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Introduction

The assessment of weather extremes is matter of paramount importance in engi-

neering and a cornerstone in the field of hydrology. The design of any civil work

meant to manage water resources is based on a proper understanding of the risk

of the occurrence of events whose magnitude would cause the system’s failure,

possibly causing harm to human well being or the environment. The task is not

easy, since the amount of available historical observations is always limited and

often the design purposes require extrapolation outside the range of the data at

hand. Standard methodology to tackle the problem consists in the adoption of

asymptotic models to describe the distribution of the extreme values of the natual

process at hand. Hence, a suitable model is fitted to the available data and forecast

is then possible on the basis of the inferred model. Despite the vast number of

studies that in the last century have contributed to define the Classical Extreme

Value theory (EVT), the problem is somehow still open.Traditional methods fail

with an embarassing frequency and lead, in several circumstances, to serious un-

derestimation of the occurrence of extremes. The shortcoming of this methods

is inborn in the nature of the problem itself: when we study the extremes of a

given process, we do not deal with the bulk of its probability distribution, but

with the tails, where only a small fraction of the observations lie. For this reason,

the uncertainties involved play a key role and may lead to severe errors in high

quantiles estimations. Some authors (e.g. Coles, 2002) argue that the most natu-

ral approach to takle these uncertainties is to adopt a Bayesian estimation of the

parameters of the extreme value distributions. The advantage of this approach

is that the parameters of the distribution are considered as random variables and

the outcome of the analysis yields the entire posterior distribution of the param-

eter set. On the other hand, the Bayes’ Law requires the knowledge of the prior
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distribution of the parameters, representing our belief priory to the information

conveyed by the available data. The shortcoming of the method is that in the case

of rainfall extremes such a prior information is missing and therefore there is no le-

gitimate reason to rely on other than the available observations. The present work

is based on a different approach: If we assume the random process to be ergodic

(i.e. its dinamics represents the entire space of all the system’s states, referred

to as phase space) then we can estimate the distribution of the parameters by

fitting a distribution to all the single years of a given window, obtaining a sample

of estimated parameters which gives us some information about the distribution

of the parameters themselves. This approach is referred to as ’Metastatistics of

Extreme Values’ (Marani and Ignaccolo, 2014) since the higher order randomness

inborn in the estimated parameters is explicitely taken into account. Moreover,

this new framework allows to remove the asymptotic hypothesis and to consider

the cardinality of the process (i.e. the number of events per year) to be a random

variable as well; In this way the probability distribution of the annual maxima

can be described in a fully probabilistic way. The goal of the present work is to

compare the performance of this new Metastatistic approach with the traditional

models used to describe extreme rainfall events in a stationary framework. The

dissertation is structured as follows: Chapter 1 consistes in a brief summary of

the classical extreme value statistics, deriving the three limiting probability laws

and describing the two main methods currently used to model the tail of rainfall

distributions, namely the annual maxima approach (AM) and the point process

methods, e.g. the Peak Over Threshold (POT) method. In chapter 2 an alterna-

tive derivation of the limiting distributions is derived and its application explored,

evalutating the possibility to remove the asymptotic assumption and to use the so

called Penultimate Approximation instead of the classical asymptotic probability

laws. In chapter 3 the Metatstatistical distribution of Extreme Values (MEV) is

introduced, removing some of the hypotheses on which the classical theory relies,

and discuss its applications in the context of daily rainfall analysis. Chapter 4

describes the data sets used in the analysis and reports some statistical tools used

to obtain a first characterization of the tail behaviour of the rainfall records. In

chapter 5 the more common fitting methods for Weibull, Generalized Pareto and

Generalized Extreme Value distributions are discussed and compared. In chapter
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6 MEV and GEV performances are compared in the context of stationary extreme

rainfall analysis. The chapter opens describing the method implemented to obtain

a benchmark of the two models in a stationary framework and then the main re-

sults of the application are presented. In the last chapter a possible application

of the MEV approach in a non-stationary framework is discussed, analyzing the

interannual variability of rainfall extremes. The Metastatistical approach is spec-

ulated to be the most natural and robust way to incorporate nonstationarities or

climatic covariates in extreme rainfall analysis.
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Chapter 1

Classical extreme value theory

1.1 A brief history of extreme values analysis

The statistical analysis of extreme values originated by the pioneering paper of

Fischer and Tippett (1928) in which the extreme value theorem was first stated

and the three fundamental limiting distributions were defined. Their findings were

later strengthened by Von Mises, who in 1936 first proposed the expression of the

Generalized Extreme Value distribution and identified the convergence conditions

for the three limiting laws. The Extreme Value Theorem was then proved in the

general case by Gnedenko in 1943. He also enunciated more formally the condi-

tions for the weak convergence to the limiting laws, defining the corresponding

domains of attraction. A lot of further contributions followed, refining the asymp-

totic theory and establishing the rate of convergence to the asymptotic laws for a

wide range of distribution functions. Among others, the work of Gumbel (1958) is

worth to be mentioned. Gumbel applied the extreme value methods to the statisti-

cal modelling of floods and spread the interest for this subject among hydrologists

and practicioners engineers. In the seventies, the developement of the Peak Over

Threshold method by Balkema and De Haan (1974) and then Pickands (1975) was

a major leap in EV analysis which had deep impacts on hydrological applications.

In the last two decades EV analysis has seen a widening range of applications in

diverse fields such as insurance and finance, where the traditional modelling based

on light tails was proved to fail in several circumstances (e.g. Mandelbrot and

Taleb, 2005). Numerous contributions and theoretical progresses followed in the
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last decade. The main question remains which of the three limiting distributions

should be used to model a given data set, yet some authors proposed different

approaches to tackle the problem. Just to mention some of these newest contri-

butions, recently Cook and Harris (2004) pointed out that relying on asymptotic

models it is unnecessary and often may lead to significant errors in high quantile es-

timation; Instead, they proposed to use the penultimate approximation in order to

reduce the error. Coles (2002) compared classic and Bayesian parametric estima-

tors for the extreme value distributions and found that using a fully probabilistic

approach, i.e. considering a second order randomness in the estimated parame-

ters is the most natural approach and may lead to more accurate extreme rainfall

appraisals. The debate in this fascinating field is still open and an actual ’battle

of the extreme value distributions’ is being fought (Papalexiou and Kudsoyiannis,

2013; Serinaldi and Kilsby, 2013) and the winner is still to be declared.

1.2 Extreme value theorem

Suppose X1, ..., Xn are random variables with a common cumulative distribution

function (CDF ) given by F (x) = P (Xj ≤ x) ∀j = 1, ..., n, ∀x ∈ Ω, where Ω is

the common population of all the Xi. If Xi, Xj are independent for any i 6= j, then

the distribution function of the maximum Mn = max {X1, ..., Xn} with cardinality

n is given by the nth power of F (x):

P (Mn ≤ x) = Fn(x) = F (x)n (1.1)

The classical extreme value theory focuses on the asymptotic behaviour of this

distribution, where the term ’asymptotic’ refers to the weak convergence, or con-

vergence in distribution. However the value of x sampled from the population of

the random variable Ω, 0 < F (x) < 1 holds for definition of CDF . Hence, when

n −→ ∞, F (x)n −→ 0. Thus, if we want to know the behaviour of such a dis-

tribution for large sample sizes we have to renormalize it by defining a family of

series scaling costants an and bn in order to obtain a nongenerate distribution (say,
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H(x)) for large n:

P

(
Mn − bn
an

≤ x

)
= P (Mn ≤ an · x+ bn)

= F n(Mn ≤ an · x+ bn)

= −→ H(x) as n −→∞

It turns out that there are only three types of limiting distributions H(x), the Gum-

bel, Frechet and Weibull distributions. This result is referred to as ’Extremal Types

Theorem’ and was for the first time enunciated by Fischer and Tippett (1928) and

later proved by Gnedenko (1943). Central to the understanding of this theorem

are the two concepts of Type of a distribution and of Max-stable distribution.

Definition 1.1 Two distribution functions H1and H2 are said to be of the same

type if one can be transformed into the other through a linear trasformation

H1(x) = H2(ax+ b) where a > 0 and b ∈ R are two suitable constants.

Definition 1.2 A non degenerate probability distribution function F is said to

be a Max-Stable distribution if for a sequence of independent and identically dis-

tributed (i.i.d.) random variables (Xi)i∈N with common distribution F , and for

each n ∈ N , there exist an > 0 and bn ∈ R such that Mn−bn
an

also has distribution

F . In other words, a CDFF (x) is Max-Stable if, for each n ∈ N , there exist an > 0

and bn ∈ R such that

F n (anx+ bn) = F (x) for all x ∈ R (1.2)

This property implies that taking any power of F results only in a change in lo-

cation and scale parameters, not in a change in the type of the distribution. As

a consequence, if we change the cardinality of the maximum we are considering,

an extreme value model will be consistent i.e. there will be only a change in the

parameters whereas the functional form of the distribution will be the same. For

example, we might consider two models, one for the annual maxima and another

for the N-years maxima of the same underlying process. The stability property

guarantees that, since the second one will be the maximum of N annual maxima,

the two models shall be mutually consistent. The same property holds if we con-

sider a model for the exceedances over a given threshold: the model will remain
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consistent if we study exceedances over different thresholds. For this reason, the

concept of Stability is of ’extreme’ importance in modeling EV processes.

Theorem 1.3 A non degenerate probability distribution H is said to be Max-

Stable if and only if there exist iid random variables (Xi)i∈N and two successions

an > 0 and bn ∈ R such that the distribution of Mn−bn
an

converges weakly to H.

Theorem 1.4 [Extremal types theorem] Every Max-Stable distribution H

is of extreme value type i.e. it is of the same type as one of the three following

distributions. Conversely, every distribution of extreme value type is Max-Stable.

• Gumbel :

H(x) = exp(−exp(−x)) −∞ < x <∞. (1.3)

• Frechet :

H(x) =

 exp(−x−α), α > 0, if 0 < x <∞,

0, if x <0.
(1.4)

• Weibull :

H(x) =

 exp(−(−x)−α), α > 0, if −∞ < x < 0,

1, if x >0.
(1.5)

Theorems 1.3 and 1.4 together imply that given Mn = max1≤i≤n {Xi} for a se-

quence of iid random variables (Xi)i∈N , every non-degenerate limit of Mn−bn
an

is of

one of the three extreme value types. Conversely, every distribution of extreme

value type is the weak limit of Mn−bn
an

for two suitable successions an > 0 and

bn ∈ R where we can choose (Xi)i∈N to have distribution H.

1.3 Criteria for attraction to the limiting types

The Domain of Attraction of a type H is defined as the set of distribution func-

tions F such that, given a sequence of iid random variables (Xi)i∈N whose common

cumulative distribution is F , the distribution of Mn−bn
an

converges weakly to H for

two suitable successions an > 0 and bn ∈ R.
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For sufficently smooth distributions (F ∈ C2(R)) we can determine the limiting

type H by defining the Reciprocal Hazard Function as:

r(x) =
1− F (x)

f(x)
(1.6)

and by defining:

bn = F−1

(
1− 1

n

)
, an = r(bn) (1.7)

Thus the limiting distribution of Mn−bn
an

is

exp{− (1 + ξ · x)−1/ξ
+ } if ξ 6= 0 (1.8)

exp(−exp(−x)) if ξ = 0 (1.9)

where the shape parameter can be determined as ξ = limx→∞r
′(x)

1.3.1 Criteria for attraction to the Gumbel limiting type

Any survival distribution 1 − F (x) whose right tail dacays faster than any poli-

nomial function for x −→ ∞ belong in the domain of attraction of the Gum-

bel distribution. This is the case for any exponential distribution of the form

1−F (x) = e−h(x) where h(x) is any differentiable function positive and monotoni-

cally increasing faster than any power of log(x). To be more precise, a distribution

of the exponential family is in the domain of attraction of the Gumbel distribution

if either of the following conditions are satisfied:

1. h′(x) = xα−1L(x) for some α > 0 and slowly varying (at ∞) function L, i.e.

it satisfies limx→∞
L(xy)
L(x)

= 1 ∀y > 0

2. h(x) = xαL(x) for some α > 0 and slowly varying L, and h’(x) is monotone

on (x0,∞) for some x0 > 0.

This can be expressed by the Von Mises condition: Given a CDF F(x) and

its derivative PDF f(x) Gumbel is the limiting distribution if and only if ξ =

limx→∞r
′(x) = 0, i.e. if:

d

dx

{
1− F (x)

f(x)

}
−→ 0 as x −→∞ (1.10)
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Only in this case there exist two constants an and bn for which Gumbel is the

limiting EV distribution. The easiest possible case, in which h(x) = x, that is

the case of an exponential distribution with mean 1. Let an = 1 and bn = log(n).

Then

F n(anx+ bn) =
(
1− e−x−log(n)

)n
=

(
1− e−x

n

)n
→ exp(−e−x); (1.11)

Yielding Gumbel as limiting distribution.

1.3.2 Criteria for attraction to the Frechet limiting type

The domain of attraction of the Frechet distribution consist of all the distribution

function F(x) such that r′(x) > 0. Any F whose tail is of power law form 1−F (x) ∼
x−α, for x −→∞ for some costants k > 0 and α > 0 is in the domain of attraction

of the Frechet type with the same exponent α. This include, among others, the

family of the Pareto distributions. Let consider the simple case of 1−F (x) = k ·x−α

(Pareto type I distribution). Let bn = 0, an = (n · k)1/α. Then for x > 0,

F n(anx+ bn) =
(
1− k(anx)−α

)n
=

(
1− x−α

n

)n
(1.12)

As n → ∞ the right hand side of the equation converges to exp(−x−α), Frechet

distribution with shape parameter α.

1.3.3 Criteria for attraction to the Weibull limiting type

Any F with a finite upper endpoint ωF (i.e. if there exist ωF such that F (ωF ) = 1)

and characterized by a power law behaviour as x −→ ωF so that 1−F (ωF − y) ∼
kyα as y −→ 0 for some constants k > 0 and α > 0 is in the domain of attraction

of the Weibull type.

1.4 The GEV distribution

Von Mises (1936) proposed a single distribution which encompasses all three of the

previous extreme value limit families:

H(x; ξ, ψ, µ) = exp

{
−
[
1 +

ξ

σ
· (x− µ)

]−1/ξ

+

}
(1.13)
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Defined on every x such that:

1 +
ξ

σ
· (x− µ) > 0 (1.14)

Elsewhere the value of H is either 0 or 1. The parameter space is characterized by:

• µ ∈ R is the location parameter and indicates the value of x at which the

pdf is centered (has a maximum).

• σ > 0 is the scale parameter and controls the spreading of the distribution

around its location µ.

• ξ is a shape parameter determining the rate of tail decay. ξ > 0 gives

the heavy tailed case (Frechet) in which the tail behaves like a power law

with exponent α = 1/ξ; For ξ → 0 the GEV corresponds to the Gumbel

distribution (light tailed case) and its decay is exponential, whereas negative

values of ξ yield the short tailed case (Inverse Weibull): in this case the

distribution is characterized by a finite upper endpoint and exponent α =

−1/ξ.

