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Introduction 

Brand distortions can be easily observed in everyday life (Aaker, 1991). The owner of a well-

known brand name can benefit from a premium pricing strategy compared to the owner of 

unbranded products, as consumers believe that a product with a well-known name is better than 

products with less well-known names (Leuthesser, Kohli & Harich, 1995). But are such 

distortions also present in financial markets, where theoretically only firms’ cash flows should 

affect their stock price? 

The purpose of this work is to investigate if stock prices of firms are subject to distortions 

because of their brand. 

Understanding whether a particular brand can create distortions in financial markets through its 

effect on mood and choices of investors, can be extremely useful for a professional investors, 

who can be able to take advantage of this distortions to make profit.  

Therefore, analyzing how strong is the relationship that ties brand power and investors’ mood 

and behaviour is extremely useful for a professional investor who wants to create an efficient 

portfolio or to realize profitable trading strategies. 

To answer the question if stock prices of firms are subject to distortions because of their brand, 

I decided to analyze the relationship between soccer match results and stock returns of listed 

European soccer teams in order to understand if the stock market of football clubs is efficient 

or if it is characterized by these distortions.  

Football clubs are probably one of the best setting of analysis because they present all the 

characteristics that, according to Young & Rubicam, one of the leading global marketing 

communications, distinguish a powerful brand: differentiation, relevance, esteem, knowledge. 

Each football club is a brand (Cayolla  and  Louriero, 2014) and is able to influence the 

behaviour of actual and potential  fans (Gladden and Funk, 2001). A strong passion for a 

football team can affect the emotional state and the relevant behavioural factors of individuals 

(Cirillo & Cantone, 2015): after a win supporters generally feel euphoric, while they can face a 

wave of pessimism because of a loss.  

Since sports results are able to influence people’s mood and behavior (Wann & Dolan, 1994; 

Schwarz, Strack, Kommer & Wagner, 1987; Arkes, Herren and Isen, 1988), it is not possible 

to rule out the possibility that they can influence the financial decisions of an investor, therefore 

weighing on the trend of the stock market. In fact many individual shareholders of a listed 

football club are supporters of that club (Morrow, 2003) and there is the possibility that their 
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financial decisions are not driven by the rational logic of profit, but instead by short-lived 

emotions. 

Another interesting reason for analyzing the football industry is that football clubs have a 

double nature: they are firms, and so they should maximize, or at least try to maximize, their 

profits and, at the same time, they are professional sport teams, with the clear objective of being 

as much competitive as possible and winning as many matches as they can.  

At first glance, these two dimensions are in contrast with each other because being able to create 

a strong football team requires a large capital expenditure. On the other hand, a team which is 

not competitive will hardly be able to generate profits, because it will not obtain prizes from 

competitions and it will have less supporters willing to pay for watching the match or buying 

the club’s merchandising.  

Understanding the relationship of these two dimensions is particularly important, especially 

when a football club decides to enter the stock market, where it is legally obliged to maximize 

its profits and its principal objective becomes the making of money for its shareholders. 

The football teams analyzed are 17 and they belong to several European countries. All of them 

were listed on the Dow Jones STOXX Football Index from 2005 to 2015. The sports Dataset 

includes all the 6892 matches played by these teams in the period analyzed and for every match 

it is specified when the match was played, the type of competition (national or European), the 

final result, the goal difference and, after having analyzed sports betting odds, if the team was 

favourite or the underdog, in order to understand how much the result was expected or not. 

In an efficient market, stock prices of football clubs should include all available information, 

and so betting odds should be reflected properly in stock prices before matches. Instead, the 

results of the analysis of abnormal returns before matches show that investors have unrealistic 

expectations about the winning chances of clubs. This inefficiency can be exploited by 

professional investors, who can gain from these unrealistic expectations. 

The abnormal results are analyzed both on the days before the match and on the days after the 

match in order to be able to understand the market behaviour before and after the match. In 

addition to the analysis of abnormal returns, an analysis of the volumes traded on the days 

before and after the match is also examined, so as to understand whether betting odds and match 

results offer enough information to an investor to trade on. 

This empirical work contributes to the existing literatures in two ways: one by introducing the 

football betting odds in the regression models, so as to capture the level of surprise for the 

result, and the other by increasing the number of football teams and matches analyzed since the 
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existing literature focuses on national matches in specific countries, while this dataset includes 

all national and European results of the football teams considered.  

Gretl and R. statistical software are used for the statistical analysis while datastream is used to 

obtain all the financial data of the clubs in the sample. 

The thesis consists of four chapters. 

In the first chapter I explain in what and why sports clubs are different from traditional firms. 

Then I summarize the history, the motives and the evolution of football clubs’ quotation on the 

stock market, also illustrating what are the benefits and risks in investing in such stocks. 

In the second chapter I examine the time series of prices and returns of the Dow Jones STOXX 

Football Index and its components and in the last paragraph I briefly describe and analyze the 

football results of the clubs in the sample. 

In the third chapter, I calculate football club beta using the theoretical “market model” and then 

I calculate abnormal returns of the football clubs in the sample and I analyze the relationship 

between them and the football results of the clubs. The analysis is done both using sports data 

as a whole and using only results of European competitions. The choice to focus on European 

competition matches is mainly due to the fact that European competitions are much more 

remunerative for a club and they have a greater media impact and for this reason I expect that 

the results of these competitions have stronger effects on abnormal returns. 

In the regressions I use dummy variables, indicating whether the match played by a club of the 

sample is won, lost or tied, if the match is played at home or away from home and in which 

competition it is played. In addition to dummy variables, I use continuous variables such as the 

goal difference to catch the effect of the intensity of the result on abnormal returns. I also effect 

robustness checks including dummy variables indicating in which month and in which year the 

match is played, in order to understand whether a fix month or year effect is present. 

The last variable I include in the models is a dummy variable indicating whether the club is 

favourite or the underdog in the match played, in order to capture the level of surprise of the 

result. 

In the fourth chapter I focus on the analysis of abnormal returns and volumes. In the first part 

of the chapter I suggest a market inefficiency due to an irrational behaviour of investors. Then 

I verify if the hypothesis is reflected in the empirical results of the analysis of volume and 

abnormal returns, both evaluated before and after matches.   
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1. Football and Stock Market 

Football is undoubtedly one of the most important sports in the world and it counts more than 

250 million players all around the world. Football World Championships (the FIFA World Cup) 

is one of the most-watched events on TV and it is officially broadcasted in at least 200 countries 

(“2014 FIFA World CupTM, Television Audience Report”). 

Data concerning 2014 World Cup in Brazil say that a total of 1.013 billion viewers saw at least 

one minute of Germany's 1-0 win over Argentina in extra time at the Maracana Stadium in Rio 

de Janeiro. The 2014 final had an "average in-home global audience" of 570.1 million, an 

increase of 40 million compared to the 2010 World Cup final. FIFA claimed that 3.2 billion 

people watched at least one minute of a match (“2014 FIFA World CupTM reached 3.2 billion 

viewers, one billion watched final - FIFA.com”). 

Comparing 2014 data not even an event such as the Super Bowl can relate to a World Cup final 

for numbers of viewers. Besides, people enthusiasm for a win, such as the conquest of the World 

Title, clearly shows the connection between football and people’s behaviour. Think for example 

of the celebrations when Italy won the FIFA World Cup in 2006 or when Spain and Germany 

won the World Cup in 2010 and 2014, respectively.  

But not only this, an analysis of Goldman Sachs suggests that since 1974 all the winners of the 

World Cup have outperformed the global market in the post-final month (averagely by 3.5%), 

with the only exception of Brazil in 2002, which, however, at that time was going through a 

financial crisis (“The World Cup and Economics 2014, Goldman Sachs”). 

On the other hand, still according to Goldman Sachs’s analysis, the runners-up, after the final, 

seem to experience a negative period in the financial market. The average relative 

outperformance of the runner-up is 2.0% over the first month. Interestingly, the poor 

performance does not stop there, but it lasts for the next three months after the final, with an 

average relative fall by 5.6% over the first three months. 

Literature concerning sports events and people’s behaviour is very vast (Schwarz, Strack, 

Kommer & Wagner, 1987; Arkes, Herren & Isen, 1988; Hirt, Zillmann, Erickson & Kennedy, 

1992; Schweitzer, Karla, Zillmann, Weaver & Luttrell, 1992; Wann & Dolan, 1994; Cirillo & 

Cantone, 2015) and numerous theoretical and empirical works examine the relation between 

sports results and stock quotes (Renneboog & Verbrandt, 2000; Ashton, 2003; Maniello, 2003; 

Ciarrapico, Cosci & Pinzuti, 2010; Castellani, Pattitoni & Patuelli, 2012; Sarac & Zeren, 2013). 
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Years after years, football is becoming a big world industry, catching the attentions of numerous 

firms. Sponsoring contracts by big sport multinationals (Nike, Adidas, Puma, Umbro) have 

brought  a huge amount of money to clubs and television rights are sold to exorbitant prices. 

But more than one hundred years ago things were different.  

Football was born in England in 1863 (“CALCIO - LA STORIA DEL CALCIO in 

‘Enciclopedia dello Sport’ – Treccani”) and at that time football clubs were football lovers’ 

associations which gathered people willing to meet and play football. The main function of the 

club was to organize matches in order to properly allow people to have fun and play football. 

The spreading of this sport and the amplification of this phenomenon, which was really liked 

by people attending matches, led owners of  clubs to remunerate the best football talents, in 

order to guarantee their presence in the team. This was the beginning of football as an economic 

business (“History of Football - The Global Growth - FIFA.com”). 

The next step, just the same due to the growing popularity of football in the word and the 

increasing of national matches led to the change from amateur sport to professional sport with 

an evolution from “participating” to “winning”. 

Football clubs started looking for better players, more knowledgeable coaches and technical-

tactical innovations to try to do the best possible result. 

All this was possible just spending a great amount of money. Paying the best players gave the 

possibility to have a better competitive performance and this increased the lure of the team on 

the spectators. 

The interest in the economy and management of the professional football clubs has increased 

in the last years and there has been a real in-depth analysis of the problems of this industry. 

Football clubs have become real business and they belong to the entertainment and leisure 

sector, with similarities but also in competition with other free time activities like cinemas and 

theatres (Torkildsen, 2005). 

They offer particular and in some cases unique goods: they offer emotions, passion and the 

sense of being part of a group sharing joy and suffering.  

Each club must coexist with several stakeholders. In fact stakeholders participating in the 

football industry are very numerous and they are interested in the economic and financial 

growth of the club but without forgetting the results on the playing field. So, the goals of a 

football club are to offer entertainment with the game to its spectators, and to link the interests 

of the stakeholders participating in the business to the spectators’ needs. 

 



11 

 

Therefore there are several dimensions a club has to confront itself with: 

- Agonistic or sport dimension: coexistence with talents, coaches, other teams and 

government agencies or federal boards connected to the world of sport (FIFA, UEFA and 

of course football national federations); 

- Economical and financial dimension: the relationship with investors, sponsors, television 

services, merchandising and club brand development; 

- Individual and human dimension: the involvement of spectators and supporters; 

- Communicative dimension: mass media interest which is linked to human aspect, in fact 

the diffusion of news is necessary to magnetize people’s attention; 

- Social dimension: the relationship with local authorities, public administration, 

municipalities, security forces, regional authorities and central government. 

1.1 Objectives of football clubs 

Professional team sports industries are very different from the traditional ones. Rottenberg and 

Neale, explained that there are two main differences between these industries. The first one is 

linked to the product supplied. Differently from traditional industries, where one firm produces 

one or more products, in sport industry every product (match) requires two firms (clubs) which 

must cooperate to create a unique joint product. In fact the game cannot be produced by a team 

alone (Rottenberg, 1956; Neale, 1964). Neale called this phenomenon “inverted joint product”.  

Even or so if the product is not just a single game but it is a league championship and in this 

case more than two clubs are necessary. 

Another key difference compared to traditional business is competition. Firms usually get 

benefits without competition because they can ensure a position of supremacy in the market. 

This is completely different in the sport sector: there is not one team that tries to bring into 

effect a monopolistic policy of the sector, buying all the best possible talents; if this happened, 

spectators probably would lose interest and sport clubs would be the greatest losers. A 

championship in which the title is decided on the last day is far more exciting than a 

championship in which the final winner is already known before playing a certain number of 

matches. The uncertainty of the result of the sport event between two clubs is something 

desirable for the sector as the involvement of the general public can only increase proportionally 

with the level of uncertainty: watching a match in which a team wins 10-0 can be enjoying but 

it is hard to think that a spectator wants a clear-cut difference such this week after week.  If a 

lot of clubs are involved in producing only one product (a championship or an international 
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tournament), a good degree of cooperation among clubs is necessary. Watching a well-

organized tournament is certainly more exciting than watching a series of occasional matches. 

That is why club owners have come together and have created unions, federations and leagues 

in order to be able to decide together the most profitable conditions to sell the product, for 

example deciding how many clubs can join the product market, at what conditions, how many 

times the product (match) will be offered, the schedule and the places of the matches and to 

prevent illegal behaviours of clubs. 

As I wrote before, in professional team sports, clubs face a lot of objectives and this fact brings 

inevitably to different choices regarding the distribution of talents among clubs, the salaries of 

managers and players, the ticket price policy, the target amount of revenues, etc. 

Traditional firms have the main goal, and it is often the unique one, of maximizing their profits. 

In the United States a great number of economists have argued that also professional team sports 

clubs have the same objective: the maximization of profits.  

The first economist to support this thesis was Rottenberg who wrote “It should not be thought 

that wealthy teams will invariably want to assemble winning combinations of players ... A team 

will seek to maximise the difference between its revenues and its costs. If this quantity is 

maximized for any given club by assembling a team of players who are of lower quality than 

those of another club in its league, it will pay the former to run behind”. (Rottenberg, 1956, p. 

255). So, according to Rottenberg, a sport club will always try to maximize profits and will not 

care of wins and competitiveness. He affirmed that, if the talent distribution is the only variable 

of a particular club, then that club will always try to buy and hire a number of talents in order 

to maximize the difference between seasonal revenues and seasonal costs. So the objective of 

a club will be  max(�) = max (� − �) where � are the seasonal profits, and R and C represent 

the revenues and the costs of the season, respectively. Therefore, according to Rottenberg, a 

club will hire a talent only when the marginal revenue produced by that talent will be greater 

than the marginal cost that the club must sustain to hire him. 

The economic theory that considers the club as a profit maximizer is supported by a large 

number of American economists (Noll, 1974; Quirk and Fort, 1992; Vrooman, 1995) but it is 

not shared by everyone. 

The first economist to show doubts on the idea of a club as profit maximizer was Sloane, that 

in 1971 analyzed English soccer. At that time, the majority of league clubs operated at a loss, 

quite the opposite of American sports leagues, in which almost all the clubs were profitable. 

Sloane wrote that “It is quite apparent that directors and shareholders invest money in football 



13 

 

clubs not because of expectations of pecuniary income but for psychological reasons as the 

urge for power, the desire for prestige, the propensity to group identification and the related 

feeling of group loyalty” (Sloane, 1971, p. 134). 

Sloane argued that the dynamics that moved European team sports are different from the ones 

of American team sports and affirmed that, for what regards European football, the true goal of 

a club’s owner is not the profit maximization, but the utility maximization, which can be 

subjected or not to a financial solvency constraint. The objective of a club, according to Sloane, 

becomes:  ���(�) , ��������� �� � − � = �� where U is the utility of the owner of the club 

and �� is a fixed amount of positive or negative profits. According to Sloane the variables of 

the utility function are various: 

 Playing success 

 Attendance 

 Revenue 

 Profit 

 Security 

 Health of the league 

Surely, the theory that sees a club not as a profit maximizer, but as an utility maximizer is not 

a common characteristic of European football only, but it was observed even in the American 

sporting leagues. In fact, Markham and Teplitz, after having interviewed ten owners of baseball 

clubs and various managers, reported that owners “…were motivated to enter the baseball 

industry more out of reason of personal gratification, love of the game, devotion to professional 

sports generally, or out of civic pride than by the prospects of profits”(Markham, & Teplitz, 

1981, p. 26). 

In 2003 Zimbalist introduced a new idea regarding the objectives of sport clubs owners, 

affirming that, since owners of sport clubs are often well-known businessmen, they take 

advantage of sport investment in order to develop or strengthen other business relations. 

Zimbalist wrote that “what might appear as utility-maximizing behaviour by an owner is really 

global (porfolio-wide) profit-maximizing behaviour. Put differently, owners find that the best 

way to profit maximize globally is to win maximize at the team level”(Zimbalist, 2003, p. 16). 

In fact, differently from other industries, entering the sport business, guarantees an incredible 

advantage in terms of public and media exposure to a businessman. Sport news are always 

reported on the first pages of newspapers, on the newscasts and they are discussed continuously 

by millions of supporters. In 1973, Koppet wrote that “Club owners are not ordinary 
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businessmen. To begin with, profit in itself is not the owner’s primary motive. Any man with the 

resources to acquire a major league team can find ways to make better dollar-for-dollar 

investments. His payoff is in terms of social prestige…A man who runs a $100m-a-year business 

is usually anonymous to the general public; a man who owns even a piece of a ball club that 

grosses $5m a year is a celebrity. His picture and comments are repeatedly published in 

newspapers known in every corner of his community” (Koppet, 1973, p. 11). 

This vision may explain why in the latest years there is a so large number of rich and foreign 

investors that, even without any emotional connection toward a football club or sport club in 

general, are willing to buy it for a large amount of money. 

Yueh, BBC chief business correspondent, analyzed the phenomenon of the recent acquisitions 

of football clubs from businessmen or societies belonging to the Middle-Eastern Asia, and she 

wrote that “Measured by GDP per head, Qatar is the richest nation on earth, but is small, has 

substantial oil reserves and happens to be situated in a relatively unstable part of the world. By 

using football, they are putting themselves on the map and even adding a bit more security” 

(“Why on earth buy a football club? - BBC News”). 

