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Chapter 1

Introduction

Research about risk measurement had a great grown in the recent years. Such

research touched different but interconnected aspects:

1. axiomatic characterization of risk measures;

2. construction on risk measures;

3. premium principles in insurance context;

4. dynamic risk measures;

5. the relation between risk measures and other economics and financial theories;

6. application of risk measures to financial activities.

The matter of analysis of this work will be the static measures of risk.

In many papers risk was defined in terms of changes in value between two dates,

probably because risk is related to the variability of the future value of a position,

due to market changes or more generally to uncertain events. That is why, in their

work, Artzener et al. (1999) prefer consider future values only. So the basic object

of the study are are the random variables in the set of states of nature at a future

date, interpreted as possible future values of positions or portfolios currently held.

A first measurement of the risk of a position will be whether its future value belongs

or does not belong to the subset of acceptable risks, as decided by a supervisor such

as:

(a) a regulator who takes into account the unfavorable states when allowing a

risky position that may drawn on the resources of the government;

(c) an exchange’s clearing firm, which has to make good on the promises to all

parties of transactions being securely completed;
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(c) an investment manager who knows that his firm has basically given to its

traders an exit option in which the strike “price” consist in being fired in

the event of big trading losses on one’s position. For an unacceptable position

one has to alter the position or look for some commonly accepted instruments

that, when added to the current position, make it acceptable. The current

cost of getting enough of these instruments is a good candidate for a measure

of risk of the initially unacceptable position.

Let call X the space we will assume to be the “habitat” of all the financial position

whose riskiness we want to quantify.

Definition 1.1 (Measure of risk) A (static) risk measure is a functional

ρ : X → R

satisfying some properties which seem to be “desirable” from a financial point of

view.

We will follow now a deductive approach to risk measures. Historically, in fact,

the first axiomatization of the concept of risk measure is due to Artzner et al.

(1999) with their path-breaking work Coherent measure of risk. The main merit

of the work of Artzner et al. (1999) was to try to fix four properties that a risk

measure has to satisfy to be “correct”. In their interpretation coherent. One

of the aim of this work is to generalize the concept of coherent risk measure by

defining new kinds of risk measures. Our presentation is deductive because we

will present in Chapter 2 a list of (non independent) axioms for ρ and we will

show that different risk measures arise with the imposition of different axioms. A

particular choice of four of them, for example, lead in [3] to define a coherent risk

measure. The other were used in other contexts by other authors and they all have

a financial explanation. We present in Chapter 3 the first axiomatic approach to

risk measurement and the definition of the axioms of coherence. We will see the

case when Ω, the set of states of nature, is finite and when it can be general. In

some cases coherence for a measure of risk can be a too strong requirement. Thus

some authors weakened one of the axioms a coherent risk measure has to satisfy

(the subadditivity axiom) and imposed the axiom of convexity instead. This led

to a new kind of risk measures, called, for this reason, convex. In Chapter 4 we

introduce and analyze two independent approaches to convex measures of risk. We

will see the differences and the similarities and we will show that in some ways

these two measures coincide. In Chapter 5 we present a classical example of convex

measure of risk: the entropic risk measure. We show that in the case of totally

incomplete markets, both the approaches lead to the same measure. In Chapter 6
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we go beyond and find a relation between the entropic measure of risk and claim

pricing. This way of pricing a claim keeps in consideration the preferences of the

investors by modelling them using the well-know exponential utility function. To

conclude we present in Chapter 7 a simple application of the convex measure of risk

known as AVaR. We made a comparison between Value at Risk and AVaR in both

theoretical and empirical context. For the empirical analysis we considered the risk

measure know as Expected Shortfall, measure that was our matter of investigation

in [5].
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Chapter 2

The Axioms

We present now a list of axioms that represent possible properties that a risk

measure has to satisfy.

2.1 Axioms

(a) convexity: Epi(ρ) = {(x, a) ∈ X × R : ρ(x) ≤ a} is convex in X × R;

(b) lower semi-continuity: the set {x ∈ X : ρ(x) ≤ c} is closed in X for all c ∈ R;

(c) ∗positivity: x ≥ 0 ⇒ ρ(x) ≤ ρ(0), ∀x ∈ X;

(c1) ∗monotonicity: x ≥ y ⇒ ρ(x) ≤ ρ(y), x, y ∈ X;

(c2) ∗relevance: x ≤ 0, and x 6= 0 implies ρ(x) > 0, x ∈ X;

(d) subadditivity: ρ(x + y) ≤ ρ(x) + ρ(y), ∀x, y ∈ X;

(d1) positive homogeneity: ρ(ax) = aρ(x), ∀a ≥ 0, ∀x ∈ X;

(e) translation invariance: ρ(x + a) = ρ(x)− a, ∀a ≥ 0,∀x ∈ X;

(e1) constancy: ρ(a) = −a, ∀a ≥ 0;

(f) law invariance: is x, y ∈ X have the same distribution w.r.t. P , then

ρ(x) = ρ(y) (this is the only axiom that effectively depends on the refer-

ence probability P );

(g) normalization: ρ(0) = 0:

(h) Comonotonic additivity: for comonotonic x and y, which means that x = f ◦z
and y = g ◦ z for non decreasing f and g and for z, y and x ∈ X implies that

ρ(x + y) = ρ(x) + ρ(y).
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Due to financial interpretation of ρ (see discussion of the axiom (e) below),

the axioms (c) and (c1) have the inequality sign opposite to what the name of

the axiom would suggest (this is the reason why we added the symbol (∗) to the

denomination of the axiom). An other way to solve this possible arising confusion

is to work with π(x) = ρ(−x), as done in [18], but we don’t really think this is

going to be a problem.

We discuss now the financial interpretation of the above axioms.

2.1.1 Convexity(a) and Sublinearity (d) (d1)

Recall that: ρ is convex if and only if

ρ(αx + (1− α)y) ≤ αρ(x) + (1− α)ρ(y), ∀x, y ∈ X, ∀α ∈ [0, 1]; (2.1)

ρ is sublinear if it ρ satisfies both axioms (d) subadditivity and (d1) positive

homogeneity. In the definition of a convex risk measure (see Definitions 4.1 and

4.4) we require the convexity axiom but not necessary the sublinearity axiom. In

fact, as we will see, sublinearity is stronger than convexity, and all we do is to

weaken this axiom.

Subadditivity has an easy interpretation. Let us suppose that we own two

positions which jointly have a positive measure of risk. Hence, we have to add

extra cash to obtain a ”neutral position”. If the subadditivity did not hold, then,

in order to deposit less extra cash, it would be sufficient for us to separate in two

account two positions. Roughly speaking, it seems reasonable to have a discount

when we ”buy” several positions.

We notice that subadditivity implies that ρ(nx) ≤ nρ(x), ∀x ∈ X, ∀n ∈ N.

The opposite inequality is imposed by the positive homogeneity axiom. However,

this last axiom may not be necessary. We will see later why.

In many situations the risk of a position might increase in a non linear way

with the size of the position. For example, an additional liquidity risk may arise

if a position is multiplied by a large factor. This suggest to relax the condition of

positive homogeneity and subadditivity. In the following four items we show why

it could be reasonable to impose convexity instead (see [18] and [14]). Convexity

means that diversification does not increase the risk, i.e., the risk of a diversified

position ρ(αx+(1−α)y) is less or equal than the weighted average of the individual

risks.

(1) The convexity axiom clearly express the requirement that, as already seen,

the risk is not increased by the diversification on the position held on the

portfolio.
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(2) Convexity alone implies the following inequalities (if ρ(0) = 0):

(a1) ρ(αx) ≤ αρ(x), ∀α ∈ [0, 1], ∀x ∈ X;

(a2) ρ(αx) ≥ αρ(x), α ≥ 1, ∀x ∈ X.

The first is an immediate application of (2.1) with y = 0, the latter by

applying (2.1) with 1
α and y = 0. Both conditions (a1) and (a2) are justified

by liquid arguments: Indeed, when α becomes large, the whole position (αx)

is less liquid than α times the same position x, hence inequality (a2) seems

reasonable. When α is small, the opposite inequality must hold for specular

reasons.

While Artzner and al. [3] motivated the axiom (d1) of positive homogeneity

because of liquid arguments, the belief that only property (a1) and (a2) were

to be required, held to the so called convex measure of risk.

(3) Some authors have argued that positive homogeneity is necessary to preserve

the property that a risk measure should be invariant with respect to the change

of the currency. In the discussion of the translation invariance axiom (e)

below, we will see that this is not really the case(see also Remark 3.9 in [20]).

(4) If ρ(0) = 0 it can be easily checked (see Lemma 2) that which ever two axioms,

among convexity (a), subadditivity (d) and positive homogeneity (d1), hold

true, then the other one holds true as well.

2.1.2 Translation invariance (e) and Constancy (e1)

(1) The axiom of translation invariance (e) allows for the representation of ρ(x)

as a capital requirement. It guarantees that ρ(x) is the minimal amount of

money to add to the initial position x to make it acceptable:

Lemma 1 ρ : X → R satisfies the axiom of translation invariance (e) if and

only if there exists a set A ⊆ X such that:

ρ(x) = inf{α ∈ R|x + α ∈ A}.

where A .= {x ∈ X|ρ(x) ≤ 0}

See Lemma 1 in [19] for the proof.

As we will see later (Definition 3.2), the set A is the so called acceptance set

associated with ρ. Thus ρ(x) is positive for unacceptable position x, while is

negative for acceptable position.
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Note that axiom (e) ensure that, for each x ∈ X we have ρ(x − ρ(x)) =

ρ(x) − ρ(x) = 0. And this confirm the natural interpretation in terms of

acceptance set associated with ρ.

(2) Note that in the statement of axiom (e) (and the same argument could be

used also - and only - for the constancy axiom (e1)) it is required that both

sums x + a and ρ(x)− a are well defined. This implies that x and ρ(x) must

be expressed in the same unit: the unit of the constant a. If the random vari-

able x (or x$) represents a random amount expressed in $, then also ρ(x)(or

ρ$(x$)) will be a sure amount expressed in $. Hence a risk measure satisfy-

ing the translation invariance axiom does depend on the particular choice of

the currency Therefore also the acceptable set associated to ρ(as well as the

penalty function that will be introduced later) will depend on it.

(3) Consider two currencies (to be concrete: dollar and pound) and let λ > 0 be

the exchange rate: 1$ = λ£. Let A£ be a subset of random variables which

are expressed in £. Then obviously, x£ ∈ A£ if and only if λx£ ∈ (λA£) .=

{y|∃x£ ∈ A£ : y = λx£}. Then the elements of the sets λA£ and A£ are

the ”same” random variable, denominated either in $ or in £. Hence if A£

is the acceptable set associated with ρ£, then A$
.= λA£ is the acceptance

set associated with ρ$.

Remark 1 Let λ > 0 be the exchange rate: 1$ = λ£, let ρ : X → R satisfy

the axiom of translation invariance (e), let ρ£(resp. ρ$) be the risk measure

ρ expressed in pound(resp. dollar) and let A£(resp. A$) be the acceptance

set associated with ρ£(resp. ρ$). If x$ = λx£, then:

A$ = A£ iff ρ$(x$) = λρ£(x£),

which is the proper substitute of the positive homogeneity property.

See Remark 2 in [19] for the proof.

(4) We will see in Lemma 2 that for a convex risk measure (as proposed in [18]) the

translation invariance axiom (e) is equivalent to the, self evident, constancy

axiom (e1).

Remark 2 It is an easy exercise to prove that axiom (e) and (e1) together

implies ρ(0) = 0.

Proof: ρ(a) = ρ(0 + a) = ρ(0)− a = −a ⇔ ρ(0) = 0 ∀a ∈ R. ¤
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2.1.3 ∗Positivity (c) and ∗Monotonicity (c1)

Consider the axiom:

(co) x ≤ 0 ⇒ ρ(x) ≥ ρ(0).

Pay attention to the fact that there is no symmetry between the axiom (co) and

(c). It may be easily checked (see Remark 8 (iv)) that if ρ is convex (is the sense

of [18]) then (c) implies (co) but the converse implication is false, as shown by the

simple counterexample ρ(x) .= |x|, x ∈ R.

The interpretation of the axiom (c) (as well as (c1)) follow immediately from

the financial meaning of a risk measure: suppose that x ≥ 0, then the position is

clearly acceptable and so ρ(x) ≤ 0. Note that −ρ(x) is the maximum amount of

money which we can withdraw from the position. We will discuss this deeply in

the next chapter.

2.1.4 Lower semi-continuity (b)

This axiom is technical and it is required essentially to achieve the adequate func-

tional representation in Theorem 4.6. As we will see, this axiom is imposed in [19]

and is a consequence in [14].

2.1.5 Law invariance(f)

In addition to the more ”classical” axiom (a)-(e), law invariance is also recurrent

in literature(see for example, Kusuoka (2001) and Wang and al. (1997)).

On the one hand, the financial motivation of law invariance is intuitive. Indeed,

it is desirable to have risk measures which ”allow the same riskiness” to financial

position that are identically distributed with respect to the probability P .

On the other hand, note that the definition of low invariance depends on the

probability measure P given a priori, hence it is reasonable to expect that in the

representation of low invariant coherent or convex risk measures the set P of gen-

eralized scenario will be dependent on P .

2.1.6 Normalization (ρ(0) = 0)

As we have already seen, this condition arises in case the axioms of translation

invariance (e) and (e1) hold true. What we want to emphasize is that, if the risk

measure ρ is normalized in the sense that ρ(0) = 0, then the quantity ρ(x) can

be interpreted as a ”marginal requirement”, i.e., as the minimal amount of capital

which, if added to the position at the beginning of the given period and invested

into a risk-free asset, makes the discounted position x acceptable. We will see
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that the under this condition, both the approaches to the definition of convex risk

measures in [14] and [18] lead to the same conclusion in therm of the representation

form that a convex measure has to satisfy.

2.1.7 Comonotonic additivity

This property can be interpreted as the fact that the risk of two random variables

depending on the same underlying source of risk (z) is additive.



Chapter 3

Coherent Measures of Risk

We present now the first line of research that was started by a group of scholar:

Artzner, Delbaen, Eber and Heath. The axiomatic definition of coherent risk mea-

sures was introduced in their path-breaking paper [3]. Delbean, furthermore, ex-

tended the definition on coherent risk measures to general probability spaces.

3.1 Coherent measure of risk: Ω finite case

Here we briefly introduce the concept of coherent risk measure developed by Artzner

et al. in [3].

NOTATION.

(a) We shall call Ω the sets of states of nature, and assume it finite. Considering

Ω as the set of outcomes of an experiment, we compute the final net worth

of a position for each element of Ω. It is a random variable denoted by X.

Its negative part, max(−X, 0), is denote by X− and the supremum of X−

is denoted by ‖X−‖, if no possible confusion arises. The random variable

identically equal to 1 is denoted by 1. The indicator function of the state ω

is denoted by 1{ω}.

(b) Let G the set of all risks, that is the set of all real-valued functions on Ω.

Since Ω is supposed to be finite, G is isomorphic to Rn, where n = card(Ω).

The cone of nonnegative elements in G will be denoted by L+, its negative

part by L−.

(c) We call Ai,j , j ∈ Ji, as a set of final net worth, expressed in currency i, which

in country i, are accepted by a regulator/supervisor j.
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(d) We shall denote Aj =
⋂

j∈Ji
Ai,j and use the generic notation A in the

listening of axioms below.

