the Large View Exploit. In IPTPS, 2007.

[18] M. Meulpolder, J.A. Pouwelse, D.H.J. Epema, H.J. Sips, BarterCast: Fully

Distributed Sharing-Ratio Enforcement in BitTorrent. Delft University of

Technology Technical Report, 2008.

60

List of Figures

1.1 The PariPari logo. 9

1.2 Representation of the plugins divided into the inner and outer circles. 10

2.1 Official BitTorrent logo. 14

2.2 Example of hash computation for every piece composing a torrent. 14

2.3 A client sends its first request to the tracker. 15

2.4 Torrent download workflow. 17

2.5 After a peer has received other peers’ IP addresses by the tracker,

it begins contacting them. 17

3.1 Interaction of the main Torrent threads for a download with Core

and Connectivity. 25

3.2 The XML configuration file for Torrent at the present state of

development. 27

4.1 Example of piece overlap. 34

4.2 Free-riders do not upload pieces to other peers. 37

4.3 Average download time compared to average seeding time. 38

4.4 Effects of seeding prioritizing on free-riders and standard peers. . 39

4.5 Average download rate of peer compared to the number of neigh-

bors they have. 39

4.6 With our proposed algorithm a seeder will refuse to connect to a

free-rider it knows through a PEX message it received. 41

4.7 Number of pieces uploaded with various uploading algorithms. . . 42

4.8 Mean upload utilization for the three different methods in analysis. 44

61

LIST OF FIGURES

6.1 Main folder organization for the PariPari SVN repository. 54

62

List of Tables

2.1 The typical messages forming the peer-wire protocol 16

3.1 The main Torrent packages and their contents. 26

3.2 The conventional table for the Extension Negotiation Protocol. . . 30

63

LIST OF TABLES

64