Joining the football industry is surely a really expensive investment, but at the same time, it is 

a really fast way to be known and so it can be extremely useful for businessmen or firms to 

make public their name or their brand. 

Anyway this does not mean that all the acquisitions of sport clubs are moved by these reasons 

and that sport clubs are not able to be profitable and competitive at the same time. 

Some owners of sporting clubs, when interviewed, had difficulty to explain what is their main 

objective, saying that winning and be profitable are two dimensions that are strictly connected. 

For example, Robert Kraft, owner of the New England Patriots, said that “…if you’re 

passionate about winning and you help put an organization in place that can win, the business 

part will follow”(Zimbalist, 2003, p. 14). On the same line is also Robert Johnson, founder of 

the BET network and owner of the NBA Charlotte team who said “I’m first and foremost a 

business guy and I don’t see a distinction between a winning team and profitable 

team”(Zimbalist, 2003, p. 14). 

Even in the football industry, where clubs have often big economic losses, examples of clubs 

that are able to be at the same time competitive and profitable are present. FC Bayern Munich 

has been able to close the balance in active for 20 years and at the same time to win 9 

championships, 9 national cups, 2 Germany super cups, 1 UEFA cup and above all 2 UEFA 

Champions Leagues, establishing itself as one of the most competitive football clubs of the 
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latest years. In England, FC Arsenal, though competing with clubs that spend more than 

hundreds of million Euros every year, has been able to be profitable and competitive at the same 

time, ending almost all the seasons at the first ranks of Premier League. Among Italians football 

clubs, the most virtuous club is probably SSC Napoli that has been able to be profitable since 

2007 and at the same time to affirm itself as one of the most competitive clubs of Serie A. Even 

ACF Fiorentina belongs to those clubs that are able to perform well in and out of the football 

field. Finally Juventus, after some years in which it ended the season with huge economic 

losses, seems determined to start a process of self-financing, reproducing FC Bayern Munich 

policy. 

It is precisely in the football industry that regulations and laws are pushing towards the creation 

and the development of healthy and profitable clubs.  

The financial Fair Play Regulation (FFP), a project introduced by the Executive UEFA 

Committee in September 2009, aims to make clubs be able to self-financing in the long run. 

The FFP aims to reach the following points: 

1. No presence of past dues towards other firms, employees or other authorities. 

2. Supply of financial information regarding the future. 

3. Break-even budget requirement.  

Clubs that do not reach these objectives would risk not to take part in UEFA competitions, 

which are the most remunerative for clubs. Michel Platini and other UEFA directors explained 

how it is important for the survival of leagues that clubs do not spend more money than what 

they can generate. According to Platini the effect of FFP on the football industry is tangible and 

he said that "Aggregate net losses of Europe's clubs have fallen from 1.7bn euros in 2011 to 

400m euros in 2014” ("Michel Platini: Uefa to ‘ease’ financial fair play rules - BBC Sport”). 

Therefore, one could expect that clubs will start to behave like real traditional firms and that, 

although having the peculiar mission of being competitive and successful on the soccer field, 

they will also be able to make constantly positive profits and to self-financing.   

So, even if football clubs may remain utility maximizers, the utility function will be subject to 

a positive financial solvency constraint. Coming back to Sloane utility function max(�), one 

could expect that in the followings years it will be subjected to the condition � − � > 0 , so 

with a positive yearly flow of money, with companies that will try to conjugate the bond of 

being profitable and competitive, imitating American sport business. 

 



16 

 

1.2 Quotation of football clubs on the stock market: reasons, history and 

consequences 

Football clubs are always looking for capital because they want to maintain high competitive 

standards. 

It is obvious that, in order to catch the interest of the supporters, a club should always try to be 

successful on the football field. To reach this goal, the company must assemble a competitive 

team, engage a good manager and prepared directors and have a clear project of both the short 

term and long term objectives. These are the ingredients of success and they can be available 

only when the society is economically stable. 

The average players’ wage rises continuously year after year and buying talents has become 

incredibly expensive. In order to be competitive and be able to bear these costs, clubs have 

started to find alternative sources of financing. That is why some clubs have decided to enter 

the stock market. Stock markets allow investors to obtain shares of a firm and give the 

possibility to that firm to raise money at the lowest possible cost. Companies convert from 

being private to being public by the complicated process of quotation (IPO).  

Football clubs that decide to enter the stock market believe in taking advantage of the feeling 

of belonging to the club of the supporters and to raise enough capital for their short-long term 

goals.  

The capital raised by the market has made it possible for the club the construction or the 

renovation of its owned-stadium. It has become common for a club to build stadium as more 

innovative as possible, able to guarantee a very important economic source of income. The 

construction of a stadium requires a huge amount of capital. For example the Madison Square 

Garden and the new Yankee Stadium cost $1.1 and $1.3 billion respectively “World’s Most 

Expensive Stadiums - Forbes,”). 

As regards recent European football examples, the Juventus stadium and the Allianz Arena cost 

about €100 million and €340 million, respectively (“Allianz Arena - Munich - The Stadium 

Guide”, “BBC SPORT | Football | Europe | Juve set to make stadium history”). 

Such a high amount of money can hardly be raised from banks or other financial institution. 

Thus the offer of shares to the public may permit to bear the costs for the stadium and make its 

construction or renovation possible. 
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Besides, the quotation allows to raise the sufficient capital to buy players and manager (Smith, 

2003) in fact top players can be very expensive and finding funds from the capital market 

permits clubs to purchase them.  

Since IPO can help these purchases it can also allow to improve the quality of the team and its 

chance of winning. This is true specially for low-medium clubs. IPO was particularly useful for 

Division 1 clubs which thanks to the additional IPO resources were able to buy strong players 

and so to run for the promotion to Premier League, which can give them direct access to even 

larger amounts of money resulting from the sale of television rights to the different broadcasting 

networks. (Renneboog & Vanbrabant, 2000) 

Another effect of being quoted on a stock market is an increase in the devotion of supporters 

and in  the club image. The selling of shares to the general public is an opportunity to reinforce 

the loyalty and devotion of supporters (Schaffer, 2006). This growth of devotion can have 

positive effects like  the increase in merchandise sales, visualizations on the club website, 

tickets sold and profits in general. Parents and grandparents can buy club shares as a gift for 

their kids and grandchildren who as a result could become supporters of the club for all their 

life (Schaffer, 2006). 

The last big advantage is connected to liquidation. Football clubs are generally worth hundreds 

of million euros and it is difficult for the owners who want to sell their club to find buyers with 

enough financial means. The quotation on the stock market allows an owner to liquidate the 

club without renouncing, in the meanwhile, to the control of the club. In this case, the amount 

of money received from the sale of the shares is called “early money” (Schaffer, 2006). When 

owners sell part of the society to the general public, they immediately receive a huge amount 

of money, but they will receive less when the club is completely sold because the shareholders 

will have to be paid too. Thus entering the stock market can allow owners to collect their 

investment before selling the team to another private investors.  

The first club that chose to enter the stock market was Tottenham Hotspurs, a leader club in the 

English League, in 1983. The club raised £3.3m in the IPO, a sum equivalent to around £100m 

today if inflated by football transfer fees (Dobson & Goddard, 2005).  

In the following years, riding the wave of entering the stock market and following the example 

of Tottenham the number of English and Scottish clubs grew to 22 clubs in 1997. Not all these 

clubs were listed on the same market. For example in the 1996/1997 football season, 12 were 

quoted on LSE (London Stock Exchange), 8 on AIM (Alternative Investment Market) e 2 on 

OFEX (non-regulated and later called Plus Market).  
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Club Stock Market 

Aston Villa LSE 

Bolton Wanderers LSE 

Leeds United LSE 

Midlotian LSE 

Leicester City LSE 

Manchester United LSE 

Millwall LSE 

Newcastle United LSE 

Sheffield United LSE 

Southampton LSE 

Sunderland LSE 

Tottenham LSE 

Birmigham City AIM 

Celtic Glasgow AIM 

Charlton Atletic AIM 

Chelsea AIM 

Nottingham Forrest AIM 

Preston North End AIM 

QPR AIM 

West Browmich Albion AIM 

Arsenal OFEX 

Liverpool OFEX 

Table 1.1 English and Scottish football clubs listed on stock markets.  

 

In the following decade, however, a lot of English clubs decided to end their adventure in the 

stock market, realizing an operation of delisting. 

At the end of 2009 among the English teams only Preston North End (LSE), Millwall (AIM), 

Tottenham (AIM) and Arsenal (Plus Market) maintained their quotation. The main reason for 

the phenomenon of “delisting” is due to the fact that some clubs were bought by a single wealthy 

investor or by a rich family, who did not need external funds anymore. For example Manchester 

United was bought by the American magnate Malcolm Glazier, Chelsea by the Russian 
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multibillionaire Roman Abramovic and Aston Villa by the American entrepreneur Randolph 

David Lerner. 

The market quotation is not an exclusive phenomenon of English and Scottish clubs but it is 

also present in other European countries.  

Denmark is one of the country in which the quotation of football clubs is not uncommon. It is 

the second European country for the number of listed clubs and it counts 5  listed clubs. The 

first one was Brøndby IF in 1991 and then Silkeborg, Aarhus, Copenaghen and Aalborg.  

As for Turkey, another country where football is the national sport, the public offerings of 

soccer clubs began in 2002. Beşiktaş and Galatasaray sold their stocks in that year, Fenerbahçe 

in 2004 and Trabzonspor in 2005.   

For what regards Italian football clubs, the first club to enter the stock market world was SS 

Lazio in 1998 that at that time was managed by Sergio Cragnotti. Few years later also AS Roma 

(2000) and FC Juventus (2001) entered the stock market. 

In 2002 the Dow Jones STOXX Football Index was created. It is an index assembled by only 

European football clubs’ stocks. The idea behind the creation of this index was to group together 

in a unique index all the football clubs listed for trading on European stock exchanges. In 2002, 

33 clubs were part of the index. In 2008, 27 and now they are 22.  

Obviously entering the stock market implies a change of the society’ objectives. Conn, a 

football writer of the Guardian, wrote that “…those clubs which have floated to become public 

companies now have as their principal objective the making of money for their shareholders.” 

(Conn, 1997, p. 154). 

Entering the stock market forces, according to law regulation, the club to try to maximize 

profits. The managers of the club will be forced to achieve an adequate financial return for their 

own shareholders otherwise the quotes of the society would be of less value and managers 

would risk, for a hostile takeover, to lose their job. Thus, we can expect that listed clubs are on 

average more profit oriented than clubs that are not listed in the stock market.  

In order to maximize the profits for their shareholders, clubs will have to find the right mix 

between competitiveness and managements of funds. If clubs did not spend anything for their 

own players, the success would certainly be compromised, and consequently profits would drop 

because less people would be interested in seeing matches of uncompetitive clubs. Instead, if 

more talents are acquired by the club, more supporters will be captivated and profits will 

increase too. Competitiveness will continue to grow until revenue derived from talents is greater 

than their cost (Szymanski & Hall, 2003). Beyond that point, a further growth of the expenses 
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for players, even if success increases, would make profits decrease. This is due to the fact that, 

at a certain level, increasing competitiveness and the quality of the team becomes always more 

expensive while the earnings from an additional success decrease continuously (Szymanski & 

Hall, 2003). In the graph below we can see the relationship between profit (vertical axis) and 

competitiveness (horizontal axis) according to Szymanski and Hall. 

 

Figure 1.2 Relation between profit and competitiveness. Source: Szymanski and Hall, 2003.  

 

1.3 Advantages and disadvantages of investing in football clubs listed on the 

stock market 

Two parts are needed to have a successful IPO of Professional Sports Team; the presence of a 

club that offers the selling of shares and the presence of individuals or institutions that are 

willing to buy these shares. Without a proper demand for the shares supplied, the IPO would 

be a complete failure and no capital would be raised by the club. 

As I wrote before, professional sports clubs have some peculiarities that make them differ from 

traditional business firms. So, some of the risks and advantages of clubs’ stocks will be peculiar 

too, and it is important to know what they are in order to understand better stock movements 

and investors’ behaviour.   

The advantages of owning shares of sport clubs are more psychological than economical 

(Schaffer, 2006). The first advantage is the sense of membership that an investor gains when 

he owns shares of his favourite club. The sport club can be extremely important for the life of 
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a supporter, and having the possibility to own a piece of the club is something that can be seen 

as a dream for him. 

Schaffer affirms that another psychological advantage is given by the possibility to take part in 

shareholders’ meetings.  For an individual these events are an occasion to stay closer to the club 

and to develop a stronger feeling of belonging to it.   

On the other hand owning a football club stock has also several disadvantages. 

The first disadvantage is that a football club’s stock price is very volatile. The volatility is due 

to the fact that, even if the sources of revenues for a club have increased compared to the past 

years, the economic performance of the club still depends mainly on the field results, which are 

of course often unpredictable. 

The strong volatility of the stock price also depends on unpredictable events such as players’ 

injuries, changes of coaches and transfers of players that can influence the competitiveness of 

the team. 

Another disadvantage is that clubs rarely pay dividends. In fact when sport clubs offer an IPO, 

they often admit to the public that they will not pay any dividends (Lascari,1999).  

In general the only opportunity for investors to have a good return on their purchase of stock 

can be achieved when the team is actually sold, giving investors the possibility to realize capital 

gains. Anyway  these events are quite uncommon. 

The high volatility and the dividend policy induce institutional investors to avoid owning sport 

clubs’ stocks in their market portfolio. On the contrary shares are bought by supporters that, 

because of the psychological advantages described before, are more incentivize to own the share 

of the club. This can be due to the fact that, unlike stock prices of traditional business firms, 

individuals can obtain a great availability of information of the sport clubs and be always up to 

date with the club’s events. Sport news are often on the first pages of newspapers and they are 

also reported on newscasts and websites. Supporters often tend to hypothesize a relation 

between football results of a club and its market performance and they think they are able to 

foresee easily the price trend. 

However, football clubs often perform badly on the stock market because a club cannot base 

itself only on its match performances but it should be able to diversify its sources of revenue. 

If a club is not able to do that, losses will constantly occur and they will accumulate year after 

year (Ciarrapico, Cosci & Pinzuti, 2010). 
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With this work analysis, I will try to understand how strong is the relation between clubs’ match 

results and their market performance, with the awareness that, as I explained before, to increase 

profits, winning is not enough but a careful management of the club is required. 
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2. Financial Data 

In this chapter I will analyze the historical series of prices and returns of the DJ FOOTBALL 

index and of its components.  

In the first part of the chapter I will present the DJ FOOTBALL index and I will define the 

variables and the statistical tests that I will use later. Then, I will analyze the previous index, 

focusing on its historical price series and on its daily log returns. I will use descriptive statistics 

and statistical tests to check the hypothesis of normality of the distribution, of the presence of 

autocorrelation and of the stationarity of the historical series. 

In the last paragraphs I will analyze the daily log returns of the index’ components. 

The analyses that I will make in this chapter are important, because knowing the properties and 

the behaviour of prices and returns of the sample will allow to choose the rightest model for 

beta estimation in chapter three.  

2.1 The financial dataset 

Historical stock prices and returns of listed football clubs belonging to DJSTOXX FOOTBALL 

index are used in this paper. I used Datastream to find all the historical data and the statistical 

software R to compute all the statistical analyses. The time interval of the analysis goes from 

the beginning of August 2005 to the end of July 2015. 10-year data is a very long period and it 

allows to have a huge amount of data. I decided to start the analysis in August, when the football 

season starts. 

Unfortunately I could not include all the actual 22 components of DJ STOXX FOOTBALL 

index in the sample of analysis because some clubs, now present in the index, joined the stock 

market after 2005. 

2.2 Data sources and variable definitions 

In order to analyse how sport results affect the financial status of clubs I started to analyse stock 

prices and returns of each club of the sample. I started from the stock prices of club i (pit) to 
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compute its daily return. Using returns instead of prices has an important benefit: 

normalization.1  

 rit  is the logarithmic return2 of a football club’s stock price i and is defined as:  ��� = �� (���) −

��(�����). 

Then I calculated mean, standard deviation, skewness3 and kurtosis4 of each club’s daily log 

returns. 

1) Mean:     ��� =
�

�
∑ ���

�
�� �  

2) Standard deviation:    ��� =
� ∑ (�������)��

�� �
�

√���
�  

3) Skewness:      ��� =
∑ [(���� ���)/���]��

�� �

�
    

4) Kurtosis:      �� =
∑ [(�������)/���]��

�� �

�
 

2.3 Statistical hypotheses testing on football clubs shares 

I used some statistical tests to analyse the behaviour of the variables, in order to understand 

better their distribution and their properties.  I used the Jarque Bera test and the Shapiro-Wilk 

test to test the normality of variable distribution;  the augmented Dickey–Fuller test (ADF) to 

test the presence of a unit root in the time series variables, the Ljung–Box test to test the 

                                                           

1 Measuring all variables in a comparable metric enables evaluation of analytic relationships amongst two or more 
variables despite originating from price series of unequal values. 

2 Logarithmic returns are useful for mathematical finance. One of the advantages is that the logarithmic returns 
are symmetric, while ordinary returns are not: positive and negative percent ordinary returns of equal magnitude 
do not cancel each other out and result in a net change, but logarithmic returns of equal magnitude but opposite 
signs will cancel each other out.  

3 Skewness measures the degree of asymmetry of a distribution around its mean. Positive skewness indicates a 
distribution with an asymmetric tail extending toward more positive values. Negative skewness indicates a 
distribution with an asymmetric tail extending toward more negative values. If the Skewness index is equal to 0, 
then the mass of distribution is symmetric. 

4 Kurtosis measures the degree to which a distribution is more or less peaked than a normal distribution. Positive 
kurtosis indicates a relatively peaked distribution. The kurtosis of any univariate normal distribution is 3. 
Distribution with kurtosis less than 3 are said to be platykurtic. Distributions with kurtosis greater than 3 are said 
to be leptokurtic. 
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presence of autocorrelation and the LM test to test the presence of eteroschedasticity. As these 

tests will be used from now on in the chapter, I am going to explain them in detail.  