(e) Differently from Artzner and al. paper, to simplify the notation and without

loss of generality, in the furthering we will always assume that the risk free

interest rate is zero.

Axiom 3.1 The acceptance set A contains L+

Axiom 3.2 The acceptance set A does not intersect the set L−− where

L−− = {X| for each ω ∈ Ω, X(ω) < 0}.

It will be interesting to consider the stronger axiom.

Axiom 3.3 The acceptance set A satisfies A ∩ L− = 0

This axiom reflects the risk aversion of the regulator.

Axiom 3.4 The acceptance set A is convex.

Axiom 3.5 The acceptance set A is a positively homogeneous cone.

Definition 3.1 (Risk Measure) A measure of risk is a mapping from G into R.

When positive, the number ρ(X) assigned by the measure ρ to the risk X will be

interpreted as the minimum extra cash the agent has to add to the risky position X

to make it acceptable. If it’s negative, the cash amount −ρ(X) can be withdrawn

from the position or it can be received as restitution, as in the case of organized

markets for financial futures.

We define a correspondence between acceptance sets and measures of risk.

Definition 3.2 (Risk measures associated with an acceptance set) The risk

measure associated with the acceptance set A is the mapping from G into R denoted

by ρA and defined by

ρA(X) = inf{m|m + X ∈ A} (3.1)

Definition 3.3 (Acceptance set associated with risk measure) The acceptance

set associated with a risk measure ρ is denoted by Aρ and defined by

Aρ = {X ∈ G|ρ(X) ≤ 0}. (3.2)

We know define the set of four axioms a coherent risk measure has to satisfy:

Definition 3.4 (Coherence) A risk measure satisfying the following axioms: (c1)
∗monotonicity, (d) subadditivity, (d1) positive homogeneity and (e) translation in-

variance is called coherent.
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We notice that for λ > 0 axioms (d),(d1),(c1) and (c2) remain satisfied by the

measure λ · ρ if satisfied by the measure ρ. It is not the case for Axiom (e).

In this approach the acceptance set is the fundamental object and we have

discussed the axioms mostly in terms of the associated risk measure. The following

prepositions show that this was reasonable.

Proposition 3.1 If the set B satisfies Axioms 3.1,3.2,3.3,3.4 and 3.5, the risk

measure ρB is coherent. Moreover AρB = B̄ is the closure of B

Proposition 3.2 If a risk measures ρ is coherent, then the acceptance set Aρ is

closed and satisfies Axioms 3.1,3.2,3.3,3.4 and 3.5.Moreover ρ = ρAρ

3.1.1 Representation Theorems for Coherent Risk Measures

In this section we show a general representation for coherent risk measures: any

coherent risk measures arises as the supremum of the expected negative of final

net worth for some collection of ”generalized scenarios” or probability measures on

states of the world. We continue to suppose that Ω is a finite set, otherwise we

would also get finitely additive measure as scenarios.

The σ-algebra, 2Ω, is the class of all subsets of Ω.

Proposition 3.3 A risk measure ρ is coherent if and only if there exist a family

P of probability measures on the set of finite states of the nature, such that:

ρ(X) = sup{EP [−X]|P ∈ P}. (3.3)

3.2 Coherent Measures of risk on General Proba-

bility Spaces

The aim of this section is to show that a coherent risk measures can be extended to

arbitrary probability spaces. We will follow, in the exposition, the results presented

in [11].

3.2.1 Notation

Throughout the section we will work with a probability space (Ω,F ,P). With

L∞(Ω,F ,P)(or L∞(P) or L∞ if no confusion is possible), we mean the space of

bounded real valued random variables. The space L0(Ω,F ,P)(or Lo(P) or simply

L0) denotes the space of all equivalence class of real valued random variables.

The space L0 is equipped with topology of convergence in probability. The space
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L∞(P), equipped with the usual L∞ norm, is the dual of the space of integrable

(equivalences classes of) random variables L1(Ω,F ,P)(also denoted by L1(P) or L1

if no confusion is possible). Let us recall that the dual of L∞(P) is the Banach

space ba(Ω,F ,P) of all bounded, finitely additive measures µ on (Ω,F) with the

property that P(A) = 0 implies µ(A) = 0.

3.2.2 The General Case

In this subsection we will show that the main theorems in the paper [3] can be

generalized to the case of general probability spaces. The main difficulty consists

in replacing the finite dimension space RΩ by the space of bounded measurable

functions, L∞(P). In this setting the definition of a coherent risk measure as given

in [3] can be written as:

Definition 3.5 A mapping ρ : L∞(Ω,F ,P) → R is called a coherent risk measure

if the properties of Positivity, Subadditivity, Positive Homogeneity and Translation

Invariance hold.

Although the properties listed in the definition of a coherent measure have a

direct interpretation in mathematical finance, it is mathematically more convenient

to work with the related submodular function, ψ, or with the associated super-

modular function, φ.

Definition 3.6 (Submodular) A mapping ψ : L∞ → R is called submodular if:

1. For X ≤ 0 we have that ψ(X) ≤ 0.

2. If X and Y are bounded random variables then ψ(X + Y ) ≤ ψ(X) + ψ(Y ).

3. For λ ≥ 0 and X ∈ L∞ we have ψ(λX) = λψ(X).

The submodular function is called translation invariant if moreover

4. For X ∈ L∞ and a ∈ R we have that ψ(X + a) = ψ(X) + a.

Definition 3.7 (Supermodular) A mapping φ : L∞ → R is called supermodu-

lar if

1. For X ≤ 0 we have that φ(X) ≥ 0.

2. If X and Y are bounded random variables then ψ(X + Y ) ≥ ψ(X) + ψ(Y ).

3. For λ ≥ 0 and X ∈ L∞ we have φ(λX) = λψ(X).

The supermodular function is called translation invariant if moreover

4. For X ∈ L∞ and a ∈ R we have that φ(X + a) = φ(X) + a.
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Remark 3 If ρ is a coherent risk measure and if we put ψ(X) = ρ(−X) we get a

translation invariant submodular functional.

The following theorem is an immediate application of the bipolar theorem from

functional analysis.

Theorem 3.1 Suppose that ρ : L∞ → R is a coherent risk measure with associated

sub(super)modular function ψ(φ). There is a convex σ(ba(P), L∞(P))-closed set

Pba of finitely additive probabilities, such that:

ψ(X) = sup
µ∈Pba

Eµ[X] and φ(X) = inf
µ∈Pba

Eµ[X]

Remark on notation. There is a one-to-one correspondence between

1. coherent risk measures ρ,

2. the associated supermodular function φ(X) = −ρ(X),

3. the associated submodular function ψ(X) = ρ(−X),

4. the weak∗ closed convex set of finitely additive probability measures Pba ⊂
ba(P),

5. ‖ · ‖∞ closed convex cones C ⊂ L∞ such that ÃL∞+ ⊂ C.

The relation between C and ρ is given by

ρ(X) = inf{α|X + α ∈ C}.

The set C is called set of acceptable positions, see [3].

Remark on the interpretation of the probability space. The σ-algebra F describe

all the events that becomes known at the end of an observed period. The inter-

pretation of the probability P seems to be more difficult. The measure P describes

the probability that events may occur. However, in economics and finance, such

probabilities are subjective and depend on the preference of the regulators, and we

may argue that the class of negligible sets and consequently the class of probability

measures that are equivalent to P remain the same. This can be expressed saying

that only the knowledge of event with probability zero is important. So we only

need agreement on the “ possibility ” that events might occur, not the actual value

of the probability.

In view of this, there are two natural spaces of random variables on which we can

define a probability measure. Only these to space remain the same when we change

the underlying probability to an equivalent one. These two spaces are L∞(Ω,F ,B)

and L0(Ω,F ,B). The space L0 cannot be given a norm and cannot be turned into

a locally convex space.
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3.2.3 The σ-additive Case

The previous subsection gave a characterization of translation invariant submodu-

lar functionals (or equivalently coherent risk measures) in terms of finitely additive

probabilities. The characterization in terms of σ-additive measure requires addi-

tional hypothesis. E.g if µ is a purely finitely additive measure, the expression

φ(X) = Eµ[X] gives a translation invariant submodular functional. This func-

tional cannot be described by a σ-additive probability measure. So we need extra

condition.

Definition 3.8 The translation invariant supermodular mapping φ : L∞ → R
is said to satisfy the Fatou property if φ(X) ≥ lim supφ(Xn), for any sequence,

(Xn)n≥1, of functions, uniformly bounded by 1 and converging to X in probability.

So we obtain:

Theorem 3.2 For a translation invariant supermodular mapping φ, the following

4 properties are equivalent:

1. There is an L1(P)-closed, convex set of probability measures Pσ, all of them

being absolutely continuous with respect to P and such that for X ∈ L∞:

φ(X) = inf
Q∈Pσ

EQ[X].

2. The convex cone C = {X|φ(X) ≥ 0} is weak∗, i.e. σ(L∞(P), L1(P)) closed.

3. φ satisfies the Fatou property.

4. If Xn is a uniformly bounded sequence that decreases to X a.s., then φ(Xn)

tends to φ(X).



Chapter 4

Convex Risk Measures

As anticipated and motivated previously, convex measures or risk were introduced

as a generalization of coherent ones. They were firstly proposed by Heath (there

called “shareholder risk measure” or “weak coherent measures of risk”) in finite

sample spaces and later in general probability spaces by Föllmer and Scheid (2002a)

and, independently, by Frittelli and Rosazza Gianin (2002). All above notation of

“convex risk measures” are based in the convexity axiom. However, they differ

from each other because of the different selection of the other axiom. Even if the

choice if the others axioms could be different, we will show that the representation

reached in [14] and [18] is the same, and the two measures coincide.

To simplify the notation and without loss of generality, in the sequel we will

always assume that the risk free rate is zero, i.e. we do not need to discount the

future value of a position to get to the present value.

4.1 The Föllmer and Scheid convex risk measure

We present now the definition of convex risk measures given by Föllmer and Schied.

We will follow, in the exposition their work [14], and we always refer to this for

the proofs. Their approach is, in some sense, the most obvious. In fact, starting

from the definition of coherent risk measure in [3], they simple weaken the axiom

of sublinearity (subadditivity (d) and translation invariance (d1)) and imposed

convexity (a) instead. The whole way of proceeding is very similar to that used in

[3] and we can say that [14] is the natural development of what started in [3].

Let X be a convex set of functions on the set Ω of possible scenarios. We assume

that 0 ∈ X and that X is closed under the addition of constants.

Definition 4.1 (Convex Risk Measure) A map ρ : X → R is called convex
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risk measure if it satisfies the condition of convexity (a), ∗monotonicity (c1), and

translation invariance (e).

4.1.1 Acceptance Sets

Definition 4.2 Let X be a linear space of functions on a given set Ω of possible

scenarios. We assume that X contains all constants functions. Any risk measure

ρ : X → R induces an acceptance set Aρ defined as

Aρ
.= {x ∈ X|ρ(x) ≤ 0}.

Conversely, for a given class A of acceptable position, we can introduce an associ-

ated risk measure ρA by defining:

ρA(x) .= inf{m ∈ R|m + x ∈ A} (4.1)

The following two propositions summarize the relation existing between a convex

risk measure and its acceptance set Aρ. They are similar to those funded for

coherent measures of risk (see [3] and [11] for more details).

Proposition 4.1 Suppose ρ : X → R is a convex measure of risk with associated

acceptance set Aρ. Then

ρAρ = ρ.

Moreover, A .= Aρ satisfies the following properties.

1. A is convex and non-empty.

2. If x ∈ A and y ∈ X satisfies y ≥ x, then y ∈ A.

3. If x ∈ A and y ∈ X, then

{λ ∈ [0, 1]|λx + (1− λ)y ∈ A}

is closed in [0, 1].

4. If the risk measure ρ is coherent, then A is a convex cone.

Example 1 (Value at Risk) Value at Risk at level γ > 0,

V aRγ(x) .= inf{m|P [x + m < 0] ≤ γ},

is not a convex measure of risk. This can be seen the example in [3], p. 218, since

the acceptance set is not convex.
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Proposition 4.2 Assume that A is a non-empty convex subset of X which satisfies

property 2 of Proposition 4.1, and denote by ρA the functional associated to A via

4.1. If ρA(0) > −∞, then

• ρA is a convex measure of risk.

• A is a subset of AρA . Moreover, if A satisfies property 3 of Proposition 4.1,

then A = AρA

• If A is a cone, then ρA is a coherent measures of risk.

4.1.2 The representation theorem for convex measures of

risk

As in [3] for the case of coherent risk measure, here we give a representation theorem

for convex measure of risk. We first consider the special case in which X is the

space of all real-valued functions on some finite set Ω, while P is the set of all

probability measure on Ω.

Theorem 4.1 Suppose X is the space of all real-valued functions on a finite set

Ω. Then ρ : X → R is a convex measure of risk if and only if there exist a ”penalty

function” α : P → (−∞, +∞] such that:

ρ(Z) = sup
Q∈P

(EQ[−Z]− α(Q)) . (4.2)

The function α satisfies α(Q) ≥ −ρ(0) for any Q ∈ P, and it can be taken to be

convex and lower semi-continuous on P.

Note that this theorem includes the structure theorem for coherent measure

of risk as a special case. Indeed, it is easy to see that ρ satisfies the property of

positive homogeneity, i.e. ρ will be a coherent measure of risk, if and only if the

above penalty function α(·) in (4.2) takes only value 0 and +∞. In this case, our

theorem implies the representation (3.3) in terms of the set

Q = {Q ∈ P|α(Q) = 0}.

In the proof of this theorem in [14], the assumption that Ω is finite was only

used to obtain the closedness of the acceptance set Aρ. In the case where X

is given as the space L∞(Ω,F , P ) of bounded functions on a general probability

space (Ω,F , P ), we will have to assume the closedness of Aρ in a suitable topology,

but then the previous argument goes through. Thus we obtain the following exten-

sion of Delbaen’s representation theorem for coherent measure of risk on general

probability spaces; see Theorem 3.2. Note that by defining X = ÃL∞(Ω,F , P ), we

fix a priori, on the probability space (Ω,F), the measure P .
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Theorem 4.2 Suppose X = L∞(Ω,F , P ), P is the set of probability measure Q ¿
P , and ρ : X → R is a convex measure of risk. Then the following properties are

equivalent.

1. There is a ”penalty function” α : P → (−∞, +∞] such that:

ρ(x) = sup
Q¿P

(EQ[−x]− α(Q)) for allx ∈ X. (4.3)

2. The acceptance set Aρ associated with ρ is weak∗-, i.e. σ(L∞(P ), L1(P ))-

closed.

3. ρ possesses the Fatou property: If a sequence (xn)n∈N ⊂ X is uniformly

bounded and converges to some x ∈ X, then ρ(x) ≤ lim infn ρ(xn).

4. If the sequence (xn)n∈N ⊂ X decrease to x, then ρ(xn) → ρ(x).

Proposition 4.3 Suppose ρ : L∞(Ω,F , P ) → R is a convex measure of risk pos-

sessing a representation of the form (4.3) and take P as in Theorem 4.2. Then the

representation (4.3) holds as well in term of the penalty function

α0(Q) = sup
x∈L∞

(EQ[−x]− ρ(x)) = sup
x∈Aρ

EQ[−x] (4.4)

Moreover, it is minimal in the sense that α0(Q) ≤ α(Q) for all Q ∈ P if the

representation (4.3) holds for α(·). In addition,

α0(Q) = sup
x∈Aρ

EQ[−x] = sup
x∈A

EQ[−x] (4.5)

if ρ is defined as in (4.1) via a given acceptance set A.

