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Triangulating a point set in a plane is a basic computational geometry
problem. Moreover, in the last years there has been an increment of interest
in space-efficient algorithms. In this thesis we study some algorithms for
the point set triangulation that take only O (s) extra storage cells as work-
space for any 1 ≤ s ≤ n, where s is a parameter given as input. Our main
results are an optimal sequential algorithm which takes O (n (n/s+ log s))
time, and a parallel algorithm which takes O

((
n2 log s

)
/ (s · p)

)
, where p

is the number of processors available. The parallel algorithm works on our
memory-constrained parallel computational model, which is based on the
CREW PRAM model.
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Chapter 1

Introduction

1.1 Problems and motivations

In the last years we have seen a great growth of the amount of data to
compute. In many cases, classical algorithms require additional space that
can be as large as the size of the entire input. Depending on the size of the
work-space required, we can have three different problems:

• the algorithm is not cache friendly because we have to work on data
stored in distant positions in the main memory

• the work-space required by the algorithm cannot be entirely stored in
the main memory, hence we have to use a secondary, slower memory
so that it can kill the efficiency of the algorithm

• the algorithm cannot be used because we do note have enough memory
to store the work-space (we remind the proliferation of tiny devices
with limited memory)

These observations lead to an increasing interest in the memory requirements
of computational tasks. Another relevant change in these last years is due
to the flash memory, a new type of fast memory. One of the main feature
of this memory is that the write operations are slow and expensive and
they reduce the memory lifetime, while the read operations are fast and
they do not afflict the memory lifetime such as the write operations. Under
this situation, it makes sense to focus on algorithms that work with limited
work-space, where the input is given in a read-only storage. We measure an
algorithm’s space efficiency by the number of work storage cells it uses.

The ultimate space efficiency is given by constant-work-space algorithms,
which are the algorithms that use only a constant amount of variables in
addition to the input storage. These algorithms are also said to run in log-
space [2]. However, in this thesis we want to look for space-time trade-off
algorithms, which means that we devise algorithms that are allowed to use
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Chapter 1. Introduction 2

up to O (s) additional variables, for any parameter 1 ≤ s ≤ n. Clearly, our
aim is also to keep the running time of the algorithm as small as possible;
in addition to this, we would like it to decrease while s grows.

In this thesis we want to focus also on memory-constrained algorithm on
parallel computational models. In our case we shall study the shared memory
model, also known as parallel random access machine PRAM model [18],
which is one of the main parallel computational model. In particular, we
consider the concurrent-read exclusive-write PRAM model (CREW PRAM).
In the CREW PRAM model we have a memory where every processor can
read and write; the read operations can be done concurrently to a single
memory location, whereas the write operations are not allowed to a single
memory location. In this thesis, we consider a situation where we have two
memories:

• a limited shared memory where every processor can read and write,
according to the CREW policy

• a main memory where every processor can only read and where the
input resides

See Figure 1.1. This parallel memory-constrained model has gained lot of
attention during the last years because it is compatible with modern parallel
architectures. For example, one of these architectures is the GPU, graphics
processing units; in this architecture we have a graphics card connected to
a computer: the graphics card represents the PRAM architecture (proces-
sors and shared memory), while the computer’s RAM represents the main
memory. We will give a formal definition of this model later.

Figure 1.1: A graphical reprentation of our parallel computational
model. The arrows represent the directions of the data movements.

Problem definition Under this situation we want to study a basic ge-
ometric problem like the triangulation of a point set on the plane. Let us
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give a more formal definition of this problem. Given a set P of n points in
the plane, P = 〈(x1, y1) · · · (xn, yn)〉, where every point lies on a different
vertical line, join them by non intersecting line segments such that every
region to the convex hull is a triangle.

1.2 Related results

One of the first memory-constrained algorithm was developed by Murno and
Paterson [21] for the selection problem from an unsorted array. After this
result, there have been more interests about these type of algorithms: during
the years many algorithms were developed and many lower bounds were
proved for different memory-constrained computational models [22, 10, 13].

In the last years two of the most famous memory-constrained computa-
tional models is the streaming model, where the values of the input can only
be read once or a fixed number of times. On the streaming model, Chan and
Chen [14] derive some algorithms for convex hull and linear programming.
They obtain an algorithm for computing the convex hull of a n-point set
in O (n (log s+ n/s)) time and O (s) space on the multi-pass algorithm, for
any parameter s ≤ n.

Moreover, before this interest about memory-constrained algorithms,
space-efficiency algorithms were represented by in-place algorithms. Such
algorithms are allowed to permute the input instead of streaming or multi-
pass algorithm. Therefore, the in-place model is a less restrictive model.
Many geometric problems can be optimally solved with in-place algorithm
[11, 12]. However, the main problem of in-place algorithm is that they tend
to be complicated, they lack locality of reference and so they are less prac-
tical.

In between the in-place model and the multi-pass (or streaming) model
we have another memory-constrained model, which is the read-only memory.
In this model the input resides on a read-only memory, therefore we cannot
permute the input. Since the input cannot be modified, the input does
not need to reside in one place, as long as we can answer queries to access
any individual element. Due to this property, the read-only model can be
combined with external-memory models.

For what concerns the memory-constrained parallel model, we do not
have results about computation geometry problems. There is an algorithm
for the optimal sequence alignment in efficient space based on the message
passing model (another parallel computational model). This algorithm runs

in O
(

(m+ n)2 /p
)

time and O ((m+ p) /p) space per processor, where m

and n are the size of the sequences and p is the number of processors available
[17]. Another result regards time and space bounds for the implementation
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of the parallel programming language NESL on various parallel computa-
tional models, among which there is the concurrent-write and concurrent-
read PRAM model (CRCW). They show that a NESL program with w
work, d depth, and s space can be implemented on a p CRCW PRAM using
O (w/p+ d log p) time and O (s+ dp log p) space [8].

For what concerns the triangulation problem, we remind that it is a well
know problem and optimally solved in:

• Θ (n log n) time on the classical serial computational model [23, 2]

• Θ (log n) time on the CREW PRAM mode with n processors [20]

The main problem of these algorithms it that they both require O (n) work-
space. Recently, Asano et al. [4] developed some constant work-space algo-
rithms for the point set triangulation and the point set Delaunay triangula-
tion, which they run in O

(
n2
)

time. Regarding the polygon triangulation,
which is a similar problem to the point set triangulation when the points
stored on the input are sorted, we have another algorithm of Asano et al.
[3]. Another recent result is given by Barba et al. [7]: they introduce a com-
pressed stack technique that allows to transform stack-based algorithm into
memory-constrained algorithm. Using this technique they solved many ge-
ometric problems, such as the polygon triangulation and the shortest path,
which they run in O

(
n2/2s

)
time and O (s) space for any s ∈ O (log n) or

O ((n log n) /s) time and O ((p log n) /s) space for any 2 ≤ s ≤ n.

1.3 Computational models used

Now we shall discuss a more formal definition about the computational
models used. In this thesis adopt two memory-constrained models: the first
is a serial model and the second is a parallel one.

We suppose to have two function x : P → R2 and y : P → R2 such that,
given a point p ∈ P , they return their abscissa and ordinate, respectively.

The input P is stored on a random access memory, where each element
takes O (log n) bits. We measure the space efficiency of an algorithm by the
number of work storage cells it uses, where a cell is a memory area that
takes O (log n) bits; these cells are used as indices to the points of P , or
they can contain a copy of an element of P .

Serial computational model Let s be a parameter, 1 ≤ s. The input
P is stored in a read-only memory and the work-space available is limited
to O (s) extra storage cells; constant-time random access to the data is
possible. Moreover, every basic arithmetic operation takes constant time.
Our cost model is represented by the number of comparisons between the
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coordinates of the points. We assume that comparing the coordinates of
the points takes constant time. The output is sent to a write-only output
stream, hence when we write on the output-stream we must be certain that
what we write is part of the final solution. To write in the output-stream
we suppose to have the instruction report.

Parallel computational model Let p and s be two parameters, 1 ≤
p ≤ s. We consider a computational model based on the Concurred-Read,
Exclusive-Write Parallel RAM (CREW PRAM) model with p processors.
The input P is stored on a read-only memory and the work-space avail-
able is limited to O (1) storage cells per processor and O (s) storage cells of
shared memory that every processor can use (for example for communicate).
Therefore, the total space available is O (p+ s) = O (s).

Our cost model is the same as the parallel complexity used in the PRAM
model [18], which is the length of the critical path of the directed acyclic
graph associated with any algorithm. We assume that comparing the coordi-
nates of the points takes constant time, therefore each comparing operation
can be represented by a single node of the directed acyclic graph.

The output is sent to a write-only stream, hence when we write on the
output-stream we must be certain that what we write is part of the final
solution. We suppose that every processor can concurrently write to the
output stream without any loss of performance. To write in the output-
stream we suppose to have the instruction report. Moreover, we suppose
that the read-only memory is a slow memory whereas the shared memory
is a fast memory. For modeling this situation we also count the number
of read and write operations (we account them as if they were of the same
type) that our algorithm makes. Let W (n, s, p) be the number of read an
write operations on the slow memory and let V (n, s, p) be the number of
read an write operations on the fast memory. In the end, to simplify the
pseudocode of the algorithms we suppose that p is a power of two, s is a
multiple of p and n is multiple of s.

Through the thesis, assume that the input is stored in general position: no
points have the same x− or y−coordinates; and no three points are collinear.
For each of our algorithms is straightforward to remove this assumption.

1.4 Our results

In this thesis we present two algorithms for computing a point set triangu-
lation:

• an optimal O (n/s)-pass algorithm that runs in

O
(
n
(
s log s+

n

s

))
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time and takes O (s) space, for any 1 ≤ s ≤ n

• a parallel algorithm that runs in

O

(
n2 log s

p · s

)
time and takes O (s) space on the CREW PRAM model with p pro-
cessors, for any 1 ≤ p ≤ s ≤ n

For what concerns the second result, we want to point out some relevant
cases with particular values of p and s:

• if p = 1 and s = O (1) we obtain a serial constant work-space algorithm
that runs in O

(
n2
)

time, which is the same result obtained by Asano
et al. [4]

• if p = 1 and s = O (n) we obtain a classic serial algorithm that runs
in O (n log n) space and takes O (n) space as the algorithms presented
in [23, 2]

• if p = Θ (n) and s = Θ (n) we obtain a parallel algorithm that runs on
the CREW PRAM model that takes O (log n) time and O (n) space,
which is the same result of Ed Merks [20]

1.5 Organization

Now we shall give a briefly description how this thiesis is organized.

Chapter 2 We present two serial algorithms: the first is the constant work-
space algorithm of Asano et Al [4], the second is a general algorithm
that takes O (s) space without improving the first algorithm

Chapter 3 We improve the results in Chapter 2 by giving an optimal al-
gorithm.

Chapter 4 Bulding on the optimal serial algorithm in Chapter 3, we derive
a parallel algorithm that works on our parallel computational model.



Chapter 2

A simple triangulation
algorithm

In this chapter we shall describe two space efficient algorithms for the point
set triangulation that work on the serial computational model. The first
one is the constant work space algorithm of Asano ed Al. [4]; it uses the
plane-sweep approach, which is a basic computational geometry technique
for developing algorithms. The second one is a general algorithm that is
based on the same idea of the first one; it uses the multi-pass technique,
which is a basic technique for developing space efficient algorithms.

First of all, let us define some notations that will be used during the
chapter.

Definition 2.1. Let P be a point set of n points, then T (P ) is the set
containing every triangle of the triangulation of P .

Definition 2.2. Let P be a point set of n points, then CH (P ) is the se-
quence of vertices of the convex hull of P in clockwise order.

Definition 2.3. Let P be a point set of n points, then UH (P ) is the se-
quence of vertices of the upper hull of P in clockwise order starting from
the leftmost point of P .

Definition 2.4. Let P be a point set of n points, then LH (P ) is the sequence
of vertices of the lower hull of P in clockwise order.

We want to note that if UH (P ) = 〈r1, · · · , rk〉 and LH (P ) = 〈u1, · · · , uh〉,
then we have CH (P ) = 〈r1, · · · , rk, uh, · · · , u1〉.

2.1 Constant work-space algorithm

In this section we want to present the constant work-space algorithm de-
scribed in [4]. This model coincides with our model by setting s = O (1).

7



Chapter 2. A simple triangulation algorithm 8

Figure 2.1: Plane sweep approach. It represents the input and the point
qi considered during the ith iteration.

Algorithm We use the sweep plane technique: the idea is to scan the
points in nondecreasing order of x-coordinate adding each point to the tri-
angulation of the points already considered. Let 〈q1 · · · qn〉 be the sequence
of the points in x-order. During the basic step we consider the point qi, we
compute the partial convex hull of the points on his left 〈q1 · · · qi−1〉 that are
visible form qi and then we report all the triangles spanned by qi and the
edges of the partial hull. Clearly we cannot sort the points using an in-place
algorithm because the input is stored on a read only memory and we do not
have enough extra space to store the sorted sequence. Hence, to scan the
points in order, at each step of the algorithm we perform a linear scan of
the points for finding the next point to compute qi given the previous point
qi−1.