2.3.1 The Jarque Bera test 

The Jarque–Bera test tests whether sample data have the skewness and kurtosis matching a 

normal distribution. The test statistic JB is defined as: �� =
�����

�
(�� +

�

�
(� − 3)�, where n 

is the number of observations (or degrees of freedom in general); S skewness of the sample, C 

kurtosis of the sample, and k is the number of regressors (Jarque & Bera, 1987). Skewness and 

kurtosis are equal to: � =
���

��� =
�

�
∑ (����̅)��

�� �

(
�

�
∑ (����̅)��

�� � )�/�
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��� =
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�
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 , where ��� and  ���  

are the estimates of third and fourth central moments, respectively, �̅ is the sample mean, and ��� 

is the estimate of the second central moment, the variance. The null hypothesis is of normality, 

and rejection of the hypothesis (because of a significant p-value) leads to the conclusion that 

the distribution from which the data came is non-normal. 

2.3.2 The Shapiro-Wilk test 

The Shapiro–Wilk test utilizes the null hypothesis principle to check whether a sample X1, ..., 

Xn came from a normally distributed population. The test statistic is: W= 
(∑ ���(�))��

�� �

∑ (����̅)��
�� �

 where �(�) 

is the ith order statistic and �̅ = (�� + ⋯ + �� )/� is the sample mean (Shapiro & Wilk, 1965). 

Like in the Jarque Bera test, the null hypothesis is of normality, and rejection of the hypothesis 

(because of a significant p-value) leads to the conclusion that the distribution from which the 

data came is non-normal. 

2.3.3 The Augmented Dickey-Fuller test  

The augmented Dickey–Fuller test (ADF) is a test for a unit root in a time series sample. The 

augmented Dickey–Fuller (ADF) statistic, used in the test, is a negative number: the more 

negative it is, the stronger the rejection of the hypothesis that there is a unit root at some level 

of confidence. If the test statistic is less than the larger negative critical value, then the null 
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hypothesis of  � =  0 is rejected and no unit root is present, meaning that the process is 

stationary5. 

The testing procedure for the ADF test is the same as for the Dickey–Fuller test but it is applied 

to the model Δ�� = � + �� + ����� + ��Δ���� + ⋯ + ����Δ������ + �� where �  is a 

constant, � the coefficient on a time trend and p the lag order of the autoregressive process. The 

unit root test is then carried out under the null hypothesis � = 0  against the alternative 

hypothesis of   � < 0.  The test statistic is:  ��� =
��

��(��)
  (Fuller, 1976). 

2.3.4 The Ljung–Box test  

The Ljung–Box test is a type of statistical test of whether any of a group of autocorrelations of 

a time series are different from zero. Instead of testing randomness at each distinct lag, it tests 

the "overall" randomness based on a number of lags. 

The test statistic is: � = � (� + 2) ∑
���

�

���

�
�� �  where n is the sample size, ��� is the sample 

autocorrelation at lag k, and h is the number of lags being tested (Ljung & Box, 1978). 

Under the null hypothesis the data are independently distributed6 while under the alternative 

hypothesis the data are not independently distributed and they exhibit serial correlation. 

Under �� the statistic Q follows a  �(�)
�  . For significance level α, the critical region for rejection 

of the hypothesis of randomness is � > ����,�
�   where  ����,�

�  is the α-quantile of the chi-

squared distribution with h degrees of freedom. 

2.3.5 The Engle’s Lagrange Multiplier Test for ARCH disturbances  

Engle in 1982 proposed a methodology using the Lagrange multiplier test to test for the lag 

length of ARCH error.  This methodology is a 2 step procedure, consisting firstly in the 

estimation of the best fitting autoregressive model AR (q): �� = ��+������ + ⋯ + ������ +

�� = ��+∑ ������
�
�� � +�� and secondly in the regression of  the error �̂�, obtained from the 

                                                           

5 A stationary process is a stochastic process whose joint probability distribution does not change when shifted in 
time. Consequently, parameters such as the mean and variance, if they are present, also do not change over time 
and do not follow any trends. 

6 The correlations in the population from which the sample is taken are 0, so that any observed correlations in the 
data result from randomness of the sampling process). 
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previous regression, on a constant and q lagged values: �̂�� = ���+∑ ����̂����
�
�� �  where q is the 

length of ARCH lags (Engle, 1982). 

The null hypothesis is that, in the absence of ARCH components,  �� = 0 for all   � = 1, … , �. 

The alternative hypothesis is that, in the presence of ARCH components, at least one of the 

estimated �� coefficients must be significant. In a sample of T residuals under the null 

hypothesis of no ARCH errors, the test statistic T'R² follows �� distribution with q degrees of 

freedom, where ��is the number of equations in the model which fits the residuals vs the lags 

(i.e.  �� = � − �). If T'R² is greater than the Chi-square table value, the null hypothesis is 

rejected, concluding that there is an ARCH effect in the ARMA model. If T'R² is smaller than 

the Chi-square table value, the null hypothesis is not rejected. 

2.4 Descriptive statistics and statistical tests of the market index 

2.4.1 The market DJ STOXXFOOTBALL index  

The STOXX Europe Football Index covers all football clubs that are listed on a stock exchange 

in Europe or Eastern Europe, Turkey or the EU-Enlarged region. The index accurately 

represents the breadth and depth of the European football industry (“First European Football 

Index Launched By STOXX, Ltd”). The Dow Jones STOXX Football Index is free-float market 

capitalization weighted capped at 10% to prevent dominance by any individual club. 

Weightings will be recalculated every third Friday before end of a quarter. 

The Dow Jones STOXX Football Index was launched on April 22, 2002 and at that time it 

included all 33 football clubs listed for trading on European stock exchanges. 

Now the composition of the index is different: in fact some clubs that were listed in the stock 

market in 2002 are not listed anymore and some other clubs joined the index only after its 

creation. Now the club components are 22: 

- Aalborg, Aarhus, Brondby, FC Copenhagen, Silkeborg (Denmark) 

- Olympique Lione (France) 

- Borussia Dortmund (Germany) 

- AS Roma, FC Juventus, SS Lazio (Italy) 

- Ajax (Holland) 

- Ruch Chorzow (Poland) 

- Benfica, FC Porto, Sporting Lisbona (Portugal) 

- Teteks & Tetovo (Republic of Macedonia) 
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- Celtic Glasgow, (Scotland) 

- Aik Fotboll (Sweden) 

- Besiktas, Fenerbahce, Galatasaray, Trabzonspor (Turkey)  

 

All the teams that now belong to the index are in the top league of their national Championship. 

Almost all the teams have played at least some matches in the European competitions (the 

UEFA Champions League and the new “UEFA Cup”, the UEFA Europa League). Some teams 

during the period of analysis were relegated in lower divisions, ether because of bad field results 

(Silkeborg and Ruch Chorzow), or because illegal sport behaviour (Juventus).  

2.4.2 Statistical analysis of DJ STOXXFOOTBALL index 

DJ STOXX FOOTBALL index from 2005 to 2015 lost around 25.88%. As we can see from the 

graph below, during the financial crisis the index price dropped and, after a fast recover in 2010, 

there was another long and slow downfall in 2011 that brought in 2013 the price of the index 

to its minimum level. Since 2013 the index has not shown signs of recovery. 

Figure 2.1: Allocation of clubs according to their country of origin.  
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If we compare the evolution of DJ FOOTBALL STOXX index with STOXX Europe 600 index7 

we can see that the trend of the indexes was similar until the financial crisis. After the crisis 

STOXX Europe 600 started a slow but incessant phase of growth and now its price is higher 

than its pre-crisis level. So we can say that since 2012 the STOXX Europe 600 has been over 

performing the DJ FOOTBALL STOXX index.  

                                                           

7  STOXX Europe 600 index represents large, mid and small capitalization companies across 18 countries of the 
European region and so can be considered a good proxy for the entire European financial market. 

Figure 2.2: Historical prices of DJ STOXX FOOTBALL index. 

Figure 2.3: Comparison between STOXX Europe 600 and DJ FOOTBALL STOXX index. 
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I also grasped a difference in the volatility of the two indexes so I decided to compare even the 

daily log returns of the two indexes. 

 

 

Analysing daily log returns’ graphs of the two indexes, one can see that, while after the financial 

crisis STOXX Europe 600 index volatility returned to pre-crisis level, the DJ FOOTBALL 

STOXX index’s one did not and stayed constantly to a higher level than its pre-crisis level. 

So, it seems that DJ FOOTBALL STOXX does not follow a stationary process neither in mean 

nor in volatility. The histogram of DJ STOXX FOOTBALL index prices show us how the 

prices’ distribution is concentrated on the left of the figure. In fact the skewness coefficient is 

positive, meaning that the distribution is right-skewed. The distribution is also platykurtic, with 

a kurtosis coefficient statistically smaller than 3. This kind of behaviour is typical among stock 

prices, because it is very common that prices do not follow a normal distribution. 

 

 

 

 

 

 

 

Figure 2.5: STOXX Europe 600 STOXX index log returns Figure 2.4: DJ FOOTBALL STOXX index log returns 
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Min.  70.39 

1st Qu.  84.045 

Median   107.6 

Mean   111.063 

3rd Qu. 133.783 

Max.  173.880 

Variance 824.054 

Skewness 0.439 

Kurtosis 1.943 

   

 

 

To check the hypothesis of no stationarity of DJ STOXX FOOTBALL index price I used two 

statistical test: the Augmented Dickey-Fuller test (ADF) and the Phillips-Perron test8 (PP) 

 adf.test(logprez)  

Dickey-Fuller = -2.696, Lag order = 13, p-value = 0.284 

 pp.test(logprez) 

Dickey-Fuller Z(alpha) = -10.521,  Truncation lag parameter =9,  p-value = 0.523 

Both the “p-value” values are high and that means that the null hypothesis of the presence of 

unit root in the series can be accepted and the alternative hypothesis of stationarity in the series 

must be refused. These results are congruent with my previous considerations about the index 

trend. 

                                                           

8 Whilst the augmented Dickey–Fuller test addresses this issue by introducing lags of  as regressors in the test 
equation, the Phillips–Perron test makes a non-parametric correction to the t-test statistic. The test is robust with 
respect to unspecified autocorrelation and heteroscedasticity in the disturbance process of the test equation. 

 Table 2.1 Descriptive statistics 
of DJ FOOTBALL STOXX 
index prices. Figure 2.6: Histogram of DJ FOOTBALL STOXX index 

historical prices.  

Histogram of DJ FOOTBALL STOXX index daily prices 

 

Price 
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I now focus the analysis on the DJ FOOTBALL STOXX index daily log returns. In the table 

below there are the descriptive statitics. The daily log returns do not seem to follow a normal 

distribution. In fact the Skewness coefficient is negative, and kurtosis coefficient is greater than 

3 meaning that the distribution is leptokurtic. In fact the histogram below shows how the returns 

are clustered, creating an higher peak (higher kurtosis) than the curvature found in a normal 

distribution. 

Min.  -0.100 

1st Qu.  -0.006 

Median  0 

Mean   -0.000 

3rd Qu.   0.005 

Max.  0.072 

Variance 0.000 

Skewness -0.478 

Kurtosis 9.856 

Table 2.2 Descriptive statistics of DJ 
FOOTBALL STOXX index daily log 
returns. 

  

To check my considerations about the distribution of the returns I used some tests in order to 

test the normality of the distribution, the presence of autocorrelation among returns and the 

presence of eteroschedasticity effects. The null hypothesis of normality is rejected both by 

Jarque-Bera test and Shapiro-Wilk test.  

Test ST.TEST p-value Significance 

Test ADF -12,965 0,010 *** 

Test Jarque-Bera 5298,400 0,000 *** 

Test Shapiro-Wilk 0,932 0,000 *** 

Test Ljung–Box test 28,745 0,000 *** 

Test ARCH effects 462,010 0,000 *** 

Table 2.3. Test results on index’ daily log returns.  ***, ** and * indicate statistical significance at the 1%, 5% and 10% 
level, respectively. 

 

 

Histogram of DJ FOOTBALL STOXX index daily log returns 

Returns 

Figure 2.7:  histogram of DJ FOOTBALL STOXX index daily log returns. 
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ADF test seems to confirm the stationary of the series. In fact the p-value is small and it brings 

to refuse the null hypothesis of presence of the unit root in the series and to accept the alternative 

hypothesis of stationary of the series. The Ljung-Box test verifies the presence of 

autocorrelation among returns. Lm test verifies the presence of eteroschedasticity in the series.  

2.4.3 Statistical analysis of DJ STOXXFOOTBALL index components 

The period of analysis of DJ FOOTBALL STOXX index components goes from August 2005 

to July 2015. 

As I wrote before, it was impossible to analyse all the 22 components of the index. Since 5 

clubs joined the index only after 2005 (Olympique Lione, Teteks & Tetovo, Ruch Chorzow, 

Benfica, Rangers Glasgow, Aik Fotboll) I did not have so much data as the other clubs to do an 

appropriate statistical analysis. It is a pity that I did not have enough data to analyse Benfica 

and Olympique Lione because they are two top tier clubs in their league and they played 

successfully in European completions. Their inclusion will be possible only in future papers. 

In this paragraph I analyse all the 17 components’ daily log returns and I will do statistical tests, 

as I did in the previous paragraph, to test the normality of the distribution, the presence of 

autocorrelation among returns and the presence of eteroschedasticity effects. In the tables below 

there are the results of the tests and the sample estimation of the first four moments and the 

minimum and maximum of the clubs’ daily log returns. 

  Aalborg Aarhus Brondby Copenhaghen Silkeborg Borussia 
D. 

 ST.TEST       

Normality JB 2042300 4464.5 2948700 24376 3742.3 18065 

 Sign. *** *** *** *** *** *** 

 W 0.697 0.913 0.632 0.851 0.794 0.894 

 Sign. *** *** *** *** *** *** 

Unit root ADF -12.945 -12.806 -15.845 -13.552 -16.206 -11.974 

 Sign. *** *** *** *** *** *** 

Autocorr. BP 43.460 18.959 13.331 0.322 184.800 3.515 

 Sign. *** *** ***  *** * 

Eter.Cond. LM 23.642 149.600 36.927 134.210 122.430 297.120 

 Sign. ** *** *** *** *** *** 

Table 2.4: Test results on daily log returns. . ***, ** and * indicate statistical significance at the 1%, 5% and 10% level, 
respectively. 

 



34 

 

   Roma Juventus Lazio Ajax Porto Sporting 

  ST.TEST       

Normality  JB 30281 64233 25655 6679.8 65463 44925 

  Sign. *** *** *** *** *** *** 

  W 0.785 0.757 0.799 0.882 0.782 0.754 

  Sign. *** *** *** *** *** *** 

Unit root  ADF -13.253 -13.839 -13.127 -14.481 -16.458 -16.445 

  Sign. *** *** *** *** *** *** 

Autocorr.  BP 3.249 25.111 6.185 216.790 228.930 95.560 

  Sign.  *** *** *** *** *** 

Eter.Cond.  LM 439.290 672.760 531.800 114.890 501.810 135.650 

  Sign. *** *** *** *** *** *** 

Table 2.5: Test results on daily log returns. ***, ** and * indicate statistical significance at the 1%, 5% and 10% level, 
respectively. 

  Celtic Besiktas Fenerbahce Galatasaray Trabzonspor Foot.index 

 ST.TEST       

Normality JB 299090 19882 15947 14358 8130 5298.4 

 Sign. *** *** *** *** *** *** 

 W 0.402 0.830 0.823 0.824 0.847 0.932 

 Sign. *** *** *** *** *** *** 

Unit root ADF -12.554 -14.329 -13.496 -14.602 -14.658 -12.965 

 Sign. *** *** *** *** *** *** 

Autocorr. BP 183.51 38.427 33.282 12.738 21.601 28.745 

 Sign. *** *** *** *** *** *** 

Eter.Cond. LM 350.820 202.720 261.780 237.340 296.180 462.010 

 Sign. *** *** *** *** *** *** 

Table 2.6: Test results on daily log returns. ***, ** and * indicate statistical significance at the 1%, 5% and 10% level, 
respectively. 
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Club Mean Standard dev. Skewness Kurtosis Min Max. 

Aalborg -0.001 0.053 3.933 139.704 -0.764 1.249 

Aarhus -0.001 0.040 0.315 9.369 -0.280 0.264 

Ajax 0.000 0.020 0.795 10.670 -0.102 0.171 

Besiktas 0.000 0.035 0.191 16.503 -0.408 0.215 

Borussia Dortmund 0.000 0.024 0.225 15.868 -0.216 0.240 

Brondby -0.001 0.043 -1.057 167.522 -0.992 0.817 

Celtic 0.000 0.011 2.736 55.115 -0.109 0.159 

Copenaghen 0.000 0.025 0.119 17.956 -0.249 0.266 

Fenerbahce 0.000 0.028 0.100 15.096 -0.215 0.201 

Galatasaray 0.000 0.029 0.170 14.474 -0.202 0.177 

Juventus 0.000 0.026 0.359 27.272 -0.278 0.251 

Lazio 0.000 0.035 0.486 18.315 -0.316 0.261 

Porto -0.001 0.040 0.141 27.512 -0.503 0.511 

Roma 0.000 0.036 0.957 19.561 -0.382 0.266 

Silkeborg 0.000 0.056 -0.017 8.859 -0.372 0.314 

Sporting 0.000 0.054 0.710 23.257 -0.486 0.644 

Trabzonspor 0.000 0.030 0.281 11.619 -0.217 0.198 

Table 2.7: sample’ estimation of the first four moments, of the minimum and maximum. 