4.1.3 Robust representation of convex measures of risk

We have seen the definition of convex risk measures as generalization of coherent

ones. We have seen an extension from the case of possible finite scenarios to the

case of a general probability space, too. In [11] and [14] financial positions are

modelled as function of the space L∞ with respect to a fixed probability measures

P on a measurable space (Ω,F). In their other work [15] , Föllmer and Schied,

characterize measures of risk in a situation of uncertainty, without referring to a

given probability measure. We will present now this extension 1.

From now on we assume that X is the linear space of all bounded measurable

function on a measurable space (Ω,F). We denote by M1
.= M1(Ω,F) the class

of all probability measures on (Ω,F). Moreover, we introduce the larger class

1For more details and proofs see [15]
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M1,f
.= M1,f (Ω,F) of all finitely additive and non-negative set functions Q on F

which are normalized to Q[Ω] = 1. We emphasize that no probability measure on

(Ω,F) is fixed in advance.

In this general context, the following characterization of coherent risk measure

is essentially well known; see e.g. Theorem 3.2 or [11].

Proposition 4.4 A functional ρ : X → R is a coherent measure of risk if and only

if there exists a subset Q of M1,f such that:

ρ(x) = sup
Q∈Q

EQ[−x], x ∈ X. (4.6)

Moreover, Q can be chosen as a convex set for which the supremum in (4.6) is

attained.

The first goal is to obtain an analogous result for convex risk measures.

Let α : M1,f → R ∪ {+∞} be any functional which is bounded from below

and which is not identically equal to +∞. For each Q ∈ M1,f the functional

X → EQ[−x] − α(Q) is convex, monotone, and translation invariant on X, and

these three properties are preserved when taking the supremum over Q ∈ Q. Hence

ρ(x) .= sup
Q∈M1,f (Ω)

(EQ[−x]− α(Q)) (4.7)

defines a convex risk measures of risk on X. The function α will be called a penalty

function for ρ on M1,f , and we will say that ρ is represented by α on M1,f .

Theorem 4.3 Any convex measure of risk ρ on X is of the form

ρ(x) = max
Q∈M1,f

(EQ[−x]− αmin(Q)) , x ∈ X, (4.8)

where the penalty functional αmin is given by

αmin
.= sup

x∈Aρ

EQ[−x], for Q ∈M1,f .

Moreover, αmin(Q) is the minimal penalty function which represents ρ, i.e. any

penalty function α for which 4.7 satisfies α(Q) ≥ αmin(Q) for all Q ∈M1,f .

Remark 4 1. As done in Section 4.1.2, we can obtain an equivalent represen-

tation for αmin as in (4.4) and (4.5), for all Q ∈M1,f .

2. The representation (4.6) is a particular case of the representation theorem for

convex measures of risk, since it corresponds to the penalty function

α(Q) =

{
0 if Q ∈ Q
+∞ otherwise
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The following corollary describes the minimal penalty function when dealing

with coherent risk measures.

Corollary 1 The minimal penalty function αmin of a coherent risk measure ρ takes

only the values 0 and +∞. In particular,

ρ(x) = max
Q∈Qmax

EQ[−x], x ∈ X,

for the weakly closed convex set

Qmax
.= {Q ∈M1,f |αmin(Q) = 0},

and Qmax is the largest set for which the representation of the form (4.6), seen as

a particular case of convex risk measure, holds.

In the sequel, we are particularly interested in the situation where a convex

measure of risk ρ admits a representation in term of σ-additive probability measure,

i.e., it can be represented by a penalty function α which is infinite outside the set

M1 = M1(Ω,F):

ρ(x) = sup
Q∈M1

(EQ[−x]− α(Q)) . (4.9)

A representation (4.9) in terms of probability measures is closely related to

certain continuity properties of ρ.

Remark 5 A convex measure of risk ρ which admits a representation (4.9) on M1

is continuous from above in the sense that

xn ↓ x =⇒ ρ(xn) ↑ ρ(x).

Moreover, continuity from above is equivalent to the lower semi-continuity with

respect to bounded pointwise convergence: If (xn) is a bounded sequence in X which

converges pointwise to x ∈ X, then

ρ(x) ≤ lim inf
n→∞

ρ(x).

The following proposition gives a sufficient condition that shows that every

penalty function for ρ is concentrated on the set M1 of probability measures. This

condition in ”continuity from below” rather than from above.

Proposition 4.5 Let ρ be a convex measure of risk which is continuous from below

in the sense that

ρ(xn) ↓ ρ(x) whenever xn ↑ x,

and suppose that α is any penalty function on M1,f representing ρ. Then α is

concentrated on probability measures in the usual sense, i.e.,

α(Q) < ∞ =⇒ Q is σ-additive.
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Remark 6 Any convex measure of risk ρ that is continuous from below is also

continuous from above, as can be seen by combining Proposition 4.5 and Remark

5. Thus a straightforward argument yields that ρ(xn) → ρ(x) whenever (xn) is a

bounded sequence in X which converges pointwise to x.

4.1.4 Risk Measures defined in terms of shortfall risk

In this section, we will establish a relation between convex measure of risk and

utility function.

Suppose that a risk-averse investor asses the downside risk of a financial position

x ∈ X by taking the expected utility E[u(−x−)] derived from the shortfall x−, or

by considering the expected utility E[u(x)] of the position itself. Recall that if an

agent is risk-adverse then u, the utility function, is strictly concave. If the focus is

on the downside risk, then it’s natural to change the sign and replace u by the loss

function l(x) .= −u(−x). Then l is a strictly convex and increasing function, and

the maximization of the expected utility is equivalent to minimizing the expected

loss E[l(−x)] or the shortfall risk E[l(x−)]. In order to unify the discussion of both

cases, we do not insist on strict convexity. In particular, l may vanish (−∞, 0], and

in this case the shortfall risk takes the form

E[l(x−)] = E[l(−x)].

Definition 4.3 A function l : R → R is called a loss function if it is increasing

and not identically constant.

In this section we will only consider convex loss function. Let u0 an interior

point in the range of l. A position x ∈ L∞(Ω,F , P ) will be called acceptable if the

expected loss is bounded by u0. Thus, we consider the class

A .= {x ∈ L∞(Ω,F , P )|EP [l(−x)] ≤ u0}. (4.10)

of acceptable position. The set A satisfies the first two properties of Proposition 4.1

and thus define a convex measure of risk ρ
.= ρA. Since l is continuous as a finitely

value convex function on R, ρ posses the Fatou property and, hence, representation

of the form (4.3).

In a robust representation, we define the loss functional L:

L(x) = sup
Q∈Q

EQ[l(−x)]

where Q is a set of probability measures on (Ω,F). As done before, a position x is

acceptable if L(x) does not exceed a given bound x0. So let us consider the convex

class:

AL
.= {x ∈ X|L(x) = sup

Q∈Q
EQ[l(−x)] ≤ u0}
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of acceptable positions, where, as above, x0 is in the range of l. Applying a well

known result we can conclude that ρ admits a representation of the form

ρ(x) = sup
Q∈M1

(EQ[−x]− αL(Q)) .

Thus, also in this case, the problem is reduced to compute of a suitable penalty

function.

In both cases, the corresponding penalty function α0(·) can be expressed in

terms of the Fenchel-Legendre transform

l∗(z) .= sup
x∈R

(zx− l(x))

of l;

In this context, the penalty function can be expressed in the following form:

Theorem 4.4 Suppose that A is the acceptance set given by (4.10). Then, for

Q ¿ P , the minimal penalty function of ρ = ρA is given by:

α0(Q) = sup
x∈A

EQ[−x] = inf
λ>0

1
λ

(
x0 + EP [l∗(λ

dQ

dP
)]

)
. (4.11)

and in a robust context:

Theorem 4.5 The convex risk measure corresponding to the acceptance se A can

be represented in terms of penalty function

αL(P ) = inf
λ>0

1
λ

(
x0 + inf

Q∈Q
EQ[l∗(λ

dP

dQ
)]

)
. (4.12)

where dP/dQ is a generalized density in the sense of the Lebesgue decomposition.

Thus, αL(P ) < ∞ only if P ¿ Q for at least some Q ∈ Q.

Remark 7 A bit of confusion could arise because in the two theorems above the

roles of Q and P are one the opposite of the other. In fact in Theorem 4.4 we have

Q ¿ P, P ∈ P. In Theorem 4.5 we take Q ∈ Q, Q ⊂ M1 as the measure that

dominates the measure P . This to be coherent with the notation used when dealing

with robust representation of convex measure of risk.

4.2 The Frittelli and Rosazza Gianin (2002) con-

vex risk measure

Independently from [14], Fittelli and Rosazza Gianin gave in their work [18] a

characterization of a convex measure of risk. Their approach is different for the
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choice of the others axioms (clearly the axiom of convexity is in both [14] and [18]).

Frittelli, moreover, bases almost all of his results on the duality between ρ and the

penalty function F (α in [14]).

We will follow, in the exposition, [18] and [19]. For the proofs see [19].

4.2.1 Notation

Let T be a, fixed in advance, future date and let X be an ordered locally convex

topological vector space that represents the “habitat” of all the financial positions

whose riskiness we want to quantify.

Assume that X is endowed with a topology τ for which X and its topological

dual space X ′, of all continuous linear functionals on X, form a dual system.

Although most of the results hold in an ordered locally convex topological vector

space, we will assume for simplicity that:

X = LP (Ω,F , P ), 1 ≤ p ≤ ∞
X ′ ⊆ L1(Ω,F , P ),

where (Ω,F , P ) is a probability space.

If the sample space Ω is finite (say, its cardinality is n), then X = X ′ = Rn.

Other examples of possible settings are: X = LP (Ω,F , P ) and X ′ = Lq(Ω,F , P )

where p ∈ (1, +∞), p and q are conjugate, and τ is the norm topology in LP (Ω,F , P );

or X = L∞(Ω,F , P ) and X ′ = L1(Ω,F , P ) and τ = σ(L∞, L1).

We denote by 1 the random variable P −a.s. equal to 1, with ” ≤ ” the natural

preorder on the vector space X given by inequalities that hold P − a.s. We notice

that, in this case, a probability measure is fixed a priori, too.

Let X ′
+ the set formed with all the positive continuous linear functionals on X,

that is

X ′
+

.= {x′ ∈ X|x′(x) ≤ 0 ∀x ∈ X : x ≤ 0},

and

Z .= {x′ ∈ X ′
+ : x(1) = 1}

be the set of all probability densities in X ′. By the Radon-Nikodym theorem (see

Theorem A.10), we may identify any probability density x′ ∈ Z with its associated

probability measure P ′ by setting dP ′
dP = x′. Hence, x′(·) is simply the expected

value EP ′ [·], namely

x′(x) = EP [x′x] = EP ′ [x], if x′ ∈ Z.
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4.2.2 Convex Risk Measures

As done above, we now give the definition of convex risk measure arising in this

context.

Definition 4.4 A functional ρ : X → R is a convex risk measure if ρ satisfies

axioms: (a) convexity, (b) lower semi-continuity and (g) normalization.

Remark 8 A convex risk measure ρ satisfies :

(i) ρ(αx) ≤ αρ(x), ∀α ∈ [0, 1], ∀x ∈ X;

(ii) ρ(αx) ≥ αρ(x), ∀α ∈ (−∞, 0] ∪ [1,+∞], ∀x ∈ X;

(iii) ρ(x− y) ≥ −ρ(−x)− ρ(y), ∀x, y ∈ X;

(iv) if (x ≥ 0 ⇒ ρ(x) ≤ 0) then (x ≤ 0 ⇒ ρ(x) ≥ 0)(i.e. (c) ⇒ (co)).

Lemma 2 For a convex risk measure, the following couples of axioms are equiva-

lent:

(c) ∗positivity and (c1) ∗monotonicity;

(d) subadditivity and (d1) positivity;

(e) translation invariance and (e1) constancy.

Remark 9 Let ρ : X → R satisfies the translation invariance axiom (e). Then:

(i) The l.s.c. axiom (b) is equivalent to {x ∈ X : ρ(x) ≤ 0} is closed in X.

(ii) The following statements are equivalent:

α) ρ is convex (axiom (a));

β) ρ is quasi convex (i.e.:{x ∈ X : ρ(x) ≤ c} is convex for all c ∈ R);

γ) {x ∈ X : ρ(x) ≤ 0} is convex;

4.2.3 Representation of convex risk measures

With the following result (see Frittelli and Rosazza Gianin [18] Theorem 6 and

Corollary 7), we provide the characterization of convex and sublinear measures of

risk.
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Theorem 4.6

1. ρ : X → R is a convex measure of risk if and only if there exists a convex

functional F : X ′ → R ∪ {+∞}, satisfying infx′∈X F (x′) = 0, such that

ρ(x) = sup
x′∈P

{x′(x)− F (x′)} < +∞, ∀x ∈ X, (4.13)

where P = {x′ ∈ X ′ : F (x′) < +∞} is the effective domain of F .

2. ρ : X → R is a sublinear and lower semi-continuous risk measure (i.e. ρ

satisfies axioms (b),(d) and (d1)) if and only if ρ is representable as in 4.13

with F ≡ 0 on P, i.e.

ρ(x) = sup
x′∈P

{x′(x)} < +∞, ∀x ∈ X, (4.14)

This shows that the representation in (4.13)(similar but more general than (3.2))

holds true with axioms that are much weaker than the coherence ones. Although

only the convexity and the lower semi-continuity axioms are necessary to represent

ρ as in (4.13), one might be interested in other properties. The following result

shows how further axioms come into play in the representation (4.13) and (4.14).

Corollary 2 If ρ : X → R is a convex risk measure, then:

(i) ρ satisfies (c) ∗positivity iff we have P ⊆ X ′
+ in (4.13);

(ii) ρ satisfies (e) translation invariance iff we have P ⊆ {x′ ∈ X ′ : x′(1) = 1} in

(4.13);

(iii) ρ satisfies (c) and (e) iff we have P ⊆ Z in (4.13).

If ρ is sublinear and l.s.c.(i.e. satisfies axioms (b),(d) and (d1)), then:

(iv) ρ satisfies (c) ∗positivity iff we have: P ⊆ X ′
+ in (4.14).

(v) ρ satisfies (c) ∗positivity and (e) translation invariance iff we have: P ⊆
Z(this is exactly the case of coherent risk measures) in (4.14).

From Corollary 2 we deduce the following:

Corollary 3 ρ : X → R is a convex risk measure satisfying the axiom (c) ∗positivity

and (e) translation invariance iff there exists a convex set of probability measures

P and a convex functional F : P → R ∪ {+∞} satisfying inf{F (Q)|Q ∈ P} = 0

and

ρ(x) = sup
Q∈P

{EQ[−x]− F (Q)} < +∞, ∀x ∈ X. (4.15)
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The representation in (4.15) has an easily financial interpretation (as well as

representation in (4.2)). Indeed ρ is the supremum over a set P of scenarios of the

expected loss “ correct” with a “penalty” term F (α in [14]) which depends on the

scenarios. Moreover, while the set P of possible scenarios could be exogenously

determined, for example by some regulatory institutions or by the market itself,

the functional F (or α) could be determined by the investors (by mean of their

preferences and utility or loss functions).

4.3 Differences and similarities between the two

definitions of convex measure of risk

We have seen these two different approaches to convex risk measures. These two

ways of proceeding clearly start from different assumptions but in the end they

converge to the same representation. We are now going to analyze what are the

differences and the similarities between both approaches. Moreover, we will be able

to state that the two convex risk measures coincides2. The obvious starting point

is the different axiomatization, but we will later focus our attention on the so called

”penalty function” α(·)(or equivalently F (·)).