This algorithm can be done using only O (1) extra work-space in this
way:

1. find qi with a linear scan of S

2. find the next upward hull edge e after qi−1 of the points 〈q1 · · · qi−1〉

3. determine if e is visible from qi using the previous convex hull edge
discovered

4. if e is visible, report the triangle spanned by e and qi and proceed to
the next hull edge (step two). Otherwise stop and restart from qi−1 in
the downward direction.

The pseudocode of the algorithm is given in Algorithm 1. next clockwise -
vertex finds the next upward hull vertex and next counterclockwise -
vertex finds the next downward hull vertex, while visible determines if
the edge e is visible from qi. These functions can be done using O (1) extra
space, now we shall give the details of these functions.
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Algorithm 1 Compute the triangulation of P using O (1) space

function constant space triangulation(P )
∗ find the three leftmost points of P : q1, q2, q3 ∗
report4 (q1, q2, q3)
for i← 4 to n do

qi ← ∗ leftmost point in P to the right of qi−1 ∗
u← qi−1
repeat

v ← next clockwise node(P, qi, u)
if visible((u, v) , qi) = TRUE then

report4 (qi, u, v)
u← v

end if
until visible((u, v) , qi) = FALSE

u← qi−1
repeat

v ← next counterclockwise node(P, qi, u)
if visible((u, v) , qi) = TRUE then

report4 (qi, u, v)
u← v

end if
until visible((u, v) , qi) = FALSE

end for
end function

(a) Clockwise turn. (b) Counterclockwise turn.

Figure 2.2: The dashed straight line that cross p0 and p1 divides the
plane in two semiplanes. If p2 lies below, −−→p0p2 makes a clockwise turn
from −−→p0p1. If p2 lies above, −−→p0p2 makes a counterclockwise turn from −−→p0p1.

Line segment geometry property Before showing how to implement
the functions used in Algorithm 1, we show a basic property of line segments.
Given two directed segments −−→p0p1 and −−→p0p2, we show now how to determine
if −−→p0p1 is clockwise from −−→p0p2 in respect to their common endpoint p0. In
[15], it is shown how to solve this problem in O (1) time and space using the
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cross product. The cross product between two segments is:

−−→p0p1 ×−−→p0p2 = (x1 − x0)(y2 − y0)− (x2 − x0)(y1 − y0)

The result is positive if −−→p0p1 is clockwise from −−→p0p2 (the points make a right
turn)and it is negative if it is counterclockwise (the points make a left turn).
In Figure 4.3 we can seen an example.

Property 2.5. Let p0, p1 and p2 be three points in the plane, then:

1. −−→p0p2 counterclockwise from −−→p0p1 if and only if p2 lies on the left of the
directed line from p0 to p1

2. −−→p0p2 clockwise from −−→p0p1 if and only if p2 lies on the right of the directed
line from p0 to p1

Proof. The proof is trivial from the definitions of clockwise and counter-
clockwise turn (see Figure 4.3). Since no three points are collinear, these
are the only possible cases.

Corollary 2.6. Let p0, p1 and p2 be three points in the plane such that
x(p0) < x(p1), then:

1. −−→p0p2 counterclockwise from −−→p0p1 if and only if p2 lies above the straight
line that cross p0 and p1

2. −−→p0p2 clockwise from −−→p0p1 if and only if p2 lies below the straight line
that cross p0 and p1

Find the next upward and downward hull vertex We use Jarvis’
march algorithm, also known as gift wrapping algorithm [23, 15]. This
algorithm allow us to find the next vertex on the convex hull in clockwise
or in counterclockwise order of a point set respect to a point u that lies on
the convex hull. Therefore, if u is the ith element in the sequence CH (P ) =
〈r1, · · · , rk〉, u = ri, then the next clockwise vertex after u is r(i+1) mod k,
and the next counterclockwise vertex after u is r(i−1) mod k.

With a single scan of the point set, the algorithm finds the next vertex
after u by comparing the polar angles of every point v respect u. If we want
the next node in clockwise direction, it selects the point v′ such that every
other point lies on the right of the directed line from u to v′. Otherwise, if
we want the next node in counterclockwise direction, it selects the point v′′

such that every point lies on the left of the line from u to v′′. During the
computation we cannot find two points v′1 and v′2 that can both satisfy the
condition just explained because there are not three collinear points existing.

From Property 2.5, to test if a point v lies on the left or on the right in
respect to the directed line from u to v′ is corrispondent to test if the directed

segment −→uv is counterclockwise or clockwise from the directed segment
−→
uv′.
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Hence to find the next clockwise or counterclockwise hull node it takes O (n)
time and O (1) space because we only have to scan the points and keep in
memory the current node to return.

We remind that this algorithm should be executed only in a subset of
the whole set P , subset that consists in the points that lie on the right of qi,
〈q1 · · · qi−1〉. Unfortunately we cannot store this subset, hence we have to
scan the whole set P and consider only the points on the right of qi. Refer
to Algorithm 2 for the pseudocode of the clockwise version of the algorithm.

Algorithm 2 Find the next clockwise vertex after u in the convex hull of
the points on the left of x

function next clockwise vertex(P, x, u)
n← |P |
∗ P = 〈p1, . . . , pn〉 ∗
v ← ∗ leftmost point in P ∗
for i← 1 to n do

if (x(pi) < x) then
if (−→uv ×−→upi < 0) then . if the cross product is negative

v ← pi
end if

end if
end for
return v

end function

Figure 2.3: During the ith iteration we move along the convex hull of qi.
The solid segments are the segments of the convex hull of {q1, · · · , qi−1}
that are visible from qi. On the other hand, the dashed segments are the

segments non visible from qi.
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Visibility Given an edge (u, v), x(u) < x(v), that lies on the convex hull
of 〈q1 · · · qi−1〉, testing if this edge is visible from qi is reduced to compute a
cross product between two segments. Let r be the straight line that crosses
u and v. If (u, v) is an edge of the upper hull of P , (u, v) is visible from qi
if and only if qi lies above r. Otherwise if (u, v) is an edge of the upper hull
of P , (u, v) is visible from qi if and only if qi lies below r. See Figure 2.3.

We test this property in this manner: if (u, v) is an upper hull edge, then
(u, v) is visible from qi if and only qi is above r; on the other hand if (u, v)
is a lower hull edge, then (u, v) is visible from qi if and only if qi is below
r. From Property 2.6 and since x(u) < x(v), the point qi is above r if and
only if the direct segment −→uqi is counterclockwise from the direct segment
−→uv. Similary the point qi is below r if and only if the direct segment −→uqi is
clockwise from the direct segment −→uv.

This operation can be done in O (1) time and space because testing if
two segments make a clockwise or counterclockwise turn requires to compute
the cross product between the endpoints of the directed segments [15]; see
Algorithm 3 for details.

Algorithm 3 Return if the edge (u, v) is visible from p, where v lies on the
convex hull

function visible((u, v) , p)
c← −→uv ×−→uqi . cross product
if (u, v) is upper hull edge then

return c > 0
else

return c < 0
end if

end function

Theorem 2.7. Given a set P of n points in R2, we can output the trian-
gulation of P in O

(
n2
)

time and O (1) extra space.

Proof. We proceed by induction on the number of points n. If n = 3 there
is only the triangle 4 (q1, q2, q3) to report. Let us now suppose that the
algorithm is correct for each k < n. For n ≥ 4, let qn be the rightmost point
in P . Then by induction the algorithm correctly reports the triangulation of
P \ {qn} and this triangulation lies inside the convex hull of S \ {qn}. When
qn is considered, the algorithm reports all the possible triangles that connect
qn to the convex hull of S \ {qn}. Moreover these triangles lie outside the
convex hull of S \ {qn} because x (qi−1) < x (qi), thus they are compatible
with the triangulation already computed.

We shall show now the complexity of the algorithm. Finding the first
triangle 4 (q1, q2, q3) requires O (n) steps. For each point qi, 4 ≤ i ≤ n, we
have to find the previous point in order qi−1 and then compute the partial
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convex hull. Finding qi−1 requires a single scan of S, hence O (n) steps. If
ki is the number of triangles reported during the ith iteration we have to
execute ki+2 Jarvis’ march because we have to found also two points on the
extremes that aren’t visible from qi. The Jarvis’ march takes O (n) steps,
hence reporting these triangles costs O (kin) time.

Since any set of n points contains at most O (n) triangles [19], the total
running time of this algorithm takes:

O (n) +

n∑
i=4

(O (n) +O (kin)) = O
(
n2
)

+ n ·O

(
n∑

i=4

ki

)
= O

(
n2
)

2.2 General algorithm

Figure 2.4: Multi pass approach. The input and the sets Qi and Ri

considered during the ith iteration. The set Qi contains the points con-
sidered in the previous iterations. The set Ri contains the points currently

considered.

Let us now suppose that we have O (s) extra storage cells available. This
algorithm is designed according to the multi pass approach. We consider the
plane as partitioned in n/s vertical slabs, each one containing approximately
s points. The algorithm scans the slabs from the left to the right: at each
pass it computes the triangulation of the points inside the current slab σ and
then merges the triangulation already computed to the triangulation of the
points on his left. The pseudocode of this algorithm is given in Algorithm
4.

Algorithm right slab (P, v, s) returns the next slab to compute, Algo-
rithm simple triangulation (R) returns the triangulation Q of R using



Chapter 2. A simple triangulation algorithm 14

Algorithm 4 Compute the triangulation of P using O (s) space

function multi pass triangulation(P )
v ← (−∞, 0)
while v 6= the rightmost point do

R← right slab(P, v, s)
Q← simple triangulation(R)
for all q ∈ Q do

report q
end for
merge(P, v,R)
v ← ∗ rightmost point of R ∗

end while
end function

a classical algorithm for computing the triangulation [23, 2] and at the end
Algorithm merge (P, v,R) computes all the triangles that connect the tri-
angulation Q to the triangulation already computed at the left of R.

We shall show now how the functions right slab (P, v, s) and merge (P, v,R)
can be done.

2.2.1 Find the right slab

Algorithm right slab(P, v, s) can be done in O (n) time with a single scan
of P using a buffer of size 2s and maintaining in the buffer the current s
rightmost points at the left of v. We proceed in this way:

1. add the next s points and add them into the buffer, which initially
contains s points

2. select the median of these 2s points

3. keep only the s smallest elements in the buffer and remove the others,
then repeat from step one

Steps 1 and 3 can be done in O (s) time, also step 2 requires O (s) time
using the function pick (B′, s) [9], which finds the sth smallest element in
B′ in linear time respecting to the size of B′. Moreover, each step requires
O (s) space because the buffer contains at most 2s points. The algorithm
scans the points once; each iteration that this algorithm performs makes it
advancing of s points, therefore there are at most O (n/s) iterations. Since
each iteration takes O (s) time and space, the overall algorithm takes

O
(n
s
· s
)

= O (n)

time and O (s) space.
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For a better understanding of this function see Algorithm 5. In that
we have split the pseudocode in two functions where remove last(R, s)
(Algorithm 6) is the function that removes the greatest elements (steps two
and three).

Algorithm 5 Return the s leftmost points at the right of v in P

function right slab(P, v, s)
n← |P |
∗ P = {p1 . . . pn} pi = (xi, yi) ∀i ∗
R← ∅
t← 0 . Represents the size of the buffer
for i← 1 to n do

if xi > v then
R← ∪{pi}
t← t+ 1
if t = 2s then

R← remove last(R,s)
t← s

end if
end if

end for
if t ≥ s then

R← remove last(R,s)
end if
return R

end function

Algorithm 6 Keep only the s smallest point and remove the others from
R

function remove last(R, s)
R′ ← R
x̄← pick(R′, s) . It finds the sth smallest point
for all (x, y) ∈ R do

if x > x̄ then
R′ ← R \ {(x, y)}

end if
end for
return R′

end function
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2.2.2 Merge the current triangulation

In the constant work-space algorithm, for each point qi we have computed
all the triangles that can be formed having qi as a vertex and the edges of
the convex hull of the points q1 . . . qi−1. We have done this by scanning the
convex hull using the Jarvis’ march first in upward and then in downward
direction. The merging phase can be done using the same idea with the
exception that in this case we have s points to merge.

Problem Let Qi be the set which contains the points on the left of the
current slab σ, and let Ri be the set which contains the points inside σ
during the ith iteration. We want to report every triangle that connects the
triangulation of Qi to the triangulation of Ri.

Algorithm During the analysis of the constant work-space algorithm we
have noticed that, given a point set Qi and a point p outside the convex hull
of Qi, we can add p into the triangulation of Qi by reporting every triangle
spanned by p and every edge on the convex hull of Qi that is visible from p.

Let Q′i ⊆ CH (Qi) be the portion of the convex hull of Qi that is visible
from Ri, and R′i ⊆ CH (Ri) be the portion of the convex hull of Ri that is
visible from Qi; let tui and tli be the upper and the lower common tanget of
Qi and Ri. Note that by the definition of upper and lower common tangent
[23] the segments tui and tli connect the convex hull of Qi and the convex
hull of Ri. We consider the polygon Ui formed by the two partial hulls Q′i,
R′i and the two segments tui , tli.

Figure 2.5: Merge phase: Qi is the set of points alread computed, Ri is
the set of points involved in the current iteration and the solid line defines

Ui. In grey we can see the inner area of Ui.

We remind that T (X) represents the triangulation of a point set X. For
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the merge phase we have the following lemma:

Lemma 2.8. Let Qi and Ri be two point sets such that there exists a vertical
line which divides these sets in two dinstict semiplanes, then T (Si ∪Ri) is
the union of T (Qi), T (Ri) and the triangulation of the polygon Ui.