Looking at the previous tables we can see that all clubs’ returns are stationary in mean and that 

they do not follow a normal distribution. In fact both Jarque Bera test and Shapiro Wilk test 

refuse the null hypothesis of normal distribution. These test results were predictable looking at 

the descriptive statistics of table 2.4, in which the kurtosis and the skewness coefficients of all 

clubs’ daily log returns are much different from the ones of a normal distribution. Kurtosis 

coefficients are in fact very high and far above 3 meaning that returns are concentrated around 

the mean creating an higher peak respect the one in a normal distribution. The Engle’s Lagrange 

multiplier test for ARCH disturbances testing the presence of ARCH effects for all the clubs’ 

log daily returns. Finally, the Ljung box test tests the presence of autocorrelation of log daily 

returns. Only the daily log returns of three clubs (A.S. Roma, Copenaghen and Borussia 

Dortmund) seems not to be correlated. 
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2.5 Football Performance Dataset 

The football performance dataset includes the sports data regarding the clubs belonging to DJ 

STOXX index from 2005 and 2015.  As I wrote in this chapter, the sample analysed consists of 

17 clubs. 

The football performance dataset includes data of 6892 football matches played by the sample 

clubs and it includes several variables: 

1) The match result: three dummy variables (Winij, Lossij, Tieij) indicating if team i won, tied 

or lost the j match. Among the 6892 matches, clubs won 3586 matches (52.03%), lost 1687 

matches (24.48%) and tied 1619 (23.49%). The high number of wins can be explained by 

the fact that the clubs in the sample are top tier clubs in their national championship.  

2) The goal difference: it measures the goal difference of the j match of team i. It can assume 

positive, negative and null values according to match results. The goal difference mean is 

0.6263. A positive goal difference is something that one could expect because clubs in the 

sample have more wins than losses. 

3) The site of competition: two dummy variables (Homeij, Awayij) indicating whether the 

match j was played at home of team i or not. 3441 (49.93%) matches were played at home 

and 3451 (50.07%) matches were played away from home. 

4) The type of competition: three dummy variables (Nchaij,, Cleaij, Eleaij) indicating whether 

the match j was a national championship match, a UEFA Champions League match, or an 

UEFA Europa League match. 5838 (85.31%) matches were national championship 

matches, 524 (7.63%), were UEFA Champions League matches and 530 (7.68%) were 

UEFA Europa League matches. 

5) The year of competition: a set of dummy variables (Y05ij Y06ij Y07ij Y08ij Y09ij Y10ij 

Y11ij Y12ij Y13ij Y14ij Y15ij) indicating the year in which the match j was played. The 

number of matches analysed is almost uniformly distributed across years (about 9% per 

year) 

6) The month of competition: a set of dummy variables (Janij, Febij, Marij, Aprij, Mayij, Junij, 

Julij, Augij, Sepij, Octij, Novij, Decij) indicating the month in which the match j was played.  

The number of matches analysed is almost uniformly distributed across months (about 10% 

per month). The only exception are January (5.48%), June (0.30%) and July (2.32%) when 

less matches were played. 
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7) The anticipated (expected) results: two dummy variables (Favij, Undij) indicating if the 

team i was favourite in the match j or not based on the information of pre-match betting 

odds. In 5195 (75.38%) matches team i was the favourite while only in 1697 (24.62%) 

matches team i was the underdog. This confirms the fact that the clubs in the sample are top 

tier clubs. 

2.6 The inclusion of football betting odds in the model 

Obviously not all the matches have the same degree of importance. Winning a national 

championship match against a top competitor of the league is not the same as winning against 

a bottom league club. This is due to the fact that winning against a bottom league club is an 

expected result. The inclusion of football betting odds in the model allows me to consider the 

expectation of the results by bettors.  According  to  the  efficient  market  hypothesis,  the  stock  

prices  of  soccer  teams should reflect all the available information, including the one on 

expected results, which is implicit in the pre-match betting odds. Using this interpretation 

framework, only unexpected events may generate abnormal returns. In chapter three I will test 

the hypothesis that an unexpected result has a greater effect on abnormal returns than an 

expected one. To include betting odds I used historical data which includes betting odds from 

over 30 bookmakers (“Sport Stats: Sports Statistics, Standings, Fixtures & Results”). In the 

table below, one can see the absolute number of matches in which clubs were favourite and 

underdogs, according to each type of competition. 
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Expected results 

CLUB Fav Nat. 
Cham. 

Fav 
Ch.L 

Fav 
Eu.L 

Und Nat 
Cham. 

Und 
Ch.L 

Und 
Eu.L 

Total 

Aalborg 201 5 10 126 9 18 369 

Aarhus 169 0 0 157 0 0 326 

Ajax 240 1 23 87 2 11 364 

Besiktas 321 16 23 7 33 25 425 

Borussia D. 150 0 0 171 0 0 321 

Brondby 254 26 8 87 11 2 388 

Celtic 290 26 23 87 15 5 446 

Copenaghen 347 39 18 37 16 4 461 

Fenerbahce 220 4 30 160 4 11 429 

Galatasaray 322 21 29 30 27 15 444 

Juventus 288 40 19 20 32 6 405 

Lazio 265 11 41 44 21 16 398 

Porto 366 30 9 12 31 15 463 

Roma 293 7 38 52 13 18 421 

Silkeborg 309 20 23 35 22 13 422 

Sporting 300 12 27 45 21 13 418 

Trabzonspor 258 3 20 88 6 17 392 

TOTAL 4593 261 341 1245 263 189 6892 

 Table 2.8 Absolute number of matches in which clubs were favourite and underdogs. 

As I wrote before, almost all the clubs of the sample (with the only exceptions of the two Danish 

clubs, Aarhus and Silkeborg) are top tier clubs in their national league. So, the fact that 4593 

out of 5838 (78.67%) clubs were expected winners is not surprising. In the European matches, 

where opponents quality is higher, things are different. In fact in the UEFA Champions League 

(the most important and prestigious European football competition), only half of the times the 

sample’s clubs were favourite (261 out of 524 matches) while in the Europa League, where the 

opponents’ level is weaker than in the UEFA Champions League, the percentage of times in 

which the clubs were favourite is higher and is equal to 64.38% but it is still smaller than the 

one in national championship competitions. 
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2.7 Tables regarding football clubs results 

Table 2.9 European and national matches’ results of each club of the sample. 

Looking at the data, it is clear that almost all the clubs in the sample played more than 400 

matches during the 10-year period of analysis. The only exceptions are the Danish clubs which 

played less matches, either because they played less matches in their national league compared 

to the other national leagues, and because they had less success in European competitions. 

 

 

 

 

 

 

National and European matches 

Club Win Tie Loss Total 

Aalborg 152 100 117 369 

Aarhus 124 77 125 326 

Ajax 262 96 86 444 

Besiktas 215 98 108 421 

Borussia Dortmund 189 96 103 388 

Brondby 154 97 113 364 

Celtic 303 77 83 463 

Copenaghen 238 98 89 425 

Fenerbahce 252 91 79 422 

Galatasaray 231 95 92 418 

Juventus 272 122 67 461 

Lazio 183 109 137 429 

Porto 278 73 54 405 

Roma 233 107 106 446 

Silkeborg 113 79 129 321 

Sporting 211 100 87 398 

Trabzonspor 176 104 112 392 

Total Dataset 3586 1619 1687 6892 
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National matches 

Club Win Tie Loss Total 

Aalborg 137 88 102 327 

Aarhus 124 77 125 326 

Ajax 224 75 53 352 

Besiktas 178 87 80 345 

Borussia Dortmund 166 87 88 341 

Brondby 138 89 100 327 

Celtic 273 59 46 378 

Copenaghen 201 77 50 328 

Fenerbahce 219 68 57 344 

Galatasaray 203 76 66 345 

Juventus 236 96 52 384 

Lazio 163 94 123 380 

Porto 230 51 27 308 

Roma 200 84 93 377 

Silkeborg 113 79 129 321 

Sporting 175 76 58 309 

Trabzonspor 159 88 99 346 

Total Dataset 3139 1351 1348 5838 

Table 2.10 National matches’ results of each club of the sample. 

Looking at the table above, one can see that national championship matches played by the clubs 

in the sample were 5838. Obviously the number of matches played by each team depended on 

the regulation of the league in which the club played in. Not all the national leagues have the 

same number of teams and that is the reason why the total amount of matches played by each 

club is different. We can see that some teams played an odd number of matches. This is not due 

to errors but it might depend on the fact that some leagues include playoffs which can create 

this kind of situation or on the fact that some matches in a particular year might have been 

cancelled. 
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European matches 

Club WCh.l TCh.l LCh.l WEu.l TEu.l Leu.l TotCh. TotEu. Total 

Aalborg 6 4 4 9 8 11 14 28 42 

Ajax 14 15 19 24 6 14 48 44 92 

Besiktas 8 3 9 29 8 19 20 56 76 

Borussia 18 6 13 5 3 2 37 10 47 

Brondby 1 1 1 15 7 12 3 34 37 

Celtic 25 8 28 5 10 9 61 24 85 

Copenaghen 20 9 20 17 12 19 49 48 97 

Fenerbahce 15 11 16 18 12 6 42 36 78 

Galatasaray 9 7 17 19 12 9 33 40 73 

Juventus 25 17 13 11 9 2 55 22 77 

Lazio 2 3 3 18 12 11 8 41 49 

Porto 33 17 22 15 5 5 72 25 97 

Roma 19 7 15 14 7 7 41 28 69 

Sporting 9 8 15 27 16 14 32 57 89 

Trabzonspor 2 5 2 15 11 11 9 37 46 

Total dataset 206 121 197 241 138 151 524 530 1054 

Table 2.11 European matches’ results of each club of the sample. 

The table above regards only European matches. The matches are split in UEFA Champions 

League matches and UEFA Europa League matches, Ch.l and Eu.l respectively.  

Two clubs of the sample (Aarhus and Silkeborg) never took part in European competitions 

during the period of analysis and so they are not included in the previous table.  
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3. Statistical models after the inclusion of football performances 

data  

In the last chapter I analyzed the historical series of prices and returns of  Dow Jones STOXX 

Football index and of its components. Prices and returns do not follow a normal distribution. In 

fact, almost always, skewness and kurtosis coefficients differ from the ones of a normal 

distribution. The Engle’s Lagrange multiplier test and the Ljung box test test the presence of 

autocorrelation of log daily returns and prices, respectively. 

These information about football clubs’ stock prices and returns are important because, when 

the properties and the behaviour of prices and returns of the team of the sample are known,  

they allow me to choose the rightest model for beta estimation. 

In this chapter I will calculate football club beta using the theoretical “market model” and then 

I will calculate abnormal returns of the football clubs in the sample and I will analyse the 

relationship between them and the football results of the clubs obtained from the football dataset 

of chapter two. The analysis is done both using sports data as a whole and using only results of 

European competitions.  

3.1 The “Market Model” 

The “Market model” is a statistic linear model that links the returns of a firm with the returns 

of the market. In the model, the dependent variable is the return of the football club and the 

independent variable is the DJ STOXX FOOTBALL index’s return. The Market Model is 

similar to CAPM but it differs from this because it does not include the risk free. The Market 

Model is ��� = �� + ��(���) + ��� with �(��� = �) and ���(���) = ���
�  

- Where ���  e ��� are the logarithmic returns of the club i and of the index DJSTOXX 

FOOTBALL respectively, at time t; 

- ��,  ��,  ���
�  are the model’s parameters; Beta (��) represents the systemic risk of the 

club and it measures the sensitivity of a stock to stock market movements. 

In literature the independent variable is often a market index (for example the Standard and 

Poor index or the Europe Stoxx 600 index). Instead, I decided to use the DJ Stoxx FOOTBALL 
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index, described in chapter 2 because it represents the breadth and depth of the European 

football industry.9  

3.2 Empirical analysis of the sample 

The regression model used is a OLS (Ordinary Least Squares) model. The model is  �� = ��� +

��  where yi is the dependent variable, xi is the independent variable and ε is the error term of 

the regression. The Beta coefficients are calculated in order to minimize the square of the error 

terms: �(�) = ||� − � ||^� =  (� − ��)� (� − ��), having then  �� = ( ���)�� ���  and 

E{β}= β. The variance matrix is   �(�) =  ��( ���)�� where s2 is the no distorted estimate for 

σ2, calculated from � = �� = � − ���, with the use of the formula  �� =
���

���
  , and the standard 

errors are the square root of the matrix V ( β )  diagonal seen before. 

The condition for OLS to be a good estimate are the following: 

 Strict exogeneity: the errors in the regression should have conditional mean zero: 

�[�|�]= 0. 

 Homoskedasticity: the conditional variance of the error term should be a constant in all x 

and over time. Homoskedasticity implies that the model uncertainty is identical across 

observations. E[ εi
2 | X ] = σ2 

 No autocorrelation: error terms are independently distributed and not correlated: 

E[ εiεj | X ] = 0 for i ≠ j 

When eteroskedasticity and autocorrelation are present, the OLS estimator is not consistent 

anymore, and one should use the Newey West (1987) estimator, in which the error terms are 

calculated in order to be consistent both to eteroschedasticity and to autocorrelation 

(Heteroskedasticity and Autocorrelation Consistent, HAC).  This method is perfect if 

correlation is restricted to the max number of lag. So the variance and covariance matrix 

become ����� = (���)����(���)�� with �� = ∑ ��
�����

��
�� � +

∑ ∑ ��(������������
� + ������������

��
�� ���

�
�� � )  and   �� = � −

�

���
   where T is the number of 

observation and L is the number of lags. 

The goodness of fit of the regression is measured by the R-squared (coefficient of 

determination). The �� is the ratio of the explained variation compared to the total variation: it 

                                                           

9 I also used as market index the Europe Stoxx 600 index obtaining similar results. 
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is interpreted as the fraction of the sample variation in y that is explained by x. �� =
���

���
= 1 −

���

���
  where = ∑ (��� − ��)��

�� �  , ��� = ∑ (�� − ��)��
�� �  and ��� = ∑ ��

��
�� � = ∑ (�� − ���)

��
�� � . 

�� is always between 0 and 1. A value of ��that is nearly equal to zero indicates a poor fit of 

the OLS line.  

To verify if the estimated model is correct the first step is to analyze the behaviour of residuals. 

So I checked the presence of autocorrelation of residuals, eteroskedasticity and structural breaks 

using some statistical tests: 

 White Test:  it tests for the presence of eteroschedasticity in the model. The test statistics 

is �� = ��� where n is the sample size and �� is the coefficient of determination. Under 

the null hypothesis of omoschedasticity the test statistics follows a chi squared distribution 

with P-1 degrees of freedom. If nR² is greater than the Chi-square table value, the null 

hypothesis is rejected, concluding that there is eteroschedasticity in the model. 

 Breusch-Godfrey test: it tests for autocorrelation in the errors in a regression model. It 

makes use of the residuals from the model being considered in a regression analysis, and a 

test statistic is derived from these. The null hypothesis is that there is no serial correlation 

of any order up to p. 

 Breusch–Pagan test: it tests whether the estimated variance of the residuals from a 

regression are dependent on the values of the independent variables. In that case, 

heteroskedasticity is present. The test statistic is LM = nR� and under the null hypothesis 

of homoskedasticity it is asymptotically distributed as χ���
�  . If the Chi Squared value is 

significant with p-value below an appropriate threshold, the null hypothesis of 

homoskedasticity is rejected and heteroskedasticity assumed. 

 Cumulative sum test (CUSUM): it is used for step detection of a time series. Under the 

null hypothesis the data are random while under the alternative hypothesis the data are not 

random. This test is based on the maximum distance from zero of a random walk defined 

by the cumulative sum of the sequence. A large enough distance is indicative of non-

randomness of data.   

3.2.1 Market Model’s beta estimation and residual analysis 

I analyzed with the “market model” all the 17 stock titles listed in the European market using, 

as I wrote before, the DJ STOXX FOOTBALL index as benchmark. The following tables show 

the coefficient estimates with their p-values.  
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Club Alpha P-value alpha Beta P-value beta 

Ajax 0.000 0.979 0.231 0.000 (***) 

Roma 0.000 0.618 0.970 0.000 (***) 

Besiktas 0.000 0.781 1.366 0.000 (***) 

Borussia D. 0.000 0.491 0.679 0.000 (***) 

Celtic G. 0.000 0.385 0.092 0.001 (***) 

Fenerbahce 0.000 0.318 1.211 0.000 (***) 

Galatasaray 0.000 0.980 1.219 0.000 (***) 

Juventus 0.000 0.793 0.982 0.000 (***) 

Lazio 0.000 0.690 0.712 0.000 (***) 

Aalborg -0.001 0.398 0.409 0.000 (***) 

Aarthus -0.001 0.506 0.782 0.000 (***) 

Brondby -0.001 0.360 0.498 0.000 (***) 

Porto -0.001 0.474 0.095 0.171 

Copenhagen 0.000 0.442 0.788 0.000 (***) 

Silkeborg 0.000 0.837 0.256 0.019 (**) 

Sporting L. 0.000 0.662 0.203 0.039 (**) 

Trabzonspor 0.000 0.877 1.140 0.000 (***) 

Table 3.1 Estimation of alpha and beta coefficients with their respective P-value. ***, ** and * indicate statistical 
significance at the 1%, 5% and 10% level, respectively. 

The alpha coefficients are not statistically significant for all the 17 clubs in the sample. As can 

been seen in the table, almost all the estimates of Alpha are near to zero. The Beta coefficients 

are always significant except for the Portuguese team FC Porto, which has also the worst R-

Squared of all the clubs analyzed and the highest beta are the ones of the Turkish clubs.  

The highest Beta is the Besiktas one while the lowest is the one of Celtic.  The Beta coefficient 

goes from a minimum of 0.091 to a maximum of 1.3667. We know that the higher the Beta, the 

higher  the expected return to incentive the investors that cannot eliminate the systematic risk.  