Let f(x) be the GEV probability density in the Gumbel Case (ξ = 0); For

x → ∞, f(x) ∼ e−x, so the right tail of the distribution decays with an expo-

nential tail whereas the left tail decays as a double exponential function: f(x) ∼
exp(−exp(x)) as x→ −∞. In the Frechet case the GEV is left bounded at x = 0

and the right tail decays as fast as a pareto law with the same shape parameter:

f(x) ∼ x−α as x → ∞. In the Weibull case the EV distribution is right bounded

whereas f(x) ∼ x−α as x→ −∞.

The k-th moment of the GEV distribution exists if ξ < 1/k; e.g. the mean exists

if ξ < 1 and the variance if ξ < 1/2. Mean and variance are respectively given by

E(X) = µ+
σ

ξ
{Γ(1− ξ)− 1} , (1.15)

E
{

(X − E(x))2
}

=
σ2

ξ2

{
Γ(1− 2ξ)− Γ2(1− ξ)

}
. (1.16)

In the limiting case ξ → 0 these reduce to the mean and variance of the Gumbel

distribution:

E(X) = µ+ σ ∗ γ (1.17)

E
{

(X − E(x))2
}

=
σ2π2

6
(1.18)



14 Classical extreme value theory

Where γ = 0.57720 is Euler’s constant. The first step required to fit the GEV

distribution to a sample of rainfall ’maxima’ is to decide what the maxima exactly

are and to extract them from the available observations. The most commonly used

approach is the so called Block maxima method in which a sequence of maximum

values is extracted from blocks of equal length. In the case of daily rainfall records,

usually the block length is one year and therefore this approach yields a data set

of annual maxima. In this case the method is often referred to as Annual Maxima

method. This method is commonly used both for its simplicity and for the fact

that the annual maxima are without a shadow of a doubt independent variables;

Its application was extensively studied in Gumbel’s book (1958), which still is a

milestone for engineering applications of the method.

1.5 Peak over threshold method

As we have seen in the previous section, the most immediate and widely used

method to fit the GEV distribution to a series of observations in the Block Max-

ima method. Despite its simplicity, the shortcoming of this approach is that only

one value from each block (year) is used. This may cause loss of some important

information owing to the small sample size. Involved in particular, the sample of

annual maxima obtained may not be representative of the actual tail of the under-

lying distribution, since some intense events that are neglected only because they

are not annual maxima,even though they might easily be more intense that the

annual maximum of some other year. To overcome these limitations the main al-

ternative approach used in hydrology is the Peak Over Threshold method (Balkema

and De Haan, 1974; Pickands, 1975). They showed that if a distribution exists for

appropriately linearly rescaled excesses Yi = Xi − q of a sequance of iid observa-

tions Xi, i = 1, N above a threshold q, than their limiting distribution will be a

generalized Pareto distribution (GPD). In the applications, the model is defined

by picking a ’high enough’ threshold q and by studying all the exceedances of q. It

must be taken into account that the number of exceedances over a given period of

time and the excess values are themselves random variables. Usually the latter is

described using the generalized Pareto distribution (GPD) whereas the arrivals of

the threshold exceedances are commonly assumed to follow a Poisson distribution.
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Let X be a random variable whose CDF is F and let define the excesses over a

fixed threshold q as Y = X − q conditioned on X > u. Then

P (Y ≤ y) = P (X ≤ x+ q | X > q) = Fq(y) =
F (q + y)− F (q)

1− F (q)
(1.19)

Pickand (1975) showed that when the threshold approaches infinity (or the finite

upper endpoint of the parent distribution F(x), if this is the case) there will exist

a set of parameters ξ and σq (the latter depending on the threshold) such that the

GPD is a good approximation for the distribution of the excesses:

Fq(y) ∼ F (y; ξ, σq) = 1−
(

1 +
ξ

σq
y

)−1/ξ

(1.20)

It must be remarked that this result holds for q −→∞ so this is still an asymptotic

method. With the GPD, like the GEV there are three different cases depending

on the sign of ξ:

1. If ξ > 0 then (1.20) is defined on 0 < y <∞ and the tail of the distribution

decays as a power law or ’Pareto tail’. This case corresponds to the Frechet

type in the EVT.

2. If ξ < 0 then F(y) has an upper endpoint ωF = σq/ | ξ | similar to the

Weibull type of the EVT.

3. If ξ −→ 0, recalling the definition of the number e, the GPD become the

exponential distribution with mean σq in a similar fashion to the Gumbel

type in the EVT.

F (y;σq, 0) = 1− exp
(
− y

σq

)
(1.21)

As with the GEV distribution, the mean exist if ξ < 1 and the variance if ξ < 1/2

and their expressions are, respectively:

E(Y ) =
σ

1− ξ
, V ar(Y ) =

σ2

(1− ξ)2(1− 2ξ)
(1.22)

Fixed a threshold q, the number n of exceedances in one year is assumed to be a

random variable itself. The standard choice is to model the random variable N
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with a Poisson distribution with E(N) = V ar(N) = λ. thus the probability of

occurrence of n exceedances in one year will be given by

P (N = n) = f(n;λ) =
λke−λ

k!
(1.23)

The adoption of a Poisson model implies that the number of arrivals in two non

overlapping time windows are independent. Therefore, if we assume the number

of yearly exceedances to have a Poisson distribution with mean λ and all the

exceedances to be independent realizations and GPD distributed, the probability

of the annual maximum of the process just described being less than a value x will

be

P (max1≤i≤N ≤ x) = P (N = 0) +
∞∑
k=1

P (N = n, Y1 ≤ x, ..., Yn ≤ x)

= e−λ +
∞∑
n=1

λne−λ

n!
·

[
1−

(
1 + ξ

x− q
σ

)−1/ξ
]n

= exp

[
−λ
(

1 + ξ
x− q
σ

)−1/ξ
]
.

This result shows that the probability distribution of the annual maxima of a

GPD-Poisson process is the same as a GEV with parameters ξ, ψ, µ. Hence the

two models are consistent if and only if

ξ = ξ (1.24)

σ = ψ + ξ · (q − µ) (1.25)

λ =

(
1 + ξ

q − µ
ψ

)−1/ξ

(1.26)

Thus the shape parameter is the same for GPD and GEV; furthermore we can find

scale and location parameter of the GEV as

ψ = σ · λξ (1.27)

µ = q − σ(1− λξ)
ξ

(1.28)

The GPD satisfies a threshold stability property i.e. if one fixes an higher threshold

u2 > u1 the subsequent excesses will also follow a GPD with the same shape
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parameter but shifted scale σu2 = σu1 +ξ ·(u2−u1). Hence, dependence of the scale

parameter on the threshold disappears only in the limiting case ξ = 0, in which

GPD reverts to the exponential distribution. The Peak over threshold method

allows an estimation of the GEV parameters based on the real tail behaviour of

the daily rainfall ditribution whereas the traditional fitting methods, considering

only the annual maxima, may determine a distorsion in the tail modeling. The

price for this achievement is that the POT is not as straightforward as the Annual

Maxima method to apply, but the threshold selection requires particular care. The

theoretical assumption on which POT is based would require a ’high’ threshold; In

practice, the chosen threshold must be high enough for the two hypotesis (Poisson

arrivals of exceedances and GPD distribution of the excesses) to be satisfied. The

optimal threshold requires a trade off between standard deviation (which increases

with higher thresholds due to the smaller number of excesses) and bias, which

arise when the threshold is too low and the GPD-Poisson model is too rough a

description of the data at hand.





Chapter 2

The Penultimate approximation

2.1 Cramer’s Method

We are interested in studying the probability distribution of maxima of some nat-

urally variable quantity across blocks with a fixed length of T years. Let n be the

number of realizations of the relative variate in the considered interval; We are thus

looking for the distribution of the maximum of n independent samples, each drawn

from the same parent distribution F (x) = P (X ≤ x). Classical probability theory

indicates that, under the above mentioned hypothesis, the cumulative probability

function of the maximum will be

Fn(x) = [F (x)]n (2.1)

It is useful to introduce here the so-called characteristic largest value of X, XT

which is defined as:

Q(XT ) = P (X ≥ XT ) = 1/n (2.2)

So the characteristic largest value of X is the value that it is exceeded with probabil-

ity 1/n (i.e. the mean largest value of a sample of n values extracted from a variate

whose cumulative distribution function is F (x)). Thus if equation (2.1) is expressed

in terms of the survival probability function P (X ≥ x) = Q(x) = 1 − F (x) the

following expression is obtained:

Fn(x) = [1−Q(x)]n =

[
1− Q(x)

n ·Q(XT )

]n
(2.3)
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If we consider a value x > XT for the variate X, then Q(x)
Q(XT )

≤ 1 (This being the

case whenever we look at return times greter than 1 year) and being in any case

n > 1 the expression can be simplified using the Cauchy Approximation, as many

authors refer to the first order expansion of the function (2.3) as a Taylor series:

Fn(x) =

[
1− Q(x)

n ·Q(XT )

]n
' 1− n Q(x)

n ·Q(XT )
' exp

[
− Q(x)

Q(XT )

]
(2.4)

The error in neglecting the higher order terms depends grows with n and decreases

with the distance between x and XT . In particular if we fix a value of the variable

z = Q(x)
Q(XT )

, i.e. if we fix the distance from the point at which the series is centered,

the error will depend solely on n. This may be demonstrated by evalutating the

error associated with the characteristic largest value XT . In this case the result

from using the Cauchy Approximation is Fn(XT ) = e−1 while the exact result

depends on the n. The error is given by their difference:

err(n) = e−1 −
[
1− 1

n

]n
(2.5)

For x > XT we have Q(x) < Q(XT ) and therefore equation (2.5) overestimates the

error that ensue from the Cauchy approximation for every x > XT . The error tends

to zero rather quickly as n→∞; for example for n = 50 the corresponding relative

error is err(XT , n) = 0.01. TheCauchy approximation is the only asymptotic step

necessary in the Cramer’s method because in the case n −→ ∞ the error is zero

whatever the value of z may be. The linearized expression in eq. (2.4) it is often

referred to as ’Penultimate approximation’.

2.2 The asymptotic distribution

Cramer derived the Gumbel or EVT-TYPE I distribution using the Penultimate

approximation in the case of exponential type parent. A parent distribution is said

to be of the exponential type if it can be written in the form

F (x) = 1− e−g(x) (2.6)

where g(x) is positive and increases monotonically faster than log(x). From the

latter form of the Cauchy approximation in the case of a parent distribution of the
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exponential type we obtain

F (x) ' e
− e−g(x)

e−g(XT ) (2.7)

and

yT = −ln(−ln(Fn(x)) = g(x)− g(XT ) (2.8)

This is the Gumbel reduced variate. If we expand equation (2.8) as a Taylor series

around the characteristic largest value XT we obtain

yT = g′(XT ) · (x−XT ) +
g′′(XT )

2!
· (x−XT )2 +

g′′′(XT )

3!
· (x−XT )3 + ... (2.9)

This is still the penultimate distribution for a parent variable with an exponential

distribution; In fact we do need to know the function g(x) in order to evalutate it

and the only error in it is the one that ensue from the application of the Cauchy

Approximation. The ultimate asymptotic form of the Gumbel or EVT-TYPE I

is obtained from equation (2.9) by dropping the second and higher terms of the

Taylor expansion:

yT = g′(XT ) · (x−XT ) (2.10)

Thus, if we rename µ = XT and α = g′(XT ) then we note that what we have

just obtained is nothing else but the usual expression of the Gumbel cumulative

distribution function:

F (x) = e−e
−α·(x−µ)

(2.11)

We can see that, being this an asymptotic distribution, there is no more depen-

dence on n; This is due to the fact that it applies in the limit as n −→ ∞ and

neither it depends on the underlying distribution i.e. on the particular function

g(x). The expression is obtained as a linearization of the more general penulti-

mate distribution and the errors introduced by discarding the second and higher

terms are in general very much more significant than that from the earlier Cauchy

Approximation.
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2.3 Penultimate approximation in the case of a

Weibull variate

The penultimate approximation and the corresponding error are now derived in

the important case of a Weibull parent distribution, in which:

F (x) = P (X ≤ x) = 1− e−( xC )
w

(2.12)

This is a distribution of the exponential type with h(x) = (x/C)w so that h′(x) =

wxw−1/Cw and h′′(x) = w(w − 1)xw−2/Cw. The error implied by the use of

the asymptotic distribution depends on the degree of convergence to the ultimate

asymptote i.e. on the value of n. This error arises from the terms of order higher

than one that are neglected in eq. (2.9) in order to obtain the EV1 distribution.

In the case of integer values of the Weibull shape parameters w, all the terms after

the w-th are zero, whereas in the more general case of non integer values of w the

series has infinite terms. In both cases we can obtain a first order estimate of the

error from the value of the first term neglected:

ε(yT )

yT
=
h′′(xT )(x− xT )2

2h′(xT )(x− xT )
(2.13)

And in the case of a Weibull variate

ε(yT )

yT
=
w − 1

2

(
x

xT
− 1

)
(2.14)

For w = 2, that is the case of the Rayleigh distribution, the error given by (2.14)

is exact, since the value of all the neglected terms is zero. In the case of w = 1,

the exponential distribution, the error is zero. This result points out that in the

special case of exponential parent, the ultimate asymptotic form EV1 is the exact

penultimate distribution. Hence, in this case the only error is the small error

associated with the Cauchy Approximation. This means that the convergence to

the Gumbel asymptote for the cumulative distribution of maxima extracted from

a parent exponential variate is very fast. On the other hand, in the general case

w 6= 1 the asymptotic distribution will be affected both from the error due to

the Cauchy Approximation and from the one associated with the neglected terms

in eq. (2.9). In this case the convergence speed depends on the rate with which
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the nonlinear terms in the taylor expansion tend to zero as n → ∞. Hence, for

certain values of the shape parameter w the second term of the error might be

much greater than the Cauchy ’s one and thus the convergence might be very slow.

2.4 Preconditioning for a faster convergence

As we have seen in the previous section, despite the fact that a Weibull parent

belongs to the domain of attraction of the Gumbel-FT1 limiting distribution, its

convergence to the asymptote can be very slow depending on the value of the

shape parameter. In general for any finite n and for any fixed value w 6= 1 the

Gumbel distribution is not the correct cumulative density function of the annual

maximum. Some authors (e.g. Kudsoyiannis, 2012) proposed that in this case

rainfall extremes should be fitted to the Frechet distribution with a fixed positive

shape parameter rather than to the Gumbel. In general the adoption of the GEV

will guarantee a better fit thanks to the additional degree of freedom. However,

in the general case of Weibull variate a variable trasformation can be applied in

order to obtain faster convergence to the Gumbel asymptote. We have remarked

that in the unique case of exponential distribution only the first component of the

error arise, producing an extremely fast convergence. We note that any variate X

with a Weibull distribution can be trasformed into a new exponentially distributed

variate Z by performing a simple change of variable

Z = Xw (2.15)

Hence, for the new variate Z the general penultimate distribution corresponds to

the asymptotic Gumbel distribution; its penultimate form can be written as follows

Fn(z) ' exp
(
−n · exp

(
− z

Cw

))
= exp

(
−exp

(
− z

Cw
+ log n

))
(2.16)

This Penultimate approximation is the exact cumulative distribution function of

the annual maxima, if we neglect the sole error due to the Cauchy’s approximation.