4.3.1 About the axioms

We have already repeatedly said that these two definitions of convex risk measure

differ because the choice of the other axioms to put together with the one of con-

vexity. We will show that the necessary and sufficient axioms to define a convex

measure of risk are: (a) convexity and (b) lower semi-continuity. Thus different de-

finitions (and consequently representations) arise if we impose or not other axioms.

And clearly, this further imposition depends on what one is interested in.

The assumption of these further axioms only modifies the functional F and the

set P over which the supremum is taken.

In [14], to define a convex risk measure, were used the axioms: (a) convexity,

(e) translation invariance and (c1) ∗monotonicity. And this led to a representation

for ρ as the supremum over a set P of all probability on Ω (generalize scenarios),

finite, of the expected value of the worst cases ”corrected” with a penalty function.

This penalty function can be taken to be convex and lower semi-continuous. In the

case of general probability spaces the supremum has to be taken over the set P,

the set of all the probability measure Q ¿ P , with X = L∞(Ω,F , P ).

2Starting form now, when referring to a convex measure of risk, we will consider ρ as defined

in representations (4.2) or (4.15)
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In [18] to define a convex measure of risk, were used the axioms: (a) convexity,

(b) lower semi-continuity and (g) normalization. The result in Theorem 4.6 leads

to a representation that is a very well-known result from convex analysis (see The-

orem B.6). This representation is more general than (4.3), and an interpretation

in term of supremum over a set P of all probability on Ω (general case), of an

expected value corrected by a penalty function is not immediate. Thus, to get such

a representation, as done in Corollary 3, we have to impose other conditions. In

particular to get (4.15), ρ, convex risk measure as defined in Definition 4.4, has

satisfy the axioms (c) ∗positivity and (e) translation invariance. Moreover the set

P of probability measures such that Q ¿ P, Q ∈ P, has to be convex.

We recall that, by Lemma 2(c), for a convex risk measure as defined in Definition

4.4 the axioms of (c) ∗positivity and (c1) ∗ monotonicity are equivalent. Then these

axioms hold in both representations.

4.3.2 Comparison between the two representations

So, starting from the consideration above, we will see how the two representation

coincides. We will deal with formulas (4.3) and (4.15). In fact, in this case, we

have a general probability space, while in (4.2) Ω was supposed to be finite. Then

x ∈ L∞(Ω,F , P ) in (4.3) and x ∈ Lp(Ω,F , P ), 1 ≤ p ≤ +∞ in (4.15). Let assume

in this last setting: x ∈ L∞(Ω,F , P ), x′ ∈ L1(Ω,F , P ) and τ = σ(L∞, L1).

Both the representations are in the form of the supremum over a set P of the

expected value of the worst cases minus a penalty function:

(a) P is the set of probability measures Q : Q ¿ P . In (4.15) we have P ⊂ Z,

with Z the set of all probability densities x′ ∈ X ′. Recall, see subsection

4.2.1, that x′ = dQ
dP , x′(x) = EQ[x], if x′ ∈ Z. Then Q ¿ P .

(b) the supremum is calculated over P;

(c) the expected value is computed with respect to Q, Q ¿ P ;

(d) the penalty function is α : P → (−∞,+∞] (resp. F ).

We have seen that, starting from Definition 4.4, by adding additional conditions

(axioms), we get to a representation for ρ equivalent to (4.2). It would be natural to

state that, admitting the same representation, these two ways of defining a convex

measure of risk coincide. Actually, they differ for the axioms (g) normalization and

(b) lower semi-continuity.

We will show that axiom (b) is common in both definition and that axiom (g)

can be imposed in Definition 4.1 without loss of generality. In fact, it only modifies

the lower bound of the penalty function.
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About lower semi-continuity

In Definition 4.4 axiom (b) lower semi-continuity is nothing but a technical re-

quirement to apply duality theorem and get a representation as in (4.13).We can

see representation (4.3) as a particular case of (4.13). In Theorem 4.2 we have that

ρ possesses the Fatou property, and then is lower semi-continuous.

About the normality

In representation (4.3) we have α(Q) ≥ −ρ(0). If we take, as in Definition 4.4,

ρ(0) = 0, then

α(Q) ≥ −ρ(0) = 0

or equivalently

0 = ρ(0) = sup
Q∈P

{EQ[0]− α(Q)} = sup
Q∈P

{−α(Q)} = − inf
Q∈P

{α(Q)}

and thus

inf
Q∈P

α(Q) = 0

We have now seen the fact that the imposition of axiom (g) of normalization only

change the inferior bound of the penalty function.

Both the definitions imply the lower semi continuity of ρ. The only difference

is the axiom (g) of normalization. However to impose ρ(0) = 0 is not a loss of

generality and moreover has a sensible financial meaning.

Remark 10 Recall that, by Remark 2, to get axiom (g) normality it is sufficient

to impose axiom (e1) constancy in Definition 4.1.



Chapter 5

Exponential utility, loss

function and relative entropy

In this chapter we will as application of the convex measures of risk: the entropic

risk measures. We will show, starting from the two different definitions of convex

risk measures, two ways to obtain the entropic convex risk measure. We will also

see that, in a particular context, both coincide. We first recall the notion of shortfall

risk from [14]. We will then see a relationship between the convex risk measure

defined by the acceptance set in (4.10) and the Certainty Equivalent. Starting from

[17] we will present the notion of “Dynamic Certainty Equivalent” and it will lead

us to a convex risk measure.

5.1 Shortfall Risk and Certain Equivalent

Recall that, for a risk measure defined in terms of shortfall risk, the set of acceptable

position is

A .= {x ∈ L∞(Ω,F , P )|EP [l(−x)] ≤ u0}.
where u0 is an interior point in the range of l and x ∈ L∞(Ω,F , P ); l : R→ R is an

increasing convex loss function; the expected loss of a position x ∈ X is EP [l(−x)].

Let us take l(u) = eu and u0 = 1 so that

ρ(x) = inf{m ∈ R|EP [e−m−x] ≤ 1} =

= inf{m ∈ R|e−mEP [e−x] ≤ 1} =

= inf{m ∈ R|EP [e−x] ≤ em} =

= inf{m ∈ R|m ≥ ln EP [e−x]} =
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= ln EP [e−x].

We know, by (4.4) that

α(Q) = sup
x∈L∞(P )

{EQ[−x]− ln EP [e−x]} = H(Q,P ) (5.1)

where the relative entropy of Q with respect to P is defined as

H(Q,P ) .=





EQ

[
ln dQ

dP

]
= EP

[
dQ
dP ln dQ

dP

]
if Q ¿ P,

+∞ otherwise.

Remark 11 Jensen’s inequality applied to the strictly convex function h(u) =

u ln u yelds

H(Q,P ) = E

[
h(

dQ

dP
)
]
≥ h(1) = 0. (5.2)

with the equality if and only if Q = P .

Let us prove that the supremum in (5.1) is less or equal to the relative entropy

of Q with respect to P (for the opposite inequality see the proof of Lemma 3.31,

p.127 in [16]).

Assume that H(Q,P ) < +∞, i.e. Q ¿ P . Let us take x ∈ X such that

EP [e−x] < +∞ and define a probability measure P x in the following way:

dP x

dP
=

e−x

EP [e−x]
. (5.3)

By the assumptions on x, P x is equivalent to the probability measure P and it

holds

ln
dQ

dP
= ln

dQ

dP x
+ ln

dP x

dP
. (5.4)

Integrating with respect to Q, we obtain

H(Q,P ) = H(Q, P x) + EQ[−x]− ln EP [e−x]. (5.5)

Since H(Q,P ) ≥ 0 by (5.2), we have proved that H(Q,P ) is largen than or equal

to both suprema on the right of (5.1).

On the other hand,when dealing with a robust representation of convex mea-

sures, we have

αL(Q) = inf
Q∈Q

H(P, Q). (5.6)

So we have defined a classical example of convex risk measures: the entropic

risk measure:

ρ(x) = sup
Q∈P

{EQ[−x]−H(Q,P )}. (5.7)
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We can also see that, starting from the negative exponential utility function u(x) =

−e−x, we get

ρ(x) = ln EP [e−x] = ln EP [−u(x)] = −E(x) (5.8)

where E(x) is the so called Certain Equivalent of the claim x . E(x) is the value

such that

u(E(x)) = EP [u(x)]

Solving we get

−e−E(x) = EP [−e−x]

E(x) = − ln EP [e−x] = − ln EP [−u(x)] = −ρ(x)

5.2 Certainty Equivalent and Exponential Utility

Function

We will follow, in the exposition, Frittelli’s work [17]. A (non empty) family Σ

of adapted stochastic processes on a filtered probability space (Ω,F ,Ft∈[0,T ], P )

represents prices in the market. Set I = [0, T ] and F = FT . We will assume for

simplicity (differently from [17]) that the risk-free interest rate is zero. We will

consider the family χ of price processes and note that, by construction, χ contains

at least the constant process equal to 1.

We denote by M the set of probability measures Q absolutely continuous with

respect to P such that all processes in χ are (Ft, Q)-martingales . We assume the

existence of a martingale measure equivalent to P .

With u : D → R we always denote a non decreasing real function defined on

an interval D ⊆ R with nonempty interior and taking value −∞ on the external

points of D. We denote by L− = L−(Ω,FT , P ) the set of lower bounded random

variables. A T -claim ω is an element of L−.

Let ω be a time T -claim that we want to price. The function u is the time-T

utility. We can distinguish several alternatives:

• Totally incomplete market

In this case the possibility of trading in the available market assets does not

provide any help for hedging (not even partially) the risk carried by ω. In this

case the subjective value of ω is traditionally assigned by the certain amount

π(ω) ∈ R whose utility is equal to the expected one of the claim ω:

u(π(ω)) = E[u(ω)]. (5.9)

The agent can’t take advantage of the presence of market securities.
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• Complete market

If a bounded claim ω is attainable by a self-financing strategy in the traded

assets or if the market is complete, the value of the claim is independent of

agents preferences and it is univocally assigned by the formula:

π(ω) = EQ[ω]

where Q is any martingale measure (eventually unique if the market is com-

plete).

• Incomplete market

In incomplete market, to determine the value of the claim, the agent has to

take into consideration his subjective preferences. However, he may partially

hedge the risk carried by ω by trading on the available securities. The presence

of these securities will affect the pricing of the claim. Indeed, the no arbitrage

principle imposes restrictions on the admissible prices: in order to prevent

arbitrage opportunities, the value of ω must lie in the interval
[

inf
Q∈M

EQ[ω], sup
M

EQ[ω]
]

The aim is to construct a Theory of Value based on agents preferences and

coherent with the no arbitrage principle. The idea is to embedding incomplete

market asset pricing via utility maximization

Let x0 be the initial capital of an agent. For a given random variable (or a real

number) y we define the budget constraints set as

Θ(y) .= {z : z ¹ y}.

The maximum attainable utility from x0 with the T claim ω are respectively given

by

V0(x0)
.= sup

z∈Θ(x0)

E[u(z)] (5.10)

V (ω) .= sup
z∈Θ(ω)

E[u(z)] (5.11)

Clearly V0(·) : D → R as a real function of a real variable is not decreasing.

One possible interpretation of the above maximization is problem is that the agent

holding the contract corresponding to the T -claim ω may sell in the market this

contract and buy another contract corresponding to any T -claim z ∈ Θ(ω), since

claims in Θ(ω) have prices less than or equal to ω. In the spirit of Equation (5.9),

x0 = π(ω) is the value of ω if it satisfies the equation:

V0(π(ω)) = V (ω).
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Definition 5.1 Given a partial preorder ¹ on L−, consider Θ(x0), V0(x0), V (ω) as

defined in Equations (5.9)-(5.11). Define the value π(ω) ∈ R of ω as the solution

of the equation

V0(π(ω)) = V (ω). (5.12)

A natural candidate for the partial preorder, such that the value π(ω) assigned in

Equation (5.12) is compatible with no arbitrage principle, is given by:

Definition 5.2 (Market Preorder) The market preorder is the partial preorder

on the set of claims defined by:

z ¹ ω ⇔ EQ[z] ≤ EQ[ω] Q ∈M.

The value pi(ω) of the claim ω is given in Definition 5.1 with the partial preorder

assigned by the market preorder.

We will only analyze the case of totally incomplete market because the rest of

the cases is beyond our interests.

5.2.1 Main Definitions

Frittelli defines the Dynamic Certainty Equivalent as the value π(ω) of the T -claim

ω at time 0. Proposition 4 in [17] guarantees the existence and the uniqueness of

π(ω), as the solution of the equation (5.12).

We present a property of the value π(ω) we will find useful later (see part (e)

of Proposition 7 in [17]).

Proposition 5.1 If M = {Q : Q ¿ P}(totally incomplete market) then π(ω) is

the solution of

E[u(π(ω))] = E[u(ω)]

and if u is strictly increasing then π(ω) = E(ω).

There are three cases: E(ω) is additive with respect to a constant, E(ω) is positively

homogeneous and the case of a linear utility function. The first case is of our interest

because, by the Nagumo-Kolmogoroff-De Finetti theorem(see [8]), we know that if u

is exponential, E(ω) is additive with respect to a constant. Then, from Proposition

8 (b) in [17], we get:

Proposition 5.2 If the Certainty Equivalent is additive with respect to a constant(E(ω+

k) = E(ω) + E(k), k ∈ R), or equivalently if the utility is exponential, then

π(ω + k) = π(ω) + π(k).
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5.2.2 Duality

The computation of the value π(ω) is based in the Fenchel Duality theorem.

Recall that the concave conjugate u∗ : R→ R ∪ {−∞} of u is given by:

u∗(x∗) .= inf
x∈R

{xx∗ − u(x)}, x∗ ∈ R

Definition 5.3 Let Q ¿ P and set

∆(Q,P ; x) = min
λ∈(0,+∞)

{
λx− E

[
u∗

(
λ

dQ

dP

)]}
. (5.13)

Then by Theorem 10 in [17], we have the following characterization of π(ω):

Corollary 4 The value π(ω) is the solution of

inf
Q∈M

{∆(Q,P ; π(ω))} = inf
Q∈M

{∆(Q,P, EQ[ω])}

5.2.3 Generalized distances δ(Q,P ) and examples

In the following example each utility function determines by duality a “general-

ized distance” between probability measures. We need to calculate ∆(Q,P ; x) to

determine π(ω).

When u is strictly increasing we define the following quantity:

δ(Q,P ;x) = u−1(∆(Q,P ; x))− x. (5.14)

The advantages of this simple transformation are shown the following proposition

(see Proposition 13 in [17] for more details):

Proposition 5.3 (a) If the Certainty Equivalent is additive with respect to con-

stants, then

δ(Q,P ; x1) = δ(Q,P ;x2), ∀x1, x2 ∈ D.

(b) In case (a) the functional δ(·, P ; x) is convex.

(c) δ(Q,P ;x) ≥ 0 ∀Q ¿ P ∀x ∈ D.

(d) If Q = P then δ(Q,P ; x) = 0 ∀x ∈ D.

(e) In case (a) we have

δ(Q,P ; 1) = 0 ⇔ Q = P.