In the table below, I will analyze the behaviour of residuals, this is a necessary step to 

understand whether the model used is correct. 
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Club White test p-value Breusch-Pagan 
test p-value 

Breusch-Goddfrey 
test p-value 

CUSUM test  
p-value 

Ajax 0.003 (***) 0.029 (**) 0.000 (***) 0.383 

Roma 0.000 (***) 0.001 (***) 0.162  0.938 

Besiktas 0.000 (***) 0.000 (***) 0.000 (***) 0.01 (**) 

Borussia D. 0.000 (***) 0.088 (*) 0.000 (***) 0.171 

Celtic G. 0.375  0.000 (***) 0.000 (***) 0.503 

Fenerbahce 0.000 (***) 0.000 (***) 0.000 (***) 0.539 

Galatasaray 0.000 (***) 0.000 (***) 0.033 (**) 0.997 

Juventus 0.000 (***) 0.000 (***) 0.001 (***) 0.570 

Lazio 0.000 (***) 0.053 (*) 0.000 (***) 0.537 

Aalborg 0.984  0.315  0.000 (***) 0.928 

Aarthus 0.000 (***) 0.000 (***) 0.000 (***) 0.254 

Brondby 0.269  0.000 (***) 0.000 (***) 0.321 

Porto 0.000 (***) 0.684  0.609  0.101 

Copenhagen 0.004 (***) 0.000 (***) 0.000 (***) 0.822 

Silkeborg 0.013 (**) 0.000 (***) 0.000 (***) 0.973 

Sporting L. 0.452  0.033 (**) 0.000 (***) 0.907 

Trabzonspor 0.000 (***) 0.125 (***) 0.000 (***) 0.514 

Table 3.2 P-value of the test statistics used. ***, ** and * indicate statistical significance at the 1%, 5% and 10% level, 
respectively. 

The White and Breusch-Pagan test shows the presence of eteroschedasticity for almost all the 

titles. The exception are Sporting, Brondby and Trabzonspor. The hypothesis of no 

autocorrelation is rejected for all the titles of the sample. The CUSUM test shows if there are 

structural breaks and only for the Turkish club Besiktas the hypothesis of no structural break is 

refused.  

Due to the fact that eteroskedasticity and autocorrelation of residuals are present in almost all 

the clubs in the sample, I calculated the Market Model with HAC residuals. The results are 

showed in the table below. 
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 Club Alpha P-value 
alpha 

Beta P-value beta R2 Adj. R2 

Ajax 0.000 0.962 0.231 0.000 (***) 0.016 0.016 

Roma 0.000 0.628 0.970 0.000 (***) 0.096 0.096 

Besiktas 0.000 0.808 1.366 0.000 (***) 0.193 0.192 

Borussia D. 0.000 0.466 0.679 0.000 (***) 0.103 0.102 

Celtic G. 0.000 0.494 0.092 0.001 (***) 0.008 0.008 

Fenerbahce 0.000 0.357 1.211 0.000 (***) 0.240 0.239 

Galatasaray 0.000 0.980 1.219 0.000 (***) 0.233 0.233 

Juventus 0.000 0.809 0.982 0.000 (***) 0.189 0.188 

Lazio 0.000 0.671 0.151 0.000 (***) 0.054 0.053 

Aalborg -0.001 0.343 0.000 0.000 (***) 0.008 0.007 

Aarthus -0.001 0.448 0.782 0.000 (***) 0.049 0.048 

Brondby -0.001 0.230 0.498 0.000 (***) 0.017 0.017 

Porto -0.001 0.173 0.095 0.228 0.001 0.000 

Copenhagen 0.000 0.430 0.788 0.000 (***) 0.126 0.126 

Silkeborg 0.000 0.709 0.256 0.019 (**) 0.003 0.002 

Sporting L. 0.000 0.434 0.203 0.039 (**) 0.002 0.001 

Trabzonspor 0.000 0.878 1.140 0.000 (***) 0.187 0.187 

Table 3.3 Table 4.1 Estimation of alpha and beta coefficients with their respective P-value and estimation of the R2 and of 
the adjusted R2. ***, ** and * indicate statistical significance at the 1%, 5% and 10% level, respectively. 

P-value of coefficients are risen but there are no changes for what regards the significance of 

coefficients. The alpha intercept is still now not statistically significant. 

3.3 Inclusion of football performances data 

A big amount of papers studies the relationship between football results and market movements. 

There are evidence that sport results have a great impact on the mood of an individual, who 

changes his degree of optimism and pessimism according to the result. Some authors have 

verified these hypotheses empirically and have found a significant reaction between football 

results and stock market performance. This reaction is particularly strong in countries where 

football is deeply rooted (Italy, Germany, Turkey, England). This relationship is statistically 

significant at club levels, and even at national levels. For example, Ashton (2003) found a strong 

relationship between England team and the English index. At club level instead, Renneboog & 

Verbrandt (2000) analyzed whether the stock price of English clubs, listed in the London Stock 

Market and in the AIM, were influenced by the football performances of the previous week and 

they discovered that wins were followed by positive abnormal returns while losses and ties were 
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followed by negative abnormal results. They also saw a different impact in abnormal returns 

between European matches and national championship matches. Maniello (2003) studied the 

relationship between the field’s results and the stock market trend of the three listed Italian 

Football clubs (Juventus, Lazio and Roma) and he discovered that a win rises the stock market 

price in half of the times while a loss and a tie generate a negative market reactions. Ciarrapico, 

Cosci & Pinzuti (2010) showed that there is a significant relationship between the ranking of a 

club and its stock market price trend. Castellani, Pattitoni & Patuelli (2012) found that between 

2007 and 2009 there was a positive relationship between football performance and financial 

performance of the clubs belonging to the Dow Jones STOXX Football index. Sarac & Zeren 

(2013) studied how the football performance of three Turkish clubs (Besiktas, Galatasaray and 

Fenerbahce), misured in goal difference, is positive correlated with their trend in the Stock 

Market. 

3.3.1 Variable definitions and hypothesis description   

To understand whether football results of a club have an impact on its stock price I analyzed 

the relationship between the abnormal results and the match results of a club. In finance, an 

abnormal return is the difference between the actual return of a security and the expected return. 

In this case the abnormal return of a club is equal to the actual return of its stock minus the 

theoretical one calculated using the Market model formula ���,� =  ��,� − ����,�� = ��,� − 

��� −  �� ���,� , with alpha and beta calculated using the OLS method explained before; 

I focused on the relationship between football results and abnormal returns, but of course there 

are also other many drivers that can influence the stock price of a club and affect the daily 

return: market share of the clubs, income from broadcasts, popularity in the media, the player 

salaries and the player transfers. Other variables which can influence are also the country index, 

contract durations of players, contract duration of coaches and results of international game. 

Therefore, I do not expect that all the amount of the abnormal return is explained by match 

results.  

Almost all the matches analyzed in the sample are played when the stock market is closed. In 

fact National championship matches are usually played on Saturday or Sunday and European 

matches are played at evening time. In the regressions made I will associate the match results 

of a team with the corresponding the abnormal return measured on the first opening day of the 

market after the match. 



50 

 

As I wrote at the end of chapter two, I used several variables to measure properly the football 

performance of a team. Just for clarity, these variables are: 

 The match result: three dummy variables (Winij, Lossij, Tieij) indicating if team i won, tied 

or lost the j match. 

 The goal difference: it measures the goal difference of the j match of team i. It can assume 

positive, negative and null values according to the match results.  

 The site of the competition: two dummy variables (Homeij, Awayij) indicating whether the 

match j was played at home of team i or not.  

 The type of the competition: three dummy variables (Nchaij,, Cleaij, Eleaij) indicating 

whether the match j was a national Championship match, a  UEFA Champions League 

match, or a UEFA Europa League match.  

 The year of the competition: a set of dummy variables (Y05ij Y06ij Y07ij Y08ij Y09ij Y10ij 

Y11ij Y12ij Y13ij Y14ij Y15ij) indicating the year in which the match j was played.  

 The month of the competition: a set of dummy (Janij, Febij, Marij, Aprij, Mayij, Junij, Julij, 

Augij, Sepij, Octij, Novij, Decij) variables indicating the month in which the match j was 

played.   

 The anticipated (expected) results: two dummy variables (Favij, Undij) indicating if the 

team i was favourite in match j or not based on the information of pre-match betting odds. 

3.3.2 Statistical models used 

Model 1:   ���,� =  ����,� + ����,� + ����,� + �� 

As I wrote before ��, ��, �� are three dummy variables indicating whether the club i won, lost 

or tied the match, respectively. This is the starting model: it is very simple and the aim of the 

model is to test whether football results of a team affects its abnormal returns. I expect that a 

win has a positive effect on the abnormal return while a defeat has a negative effect. I also 

expect that a tie is considered a neutral result and so that it has a null effect on the abnormal 

return. So my hypotheses for the model 1 are the following �� >  �� > �� and �� > �, �� =

� ��� �� < � .  

Model 2: ���,� =  �� + �����������������,� + �����������������,�
� + ��,�  
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In this regression I measured the football performance in terms of the goal difference. A positive 

goal difference in a match is associated with a win, a null goal difference with a tie and a 

negative one with a loss. The aim of this model is to check whether the intensity of the result 

also affects the abnormal return. In line with what I wrote about model 1, I suppose that a 

positive goal difference (that means a win) has a positive effect on sport returns. I also suppose 

a negative quadratic relation between the coefficient of the Goal difference and abnormal 

returns because I expect that abnormal returns will increase less than proportionally with the 

goal difference. So I will expect �� > � > �� 

Model 3:   ���,� =  �� ��,� �����,� + �� ��,� �����,� + �� ��,� �����,� +

�� ��,� �����,� + �� ��,�  �����,� + �� ��,� �����,� + ��,� 

In the third model I specified whether the match was played at home or away from home in 

order to check whether the site of competition affects the abnormal returns. In 2012, Reade 

studied the importance of playing a match at home. He wrote that “…one of the most sustained 

patterns in sport, likely throughout its organized existence, is the home advantage. Pair two 

completely evenly matched teams together and the team playing in their own surroundings will 

win more than 50% of the time” (“Home advantage in football – what can the data tell us? | 

Football Perspectives,” n.d.). 

Figure 3.1 Ratio of home to away wins of European clubs. Source: www.Soccerbase.com 

The figure above plots the extent of home advantage over more than one century in European 

football; since the late 1800s the ratio of home to away wins had been comfortably above unity 

throughout the sample. Even if it appears that home advantage has decreased since the early 

1990s, the ratio remains nearer two than one. 
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The starting hypotheses are similar to the ones of model 1 but with the additional expectation 

that winning far from home will have a greater effect on abnormal returns than winning at home. 

The opposite consideration regards losses: losing at home will have a more negative effect than 

losing away from home. Therefore, I will expect that �� >  �� > � and that   �� <  �� < �.  

Model 4: ���,� =  �������� + ��������� + ������ + �������� + ��������� +

�������� + ��,� 

In model 4, I specified whether the match was played in a national championship or in a 

European competition, in order to verify whether the type of competition has different impact 

on the abnormal returns. European competitions, especially Champions League, are extremely 

remunerative for a club: the income generated by the market pool and by the performance’s 

prizes can sometimes exceed €30m. For this reason, I expect than European matches have a 

stronger effect on abnormal returns supposing that �� , ��, �� will be greater, in absolute terms, 

than  ��, ��, �� respectively. In the last part of the chapter, I will focus on the Champions League 

games, analyzing the impact of these matches on the abnormal returns.  

Robustness check 

The football season is very long (10 months) and so it may be the case that abnormal returns 

are influenced by the period of time in which the game is played. In particular, I expect that the 

matches played at the end of the season generate a higher impact in the financial market because 

these matches are crucial for winning a trophy. So I included in the regression the month in 

which a match is played in order to check whether it is true that a month effect exists. 

The time frame of the analysis is quiet long (10 years) and so it is possible that the year in which 

matches are played affects the abnormal returns. For this reason, I did a robustness check even 

for years in order to understand if there is a significant year effect in the analysis. 

Model 5: 

���,� =  �� + �������� + ���������+ �������� + ��������� + ���������� +

����������� + ��,�  

In Model 5, I specified whether the results of a match is expected or unexpected match results. 

During a season, a club plays against lots of teams and, of course, not all these teams are 
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competitive in the same way. Not all the matches have the same value and investors know it. 

To say whether a result was expected or not I used the bet quotes of football matches. I expect 

larger abnormal returns, in absolute terms, after unexpected events and so |��| < |��| and  

|��| > |��| 

Another consideration is that if the market is efficient, then the price of a soccer team should 

incorporate all the information available and react to match results only when they are 

unexpected. So, if the pre-match betting odds fully reflect all available information on the most 

likely match score, �� and �� should both be equal to 0. If, on the other hand, pre-match betting 

odds only partially reflect available information on the most likely match score or the mood 

effect is particularly strong, ��  and  �� will differ from 0. 

3.3.3 Commentary on the results 

In the following table, I will show the empirical results of the models discussed previously. 

Variable Coefficient Standard error P-value Significance 

Win 0.006 0.001 0.000 *** 

Loss -0.013 0.001 0.000 *** 

Tie -0.008 0.001 0.000 *** 

Table 3.4 Results of the model 1 ***, ** and * indicate statistical significance at the 1%, 5% and 10% level, respectively. 

The results of the first model are present in the table above. Data show that a win generates a 

significant positive market reaction (0.6%) while a loss has a negative market reaction (-1,28%).  

Also, a tie generates a negative significant market reaction (-0.8%). This means that investors 

consider a tie not a neutral event but a negative one. This is probably due to the fact that almost 

all the clubs in the sample are first tier clubs and so a tie is seen in negative terms. Another 

explanation is that ties guarantee 1 point against 3 points of the win, reducing the probability 

of winning a championship or a cup. 

Variable Coefficient Standard error P-value Significance 

Constant -0.00402 0.00052 0.00000 *** 

Goal difference 0.00463 0.00028 0.00000 *** 

Goal difference2 -0.00029 0.00008 0.00070 *** 

Table 3.5 Results of the model 2 ***, ** and * indicate statistical significance at the 1%, 5% and 10% level, respectively. 

Model two analyzes whether the intensity of the results affects the abnormal returns. As I 

expected the goal difference has a positive effect on abnormal returns. Even the hypothesis 
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about the goal difference square is confirmed. The negative coefficient of the quadratic term (–

0.029 per cent) is probably due to the fact that a greater overall goal difference at the end of a 

league rarely gives a significant advantage. 

Variable Coefficient Standard error P-value Significance 

Win home 0.004 0.001 0.000 *** 

Win away 0.007 0.001 0.000 *** 

Loss home -0.016 0.002 0.000 *** 

Loss away -0.011 0.001 0.000 *** 

Tie home -0.011 0.001 0.000 *** 

Tie away -0.007 0.001 0.000 *** 

Table 3.6 Results of the model 3 ***, ** and * indicate statistical significance at the 1%, 5% and 10% level, respectively. 

The table above shows the results of the third model. The signs of the coefficients are in line 

with model one and two. The results of the model confirm the hypotheses I made before: 

winning away and losing at home have a greater impact, in absolute terms, on the abnormal 

returns than winning at home and losing away respectively. Even in this model every estimate 

is statistically significant. 

Variable Coefficient Standard error P-value Significance 

Win national championship 0.006 0.001 0.000 *** 

Loss national championship -0.013 0.001 0.000 *** 

Tie national championship -0.009 0.001 0.000 *** 

Win European match 0.002 0.002 0.250  

Loss European match -0.014 0.002 0.000 *** 

Tie European match -0.008 0.002 0.000 *** 

Table 3.7 Results of the model 4 ***, ** and * indicate statistical significance at the 1%, 5% and 10% level, respectively. 

The results of model four are not in line with my previous expectation. European matches do 

not have a stronger effect on abnormal returns than national championships’ matches. Losing 

and tying in the two competitions generate quite the same reaction on abnormal returns. One 

can also see that winning a European match does not create a statistically significant market 

effect (even if the sign of the coefficient is positive, the P-value is over 0.05). In the last 

paragraph of the chapter I will split European matches into UEFA Champions League’ matches 

and UEFA Europa League’ matches in order to analyze if also the type of European competition 

affects abnormal returns with a different intensity. 
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Variable  Coefficient Standard error P-value Significance 

Win in January  0.005 0.002 0.035 ** 

Lose in January  -0.014 0.004 0.001 *** 

Tie in January  -0.005 0.004 0.197  

Win in February  0.005 0.002 0.018 ** 

Lose in February  -0.015 0.003 0.000 *** 

Tie in February  -0.005 0.003 0.105  

Win in March  0.006 0.002 0.003 *** 

Lose in March  -0.014 0.003 0.000 *** 

Tie in March  -0.007 0.003 0.018 ** 

Win in April  0.006 0.002 0.001 *** 

Lose in April  -0.017 0.003 0.000 *** 

Tie in April  -0.006 0.003 0.026 ** 

Win in May  0.003 0.002 0.134  

Lose in May  -0.008 0.003 0.006 *** 

Tie in May  -0.010 0.003 0.004 *** 

Win in June  0.015 0.020 0.012 ** 

Lose in June  0.014 0.017 0.424  

Win in July  0.004 0.004 0.364  

Lose in July  -0.016 0.007 0.014 ** 

Tie in July  -0.005 0.006 0.424  

Win in August  0.006 0.002 0.002 *** 

Lose in August  -0.018 0.003 0.000 *** 

Tie in August  -0.012 0.003 0.000 *** 

Win in September  0.007 0.002 0.000 *** 

Lose in September  -0.015 0.003 0.000 *** 

Tie in September  -0.011 0.003 0.000 *** 

Win in October  0.008 0.002 0.000 *** 

Lose in October  -0.008 0.003 0.002 *** 

Tie in October  -0.011 0.003 0.000 *** 

Win in November  0.005 0.002 0.003 *** 

Lose in November  -0.011 0.003 0.000 *** 

Tie in November  -0.008 0.003 0.003 *** 

Win in December  0.005 0.002 0.012 ** 

Lose in December  -0.009 0.003 0.004 *** 

Tie in December  -0.009 0.003 0.004 *** 

Table 3.8 Results of the robustness check of months. ***, ** and * indicate statistical significance at the 1%, 5% and 10% 
level, respectively. 
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Figure 3.2 Results of the robustness check of months. Dark gray bar, black bar and light gray bar represent wins, losses 

and ties respectively. When the bar is empty, it means that the estimate is not statistically significant different from zero. 