Proof. Since there exists a vertical line that divides Qi and Ri we have that
the convex hull of Qi∪Ri is split in three parts: the points inside the convex
hull of Qi, the points inside the convex hull of Ri and the polygon Ui. The
triangulations T (Qi) and T (Ri) are already computed and reported, thus
the remaining triangles to report are the ones inside the triangulation of the
polygon Ui.

We can apply Lemma 2.8 to Qi and Ri, hence the merging phase is
reduced to compute the triangulation of the polygon between CH (Qi) and
CH (Ri) limited by the upper and lower tangents of Qi and Ri.

On our model we have at most O (s) storage cells available, hence we
have enough memory to store CH (Ri) because |Ri| = s, but not enough to
store CH (Qi). This means that also in this case we have to use the Jarvis’
march to scan the edges of the convex hull of Pi without storing them as we
have done in the constant work space algorithm.

We can report every triangle with the same technique adopted for com-
puting the upper and lower tangents for the two disjoint polygons Qi and
Ri used in the divide and conquer convex hull algorithm [23]. Let q ∈ Qi

and r ∈ Ri be respectively the rightmost and leftmost points in Qi and Ri.
We use a pair (q′, r′), q′ ∈ CH (Qi) and r′ ∈ CH (Ri), which represents the
current edge between CH (Qi) and CH (Ri). Starting with (q′, r′) = (q, r)
at each step of the algorithm we first move q′ or r′ in the upward direction
reporting every triangle found until (q′, r′) is the upper tangent of CH (Qi)
and CH (Ri) (the segment tui in Figure 2.5). Then we repeat the same pro-
cedure in the downward direction until the lower tangent of CH (Qi) and
CH (Ri) is reached. The pair (q′, r′) is updated in this way:

1. using the Jarvis’ march starting from q′ find the next hull edge e of
Qi, if e is visible from r′ report the triangle spanned by e and update
q′ to the next hull node (note that when e is not visible q′ remains the
same)

2. when the first edge e not visible from r′ is found go to the next upward
edge of CH (Ri), f

3. if f is visible from q′ report the triangle spanned by f and q′ and
repeat from step one, otherwise stop in this direction and repeat in
the downward direction from (q, r) in the same way
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Figure 2.6: First iteration of the three steps

When the edge f is not visible from q′ we have that also e is not vis-
ible from r′, hence (q′, r′) is the upper (lower) tangent of Pi and R. The
pseudocode of this function is given in 7.

In Figure 2.6 we can see the first time when the three steps are executed.
Initially (q′, r′) = (q, r), during the first step q′ is updated in the upward
direction along the convex hull of Qi until the first node is visible from r.
During the second step we can see the first edge non visible from r, e , and
the next upward hull edge of Ri after r, f . In this case f is visible from q′,
hence in the third step the triangle spanned by f and q′ is reported and we
repeat the process from the first step.

Analysis At each iteration of the first step at least q′ or r′ are moved,
hence at each iteration the edge (q′, r′) is moved towards the tangent of
Pi and R (upward or downward, it depends on the direction). Moreover
|CH (Qi)| = O (n) and |Ri| = O (s), hence the merge phase terminates.

First we shall show the correctness of Algorithm merge. IfQ′i ⊆ CH (Qi)
is the portion of the convex hull of Qi visible from Ri and R′i ⊆ CH (Ri) is
the portion of the convex hull of Ri visible from Qi, from the Lemma 2.8 we
have to prove only that the merge phase correctly reports every triangle in
the polygon Ui.

We consider now the first phase of Algorithm merge, when the triangles
of Ui above (q, r) are reported. We shall show that for each iteration of the
algorithm every triangle in Ui between (q, r) and (q′, r′) is reported in the
previous iterations. During each iteration we can report a triangle in the
first or in the third step of the algorithm. In the first step we report every
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Figure 2.7: Merge phase

triangle above (q′, r′) with a vertex on r′; these triangles are all compatible
with each other and with the triangles reported in the previous iterations as
the lowest of them is adjacent to (q′, r′). In the third step the only triangle
reported is the one spanned by q′ and the next upward hull edge after r′,
f . This triangle is reported only if f is visible from q′ and it is adjacent to
(q′, r′). At the end of these steps the triangles reported can be merged into
the triangles previously reported and (q′, r′) are updated according to the
last triangles just reported. These considerations can be done during the
second phase of Algorithm merge.

For what concerns the complexity we have to compute the upper hull
and the lower hull of Ri first, then scan the portion of the convex hull of Qi

which is visible from Ri, Q
′
i. Given a set of s points, computing the upper

and the lower hull of this set takes O (s log s) time and O (s) space [15, 2].
If ki is the number of vertices of Q′i, then scanning Q′i takes O (kin) time
and O (1) space because we have a linear scan of P due to Jarvis’s march
algorithm. Therefore the overall cost of this algorithm is

O (s log s+ kin)

time and O (s) space.

2.2.3 Total complexity

Algorithm 4 requires n/s passes. The cost of each pass is the sum of the
three functions just explained, hence we have that the ith phase takes

O (n+ kin+ s log s)
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time and O (s) space. Since ki ≤ n, the total cost required by the general
algorithm is

n/s∑
i=1

O (n+ s log s+ kin) = O

(
n3

s
+ n log s

)
= O

(
n3

s

)
time and O (s) space.

As we can see this algorithm is not better than the constant work-space
algorithm previously explained. However we can see that the overall time
taken by the general algorithm decreases as the parameter s increases. The
main problem of this approach is that, during the ith phase of the general
algorithm, Algorithm merge uses Jarvis’s march algorithm in order to scan
the convex hull of Qi.

In the next session we will explain how to improve this algorithm in order
to get a better result than the one obtained with the constant work-space
algorithm.
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Algorithm 7 Report every triangle that connects Qi to Ri

function merge(P, v,R)
R′ ← simple convex hull(R)
∗ R′ = 〈r1, . . . , rm〉 ∗
r ← ∗ leftmost point in R′ ∗
q′ ← v, r′ ← r
repeat

v ← next clockwise node(P, q′)
e← (q′, v)
if visible(e, r′) = TRUE then

report4 (r′, q′, v)
q′ ← v

else
u← ∗ node after r′ in R′ ∗
f ← (u, r′)
if visible(f, r′) = FALSE then . upper common tangent

reached
break

else
report4 (u, r′, q′)
r′ ← u

end if
end if

until TRUE
q′ ← v, r′ ← r
repeat

v ← next counterclockwise node(P, q′)
e← (q′, v)
if visible(e, r′) = TRUE then

report4 (r′, q′, v)
q′ ← v

else
u← ∗ node before r′ in R′ ∗
f ← (u, r′)
if visible(f, r′) = FALSE then . lower common tangent

reached
break

else
report4 (u, r′, q′)
r′ ← u

end if
end if

until TRUE
end function





Chapter 3

An optimal triangulation
algorithm

In this chapter we shall explain an optimal algorithm for computing the
convex hull on our serial computational model. This algorithm derives from
the general algorithm in the previous chapter.

The main problem of the general algorithm is that for each reported
triangle we have to pay the cost required by Jarvis’ march algorithm, which
takes O (n) time and O (1) space, hence we have that O (s) space is wasted.

Before explaining how this algorithm works, we first introduce Graham’s
scan algorithm, one of the most famous algorithms in computational geom-
etry.

3.1 Graham’s scan

Graham’s scan algorithm [23, 15] is an optimal time algorithm for computing
the convex hull of a point set P under the classical computational model.

This algorithm uses an incremental approach, which is a very common
technique in computational geometry. We use a data structure that rep-
resents the current convex hull of the already computed points. At each
iteration of the algorithm we select a not yet considered point, then we
update the data structure according to its position.

Graham’s scan algorithm uses a stack S which represents the current
convex hull of the already computed points in clockwise order.

Algorithm We summarize the algorithm in these steps:

1. find the lowest point q0 of P

2. sort the remaining points by polar angle in counterclockwise order
around q0 (if some points have the same polar angle, keep only the

23
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(a) Adding the new point qi into
CH ({q0, · · · , qj}) gives the vertices

of CH ({q0, · · · , qj , qi}).

(b) The point qt lies inside the
triangle of vertices qi, qr and
q0. Thus it cannot be vertex of

CH ({q0, · · · , qi})

Figure 3.1: The proof of correctness of the Graham’s scan algorithm.

farthest point from q0 and remove the others) and let 〈q1, · · · , qm〉 be
this sequence

3. let S be an empty stack and push the points q0, q1 and q2 in this order

4. let s1 and s2 denote the top two points in stack S at any time

5. scan the sequence 〈q3, · · · , qm〉 in order and do the following operations
for each point qi:

(a) while the points qi, s1 and s2 make a left turn, pop s1 (the top
point) from S

(b) push qi into S

Analysis We shall prove now the correctness of this algorithm. Let us
prove by induction on the ith iteration of step 5 that, at the beginning of
the ith iteration, stack S consists of the vertices of CH ({q0, · · · , qi−1}) in
counterclockwise order from the bottom to the top.

We first note that after step 2 there are no three collinear points existing.
If i = 3, stack S consists of the vertex {q0, q1, q2}. These three points are
not collinear, hence they form their own convex hull. By the ordering of the
points, they appear in counterclockwise order from bottom to top.

Suppose now that this statement is valid for each hth iteration, h < i. If
i > 3, let s1 = qj be the top point on S after step 5a and s2 = qk be the point
just below qj on S, clearly k < j < i. By the inductive hypothesis, after step
5a stack S contains the vertices of the convex hull of the set {q0, · · · , qj},
CH ({q0, · · · , qj}), in counterclockwise from the bottom to the top because
qj is the top point in S. Moreover, we have that:
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1. from the ordering of 〈q0, · · · , qi〉, qi’s polar angle relative to q0 is greater
than qj ’s polar angle

2. the points qi, qj and qk make a right turn because otherwise they would
have popped from S during step 5a

Therefore, since S contains the vertices of CH ({q0, · · · , qj}), after pushing
qi (step 5b) the stack S will contains the vertices of CH ({q0, · · · , qj} ∪ {qi})
(see Figure 3.1a to better understand this situation):

S = CH ({q0, · · · , qj} ∪ {qi}) (3.1)

Let qt be any point that was popped during step 5a and qr the point right
below qt in stack S, then the points qi, qt and qr make a left turn. Therefore
we have that:

1. from Property 2.5, the point qt lies on the right of the direct line that
crosses qi and qr

2. in according to the positions where these points are located and the
ordering of 〈q1, · · · , qi〉, we have 1 < r < t < i and qt lies inside the
funnel defined by the two half lines −−→q0qi and −−→q0qr

From these observation, the point qt must lies in the interior of the tri-
angle q0, qr and qt (see Figure 3.1b). Hence qt cannot be a vertex of
CH ({q0, · · · , qi}), thus

CH ({q0, · · · , qi} − {qt}) = CH ({q0, · · · , qi})

Let Ui be the set of points popped during the ith iteration of step 5, then
we can apply the equality just proved for all the points in Ui, thus we obtain

CH ({q0, · · · , qi} − Ui) = CH ({q0, · · · , qi}) (3.2)

But we have said that at the end of step 5a the point qj is the head of the
stack, s1 = qj , hence:

{q0, · · · , qi} − Ui = {q0, · · · , qj} ∪ {qi} (3.3)

Putting together 3.1, 3.2 and 3.3 we obtain the following relationship:

S = CH ({q0, · · · , qj} ∪ {qi}) = CH ({q0, · · · , qi} − Ui) = CH ({q0, · · · , qi})

In the next iteration qi+1 is considered and the statement is proved.
At the end of step 5 we have i = m + 1, hence {q1, · · · , qi−1} = P and

by the statement just proved we have CH ({q0, · · · , qi−1}) = CH (P ).
We shall now show the time taken by this algorithm. The first and

second steps require to find a minimum and to sort n points, hence these
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steps take O (n log n) time. Regarding step 5, the pop and push operation
on stack S takes O (1) time each. Every point in P is pushed exatly once
(steps 3 and 5b). Moreover, at each stack S contains only points previously
considered. Therefore, during step 5a when the point pt is popped it will
never be pushed because it can be pushed only once. The number of points
is O (n), thus the number of pop and push operations is O (n). Since every
pop and push operation costs O (1), step 5 takes O (n) time. Hence the
overall costs of Graham’s scan algorithm is O (n log n).

For what concerns the space requirements, the space needed by Graham’s
scan algorithm is the space for storing n sorted points plus the space needed
to store stack S. Since set P contains n points, the number of points stored
in stack after every iteration is |S| = |CH ({q0, · · · , qi})| which is Θ (i) in
the worst case. Therefore, at the end of the algorithm we shall have |S| =
|CH (P )| = Θ (n) in the worst case.

3.1.1 Another approach to the Graham’s scan algorithm

The algorithm that we shall now present is a variant of the Graham’s scan
algorithm and it is also knwon as Andrew’s monotone chain algorithm [1, 2].
Also in this case the algorithm uses an incremental approach. The main
difference is that in this case the points P are not sorted by polar the angle
but by the x-coordinate. As Graham’s scan algorithm, this one mantanis
a stack S that contains the vertices of the upper hull (or lower hull) of the
points previously scanned.