We point out that, because of the variable change, this expression corresponds to

the Gumbel, whose scale and location parameter can be determined as follows

α (x− µ) =
1

Cw
(z − Cw · log n) (2.17)
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And therefore

α =
1

Cw

µ = Cw · log n

This approach allows the Gumbel parameters to be estimated directly from the

parameters of the Weibull parent and from the knowledge of the yearly number

of independent realizations. This result holds also for variates whose distribution

function is right-tail equivalent to a Weibull distribution. Some authors (e.g. Cook

and Harris, 2004) refer to the practice of transorming the initial variable to get

complete convergence to the asymptotic form as ’Preconditioning ’.



Chapter 3

The MEV distribution

3.1 Daily rainfall distributions and tails

The Cramer method and the attraction theorems suggest that the parent distribu-

tion chosen for the daily rainfall values plays a key role in determining the shape of

the extreme rainfall distribution. Effectively, the right tail of the distribution gov-

erns the survival probability of events with a ’sufficiently high’ magnitude. There

is no current knowledge of a general universal law for modeling the distribution

of daily rainfall values. The probability discribution of rainfall, at daily or even

smaller timescales, belong to the family of mixed type distributions, with a discrete

part describing the probability of rainfall events arrivals, and a continuous part

expressing the magnitude of the rain events; The latter represents the distribution

of rainfall amounts during wet days. The traditional and easiest way to treat the

problem is to assume the rainy days arrivals to have a Poisson distribution and to

describe the rainfall intensities with some distribution which belongs the exponen-

tial family, such as e.g. the Gamma or the Exponential distribution. This simple

approach has been proven to fail in severalcases: often the tail of the distribution

is subexpontial (heavier than an exponential one) and the adoption of a light tail

distribution such as the Gamma would lead to underestimation of the probability

of high magnitude events. A second deficiency lies in the hypotized Poissonian

nature of the wet days arrivals: Rainfall events tends to occur to cluster, and

therefore the Poisson distribution should only be used to model the arrivals of

exceedances over a relatively ’high’ thresholds (Leadbetter, 1983). The higher the
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threshold, the closer the Poisson model to the empirical data will be. Moreover,

when we consider the whole range of daily rainfall values, only a small fraction of

them belong to the tail and in general is the tail where the fitting error have the

greatest relevance: Effectively the fitting procedure estimates the set of parameters

which best describe the largest portion of the data. Such a procesdure may lead

to serious errors if the aim of the study is extreme event modeling. Papalexiou et

al (2013) compared the upper part of the empirical distributions from several sta-

tions with four common theoretical tails: those of Generalized Pareto, Lognormal

Weibull and Gamma, considering the ’tail’ composed by the N largest values in a

series of N years. They found Generalized Pareto (with a shape parameter mode

of 0.134) and Lognormal to better fit the tails, followed by the Weibull distribu-

tion. From this analysis it is clear that heavier tailed distribution in general are

to be adopted in right tail modeling (in 72.6% of the records subexponential tails

performed better than exponential or hyperexponential).

3.2 A physical justification for the adoption of

Weibull parent distribution

Several statistical distributions are commonly used in the practice to approximate

daily precipitation totals, such as for example the Exponential, Gamma and Gen-

eralized Pareto distributions. In most of the cases the choice of the distribution

is unclear and lacks of a physical justification. Wilson and Tuomi (2005), inter-

preting the water balance equation, were able to find an expression for the daily

precipitation probability distribution as a product of mass flux, specific humid-

ity and precipitation efficency. Precipitation can be expressed as the moisture

flux integrated over the air column and, using a two-layers model to describe the

atmosphere, the of the precipitation rate can be expressed as follows:

R ' −
∫ zm

0

∇ · (qρ~v)dz =

∫ zm

0

∂qρ~w

∂z
dz = (qρ~w)zm (3.1)

Where R is the precipitation rate, ρ the air density and q the specific humidity

or mass mixing ratio. The horizontal velocity and upward vertical velocity are,

respectively, ~v and ~w; ρ~w is the mean upward mass flux, the over-bar representing
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a temporal average. The moisture flux is integrated between z = 0, ground level,

and z = zm, that represents the moist level. In a more general expression, if we

include in the model upper level divergence and increases in moisture storage, we

can write the actual precipitation rate as

R = k (qρ~w)zm (3.2)

In this expression k is the istantaneous precipitation efficency and represents the

fraction of the vertical moisture flux at zm which is precipitated out. Previous

works have shown that mass flux, precipitation efficency and specific humidity can

be assumed with good approximation to be three independent variables. Therefore

the accumulated precipitation total Racc for a given storm can be modeled with

the triple product Racc = k̄q̄m, where m is the mass of air into the column that

is advected and pushed through the moist level. The empirical characterization of

the three aforementioned distributions is not feasible in practice, since available

observations are not available that allow to carry out the time average. A different

approach can be pursued if one assumes sufficently light tails and a sufficient aver-

aging period. In this case the distributions of the three variables can be assumed

by the Central Limit Theorem to be Gaussian; Effectively, the longer the period in

which the temporal average is performed, the closer the three distributions will be

to Gaussian bells. By rescaling the three variables, we can express precipitation

as proportional to the product of three unit normal variables. Frisch and Sornette

(1997) have shown that the probability density function of the product of a finite

number of independent random variables is approximately of the stretched expo-

nential form in the upper right tail of the distribution. Wilson and Tuomi (2005)

showed that for large enough values, the three terms in the product are of the

same order. Therefore the probability of precipitation is the joint probability of

three random variables all having common value R1/3; Moreover the joint pdf can

be written as the product of the three marginal pdf because of their independence,

such that

P (R) ∼
[
P (n = R1/3)

]
(3.3)

where P (n = R1/3) ∝ exp(−
(
R1/3

)2
). Integrating the resultant probability density

we can obtain the cumulative distribution function of heavy precipitation

F (x) = P (X ≤ x) = 1− e−( xC )
w

(3.4)



28 The MEV distribution

This is the expression of the Weibull cumulative distribution with shape parameter

w = 2/3 and scale parameter C ∈ R. For w < 1 this equation is known as stretched

exponential distribution and it is slightly heavy tailed. Wilson and Tuomi also

explored the global variation in the stretched exponential shape parameter by

fitting the Weibull distribution to the daily precipitation values greater than 10

mm from several station from the NCDC data center. They found the annual

global mean shape parameter to be 0.66 with a standard deviation of 0.16 (a value

consistent with the theoretical framework adopted) and to be slightly dependent

on climate change effects. The byprocuct of the last finding is that changes in

the rainfall generating process are more likely to produce changes in the scale

parameter of the distribution rather than in the shape of the tail.

3.3 A fully probabilistic approach

If we remove the asymptotic assumption, the exact expression of the cumulative

probability for the n-sample (yearly) maximum Mn is

P (Mn ≤ x) = Hn(x; ~θ, n) = F n(x; ~θ) (3.5)

where n is the number of rainy days per year i.e. the number of realization of the rv

X. Thus the cumulative distribution of the annual maximum will be depending on

n and on the vector ~θ of parameters of the parent distribution. Since the parameter

estimators of the parent distribution depends on the data set, the parameters

obtained as an outcome of the process are to be considered random variables

themselves. At the same way the number n of yearly rainy days is the realization

of a discrete random variable N . Therefore a general definition of the yearly

maximum cumulative distribution should take this higher-order randomness into

account. This can be done considering the expected value of Hn(x; ~θ, n) computed

over all the possible realizations of n and ~θ:

ζ(x) =
∞∑
n=1

∫
~θ

g(n, ~θ) ·Hn(x;n, ~θ) · d~θ (3.6)

where g(n, ~θ) is the joint probability distribution function of the random variables

{N,Θ1, ...,Θn} and d~θ denotes the differential dθ1 · dθ2 · ... · dθn This expression
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has recently been proposed as ’Metastatistic Extreme Value distribution’ (MEV)

(Marani and Ignaccolo, 2014). The general formulation (3.6) is appealing, but in

practice it might be arduous to identify an analitical expression for the distributions

g(n,C,w) or h(C,w). In the absence of such analytical distributions one can use

the empirical distributions of the parameters. This procedure is known as Monte

Carlo integration and is based on the approximation of the probability weighted

integral of a given function of a random variable f(~θ) based on a given target pdf

p(~θ): ∫
p(~θ)f(~θ)d~θ ' 1

T

M∑
j=1

f(~θj) (3.7)

The integral can be approximate through an algebric summation, provided that the

~θj for j = 1, 2, ...M are randomly sampled from their original target distribution

p(~θ). The precision of such an approximation increases with the number of elements

sampled M. In the case of independent samples equation (3.7) is a consequence

of the strong law of large numbers, but the result holds in general. To proof the

result it should be recognized that the number of times that a value f(~θ∗) appears

in the summation is nearly Mp(~θ∗)d~θ∗, and the higher M, the closer the real value

to this quantity. This holds for any value of ~θ∗ ∈ Ω~θ and therefore if we assume

(without any loss of generality) that the set of extracted values of ~θ can be treated

as countable, we can express the right hand side of (3.7) as:

1

T

M∑
j=1

f(~θj) '
sup(Ω~θ)∑

~θ∗=inf(Ω~θ)

f(~θ∗)p(~θ∗)d~θ∗ (3.8)

Which is indeed a discrete approximation of the original integral given in eq. (3.7).

Therefore, in the case in which g(n, ~θ) is not known a priori it is still possible an

estimation of the (3.6). For example, given a window of daily rainfall record of T

years, we can write ζ(x) as an average of Hn(x) over all the yearly realizations of

n and ~θ:

ζ(x) =
1

T

T∑
j=1

Hnj(x;nj, ~θj) (3.9)

This expression thereafter will be referred to as MEV Complete and may be also

formally obtained from eq. (3.6) by considering the joint probability density of n
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and ~θ as a bivariate Dirac Delta centered in nj and ~θj, i.e. in the actual realizations

of the random variables at the j-th year:

g(n, ~θ) =
1

T

T∑
j=1

δ(n− nj, ~θ − ~θj). (3.10)

In this way it is possible, after the selection of a proper distribution for describing

the daily rainfall amounts, obtain the expression of the annual maxima CDF . The

Monte Carlo Integration allows the empirical distribution to be used instead of a

parametric model for ~θ and N . For some distribution (e.g. GPD) a single year

is in general too small a sample to obtain a good estimated parameter set; In

particular the mean and variance of estimated shape parameter depends on the

sample length (Serinaldi and Kilsby, 2014). Therefore the sample size for fitting

the parent distribution shoud be carefully selected depending on the particular

adopted parent analytical function.

3.4 MEV in the case of a Weibull variate

Eq. (3.6) can be made explicit by choosing a parent distribution to describe daily

rainfall. As we have showed in the previous chapter, the stretched exponential

distribution is the fundamental heavy daily rainfall distribution. We now present

the formulation of the Metastatistic extreme value distribution in the important

case in which the daily rainfall is Weibull distributed. The general expression of

the MEV in this case will be

ζ(x) =
∑
n

∫
C

∫
w

g(n,C,w) ·
[
1− e−( xC )

w]n
dCdw (3.11)

If n is independent on the scale and shape parameters of the daily rainfall pdf, their

joint distribution can be expressed as g(n,C,w) = f(n) · h(C,w). Furthermore,

if we apply the Cauchy approximation to eq. (3.11) the above integral expression

become

ζ(x) = 1−
∑
n

n · f(n) ·
∫
C

∫
w

h(C,w) ·
[
e−( xC )

w]
dCdw (3.12)

In this expression the higher order randomness in the variable N is still taken into

account, but since the Cauchy Approximation has been applied, only its mean
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value appears in the MEV, and therefore there is no need to know the exact

distribution of the yearly number of events. A simpler epression can be obtained

if one considers C and w fixed constants rather than random variables (which is

equivalent to estimate these parameters for the entire period of record). Under

those assumptions the formulation of the MEV is the same as the Penultimate

approximation:

ζ(x) = 1− n̄ · e(−
x
C )

w

(3.13)

Therefore it can be applied to fit a sample of daily data either using this expression

or by preconditioning, as previously showed. Prior information on the distributions

of the parameters of the daily rainfall pdf is missing and it is not convenient to

use analitical expressions for the parent distribution. This shortcoming can be

avoided by when the expression of the Mev complete derived in the previous section,

suitably particularized to the case of Weibull variate, is used:

ζ(x) =
1

T

T∑
j=1

[
1− e

(
− x
Cj

)wj]nj
(3.14)

When N and ~θ = [C,w] are independent, the Cauchy Approximation can be

applied and the average number of wet days is taken out of the summation leading

to the following simplified expression:

ζ(x) =
1

T

T∑
j=1

[
1− nj · e

(
− x
Cj

)wj]
= (3.15)

= 1− n̄ 1

T

T∑
j=1

[
e

(
− x
Cj

)wj]
(3.16)

Despite eq. (3.16) being simpler (3.14), it still needs to be solved numerically.

Therefore in general its use is not recommended beacuse of the error introduced

by the application of the Cauchy approximation.
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3.5 MEV in the case of a Generalized Pareto

variate

The Peak Over Threshold approach described in chapter 1 can be thought of as

a particular case of Metastatistic Extreme Value distribution;In fact, in order to

obtain the POT estimation of the GEV parameters, the expression of the an-

nual maximum cumulative distribution has to be integrated over all the possible

values of the cardinality N (where N is assumed to follow Poisson distrbution).

On the other hand, the randomness of the parameters of the Generalized Pareto

distribution is not taken into account by the traditional POT method. In this

section a more general expression of the POT method is presented, which does not

rely on the Poisson hypothesis for the distribution of the random variable N and

does include the inter-annual variability of the GPD parameters. As a first step a

threshold u is set and the excesses of u are defined as the difference Y = X − u
where X identifies the daily rain dephts, which are assumed to be i.i.d. random

variables. Hence, we can write the probability of a daily realization being smaller

than a given value x as

P (X < x) = P (Y ≤ y|X > u) + P (X ≤ u) (3.17)

The distribution of the excesses over the threshold is modeled with a GPD distri-

bution: F (y) = 1−
(

1 + ξ
ψ
· y
)−1/ξ

. Moreover the daily rainfall distribution below

the threshold is modeled with the non exceedance frequencies of the observed data,

such that F (u) = n−k
n

where k is the number of yearly exceedances of the thresh-

olds and n is the yearly number of events. With these assumptions, the cumulative

distribution of the daily amounts become

P (X < x) =

{
1−

(
1 +

ξ

ψ
· (x− u)

)−1/ξ
}
· k
n

+
n− k
n

(3.18)

Furthermore, we can derive the cumulative distribution of the annual maximum

for a given value of the threshold u and of the parameter set {n, k, ξ, ψ}:

Fn(x) =

{
1− k

n

(
1 +

ξ

ψ
· (x− u)

)−1/ξ
}n

(3.19)
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The general formulation of the MEV distribution for equation (3.19) can be ob-

tained as the expected value of the annual maximum cumulative distribution over

all the possible values of the parameters {n, k, ξ, ψ} considered as random variables.