The table and the figure above show the presence of a month effect. The figure seems to confirm 

the hypothesis that the month in which the match takes place influences the magnitude of 

abnormal returns. Months in which abnormal returns are higher are the ones at the beginning 

of the season (July, August and September). This is probably due to the fact that in these months 

clubs play the play-offs to enter European competitions, and so these matches are incredibly 

important for the balance sheet of the club. Winning in June seems to have a huge positive 

effect on abnormal returns, probably because in June the finals of the European trophies and 

the playouts of some National championship leagues take place. In January and February 

coefficients of ties are not statistically significant and this is probably due to the low number of 

matches that take place in these months. 
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Variable Coefficient Standard error P-value Significance  

Win in 2005 0.001 0.003 0.608   

Lose in 2005 -0.012 0.004 0.003 ***  

Tie in 2005 -0.005 0.004 0.204   

Win in 2006 0.002 0.002 0.213   

Lose in 2006 -0.012 0.003 0.000 ***  

Tie in 2006 -0.003 0.003 0.325   

Win in 2007 0.004 0.002 0.061 *  

Lose in 2007 -0.010 0.003 0.000 ***  

Tie in 2007 -0.005 0.003 0.050 *  

Win in 2008 0.008 0.002 0.000 ***  

Lose in 2008 -0.010 0.003 0.001 ***  

Tie in 2008 -0.002 0.003 0.607   

Win in 2009 0.007 0.002 0.000 ***  

Lose in 2009 -0.012 0.003 0.000 ***  

Tie in 2009 -0.006 0.003 0.022 **  

Win in 2010 0.009 0.002 0.000 ***  

Lose in 2010 -0.012 0.003 0.000 ***  

Tie in 2010 -0.017 0.003 0.000 ***  

Win in 2011 0.005 0.002 0.015 **  

Lose in 2011 -0.017 0.003 0.000 ***  

Tie in 2011 -0.015 0.003 0.000 ***  

Win in 2012 0.003 0.002 0.067 *  

Lose in 2012 -0.009 0.003 0.003 ***  

Tie in 2012 -0.006 0.003 0.038 **  

Win in 2013 0.008 0.002 0.000 ***  

Lose in 2013 -0.015 0.003 0.000 ***  

Tie in 2013 -0.011 0.003 0.000 ***  

Win in 2014 0.007 0.002 0.000 ***  

Lose in 2014 -0.019 0.003 0.000 ***  

Tie in 2014 -0.012 0.003 0.000 ***  

Win in 2015 0.003 0.002 0.206   

Lose in 2015 -0.016 0.004 0.000 ***  

Tie in 2015 -0.008 0.004 0.047 **  

Table 3.9 Results of the robustness check of years. ***, ** and * indicate statistical significance at the 1%, 5% and 10% 
level, respectively. 
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The table and the figure above show that abnormal returns following wins, losses and ties are 

different accordingly to the year in which matches were played. As I wrote before there are 

many variables that can influence the stock price of a club and affect its daily return. So, the 

year effect is probably due to a change in those variables (for example a change in the market 

share of clubs, a change in the income derived from broadcasts, a change in the tax legislation, 

or a change in the normative regarding the player salaries and the player transfers). 

Variable Coefficient Standard error P-value Significance 

Favourite and 
win 

0.004 0.001 0.000 *** 

Favourite and 
loss 

-0.016 0.001 0.000 *** 

Favourite and 
tie 

-0.010 0.001 0.000 *** 

Not favourite 
and win 

0.016 0.002 0.000 *** 

Not favourite 
and loss 

-0.009 0.001 0.000 *** 

Not favourite 
and tie 

-0.003 0.002 0.063 * 

Table 3.10 Results of the model 5. ***, ** and * indicate statistical significance at the 1%, 5% and 10% level, respectively. 

The results of model 5 confirm the hypotheses I made before. Unexpected results have a greater 

impact than the expected ones on the abnormal returns. The effect on the abnormal returns of 

an unexpected win is 1.2% higher than the effect of an expected win. On the other hand, an 

unexpected loss brings the abnormal returns down of 1.6% against the 0.9% of an expected one. 

One can see that the “expected effect” affects also ties (-1% when a favourite club ties, -0.3% 
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Figure 3.3 Results of the robustness check of years. Dark gray bar, black bar and light gray bar represent wins, losses and 
ties respectively. When the bar is empty, it means that the estimate is not statistically significant different from zero. 
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when a not favourite club ties). This fact helps to explain why ties in the previous models have 

a so large negative effect and not a neutral one: the clubs in the sample are first tier clubs and 

they are supposed to win almost every match. Another interesting consideration regards 

expected results. Expected results move in line with model 1 and affect abnormal returns, 

although in a minor way than unexpected results. This means that the price of a soccer teams 

does not incorporate all the information available and reacts to match results even when they 

are expected.  

I will compare now the R2 of the models that I used. 

Model used Adjust R2 (in percentage) 

Model 1 5.529% 

Model 2 4.434% 

Model 3 5.804% 

Model 4 5.573% 

Model 5 6.387% 

Table 3.11 Models’ adjusted R2 calculation. ***, ** and * indicate statistical significance at the 1%, 5% and 10% level, 
respectively. 

The R2 of the models is not very high. There are two main reasons that may explain this fact. 

Firstly, as I wrote before, there are many variables that affect the abnormal returns and all the 

abnormal returns’ behaviour cannot only be explained by the match results. Secondly, the 

sample size is very high (6892 observations) and this makes difficult to have a high R2.  

Even if the R-squared value is low, almost all the predictors of the regression analyzed are 

statistically significant and so, regardless of the R-squared, the significant coefficients still 

represent the mean change in the response for one unit of change in the predictor, holding other 

predictors in the model constant. 

Focusing on the R-squared of the models, one can see that the last model has the higher R2, 

meaning that the inclusion of bet quotes makes the model more fitting to reality. 

 

 

 

 

 



60 

 

3.4 European football competitions 

The European football competitions which the clubs analyzed took part in are two:  UEFA 

Champions League and UEFA Europa League10. They are annual continental club football 

competitions organized by the Union of European Football Associations (UEFA) and contested 

by top-division European clubs. The UEFA regulation states that “the number of teams of a 

specific country into the UEFA Champions League and in the UEFA Europa League is based 

upon the UEFA coefficients of the member associations” (“UEFA. (2012). Regulations of the 

UEFA Champions League 2012-15 Cycle, 2012-13”). These coefficients are generated by the 

results of clubs representing each association during the previous five UEFA Champions 

League and UEFA Europa League/UEFA Cup seasons. The higher an association coefficient, 

the more teams represent the association in the UEFA Champions League and the UEFA 

Europa League, and the fewer qualification rounds the association's teams must compete in. 

3.4.1 The economic importance of European competitions 

In the table below, one can see how much the clubs of the sample have gained in the UEFA 

Champions league and in the UEFA Europa league during the period of analysis. I did not 

include in the analysis the two Danish clubs, Silkeborg and Aarhus, because they did not play 

any European match during the period of analysis. 

 

 

 

 

 

 

                                                           

10 The UEFA Europa League was previously called the UEFA Cup. The competition has been known as the UEFA Europa 
League since the 2009–10 season following a change in format. For UEFA footballing records purposes, the UEFA Cup and 
the UEFA Europa League are considered the same competition, with the change of name being simply a rebranding. 
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Club 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 Total 

Aalborg 0.0 0.0 0.3 12.2 0.0 0.0 0.0 0.0 0.0 3.7 16.2 

Ajax 10.5 0.3 0.00 0.5 1.9 13.4 18.3 21.1 21.6 23.4 110.9 

Besiktas 0.0 0.2 10.0 0.00 21.5 8.9 9.7 0.0 0.0 7.9 58.1 

Borussia 0.0 0.0 0.0 0.0 0.0 4.7 26.6 55.7 34.7 33.5 155.2 

Brondby 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 

Celtic 0.0 15.7 13.0 12.8 2.1 0.0 2.2 24.3 17.6 3.4 91.1 

Copenaghen 0.0 12.2 0.2 0.4 2.0 22.2 1.7 3.5 21.5 2.5 66.3 

Fenerbahce 8.0 0.3 17.3 14.2 5.5 0.0 0.0 11.9 0.0 0.0 57.2 

Galatasaray 0.0 14.0 0.3 0.5 5.3 0.0 0.0 25.5 21.1 18.6 85.3 

Juventus 18.1 0.0 0.0 22.1 22.7 1.9 0.0 67.1 50.1 89.1 271.2 

Lazio 0.0 0.0 16.4 0.0 2.1 0.0 2.9 10.3 9.5 0.0 41.2 

Porto 0.00 11.5 11.6 14.5 19.0 8.0 13.3 20.3 15.5 27.4 141.0 

Roma 0.0 31.1 28.9 26.1 2.4 31.4 0.0 0.0 0.0 47.2 167.1 

Sporting 0.0 7.8 9.1 11.6 2.5 2.2 4.6 2.3 0.0 14.9 55.0 

Trabzonspor 0.0 0.0 0.0 0.0 0.0 0.0 24.2 0.0 7.9 5.1 37.2 

Table 3.12 Total amount per year of the money gained by each team in the period of analysis. Data are expressed in millions 
of Euros. 

The amount of money gained by a team in each year depends on its performance in the 

competition and its national television market allocation. The total amount of money gained in 

these years by the clubs of the sample is over €1200m. In the table below the amount of money 

received are split according to the competition. 
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Club Champions League Europa League Total revenue 

Aalborg 3.74 12.21 15.95 

Ajax 105.33 5.60 110.94 

Besiktas 26.39 21.70 48.09 

Borussia 155.22 0.00 155.22 

Brondby 0.30 0.00 0.30 

Celtic 47.55 30.54 78.09 

Copenaghen 51.43 14.60 66.03 

Fenerbahce 19.97 19.94 39.90 

Galatasaray 65.14 19.80 84.93 

Juventus 218.61 52.60 271.21 

Lazio 22.61 2.09 24.69 

Porto 82.91 46.55 129.46 

Roma 77.29 60.81 138.10 

Sporting 23.63 22.21 45.85 

Trabzonspor 36.34 0.88 37.21 

Total 936.44 309.52 1245.97 

Table 3.13 Total amount of the money gained by each team in the period of analysis, split according to competition. Data 
are expressed in millions of Euros. 

The UEFA Champions League is much more remunerative for a club than the UEFA Europa 

league. In fact during the 2012-15 cycle, clubs in the UEFA Europa League received about €1 

every €4.3 received by clubs in the UEFA Champions League. In 2015 the total participation 

payments reached for the UEFA Champions league was €1.030bn. Each club was entitled to a 

minimum payment of €8.6 for participating in the competition. Additionally, performance 

bonuses were paid for every win (€1m) or draw (€0.5m) in the group stage, as well as for each 

knockout round. The performance bonuses for reaching each knockout round were €3.5m for 

the last 16, an additional €3.9m for the quarter-finals, €4.9m more for the semi-finals, €6.5m 

for the final and €4m for winning the final. Moreover, €492,900,000m derived from the market 

pool were divided according to the proportional value of the national television market allocated 

to each individual club. This incredible amount of money makes crucial for a club to do well in 

this competition. I will now focus the analysis on European matches, to understand whether this 

huge amount of money guaranteed by European competitions affects abnormal returns and 

investors’ behaviour. 
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3.4.2 Application of the models just to the European matches  

I included in the model both the results in the UEFA Europa League and the results in the UEFA 

Champions League in order to understand whether abnormal returns are different according to 

the competition in which the match is played.  

���,� =  ��������� + ���������� + ������� + ��������� + ����������

+ ��������� + ��,� 

Considered that prizes of the UEFA Champions League are considerably higher than the ones 

of the UEFA Europa League, I expect that abnormal returns following a UEFA Champions 

League match are higher than the ones of a UEFA Europa League match. I therefore 

hypothesize that ��, �� and �� will be higher, in absolute terms, than ��, ��and ��. 

I then focused only on the UEFA Champions League matches and I applied the regression 

models discussed in the previous paragraphs.  

 ���,� =  ����,� + ����,� + ����,� + �� 

 ���,� =  �� ��,� �����,� + �� ��,� �����,� + �� ��,� �����,� + �� ��,� �����,� +

�� ��,�  �����,� + �� ��,� �����,� + ��,� 

 ���,� =  �� + �������� + ���������+ �������� + ��������� +

���������� + ���������� + ��,�  

The economic consequences of every single UEFA Champions League match is enormous and 

so I expect that coefficients of the regression will be higher than the ones obtained analysing 

the entire sample of matches.  

3.4.3 Commentary on the results 

Variable Coefficient Standard error P-value Significance 

WinChamp 0.007 0.002 0.009 *** 

LossChamp -0.017 0.003 0.000 *** 

TieChamp -0.012 0.003 0.000 *** 

WinUefa -0.002 0.002 0.369  

LossUefa -0.010 0.003 0.000 *** 

TieUefa -0.005 0.003 0.126  

Table 3.14 Results of the model. ***, ** and * indicate statistical significance at the 1%, 5% and 10% level, respectively. 
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As can be seen, the coefficients of the UEFA Champions League matches are considerably 

higher, in absolute terms, than the UEFA Europa League ones. Moreover, they are even higher 

than the national Championship coefficients calculated in the model 4 of the previous 

paragraph.  This is in line with the hypotheses I made before. Among all the Europa league 

matches, only losing affects in a statistically significant way the market. There are two possible 

reasons to explain this fact. Firstly, the UEFA Europa League is not so much remunerative for 

a club; secondly, the teams of the sample are usually very competitive in Europa League and 

so investors do not reward the positive results of this competition. 

Now I will consider the analysis’s results only of the UEFA Champions League.   

Variable Coefficient Standard error P-value Significance 

WinChamp 0.007 0.003 0.025 ** 

LossChamp -0.017 0.003 0.000 *** 

TieChamp -0.012 0.004 0.001 *** 

Table 3.15 Results of the model 1 applied to Champions League matches only. ***, ** and * indicate statistical significance 
at the 1%, 5% and 10% level, respectively. 

All the results of the UEFA Champions League matches affect the abnormal returns in a 

statistically significant way. All the signs of the coefficient are in line with the ones calculated 

in the previous models and the average impact of a result is high compared to the UEFA Europa 

League matches and national Championship matches. A win guarantees an average positive 

abnormal return of 0.7% while a loss and a tie generate a negative market reaction on abnormal 

returns of -1.7% and -1.2% respectively. 

Variable Coefficient Standard error P-value Significance 

winhome 0.003 0.004 0.392  

winaway 0.014 0.005 0.007 *** 

losshome -0.025 0.005 0.000 *** 

lossaway -0.013 0.004 0.000 *** 

tiehome -0.016 0.005 0.003 *** 

tieaway -0.009 0.005 0.107  

Table 3.16 Results of the model 3 applied to Champions League matches only. ***, ** and * indicate statistical significance 
at the 1%, 5% and 10% level, respectively. 

Even for the UEFA Champions League matches, winning away and losing at home have a 

greater impact on abnormal returns than winning at home and losing away respectively. In 
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particular, losing a match at home, decreases on average abnormal returns of -2.5% while 

winning away has a positive effect on abnormal returns of 1.4%. One can see that here the 

“home effect” is higher than the one calculated in the previous analyses.  

Variable Coefficient Standard error P-value Significance 

Favourite and 
win 

0.001 0.003 0.855  

Favourite and 
loss 

-0.030 0.006 0.000 *** 

Favourite and 
tie 

-0.018 0.005 0.001 *** 

Not favourite 
and win 

0.022 0.005 0.000 *** 

Not favourite 
and loss 

-0.013 0.003 0.000 *** 

Not favourite 
and tie 

-0.007 0.005 0.232  

Table 3.17 Results of the model 5 applied to Champions League matches only. ***, ** and * indicate statistical significance 
at the 1%, 5% and 10% level, respectively. 

Unexpected results have a greater impact on abnormal returns than the expected ones. An 

unexpected loss generates a very negative effect on abnormal returns that go down of the 3% 

while an unexpected win affects positively on abnormal returns, causing a rise of 2.2%. An 

expected win does not generate, on average, a positive market return while an expected loss 

still generates a negative market reaction: investors’ behaviour is strange because they do not 

reward an expected win but they penalize an expected loss. One possible reason of this is that 

investors of a particular team do not care, or care only in part of bet quotes, overestimating the 

winning chance of the club. The market efficiency analysis and the analysis of the abnormal 

returns before matches of chapter 4 will help to answer if these hypotheses are correct. 
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4. Market behaviour before and after matches: investors or 

supporters? 

In the last chapter one can see that there are some ambiguous behaviours of abnormal returns 

and I supposed that a possible explanation for this fact is an inefficiency of the stock market of 

football clubs’ stocks. I hypothesized that investors and supporters who buy or sell football 

clubs’ stocks may overestimate or underestimate the winning chance of a club.  

In an efficient market, all information available before the match is played should be 

incorporated immediately in the stock price. Given this, the results of a match should not affect 

the stock price unless the outcome of the game has been anticipated by the market. In particular, 

according to the efficient market hypothesis, only unexpected events, that is in our case 

unexpected wins and unexpected losses, may generate abnormal returns. In this chapter I will 

try to answer the question of whether the anomalies or the strange asymmetric trend of the 

abnormal returns are effectively due to a market inefficiency caused by an irrational behaviour 

of investors.  

To answer this question I will analyse abnormal traded volumes and abnormal returns before 

and after matches. 

4.1 Efficient or inefficient market? 

The efficiency market hypothesis (EMH) states that the asset price always reflects all available 

information about the value of the firm. The EMH was developed by Fama in 1970 who said 

that, in an efficient market, “…on the average, competition will cause the full effects of new 

information on intrinsic values to be reflected "instantaneously" in actual prices” (Fama, 1970). 

The EHM affirms that economic agents behave in an absolute absence of human emotion in 

investment decision-making. 