Algorithm We summarize this algorithm in these steps:

1. sort the points by x-coordinate in decreasing order and let 〈q1, · · · , qn〉
be this sequence

2. let S be an empty stack and push the points q0 and q1 in this order

3. let s1 and s2 denote the top two points in stack S at any times

4. scan the sequence 〈q2, · · · , qm〉 in order and do the following operations
for each point qi:

(a) while the points qi, s1 and s2 make a left turn, pop s1 (the top
point) from S

(b) push qi into S

To compute the lower hull we perform the same operations. The only dif-
ference is that during the last step, we pop the top element from the stack
S if the top two points in S and the point qi currently considered form a
right turn.
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Analysis We shall prove now the correctness of this algorithm. We demon-
strate only the correctness of the first part of the algorithm, the one that
computes the upper hull of P ; the second part can be done in the same way.

Let us prove by induction on the ith iteration of step 4 that, at the
beginning of step 4, stack S consists of the vertices of UH ({q0, · · · , qi−1})
from the left to the right. If i = 2, stack S contains the points q0 and q1
that clearly form the upper hull of the set {q0, q1}.

Suppose now that this statement is valid for each hth iteration, h < i.
If i > 2, we proceed on the same way of Graham’s scan algorithm. The
analysis is exactly the same, except from the moment when we show that a
point qt cannot be the vertex of UH ({q0, · · · , qi}). Let qt be any point that
was popped during step 4a and qr be the point right below qt in stack S,
then the points qi, qt and qr make a left turn. In according to the positions
where these points are located in S, it results that r < t < i. By the
ordering of 〈q0, · · · , qi〉 we have x(qi) < x(qt) < x(qr); thus, since these
points make a left turn, by Corollary 2.6 the point qt must lie below the
straight line that crosses qi and qr. Therefore, the point qt cannot be a
vertex of UH ({q0, · · · , qi}).

Regarding the complexity of this algorithm: as for Graham’s scan algo-
rithm, the fist two steps take O (n log n) time, while step 4 takes O (n) time.
Hence the overall cost is O (n log n).

Regarding the space required by this algorithm, also in this case we need
the space for storing n sorted points plus the space required to store stack
S. Therefore, as for Graham’s scan algorithm, the space required is Θ (n).

3.2 Compute the partial hull in O (s) space

We shall now show how to speed up the computation of the partial hull
using an algorithm proposed in [14]. This paper proposes an algorithm for
computing the convex hull of a point set under the same model using O (s)
work space. We only show how to compute the partial upper hull, as the
lower hull works in the same way. The algorithm uses the same approach as
Andrew’s monotone chain algorithm.

This algorithm shall be used in Algorithm merge in order to scan the
upper hull (and the the lower hull) of the point set Qi instead of Al-
gorithm next counterclockwise vertex (and then Algorithm next -
clockwise vertex).

The algorithm that we shall present takes as input: a point set P , a
point v ∈ P and a parameter 1 ≤ s ≤ n. Let P ′ be the point set defined in
the following way

P ′ = {p ∈ P : x (p) ≥ x (v)}
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The output is the sequence of points 〈q1, · · · , qr〉, such that it contains the
vertices of the upper hull of the point set P ′ from the right to the left
(in counterclockwise clockwise order). The sequence 〈q1, · · · , qr〉 has the
following properties:

1. the sequence contains at least one vertex, and at most s vertices, hence
we have

1 ≤ r ≤ s (3.4)

2. at least s points of P ′ are covered by this sequence, hence we have∣∣{p ∈ P ′ : x (qr) ≤ x (p) ≤ x (q1)
}∣∣ ≥ s (3.5)

Therefore, the sequence returned by this algorithm takes at most O (s) stor-
age cells, hence it can be explicitly stored.

Algorithm The algorithm operates in this way:

1. find the s rightmost points in P ′, and let Q be the set containing these
points;

2. compute the upper hull of Q

3. adjust the upper hull of Q taking into account also the points on the
left of every point in Q

Since we cannot explicitly store P ′, step 1 require to find the s rightmost
points on the left of v (including v itself). Therefore, it can be done adopting
the same approach used for finding the next slab in the multi-pass algorithm
(Algorithm right slab), except for the fact that we have to include also v.
Step 2 can be done using a classic convex hull algorithm, for example that
Graham’s scan algorithm just explained. Step 3 is more complicated: we
use the approach explained at the end of the previous section.

Let 〈q1, · · · , qm〉 be the sequence of the vertices of the upper hull of Q
from the right to the left. In order to adjust the upper hull of Q we use the
approach of Andrew’s monotone chain algorithm. Therefore we use a stack
S as auxiliary data structure. In this case we already have the vertices of
UH (Q) stored, hence we initiate the stack with the sequence 〈q1, · · · , qm〉
from the bottom to the top (qm is the top most elements in S).

Let w be the leftmost point in Q and let U = {u1, · · · , ul} be the set
containing every point that lies on the left w. Note that Q ∪ U represents
the set of the points on the left of v plus v, hence:

P ′ = Q ∪ U

Step 3 performs a scan of U and for each point p ∈ U we perform the
following operations:
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1. pop every node from stack S until the top two elements make a left
turn with the point p (as in step 4 of the Andrew’s monotone chain
algorithm)

2. if point p has produced some pop operations, then we push p into the
stack in order to have a segment that covers the points just popped,
otherwise p cannot replace other points in the stack thus it is not
pushed into S

Note that for every push operation there is at least one pop operation, hence
the size of the stack cannot increase. This means that we can implement
stack S using the sequence 〈q1 . . . qm〉 plus a single variable r that represents
a pointer to the head of the stack. A push operation corresponds to incre-
ment r, and a pop operation corresponds to decrement r. Since |Q| = s, we
have m = |UH (Q)| = O (s), hence stack S takes O (s) storage cells.

If left slab (P, v, s) is the function that returns the s rightmost points
on the left of v and simple upper hull (Q) is the function that compute
the upper hull of Q. We can write the pseudocode of this function as follows
on Algorithm 8.

Algorithm 8 Compute a portion of the upper hull from v

function partial upper hull(P, v, s)
Q← left slab(P, v, s)
Q← Q ∪ {v}
〈q1 . . . qm〉 ← simple upper hull(Q)
r ← m
for all point p to the left of of v do . adjust the current upper hull

j ← r
while p is above qj−1qj do

j ← j − 1
end while
if j < r then . if a pop operation occured, update the upper hull

r ← j + 1
qr ← p

end if
end for
return 〈q1 . . . qr〉

end function

Lemma 3.1. Given a set P of n points in the plane, a point v ∈ UH (P ),
and a parameter s, 1 ≤ s ≤ n, Algorithm partial upper hull returns
the sequence of vertices of the upper hull of P from v in counterclockwise
direction in O (n+ s log s) time and O (s) space, with O (1) passes of P .
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(a) The points p, qr and qr−1 make
a left turn hence the point qr can-
not be the vertex of the upper hull of
P . In this case we have the same be-
havior of Andrew’s monotone chain

algorithm.

(b) The points p, qr and qr−1 make a
right turn hence the point p lies below
the line that crosses qr and qr−1 (the

dashed line).

Figure 3.2: The proof of correctness of Algorithm partial upper hull.

Proof. We prove by induction on the points of U = {u1, · · · , ul} parsed that,
at the beginning of the ith iteration of the for-loop, the sequence 〈q1 . . . qr〉
is the portion of the upper hull of the set of the points Q ∪ {u1, · · · , ui−1}
from the point v in counterclockwise direction. The set of points just men-
tioned consists in the points of Q and any point considered in the previously
iterations of the for-loop. Therefore, after the for-loop the points parsed by
the algorithm are the points in Q ∪ {u1, · · · , ul} = Q ∪ U .

The base case consists of the points of the set Q. From the correctness
of Algorithm simple upper hull, the sequence 〈q0 . . . qr〉 represents the
whole upper hull of Q.

Suppose now that our statement is correct for every hth iteration, h <
i. Let ui be the point considered in the ith iteration of the for-loop. In
the analysis of Andrew’s monotone chain algorithm, we have showed that
every point popped from S cannot be the vertex of the upper hull in Q ∪
{u1, · · · , ui−1}.

If during the for-loop there have been some pop operations (j < r), the
point ui is pushed into the stack. In this case this algorithm works exactly
as Andrew’s monotone chain algorithm, hence we have that the sequence
〈q0 . . . qj , ui〉 covers every point of Q. Moreover, we have that:

1. from the ordering of 〈q0 . . . qr〉 we have x(qr) < x(qr−1)

2. the points ui, qr and qr−1 make a left turn (otherwise it would be
j = r)

From Corollary 2.6, the point ui lies above the straight line that crosses
qr and qr−1. By the inductive hypothesis we can add that every point in
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Q ∪ {u1, · · · , ui−1} lies below the straight line that crosses qr and qr−1.
Therefore, every point in Q ∪ {u1, · · · , ui} lies below the straight line that
crosses qr and qr−1. After pushing the point ui, the new segment uiqj will
replace the old segment qrqr−1 (Figure 3.2a).

If the points ui, qr and qr−1 make a right turn, during the for-loop no
pop operations occurred (j = r). In this case, from Corollary 2.6 the point
ui lies below the straight line that crosses qr and qr−1 and from the inductive
hypothesis every point in Q∪{u1, · · · , ui} lies below this straight line (Figure
3.2b).

At the end of the for-loop we have scanned the entire set U , hence every
point p ∈ (U ∪Q) lies below 〈q1, · · · , qr〉 or lies below the straight line that
crosses qr and qr−1. Therefore the sequence 〈q1, · · · , qr〉 is a portion of
UH (Q ∪ U).

Figure 3.3: The points qj , v and z make a non left turn, hence every
point that lies on the right of v also lies below the straight line that crosses

qj and v (the dashed line).

Let us prove now that the sequence 〈q1, · · · , qr〉 is also a portion of the
upper hull of P . Since v ∈ UH (P ), let z be the next vertex in clockwise
order after v in UH (P ) (Figure 3.3). Moreover, v ∈ Q and it is the rightmost
point in Q, thus we must have q1 = v.

The vertices q2, v and z make a right turn because otherwise v would
not be in UH (P ), and x(q2) < x(v) < x(z). Therefore, from Corollary
2.6, every point that lies on the right of v must be below the straight line
that crosses v and z must be below the straight line that crosses q1 and
v. Moreover, since the sequence 〈q1, · · · , qr〉 forms a chain that only makes
right turns, every straight line that crosses two consecutive vertices of this
sequence must covers every point on the right of v. Therefore, the sequence
〈q1, · · · , qr〉 is part of the upper hull of P .

We shall prove now the complexity of this algorithm. The function
simple upper hull (σ) represents a simple convex hull algorithm that takes
O (s log s) time and O (s) space, for example Graham’s scan algorithm. At
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the end adjusting the upper hull requires a simple scan of P which takes
O (n) time and O (1) space. Hence the function partial upper hull (P, v)
computes at least one edge and at most O (s) edges in O (n+ s log s) time.
Note that Algorithm right slab and adjusting 〈q1 . . . qj〉 require only one
scan of P each, hence Algorithm 8 takes only O (1) passes of P .

Let us now prove that the sequence returned by Algorithm partial -
upper hull satisfies Property 3.4 and 3.5.

Property 3.2. The partial hull 〈q1 . . . qr〉 returned by Algorithm 8 on a set
P covers at least s points of S.

Proof. The sequence 〈q1 . . . qr〉 covers at least the points inside the set Q,
which contains s points.

Lemma 3.3. Given a set P of n points in the plane and a parameter s, we
can scan the vertices of the upper hull from the left to the right by a O (n/s)-
pass algorithm which uses O (s) space and runs in O (n (n/s+ log s)) time.

Proof. From the Property 3.2, Algorithm 8 covers at least s points. Hence
with at most O (n/s) iterations of this algorithm, it covers the entire set
P . Moreover from Lemma 3.1, Algorithm 8 requires only O (1) passes of P ,
hence since there are O (n/s) iterations we have O (n/s) passes of P .

3.3 Application to the triangulation algorithms

In this section we shall explain how to use Algorithm partial upper hull
instead of Algorithm next counterclockwise vertex in order to scan
the set Qi in Algorithm merge. Also in this case the scan of the lower hull
of Qi is similar.

We proceed in this way:

1. let q′ be the current point considered in UH (Qi);

2. use Algorithm partial upper hull to compute the next points 〈q1 . . . qr〉
from q′ in UH (Qi);

3. report the next triangles using the same method until q′ reaches qr;

4. repeat from step two in order to obtain the next hull nodes.

Using this algorithm in the merge phase we have the following differences:

• Algorithm next counterclockwise vertex returns only the next
vertex to compute instead of Algorithm partial upper hull that
may return more vertices;
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• if the merge of Qi and Ri requires to scan the entire convex hull
of Qi, from Lemma 3.3 using Algorithm partial upper hull takes
O (n/s (n+ s log s)) steps, instead of Algorithm next counterclockwise -
vertex which takes O

(
n2
)

time.

Let us define the following algorithms:

optimal merge: Algorithm merge that uses Algorithm partial upper -
hull instead of Algorithm next counterclockwise vertex in or-
der to scan the set Qi

optimal multi pass triangulation: Algorithm multi pass triangulation
that uses Algorithm optimal merge instead of Algorithm merge

3.4 Analysis

Now we want to analyse how Algorithm optimal multi pass triangulation
works. Like we have seen in the first version of Algorithm multi pass -
triangulation, the main cost is due to the overall cost of the merge phases.
Our aim is to provide a better bound to the overall time taken by the
merge phases when using Algorithm optimal merge instead of Algorithm
merge.