ζ(x) =
∑
n

∑
k

∫
ξ

∫
ψ

g(n, k, ξ, ψ) ·

[
1− k

n

(
1 +

ξ

ψ
· (x− u)

)−1/ξ
]n
dξdψ (3.20)

In analogy with the Weibull case, if n is independent of the scale and shape pa-

rameters we can apply the Cauchy approximation in order to pull the variable k

out of the integral operator, so that the MEV depends only on the expected value

of K and not on its actual distribution.

ζ(x) = 1−
∑
k

k · p(k) ·
∫
ξ

∫
ψ

h(ξ, ψ) ·
(

1 +
ξ

ψ
· x
)−1/ξ

dξdψ (3.21)

A simpler epression can be obtained by considering scale and shape parameters

fixed constants rather than random variables, which leads to the following expres-

sion:

ζ(x) = 1− k̄ ·
(

1 +
ξ

ψ
· (x− u)

)−1/ξ

(3.22)

Where k̄ is the mean value of the yearly number of exceedances over the threshold,

averaged over all the years of observation. As a consequence of the lack of a

general analytical expression for the parameter distribution, in general the best

way to proceed is to obtain a discrete approximation of eq. (3.21) via Monte Carlo

integration. The general expression of the MEV is thus approximated using the

empirical distributions of the parameters obtained by fitting a Generalized Pareto

to the yearly samples of a T-years period of record:

ζ(x) =
1

T

T∑
j=1

[
1− kj

nj

(
1 +

ξj
ψj
· (xj − u)

)−1/ξj
]nj

(3.23)

Which is used for practical applications.

3.6 Previous Montecarlo experiments

Marani and Ignaccolo (2014) performed Montecarlo experiments based on the

Padova data set in order to show that the MEV distribution estimates the ac-

tual probability of extreme events. They generated synthetic data sets drawing
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daily rainfall values from a parent Weibull distribution with given values of the

shape and scale parameters and then compared the MEV approach, eq. (3.6) parti-

colarized for a Weibull parent distribution, with the traditional GEV and Gumbel

distributions. The artificial data sets were constructed for different values of the

cardinality N and of the Weibull parameters set ~θ = [C,w] in order to obtain time

series with the characteristic of the observed data and for which the distribution of

the annual maxima is known by construction. They found that the GEV estimates

consistently underestimate the reference distribution, whereas the adoption of the

Gumbel asymptote leads to an overestimation of the true value. As a consequence,

for a given return time (i.e. of non exceedance probability) the adoption of GEV

and Gumbel models lead to respectively to an overestimation and underestima-

tion of the associated precipitation value. They found good agreement between

the MEV estimated of the recurrence of extreme events and their ’true’ probabiliy

of occurrence, known by construction of the synthetic data sets. They analyzed

also the performances of GEV and MEV in the case of Non-stationarity (arificially

represented by generating data sets with different frequencies of wet days occur-

rence) and showed that in this case GEV and Gumbel produce a bias in quantile

estimation, owing to the fact that they are more likely to fail when applied to non

stationary time series. They argue that instead eq. (3.6) should be used in the

case of statistically inhomogeneous periods.



Chapter 4

Case studies and data analysis

4.1 The datasets

The majority of the daily rainfall records used in this study were obtained from the

NOAA’s National Climatic Data Center (NCDC), located in Asheville, North Car-

olina, which maintains the world’s largest climate data archive. The data used are

part of the GHCN (Global Historical Climatology Network). Its daily documen-

tation includes daily rainfall total, snowfall, snow depth, maximum and minimum

daily temperature, evaporation and more. The only exception is the Padova time

series, the older records of which are still conserved at the Museo dell’Osservatorio

Astronomico di Padova. The GHCN archive includes thousands of record worlwide

but many datasets are affected from non negligible percentages of missing values.

The dataset selection for this study was based on two main aspects: Completeness

and record length. The first characteristic is essential because the MEV approach

requires a good description of the daily rainfall distribution function; Therefore

the data were selected among the GHCN station whose records have a percentage

of missing values per time series less than 2% in the analyzed timespans; In some

of the longest series (Milano and Padova) a few years had to be removed from the

series becuse they are characterized by a non negligible number of missing values.

The second fundamental aspect we focused our selection on was the record length;

In particular, since the stationary analysis requires an estimate of the empirical

magnitude of the event characterized by a given return time, we needed records

as long as possible in order to bestow significance to the statistical analysis. Fur-
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Dataset Years of obs. Elev. (m) Coverage Missing y.

Asheville (NC) 1903-2006 627.9 100% -

Heerde (NL) 1893-2013 6 100% -

Hoofdoorp (NL) 1867-2014 -3 100% -

Kingston (RI) 1897-2013 75 100% -

Livermore (CA) 1903-2014 146.3 99% -

Milano (IT) 1858-2007 150 100% 2

Padova (IT) 1725-2013 275 100% 14

Philadelphia (PA) 1901-2006 21 100% -

Putten (NL) 1868-2013 14 100% -

Roosvelt (AZ) 1906-2014 672.1 98% -

San Bernardo (FR) 1901-2006 2472 98% -

Zurich (CH) 1901-2014 556 100% -

Bologna (IT) 1814-2003 53 100% -

Worcester (SA) 1880-1998 270 91% -

Albany (GA) 1901-2014 54.9 99% -

Table 4.1: Stations selected for the study

thermore in the perspective of assessing the effects of climate change on rainfall

extremes, only a long enough time series allows trend and non stationarity detec-

tions. For this reason most of the selected datasets have more than 100 years of

observations and in some cases the number is closer to 200 years. The Padova

dataset in particular is, to our current knoledge, the longest existing time series

of daily rainfall observations for a total of 275 complete years of daily records. It

spans from 1725 to 2013, of which only a few years were removed from the datased

owing to missing data.

4.2 Autocorrelation of the daily rainfall

In all the extreme value models described in chapter 1,2 and 3 the basic assumption

is that the daily values are iid random variables. Even if one uses a block maxima
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approach (annual maxima can be reasonably assumed to be independent), the

GEV distribution is obtained as limiting distribution for the maximum of n i.i.d.

random variables. Often, when we are considering daily rainfall amounts, this

hipothesis may not be thereby complied. On the contrary, we observe that wet

days tends to occur in clusters, determining a often a non negligible correlation

between the precipitated amounts of consecutive days. To evalutate the intensity

of this correlation for a given temporal lag, it is useful to plot the autocorrelation

function. Any time series of daily precipitated amounts of rainfall can be thought of

as the realization of a stochastic process; In this framework it is useful to define the

autocovariance of the process, that is the covariance between the random variable

X(t) and X(t+ τ) for a given lag τ :

γ(τ) = E [(X(t)− µ) · ((X(t+ τ)− µ)] (4.1)

We point out that for τ = 0 the above expression represents the variance of the

random variable X(t). We computed the empirical autocorrelation of lag r days

as follows

rk =

∑n−k
i=1 (xi − x̄i) · (xi+k − x̄i+k)∑n

i=1 (xi − x̄i)2 · n

n− k
(4.2)

Note that in the summations only the non-zero rainfall values need be considered,

since the zeros are perfectly correlated with each others.

4.3 Heavy-tailed and light-tailed distributions

A non negative random variable X (or its distribution) is said to be heavy-tailed if

lim
x→∞

P (X ≥ x)

e−ψx
=∞ for all ψ > 0 (4.3)

The above condition states that the tail distribution function of X is asymptotically

heavier than that of any exponential distribution i.e. such distribution decays to

zero slower than any exponential distribution as x→∞. An equivalent definition

can be expressed using the moment generating function: in this case, we say that

a non negative random variable X (or its distribution) is heavy tailed if

E[esx] =∞ for all s > 0 (4.4)



38 Case studies and data analysis

Intuitively, heavy-tailed distributions take extremely large values with a non negli-

gible probability. Some of the distributions we use to model daily rainfall are heavy

tailed. The Pareto distributions for example belong to this family. The Weibull

distribution is also heavy tailed if the shape parameter w ∈ (0, 1), and in this case

we refers to it as stretched exponential distribution. The Weibull distribution is

also defined for w ≥ 1 but it is light tailed over this range. We now define three

important subclasses of heavy tailed distributions.

1. A non-negative random variable X (or its distribution function) is said to be

long-tailed if

lim
x→∞

P (X ≥ x+ y)

P (X ≥ x)
= 1 for all x > 0 (4.5)

We recall that P (X ≥ x+ y|X > x) · P (X ≥ x) = P (X ≥ x+ y). Therefore

the above definition states that for any fixed y > 0 and large x, if a long

tailed random variable X exceeds x then it also exceeds x + y with high

probability.

2. A non-negative random variable X (or its distribution function) is said to be

subexponential if

lim
x→∞

P (max {X1, X2} > x)

P (X1 +X2 > x)
= 1 for all x > 0 (4.6)

where X1 and X2 are independent random variables distributed as X. This

definition may be interpreted by noting that the quantity in the limit equals

P (max {X1, X2} > x|P (X1 + X2 > x). Therefore, informally, the above

definition states that the sum of X1 and X2 is large most likely because one

of the Xis is large. This is the most interesting case since the distributions

we use to model daily rainfall totals such as Generalized Pareto and heavy

tailed Weibull belong to this class.

3. The third class of heavy tailed distributions is the class of regularly varying

distributions. A non negative random variable (or its distribution function)

is said to be regularly varying with index α > 0 if

P (X > x) = x−α · L(x) (4.7)
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where L(x) is a slowly varying function i.e. it satisfies limx→∞
L(xy)
L(x)

=

1 ∀y > 0. This condition implies that the tail distribution function of

a regularly varying distribution decays asymptotically as a power law; the

smaller the index α, the heavier the tail of the distribution. This class is a

generalization of the Pareto family and it is strictly contained in the class of

subexponential distributions.

Similarly, a non-negative random variable X is said to be light-tailed if it is not

heavy-tailed, i.e. if there exist ψ > 0 such that

P (X ≥ x) < e−ψx for large enough x (4.8)

The above condition states that the tail distribution function ofX is asymptotically

bounded above by that of an exponential distribution. In other words, the tail

distribution function decays to zero exponentially or faster. Equivalently, a non-

negative random variable X is light-tailed if there exists s > 0 such that E[esx] <

∞. Before proceeding with extreme value modeling, it is important to analyze

the selected datasets in order to evalutate the tail behaviour of the empirical daily

rainfall distributions. In the following sections we will define and apply statistical

tools (Mean Excess Function and Hill plot) to explore the tail behaviour of the

empirical data.

4.4 Mean Excess Function

The Mean Excess function is a graphical tool that allows a first analysis of the tail

behaviour of a sample (or of a distribution). Let X be a random variable with right

endpoint xF ; then the mean excess function of X over the threshold u is defined

as

e(u) = E(X − u|X > u), 0 ≤ u ≤ xF (4.9)

If X is exp(λ) distributed, then e(u) = 1/λ does not depend on the threshold.

Let assume that X is a random variable with support unbounded to the right and

distribution function F . If for all y ∈ R

lim
x→∞

F̄ (x− y)

F̄ (x)
= eγy (4.10)
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for some γ ∈ [0,∞], then limu→∞ e(u) = 1/γ. For the class of the subxponential

distributions eq. (4.10) is satisfied with γ = 0. So that for this class of heavy tailed

distributions, encompassing both heavy tailed Weibull and GPD, the mean excess

function diverges: e(u) → ∞ as u → ∞. On the contrary for superexponential

functions of the type F (x) ∼ exp(−x−α) with α > 1 satisfy eq. (4.10) with γ =∞
so that the mean excess function tends to 0 as u→∞.

In the case of the Generalized Pareto an interesting result holds under the con-

dition ξ < 1 i.e. in the case in which the expected value of the distribution is

defined: E[X] <∞. Under this hypotesis the mean excess function is linear in u:

e(u) =
ψ

1− ξ
+

ξ

1− ξ
· u (4.11)

where 0 ≤ u < ∞ if 0 ≤ x < 1 and 0 ≤ u ≤ −ψ/ξ if ξ < 0. So the GPD

distribution is characterized by a linear mean excess function with slope ξ/(1− ξ).
Moreover the Pickands-Balkema-de Haan Theorem provides the justification for

the peak over threshold method by showing that for a large class of distributions

the mean excess function is asymptotically equivalent to a GPD law as the thresh-

old u approaches the right end point of the distribution.

In the case of a Weibull distribution Cook and Harris (2004) showed that the

slope of the mean excess function depends on u/C, the ratio of the threshold to

the scale parameter of the Weibull distribution through the expression

ξ

1− ξ
= −∂e

∂u
=

(1− 1/w)

(u/C)w

∫ 1

0

[
1− log(ξ)

(u/C)w

] 1
w
−2

dξ (4.12)

In the case of the exponential distribution (w = 1), ∂e
∂u

= 0 for all threshold and

ξ = 0: also the GPD reverts to the exponential case. In the case (w 6= 1), ∂e
∂u

is a

function of the threshold u such that the estimate of the shape parameter of the

GPD decreases to asymptotically to zero as the threshold goes to ∞.

Given a independent and identically distributed random sample x1, ...xn, it is pos-

sible to compute the empirical mean excess function ê(u) to estimate the natural

one. It is defined as

ê(u) =

∑n
i=1(xi − u) · Ixi≥u∑n

i=1 Ixi≥u
(4.13)
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Figure 4.1: Mean excess function for some common distribution [ Figure from Em-

brechts et al., 1997 ]

Yang suggested the use of the empirical mean excess function and established the

uniform strong consistency of ê(u) over compact u sets, that is, for everyb > 0:

P

[
lim
n→∞

sup
0≤u≤b

|ê(u)− e(u)| = 0

]
= 1 (4.14)

4.5 Hill estimator for the shape parameter

Let restrict our analysis to the intersting case in which X1, ...Xn are iid random

variables with common distribution F which belong to the domain of attraction of

the Frechet distribution. This is the case whenever F (x) = x−αL(x) for a slowly

varying function L. For this class of heavy tailed distributions, the knowledge of

the exponent α is of major importance. The Hill estimator of the shape parameter

ξ = 1α > 0 can be defined and takes on the following form:

α̂Hill =
(

1/ξ̂
)
Hill

=

(
1

k

k∑
j=1

logXj,n − logXk,n

)−1

(4.15)

where k is the number of upper order statistic considered (i.e. the number of

exceedances over a given threshold), n the sample size. A Hill plot can be con-

structed such that the estimated tail index ξ is plotted as a function of either the
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threshold or the k upper order statistics. Hill derived eq. (4.15) using an approach

based on the maximum likelihood estimator. De Haan obtained the same result

through a regular variation approach, and the same result can be obtained through

a mean excess function approach, all these methods yielding equivalent versions

of the Hill estimator. Under certain conditions in general satisfied if Xi are iid

random variables and F a regular function, the following properties of the Hill

estimator hold:

1. Consistency If k → ∞, k/n → 0 for n → ∞, then the Hill estimator of the

tail index converges in probability to the real value

α̂Hill →P α (4.16)

2. Asymptotic normality Under hypotesis of refularity of F, then

√
k (α̂Hill − α)→D N(0, α2) (4.17)

The Hill plot can be instrumental in finding the optimal threshold u or, equiv-

alently, the optimal number of upper statistics to use either to estimate of the

shape parameter ξ or in the Peak Over Threshold method. Moreover, eq. (4.17)

holds for k = k(n) → ∞ at an appropriate rate and for 1 − F (x) = x−α · L(x),

α > 0. However, for a given value of k and slowly varying function L, there is a

trade of between variance and bias. For incresing k, the asymptotic variance α2/k

of the estimator α̂Hill decreases, so that one would take k as large as possible.