Since 1970 the EHM has not been universally accepted by all the economists. In fact, many 

investment professionals are still now very skeptical about it. For example, legendary portfolio 

manager Michael Price argued that “…markets are not perfectly efficient. The academics are 

all wrong. 100% wrong. It’s black and white” (Tanous, 1999, p. 36). Criticism about the 

efficient market has brought to a new concept called behavioural finance. Behavioural finance 

argues that economic decisions of individuals and institutions are not only moved by rationality 

but also by emotional and psychological factors, which affect market prices, returns and the 

resource allocation. Behavioural finance theory’s supporters think indeed that market 
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participants make often irrational systematic errors, which are against the assumption of perfect 

rationality of market participants. These errors creates anomalies in the market because they 

affect prices and returns. 

According to behavioural finance theory, investors are influenced in the estimate of the 

securities by their mood and by external causes which have nothing to do with the basics of 

security. 

There are a lot of empirical and theoretical works explaining the relation between the mood of 

investors and their behaviour in the stock market. These works analyze how the actions of an 

investor are influenced by events happening outside the stock market. The events analyzed in 

literature are numerous and various: they can concern anything from weather conditions and 

level of temperature to the approaching of a holiday period. 

Hirshleifer and Shumway (2003) observed a positive relation between nice weather conditions 

during the day and a positive trend of the stock market. In other studies, instead, a significant 

relation between lunar phases and investors’ behaviour (Yuan, 2002) were analyzed.  Other 

researchers proved how some tragic events, such as acts of terrorism (Drakos, 2010) and 

earthquakes (Shan, 2011) have negative effects in the stock market on the days after these 

disasters.  

Also sports events can be considered events causing anomalies in the behaviour of investors 

because a sports performance, be it positive or negative, has an effect on the mood of a person. 

After a win we feel euphoric, while we can face a wave of pessimism because of a loss. In 1992 

Hirt, Zillmann, Erickson and Kennedy discovered that the students of the University of Indiana 

credited in a better way their scholastic performance after having watched a win of their college 

basketball team than after having watched a loss. In 1992, a study by Schweitzer, Karla, 

Zillmann, Weaver, and Luttrell showed that the thought of a war probability in Iraq in 1990 

was absolutely smaller among the student supporters of a winning team after an American 

football game.  

Some psychological studies have asserted the relation between optimism/pessimism of people 

after a football match. For example, Wann and Dolan (1994) studied how the football results 

of one’s own team condition the mood of supporters influencing their self-esteem and their 

feelings about life.  

In 1987 Schwarz, Strack, Kommer and Wagner showed how the results of two matches of the 

German national football team played during the World Cup in 1982 had been able to influence 

people’s point of view on their disposition and on their national values. Sports events not only 
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influence the mood of people but also their economic behavior, leading a person to make 

irrational decisions. For example, Arkes, Herren and Isen (1988) discovered that the average 

selling of the lottery tickets in Ohio State increased after a win of Ohio State University football 

team. 

Since sports results are able to influence people’s mood and behaviour, it is not possible to rule 

out the possibility that they can influence the financial decisions of an investor, therefore 

weighing on the trend of the stock market. 

Behavioural economists also argues that investors often have unrealistic expectations about the 

future cash flow of the company. The analysis of this inconsistency between expectations and 

reality has seen little attention in literature because it is difficult to measure investors’ individual 

expectations. In sports industry this inability to price precisely a share is frequent and it mainly 

depends on investors’ irrational evaluation. In fact a strong passion for a football team can affect 

the emotional state and the relevant behavioural factors of individuals (Cirillo & Cantone, 

2015). Investors are overly optimistic about the possibility of win of their own team and so 

they, on average, end up disappointed after that the match is played with negative consequences 

for the abnormal returns. This can explain the reason why there is an asymmetric reaction of 

abnormal returns after matches. We saw in the previous chapter how losses have a greater effect 

in absolute value than wins. In particular, the analysis done on the sample evaluating all national 

football championship and European football championship matches has shown that a win leads 

on average to 0.6% increase in the abnormal yield and that a loss makes the yield decrease by 

1.3%. Moreover, when we have analyzed just the sub-sample, including only the UEFA 

Champions League matches, we have seen that the asymmetric reaction is even greater because 

a win leads to 0.7% increase in AR and a loss leads to a 1.7% drop on average. 

Obviously asymmetric reactions are not only a common event in the football sector but they are 

often common in the stock market sector. Skimmer and Sloane (2002) and Trueman, Wong and 

Zhang, (2003) discovered that the share of growth firms and in particular of internet firms also 

reacts in an asymmetric way to unexpected news relating to profits. The average negative 

effects originated by negative news about profits is greater in absolute value than a positive 

effect after the positive news on profits. This finding is in line with the idea that the apparent 

market inefficiency is due to the investors’ inability to assign correct probabilities to event 

outcomes.  

Now I consider the example where a team plays a football play-off match. Hypothesizing that 

after advancing to the next round the share has a fair value of V+ and that a loss and a resulting 
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elimination makes the share value decrease to its fair value V-. Assuming also that the team 

concerned has an objective probability p to win this play-off match and advance to the next 

round and a probability (l-p) to be eliminated, it follows that the real share value should be 

equal to V�  = E(V�) = {p ∗  V + }  +  {(1 − p) ∗  V −},  where E(V1) is the expected value of 

the share after the match.  As one can see from the table below, if investors assign to events the 

correct probability p, V0 will be equal to E(V1) because investors’ ex-ante beliefs are unbiased. 

 

But if investors assign to the winning probability a different value than the objective one, then 

investors beliefs will be biased. Let us assume that an investor is over optimistic about the 

possibility of the team to advance to the next round and for this reason attributes the probability 

of advancing equal to q>p and the probability of an elimination equal to l-q<1-p. 

Then, for this investor, the share value before the match will be considered the fair one when 

V�  = {q ∗  V + }  +  {(1 − q) ∗  V −} but, in this case, it will not be equal anymore to the real 

expected value of the share E(V1). In fact V0q = Eq(V1) > E(V1), meaning that the pre-event 

value V0q which equals the expectation of the post-event value under investors’ subjective 

Figure 4.1 Investors’ ex-ante beliefs are unbiased. Source: Késenne, 2007. 
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probability distribution, is higher than the expected post-event value under the true probability 

distribution E(V1). As a result, the expected change in value around the event is negative. 

Thus, understanding the evolution of stock prices around resolutions of uncertainty is crucial 

for firm value maximization. 

In this chapter I will try to verify if the hypothesis of inadequacy of football market shares, due 

to the irrational behaviour of investors, is reflected in empirical data. To be able to prove this 

hypothesis I will focus on volume analysis and abnormal returns both before and after matches. 

This analysis will be made only for the sample of the matches played in European competitions. 

This decision is due to the fact that European competitions matches produce a more incisive 

effect on stock market and on club evaluation. Moreover the asymmetric behaviour after a 

UEFA Champions League match is remarkable and greater than after a national championship 

match. In addition the UEFA European competitions matches are, in their last stages, knockout 

matches played over two legs with each team as the home team in one leg and the matches are 

played two weeks apart. As the advancement to the following phase only depends on the result 

of the team itself, the share value of the team does not rely on the result of other teams as in the 

national championships and so, there is not an interdependent risk which could contaminate the 

relation tests between the results and the share performances. Besides almost all European 

competition matches are played on Tuesday, Wednesday and Thursday and so there is not a 

potential weekend effect problem, which occurs in national championship matches. 

4.2 Volume analysis before and after matches 

To understand better investors’ behaviour it is important to know if match results provide 

enough information to trade on. It is useful to analyse trading volumes after the match and 

Figure 4.2 Investors’ ex-ante beliefs are biased. Source: Késenne, 2007. 
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compare them with a typical no game day in order to comprehend if investors use information 

derived by match results. 

So, I will define the abnormal trading volume: ������ = ����������,�� −

����������,����, where �������,� represents the trading volume of the day after the match 

and �������,��� represents the trading volume of five market days before the match (that is a 

week before the match). As I wrote before, the decision to calculate the trading volumes 

variation in this way is due to the fact that t-5 is usually a no day game because European 

matches are usually played once every two weeks and almost all the national championship 

matches are played at the weekends. 

First of all I will analyze whether abnormal volumes are statistically significant different from 

zero. In particular, I expect that on the day after a match abnormal volumes are positive, 

meaning that trading volumes after a match are on average greater than the ones on a no day 

match. In the table below it is possible to see the mean of the abnormal volumes of the European 

matches’ sample. 

Variable Coefficient Standard error P-value Significance 

Constant 0.348 0.054 0.000 *** 

Table 4.1. Calculation of the average abnormal volumes after the match. ***, ** and * indicate statistical significance at 
the 1%, 5% and 10% level, respectively. 

As I expected, the results of the table shows that matches have a positive effect on the trading 

volumes. In particular, playing a football match raises trading volumes by 34,80% compared 

with the trading volumes of the week before. 

Now I will analyze if abnormal volumes are influenced by a match result. To do this I will use 

the following regression ������� =  ����,� + ����,� + ����,� + �� where W, L and D are 

three dummy variable indicating whether the club i won, lost or tied the match. I expect that 

abnormal volumes are more influenced by a win and a loss than by a tie. The reason is that 

winning and losing a match are often decisive results, and so more informative for investors 

about the chances to access to the next round than a tie. The results of the regression are shown 

in the table below. 
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Variable Estimate Standard error P-value Significance 

win 0.464 0.082 0.000 *** 

loss 0.425 0.093 0.000 *** 

tie 0.051 0.108 0.638  

Table 4.2 Calculation of the impact of wins, losses and ties of the UEFA European matches on abnormal trading volumes. 
***, ** and * indicate statistical significance at the 1%, 5% and 10% level, respectively. 

As one can see, winning a match increases on average the abnormal volumes by 46.4% while 

losing a game increases them by 42.5%. From the regression results it seems that a tie does not 

have a statistically significant effect on abnormal volumes. This result is in line with the 

hypothesis I made before: a tie is a neutral results that guarantee less information than a win 

and a loss. 

Now I will analyze whether the type of European competition also affects the abnormal 

volumes. In order to do so, I will introduce in the model two dummy variables, indicating 

whether the match is played in the UEFA Europa League and the UEFA Champions League. 

The regression then becomes: ������� =  ����������������� +

�������������� + ��. I expect the UEFA Champions League matches have a higher impact 

on abnormal volumes than the UEFA Europa League’s ones. The reason is that the UEFA 

Champions League is the most important European competition for clubs and, as I wrote in the 

previous chapter, it is extremely remunerative for a club. The results of the regression are shown 

in the table below. 

Variable Coefficient Standard error P-value Significance 

Champions League 0.506 0.076 0.000 *** 

Europa League 0.191 0.075 0.011 ** 

Table 4.3. Calculation of the impact of the UEFA Champions League and the UEFA Europa League matches on abnormal 
volumes on the day after the match. ***, ** and * indicate statistical significance at the 1%, 5% and 10% level, respectively. 

The results point out that also the type of competition affects abnormal volumes. In fact when 

a club plays a UEFA Champions League match, its abnormal volumes rise on average by 50.6% 

and they rise by 19.1% when the club plays a UEFA Europa League. These results are in line 

with the hypotheses I made before. 

Now I will add to the previous regression the results of the two competitions. In this way, I 

want to understand whether match results affect abnormal volumes differently according to the 

competition played. The results in the last table suggest, again, that wins and losses in the UEFA 

Champions League influence abnormal volumes strongly compared to the UEFA Europa 

League’s ones. Even now, I hypothesize a neutral effect of ties on abnormal volumes. The 
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regression used is the following: ���,� =  ��������� + ���������� + ������� +

��������� + ���������� + ��������� + ��,� and the results are shown in the table below.  

Variable Coefficient Standard error P-value Significance 

WinChamp 0.710 0.130 0.000 *** 

LossChamp 0.483 0.131 0.000 *** 

TieChamp 0.144 0.165 0.384  

WinUefa 0.228 0.117 0.052 * 

LossUefa 0.349 0.147 0.018 ** 

TieUefa -0.018 0.155 0.905  

Table 4.4 Calculation of the impact of wins, losses and ties on the abnormal volumes of the day after the match. The 
calculation is made for both the UEFA Champions League matches and for the UEFA Europa League ones. ***, ** and * 
indicate statistical significance at the 1%, 5% and 10% level, respectively. 

As expected, wins and losses in the UEFA Champions League move abnormal volumes in a 

stronger way than wins and losses in the UEFA Europa League. In particular, winning and 

losing a match of the UEFA Champions League raise the abnormal volumes by 71.0% and 

48.3%, respectively, while abnormal volumes rise by 22.8% and 34.9% when a club wins or 

loses in the UEFA Europa League. Even now, ties do not affect in a statistically significant way 

abnormal volumes. 

Now I will analyze how unexpected results in the two competitions affect abnormal volumes. 

Of course, I hypothesize that unexpected wins and unexpected losses have a greater impact on 

abnormal volumes. As I wrote in the previous paragraph, according to efficient market 

hypotheses, only unexpected results should have an impact on stock’s returns and so one should 

also see an increase in the trading volumes when these unexpected events occur. 

The regression used is: 

 ��������,� =  �������������� + ���������������+ �������������� +

��������������� + ���������������� + ����������������� +

������������ + �������������+ ������������ + ������������� +

�������������� + ��������������� + ��,�  

where ChampL and Eurl are two dummy variables indicating if the match was played in the 

UEFA Champions League or in the UEFA Europa League, respectively, and fav and Nfav are 

two dummy variables indicating if the club before the match was favourite or the underdog, 

respectively. Results are shown in the table below. 
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Variable Coefficient Standard error P-value Significance 

FavWinChamp 0.594 0.153 0.000 *** 

FavLossChamp 0.911 0.271 0.001 *** 

FavTieChamp -0.036 0.231 0.876  

NfavWinChamp 1.005 0.244 0.000 *** 

NfavLossChamp 0.354 0.149 0.017 ** 

NfavTieChamp 0.330 0.235 0.160  

FavWinUefa 0.183 0.131 0.162  

FavLossUefa 0.727 0.241 0.003 *** 

FavTieUefa -0.170 0.192 0.376  

NfavWinUefa 0.407 0.259 0.117  

NfavLossUefa 0.127 0.185 0.495  

NfavTieUefa 0.310 0.256 0.227  

Table 4.5 Calculation of the impact of wins, losses and ties on the abnormal volumes on the day after the match. The 
calculation is made for both the UEFA Champions League matches and for the UEFA Europa League ones and it considers 
whether the club was favourite or the underdog before the match. ***, ** and * indicate statistical significance at the 1%, 
5% and 10% level, respectively. 

The results of the regression restate that wins and losses in the UEFA Champions League 

always have a positive impact on abnormal volumes. This thing do not happen in the UEFA 

Europa League where only unexpected losses increase abnormal volumes in a statistically 

significant way (+72.7%). 

The important results of the regression is that in the UEFA Champions League, unexpected 

results have a huge effect on trading volumes: in fact, an unexpected loss raises abnormal 

volumes by 91.1% and an unexpected win raises them by 100.5%. It is interesting that also 

expected wins and losses have a strong effect on trading volumes (+59.4% and +35.4%, 

respectively). This means that in the UEFA Champions League also expected results supply 

enough information for an investor to trade on and this is not in line with the efficient market 

theory. 

Let us focus our attention on the analysis of trading volume variations on the day before the 

match of European competitions. The definition of abnormal volumes is more or less the same 

as before ������� = ����������,�� − ����������,���� with the only difference that t is 

now the day of the match11 and not the day after the match. As I wrote in the first paragraph, 

investors should modify the stock price of a club according to the probability that they associate 

                                                           

11 The trading market closes before the match is played. 
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with wins and losses, and so I expect that also trading volumes on the day of the match are 

higher than trading volumes on a typical no game day. 

The table below shows the average abnormal volumes on the day of the match.  

Variable Coefficient Standard error P-value Significance 

Constant 0.166 0.057 0.004 *** 

Table 4.6. Calculation of the average abnormal volumes on the day of the match. ***, ** and * indicate statistical 
significance at the 1%, 5% and 10% level, respectively. 

The result of the regression shows that the average abnormal volumes is positive (+16.6%), 

meaning that, on average, the trading volumes on the day of the match are greater than the ones 

of a no day game. Abnormal volumes are positive and statistically significant but they are 

smaller than the ones of the day after the match (+34.8%). This means that investors prefer 

waiting for the results of the match instead of trading with the uncertainty of the results. 

Let us analyze if, even in this case, abnormal volumes are influenced by the type of competition 

that the club faces. I will use the following regression: ������� =  ���ℎ������� +

�������������� + �� and results are shown in the table below. 

Variable Coefficient Standard error P-value Significance 

Champions 0.335 0.081 0.000 *** 

EuropaL -0.003 0.081 0.971  

Table 4.7. Calculation of the impact of the UEFA Champions League and the UEFA Europa League matches on abnormal 
volumes on the day of the match. ***, ** and * indicate statistical significance at the 1%, 5% and 10% level, respectively. 

One can see that only abnormal volumes in the UEFA Champions League matches are 

statistically significant (+33.5%). So, investors on average, use pre-match information to trade 

only when the club is involved in a UEFA Champions League match. Even in this case 

abnormal volumes on the day of the match are smaller than the ones of the day after the match 

(33.5% and 50.6%, respectively). 

Finally, I will analyze whether the betting odds affect the abnormal volumes. In particular, I 

will introduce to the previous regression two dummy variables indicating if the club is favourite 

or not (Fav and Nfav, respectively). The regression used is ��������,� =  ����������� +

������������ + ��������� + ���������� + ��,�. The results of the regression are 

illustrated in the table below. 
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Variable Coefficient Standard error P-value Significance 

FavChamp 0.397 0.115 0.001 *** 

NfavChamp 0.275 0.114 0.016 ** 

FavEurL 0.080 0.100 0.424  

NfavEurL -0.158 0.135 0.243  

Table 4.8 Calculation of the impact of being favourite or the underdog before the match on the abnormal volumes on the 
day of the match. The calculation is made for both the UEFA Champions League matches and for UEFA Europa League 
ones. ***, ** and * indicate statistical significance at the 1%, 5% and 10% level, respectively. 