This analysis is focused to understand how Algorithm partial upper -
hull works during each iteration, then we obtain an upper bound to the
number of times that Algorithm partial upper hull is called during the
whole execution of Algorithm optimal multi pass triangulation. To
simplify the analysis we consider only the portion of the upper hull scanned
by Algorithm partial upper hull. The analysis of the portion of the
lower hull works on the same way and afflicts the total analysis only by a
constant factor.

Definition 3.4. Given two segments ab, x (a) < x (b), and cd, x (c) < x (d),
we say that (a, b) covers (c, d) if:

1. (x (a) ≤ x (c)) ∧ (x (d) ≤ x (b))

2. c and d lies below the straight line that crosses a and b.

Property 3.5. If (a, b) covers (c, d) and (c, d) covers (e, f), then (a, b)
covers (e, f).

Proof. Since (a, b) covers (c, d) and (c, d) covers (e, f) we have:

(x (a) ≤ x (c)) ∧ (x (c) ≤ x (e))⇒ x (a) ≤ x (e)

(x (d) ≤ x (b)) ∧ (x (f) ≤ x (d))⇒ x (f) ≤ x (b)
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Let r1 the straight line that crosses a and b and r2 the straight line that
crosses c and d. Since c and d lie below r1 we have that every point in
the segment cd lies below r1, similary we have that also every point in the
segment ef lies below r2.

Consider the sets:

R1 = {p : x(a) ≤ x(p) ≤ x(b), p below r1}
R2 = {p : x(c) ≤ x(p) ≤ x(d), p below r2}

For each point p of R2 we have that it lies below cd, thus it lies also below
r1. Moreover, since x (a) ≤ x (c) ≤ x(p) ≤ x (d) ≤ x (b) and p lies below r1,
we have that p ∈ R1. Hence R2 ⊆ R1.

Since e, f ∈ R2 and R2 ⊆ R1, also e, f ∈ R1. Then e and f lies below r1
and (x (a) ≤ x (e)) ∧ (x (f) ≤ x (b)), we have that the segment (a, b) covers
the segment (e, f).

Let us consider the ith merge phase, Algorithm optimal merge stops
to scan the upper hull of Qi only when the last triangle reported touches
the upper common tangent of Qi and Ri, segment tui in Figure 2.5. Ater
this observation we define the set which contains all these segments.

Definition 3.6. Let T u
i be the set which contains all the upper common

tangents for any phase of the algorithm:

T u =
{
tu1 , . . . , t

u
n/s

}
where tui is the upper common tangent of Qi and Ri at the ith phase.

Now we define another two sets which are the key of this analysis.

Definition 3.7. For each phase i, let Mu
i ⊆ T u the set containing the upper

tangents involved in the merge phase as convex hull edges of Qi.

Definition 3.8. For each phase i, let Nu
i ⊂ Qi the set of points below tui

but not below any t ∈Mu
i .

In Figure 3.4 we can see the sets Mu
i and Nu

i during the ith phase.
First we will study the relationship between the sets Mu

i and Nu
i among the

merge phases. After proving this relationship, we will show how to bound
the number of times Algorithm partial upper hull is called during the
ith merge phase as function of |Mu

i | and |Nu
i |.

We start to prove the relationship between the sets Mu
1 , · · · ,Mu

n/s with
the following lemma.

Lemma 3.9. Consider the sets Mu
1 , · · · ,Mu

n/s, then:
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Figure 3.4: The continuous segments represent the set Mu
i and the cir-

cles are the points of Qi covered by these segments. The dashed segments
are upper hull edges of Qi involved in the merge phase that were not
tangent in the previous phases. The points below the dashed segments
are the points of Nu

i . The segment that covers every points is the upper
common tangent of Qi and Ri, t

u
i .

1. Mu
i ∩Mu

j = ∅ ∀ i, j, i 6= j

2.
∑n/s

i=1 |Mu
i | ≤ n/s

Proof. Let us focus on the ith phase and let be t ∈ Mu
i . From Definition

3.7, edge t is involved in the merge phase, hence Algorithm merge reports
a triangle spanned by t and a vertex of Ri. This means that, at the end
of the ith merge phase, edge t is an inner edge of the triangulation of Qi ∪
Ri. Therefore, t cannot be involved in the next merge phases, hence t /∈
CH (Qj)∀ j > i. Therefore:

∀ t ∈Mu
i , t /∈Mu

j ⇒Mu
i ∩Mu

j = ∅ ∀i < j

The first point is proved. The second point derive directly from the first
point:

n/s∑
i=1

|Mu
i | =

∣∣∣∣∣∣
n/s⋃
i=1

Mu
i

∣∣∣∣∣∣ ≤ |T u| = n

s

In order to prove a similar relationship between the setsNu
1 , · · · , Nu

n/s, we
have to show other relationships between the tangents tu1 , · · · , tun/s reported
during the merge phases.
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Lemma 3.10. For each phase i and tangent t ∈
{
tu1 , · · · , tui−1

}
, there exists

a tangent t′ ∈
{
tu1 , · · · , tui−1

}
such that (t′ covers t) ∧ (t′ ∈ UH (Qi))

Proof. If t ∈ UH (Qi) then t covers itself.

If t /∈ UH (Qi) (t lies inside UH (Qi)) then t is an internal edge of T (Qi)
because every tangent edge belongs to a reported triangle (during a previous
merge phase in this case). In particular consider the iteration k1, 1 ≤ k1 < i,
where t ∈ UH (Qk1) and it is involved in the merge phase (t ∈ Q′k1 according
to our previous notation). During this iteration we have that t is involved in
the merge phase and this is the iteration where t becomes an internal edge
of the triangulation of Qi. At the end of this merge phase tuk1 covers t.

Now we have two possible cases: tuk1 ∈ UH (Qi) or tuk1 /∈ UH (Qi). In the
first case the proof is done. In the second case we repeat the same process
and find the iteration k2, k1 < k2 < i, such that tuk2 covers tuk1 . Moreover
if tuk2 covers tuk1 also tuk2 covers t due to Property 3.5. If tuk2 ∈ UH (Qi) we
have done, otherwise we repeat this process more times until we find the
iteration km, k1 < k2 < · · · < km < i, such that tukm ∈ UH (Qi). Since
tukj covers tukj−1

∀ 1 < j ≤ m and tuk1 covers t, from Property 3.5 we have

that tukm = t′ covers t.

Figure 3.5: Example of the application to Lemma 3.10. In this case
with only two iterations we find the tangent t′ that covers t.

In Figure 3.5 we see an example of how the proof of how Lemma 3.10
works. In this case t /∈ UH (Q5) hence we find the iteration there t is
involved in the merge phase, in this example in the third iteration, hence
k1 = 3. After the merge phase of the third iteration, the tangent tuk1 covers t
but tuk1 /∈ UH (Q5), hence we repeat the same process from tuk1 . In the fourth
iteration, k2 = 4, we find the tangent t′ that covers tuk1 and tuk1 ∈ UH (Q5).
As we have said in the proof, t′ covers also t thus the proof ends.
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Using Lemma 3.10 we can show a more restricted relationship that is
valid only when the tangent t considered is covered by tui . From Lemma 2.8
during the merge phase the only edges involved are the edges of CH (Qi)
visible from Ri. In particular if we focus only on the portion of UH (Qi)
visible from Ri, we have that every edge of this portion is covered by tui .
From the definition of Mu

i , we have that Mu
i contains every tangent that

lies in UH (Qi) that is involved in the merge phase. After this observation
we have the following lemma.

Lemma 3.11. For each phase i and tangent t ∈
{
tu1 , · · · , tui−1

}
such that

tui covers t, there exists a tangent t′ ∈Mu
i such that t′ covers t

Proof. From Lemma 3.10 exists a tangent t′ ∈
{
tu1 , · · · , tui−1

}
such that

t′ covers t and t′ ∈ UH (Qi):

∃ t′ ∈
{
tu1 , · · · , tui−1

}
:
(
t′ covers t

)
∧
(
t′ ∈ UH (Qi)

)
If t′ ∈ Mu

i we have done. Otherwise if t′ /∈ Mu
i this means that t′ is

not involved in the merge phase, hence if yi is the extreme point of tui in Qi

we have that t′ is an upper hull edge of Qi after yi in the counterclockwise
direction. Let be v is the vertical line that intersect yi. Then the segment
t′ lies on the left of v whereas the segment tui lies on the right. Moreover,
since t′ covers t then also t lie on the left of v, hence tui do not covers t. But
from the hypothesis tui covers t, hence this is impossible.

Another result related to the Lemma 3.10 regards the position of the tan-
gents. Now we show another relationship between the tangents. In this case
we show that exist a relationship between the positions where the tangents
are placed, they cannot be located in every position in the plane.

Lemma 3.12. Given two distinct tangents t1, t2 ∈ T u, t1 6= t2, then t1
covers t2 or t2 covers t1 or exist a vertical line l such that t1 and t2 lie on
different half planes defined by l.

Proof. Suppose that t2 is added into the triangulation after t1, in particular
suppose t2 = tui and t1 = tuj , i > j. Consider Qi+1, we have that t2 lie on
the upper hull of Qi+1 because the common upper tangent of the two sets
Qi and Ri in the previous merge phase. From Lemma 3.10 exists a tangent
t′ ∈ {tu1 , · · · , tui } such that t′ covers t1 and t′ ∈ UH (Qi+1):

∃ t′ ∈ {tu1 , · · · , tui } :
(
t′ covers t

)
∧
(
t′ ∈ UH (Qi+1)

)
The two segments t′ and t2 lies on the upper hull of Qi+1, then we have

two cases: t′ = t2 or t′ 6= t2. In the first case t2 covers t1. In the second case
exist a vertical line l such that t′ and t2 lies on different half planes, but t1
is covered by t′ hence also these segments lies on different half planes of l.
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If t1 is added into the triangulation after t2 we have that t1 covers t2 or
exist a vertical line l such that t1 and t2 lie on different half planes defined
by l.

After have shown these relationships between the tangents we are ready
to prove a similar relationship between the sets Nu

1 , · · · , Nu
n/su as we have

done for the sets Mu
1 , · · · ,Mu

n/s.

Lemma 3.13. Consider the sets Nu
1 , · · · , Nu

n/s, then:

1. Nu
i ∩Nu

j = ∅ ∀ i, j, i 6= j

2.
∑n/s

i=1 |Nu
i | ≤ n

Proof. Consider the sets Ni and Nj such that i > j. We consider p ∈ Ni

then from Lemma 3.12 we have two possible cases: exist a vertical line l such
that tui and tui lie on different half planes defined by l or tui covers tuj . In the
first case we have p /∈ Nj by the definition. If tui covers tuj then by Lemma

3.11 exists t′ ∈
{
tu1 , · · · , tui−1

}
such that t′ covers tuj and t′ ∈ UH (Qi):

∃ t′ ∈
{
tu1 , · · · , tui−1

}
:
(
t′ covers tuj

)
∧
(
t′ ∈ UH (Qi)

)
Therefore, p /∈ Nj by definition because t′ covers every point of Nj ,then

we have Nu
i ∩Nu

j = ∅.
The second point derive directly from the first point:

n/s∑
i=1

|Nu
i | =

∣∣∣∣∣∣
n/s⋃
i=1

Nu
i

∣∣∣∣∣∣ ≤ n

Now we enough elements to show the complexity of Algorithm opti-
mal multi pass triangulation. During the ith iteration of Algorithm
optimal multi pass triangulation, Algorithm optimal merge calls
Algorithm partial upper hull in order to scan the partial upper hull of
Qi visible from Ri. We remind that first we scan the portion of the upper
hull of Qi visible from Ri and then the portion of the lower hull of Qi visible
from Ri. We consider only the scan of the partial upper hull of Qi. If tui is
the upper common tangent of Qi and Ri, the upper partial hull to scan is the
portion of UH (Qi) that concerns the points of Qi below tui . We also remind
that Algorithm partial upper hull takes as input the set of the points P
and a node of the upper hull v. The output of this algorithm is a sequence
〈q1, · · · , qr〉 that is the portion of the upper hull from v in the counterclock-
wise direction (from the right to the left). Then when the merge phase
related to the points in 〈q1, · · · , qr〉 is done, Algorithm partial upper -
hull is called again from q1 in order to compute the next portion of the
upper hull.
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(a) The vertical slab contains at
least one point of X1

i .
(b) The vertical slab contains only

points of X2
i .

Figure 3.6: Two examples of the execution of Algorithm partial -
upper hull in order to scan the upper partial hull of Qi during the ith
merge phase. The two vertical line defines the vertical slab that contains

the points of P returned by Algorithm left slab.

First we bound the number of calls of Algorithm partial upper hull.

Lemma 3.14. The overall number of calls of Algorithm partial upper -
hull done by Algorithm optimal multi pass triangulation is O (n/s).

Proof. Let be Xi the points of Qi below tui , these are the points that will
be scanned by Algorithm partial upper hull. Note that this algorithm
could be scan also other points, but this will happen only at the last iteration
hence it is at most one extra call. We partition Xi in two sets: X1

i and X2
i ,

the first set contains the points below the tangents in Mi and the second set
contains every point in Ni. This partition is valid from the definition of Xi,
Ni and Mu

i . See Figure 3.4 to better understand this partition.