Unfortunately, depending on the second order behaviour of the function L, when

doing so a bias in the estimator may arise. In appendix A the Hill plot and Mean

excess function for all the datasets are reported.

4.6 Considerations on the threshold selection for

POT models

The standard procedure for calibrating a POT model consists in a so called fixed

threshold approach: the threshold is selected performing a graphical inspection of

the data using the aforementioned methods. This approach can be rather sub-

jective and time consuming, since every data set requires an ad hoc threshold
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selection. In this situation it can be convenient to assume a constant quantile level

across all the series (or, as an alternative, to fix a given number of exceedance over

the threshold per year). In this study this latter method was avoided, since the va-

lidity of the GPD and Poisson hypothesis are not ensure just by selecting the same

fixed number of yearly exceedances for every dataset. Instead, for every station

a graphical inspection of Hill and MEF plot was carried out. The major draw-

back of the fixed threshold approach is that once the threshold has been selected

it is considered as fixed and not as a calibration parameter; as a consequence, the

associated subjectivity and uncertainty are ignored in the subsequent inferences.

A possible alternative is the adoption of mixture models (e.g. Scarrott and Mac

Donald, 2012) in which two different distribution are fitted, one to the bulk of the

distribution and one to the tail. In this framework the threshold become a param-

eter of the model to be automatically estimated in the fitting procedure and the

uncertainty involved with the threshold choice is naturally accounted for. These

models are not used in the practice and suffer some drawbacks; Their application is

not easy and a major problem is ensuring that the bulk and the tail fits are bobust

to each other. Moreover often the behaviour at the threshold may be problematic

(e.g. the fitted density may not be continuous). For this reason the application of

POT model rely on a fixed threshold approach.

4.7 On the effects of record length and threshold

selection on GPD parameter estimation

In its current formulation, the Peak Over Threshold model is derived by fixing

a ’high enough’ threshold and modeling the excesses arrivals with the Posisson

distribution and their magnitude with the GP distribution. Particular care is to

be assigned to the study of the Generalized Pareto shape parameter, which controls

the shape of the tail, discriminating between bounded, exponential and power law

decays. Analyzing the Mean Excess Function and the Hill plots (cfr. chapter 4), the

range of thresholds over whom the distribution of excesses is approxiamtely a GPD

has been assessed. Similarly, with e.g. the chi squared test the goodness of the

Poisson hypothesis for the exceedances has been evalutated. Therefore, the main
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Station q[mm] ξ ψ [mm] λ

Asheville (NC) 25 0.0356 13.095 7.553

Heerde (NL) 10 0.1079 5.633 20.266

Hoofdoorp (NL) 10 0.0579 5.823 21.360

Kingston (RI) 10 0.0789 14.129 39.316

Livermore (CA) 10 0.1149 7.372 11.712

Milano (IT) 25 0.0957 11.934 10.026

Padova (IT) 25 0.0351 11.101 7.398

Philadelphia (PA) 10 0.0765 12.015 34.914

Putten (NL) 10 0.0817 5.731 20.269

Roosvelt (AZ) 10 0.0376 10.369 13.268

San Bernardo (FR) 20 0.1181 12.501 31.257

Zurich (CH) 10 0.076 7.947 35.495

Bologna (IT) 15 0.106 11.385 11.778

Worcester (SA) 10 0.0092 8.8526 8.737

Albany (GA) 10 0.0806 14.822 39.690

Table 4.2: Calibration of POT model: Thresholds selected (q), fitted shape (ξ) and

scale (ψ) parameters of the GPD and mean rate of excesses i.e. Poisson scale parameter

λ.
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problem with the use of the POT approach is the threshold selection. Serinaldy

and Kilsby (2014) showed a twofold effect on the application of POT models is

played by threshold selection and record length. First, as the threshold decreases,

non extremal values are progressively incorporated in the POT sample. As the

sample become larger, the standard deviation of the estimated shape parameter ξ̂

decreases; Its mean value, on the other hand, increases, unraveling the heavy tailed

nature of the distribution of the excesses. There is also a relationship between

the generalized Pareto shape parameter ξ and the record length. Papalexiou and

Kudsoyiannis (2013) and Serinaldi and Kilsby (2014) showed, respectively for the

AM and POT approaches, that as the sample length L increases, the standard

deviation of the estimated ξ̂ decreases, as one would expect being the sample size

larger. Furthermore, as the number of years of observation L increases, the sample

mean of ξ̂ tends to converge to a stable and positive value. This findings would

suggest the exsistence of an asymptotic value for the shape parameter, as L→∞.

As a consequence, the exponential decay observed in short time series is only an

apparent behaviour due to an underestimation of the mean value of the shape

parameter. The MEV-GPD approach proposed in the first section is subject to

this limitation in the estimation of the shape parameter. In the case of GPD,

1-year is too small a sample, since both bias and standard deviation affect the

goodness of fit. Therefore, in the GPD case the Penultimate approximation is to

be preferred over the complete MEV espression. The bigger sample size allows a

smaller bias and uncertainty in the estimated GPD parameters. We remark that in

the case in which instead of the empirical distribution of the random N Poisson is

used, the MEV-Penultimate approach correpond with the classical POT method,

which can in this case be considered a particular case of MEV distribution.

4.8 Stationary quantile estimation

It is worth recalling that the word stationary refers to the weak or second order

stationarity. This assumption implies that only the first order and second order

moments of the time series are required to be time invariant and therefore only

mean, variance and autocorrelation of lag τ are required to be independent on time.

Most of the times, the practical aim of an extreme value analysis is the estimation
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of high quantiles or, in other words, the determination of the magnitude of the

event correspondent to a fixed, and generally ’high’, non exceedance probability.

The term ’high’ points out that the extreme value methodology is often applied in

extrapolation outside the range of the available data. The common way to accom-

plish this task in the engineering practice is based on the key concept of return

time Tr, that is the average time interval between two consecutive exceedances

of the magnitude of the considered event. In general the intensity of a rainfall

event depends both on the duration and on the return time of the event we are

considering, so that we can write h(τ, Tr). In the present study we will consider

only the latter dependence, considering a given duration of τ = 1 day. The depen-

dance on the duration can be explored as well, and in general the task is carried

out by fixing the return time and thus obtaining the so-called intensity-duration

curves. However, the case of daily rainfall analysis is of remarkable importance,

since this is the most common sampling frequency used in many historical records.

The definition of return time requires two hypotheses: stationarity of the process

and independence of consecutive realizations. In the case of annual maxima the

latter hypothesis holds without the shadow of a doubt, whereas the first should be

tested. Under these assumptions, the probability to observe two exceedances of x

separated by T years is given as follows:

P (T = t) = F (x)t−1 · (1− F (x)) (4.18)

Therefore we can write the return time as the expected value of the random variable

T:

Tr = E[T ] =
∞∑
t=1

F (x)t−1 · (1− F (x)) · t =
1

P (X ≥ x)
(4.19)

The estimation of the intensity of the event associated with a given return time

requires as first step the fitting of an extreme value distribution to the available

data, that typically is one of the three limiting distributions resultimg from the

extreme value theorem. The data to which the distribution is fitted can be either

the annual maxima or the k upper order statistics in the peak over threshold

approach. In a similar fashion, the concept of hydrological risk can be defined as

well for the stationary case, to asses the probability of an event of given duration
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and intensity to accur in a T-years span

R = 1−
(

1− 1

Tr

)T
(4.20)

4.9 Non-stationary quantile estimation

The usual definitions of hydrologic risk and return time are obtained under two

main assumptions: Stationarity and Independence of the annual maxima. Whereas

the latter is true in general without the shadow of a doubt, this is not the case for

the Stationary hypotesis. Thus, for the aim of studying of extreme events under

a non stationary framework, new definitions of Tr and Risk are to be introduced.

Let consider the cumulative probability distribution of annual rainfall maxima (

e.g. GEV or MEV distribution):

P (Mn,t ≤ x) = Ht(x; ~θt) (4.21)

This formulation takes into account a possible variation of the maximum rainfall

distribution through the years; In fact now both the set of parameters ~θt and

the analytical expression of the distribution Ht might be variable in accordance

with time. Let consider a given height of rainfall, say x0, and a fixed starting

year t0. We are interested in the probability distribution of waiting time for the

first annual rainfall maximum to exceed the given value x0. If we name this new

discrete random variable’wating time between two consecutive exceedances ’ M, its

probability mass function will be:

p(M = m) = f(m) = [1−Hm(x0)]
m−1∏
t=1

Ht(x0) ∀m ∈ ΩM (4.22)

This is a generalization of the geometric distribution obtained in the stationary

case often referred to as nonhomogeneous geometric distribution; Hence, when the

CDFs of the annual maxima are the same (stationary conditions), this epression

yields us the usual result. The CDF of the random variable M can be obtained as
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well as a sum of all the values of the PMF smaller than a certain value m:

p(M ≤ m) = FM(m) =
m∑
i=1

f(i)

=
m∑
i=1

[1−Hi(x0)]
i−1∏
t=1

Ht(x0)

= 1−
m∏
t=1

Ht(x0) ∀m ∈ ΩM

Therefore the Return Time Tr can be defined in a non-stationary framework as

the expected value of the aforementioned distribution of waiting times between

two consecutive exceedances:

Tr = E[M ] =
mmax∑
m=1

m · f(m)

=
mmax∑
m=1

m · [1−Hm(x0)]
m−1∏
t=1

Ht(x0).

This expression can be conveniently simplified (Cooley,2013) as follow:

Tr = E[M ] = 1 +
mmax∑
m=1

m∏
t=1

Ht(x0). (4.23)

This definition is consistent with the usual one of Tr in a stationary framework.

However now in the non stationary case Tr is not only a function of the exceedance

probability pr ( a constant value). On the contrary, Tr will be a function of the

time varying exceedance probabilities pt. The variance of M can be obtained from

var(M) = E[M2]− T 2
r where the second order moment of M will be:

E[M2] =
mmax∑
m=1

x2
0 [1−Hm(x0)]

m−1∏
t=1

Ht(x0). (4.24)

Let consider an hydraulic structure with a design life of n years which failure will

occur as a consequence of the realization of the event F : X ≥ x0. In analogy with

the stationary case. The reliability of the structure is defined as the probability

that no rainfall event exceeding the design rainfall height x0 will occur in the

lifetime of the structure:

Re =
n∏
t=1

Ht(x0) (4.25)



4.9 Non-stationary quantile estimation 49

Its completion to one:

R = 1−
n∏
t=1

Ht(x0) (4.26)

This is defined ’Risk of failure’, in complete analogy with the stationary case.





Chapter 5

Optimal choice of parameters

In this chapter the methods are described that are used in the following analyses to

estimate the parameters of Generalized Extreme Value (GEV), Weibull (WEI) and

Generalized Pareto (GPD) distributions. The GEV distribution was fitted with

Maximum Likelihood (ML), L-Moments (LMOM) and Mixed Methods (MM); the

performance of the three method are then compared in a Montecarlo analysis

using artificially generated data. For Weibull distribution Least squares (LS) and

Maximum Likelihood were used. In the case of GPD Maximum Likelihood, Least

Squares and L-Moments were implemented. The performances of the different

methods were compared considering the dependence on the sample size.

5.1 Fit of the GEV distribution

5.1.1 Maximum Likelihood

The most commonly used method to obtain a parameter estimation for the GEV

distribution is the maximum likelihood estimator. We define the likelihood func-

tion as the joint pdf of the available observations p(~x | ~θ), thus considering the

sample ~x as a constant vector and ~θ variable. If we assume the sample ~x to be

a vector of realizations of i.i.d. random variables with common pdf p(xi | ~θ), we

obtain the following expression for the likelihood function:

ν(~θ) = p(~x | ~θ) = p(x1 | ~θ) · p(x2 | ~θ)...p(xn | ~θ) (5.1)
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The optimal choice of the parameters set ~θ is obtained by maximizing the objective

function ν(~θ). Usually it is easier to work with the log likelihood function:

L(~θ) = log ν(~θ) = log
n∏
i=1

p(xi | ~θ) =
n∑
i=1

log p(xi | ~θ) (5.2)

Thus the Maximum likelihood estimator θ̂ can be obtained by solving the likelihood

equations that form a system of p equations, where p is the size of ~θ.

∂L(~θ)

∂θj
= 0 j = 1, ..., p (5.3)

In the case of the GEV density distribution

p(x; ξ, ψ, µ) =
1

ψ
·
(

1 +
ξ

ψ
(x− µ)

) ξ−1
ξ

· e−1(1+ ξ
ψ

(x−µ))
−1/ξ

(5.4)

and so the log likelihood is given by

L(ξ, ψ, µ) = −n logψ−
(

1

ξ
+ 1

) n∑
i=1

log

(
1 +

ξ

ψ
(xi − µ)

)
−

n∑
i=1

(
1 +

ξ

ψ
(xi − µ)

)−1/ξ

(5.5)

The optimization has been performed using the Nelder-Mead simplex algorithm,

coupled with the imposition of two constraints necessary for the likelihood function

to be defined: ψ > 0 and 1 + ξ
ψ

(xi − µ) > 0 for each xi. The tolerance used in

the function evalutations was 10−6. A first guess for the unknown parameter set

~θ0 was necessary as starting point for the numerical optimization. As starting

values for the location and scale parameters have been used those determined

using the method of moments for the Gumbel distribution, whereas the starting

shape parameter has been set equal to ξ = 0.1

µ = m− 0.57722 · ψ (5.6)

ψ =
1

π
·
√

6 · s2 (5.7)

Where m = 1
n

∑n
i=1 and s2 =

∑n
i=1(xi −m)2/(n − 1) are respectively the sample

mean and standard deviation. The assessment of the reliability of the ML esti-

mation of the parameters can be performed exploiting the asymptotic properties

of the ML estimator.In fact the standard errors of the estimated parameters are
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strictly related to the curvature of the likelihood function in the hyper-space of

the parameters. The hessian matrix of the likelihood function, evalutated at θ̂, is

called observed information matrix :

I =

[
−∂

2L(θ̂)

∂θi∂θj

]
i, j = 1, ..., p (5.8)

The square roots of the diagonal entries of the information matrix are approxi-

mately the standard errors of the estimated parameters θ̂1, ..., θ̂p.