One can see that, again, only in the UEFA Champions League matches abnormal volumes are 

statistically positive. In particular, the fact of playing a match in this competition and of being 

favourite, has a positive effect on abnormal volumes (+39.7%). On the other hand, being an 

underdog raises abnormal volumes by 27.5%. So, investors prefer to use the pre-matches 

information to trade favourite teams than underdogs. 

All these tables’ results has helped us to understand better the behaviour of investors, in 

particular we have seen that investors prefer to know match results before trading and that 

abnormal volumes are statistically positive only for the UEFA Champions League matches. 

Another important result obtained is that investors do not trade only when the club faces an 

unexpected result, but also when it faces an expected one. 

Obviously, abnormal volumes’ analyses can make us understand only a little part of the 

investors’ behaviour and for this reason, we need to complete the analysis with the study of the 

abnormal returns before and after matches.  

4.3 Analysis of the abnormal returns before and after matches 

In the first paragraph I wrote that investors probably overestimate, before a match, the winning 

chance of a club with the consequence that they, on average, end up disappointed after the 

match. This hypothesis is against the efficient market hypothesis that assumes that investor are 

rational and do not make systematic mistakes.   

This hypothesis can be verified by an empirical analysis of the abnormal results before and after 

a match. In chapter three I estimated how match results are able to affect in a statistically 

significant way the abnormal returns on the day after the matches. In this paragraph, I will not 

focus again on this kind of relation but I will analyze the trend of the abnormal returns of 

favourite clubs and underdogs. This analysis will help us to understand whether investors 

behave in a different way according to the bet odds of a club. In particular, the analysis of the 

abnormal returns before the match takes place can explain if investors effectively overestimate 
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the winning chances of a club. On the other hand, the analysis of the abnormal returns after the 

match can show how great the disappointment ex post is. 

In an efficient market, an investor should be able to exploit all available pre-match information 

to move the stock’s price in a proper way. From chapter three results, we know that, on average, 

a win is positive correlated with abnormal returns, while losses and ties are not. Knowing that, 

an investor should buy before the match stocks of clubs that are expected winners and should 

sell the stocks of clubs that are expected losers. For this reason, before a match the stock price 

of a favourite club should rise, while the stock price of an underdog should decrease. 

I will now analyze the abnormal return of clubs before the match in order to verify if the 

reasoning I made before is confirmed by data. 

The regression used is ���,��� =  ����� + ������ + + ��,���  where ���,��� is the abnormal 

return of the club i on the day of the match and Fav and Nfav are two dummy variables 

indicating if the club is favourite or not favourite according to bet odds. So, I expect that �� 

will be greater than zero and that �� will be negative.  The results of the regression are shown 

in the table below. 

Variable Coefficient Standard error P-value Significance 

Favorite 0.006 0.002 0.007 *** 

Not favorite 0.004 0.002 0.106  

Table 4.9 Calculation of the impact of being favourite or the underdog before the match on the abnormal returns on the 
day of the match. ***, ** and * indicate statistical significance at the 1%, 5% and 10% level, respectively. 

The results of the table show that being a favourite club before the match makes the abnormal 

returns rise (+0.6%) and this is in line with my expectations. Results of not favourite clubs are 

instead surprising because the �� coefficient is positive, even if not statistically significant 

different from zero. So, �� result is not the one I expected, meaning that the stock price of 

underdogs does not fall before the match. This result may be due to the fact that investors do 

not behave in a rational way and they overestimate the winning chances of the underdog club. 

Now I will introduce in the model two dummy variables indicating in which competition the 

match takes place (the UEFA Europa League and the UEFA Champions League). As we saw 

in the previous chapter, abnormal volumes of these two competitions are very different and so 

I expect that even abnormal returns can diverge. The regression used becomes:  ���,��� =

 ����������� + ������������ + ��������� + ���������� + ��,���.  
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I expect that, if an irrational behaviour of investors occurs, it will occur more intensely in the 

UEFA Champions League matches, because this competition is the most important football 

club competition and so more able to make the investor irrational. The results are illustrated in 

the table below. 

Variable Coefficient Standard error P-value Significance 

FavChamp 0.007 0.003 0.0253 ** 

SfavChamp 0.007 0.003 0.0242 ** 

FavEurL 0.005 0.003 0.1037  

SfavEurL -0.001 0.004 0.8855  

Table 4.10 Calculation of the impact of being favourite or the underdog before the match on the abnormal returns on the 
day of the match. The calculation is made for both the UEFA Champions League matches and for the UEFA Europa 
League ones. ***, ** and * indicate statistical significance at the 1%, 5% and 10% level, respectively. 

The results of the table are very interesting. We see that the UEFA Europa League matches do 

not affect in a significant way the abnormal returns of clubs before the match. As it happened 

for abnormal volumes, it seems that investors are not particularly interested in the UEFA 

Europa League competition. This is probably due to the fact that the UEFA Europa League 

competition is considered a minor European competition, both because it guarantees lower 

prices and because the clubs that take part in it are weaker than the clubs playing in the UEFA 

Champions League. 

On the other hand, as regards the UEFA Champions League results, we can see that being 

favourite or not affects abnormal returns in the same positive way (+0.7%). These results are 

astonishing because we were expecting negative abnormal returns for the not favourite clubs 

but they are statistically positive and equal to the ones of the favourite clubs. So, it really may 

be the case in which investors, probably moved by passion and hope of a victory, completely 

overestimate the winning chances of underdog clubs and they buy their stocks in the financial 

market.  

These strange results made me investigate whether this behaviour of investors is only present 

on the day of the match or even on the days before the match. So I have analyzed the abnormal 

returns on the day before the match in order to understand better the behaviour of investors. 

The model used is almost the same that was used before:  ���,��� =  ����������� +

������������ + ��������� + ���������� + ��,���, with the only exception that now 

I analyze the abnormal returns on the day before the match (���,���) instead of the ones on the 

day of the match. Results of the regression are shown below. 
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Variable Coefficient Standard error P-value Significance 

FavChamp 0.0051 0.0027 0.0582 * 

SfavChamp -0.0058 0.0026 0.0282 ** 

FavEurL 0.0013 0.0023 0.5727  

SfavEurL -0.0015 0.0031 0.6337  

Table 4.11 Calculation of the impact of being favourite or the underdog before the match on the abnormal returns on the 
day before the match. The calculation is made for both the UEFA Champions League matches and for the UEFA Europa 
League ones. ***, ** and * indicate statistical significance at the 1%, 5% and 10% level, respectively. 

Even in this case, as before, being favourite or not for a UEFA Europa League match has not a 

statistically significant impact on abnormal returns.  The results of the UEFA Champions 

League are now finally in line with the efficient market hypothesis, which see the abnormal 

returns before the match raise when a club is favourite and fall when it is underdog. In fact �� 

is statistically positive (+0.51%) and �� is statistically negative (-0.58%). 

I will now analyze the cumulative behaviour of the abnormal returns in these two days before 

the match takes place. I define CUMAR as the sum of ���,���  and ���,���. So, ������,��� =

���,��� + ���,���. So the regression becomes: ������,��� =  ����������� +

������������ + ��������� + ���������� + ��,���. 

Variable Coefficient Standard error P-value Significance 

FavChamp 0.012 0.004 0.003 *** 

SfavChamp 0.001 0.004 0.755  

FavEurL 0.006 0.004 0.108  

SfavEurL -0.002 0.005 0.677  

Table 4.12 Calculation of the impact of being favourite or the underdog on the cumulative abnormal returns before the 
match. The calculation is made for both the UEFA Champions League matches and for the UEFA Europa League ones. 
***, ** and * indicate statistical significance at the 1%, 5% and 10% level, respectively. 

The results in the table show that even in this case, the UEFA Europa League matches do not 

affect in a statistical significant way cumulative abnormal returns. This was expected because 

neither ���,���  nor ���,��� where affected by this type of European competition. 

As regards the UEFA Champions League we can see now, that only for favourite clubs there is 

a positive significant relationship with cumulative abnormal returns (+1.2%). For underdogs 

the relationship is not statistically significant anymore. This is due to the fact that the positive 

abnormal returns on the day of the match are cancelled out by the negative ones on the day 

before the match.  
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These results are however still not in line with efficient market hypothesis because, as I wrote 

before, in an efficient market, the pre-match abnormal returns of underdog clubs should be 

negative, while here, they are just statistically equal to zero. 

In particular, we have seen that there is an overconfidence effect about the winning chance of 

underdogs on the day of the match, and this drives up their cumulative abnormal returns. So, I 

will expect that the ex-post abnormal returns for underdogs will be negative because investors, 

on average, will be disappointed after the match and will regret their pre-match behaviour. 

The cumulative abnormal returns of favourite clubs are very high (+1.2%) and so, it is possible 

that also the winning chances of favourite clubs are overestimated by investors before the match 

but we can only know it by looking at their abnormal returns after the match. 

If investors overestimated the winning chances of favourite clubs, the abnormal returns of these 

clubs after the match would be negative, while if overestimation did not occur, the abnormal 

returns would be zero. 

So, it is necessary to focus attention on the abnormal returns trend after the match, in order to 

verify whether overestimation occurs also for favourite clubs. 

Therefore I will use the regression:   ���,� =  ����� + ������ + + ��,� where ���,� is the 

abnormal return of a club i  after the match is played. The results are shown in the table below. 

Variable Coefficient Standard error P-value Significance 

Favourite -0.008 0.002 0.000 *** 

Not favourite -0.003 0.002 0.142  

Table 4.13 Calculation of the impact of being favourite or the underdog before the match on the abnormal returns on the 
day after the match. ***, ** and * indicate statistical significance at the 1%, 5% and 10% level, respectively. 

The results in the table show that being favourite before a match lower the abnormal returns on 

the day after the match (-0.8%). This means that overestimation of the winning chances also 

occurs for favourite clubs, and that this overestimation is even stronger than the overestimation 

of the underdogs (having a negative but not statistically significant ex post abnormal return of 

0.3%).  

Now I will introduce in the regression the two dummy variables indicating the type of European 

competitions played and the regression becomes:  

���,� =  ����������� + ������������ + ��������� + ���������� + ��,�. 

What I expect for underdogs playing in the UEFA Champions League is that their abnormal 

returns will be negative because, as we found out before, there had been an overestimation of 
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underdogs’ winning chances (in fact the cumulative abnormal returns are not negative in a 

statistically significant way). 

Moreover I expect that the abnormal returns of favourite clubs will be negative, because the 

results in the last table suggest that overestimation of winning chances also occur for these 

clubs. The results of the regression are shown in the table below. 

Variable Coefficient Standard error P-value Significance 

FavChamp -0.008 0.002 0.000 *** 

SfavChamp -0.004 0.002 0.096 * 

FavEurL -0.006 0.004 0.113  

SfavEurL 0.000 0.003 0.856  

Table 4.14 Calculation of the impact of being favourite or the underdog before the match on the abnormal returns on the 
day after the match. The calculation is made for both the UEFA Champions League matches and for the UEFA Europa 
League ones. ***, ** and * indicate statistical significance at the 1%, 5% and 10% level, respectively. 

The results in the table confirm my previous hypotheses. In fact the abnormal return of the 

underdogs which played in the UEFA Europa League is, on average, negative in a statistically 

significant way and it is equal to -0.4%. 

We can also see that both favourite and underdog clubs which played in the UEFA Champions 

League have a negative statistically significant market abnormal return the day after the match. 

So, as I wrote before an overestimation of the winning chances of a club occurs in the UEFA 

Champions League not only for underdogs but also for favourite clubs (which have an average 

cumulative abnormal return of +1.2% before a UEFA Champions League match is played). 

I will now analyze whether this negative effect of overestimation occurs only the day after the 

match or it persists even two days after the match. 

The regression becomes: ���,��� =  ����������� + ������������ + ��������� +

���������� + ��,��� where ���,��� is the abnormal return two days after the match. The 

results are illustrated in the table below. 

Variable Coefficient Standard 
error 

P-value Significance 

FavChamp -0.005 0.002 0.017 ** 

SfavChamp 0.000 0.002 0.841  

FavEurL 0.000 0.002 0.979  

SfavEurL -0.001 0.002 0.724  

Table 4.15 Calculation of the impact of being favourite or the underdog before the match on the abnormal returns  two days 
after the match. The calculation is made for both the UEFA Champions League matches and for the UEFA Europa League 
ones. ***, ** and * indicate statistical significance at the 1%, 5% and 10% level, respectively. 
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The results of the table show that the disappointment effect for the favourite clubs lasts two 

days after the match. This is proved by the fact that �� coefficient is negative in a statistically 

significant way (-0.05%). 

The other coefficients of the regression are statistically equal to zero, meaning that for the 

UEFA Europa League clubs and the underdog clubs playing in the UEFA Champions League, 

the ex-post regret is all absorbed the first day after the match. 

To summarize, regression results show that Europe football market stock price is inefficient 

because investors, on average, overestimate on the two market days before the match the 

winning chances of clubs and this overestimation increases abnormal returns excessively. The 

effect of the overestimation is that, on the day after the match, the abnormal returns of football 

clubs are, on average, negative, reflecting the disappointment and the regret ex-post. 

Overestimation of winning chances of clubs occur so frequently because, as I wrote in chapter 

1, those who buy or sell football clubs’ stocks are rarely professional investors, but instead they 

are often supporters of the club, and so more irrational and impulsive. 
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Conclusion 

In this empirical work I have analysed the relationship between soccer match results and stock 

returns of listed European soccer teams and investigated if the stock market of football clubs is 

efficient. 

Considering the sample of national and European matches the results obtained are in line with 

the assumptions made, in fact it is highlighted that a win averagely entails an increase of 

abnormal returns (+0.6%), while a loss and a tie have a negative impact on the market (-1.28% 

and -0.8% respectively).  

This kind of relationship between match results and abnormal returns was, in fact, predictable 

because although match results are not actual cash flows, they have an effect on the stock prices 

of clubs since wins raise future cash flows and the value of the football club in several ways. 

Analysing only Champions League matches it has become clear that European sport results 

have an increased effect on abnormal returns: winning guarantees an average positive abnormal 

return of 0.7% while losing and tying generate a negative market reaction on the abnormal 

returns of -1.7% and -1.2%, respectively. The stronger effect on abnormal returns of the results 

in the UEFA Champions League compared to the effect on abnormal returns of the results in 

national championships is due to the fact that the UEFA Champions League is a very profitable 

competition for a club, as both prizes and television rights arising from UEFA Champions 

League matches are certainly much higher than stemming arising from national championship 

matches.  

The inclusion of football betting odds in the regression models has proved very useful because 

it has been possible to catch the expectations of supporters and investors, after splitting the 

results in expected and unexpected. As I hypothesized the results have highlighted that 

unexpected results have a greater effect on the abnormal returns than the expected ones. This is 

due to the fact that the unexpected results are against the prevision of the market and so it is 

quite reasonable a strong price correction after this kind of results. However, there is a clear 

asymmetric reaction of the abnormal returns after matches because losing a match has a stronger 

effect, in absolute terms, than winning a match. For example in the UEFA Champions League 

an unexpected loss generates a very negative effect on the abnormal returns that go down by 

3% while an unexpected win affects positively abnormal returns, causing a rise of 2.2%. On the 

other hand, an expected win does not affect in a statistically significant way abnormal returns, 

while an expected loss generates a negative market reaction on abnormal returns of 1.3%. This 
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is clearly caused by a market inefficiency due to an irrational behaviour of investors that do not 

correctly process all the available information while forming their expectations of a company’s 

future performance. 

An important result of this empirical work has been to demonstrate that the European football 

market price is an inefficient market, because investors on average tend to overestimate the 

possibilities of win of a team, with an exaggerated increase of abnormal returns of the team on 

the days before the match. 

In an efficient market a rational investor will buy, before the match, stocks of clubs that are 

expected winners and will sell the stocks of clubs that are expected losers since wins are 

positively correlated with abnormal returns, while losses and ties are not. For this reason, before 

a match the stock price of a favourite club should rise, while the stock price of an underdog 

club should decrease. 

On the contrary the results of the analysis show that on the day of the match of the UEFA 

Champions League, abnormal returns of clubs rise in a significant way of +0.7% both for 

favourite clubs and underdog ones. The effect of this overestimation is that, because of an ex 

post disappointment effect, abnormal returns on the day after the match are, on average, 

negative in a statistically significant way for underdog clubs (-0.4%). 

Interestingly enough also abnormal returns of favourite teams are on average negative (-0.7%). 

This is probably due to the fact that overestimation occurs also for favourite clubs. Cumulative 

abnormal returns of two days before the match are +1.2%, which is probably an excessive value. 

So, overestimation of win probability occurs both for favourite and underdog clubs and it may 

depend on the fact that those who buy or sell football club stocks are generally not professional 

investors but supporters, typically more irrational and impulsive. 

I have focused on the relationship between football results and abnormal returns, but of course 

there are also other many drivers that can influence the stock price of a club and affect its daily 

returns such as its market share, the income from broadcasts, the popularity in the media, the 

players’ salaries and the players’ transfer prices. Other variables, which can influence the stock 

price, are the country index, contract duration of players, contract duration of coaches and 

results of international matches. Therefore, I do not expect that all the amount of abnormal 

returns is only explained by match results.  

Even if the purpose of this work was not to create an investment portfolio or to identify a trading 

strategy, the results obtained may be very important because they can offer investors guidelines 

to be followed. For example professional investors should go short on football stocks before 
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the match is played, in order to earn money exploiting the ex post disappointment effect. In this 

way, they can take advantage of the average excessive increase of football stock prices before 

the match, caused by the overestimation of the probability of win of clubs from no professional 

investors. 

However,  it  should  be  noted  that  suggesting  trading  strategies  at  this  point  remains 

speculative, since in my analysis I have not considered transaction costs. A possible extension 

of this empirical work might be to try to analyze the profits an investor can obtain when 

transaction costs in the model are included in the analysis. 

In this work I have verified that brand distortions also occur in financial markets, because the 

power of a brand can influence the mood and the behaviour of investors, who are guided in 

their choices more by their feelings and personal expectations than by rationality. 
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