If the utility function is sufficiently regular, formula (5.13) can be rewritten

more explicitly and the computation of ∆ and δ simplified. Thus we have:

∆(Q,P ;x) = E[u(I(λ∗ϕ))],

δ(Q,P ;x) = u−1(E[u(I(λ∗ϕ))])− x.
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where: let Q ¿ P and ϕ = dQ
dP ; x ∈ int(D), suppose that u : D → R is a strictly

increasing, strictly concave, differentiable function. We denote by I = (u′)−1 the

inverse function of u′ and by λ∗ = λ(x, ϕ) the unique solution of the equation

E[ϕI(λϕ)] = x,

We present now an example where the utility function is exponential.

Example 2 (Exponential Utility) Let Q ¿ P , ϕ = dQ
dP and set δ(Q,P ) =

δ(Q,P ; 1). Let u(x) = −e−x,D = (−∞, +∞). Then

δ(Q,P ) = H(Q,P )

where H(Q,P ) is the relative entropy.

5.2.4 Computation of the value

From Corollary 4 and the definition of δ given in Equation (5.14) we get:

Corollary 5 For a strictly increasing u, the value π(ω) is the solution of:

inf
Q∈M

{δ(Q,P, π(ω)) + π(ω)}
= inf

Q∈M
{δ(Q,P, EQ[ω]) + EQ[ω]}

Applying Corollary 5 and Proposition 5.3 we have (see Corollary 15 in [17]for more

details):

Corollary 6 When the utility is exponential, then the value π(ω) is the solution

of:

π(ω) = inf
Q∈M

{EQ[ω] + H(Q,P )} − inf
Q∈M

{H(Q, P )} (5.15)

where H(Q,P ) is the relative entropy.

Remark 12 Assume that M = {Q : Q ¿ P}. Then we can derive, from Proposi-

tion 5.1 and Equation (5.15) the inverse duality relationship between the certainty

equivalent and the generalized distance if E is additive:

E(ω) = inf
Q¿P

{EQ[ω] + H(Q,P )}.

We recall that, if the utility is exponential, then E is additive with respect to a

constant.



44 Exponential utility, loss function and relative entropy

If, in (5.15) we take the opposite, then

−π(ω) = − inf
Q∈M

{EQ[ω] + H(Q, P )− inf
Q′∈M

{H(Q′, P )}}
= sup

Q∈M
{EQ[−ω]−H(Q, P ) + inf

Q′∈M
{H(Q′, P )}}

= sup
Q∈M

{EQ[−ω]−
(

H(Q,P )− inf
Q′∈M

{H(Q′, P )}
)
}

= ρ(ω)

where

F (Q) .= H(Q, P )− inf
Q′∈M

{H(Q′, P )}. (5.16)

Hence, the Dynamic Certainty Equivalent π(ω) is the opposite of ρ(ω), the entropic

convex risk measure, where in the representation (4.15) we have: P = M and

infQ∈M F (Q) = 0. In fact:

inf
Q∈M

F (Q) = inf
Q∈M

{H(Q, P )} − inf
Q′∈M

{H(Q′, P )} = 0.

5.3 Entropic Convex Measure of Risk

Up to now, we have seen two examples of convex entropic risk measures. Both arise

from two different, but very similar, definition of convex risk measure. So, using

the negative exponential utility function, we can define a relationship between:
Entropic Convex Risk Measure in [14] −→ Certainty Equivalent

Entropic Convex Risk Measures in [19] −→ Dynamic Certainty Equivalent
And summarizing:

in [14] we have

ρ(x) = −E(x) = sup
Q∈P

{EQ[−x]−H(Q, P )} (5.17)

where

x ∈ L∞(Ω,F , P ), P = {Q : Q ¿ P}

and in [19] we have

ρ(x) = −π(x) = sup
Q∈M

{EQ[−x]−H(Q, P ) + inf
Q′∈M

{H(Q′, P )}} (5.18)

where

x ∈ L∞(Ω,F , P ),

and M is the set of probability measure Q absolutely continuous with respect to

P such that Q is a martingale measure.

We recall that if in Definition 4.1 we impose ρ(0) = 0 ((g) normazation) then

we have, by (4.3), infQ¿P α(Q) = 0. Moreover, if we consider in (5.18) M =
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{Q : Q ¿ P} = P (totally incomplete market), with P as in (4.3), then the two

representations coincide. We can show it in two alternative ways.

1. We see that, with P = M, (5.17) and (5.18) only differ for the penalty

function. So, we have that

H(Q,P ) = H(Q,P )− inf
Q′∈P

H(Q′, P ) ⇔ inf
Q′∈P

H(Q′, P ) = 0 (5.19)

But, if M = P = {Q : Q ¿ P}, then P ¿ P , too. This implies P ∈ M.

Then we have

inf
Q∈P

H(Q,P ) = 0

and the equation holds.

2. Taking a look at Remark 12, we have:

E(ω) = inf
Q¿P

{EQ[ω] + H(Q, P )}
= inf

Q¿P
{−(EQ[−ω]−H(Q,P ))}

= − sup
Q¿P

{EQ[−ω]−H(Q,P )}

= −ρ(ω)

where ρ(ω) defined as in (5.7).

This last equation expresses exactly the duality relationship between the relative

entropy and the so called “free energy”,

ln EP [eω] = sup
Q¿P

{EQ[ω]−H(Q,P )} = −E(−ω)

This is exactly, for −ω = x, what we have found in (5.8). And the two risk

measures, in terms of opposite of the Certainty Equivalent, coincide.

Note that in this particular case axiom (g) normalization holds in both repre-

sentations and its imposition is not a necessary requirement to get the equivalence

between the two approaches.
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Chapter 6

Risk measure and claims

pricing

We have seen that there exists a close relation between the entropic convex risk

measures and the pricing rules of a T -claim ω in the case of incomplete or totally

incomplete market. This way of given a value keep in consideration the preferences

of the agents. We used, in particular, the exponential utility function. We can now

go beyond.

Our aim is, in fact, to derive a concrete interpretation of ρ given by its relation

with the value(price) of a claim. We will get to define ρ as a “price”. We will

consider coherent and convex measures of risk. Our setting will be a constrained

(incomplete) financial market and totally incomplete financial market. As said be-

fore, in an incomplete market, perfect replication of a claim is usually not possible.

The superreplicating price is the minimal quantity that an agent has to invest to

find a strategy that dominates the claim payoff with certainty. And it has been

characterized as the essential supremum on the set of equivalent martingale mea-

sures of the expectation of the actualized discounted payoff. It was also shown

(see El Karoui and Quenez(1991)) that the price for a claim may vary between the

superreplicating price for buyers hlow and the superreplicating price for the sellers

hup, and that any price chosen in the open interval (hlow, hup) does not lead to an

arbitrage opportunity.

On the other hand, in the case of totally incomplete market, we have already

seen that the price of a claim coincides with the Certainty Equivalent.
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6.1 Coherent risk measures and pricing rules

We study now a relation between ρ considered as coherent measure of risk and the

superreplicating price of a claim. We follow the notation of Delbaen and Schacher-

mayer,1994, [9] and [10] in the exposition.

Let (Ω, (Ft,0≤t), P ) be a filtered probability space and let S : R+ × Ω → Rd be

a càdlàg locally bounded, adapted process. We suppose that the set

M = {Q|Q probability Q ¿ P, S is a Q-local martingale}

is non-empty. Since S is locally bounded, M is a closed convex subset of L1. We

also suppose that ∃ Q ∈ M, Q ≈ P , which is equivalent to the no arbitrage property

“no free lunch with vanishing risk”. Now let P be a closed convex set defining the

coherent risk measure ρ. We suppose that P is weakly compact. We know that,

by Theorem 3.2, ρ, coherent measure of risk, admit the representation

ρ(x) = sup
Q∈P

EQ[−x].

We recall the following result in [9]. If x ∈ L∞ then the quantity

p(x) = sup
Q∈M

EQ[x] (6.1)

is called the superhedging (or superreplicating) price of x. If an investor would

have p(x) at his disposal, he would be able to find a strategy H so that H · S is

bounded and so that p(x) + (H ·S)∞ ≥ x. This means that after having sold x for

the price p(x) he could, by cleverly trading, hedge out the risky position −x.

The quantity p(x) is also the minimum price that can be charged for x. The

minimum price is:

m(x) = inf
Q∈M

EQ[x]. (6.2)

No agent would be willing to sell x for less than m(x) and no agent would be willing

to buy x for more than p(x). We now look at two special cases:

(a) We suppose that for all x we have ρ(x) ≤ p(−x).This means that for any

position x (after having sold −x) the necessary capital becomes smaller than

the superhedging price of −x. This seems reasonable since with p(−x) the

selling agent can hedge out the risk. The requirement (∀ x ∈ L∞; ρ(x) ≤
p(−x)) is, by the Hans-Banach theorem (see Theorem A.8), equivalent to

P ∈ M .

(b) If P ∩ M = ∅ then, by weak compactness of P, the Hans-Banach theorem

gives us an element −x ∈ L∞ so that:

sup
Q∈P

EQ[−x] < inf
Q∈M

EQ[−x].
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This means that having sold −x the position x requires a capital equal to ρ(x)

but this capital is less than the minimum quantity for which −x can be sold.

In such a case a regulator, requiring ρ(x), seems to have no understanding of

the financial markets.

6.2 Convex measure of risk and pricing rules

We will follow the paper of Rouge and El Karoui (2000) that, as Frittelli in [17],

mix pricing and utility maximization. In the model, a small investor (who does

not influence market prices) is confronted with the problem of selling contingent

claim while performing maximization of utility. The price of the contingent claim is

defined as the smallest amount of money p to add to his initial wealth x that allows

him to achieve the same expected utility he would have had with initial wealth x

without selling the claim at time T . Recall that, when positive, the number ρ(x)

assigned by the measure ρ can be interpreted (see [3]) as the minimal extra cash

the agent has to add to the risky position x to make it acceptable.

6.2.1 Abstract contingent claims

Let (Ω,F , P ) be a probability space whose role is to give the null set- i.e., those A ∈
F such that P [A] = 0. In a financial market, let C ≥ 0 P-a.s. be a random payoff

(or claim) of date T . Denote by L+
0 the set of claims C, L−0 the set {−C, C ∈ L+

0 },
and L0 = L+

0 ∪L−0 . Suppose that an agent is given a preference relation º on the set

of the pairs (x,C) ∈ R×L0 (initial endowment, possibly nonpositive, and terminal

agreement to buy or sell), compatible with the usual order on R and preorder on L0,

namely, a transitive relation on R×L0 such that x′ ≥ x,C ′ ≥ C ⇒ (x′, C ′) º (x,C).

An agent with an initial endowment x wishes to sell at time 0 a claim C ∈ L+
0 .

He may choose either of the following:

1. delivering the claim C at time T in exchange for an additional endowment of

y at time 0; that is, he chooses (x + y,−C);

2. not delivering anything: (x, 0).

For him to prefer the first alternative, the quantity y has to be such that (x +

y,−C) º (x, 0). We thus define a price to sell C as

pr(x,C) = inf{y ≥ 0, (x + y,−C) º (x, 0)}. (6.3)

The price to buy C is the quantity that someone is willing to pay at time 0 to get

C at time T . We take it nonpositive for convenience, and define it as

−pr(x,−C) = sup{y ≥ 0, (x− y, C) º (x, 0)}. (6.4)
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Both definition (6.3) and (6.4) may be summarized in the following, now with

C ∈ L0

pr(x, C) = inf{y ∈ R, (x + y,−C) º (x, 0)} (6.5)

Conversely, we call p : R× L0 → R a compatible pricing function if it defines a

compatible preference relation through

(x′, C ′) º (x,C) ⇔ x′ − p(x′,−C ′) ≥ x− p(x,−C).

6.2.2 Superreplication Price

Given its initial endowment x, the financial agent may choose between time 0 and

T an investment strategy denoted π (if no confusion is possible with the Value π in

[17] and in the previous chapter ) is a set of admissible strategy A. Xx,π
t represent

the agent’s wealth at time T .

In this setting, a first example of compatible pricing function is given by hedging

consideration.

The seller’s cost of a claim C ∈ L+
0 , denoted hup, is the smallest initial amount

of wealth for which there exists a superreplicating portfolio strategy (with the

convention inf ∅ = +∞):

hup(C) = inf{x ≥ 0, ∃π ∈ A, Xx,π
T ≥ C}. (6.6)

Symmetrically, define the buyer’s cost(or lower hedging price, buyer’s price) as

hlow(C) = sup{x ≥ 0,∃π ∈ A, X−x,π
T ≥ −C}. (6.7)

We may once again give a unified definition: Call h the hedging price of C ∈ L0 if

h(C) = inf{x ∈ R, ∃π ∈ A, Xx,π
T ≥ C}. (6.8)

so that for C ∈ L+
0 , hup(C) = h(C) and hlow(C) = −h(−C). The hedging price h

is a pricing function compatible with the usual order on R and the preorder on L0.

Let us introduce some vocabulary. We say that the contingent claim C ∈ L+
0 is

sellable (resp. buyable) if there exists x and a portfolio π ∈ A such that Xx,π
T ≥ C

P-a.s. (resp. X−x,π
T ≥ −C P-a.s). In such a case, hup < ∞, and any claim is

always buyable since hlow(C) ≥ 0 ∀C ∈ L+
0 . If the preceding inequalities can be

written as equalities, then the claim C is said to be replicable for a seller (resp. for

a buyer). We finally say that a claim is tradeable if both the seller and the buyer

may replicate it, and then hlow = hup.

The arbitrage-free interval for a claim C ∈ L+
0 is the interval [hlow, hup]. Any

claim C may be sold or bought for a price in this interval without giving rise to an

arbitrage opportunity.
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6.2.3 Utility Maximization Price

As done in [17], the more natural way to define the agent’s preferences is to model

his attitude toward risk by a utility function u (concave and strictly increasing).

The maximal expected utility of (x,C) ∈ R× L+
0 is

Û(x,C) = max
π∈A

EP [u(Xx,π
T + C)] (6.9)

and we define the reference relation º by (x′, C ′) º (x,C) ⇔ Û(x′, C ′) ≥ Û(x,C).

We define the price according to Equation (6.5), and denote if p.

In [26] it is shown , under some hypothesis on the set of admissible strategy A
that, in the vocabulary of Frittelli(2000) [17], the price p(x,C) derived from utility

maximization is a value coherent with the no-arbitrage principle. That is

hlow(c) ≤ p(x,C) ≤ hup(C).

Moreover, if a claim C is tradeable, its price from utility p(x, C) is equal to its

arbitrage price.

Since not only superreplicating strategies (Xx,π
T ≥ P-a.s.) are considered, there

is the necessity to compute expected utility of portfolios taking nonpositive ter-

minal values. This is not possible for the usual utility function, such as power or

logarithmic functions. Because of its simplicity and link with the relative entropy,

we choose u of the negative exponential type. For simplicity, even in this case, the

risk aversion coefficient will be considered equal to 1. The choice of an exponential

utility function obliges to impose the following condition:

Assumption 1 All the claims C ∈ L+
0 we shall consider will now be bounded.

Then we have the following theorem(see Theorem 2.1 in [26]):

Theorem 6.1 The price of the claim C is given by:

p(x,C) = sup
QT

{EQT [C]−H(QT , P )} − sup
QT

{−H(QT , P )} (6.10)

where QT runs through the set of probabilities QT ≈ P such that

EQT [Xx,π
T ] ≤ x

an H(QT , P ) is the relative entropy of the probability measure QT with respect to

P .

Notice that the price is independent from the initial endowment x.