L-Moments

The currently favored method of estimation of the parameters of the GEV dis-

tribution is the aforementioned maximum likelihood method. Despite that, its

justification and its asymptotic properties are based on large sample theory and

there is little assessment of its performance when applied to small samples. In

particular in the case of small sample size the hypotesis of normal asymptotic

distribution of the estimator ˆθML may not hold and moreover the optimization

algoritm may be unable to find a global maximum. The conventional method of

moment is not suited to estimate GEV parameters, since it can be easily subject

to bias in estimation; furthermore the GEV convential k-th moments is not defined

if ξ ≥ 1/k. Hosking (1990) proposed to use L-moments instead of the convential

moments; L-moments are defined as expectations of certain linear combinations of

order statistics. Given a distribution function F (x) and its inverse quantile func-

tion x(F ), we define first the probability weighted moments (PWMs) of the r-th

order as:

αr =

∫ 1

0

x(F )(1− F (x))rdF, βr =

∫ 1

0

x(F )F (x)rdF r = 1, 2.. (5.9)

Thus for a random variable X the L-moments λr are defined as linear combination

of the PWMs:

λr+1 = (−1)r
r∑

k=0

p∗r,kβk (5.10)

where

p∗r,k = (−1)r−k
(
r

k

)(
r + k

k

)
=

(−1)r−k(r + k)!

(k!)2(r − k)2
(5.11)
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In particolar to estimate the GEV parameters the first three L-moments are to be

used

λ1 = β0

λ2 = 2β1 − β0

λ3 = 6β2 − 6β1 + β0

The first L-moment λ1 is the expectation whereas the second λ2 serves as scale

of the distribution, that is the analogous of the traditional standard deviation.

Their ratio τ = λ2/λ1 is therefore the coefficent of variation. The higher order

L-moment are usually normalized with respect to the scale of the distribution λ2

thus obtaining the so-called L-moment ratios

τk =
λk
λ2

, k = 3, 4.. (5.12)

The L-moment ratios determine the shape of the distribution irrespective of the

scale of the variables being measured. In particular τ3 = λ3/λ2 represent the L-

skewness of the distribution and τ4 = λ4/λ2 the L-kurtosis coefficent. The fit of

a distribution to a sample using the LMOM method is performed setting the L-

moments of the distribution equals to the L-moments of the sample. Let consider

a data sample of n observation arranged in ascending order x1, x2, ...xn. The first

step consists on computing the probability weighted moments for the sample as

br =
1

n

n∑
j=r+1

(j − 1)(j − 2)...(j − r)
(n− 1)(n− 2)...(n− r)

· xj (5.13)

For example:

b1 =
1

n

n∑
j=2

(j − 1)

(n− 1)
· xj

b2 =
1

n

n∑
j=3

(j − 1)(j − 2)

(n− 1)(n− 1)
· xj
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By analogy with the L-moments of the distribution, we define with the same linear

combination of probability weighted moments the sample L-moments

l1 = b0

l2 = 2b1 − b0

l3 = 6b2 − 6b1 + b0

Their general expression being

lr+1 =
r∑

k=0

p∗r,kbk, k = 0, 1, ...n− 1 (5.14)

where coefficients p∗r,k are those defined by eq. (5.11). We can then obtain the

L-moment ratios

t = l2/l1

tr = lr/l2, r = 3, 4..

We remark that being the sample L-moments linear functions of unbiased estimates

of the probability weighted moments, they are also unbiased estimates of λr. In

the case of the GEV distribution, the LMOM estimators for location and scale

parameter are respectively

µ̂ = λ̂1 +
ψ

ξ
[1− Γ(1− ξ)] (5.15)

ψ̂ =
λ̂2ξ

(2ξ − 1)Γ(1− ξ)
(5.16)

The LMOM estimator for the shape parameter ξ̂ is the solution of the following

equation

1− 3ξ̂

1− 2ξ̂
=
τ̂3 + 3

2
(5.17)

Hence the shape parameter can be obtained either by numerical solution of eq.

(5.17) or by using the approximate solution:

ξ ' −7.8590c− 2.9554c2

c =
2

τ̂3 + 3
− log 2

log 3
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Mixed Methods

It has been shown that ML parameter estimator is unbiased but tends to have

a large variance for positive values of the shape parameter ξ and this may lead

to large errors in quantile estimation. On the other hand, the LMOM method

produces a biased estimates but it can be preferable because of smaller variance

in its quantile estimates. In particular LMOM estimation of the shape parameter

produces a bias increasing with the value of the shape parameter. Morrison and

Smith (2002) proposed a combination of the ML and LMOM in order to have an

estimator with reduced variance compared to the ML estimator and reduced bias

compared to the LMOM estimator. The idea behind the method is to improve

the ML estimate of the shape parameter by imposing additional constraints to

the optimization problem. In the method used in this work, we maximize the

likelihood function as a function of the shape parameter ξ taking both ψ and µ

from the LMOM. Thus the optimization problem becomes:

maximize log ν(~θ | x)

subject to ψ =
λ̂2ξ

(2ξ − 1)Γ(1− ξ)

and µ = λ̂1 +
ψ

ξ
[1− Γ(1− ξ)]

ξ(xi − µ) ≥ ψ i = 1, ...n

An alternative approach Smith and Morrison proposed consists in maximizing the

likelihood function as a function of scale and shape parameter, sobstituting the

sole location parameter from the LMOM equation (5.15). The estimator of the

parameters of the GEV is then the solution to the following optimization problem:

maximize log ν(~θ | x)

subject to µ = λ̂1 +
ψ

ξ
[1− Γ(1− ξ)]

ξ(xi − µ) ≥ ψ i = 1, ...n

In this case the optimization problem involves only the variable ξ. The initial point

ξ0 was taken to be the LMOM estimate of the shape parameter. In this way we

use only the first two L-moments, avoiding the estimator for τ3 which might have

large bias for small sample size and small values of ξ.
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Monte Carlo simulations for GEV

In order to asses the performances of the different estimators of the GEV pa-

rameters, a Monte carlo simulations was performed. We generated 10000 samples

from a GEV distribution with given parameter ξ = 0.1, ψ = 12, µ = 50. These

are typical value we found fitting the GEV to datasets with various length and

from different and climatic conditions. The length of the generated samples is 100

years, a common value among the analyzed datasets. For every simulated series,

the annual maxima were fitted to the GEV distribution using L Moments, Maxi-

mum likelihood and Mixed methods. We report the finding of the analysis in table

(5.1). We point out that the Maximum likelihood allows the best estimation of the

shape parameter whereas both L-Moments and Mixed Methods procude a more

relevant error: this is particularly important parameter since it is responsible of

the tail behaviour of the distribution. On the other hand the two latter method

produce slightly better estimators of the scale and location parameters; the differ-

ence between the performances of L-Moments and Mixed Methods is negligible and

therefore there is no convenience in the application of the latter method. Moreover

when applied to small samples, the latter method’s algorithm may fail in finding

the exact minimum, whereas the L-Moment method does not have this limitation

and it is more robust. Therefore we argue that the better choice is maximum

likelihood (for large enough sample sizes) or L-Moment (in the case of smaller

samples).

5.2 Fit of the Weibull distribution

Two methods have been applied to estimate the parameters of the Weibull distri-

bution: Maximum likelihood and least squares. The first one is to be preferred

because of the higher performances and the usefulness of the asymptotic properties

of the ML estimator. Though, in the case of very small sample sizes the variance

of the estimated parameters increases and the optimization algorithm used in the

ML approach might not succeed in finding the global maximum.
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Method Parameter mean est. stdv. est. mean quadratic error

Maximum likelihood ξ 0.096 0.081 0.0386

ψ 9.903 0.857 0.0097

µ 50.058 1.145 0.0012

L Moments ξ 0.092 0.083 0.0781

ψ 9.998 0.929 1.271 · 10−4

µ 50.030 1.147 6.031 · 10−4

Mixed methods ξ 0.093 0.082 0.0623

ψ 9.998 0.929 1.271 · 10−4

µ 50.030 1.147 6.031 · 10−4

Table 5.1: Results of the Montecarlo simulation

Maximum Likelihood

The probability density function of the Weibull distribution reads:

f(x;C,w) =
w

C

( x
C

)w−1

e−( xC )
w

(5.18)

Consider then a given sample x1, ..., xn as a constant vector and the scale and shape

parameters of the distribution function C,w as random variables. If we assume

the sample ~x to be a vector of realizations of i.i.d. random variables with common

pdf f(xi | C,w), we obtain the following expression for the log-likelihood function:

L(C,w|~x) = N log
w

C
+ (w − 1) ·

n∑
i=1

log
xi
C
−

n∑
i=1

(xi
C

)w
(5.19)

The maximum (Ĉ, ŵ) can be determined by setting the two partial derivatives of

eq. (5.19) equal to zero and by solving numerically the two resulting non linear

equation:

∂L

∂w
= −n+

n∑
i=1

(xi
C

)w
= 0

∂L

∂w
=
n

w
−

n∑
i=1

log
(xi
C

)
−

n∑
i=1

(xi
C

)w
· log

(xi
C

)
= 0
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As for the GEV case, an estimation of the standard error in the parameter estimates

can be obtained by evalutating the hessian matrix of the log-likelihood function.

Moreover, since the Weibull probability density function satisfies the regularity

conditions, the asymptotic proprieties of the maximum likelihood estimator hold

and the confidence interval can be obtained by assuming a normal distribution for

the estimated parameters.

Least sqaures method

For small sample sizes, maximum likelihood might be unable to find a global

maximum. In these cases an alternative method is the least squares fitting method.

To apply a least square regression to the Weibull distribution, it is useful to define

first the reduced variate as follows

Yr = log(− log(1− Fi)) = w · (log y − logC) (5.20)

We point out that this is the equation of a straight line in the (Yr, log y) plane.

Therefore it is possible to perform a linear regression in order to obtain the slope

w of the line and the Yr-axis intercept −w · logC. To do so it is first necessary to

approximate the non exceedance probability with a plotting position formula (such

as for example the Weibull plotting position Fi = i/(N + 1) where i represents the

position of the i− th element in the sample sorted in ascending order. The linear

regression has been carried out minimizing the sum of the normal distances to the

line, squared. The procedure yields us the two unknown parameters of the Weibull

distribution function

w =
Sh
SyR

, C = e

{
h̄− Sh

SyR
·ȳR

}
(5.21)
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where

h̄ =
1

n
·

n∑
i=1

hi

ȲR =
1

n
·

n∑
i=1

YRi

Sh =

√√√√ 1

n− 1
·

n∑
i=1

(
hi − h̄

)2

SYR =

√√√√ 1

n− 1
·

n∑
i=1

(
YRi − ȲR

)2

5.3 Fit of the Generalized pareto distribution

Maximum Likelihood

In the case of the GPD the two parameters density function has the expression

f(~y; ξ, ψ) =
1

ψ
·
(

1 +
ξ

ψ
· y
)−1/ξ

(5.22)

log likelihood function expression is the following

L(ξ, ψ|~y) = −n log(ψ)−
(
ξ − 1

ξ

) n∑
i=1

log

(
1 +

ξ

ψ
· yi
)

(5.23)

We recall that the numerical optimization has to satisfy the domain restriction for

the two parameters (ξ̂, ψ̂) ∈ [0,+∞). This method has been proved to work fine

if ξ > −1/2. In this case it has been showed that the usual properties of the MLE

like consistency and asymptotic efficency hold:

√
n ·

(
ξ̂ − ξ, ψ̂

ψ
− 1

)
→d N

(
0,M−1

)
(5.24)

where N (0,M−1) is a bivariate normal distribution with mean vector 0 and co-

variance matrix proportional to the hessian matrix of the likelihood function:

M−1 = (1 + ξ) ·

(
1 + ξ 1

1 2

)
(5.25)
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L-Moments

Similarly to our discussion in the previous section for the GEV, the L-moment

method can be used as well in the case of the GPD. The theoretical L-moments of

the distribution are defined as follows:

ξ =
3τ3 − 1

1 + τ3

ψ = (1− ξ)(2− ξ) · λ2

µ = λ1 − (2− ξ) · λ2

By replacing the the L-moments with the empirical estimators we obtain a system

of three equations whose solution yields us the parameter estimators. Hosking

and Wallis (1990) also give formulae to evalutate the standard errors of these

estimators. When GPD is assumed to be the distribution of the excesses over a

given threshold, the location parameter is fixed and equal to the threshold; as a

consequence the previous problem shrinks to a bidimensional system of equations.

Least sqaures method

A least squares method has been used to compare its performances with the tra-

ditional methods of MLE and LMOM. Given a sample xi, i = 1, n we can write

−ξ · log(1− F (xi)) = log

(
1 +

ξ

ψ
xi

)
(5.26)

Hence we define the empirical non exceedance frequencies of the elements in the

sample using the Weibull lotting position formula Fi = i/n + 1 and choose to

minimize the sum of the squared distances defined as follows

n∑
i=1

[
log(1− Fi) +

1

ξ
log

(
1 +

ξ

ψ
xi

)]2

= min (5.27)

In this case the regression problem is not linear, but the solution of the previous

problem can be easily obtained using a numerical optimization algorithm.
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Station wetdays Scale parameter Shape parameter

Asheville (NC) 127 6.638 0.8025

Heerde (NL) 188 3.788 0.826

Hoofdoorp (NL) 194 3.624 0.795

Kingston (RI) 115 9.323 0.789

Livermore (CA) 57 5.634 0.849

Milano (IT) 109 7.734 0.773

Padova (IT) 105 6.727 0.751

Philadelphia (PA) 118 7.632 0.773

Putten (NL) 174 4.273 0.871

Roosvelt (AZ) 49 7.209 0.839

San Bernardo (FR) 117 10.793 0.878

Zurich (CH) 188 4.783 0.736

Bologna (IT) 93 6.175 0.785

Worcester (SA) 38 6.855 0.954

Albany (GA) 105 10.396 0.753

Table 5.2: Weibull scale (C) and shape(w) parameters and mean value of the yearly

number of wet days for all the considered stations.



Chapter 6

Results: Stationary Series

Despite the increasing attention to the non-stationary analysis of hydrologic ex-

tremes, nowadays the engineering practice still focus on the traditional stationary

analyses of extremes. Therefore, a validation of the MEV model requires a prelim-

inary assessment in a stationary framework. In the following sections we describe

in detail the method used to produce synthetic stationary data sets and the re-

sults obtained by estimating high quantiles with both the traditional GEV and the

MEV approach. We first compare the performances of the various methods used

to estimate the parameters of the GEV. Then, the performances of the MEV are

explored, perticularized for the case of a Weibull parent distribution.