Let be 〈q1, · · · , qm〉 the portion of the partial upper hull returned by
a call of Algorithm partial upper hull during the ith merge phase. At
each call of this algorithm we have two cases depends on the points of Qi

that are below the portion of the upper hull 〈q1, · · · , qm〉:

1. if there is at least one point of X1 below 〈q1, · · · , qm〉, then 〈q1, · · · , qm〉
contains at least one edge of Mu

i ;

2. if every points below 〈q1, · · · , qr〉 is in X2
i , then 〈q1, · · · , qr〉 covers at

least s points of Ni by Property 3.2.

Hence during the ith iteration, Algorithm partial upper hull scan the
partial upper hull of Qi visible from Ri with at most O (|Nu

i | /s+ |Mu
i |+ 1)

iterations (we remind that there may be an extra iteration at the last step).

Hence during the ith iteration, Algorithm optimal multi pass triangulation
calls Algorithm partial upper hull in order to scan the partial upper hull
of Qi at most O (|Nu

i | /s+ |Mu
i |+ 1) times.
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Summing up all iteration and from Lemma 3.9 and 3.13, we have:

n/s∑
i=0

O

(
|Nu

i |
s

+ |Mu
i |+ 1

)
= O

(n
s

)
As we have said at the beginning of the analysis this results are valid also
for the partial lower hull to scan at each iteration, hence the overall number
of calls of partial upper hull remains O (n/s).

Theorem 3.15. Given a set P of n points in the plane and a parameter s,
1 ≤ s ≤ n, Algorithm optimal multi pass triangulation outputs the
triangulation of P in O (n(n/s+ log s)) time and O (s) space with O (n/s)
passes of P .

Proof. From Lemma 3.1 and 3.14 the overall cost of the merge phase is:

O
(n
s

(n+ s log s)
)

The overall cost to find the next slab and compute the triangulation Ri

during every phase is

n/s∑
i=1

O (n+ s log s) = O
(n
s

(n+ s log s)
)

Hence the total cost of Algorithm optimal multi pass triangulation
is

O
(n
s

(n+ s log s)
)

From Lemma 3.1, each call of Algorithm partial upper hull takes
O (1) passes of P . Hence we have that the merge phases require a total of
O (n/s) passes of P . Moreover at each iteration of Algorithm optimal -
multi pass triangulation we perform two addional scans of P : the first
to aqcuire the next s points to compute (the sets

{
R1 · · ·Rn/s

}
), and the

second to update v. Since there are O (n/s) iteration there are O (n/s)
addional passes. Then Algorithm optimal multi pass triangulation
takes a total of O (n/s) passes.

Algorithm optimal multi pass triangulation has the same perfor-
mance of the well known algorithm for sorting [21]. Moreover no algorithm
with a substantially better time-space tradeoff is possible, due to known
lower bounds for sorting [10]. Moreover, we remark that Algorithm opti-
mal multi pass triangulation requires only O (n/s) passes of P hence
we have an upper bound to the number of reads of P .



Chapter 4

A parallel triangulation
algorithm

In this chapter we shall present a parallel algorithm under our memory-
constrained parallel computational model for triangulating a point set in
the plane.

This algorithm derives directly from our optimal multi-pass algorithm
that works on the memory constrained model. We keep the same structure
as a multi-pass algorithm, hence at each pass we have to:

1. Find the next s points to compute, we call this point set R

2. Compute the triangulation of R

3. Merge the triangulation of the points in R with the triangulation of
the points considered in the previous phases

To identify the points previously considered we store a variable v that con-
tains the leftmost point in the set R. Our approach is to simply give a
parallel algorithm for each of these steps.

4.1 Find the next points to compute

In order to find the next s points (if possible) to compute we use the same
approach of the serial algorithm. We remind that in the serial algorithm
(Algorithm right slab), we have used a buffer of size 2s that contains the
current s leftmost points in P at the right of v. We now show a paral-
lel algorithm, named parallel right slab, that is the parallel version of
Algorithm right slab.

41
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Algorithm Imagine that the points in P = {p1, · · · , pn} are partitioned
into n/s blocks B1, · · · , Bn/s such that all blocks, except the last one, con-
tains s points.

The algorithm scans the blocks B1, · · · , Bn/s, and for each block it per-
forms the following operations:

1. store the points in the current block Bi into the buffer

2. sort the points in the buffer by x-coordinate

3. remove every point that lies on the left of v, including v itself if found

4. if the buffer contains al least s points, remove every point after the
sth smallest point on the buffer

At the end of the algorithm, the buffer will contain the s leftmost points (if
possible) in P that lie on the right of v.

We can implement the buffer using an array A of fixed length 2s and a
variable k that stores the index of the first non empty cell of A. Therefore,
the points currently stored in A are stored in A [1] · · ·A [k − 1]. Step 1 can
be performed by a parallel copy from P to the buffer. Step 2 is done with
a classic sorting algorithm, for example the pipelined merge sort algorithm
explained in [18]. Step 3 can be done in the following way: first we search
the leftmost point that lies on the right of v, let z be the index of this point
in A, second we remove every point stored in A [1] · · ·A [z] by shifting the
points A [z + 1] · · ·A [k − 1] to the beginning of the buffer. Finally, step 4
can be easly done by updating k. The search operation can be done using
the parallel binary search algorithm [18].

The pseudocode of this function is given by Algorithm 9. Function
copy (X,Y, p) copies every element from array Y to array X using p pro-
cessors, sort (X, p) is the function that sorts the array X with p processors,
while binary search (X, v, p) implements the parallel binary search of [18]
using p processors. If v is not stored in X, binary search returns the
index of the rightmost point in X between the ones that lies on the left of
v.

Lemma 4.1. Given a set of n points P , a point v ∈ P and two parameters
p and s, p ≤ s, we can output the s leftmost points (if possible) in P that
lie on the right of v in O ((n log s) /p) time and O (s) space on the CREW
PRAM model with p processors. The algorithm makes O (n) operations on
the read-only memory and O (n log s) operations on the shared memory.

Proof. We first prove by induction on the number of iterations that after
the generic ith iteration, the buffer will contain the s rightmost points in
B1 ∪ · · · ∪ Bi that lie on the right of v, if they exist. Otherwise, the buffer
contains every point in B1 ∪ · · · ∪Bi that lies on the right of v.
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Algorithm 9 Return the s leftmost points at the right of v in P

function parallel right slab(P, v, s, p)
A← ∗ array of size 2s in the shared memory ∗
copy (A[1] · · ·A[s], P [1] · · ·P [s], p)
k ← s+ 1
for i← 1 to n/s− 1 do

copy (A[k] · · ·A[k + s− 1], P [si+ 1] · · ·P [s(i+ 1)], p)
sort (A[1] · · ·A[k], p)
z ← binary search (A[1] · · ·A[k], v, p)
copy (A[1] · · ·A[k − z − 1], A[z + 1] · · ·A[k − 1], p)
k ← k − z
if k > s+ 1 then

k ← s+ 1
end if

end for
return A[1] · · ·A[k]

end function

During the first iteration the buffer is empty, hence at the end of step
3 the buffer contains only points in B1 that lie on the right of v. If the
buffer contains less than s points we have finished, otherwise (step 4) the
algorithm keeps only the s leftmost points and removes the others.

We suppose now that our statement is valid for every hth iteration,
h < i, and let us consider the ith iteration. Initially the buffer contains the
leftmost points that lie on the right of v in B1 ∪ · · · ∪Bi−1. After step 3 the
buffer contains the same points as before, plus every point of Bi that lies
on the right of v. Therefore, the buffer contains the s leftmost points that
lie on the right of v of B1 ∪ · · · ∪ Bi plus some points of Bi which lies on
the right of v. If the points in the buffer are at most s the ith iteration is
finished, otherwise (step 4) the algorithm keeps only the s leftmost points
in the buffer.

We now prove the complexity of this algorithm. Since all blocks are
approximately of equal size, the size of each block Bi is |Bi| = O (n/ (n/s)) =
O (s). Therefore, for each step of this algorithm we have the following
complexities. The parallel copy can be done in O (s/p) time and O (p) space
with p processors. The pipelined merge sort algorithm takes

O

(
s log s

p
+ log s

)
= O

(
s log s

p

)
time and O (s) space. The parallel binary search takes

O

(
log (s+ 1)

log (p+ 1)

)
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time, and shifting the points it takes O ((k − z) /p) = O (s/p) time, since
k − z ≤ 2s; the space required by these two last operations is indeed O (p).
Finally, step 4 clearly takes O (1) time and space.

Therefore, each iteration takes

O

(
s

p
+
s log s

p
+

log (s+ 1)

log (p+ 1)

)
time and O (s) space. But

log (s+ 1)

log (p+ 1)
≤ (p+ 1) log (s+ 1)

p
≤ (s+ 1) log (s+ 1)

p
= O

(
s log s

p

)
hence we have

O

(
s

p
+
s log s

p
+

log (s+ 1)

log (p+ 1)

)
= O

(
s log s

p

)
since 1 ≤ p ≤ s. The number of blocks if n/s, therefore the overall algorithm
takes

O

(
n

s

(
s log s

p

))
= O

(
n log s

p

)
time. Each step requires at most O (s) space, thus also the overall algorithm
requires at most O (s) space.

Regarding the data movement we have a total of O (s) operations from
the read-only memory and O (s log s) operations on the shared memory for
each iteration of this algorithm. Since the number of iterations is n/s, we
have a total of O (n) operations on the read-only memory and O (n log s)
operations on the shared memory.

4.2 Parallel triangulation

The parallel triangulation can be done with an algorithm that works under
the classical CREW PRAM model. For example we can use the algorithm
of Ed Merks [20]. This algorithm computes the triangulation of an arbitrary
point set of s points in O (log s) time using O (s) space and O (s) processors
on the CREW PRAM model.

Unfortunately we cannot directly use this algorithm because we have
only p ≤ s processors. However, we can easly adapt this algorithm in order
to use less processors. In [18] is shown that every algorithm that runs in
T (s) time using P (s) processors on the PRAM model can be adapted to use
p ≤ P (s) processors andO (C (s) /p+ T (s)) time, where C (s) = P (s)·T (s)
represents the cost of the algorithm.
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In our case T (s) = log s and C (s) = s log s, therefore we can compute
the triangulation in

O

(
s log s

p
+ log s

)
= O

(
s log s

p

)
time using p processors and O (s) space. Regarding the data movements, we
have only O (s log s) operations on the shared memory because in this case
the read-only memory is not involved.

Lastly we show how to find the next points to compute and how to connect
the triangulating of these points with the ones previously computed.

4.3 Parallel merge

Also in this case we keep the same approach used in the serial algorithm.
We refer to the second approach described, the one that uses Algorithm
partial upper hull to scan the partial hull of the points previously con-
sidered. Let us remind that Qi is the point set that contains the points
previously considered in the ith phase, while Ri is the point set of the points
currently considered in the ith phase.

Now we shall first describe how to perform this function on our PRAM
model, then we shall show how to report the triangles that connect the
triangulations of the sets Qi and Ri in the ith phase.

4.3.1 Parallel partial hull computation

We remind that, in the serial algorithm, Algorithm partial upper hull
works in this way:

1. compute the s rightmost points between the points that lie on the left
of the point v, and let this set be Q

2. compute the upper hull of Q, and let w be the leftmost point in Q

3. adjust the upper hull of Q considering also the points that lie on the
left of w

The parallel algorithm, let us call it parallel partial upper hull, works
in the same way except that every step is done in parallel. The first step can
be done using the same approach of Algorithm parallel right slab. The
second step can be done using a classical upper hull algorithm that works
on the CREW PRAM model. In [18] it is shown that finding the upper hull
of a set of s points with p processors on the CREW PRAM model takes

O

(
s log s

p
+ log s

)
= O

(
s log s

p

)
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time and O (s) space.
Now before explaining how to do the third step, we need to make some

observations about Algorithm partial upper hull:

• it considers only the points that lie on the left of the left wall of Q,
and it does not need to sort these points

• at the end of the algorithm, the only edge that does not lies on the
original upper hull of Q is the last edge of the final sequence

• we can store the current status of the algorithm with only two variables
that represent the last edge of the sequence; we do not need to modify
the original sequence 〈q1, · · · , qr〉 (see Figure 4.1).

Figure 4.1: During Algorithm partial upper hull, for storing the
current status of the algorithm we only need to keep the last point q and
the index j where the last segment of the sequence connects to 〈q1, · · · , qr〉.

We now explain how to perform the third step of this algorithm.

Third step Due to these observations we can see Algorithm partial -
upper hull as a search algorithm, where the object to search is the seg-
ment qqj (which is represented by the point q and the index j). This search
operation can be carried out in the sequential model using two variables q
and j that represent the current segment to return. This sequential algo-
rithm performs a single scan of P , and for each point p that lies on the left
of the left wall of Q it operates the following operations:

1. compute the segment pqk that is tangent to the sequence 〈q1, · · · , qr〉

2. if p, q and qj makes a left turn then we set q = p and j = k

This algorithm can be implemented using O (s) space because we only need
to store the sequence 〈q1, · · · , qr〉 and the current tangent qqj to return.
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Our parallel algorithm is based on the same approach of this sequential
algorithm. The idea is to use the balanced binary tree technique [18], which
is a general strategy to design parallel algorithms for computing search op-
erations. The main characteristic of algorithms based on this technique is
that the DAGs associated to these algorithms are balanced binary trees. In
our case we have p processors available, hence the DAG of our parallel al-
gorithm will have p leaves and p− 1 internal nodes. The input P is equally
partitioned on the leaves, and each node of the tree represents a set of oper-
ations and holds information concerning the data stored at the leaves of the
subtree rooted at u. The operations associated at the nodes in the DAG of
the same level can be computed in parallel on different processors.