Differently from Equation (2.13) in [26], we have considered in (6.10) the free-

risk interest rate equal to be equal to zero.
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6.3 Interpretation of the result

We got in the subsection above a formulation (Eq. (6.10)) for the price of claim C

compatible with the no-arbitrage principle. This formulation takes on consideration

the preferences of the agent by modelling them with his utility function. In this

case the exponential utility function has been adopted. Note that Equation (6.10)

is very close to the value π of Equation (5.15).

To unify the notation and not to create confusion, we will denote by x ∈ R the

initial endowment and by ω ∈ L∞ the T -claim.

Let us consider the buyer price of the claim ω ∈ L∞ defined as the solution of

pb = pb(ω) of equation

V (x− pb + ω) = V (x)

where x ∈ R is the initial wealth and V is defined as in (5.11). Due to the

particular properties of the exponential utility function, it can be shown that pb(ω)

is independent from the initial endowment x and that the buyer price coincide with

the Dynamic Certainty Equivalent pb(ω) = π(ω).

If ω ≥ 0 we have, by Equations (6.3)-(6.5) that ps(x, ω) = pr(x, ω) and pb(x, ω) =

−pr(x,−ω), where ps is the seller price as defined in (6.3). We know that π(ω)

is the buyer’s price pb(ω) and p(ω) as in (6.10) is the seller’s price of the positive

claim ω. Then we have the following relation:

π(ω) = −p(−ω) (6.11)

We could have got this result starting from the formulations for π(ω) and p(ω).

In fact:

π(ω) = inf
Q
{EQ[ω] + H(Q,P )− inf

Q′
H(Q′, P )}

= inf
Q
{−(EQ[−ω]−H(Q,P ) + inf

Q′
H(Q′, P ))}

= − sup
Q
{EQ[−ω]−H(Q,P ) + inf

Q′
H(Q′, P )}

= −p(−ω)

We will try now to understand the economic meaning of the relation between

the value π(ω) and the entropic convex measure of risk ρ(ω) of the T -claim ω.

We know that for ρ, convex measure of risk admitting representation (4.15),

axioms (c) ∗ positivity holds and implies ω ≥ 0 ⇒ ρ(ω) ≤ 0.

Let us assume the time-T claim ω to be nonnegative. We will use the expo-

nential utility function with unitary risk aversion coefficient to model the agent’s

preferences toward risk. We suppose that the free-risk interest rate is zero.
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We know, by previous considerations, that ρ(ω) and π(ω) are in the following

relation:

ρ(ω) = −π(ω)

This last equation shows that the buyer’s price π(ω) of the nonnegative T -claim ω

coincide with the quantity −ρ(ω), that is, the cash amount that can be withdrawn

from the position or that can be received as a restitution, as in the case of organized

market for financial futures.

Thus the price the agent pays at time 0 to obtain the T -claim ω is nothing

but the opposite of the number ρ(ω), that is, the measure of the risk of the claim,

keeping in consideration the agent’s preferences.

In the same way we can define a relation between ρ and pr(x, ω). Recall that,

for ω ∈ L0

pr(x, ω) = inf{y ∈ R : (x + y,−ω) º (x, 0)}
is the minimal amount one has to add to his initial wealth at time 0 to deliver at

time T the claim ω. In the case when ω ∈ L+
0 we have seen that π(ω) is the buyer’s

price of the T -claim ω. i.e.

π(ω) = −ρ(ω) = −pr(x,−ω) = sup{y ≥ 0 : (x− y, ω) º (x, 0)}

We now study the case when ω ∈ L−0 . We know that, by the axiom (c0), this

implies ρ(ω) ≥ 0. Then we have

ρ(ω) = p(−ω) = ps(−ω) (6.12)

This last equation says that the riskier (negative) the position is, the higher is the

price that the agent wants to be given to sell the position −ω.

In the general case, when ω ∈ L0, we have

ρ(ω) = −π(ω) = pr(x,−ω) = inf{y ∈ R : (x + y, ω) º (x, 0)} (6.13)

It means that ρ(ω) is the minimal amount that needs to be added (or withdrawn if

negative) to the initial wealth x of the agent to make the possession of the claim ω

at time T acceptable. As done with coherent and convex measures of risk, we say

that the possession of a claim is acceptable if ω ∈ A, with

A = {ω ∈ X : ∃y ∈ R, (x + y, ω) º (x, 0)}

We present a simple example. Let us assume that an agent wants to borrow

some money from a bank. The interest rate the bank asks to give him the money

is nothing but the cost for the agent to get the money. Clearly, the riskier is the

situation of the agent (he is in a short position) the higher is the interest rate the

bank asks. This shows the positive relation between the riskiness of the (short)

position and the price the bank asks to accept it.
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Chapter 7

Applications

The aim of this chapter is to give a simple application of a the convex measures

of risk. The setting will be restrict to financial measurement of risk. We will first

recall the well-know measure of risk called Value at Risk. Then we will show why

it is not an adequate instrument to measure the risk of a financial position and

we will introduce the convex measure of risk called AVar (or Expected Shortfall).

Then we will make a theoretical and empirical comparison between VaR and AVar.

7.1 Value at Risk

Value at Risk (VaR) was introduced in 1994 and became one of the most impor-

tant tool for risk management in the financial industry and part of the regulator

mechanism. Even if is the most widely used risk measures nowadays it can present

several and significant problems. To define it we need to recall the definition of

quantile.

Let α ∈ (0, 1) be some fixed small probability or confidence level, in practice

usually but not necessary below 5 percent. Often used values are 0.01 and 0.02.

Definition 7.1 (Quantile) Given α ∈ ]0, 1[ the number q is called quantile−α of

the random variable X on (Ω,F , P ) if one of the three equivalent properties holds:

1. P [X ≤ q] ≥ α ≥ P [X < q]

2. P [X ≤ q] ≥ α e P [X ≥ q] ≥ 1− α

3. FX ≥ α e FX(q−) ≤ α con FX(q−) = limx→q,x<q F(x), where FX is the

cumulative distribution function of X.
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More precisely

x(α) = q(α)(X) = inf{x ∈ R : P [X ≤ x] ≥ α} is the lower α-quantile of X

x(α) = q(α)(X) = inf{x ∈ R : P [X ≤ x] > α} is the upper α-quantile of X

We use the notation in x if the dependence from X is clear, otherwise we use the

notation q.

Note that xα = sup{x ∈ R : P [X ≤ x] ≤ α}.
From

{x ∈ R : P [X ≤ x] > α} ⊂ {x ∈ R : P [X ≤ x] ≥ α}

is clear that x(α) ≤ x(α). Moreover, it is easy to see that

x(α) = x(α) if and only if P [X ≤ x] = α for at least x , (7.1)

and in the case x(α) < x(α)

{x ∈ R : α = P [X ≤ x]} =

{
[x(α), x

(α)), P [X = x(α)] > 0

[x(α), x
(α)], P [X = x(α)] = 0

(7.2)

As function of α, q(α)(X) is the right-continuous inverse of the distribution

function F (X). In this section we will see some properties of q(α)(·), viewed as a

functional on the space of financial position.

We give now a formal definition of the Value at Risk:

Definition 7.2 Fix some level α ∈ (0, 1). For a financial position x, we define its

Value at Risk at level α as

V aRα
.= −qα(x) = q1−α(−x) = inf{m|P [x + m < 0] ≤ α}.

In financial term, VaRα(x) is the smallest amount of capital which, if added to

x and invested in the free-risk asset, keeps the probability of a negative outcome

below the level α. We will not insist on the drawbacks of VaR. We just present

some properties and explain why VaR is not an adequate measure of risk.

Theorem 7.1 VaR satisfies (c1) ∗monotonicity, (d1) positive homogeneity, (e)

translation invariance, (f) law invariance and (h) comonotonic additivity.

Proof See the proof of Theorem 3.1.1 in [6].

From this theorem we can see that VaR is not coherent (see for counterexample

[5]) and its acceptances set is typically not convex. So VaR is not a convex measure

of risk.
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Consider VaR as a measure of risk on the linear space X = L2(Ω,F , P ). Let

then consider a Gaussian subspace subspace X0, i.e. a linear space X0 ⊂ X con-

sisting of normally distributed random variables. It can be shown (see for example

Remark 4.34 in [16]) that VaRα does satisfy the axiom of convexity if restricted to

the Gaussian subspace X0 and if α belongs to (0, 1
2 ].

7.2 Average Value at Risk

The aim of this section is to present a risk measure, defined on the space X = L∞

which, in contrast with VaR is convex or even coherent. The solution is a measure

of risk defined in terms of the Value at Risk, but does satisfy the axiom of a coherent

risk measure.

Definition 7.3 The Average Value at Risk at level α ∈ (0, 1) of a position x ∈ X

is given by

AV aRα(x) =
1
α

∫ α

0

V aRα(x) dx (7.3)

Sometimes, the Average Value at Risk is also called “Conditional Value at Risk”

or the “Expected Shortfall”, and one writes CVaRα(x) or ESα(x). These terms are

motivated by formulas (7.7) and (7.4). They can be in some way misleading. In fact

“Conditional Value at Risk” might be used also to denote the Value at Risk with

respect to a conditional distribution, and “Expected Shortfall” might be understood

as the expectation of the Shortfall x−.

Proposition 7.1 Suppose that x ∈ X and that q is the α-quantile for x, i.e.,

q ∈ [q(α)(x), q(α)(x)]. Then

AV aRα(x) =
1
α

E[(q − x)+]− q (7.4)

=
1
α

inf
s∈R

(
E[(s− x)+]− αs

)
(7.5)

Proof. See the proof of Proposition 4.37 in [16]. The following theorem states the

coherence of AVaR.

Theorem 7.2 For α ∈ (0, 1), AVaRα is a coherent measure of risk which is con-

tinuous from below. It has the representation

AV aRα(x) = max
Q∈Qα

EQ[−x], x ∈ X (7.6)

where Qα is the set of all probability measure Q ¿ P whose density dQ/dP is P-a.s.

bounded by 1/α.

Proof. See Theorem 4.39 in [16].
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Corollary 7 For all x ∈ X,

AV aRα(x) ≥ E[−x| − x ≥ V aRα(x)] (7.7)

≥ V aRα(x).

Moreover the two inequalities are in fact identities if

P [x ≤ q(α)(x)] = α, (7.8)

which is the case if x has a continuous distribution.

A last result shows that, under suitable hypothesis, AVaR is the best con-

servative approximation to VaRα in the class of all distribution invariant convex

measures of risk which are continuous from above.

Theorem 7.3 On an atomless probability space, AVaRα is the smallest distribu-

tion invariant convex measure of risk which is continuous from above and dominates

VaRα.

Proof. See the proof of Theorem 4.46 in [16].

7.3 Examples

In this section we will present some concrete applications of the risk measures dis-

cussed before. We will distinguish the case when the random variable representing

the value of a position is continuous and the general case.

7.3.1 The continuous case

We will denote by x ∈ X the random variable representing the profit (or loss) on an

investment, at a fixed time horizon (one month or one year for example). It can be

for instance the random return on a stock, an index or any other portfolio, measured

in absolute or relative terms. We will focus on situation in Finance. Positive values

of x will be interpreted as profits and negative value as losses. We will assume, in

this subsection, that x is a continuous random variable with distribution function

F = Fx.

We know that, if x a continuous random variable, then for a fixed level α, lower

and upper quantile, coincide. This fact allows us to consider AVaR, as defined in

(7.3), equivalent to the risk measure called ES in [1]. Recall that ES admits a

representation of the the form

ESα(x) = − 1
α

∫ α

0

q(u)(x)du. (7.9)
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. Starting from now, while dealing with continuous random variable, we will use

ES as convex measure of risk. The following theorem shows a quite easy analytical

way to calculate Es.

Theorem 7.4 (Th. 3.2.2 [6]) Let x be a continuous random variable with cdf F

and pdf f(x) = ∂F
∂x (x). Then

ESα(x) = − 1
α

∫ q(α)(x)

−∞
x · f(x)dx. (7.10)

Proof. See [6]
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Figure 7.1: Varα(x) and ESα(x) as a function of α if x ∼ N(0, 1). The upper (blue)

line is ES, the lower (red) line is VaR.

Let us consider the simple case of a normal distributed random variable.

Example 3 Consider a random variable x such that x ∼ N(0, 1). It can be con-

sidered as a simple investment with mean profit 0, unit variance and a profit is

equally likely as a loss.

So we have F (x) = Φ(x), the standard normal distribution function and f(x) =

φ(x), the standard normal density function. Fix α ∈ (0, 1):

V aRα(x) = −F−1(α) = −z(α)
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ESα(x) = = − 1
α

∫ z(α)

−∞
x

1√
2π

exp(−1
2
x2)dx

= − 1
α
√

2π

[
− exp(−1

2
x2)

]x=z(α)

x=−∞

=
exp(− 1

2z2
(α))

α
√

2π

Note that in the above notation z(α) = Φ−1(α) are the usual quantiles of the

standard normal distribution that are tabulated.

Looking at Figure 7.1 we can see that Varα(x) and ESα(x) are both decreasing

in α, and that Varα(x) < ESα(x) for all α ∈ (0, 1). ESα(x) is positive for all

α ∈ (0, 1), because it is always −E[x] = 0, to which it converges as α goes to 1.

We also see that Varα(x) and ESα(x) can get arbitrarily large for arbitrarily small

values of α, reflecting the fact that the possible loss is not bounded. Note that in

the region of interest, that usually is α between 0 and 3 %, Varα(x) and ESα(x)

are above 2, and that both risk measure increase exponentially if α decrease.

7.3.2 The general case

Up to now, we every made the assumption that x is a continuous random variable

with a continuous cdf F . Off course, this need not to be the case in reality and in

practice there are many example of return-distribution that are discrete. Examples

are portfolios of not-traded loans and portfolio of derivatives as options.

Therefore, we will assume in this section that x can be any random variable,

possibly discrete.

We have seen that, in a general case we have x(α) ≤ x(α). Then we cannot state

that, for a fixed α ∈ (0, 1), AVarα(x) and ESα(x) coincide. Moreover dealing with

discrete distribution creates problems in the estimation of Var.

Suppose that we want to estimate the lower α-quantile x(α) for some random

variable x. Let some sample (x1, . . . xn), drawn from independent copies of x,

be given. Denote by x1:n ≤ . . . ≤ xn:n the components of the ordered n-tuple

(x1, . . . , xn). Denote by xxy the integer part of the number x ∈ R, hence

xxy = max{k ∈ Z : n ≤ x}.

Then the order statistic xxnαy:n appears as a natural estimator for x(α). Neverthe-

less, it is well known that in the case of a non-unique quantile (i.e. x(α) < x(α) )

the quantity xxnαy:n does not converge to x(α). See for example Theorem 1 in [13]

which says that

1 = P [xxnαy:n ≤ x(α) infinitely often] = P [xxnαy:n ≤ x(α) infinitely often].
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Surprisingly, we get a well-determined limit when we replace the single order sta-

tistic by an average over the left tail of the sample.

Proposition 7.2 Let α ∈ (0, 1) be fixed, x a real random variable with E[x−] < ∞
and x1, x2, . . . an independent sequence of random variables with the same distrib-

ution as x. Then with probability 1

− lim
n→∞

∑xnαy
i=1 xi:n

xnαy = ES(α)(x) (7.11)

If x is integrable, then the convergence in (7.11) holds in L1, too.

Proof. See proof of Theorem 4.1 in [1].