6.1 Method of analysis

In order to evalutate the performances of the different models in an actual sta-

tionary case, a method has been developed in this study which allows the use

of observed rainfall records. The following procedure has been applied to all the

selected time series of daily rainfall records: synthetic time series were generated

using the actual daily precipitated amounts of the original series, but randomly

scrambling their respective positions in the time series in order to obtain new data

sets charcterized by a lack of serial correlation and temporal trends, but sharing

the same pdf of the observed rainfall. In this way data sets are obtained that are

stationary by definition, to which apply the MEV and GEV models and evalutate

their respective performances in a stationary framework. This procedure preserves
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the original distribution of daily rainfall values and the distributions of the pa-

rameters of the distribution used to describe them. On the other hand, a simple

scrambling of the single daily values over all the time series would change the val-

ues of the yearly numbers of rainy days. In the original series the yearly numbers

of wet days ni are considered to be realizations of a discrete random variable N ,

whose distribution function is not known a priori. After the implementation of the

scrambling procedure the distribution of N will not be the original one, but only its

expected value will remain the same. In fact, after the scrambling the distribution

of the rainy days arrivals will be a Poisson distribution (the number of realizations

in any temporal window will be independent on the number of realizations in any

other disjoint window) but in the original case this may not be (and in general

is not) the case. To eliminate this shortcoming the following procedure has been

used in order to generate randomly scrambled time series without changing the

distribution of the random variable N :

1. The m realizations n1, .., nm of the random variable N (yearly number of wet

days) in the m years of the original series have been sorted in a random way

obtaining a new sample nji where the superscript j refers to the new random

order of the sample. The new time series has been generated by allocating

for every year i a number nji of rainy days.

2. All the non-zero daily rainfall totals of the original time series have been

randomly scrambled. For every year i of the new synthetic series, nji daily

rainfall realizations randomly selected among the whole time series have been

allocated in the nji empty slots.

To perform a benchmark of GEV and MEV performances in the stationary case,

1000 randomly scrambled time series have been generated from every data set.

For every synthetic series, a first window of t years was used to fit the extreme

value distributions to the data and, for some fixed return time (i.e. non exceedance

probabilities), the pertaining quantiles were estimated. To assess the performances

of the different models, the estimated quantiles xest for a fixed Tr were compared

with the observed quantiles xobs, evalutated using the whole synthetic time series.

In particular the annual maxima of the whole m years record have been ranked in

ascending order and for every value the empirical non exceedance frequency have
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been estimated using the Weibull plotting position formula. The reliability of such

non exceedance frequency Fi and of the corresponding return time Tr = 1− 1/Fi

depends on the ratio of length of the series over the considered return time. As the

return time decreases with respect to the length of the series, for the weak law of

large numbers the exceedance frequency get closer to the real survival probability

and the interarrival time of a given height of rainfall tends to its return time. This

is the reason why particular importance was given to the length of series in the data

sets selection process (All the selected datasets cover more than a century, spanning

from 106 to 275 years of continuous observations). This allowed to evalutated the

effects of the extrapolation outside the range of the data used to compute the

theoretical quantiles (30 or 50 years). For every considered window length T and

return time Tr, the distribution of the error in the predicted magnitude of the

event was estimated over all the random generations, using as indicator the root

mean squared error (RMSE) defined as

RMSE =

√√√√ngen∑
i=1

(
xesti − xobsi

xobsi

)2

(6.1)

This measure of the error was used beacuse it accounts both for the bias in the

reliability of estimates and the standard deviation of the estimated values; In

particular the latter gives an indication of the stability of the method with respect

to the sample available. We also evalutated the standard deviation in the result

obtined with MEV and GEV. Histograms of the error were used to characterized

the error distribution for all the station over all the 1000 random generations of

the series.

6.2 Benchmark of the estimators for the GEV

parameters

Three different fitting methods have been used to estimate the GEV parameters:

Maximum likelihood, L-Moments and Mixed Methods. The performances of these

three approaches were then compared by applying all the methods in the station-

ary analysis for all the selected datasets. For every scrambled series, periods of 30
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and 50 years were randomly selected. Respectively, samples of 30 and 50 annual

maxima were obtained to whom the GEV pdf was fitted by means of the three

different estimation methods. The results are shown in the figures 6.1 and 6.2, in

terms of non-dimensional Standard Deviation and RMSE respectively. The global

performances over all the datasets suggest that the method that outperforms the

others is LMOM. In particular, the smaller the sample size, the larger is the incre-

ment of performances allowed by the L-Moments. For a sample size of 50 annual

maxima the difference is still noticeable in terms of stardand deviation whereas if

we look at the RMSE performances are similar, with a few exceptions correspond-

ing to stations where the ML error is still remarkably bigger than LMOM. For

larger sample sizes, instead, the ML is expected to refine its performances more

than LMOM and therefore in such cases it might be competitive as well. The

worst method, in terms of both standard deviation and root mean square error, is

the mixed method. This may be due to the fact that in this case the optimization

algorithm involves only the shape parameter. It is speculated that the combination

of parameters obtained with the mixed method does not correspond to a maxi-

mum of the likelihood function and neither features the properties of the LMOM

estimator. These findings are coherent with the results obtained performing the

Montecarlo analysis whose outcomes are reported in chapter 5. Therefore, when

analyzing sample of this size 50 years or smaller, using LMOM ensures the best

performances.

6.3 MEV-Penultimate and MEV-Complete

The performances of MEV-Complete with MEV-Penultimate have been compared

for the noteworthy case of a Weibull parent distribution. In the former case the

Weibull distribution was fitted to the daily data in every single year of the period

of record. Hence, the parameters Ci, wi and the number of rainy days ni were

computed for every year. Thereafter, the quantile associated with a given non

exceedance probability (or Tr) could be computed by solving numerically the MEV-

Complete expression given by:

ζ(x) =
1

T

T∑
j=1

[
1− e

(
− x
Cj

)wj]nj
(6.2)
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Figure 6.1: Standard deviation of the quantiles estimated using GEV fitted with ML,

LMOM and MM for different return times and record lengths. Every line corresponds

to a single station, for which the standard deviation was computed over 1000 random

scrambling of the original dataset

For what concerns the MEV-Penultimate, only the second order randomness in

the cardinality N is accounted for, and the MEV expression corresponds to the

penultimate approximation. Hence, for a fixed window of T years the Weibull

distribution has been fitted to the whole time inteval and the mean value of the

yearly number of rainy days has been computed. Then, the parameters of the

Gumbel distribution could be obtained as:

α =
1

Cw

µ = Cw · log n̄

Afterwards, inverting the Gumbel formula the quantiles corresponding to any given

value of the Tr were computed. It is worth to be remarked that this is not an asymp-

totic method and the actual rate of convergence (i.e. the error, for the given value

of n̄) is only the one of the Cauchy approximation. In Fig. 6.3 and 6.4 boxplots are

presented showing respectively non-dimensional Standard Deviation and RMSE of

MEV Complete and MEV Penultimate for all the 15 analyzed datasets. On each

box, the central mark is the median, the edges of the box are the 25th and 75th

percentiles respectively, the whiskers extend to the most extreme data points not



68 Results: Stationary Series

10
0

10
1

10
2

10
3

0

0.5

1

1.5

2

2.5

Tr [Years]

R
M

S
E

 

 

GEV (ML)
GEV (LMOM)
GEV (MIXED METHOD)

T = 30 years

10
0

10
1

10
2

10
3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Tr [Years]

R
M

S
E

 

 

GEV (ML)
GEV (LMOM)
GEV (MIXED METHOD)

T = 50 years

Figure 6.2: RMSE of the quantiles estimated using GEV fitted with ML, LMOM and

MM for different return times and record lengths. Every line corresponds to a single

station, for which the RMSE was computed over 1000 random scrambling of the original

dataset

considered outliers, while outliers are plotted individually. The standard deviation

is smaller in the case of the Penultimate distribution: this is due to the fact that,

for a record of T years, in the MEV Penultimate approch the yearly number of wet

days and the Weibull scale and shape parameters were computed within the whole

period of record whereas the same quantities were computed in every single year in

the MEV-Complete formulation. On the other hand, MEV-Complete outperforms

the MEV-Penultimate if one considers the RMSE as a measure of the error. Fig

6.4 shows that the error of the MEV Complete is general smaller both in the case

of T = 30 and T = 50 years. Moreover, increasing the record length T it is ob-

served that in the advantage of MEV-Complete over the Penultimate formulation

increases. This can be easily observed by applying the two methods to the original

records, thus analyzing records with lengths over 100 years (results are shown in

appendix C for all the stations). In this case the error of the Penultimate is, in

general, greater than the one of the MEV-Complete in the majority of the analized

stations.
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T = 30 years T = 50 years

Figure 6.3: Standard deviation of the quantiles estimated using MEV-Complete and

MEV-Penultimate for different return times and record lengths. For every station a

single value of the standard deviation was computed over 1000 random scrambling of

the original dataset; The boxplots represent the distribution of the standard deviation

over all the stations.

6.4 Benchmark of GEV and MEV performances

In this section the results obtained with annual-maxima fitted GEV-AM ( hence-

forth referred to simply as GEV), POT and MEV-Complete are compared for all

the stations. The thresholds used in the Peak Over Threshold have been deter-

mined using a fixed threshold approach as discussed in Chapter 4, and vary from

10mm to 25mm for all the stations. As in the previous case, we here report

nondimensional standard deviation and RMSE over 1000 random generation for

all the series. For every one of the 1000 random generation, the three distribution

have been calibrated using windows of 30 and 50 years; The fitted distribution then

have been used to estimated the quantiles associated with the most common return

times used for practical purposes (spanning from 2 to 500 years, corresponding to

exceedance probability ranging from 0.5 to 0.005). GEV distribution was fitted to

the sample of annual maxima using LMOM, as suggested from the analysis carried

out in section 6.2. POT have been applied after a proper threshold selection for

every station. The GPD was then fitted to the excesses over the threshold using

ML estimator. MEV distribution was calibrated by fitting a Weibull distribution
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T = 30 years T = 50 years

Figure 6.4: RMSE of the quantiles estimated using MEV-Complete and MEV-

Penultimate for different return times and record lengths. For every station a single

value of the RMSE was computed over 1000 random scrambling of the original dataset;

The boxplots represent the distribution of the RMSE over all the stations.

to the daily values of every year of the considered period of record using ML es-

timation for scale and shape weibull parameters. To assess the goodness of fit

implied by the various approaches in quantile estimation, the Root Mean Square

Error (RMSE), as defined in eq. 6.1 and the non-dimensional Standard Deviation

(STDV), obtained dividing the standard deviation by the corresponding observed

quantile, were computed for every station. The distribution of RMSE and STDV

over all the stations was then explored using boxplots, as showed in Fig. 6.5 and

Fig. 6.6 for STDV and RMSE respectively. GEV has the largest STDV. POT

allows to reduce STDV using more data than GEV, but if the threshold is too low

a bias may enter when poisson end/or GPD hypothess are no longer met by thresh-

old excesses. The STDV of the MEV estimated quantiles is remarkably smaller if

compared with GEV and POT.

The boxplots representing the RMSE show that, for the smaller return times ( from

2 to 50 years) the RMSE of GEV and POT is small and the diffence among the

stations is not relevant, whereas in the case of MEV the spreding of the distribution

is more relevant, suggesting a difference in the behaviour of the various stations.

This is speculated to be linked to the goodness of fit of the Weibull distribution,

which is not the same in all the datasets. In some cases the adoption of the MEV
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approach leads to a limited bias in quantile estimation. When considering higher

return times (Tr = 100, 200) the role played by uncertainty grows. In this case

we are extrapolating outside the range of the data used to fit the distribution

(30 or 50 years) but the observed quantiles are still reliable, because evalutated

using all the years of record available (from 106 to 275 years, depending on the

particular station). The boxplots in this case show that MEV ouperforms both

GEV and POT approaches, leading to a more accurate quantile estimation. The

effect of the length of the record can be evalutated as well; In the case T = 30 years

the performances of POT and GEV decrease with respect to the case of T = 50

years window. This suggests that the fit of GEV or GPD to a sample of smaller

size leads to an increase in the uncertainty when a fixed ’high’ quantile is to be

estimated. On the other hand, the MEV approach uses more data from the bulk

of the distribution and does mantain similar performances in both the cases. The

POT in turn outperforms GEV, using more data than just the annual maxima.

The reduction in the uncertainty inherent in the MEV approach can be explored

by analizing the pdfs of the error. Histograms of the non-dimensional error, defined

as ε = (hest−hobs)/hobs are reported in the figures in panel 6.8 for POT and MEV.

The histogram pertaining to the GEV is not considered here, being outperformed

both by POT and MEV in the error standard deviation. For Tr = 20 the variance

of the error distribution is very similar for POT and MEV; The histogram of MEV

error exhibits a bimodal pdf with a peak centered in ε = −0.15, showing that

for some station a poor fit of the Weibull distribution may lead to a bias in the

estimated annual maximum cdf. Incresing the Tr the superiority of MEV over

POT become clearer, as suggested by the reduced variance of the error pdf.

The dependance of the various methods on the sample size was explored by setting

a value of return time and considering periods of record of different lengths, spannig

from 2 to 100 years. Only the stations with 140 years of records or more were

used in this analysis. For every dataset, 1000 random reshuffling of the original

series have been carried out, using the procedure described in Section 6.1. For

every synthetic series, samples were extracted of different lengths. The quantiles

associated with a given return times (Tr = 100 years) were then computed with

each method. The RMSE was computed over all the random generations and its

distribution over all the stations is reported in the boxplots in Fig. 6.7.
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T = 30 years T = 50 years

Figure 6.5: Standard deviation of the quantiles estimated using MEV-Complete, GEV-

LMOM and POT approaches for different return times and record lengths. For every

station a single value of the standard deviation was computed over 1000 random scram-

bling of the original dataset using each method; The boxplots represent the distribution

of the standard deviation over all the stations.

For small sample sizes, MEV outperforms both GEV and POT, whose estimated

values have a considerable variance. Increasing the sample size, GEV and POT es-

timates converges to smaller values of RMSE whereas the distribution of the RMSE

of MEV distribution does not appear tobe dependent on the sample size. This be-

haviour underline an interesting property of the MEV approach: MEV-estimated

quantiles are not overly sensible neither to the specific sample nor to the sample

size. This is due to the fact that the MEV approach uses information from the

bulk of the daily rainfall distribution and therefore is able to infer the general char-

acters of the underlying stochastic process. The GEV and POT approaches are

good models for the sample of annual maxima on which they have been calibrated

(as Fig. 6.7 shows for high sample sizes, where the period of record used to com-

pute theoretical qualtiles tends to the whole record from which observed quantiles

are drawn). For small sample sizes, instead, GEV ensures a good modeling of the

”local”’ statistical properties of the sample at hand, but when the observed quan-

tiles are drawn from the longer record it fails to ”‘generalize”’ and the high RMSE

observed indicates that GEV, when fitted to small samples, does not manage to

capture the underlying statistical properties of the population.
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T = 30 years T = 50 years

Figure 6.6: RMSE of the quantiles estimated using MEV-Complete, GEV-LMOM and

POT approaches for different return times and record lengths. For every station a single

value of the RMSE was computed over 1000 random scrambling of the original dataset

using each method; The boxplots represent the distribution of the RMSE over all the

stations.