Let us explain now how our algorithm uses the balanced binary tree
technique. For each node u, let Ru be the point set that contains all the
points associated at the subtree rooted at u; this set represents the portion
of P associated at the node u. The information associated at each node u
consists in two variables qu and ru, that represent the last segment of the
upper hull of Ru ∪Q (the leftmost in our case).

• qu stores the last end vertex of this segment (the leftmost vertex)

• ru stores the index of the vertex in 〈q1, · · · , qr〉 which is connected to
qu.

Therefore, the sequence 〈q1, · · · , qru , qu〉 represents the portion of the upper
hull of Ru∪Q (from the right to the left) from the starting point v. The last
segment is quqru . If u is a leaf of the tree, we directly compute the segment
quqru . If u is an internal node of the tree, we compute the segment quqru

by performing the comparing operation between the segments associated at
the left and at the right children of u.

We explain now how to implement this technique. Let C1, · · · , Cp be the
processors available in our model and let l = n/p, l is an integer number
since n is a mutiple of p. We refer to the nodes of the tree with the pair
(h, k), where h is the height of the tree and k is the index of the processor
that compute the operations associated at (h, k). Moreover, let Rh,k be
the set that contains the points associated at (h, k). If (h − 1, 2k − 1) and
(h − 1, 2k) are the left and right children on (h, k), Rh,k has the following
definition:{

Rh,k = Rh−1,2k−1 ∪Rh−1,2k ∀ 1 ≤ h ≤ log p, 1 ≤ k ≤ p/2h

R0,k =
{
pl(k−1)−1, · · · , plk

}
∀ 1 ≤ k ≤ p

Note that Rh,0 · · ·Rh,p/2h form a parition of P for each level h of the tree,
0 ≤ h ≤ log p. Firstly, each processor Ck computes the operations asso-
ciated at the leaves (0, 1) · · · (0, p), hence it finds the segment qkqrk based
on the sequence 〈q1, · · · , qr〉 and the point set R0,k. After each proces-
sor Ck has finished, we traverse the tree from level 1 to level log p while
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computing the operations associated at the nodes. At each level h of the
tree processors C1 · · ·Cp/2h compute the operations associated at the nodes

(h, 1) · · · (h, p/2h); note that processors Cp/2h+1, · · · , Cp are not used. Each

processor active Ck updates the variables qk and rk according to the seg-
ments stored in the left and right children of (h, k), these segments are stored
in the variables q2k−1, r2k−1, q2k, r2k. In Figure 4.2 we can see an example
when p = 8.

Figure 4.2: The balanced binary tree when p = 8.

Now we explain how to initialize the segments at the leaves and how to
perform the comparing operation.

Initialize the segments at the leaves Given a leaf u of the tree, we
computes qu and ru by scanning the set Ru. Initially we put qu = qr and
ru = s − 1, with these values the segment quqru is the last segment of the
sequence 〈q1, · · · , qr〉. For each point p ∈ Ru that lies on the left of w, we
perform a binary search into the sequence 〈q1, · · · , qr〉 in order to find the
point qj , 2 ≤ j ≤ n− 1 such that:

• the points qu, qj and qj−1 make a nonleft turn

• the points qu, qj+1 and qj make a left turn.

If this point is found we select qj . If the points qu, qj and qj−1 make a
nonleft turn for every j, 2 ≤ j ≤ r, then we select qr. On the other hand, if
the points qu, qj+1 and qj make a left turn for every j, 1 ≤ j ≤ r − 1, then
we select q1. Let q′ be the point selected by the binary search.

After this operation we update the variables qu and ru only if q′ comes
before the point qru in the sequence 〈q1, · · · , qr〉. For updating qu and ru we
only need to put qu = p and ru to the index of q′ in the sequence 〈q1, · · · , qr〉.



Chapter 4. A parallel triangulation algorithm 49

Note that qu and ru are updated according to the same rule of the last
step of Algorithm partial upper hull, which is the step where we adjust
the upper hull of Q considering also the points that lie on the left of w.
The only difference is that in this case we perform a binary search for each
point considered instead of linearly scannig the points (by making the pop
operations on the stack).

Comparing operation Let u be an internal node, and let u1,u2 be
the left and the right children of u. Also in this case we select qu and ru

using the same approach of Algorithm partial upper hull. Consider the
portion of the upper hull that regards the set Ru1 ∪Q:

〈q1, · · · , qru1 , qu1〉

Depending on the type of turn that the points qu2 , qu1 and qru1 make, we
choose the values of qu and ru according to the following cases:

1. qu2 , qu1 and qru1 make a left turn, ru = ru2 and qu = qu2

2. qu2 , qu1 and qru1 make a nonleft turn, ru = ru1 and qu = qu1

The pseudocode of the whole algorithm is given by Algorithm 10. We
imagine that each processor executes the same algorithm and that the iter-
ations of the for-loop are synchronized. In the PRAM model, all processors
execute the same program such that, during each time unit, all the active
processors are executing the same instructions, but on different data.

Lemma 4.2. Given a set P of n points, a point v of the upper hull of P , and
two parameters p and s, 1 ≤ p ≤ s, then Algorithm parallel partial -
upper hull outputs the portion of the upper hull of P from the right to
the left from v in O ((n log s) /p) time and O (s) space using p processors
on the CREW PRAM model. The algorithm makes O (n) operations on the
read-only memory and O (n log s) operations on the shared memory.

Proof. For demonstrating the correctness of this algorithm we only need
to prove that, for each node u of the tree, the sequence 〈q1, · · · , qru , qu〉
represents the portion of the upper hull of Ru ∪ Q (from the right to the
left) from the starting point v. We shall prove this statement by induction
on the levels of the tree, where the first level of the tree consists of the leaves
of the tree, and the last level is the root of the tree.

If u is a leaf (first level of the tree), after the init operation the sequence
〈q1, · · · , qru , qu〉 consists of the points of the upper hull of Q ∪B = Q ∪Ru.
Let p be the current point considered and q′ the point selected by the binary
search. If q′ comes before the current value qru in the sequence 〈q1, · · · , qr〉,
we have that the points p, qru , qru−1 make a left turn whereas the points
qu, qru , qru−1 make a nonleft turn. This means that qu and every point of
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Algorithm 10 Compute a portion of the upper hull from v

function parallel partial upper hull(P, v, p, s)
∗ j is the index of the processor ∗
Q← parallel left slab(P, v, p, s)
〈q1, · · · , qr〉 ← parallel upper hull(Q, p)

. Initialize the leaves at each processor
qj ← qr
rj ← r − 1
for i← 1 to n/p do
∗ update qj and rj according to the point pn

p
(j−1)+h ∗

end for
. Build the root of the bilanced binary tree

for i← 1 to log p do
if j ≤ (p/2h) then

(qj , rj)← comparing operation
(
(q2j−1, r2j−1), (q2j , r2j)

)
end if

end for
end function

the block B previously considered lie below the straight line that crosses
p and q′, hence the variables are updated (this situation is the same of
Algorithm partial upper hull when during the for-loop we make some
pop operations on the stack). If q′ comes after the value qru in the sequence
〈q1, · · · , qr〉, then q′ lies below the straight line that crosses qu and qru , hence
the variable it not updated.

Let us suppose now that our statement is true for every node contained
in every h level, h < i. Let us consider now a node u in the ith level (u is
an internal node). By induction, our statement is valid for the left and right
children of u, u1 and u2, hence we have that:

• the sequence 〈q1, · · · , qru1 , qu1〉 consists of the vertices of the upper
hull of Ru1 ∪Q (from the right to the left) from the starting point v

• the sequence 〈q1, · · · , qru2 , qu2〉 consists of the vertices of the upper
hull of Ru2 ∪Q (from the right to the left) from the starting point v

If the comparing operation selects the segment qu1qru1 , the points qu2 , qu1

and qru1 make a right turn, hence the point qu2 lies below the straight line
that crosses qu1 and qru1 .

Moreover, from the induction hypothesis the segment qu2qru2 is part of
the upper hull of Ru2 ∪Q, hence every point p ∈ Ru2 lies below the straight
line that crosses the points qu2 and qru2 . Therefore, we have that every
point p ∈ Ru2 lies also below the straight line that crosses qu1 and qru1 (this
is true only because every point in Ru1 ∪Ru2 lies on the left of the left wall
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of the point set Q). From the induction hypothesis, we have that every
point p ∈ Ru1 ∪ Q lies below the straight line that crosses the points qu1

and qru1 because the segment qu1qru1 is part of the upper hull of Ru1 ∪ Q.
For what we have said we have that every point in p ∈ Ru1 ∪ Ru2 ∪ Q lies
below the straight line that crosses the points qu1 and qru1 . Therefore, we
have that the sequence 〈q1, · · · , qru , qu〉 is the upper hull of the point set
Ru1 ∪Ru2 ∪Q = Ru. The proof works on the same way of the other case of
the comparing operation.

We shall study now the time and space complexities of this algorithm.
From Lemma 4.1 and [18], finding the set Q and computing his upper hull
takes

O

(
n log s

p
+
s log s

p
+ log s

)
= O

(
n log s

p

)
time and O (s) space using a classic PRAM algorithm for computing the
upper hull [18]. Regarding the step 3 of the algorithm, we first have to
initialize the segments of the leaves and then select the segment of the root
of the tree by performing the comparing operations. The segments of the
leaves can be computed in parallel with p processors since we have at most
p leaves. All blocks are approximately of equal size, thus the size of each
block Bi is |Bi| = O (n/p). Therefore, the init operation takes

O

(
n log r

p

)
= O

(
n log s

p

)
time and O (s), since r ≤ s is the size of the upper hull of Q. For computing
the segment at the root of the tree we only need to compute by level the
segments at each node of the tree; from the second level (the first contains
only the leaves) to the last level (the one that contains only the root).
Each level consists of at most p nodes, hence each level can be computed in
parallel in O (1) time, since the comparing operation takes constant time.
The number of levels is clearly O (log p), therfore we can select the segment
of the root in

O (log p)

time. The space required to adjust the upper hull of Q is the space re-
quired to store the sequence 〈q1, · · · , qr〉 plus the space required to store
the segments associated at the tree. The sequence takes at most O (s) cells,
whereas the tree has at most O (p) nodes. In this way, the segments can be
stored in O (p) space, hence the step 3 takes O (s). Therefore, we have that
the overall algorithm takes

O

(
n log s

p
+ log p

)
= O

(
n log s

p

)
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time and O (s) space, since 1 ≤ p ≤ s ≤ n.
Regarding the data movement, from Lemma 4.1 and [18] the first two

steps take O (n) operations on the read-only memory and O (s log s) opera-
tions on the shared memory. Step 3 requires O (n) operations on the read-
only memory and O (n log s) operations on the shared memory, whereas the
overall cost of the compare operations (for computing the segment at the
root) requires no data movements because we can store the segments on the
local memory of all processors. Therefore, Algorithm parallel partial -
upper hull takes O (n) operations on the read-only memory and O (s log s)
operations on the shared memory.

4.3.2 Compute the triangles of the merge phase in parallel

To compute the triangles of the merge phase we proceed on a different
manner respect to the serial algorithm, but the main idea remains the same.
Let Qi be the point set that contains the points previously considered and
Ri the point set that contains the points currently considered during the ith
phase.

The idea remains the same used in the serial algorithm: first to compute
and keep stored the convex hull of Ri, and then report the triangles that
connect the two convex hulls of Ri and of Qi while scannig the convex hull
of Qi. As we have done in the serial algorithm, we need to first consider the
upper hulls of Ri and of Qi, and then the lower hulls. These two operations
remain the same, hence we explain only the merge phase that regards the
upper hulls. The main difference between the parallel and serial merge
algorithm is that in the parallel approach we report the triangles in blocks
using another triangulation algorithm.

Let 〈h1, · · · , hl〉 be the sequence of vertices of the upper hull of Ri from
the left to the right, and since |Ri| = O (s) we can explicitly store this
sequence. Let 〈q1, · · · , qr〉 be the sequence of vertices of the upper hull
of Qi from the left to the right. The algorithm is designed in order that
r ≤ 2s ≤ O (s), hence also this sequence can be explicitly stored. During the
algorithm we remove some vertices from the beginning of these sequences,
or we append some vertices at the end of these sequences.

Algorithm Firstly we initialize the sequence 〈h1, · · · , hl〉 with the vertices
of the upper hull of Ri, whereas the sequence 〈q1, · · · , qr〉 initially contains
only the rightmost point of Qi. Then, we proceed in this way:

1. find the next portion of the upper hull of Qi using Algorithm par-
allel partial upper hull from the vertex qr, and append the se-
quence returned by the algorithm at the end of 〈q1, · · · , qr〉

2. if r ≥ s then continue with the next steps, otherwise repeat from step
1
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(a) In this case r′ = r, hence the seg-
ment qr′hl′ is not the upper common

tangent of Qi and Ri.