As seen above, this result

lim
n→∞

xxnαy:n = x(α)

does not hold in general, but only

lim inf
n→∞

xxnαy:n = x(α) and lim sup
n→∞

xxnαy:n = x(α)

To get to an estimator for VaR we present the following result:

Theorem 7.5 Given a random sample x1, . . . , xn from a certain distribution F

and for a fixed α ∈ (o, 1), then if F is continuous, the estimator

ˆV aRα(x) = −xxnαy:n (7.12)

converges to VaRα(x) as n →∞.

Proof. See [1].

So, starting from now, we will use, because of its easy computation, Expected

Shortfall (and not AVaR) as example of convex risk measure. We first introduce

the following proposition. See Corollary 3.3 in [1] for the proof.

From this last Theorem we can notice that this way of estimating VaR works

well only in the case of continuous distributions.

Proposition 7.3 If x is a real-valued random variable with E[x− < ∞], then the

mapping α → ESα is continuous in (0, 1).

One problem with VaR is that when applied to discontinuous distributions, may

be its sensitivity to small changes in the confidence level α. In other word, it is not

continuous with respect to the confidence interval α. In contrast, from Proposition

7.3 we know that, the risk measured by ESα will not change dramatically when

there is a switch in the confidence interval. In practice for many investments it is



62 Applications

not really a constraints to assume that the underlying distribution is continuous.

This means that we do not have to worry about the convergence of the estimator

for VaR.

For the random sample we simply take in practice n, (usually daily) observation

for the price at closure of the investment under consideration. Then we compute the

log-returns and denote them by r1, . . . , rn. Here n is the number of observations or

the length of the observation period (in days). The larger n, the better estimation

for VaR and ES are obtained in general. We will not discuss the estimator error

for VaR and Es, it goes beyond our aim. One can see for example [30].

We analyzed the time series of the Ftse index of the London Stock Exchange

from 2/1/1996 to 29/12/2000. In total we have 1304 observation. After the compu-

tation of the log returns, we computed the values of VaRα and ESα for α ∈ (0, 1).

We used the formulation given in Proposition 7.2 in order to obtain an estimation

of ES and Theorem 7.5 to obtain an estimation for VaR.
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Figure 7.2: ˆVaRα and ÊSα as a function of α . The upper (blue) line is ES, the

lower (red) line is VaR.

We can see in Figure 7.2 that ˆVaRα and ÊSα are both decreasing in α, ˆVaRα <

ÊSα for all α ∈ (0, 1). ˆVaRα is positive for values of α below circa 0.45. On the

other hand ÊSα converges to the opposite of the sample mean. The sample mean
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is 0.0004011565.

We will not spend more time on the interpretation of the figure above from a

financial point of view. What we prefer to emphasize is the shape of the two curves.

What we see is that ÊSα produces a a beautiful convex curve, and this is due to

its continuity and convexity property, as discussed above.

On the contrary ˆVaRα shows a less smooth line with more distortion. We can

see in Figure 7.3 that shows the curves for α ∈ (0, 0.08). This gives us a clear

incentive to doubt about the continuity in α of VaRα, as already discussed.
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Figure 7.3: ˆVaRα and ÊSα as a function of α on (0,0.8) for the returns of the FTSE.

The upper (blue) line is ÊSα, the lower (red) line is ˆVaRα.

7.3.3 Portfolio risk measure

In this subsection we will show the importance, from a financial point of view, of

the convexity of a risk measure. We created in fact a portfolio weighted with two

assets.

Let’s call r the total return of a portfolio. We know that, taking n assets, say

a1, . . . , an, computed the total returns for every asset r1, . . . , rn and the relative

weights ω1, . . . , ωn such that
∑n

i=1 ωi = 1, the total return of a weighted portfolio
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composed with that assets is

r =
n∑

i=1

riωi (7.13)

We imposed the condition ωi ∈ [0, 1], ∀i ∈ i, . . . , n. This meas that only long

position are admissible. Remember now the property of ES and VaR. Es is convex

or even subadditive, VaR is in general not convex. This simple example will show

why we insist that much on convexity. We that if ρ, measure of risk is convex, then

ρ(r) ≤
n∑

i=1

ωiρ(ri) (7.14)

where r, ωi and ri, i ∈ 1, . . . n are as defined above. This means obtaining less risk

by diversification.

The portfolio we created is composed with two assets: Intel and Coca-Cola.

Both the titles are part of the 30 titles that compose the Down Jones Index. The

period we considered goes from 03/02/1995 to 31/01/2005. We considered the

returns of the portfolio of the form r = ωr1 + (1− ω)r2. Then we computed, fixed

α = 0.01, ÊSα and ˆVaRα by letting the value of the weight ω varying in [0,1].
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Figure 7.4: ˆVaR0.01 (blue line) and ÊS0.01 (red line) as a function of ω ∈ [0, 1],

for the returns of the portfolio composed with the returns of the titles Intel and

Coca-Cola.
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From Figure 7.4 it is immediately clear that ES is convex, because it provides a

convex curve, with an unique global minimum. On the other hand the problem with

VaR is clearly illustrated: the curve is not convex, not smooth and has several local

minima. This is why VaR is not a suitable instrument in optimization problems.
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Chapter 8

Conclusions

In this work we start analyzing the meaning of a measure of risk and we see some

nice properties that could satisfy. We focus on the class of the convex measures

of risk. Starting from this new definition a measure for the risk of a position,

we model the preferences of the agent involved with the market (incomplete or

totally incomplete) using the well-known concept of utility function (resp. loss

function). We obtain, via utility maximization, a type of convex measure which

we call entropic convex measure of risk. Moreover we try to give an economic

explanation to this measure of risk and found a link between measure of risk and

the price of a claim.

Due to its relation with the relative entropy, we adopt here, the exponential

utility function. We impose, for simplicity, the risk aversion coefficient to be equal

to one. Moreover consider the free risk interest rate to be equal to zero.

One of the possibly development of this matter could be to try to impose dif-

ferent conditions, i.e., considering a different risk aversion coefficient or even a

different utility function; consider the discount factor not to be deterministic but

try to model it with, for example, a stochastic model. On the other hand it could be

interesting to mix other axioms with the one of convexity and defining new classes

of measures of risk.

The gap between research and real economic world is great, and VaR is still

the most common risk measure used. Things are slowly changing (some regulators

started to use ES instead of VaR), but it will take some years.
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Appendix A

Real Analysis and Measure

Theory

We will deal in this first appendix with concepts and instruments belonging to

pure mathematics. In particular we need some definitions from real and functional

analysis. We follow in the exposition mainly [27] and [24].

A.1 Ordered Sets

Definition A.1 (Relation) A relation is any subset of a Cartesian product. For

instance, a subset of A × B, called a binary relation from A to B, is a collection

of ordered pairs (a, b) with first components from A and second components from

B, and, in particular, a subset of A × A is called a relation on A. For a binary

relation R, one often writes aRb to mean that (a, b) is in R.

Definition A.2 (Totally Ordered Sets) A relation ≤ is a total order on a set

S (≤ totally orders S) if the following properties hold:

1. Reflexivity: a ≤ a for all a ∈ S;

2. Weak antisymmetry: a ≤ b and b ≤ a implies a = b;

3. Transitivity: a ≤ b and b ≤ c implies a ≤ c;

4. Comparability (Trichotomy law): For any a, b ∈ S, either a ≤ b or b ≤ a.

The first three are the axioms of a partial order, while addition of the trichotomy

law defines a total order.

Recall that:
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Definition A.3 (Trichotomy Law) Every real number is negative, 0, or posi-

tive. The law is sometimes stated as “For arbitrary real numbers a and b, exactly

one of the relations a < b, a = b, a > b holds” (Apostol 1967, p. 20).

Definition A.4 (Preorder) A relation ” ≤ ” is called preorder on a set S if it

satisfies the property of: Reflexivity and Transitivity.

A preorder that also has antisymmetry is clearly a partial order.

A.2 Lebesgue Measure

Let Ω be a nonempty point set, and A be a class of subsets of Ω.Let ∅ be the empty

set. Consider the following properties:

1. ∅ ∈ A and Ω ∈ A

2. If A ∈ A then Ac ∈ A

3. A is closed under finite unions and finite intersections: i.e., if A1, . . . , An are

all in A, then
⋃n

i=1 Ai and and
⋂n

i=1 Ai are in A as well;

4. A is closed under countable unions and countable intersections: i.e., if A1, A2, A3, . . .

is a countable sequences of events in A, then
⋃∞

i=1 Ai and
⋂∞

i=1 Ai are also

both in A.

Definition A.5 A is an algebra if it satisfies (1),(2) and (3) above. It is a σ-

algebra if it satisfies (1),(2) and (4) above.

Definition A.6 (Countably additive measure) We say that m is a countably

additive measure if it’s a nonnnegative extended real-valued function whose domain

of definition is a σ-algebra M of sets (of real numbers) and we have m(
⋃

En) =∑
m(En) for each sequence {En} of disjoint sets in M.

Let m be a countably additive measure defined for all sets in a σ-algebra M.

1. If A and B are two sets in M with A ⊂ B then m(A) ≤ m(B). This property

is called monotonocity.

2. Let {En} be any sequence of sets in M. Then m(
⋃

En) ≤ ∑
mEn. This

property of a measure is called countable subadditivity.

3. If there is a set A ∈M s.t. m(A) < ∞, then m(∅) = 0.
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A finitely additive measure has the same definition except that is defined on an

algebra and the property in the definition above is only required to hold for finite

unions. Note the slight abuse of terminology: a finitely additive measure is not

necessarily a measure.

Definition A.7 (Counting measure) Let n(E) be ∞ for an infinite set E and

be equal to the number of elements in E for finite sets. n(·) in a countably additive

set functions which is translation invariant and defined for all sets of reals numbers.

Let us call this measure the counting measure.

For each set A of real numbers consider the countable collections {In} of open

intervals which cover A, and for each such collection consider the sum of the lengths

of the intervals in the collection. Since the lengths are positive numbers, this sum

is uniquely defined independently of the orders of the terms.Then

Definition A.8 (Outer measure) We define the outer measure m∗(A) of A as:

m∗(A) = inf
A⊂In

∑
l(In).

While the outer measure has the advantage that it’s defined for all sets, it is not

countable additive. It becomes countable additive, however, if we suitably reduce

the family of sets on which it is defined. Perhaps the best way of doing this is to

use the following definition due to Carathèodory:

Definition A.9 A set E is said to be measurable if for each set A we have

m∗(A) = m∗(A ∩ E) + m∗(A ∪ Ec).

If E is a measurable set, we define the Lebesgue measure m(E) to be the outer

measure of E. Thus m is the set function obtained by restricting the set function

m∗ to the family M of measurable set. Two important properties of Lebesgue

measure are summarized by the following proposition:

Proposition A.1 Let {Ei} be a sequence of measurable sets. Then

m(
⋃

Ei) ≤
∑

m(Ei).

If the sets En are piecewise disjoint, then

m(
⋃

Ei) =
∑

m(Ei).

Proposition A.2 Let {Ei} be an infinite decreasing sequence of measurable sets,

with m(E1) finite. Then

m(
∞⋂

i=1

Ei) = lim
n→∞

m(En)
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Since not all sets are measurable, it is of great importance to know that sets

which arise naturally in certain constructions are measurable. If we start with

a function f the most important sets which arise from it are those listed in the

following properties:

Proposition A.3 Let f be an extended real-valued function whose domain is mea-

surable. Then the following statements are equivalent:

i. For each real number α, the set {x : f(x) > α} is measurable.

ii. For each real number α, the set {x : f(x) ≥ α} is measurable.

iii. For each real number α, the set {x : f(x) < α} is measurable.

iv. For each real number α, the set {x : f(x) ≤ α} is measurable.

This statements imply

v. For each extended real number α, the set {x : f(x) = α} is numerable

Definition A.10 An extended real-valued function f is said to be (Lebesgue) mea-

surable if its domain is measurable and if it satisfies one of the first four statements

of Prosition A.3

A property is said to hold almost everywhere (abbreviated a.e.) if the set of

points where it fails tohold is a set of measure zero. Thus in particular we say

that f = g a.e. if f and g have the same domain and m({x : f(x) 6= g(x)}) = 0.

Similary we say that fn converges to g almost everywhere if there is a set E of

measure zero s.t. fn(x) converges to g(x) for each x /∈ E.

A.3 The Lebesgue Integral

The function χE defined by

χE(x) =

{
1 x ∈ E

0 x /∈ E

is called indicator (or characteristic) function of E. A linear combination

ϕ(x) =
n∑

i=1

aiχEi(x)

is called simple function if the sets Ei are measurable.

If ϕ vanishes outside a set of finite measure, we define the integral of ϕ by
∫

ϕ(x)dx =
n∑

i=1

aim(Ai)
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where {a1, . . . , an} is the set of non-zero values of ϕ and Ai = {x : ϕ(x) = ai}. In

a more compact way, and with E measurable set, we define
∫

E

ϕ =
∫

ϕ · χE

Definition A.11 (The(Lebesgue) integral) If f is a bounded measurable func-

tion defined on a measurable set E with m(E) finite, we define the (Lebesgue)

integral of f over E by ∫

E

f(x)dx = inf
∫

E

ψ(x)dx

for all simple functions ψ ≥ f .

Theorem A.1 (Bounded Convergence) Let {fn} be a sequence of measurable

functions defined on a set E of finite measures, and suppose that there is a real

number M s.t. |fn(x)| ≤ M for all n, for all x. If f(x) = lim fn(x) for each x ∈ E,

then ∫

E

f = lim
∫

E

fn.

If {fn} is a sequence of measurable functions which converges a.e. to f , then,as

we will see, the Fatou’s Lemma, the Monotone Convergence Theorem and the

Lebesgue Convergence Theorem all state that under suitable hypothesis we can

assert something about
∫

f in therm of
∫

fn.

Theorem A.2 (Fatou’s Lemma) If {fn} is a sequence of non-negative measur-

able functions and fn(x) → f(x) a.e. on a set E, then
∫

E

f ≤ lim inf
∫

E

fn

Theorem A.3 (Monotone Convergence) Let {fn} be an increasing sequence

of non-negative measurable functions, and let f(x) = lim fn(x). Then
∫

E

f = lim
∫

E

fn

Definition A.12 A non-negative measurable functions f is called integrable over

the measurable set E if ∫

E

f < ∞

Theorem A.4 (Lebegue Convergence) Let g be integrable over E and let {fn}
be a sequence of measurable functions s.t. |fn| ≤ g on E and for almost all x ∈ E

we have f(x) = lim fn(x). Then
∫

E

f = lim
∫

E

fn.
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Theorem A.5 Let {gn} be a sequence of integrable functions which converges a.e.

to an integrable function g. Let {fn} a sequence of measurable functions s.t. |fn| ≤
gn and {fn} converge to f a.e. If

∫
g = lim

∫
gn,

then ∫
f = lim

∫
fn

Suppose that {fn} is a sequence of measurable functions s.t.
∫

fn → 0. What

can we say about the sequence {fn}? Perhaps the most important property of such

a sequence is that for each positive η the measure of the sets {x : |fn| > η} must

tend to zero. This leads us to the following definition:

Definition A.13 (Convergence in Measure) A sequence {fn} of measurable

functions is said to converge to f in measure if, given ε > 0, there is an N s.t.

∀n ≥ N we have

m({x : |f(x)− fn(x)| ≥ ε}) < ε.

A.4 The Lp][0, 1] Spaces

In this section we will see some spaces of functions of a real variable.