Figure 6.7: Boxplot representing RMSE obtained with GEV, POT and MEV for a

fixed Tr = 100 years for various windows sizes. Only the record longer than 140 years

were selected in this case.
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T = 30 years T = 50 years

Figure 6.8: Histograms representing the distribution of the error over all the random

generations for all the stations analyzed.
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Figure 6.9: QQ and PP plots for all the stations. Estimated quantiles have been com-

puted fitting GEV, POT and MEV distributions to samples of 30 years and then have

been compared with the quantiles observed in a 100 years sample. Both samples have

been obtained for 100 consecutive random scrambling of every station, so that indepen-

dece was ensured between the two samples used to evalutate observed and estimated

quntiles.
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Figure 6.10: Empirical cdf of the annual maximum and theoretical cdf estimated using

POT, GEV and MEV distributions obtained performing 100 random reshuffling of the

two long records of Bologna and Milano. Solid line represents mean value over all the

random generations while dashed lines represent one standard deviation distances from

the mean. Color of the scatter points is indicates their local density

.
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Figure 6.11: Distribution of the error for the single stations for Tr = 100 years.





Chapter 7

Results: non-stationary series

7.1 Is stationarity really dead?

Traditionally, water resources analysis has always been based on the stationarity

assumption. Under this hypothesis, the fluctuations of the natural process at hand

are supposed to vary in time within a same fixed envelope. As a consequence any

measured value (e.g. annual discharge or annual maximum daily rainfall) is the re-

alization of a random variable featured by a given unchanging distribution. When

the aim of analyis is extreme weather risk assessment, this time invariance is pro-

jected into the future. Some recent works (e.g. Milly et al., 2008) argue that the

hypothesis of stationarity has long been compromise by several factors. The first

source of non-stationarity is the human intervention on the natural environment.

Water infrastuctures and land use change, for example, have a deep impact on

water quality and on the risk of flooding events occurrece. The same has occurred

for rainfall: Anthropogenic global warming has led to an increasing in air water

holding capacity, which is speculated to be one of the reasons of more frequent

and intense rainfall events. Effectively, circulatory and thermodynamic responses

to human activities have been linked to changes in means and extremes of precip-

itation, evapotranspiration rate and distribution of river discharges. The natural

climate change is another source of non-stationarities: climatic dinamycs are char-

acterized by internal low frequency oscillations which might have an impact on

daily rainfall pdf. For example the North Atlantic Oscillation (NAO) impact on

extremes has been studied (Marani and Zanetti, 2014) and correlations with the
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number of yearly rainy events and with the occurrence of extreme events have been

found. Milly et al. (2008) state that water resource engineers are required to adopt

non stationary models when assessing hydrologic risk or optimizing water systems

management, de facto depracating most of the currently adopted models. On the

other hand, the complexity of nonstationary models may lead to an increase in

the uncertainty: in fact non-stationary models are fitted by inductive inference

and the structure of the model may an additional source of uncertainty (Serinaldi

and Kilsby, 2014). Therefore non-stationary models adoption does not guarantee

any practical enhancement of the accuracy of extreme rainfall analysis, whereas

possible misspecification of the model would lead to seroius under /overestimation

of the predicted quantiles. The choice of the model have to be carefully evalutated,

performing a preliminary analysis of the records at hand.

7.2 The Padova time series

The Padova dataset of daily precipitation and temperature is the longest record

of its kind. It covers the time span from 1725 to 2013 with only a few year of

incomplete data. The data have been recorded across the years at three different

stations, all of them located within 1 Km. Camuffo (1984) identified five different

periods:

1. 1725-1768 Giovanni Poleni collected the data on the roof of his own house

(10m above ground), using a raingauge constructed according to the indica-

tions of the Royal Society;

2. 1768-1813 Giuseppe Toaldo and later Vincenzo Chiminello kept measuring

daily rainfall using a raingauge located on top of the Specola tower, Padova

astronomical observatory. The height of the instrument is approximately

25m above ground.

3. 1814-1877 Giovanni Santini is the new director of the astronomical obser-

vatory. In this period the observation are not always systematic; The data

recorded in the years from 1815 to 1823 were exclude for their sparsity and

uncertainty. Starting in 1838 the entire roof of the Specola (27.5m2) is used
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as a funnel; this may have lead to underestimation of the smaller rainfall

events. Three years (1838-1840) are missing from this period.

4. 1878-1934 Giuseppe Lorenzoni installed a new raingauge with an area of

0.4m2 located at 21m above the ground. The subsequent directors of the

Specole kept measuring with the same device to end in 1934

5. 1878-1934 Measurement are run by the Venice Water Authority, who ar-

ranged a new station located about 800m away from the Specola, with a

increased sampling frequency (measuraments are now hourly).

6. From 1994-present the Veneto Region Environmental Agency (ARPAV) is

appointed to carry on daily measurements. The reference station is now

located at Padova Botanical Gardens, 1Km away from La Specola.

The Padova series of rainfall records consists of 275 years of complete daily ob-

servations; only 14 years are missing from the record. The data recorded in the

different epochs can be considered to have spatial homogeneity since all the obser-

vation were collected inside a 1km radius, a distance significanlty smaller than the

characteristic spatial scale of precipitation evets. On the contrary, some concern

may regard inhomogeneities due to changes in the measuring instrument across

the years. In particular the major change occurred in the years from 1838 to 1877

when the whole roof of the Specola tower was used as a funnel to collect the pre-

cipitated volumes.This may have caused underestimation of the smaller events and

even of the number of rainy days, its sensibility being certainly less than the one

of the other raingauges. Moreover, it is likely that a fraction of the precipitated

water was retained by the roof surface anc lost for evaporation. The more in-

tense events likely are only slightly affected from this instrumental inhomogeneity,

whereas the smaller ones (and in particular the yearly recorded number of rainy

events) might not be properly described. A recent analysis of the properties of the

Padova time series (Marani and Zanetti, 2014) explored the fluctations observed in

the GEV-estimated rainfall extremes and in the number of wet days. They found

high amplitude cycles in the GEV-estimated quantiles for return times of Tr = 100

and Tr = 200 years. In panel (7.3) scatter plots are reported for the variable w and

C (Weibull shape and scale parameters) and N (yearly number of rainy days) for
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three different historical periods ( 1725-1814, 1823-1877, 1878-2013) correspond-

ing to different measuring instrument. Shape and scale Weibull parameter show

a positive correlation between them and a negative correlation with the yearly

number of rainy days. The temporal variations can be explined both with climatic

variability and instrumental change. For exaple, in the interval 1823-1877 a drop

can be observed in the number of rainy days and an increment in the mean value

of the scale and shape parameter. This could be explained by considering that a

different measuring device was used, which led to a possible underestimation of the

yearly number of rainy days and, as a consequence, to an overestimated mean scale

parameter. This would also explain the inverse relation between scale parameter

and number of rainy days: If the smaller rainfall amounts are not reported, when

the number N of rainy days is smaller, then the scale parameter (which corresponds

with mean observed value) grows.
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Figure 7.1: 50-years sliding windows analysis for the original (right) and reshuffled

(left) Padova dataset, for a given return time Tr = 100 years.

7.3 Sliding windows analysis

In this section an original dataset is analyzed using sliding and overlapping win-

dows. The length ( e.g. T=30 and T=50 years) is fixed and for every period the

magnitude of the event for a given return time is computed using GEV, POT and

MEV approaches. The estimated quantiles are then compared with the empiri-

cal non exceedance frequencies, computed over all the years of observation. This
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way, it is possible to evalutate the meaningfulness of hypotesis of stationarity in

EV analysis. Fig. 7.1 shows the 50-years sliding windows result for the Padova

series; the quantiles associated with the Tr = 100 years were compute both for

the original Padova series and for a datset obtained by randomly reshuffling the

original daily records using the methodology explined in Chapter 6. The anal-

ysis of the original series shows remarkable variations in the estimated quantiles

across the last 3 centuries, suggesting that the adoption of stationary EV models

is not justified. On the other hand, the same analysis performed on the reshuf-

fled series shows that GEV and POT estimated quantiles still are characterized

by large oscillations, whereas MEV estimated values exhibit a remarkably smaller

variability. This finding shows that the oscillations in the GEV-estimated quan-

tiles are not generated by actual non stationarities of the original record, but by

the high variance inborn in GEV estimations. On the contrary, MEV variability

disappears when the original temporal sequence is destroyed, indicating that the

oscillations observed in the MEV-estimated values reflects actual non stationari-

ties (correspondent to low frequency oscillations) in both the yearly number of wet

days and in the parameters of the daily dainfall distribution. The same can be

observed for the Bologna dataset in Fig. 7.2: GEV and POT estimated quantiles

are subject to random oscillations, whereas the extremes evalutated with the MEV

approach are fairly stable in the randomly reshuffled series (right figure) and show

a clear upward trend in the original series (left figure) due to trends in either the

cardinality N or the Weibull parameters across the last two centuries.

Figure 7.2: 50-years sliding windows analysis for the original (right) and reshuffled

(left) Bologna dataset, for a given return time Tr = 100 years.
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Figure 7.3: Scatter plots for shape w and scale C Weibull parameters (computed fitting

Weibull to the single years of all the Padova record) and yearly number of wet days N

(right figures). Distribution of w, C and N over time (on the left).



Conclusions

The present dissertation derives theoretically and applies the MEV compound

distribution by comparing its performances with the traditional EV approaches,

based on the fit of an asymptotic distribution (GEV) using Annual Maxima (AM)

or Peak Over Threshold (POT) methods. A wide set of long observational series

from stations situated in different locations was selected, spanning disparate cli-

matic conditions in order to bestow general validity to the results of the analyses.

The MEV distribution is derived removing the asymptotic hypothesis, on which

classical EV theory is based, and accounting for stochastic variability in the yearly

number of events. Hence, its practical application does not require a sufficiently

large number of events per year to take place, as the classical GEV approach does.

This is a conceptual advantage, since it has been shown (Kudsoyiannis, 2004)

that GEV is a good approximation of the actual annual maximum cdf only for

extremely large values of N . The use of MEV as a distribution for the annual

maxima requires the adoption of a parent distribution for the daily rainfall val-

ues, whose parameters are considered random variables as well; in this study the

two-parameters Weibull distribution was adopted and the corresponding parame-

ters were estimated with Maximum Likelihood (ML) techniques. The stationary

extreme values analysis was carried out by means of artificial datasets obtained

from observed records by reshuffling the daily rainfall values, so as to eliminate

serial correlation and to preserve their actual (unknown) distribution. In the syn-

thetic data the distribution of the cardinality N(yearly number of rainy days)

was preserved. For every rainfall record, the study was repeated for different re-

turn times and sample sizes, in order to evalutate the behaviour of the different

EV distributions under a broad range of conditions. The analysis shows that the

adoption of the MEV distribution allows a more accurate quantile estimation when
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extrapolation is required outside the range of data avilability. In fact, often the

records available for practical applications have a limited length (30-50 years) and

traditional methods used to esimate high quantiles typically provide extremely

uncertain results. By repeating the analyses for 1000 successive reshuffling of all

the datasets, the distribution of the error has been evalutated for each method.

For the higher return times, MEV-estimated quantiles are characterized by a small

RMSE due to smaller standard deviations of the error. On the contrary, GEV-AM

and POT methods produce estimated quantiles whose standard deviation increase

cosistenly with Tr. The advantage inborn in the MEV approach is that it considers

not only the tail, but also the whole bulk of the distribution of daily rainfall for

the definition of the cdf of the annual maximum. The GEV-AM is a good model

for the sample of annual maxima on which it has been calibrated, but it may

fail in describing properly the underlying process from which the annual maxima

have been sampled, thereby leading to uncertain and misleading estimates when

extraplations are required. In fact, GEV ensures a proper modeling of the ”local”’

statistical properties of a given samples, but fails when required to ”‘generalize”’

and to capture the underlying statistical properties of the population from which

the sample is drawn. The MEV approach overcomes this limitation of the tradi-

tional models: by using information from the bulk of the daily rainfall distribution,

MEV is able to infer the general characters of the underlying stochastic process.

As a consequence, MEV-estimated quantiles are not overly sensible neither to the

specific sample nor to the sample size. The MEV approach takes into account

the inhomogeneous behaviour of the daily rainfall, incorporating the inter-annual

variability of the parameters of the Weibull distribution. The performances of

the model showed a variability for different datasets, suggesting that the Weibull

distribution may not be a model of general validity for daily rainfall dephts. In

the stations where the Weibull goodness of fit is poor, a bias may enter in the

MEV estimated quantiles. Nevertheless, for all the considered stations the bias

remains a small fraction of the estimated quantile. The formulation of MEV ex-

plored in this dissertation is speculated to be the proper way to model extremes

under a changing climate, as it properly accounts for the interannual variablity of

the parameters of the daily rainfall, from which maxima are generated. In a more

general framework, the annual set of parameter could be considered dependent on
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a set of climatic covariates with potential implications for the estimate of extremes

and their temporal trajectories. The aforementioned results reveal that the MEV

distribution surpasses the traditional GEV for distinct reasons. Firstly, it allows

more accurate estimations of high quantiles, granting a reduction in the variance

of the estimated values and thus diminishing the uncertainty in risk appraisals.

Secondly, MEV is a more general tool than GEV and POT models, since it does

not require the hypotheses of asymptoticity and Poissonian distribution of excesses

on which GEV and POT lean on. Thirdly, MEV allows a superior description of

the physics of the rainfall process and, as a consequence, is a more natural way to

model nonstationary extremes. In conclusion, MEV approach constitutes a simple

and realiable EV distribution which can be an alternative to the traditional GEV

methods.





Appendix A

In this appendix Mean Excess Function (MEF) plots and Hill plots for all the

stations are reported. The reader is referred to Chapter 4 for theoretical deriva-

tion and applications of the graphs for POT threshold selection and GPD shape

parameter estimation. Hill plots shows Hill-estimated tail index, equivalent to

the GEV-GPD shape parameter (solid line) and 95% confidence intervals (dashed

lines).
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Appendix B

In this appendix are reported QQ plot obtained fitting Weibull distribution to the

single years for all the datasets. Plots representing the observed empirical cdfs and

the Weibull theoretical ones are also reported.
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Appendix C

In this appendix we report the for all the selected datasets the results obtained by

implementing GEV, POT and MEV approaches; the three distributions have been

fitted to the whole records of all the 15 stations considered. The threshols selected

for POT vary from 10mm to 25mm depending on the station. MEV Complete and

MEV penultimate quantile estimation were obtained fitting Weibull distribution

using ML to, respectively, single years and whole periods of records.
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Appendix D

In this appendix the result obtained by implementing GEV, POT and MEV ap-

proaches to all the stations are reported. The quantile estimates were obtained

using a sliding and overlapping windows approach. A window length of 50 years

and a return time of 100 years have been fixed, in order to focus the analysis on

the temporal variability of the estimated values.
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