(b) In this r′ < r, hence the segment
qr′hl′ is the upper tangent of Qi and

Ri.

Figure 4.3: Two possible cases of step 3. The dashed line represents the
segment qr′hl′ .

3. compute the upper common tangent between 〈h1, · · · , hl〉 and 〈q1, · · · , qr〉
and let l′ and r′ be the indices of the end points of this tangent in the
sequences

4. if r′ < r stop the process (the segment qr′hl′ is the upper common
tangent of Qi and Ri, see Figure 4.3), otherwise continue to the next
step;

5. compute the polygon triangulation of the polygon

V = 〈gr′ , · · · , g1, h1, · · · , hl′〉

6. remove from 〈g1, · · · , gr〉 the points g1, · · · , gr′−1, and remove from
〈h1, · · · , hl〉 the points h1, · · · , hl′−1, and repeat from step 1

Note that for every step 3 we have r′ = r except the last one, were we have
r′ < r and the algorithm stops to execute due to step 4. Moreover, step 6
is never executed during the last iteration, hence at the end of this step the
sequence 〈g1, · · · , gr〉 contains one point since r′ = r.

Now we shall explain how to compute the upper common tangent be-
tween the two sequences and how to triangulate the polygon V .

Compute the upper common tangent In [18] is shown that we can
compute the upper common tangent qr′hl′ of the two sequences 〈q1, · · · , qr〉
and 〈h1, · · · , hl〉 in O (1) time, with a linear work. The main idea is to
perform a parallel search on 〈q1, · · · , qr〉 in order to find qr′ and then repeat
the same process on 〈h1, · · · , hl〉 in order to find hj′ . For using this algorithm
in our parallel model we have to adapt it using the same method adopted
before in order to use p processors. In this case the size of the polygon V is
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|P | = l + r ≤ 2s = O (s), hence the work of this algorithm is C (s) = O (s).
Therefore, we can compute the upper common tangent between the two
sequences 〈q1, · · · , qr〉 and 〈h1, · · · , hl〉 in

O

(
s

p
+ 1

)
= O

(
s

p

)
time and O (s) space in the CREW PRAM model with p processors. More-
over, we find out that each call of this algorithm takes only O (s) memory
operation on the shared memory. Let us call this algorithm parallel -
upper tangent.

Compute the polygon triangulation Before explaining how to com-
pute the triangulation of V = 〈gr′ , · · · , g1, h1, · · · , hl′〉, we firstly want to
remark that the points of the polygon are sorted by the x-coordinate in
increasing order:

x (gr′) ≤ · · · ≤ x (g1) ≤ x (h1) ≤ · · · ≤ x (hl′)

Therefore the polygon V is a monotone polygon respect to the x-axis. Since
V is a monotone polygon, we can apply Algorithm chain triangulate of
Atallah and Goodrich [5]. This algorithm correctly triangulates the polygon
V under his side (which in our case is the x-axis) in O (log s) time and O (s)
space using O (s) processors.

Also in this case we don’t have enough processors available. Therefore,
we have to adapt this algorithm in order to use p processors, applying the
same method used before. The work of this algorithm is C (s) = O (s log s),
hence Algorithm chain triangulate computes the triangulation of V in

O

(
s log s

p
+ log s

)
= O

(
s log s

p

)
time and O (s) space with p processors on the CREW PRAM model. Re-
garding the memory operations, we have O (s log s) operations on the shared
memory for each call of this algorithm. In the same way we report the tri-
angles that connect the lower hulls of Qi and Ri.

The pseudocode of the whole algorithm is given by Algorithm 11. We have
included also the part that regards the lower hulls. The functions paral-
lel upper hull and parallel lower hull return respectively the upper
hull and the lower hull from the left to the right.

4.4 Total complexity

We shall give now the theorem of this chapter that shows the performance
of our parallel algorithm.
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Figure 4.4: During this merge phase, the polygons V1, V2 and V3 are
found when we connects the upper hulls of Qi and Ri.

Theorem 4.3. Given a set P of n points and two integer values p and s, 1 ≤
p ≤ s, we can report the triangulation of P in O

((
n2 log s

)
/ (ps)

)
time and

O (s) space with p processors on the CREW PRAM model. The algorithm
makes O

(
n2/s

)
operations on the read-only memory and O

((
n2 log s

)
/s
)

operations on the shared memory.

Proof. Since Lemma 4.1 and 4.2 are valid, the proof of correctness remains
the same because the algorithm works in the same way in comparison with
the serial algorithm.

We shall now prove the complexity of this algorithm. For each phase i,
to find the set Ri and to compute the triangulation of Ri it takes

O

(
n log s

p
+
s log s

p
+ log s

)
= O

(
n log s

p

)
time. Since p ≤ s and the number of phases is O (n/s), the overall time
required among all phases is

O

(
n2 log s

p · s

)
Regarding the merge phase, we have the cost due to:

• scan the convex hull ofQi with Algorithm parallel partial upper -
hull
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• compute the upper common tangent between 〈q1, · · · , qr〉 and 〈h1, · · · , hl〉
with Algorithm parallel upper tangent

• compute the polygon triangulation of the polygon V with Algorithm
chain triangulate

From Lemma 3.14 the overall number of calls to Algorithm parallel -
partial upper hull is O (n/s). Therefore, the overall time taken by the
merge phase due to the calls of this algorithm is

O

(
n2 log s

p · s

)
For what concerns the computation of the upper common tangent and the
polygon triangulation, at each iteration of the merge algorithm we have that:

• we always have r′ = r ≥ s except in the last iteration, hence 〈q1, · · · , qr〉
and V has at least s points (the size of V is |V | = r′ + l′ ≥ r′) except
in the last iteration

• these algorithms are called always on different points

Since there are at most n points, these two algorithms are called at most
O (n/s) times, hence the overall time taken by the merge phase due to the
calls of these algorithms is

O

(
n

s

(
s log s

p
+
s

p
+ log s

))
= O

(
n

s

(
s log s

p

))
= O

(
n log s

p

)
Therefore, the overall cost of the merge phases among all phases is

O

(
n2 log s

p · s

)
time. Hence the overall parallel algorithm takes

O

(
n2 log s

p · s

)
time.

For what concerns the space required by the algorithm, let us first show
that the size of 〈q1, · · · , qr〉 is r = O (s). The size of this sequence can
increase only on step 1 due to Algorithm parallel partial upper hull.
From Lemma 3.1 this algorithm returns at most s vertices, hence the size
of 〈q1, · · · , qr〉 increases at most s. Step 1 can be executed in three different
cases:

1. at the beginning of the algorithm, in this case we have r = 1
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2. after step 2 when r ≤ s− 1

3. after step 6, in this case r = 1 because have removed every point from
the sequence except the last (note that step 6 is executed only if we
are not on the last iteration due to step 4)

Therefore, after appending the vertices returned by Algorithm parallel -
partial upper hull into 〈q1, · · · , qr〉, the size of this sequence can be at
most

r + s ≤ s− 1 + s ≤ 2s− 1 = O (s)

Everyone of the just mentioned parallel algorithms takes O (s) space and
p processors on the CREW PRAM model. Moreover, no one of these al-
gorithms is executed in parallel, therefore also the overall algorithm takes
O (s) space and p processors on the CREW PRAM model.

Regarding the memory operations, by Lemma 4.1 there are at most
O (n) operations on the read-only memory and O (n log s) operations on the
shared memory due to find the set Ri and compute the triangulation of Ri.
Therefore, the total amount of memory operations due to these operations is
O
(
n2/s

)
for the read-only memory andO

((
n2 log s

)
/s
)

for the shared mem-
ory, since we have O (n/s) phases. Moreover, we have seen before that Algo-
rithms parallel partial upper hull, chain triangulate and paral-
lel upper tangent are executed at most O (n/s) times, hence by Lemma
4.2 the total amout of memory operations is O

(
n2/s

)
for the read-only

memory and O
((
n2 log s

)
/s
)

for the shared memory.
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Algorithm 11 Report every triangle that connects Qi to Ri

function parallel merge(P, v,R, p, s)
〈h1, · · · , hl〉 ← parallel upper hull(R, p)
〈g1, · · · , gr〉 ← 〈v〉
repeat
〈u1, · · · , um〉 ← parallel partial hull (P, qr, p, s)
〈g1, · · · , gr〉 ← 〈g1, · · · , gr, u1, · · · , um〉
if r ≥ s then

(r′, l′)← parallel upper tangent (〈g1, · · · , gr〉 , 〈h1, · · · , hl〉 , p)
if r′ = r then

V ← 〈gr′ , · · · , g1, h1, · · · , hl′〉
chain triangulate (V, p)
〈g1, · · · , gr〉 ← 〈gr′ , · · · , gr〉
〈h1, · · · , hl〉 ← 〈hl′ , · · · , hl〉

else
break

end if
end if

until TRUE
〈h1, · · · , hl〉 ← parallel lower hull(R, p)
〈g1, · · · , gr〉 ← 〈v〉
repeat
〈u1, · · · , um〉 ← parallel partial hull (P, qr, p, s)
〈g1, · · · , gr〉 ← 〈g1, · · · , gr, u1, · · · , um〉
if r ≥ s then

(r′, l′)← parallel lower tangent (〈g1, · · · , gr〉 , 〈h1, · · · , hl〉 , p)
if r′ = r then

V ← 〈gr′ , · · · , g1, h1, · · · , hl′〉
chain triangulate (V, p)
〈g1, · · · , gr〉 ← 〈gr′ , · · · , gr〉
〈h1, · · · , hl〉 ← 〈hl′ , · · · , hl〉

else
break

end if
end if

until TRUE
end function
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Conclusion

In this thesis we have studied the triangulation problem, a fundamental
primitive in computational geometry. Firstly we have showed a general but
inefficient approach, then we have explained how to modify this algorithm
in order to obtain an optimal algorithm. Then, we have showed how to use
this algorithm in order to obtain a parallel algorithm.

These algorithms are developed on our memory-computational models,
and they require O (s) work-space cells of storage, where s is a parameter
given as input for both the algorithms. Moreover, the time taken by these
algorithms decreases when the amount of avaiable space increases. In par-
ticular, we have seen that the result obtained with the parallel algorithm
can be adapted in order to match other computational models.

As future work, it would be of great interest to investigate if it is possible
to modify these algorithms in order to output a specific triangulation, such
as the Delaunay triangulation [16]. This particular triangulation has the
following properties:

1. It maximizes the minimum angle of all the angles of the triangles in
the triangulation

2. No point lies inside the circumcicle of any triangle of the triangulation.

Moreover, Delaunay triangulation is directly connected to Voronoi diagram
[6], which is another classic computational geometry problem. These geo-
metric structures have many applications in other areas, where it may be
interesting to have an algorithm that fits the space avaiable for the compu-
tation.

The main problem of using our approach is that we have to satisfy the
properties of these geometric structures respect to the whole set of points
given as input. For example we cannot use a convex hull algorithm in order
to perform the merge phase.

59
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Another interesting challenge would be to create a parallel algorithm for
problems for which a sequential memory-constrained algorithm already ex-
ists. Recently, Asano ed Al. [3] derive a space-efficient algorithm for the
shortest path problem that takes O (s) space. It would be usefull to have a
space efficient parallel algorithm that works on our parallel computational
model.
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[18] Joseph JáJá. An introduction to parallel algorithms. Addison Wesley
Longman Publishing Co., Inc., Redwood City, CA, USA, 1992.

[19] D.T. Lee and B.J. Schachter. Two algorithms for constructing a delau-
nay triangulation. International Journal of Computer & Information
Sciences, 9(3):219–242, 1980.

[20] Ed Merks. An optimal parallel algorithm for triangulating a set of
points in the plane. Int. J. Parallel Program., 15(5):399–411, October
1986.

[21] J. I. Munro and M. S. Paterson. Selection and sorting with limited
storage. In Proceedings of the 19th Annual Symposium on Foundations
of Computer Science, SFCS ’78, pages 253–258, Washington, DC, USA,
1978. IEEE Computer Society.

[22] J.Ian Munro and Venkatesh Raman. Selection from read-only mem-
ory and sorting with minimum data movement. Theoretical Computer
Science, 165(2):311 – 323, 1996.



Bibliography 63

[23] Franco P. Preparata and Michael I. Shamos. Computational geometry:
an introduction. Springer-Verlag New York, Inc., New York, NY, USA,
1985.


	Abstract
	Acknowledgements
	1 Introduction
	1.1 Problems and motivations
	1.2 Related results
	1.3 Computational models used
	1.4 Our results
	1.5 Organization

	2 A simple triangulation algorithm
	2.1 Constant work-space algorithm
	2.2 General algorithm
	2.2.1 Find the right slab
	2.2.2 Merge the current triangulation
	2.2.3 Total complexity


	3 An optimal triangulation algorithm
	3.1 Graham's scan
	3.1.1 Another approach to the Graham's scan algorithm

	3.2 Compute the partial hull in O(s) space
	3.3 Application to the triangulation algorithms
	3.4 Analysis

	4 A parallel triangulation algorithm
	4.1 Find the next points to compute
	4.2 Parallel triangulation
	4.3 Parallel merge
	4.3.1 Parallel partial hull computation
	4.3.2 Compute the triangles of the merge phase in parallel

	4.4 Total complexity

	5 Conclusion
	Bibliography