Definition A.14 (Lp Spaces) Let be a positive real number. A measurable func-

tion defined on [0, 1] is said to belong to the space Lp = Lp[0, 1] if
∫ 1

0

|f |p < ∞

Thus L1 consists precisely of the Lebesgue integrable functions on [0, 1]. Since

|f + g|p ≤ 2p(|f |p + |g|p), we see that the sum of two functions on Lp is again in

Lp. Since αf in in Lp whenever f is, we have αf +βg in Lp whenever f and g are.

Definition A.15 (Linear Space) A space X of real-valued function is called lin-

ear space (or vector space) if it has the property that

αf + βg ∈ X ∀f, g ∈ X, ∀α, β ∈ R

Thus the Lp spaces are linear spaces.

For a function f ∈ Lp we define

‖f‖ = ‖f‖p = (
∫ 1

0

|f |p)1/p.

with the property that ‖f‖ = 0 iff f = 0 and ∀α ∈ R, ‖αf‖ = |α|‖f‖.
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Definition A.16 (Normed Linear Space) A linear space is said to be a normed

linear space if we have assigned a nonnegative real number ‖f‖ to each f s.t.

‖αf‖ = |α|‖f‖

‖f + g‖ ≤ ‖f‖+ ‖g‖
‖f‖ = 0 ⇔ f ≡ 0

Unfortunately, the norm of the Lp spaces does not satisfy the last requirement,

from ‖f‖ = 0 we can only conclude that f = 0 a.e. We will, however, consider

two measurable functions to be equivalent if they are equivalent a.e.; and, if we do

not distinguish between equivalent functions, then the Lp space are normed linear

spaces.

It is convenient to denote L∞ the space of all bounded measurable functions on

[0, 1] (or rather all measurable functions which are bounded except possibly on a

subset of measure zero). Again we identify functions which are equivalent. Then

Lp is a linear space, and it becomes a normed linear space if we define:

‖f‖ = | f‖∞ = ess sup |f(t)|,

where ess sup f(t) is the infimum of sup g(t) as g ranges over all functions which

are equal to f a.e. Thus

ess sup f(t) = inf{M : m(t : f(t) > M) = 0}

Proposition A.4 (Hölder Inequality) If p and q are nonnegative extended real

numbers s.t. 1
p + 1

q = 1, and if f ∈ Lp and g ∈ Lq, then f · g ∈ L1 and
∫
|fg| ≤ ‖f‖p · ‖g‖q.

Equality holds iff, for some nonzero constants α and β, we have α|f |p = β|g|q a.e.

Proposition A.5 (Minkowski Inequality) If f and g are in Lp, then so is f+g

and

‖f + g‖p ≤ ‖f‖p + ‖g‖p.

The notion of convergence for a sequence of real numbers generalizes to give us a

notion of convergence for sequences in a linear normed space.

Definition A.17 (Convergence) A sequence {fn} in a normed linear space is

said to be convergent to an element f if, given ε > 0, there is an N s.t. for all

n > N we have ‖f − fn‖ < ε. If fn converges to f we write f = limn→∞ fn or

fn → f .
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Another way of formulating the convergence of fn to f is by noting that fn → f

if ‖f − fn‖ → 0. Convergence in the space Lp 1 ≤ p < ∞, is often referred to as

convergence in the mean of order p.

Definition A.18 (Cauchy sequence) A sequence {fn} in a normed linear space

is said to be a Cauchy sequence if, given ε > 0, there is an N s.t. for all n > N

and m > N we have

‖fn − fm‖ < ε

Definition A.19 (Completeness) A normed linear space is called complete if

every Cauchy sequence in the space converges, that is, if for each Cauchy sequence

{fn} in the space there is an element f in the space s.t. fn → f . A complete

normed linear space is called Banach space.

Definition A.20 A series {fn} in a normed linear space is said to be summable to

a sum s if s is in the space and the sequence of partial sums of the series converges

to s; that is ∥∥∥∥∥s−
n∑

i=1

fi

∥∥∥∥∥ → 0.

Proposition A.6 A normed linear space X is complete if and only if every ab-

solutely summable series is summable.

Theorem A.6 (Riesz-Fischer) The Lp spaces are complete.

Definition A.21 (Linear Functional) We define a linear functional on a normed

linear space X to be a mapping F of the space X into the set of real numbers s.t.

F (αf + βg) = αF (f) + βF (g).

We say that the linear functional is bounded if there is a constant M s.t. |F (f)| ≤
M · ‖f‖ for all f in X. The smallest constant M for which the inequality is true

is called the norm of F . Thus

‖F‖ = sup
|F (f)|
‖f‖ ,

as f ranges over all nonzero elements of X.

Proposition A.7 Each function g in Lq defines a bounded linear functional F on

Lp by

F (f) =
∫

fg.

We have ‖F‖ = ‖g‖q.
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To conclude the present section, let us show that for 1 ≤ p ≤ ∞ the converse of

this proposition holds, i.e., we obtain every bounded linear functionals on Lp in

this manner. The following lemma holds:

Lemma 3 Let g be an integrable function on [0, 1], and suppose that there is a

constant M s.t. ∣∣∣∣
∫

fg

∣∣∣∣ ≤ M‖f‖p

for all bounded measurable functions f . Then g is in Lq, and ‖g‖q ≤ M.

We are now in position to give the following characterization of the bounded

linear functionals on Lp for 1 ≤ p ≤ ∞:

Theorem A.7 (Riesz Representation) Let F be a bounded linear functionals

on Lp, 1 ≤ p ≤ ∞. Then there is a function g in Lq s.t.

F (f) =
∫

fg.

We have also ‖F‖ = ‖g‖q.

A.5 Metric Spaces

The system of real numbers has two types of property. The first type consists of

the algebraic, dealing with addition, multiplication, etc. The other type consists

of properties having to do with the notion of distance between two numbers and

with the concept of limit. These latter properties are called topological or metric,

and here we want to introduce this properties in general spaces, where the notion

of distance is defined.

Definition A.22 (Metric) A metric space (X, ρ) is a nonempty set X of ele-

ments (which we call points) together with a real-valued function ρ defined on X×X

s.t. ∀ x, y and z ∈ X:

i. ρ(x, y) ≥ 0;

ii. ρ(x, y) = 0 ⇔ x = y;

iii. ρ(x, y) = ρ(y, x);

iv. ρ(x, y) ≤ ρ(x, z) + ρ(z, y).

The function ρ is called a metric

A function f on a metric space (X, ρ) into a metric space (Y, σ) is a rule which

associates to each x ∈ X a unique y ∈ Y . We also call f a mapping of X into Y ,

or a function.
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Definition A.23 (Continuity) The function f is said to be continuous at x if,

for every ε > 0, there is a δ > 0 so that if ρ(x, y) < δ, then σ(f(x), f(y)) < ε. The

function is called continuous if it is continuous at each x ∈ X.

Definition A.24 (Homeomorphism) A one-to-one mapping f of X onto Y is

called a homeomorphism between X and Y if f is continuous and the mapping f−1

inverse to f is also continuous.

The spaces X and Y are said to be homeomorphic if there is an homeomorphism

between them.

Not all properties in a metric spaces are preserved under a homeomorphism.

Definition A.25 (Isometry) A homeomorphism which leaves distances unchanged,

that is, one for which

σ(h(x1), h(x2)) = ρ(x1, x2)

for all x1 and x2 in X, is called an isometry between X and Y .

Example 4 Let (X, ρ) = (Y, σ) = (R, d(·, ·)), with d(x, y) = |x − y|. Then the

application h(x) = x + t, t ∈ R, is trivially an isometry.

A.6 Topological Spaces

Definition A.26 (Topology) A topological space (X, κ) is a nonempty set X of

points together with a family κ of subsets (which we will call open) possessing the

following properties:

i. X ∈ κ, ∅ ∈ κ;

ii. O1 and O2 ∈ κ imply O1 ∩O2 ∈ κ;

iii. Oα ∈ κ implies
⋃

α Oα ∈ κ.

The family κ is called a topology for the set X.

The properties in this definition are all satisfied by open sets in a metric space

(X, ρ), and hence to each metric space (X, ρ) we can associate a topological space

(X, κ), where κ is the family of open sets in (X, ρ)1. A topological space which is

associated in this manner to some metric space is called metrizable, and the metric

ρ is said to be a metric for the topological space.

Definition A.27 (Base) A collection B of open sets of a topological space X is

called a base for the topology κ of X if for each open sets O ∈ X and each x ∈ O

there is a set B ∈ B s.t. x ∈ B ⊂ O.
1Recall that U ∈ X is an open set if and only if, ∀x ∈ U,∃ε > 0 such that {y : ρ(x, y) ≤ ε} ⊆ 0.
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A.7 Banach Spaces

We are now going to see a class of spaces which are endowed with both a topological

and an algebraic structure.

Definition A.28 (Vector Space) A set X of elements is called a vector space(or

linear space or linear vector space) over the reals if we have a function + : X×X →
X and a finction · : R×X → X which satisfy the following conditions:

i. x + y = y + x.

ii. (x + y) + z = x + (y + z).

iii. There is a vector 0 ∈ X s.t. x + 0 = x, ∀x ∈ X.

iv. λ(x + y) = λx + λy;∀λ ∈ R, ∀ x, y ∈ X.

v. (λ + µ)x = λx + µx; ∀ λ, µ ∈ R, ∀ x ∈ X.

vi. λ(µx) = (λµ)x; ∀ λ, µ ∈ R, ∀ x ∈ X.

vii. 0 · x = 0, 1 · x = x.

We call + addition and · multiplication by scalars. It should be noted that the

element 0 defined in (iii) is unique. The element (−1)x is called negative of x and

written −x.

Definition A.29 (Norm) A nonnegative real-valued function ‖ · ‖ defined on a

vector space is called norm if

i. ‖x‖ = 0 ⇔ x = 0.

ii. ‖x + y‖ ≤ ‖x‖+ ‖y‖.

iii. ‖αx‖ = |α|‖x‖.

A normed vector space becomes a metric space if we define a metric ρ by ρ(x, y) =

‖x−y‖. When we speak about metric properties in a normed space we are referring

to this metric.

Definition A.30 (Banach Space) If a normed vector space is complete in this

metric, it is called Banach space.

Definition A.31 (Linear Operator) A mapping A of a vector space X into a

vector space Y is called linear operator, or a linear transformation if

A(α1x1 + α2x2) = α1Ax1 + α2Ax2
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for all x1, x2 ∈ X and all real α1, α2. If X,Y are normed vector spaces, we call

a linear operator bounded if there is a constant M s.t. for all x we have ‖Ax‖ ≤
M‖x‖. We call the least such M the norm of A and denote it by ‖A‖. Thus

‖A‖ = sup
x∈X,x 6=0

‖Ax‖
x

.

Proposition A.8 The space B of all bounded linear operators from a normed vec-

tor space X to a Banach space Y is itself a Banach space.

A linear functional on a vector space X is a linear operator from X to the space

R of real numbers. Thus a linear functionals is a real-valued function on f on X s.t.

f(αx+βy) = αf(x)+βf(y). The first question with which we will be concerned is

that of extending a linear functional from a subspace to the whole space X in such

a manner that various properties of the functional are preserved. The principal

result in this direction is the following:

Theorem A.8 (Hans-Banach) Let p be a real-valued function defined on the

vector space X satisfying p(x+y) ≤ p(x)+p(y) and p(αx) = αp(x) for each α ≥ 0.

Suppose that f is a linear functional defined on a subspace S and that f(s) ≤
p(s) ∀s ∈ S. Then there is a linear functional F defined on X s.t. F (x) ≤ p(x) ∀x,

and F (s) = f(s) ∀s ∈ S.

Now we introduce the definition of duality, a concept which we will often deal

with in this thesis.

Definition A.32 (Dual) The space of bounded linear functional on a normed

space X is called the dual (or conjugate) of X and it is denoted by X∗.

Since R is complete, the dual X∗ of any nonrmed space X is a Banach space by

Proposition A.8. Two normed vector spaces are said to be isometrically isomorphic

if there is a one-to-one linear mapping of one of them onto the other which preserves

norms. From an abstract point of view, isometrically isomorphic spaces are identi-

cal, the isomorphism merely amounting to a renaming of the elements. We saw in

section A.4 that the dual of Lp was (isometrically isomorphic to) Lq for 1 ≤ p < ∞
where q is such that 1

p + 1
q = 1 and that there was a natural representation of the

bounded linear functionals on Lp by elements of Lq. A similar representation does

not hold for bounded linear functionals on L∞[0, 1].

If we consider the dual X∗∗ of X∗, then to each x ∈ X there corresponds an

element ϕx ∈ X∗∗ defined by ϕx(f) = f(x). We have ‖ϕx‖ = sup‖F‖=1 f(x).

Since f(x) ≤ ‖f‖ ‖x‖, we have ‖ϕx‖ ≤ ‖x‖. We can also prove that ‖ϕx‖ = ‖x‖ (

see Proposition 6 chap.10 in [27]). Since ϕ is clearly a mapping, ϕ is an isometric
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isomorphism of X onto some some linear subspaces ϕ[X] of X∗∗. The mapping ϕ

is called the natural isomorphism of X into X∗∗, and if ϕ[X] = X∗∗ we say that X

is reflexive.

Thus Lp is reflexive if 1 < p < ∞. Since there are functionals on L∞ which are

not given by integration with respect to a function in L1, it follows that L1 is not

reflexive. It should be observed that X may be isometric with X∗∗ without being

reflexive.

Just as the notion of metric space generalizes to that of a topological space,

so the notion of a normed linear space generalizes to that of a topological vector

space:

Definition A.33 (Topological Vector Space) A linear vector space X with a

topology κ on it is called a topological vector space if addition is a continuous

function from X ×X into X and multiplication by scalars is a continuous function

from R×X into X.

Definition A.34 (Weak Topology) If X is any vector space and F a collection

of linear functionals on X,we define the weak topology generated by F to be the

weakest topology s.t. each f ∈ F is continuous.

If X is a normed vector space and the functionals in F are all continuous (that

is, if F ∈ X∗), then the weak topology generated by F is weaker (has fewer open

sets) than the norm topology of X. We usually call the metric topology generated

by the norm the strong topology of X and the weak topology on X generated by

X∗ the weak topology of X. Thus we speak of strongly closed and strongly open

sets when referring to the strong topology and weakly open and weakly closed sets

when for the weak topology. Every weakly closed set is strongly closed but not

conversely. Every strongly convergent sequence is weakly convergent.

If we apply the notion of weak topology to the dual X∗ of a normed space X,

we see that the weak topology of X∗ is the weakest topology for X∗ s.t. all of the

functionals in X∗∗ are continuous. The weak topology turns out to be less useful

than the weak topology for X∗ generated by X (or more precisely, by ϕ[X] where ϕ

is the natural embedding of X into X∗∗). This topology is called the weak∗ topology

for X∗ and is even weaker than the weak topology. Thus a weak∗ closed subset of

X∗ is weakly closed, and weak convergence implies weak∗ convergence.

We have already see what is a convex function. We will see now what is a

convex set.

Definition A.35 (Convexity) A subset K of a vector space X is said to be con-

vex if

∀ x, y ∈ K ⇒ λx + (1− λ)y ∈ K, ∀λ ∈ [0, 1].



82 Real Analysis and Measure Theory

The set {z : z = λx + (1− λy),∀λ ∈ [0, 1]} is called the line segment joining x and

y. The points x and y are its endpoints, and a point z for which λ ∈ (0, 1) is called

an interior point of the segment. Thus s set K is convex if and only if whenever it

contains x and y it contains the segment joining x and y.

We give now some properties of convex sets.

Lemma 4 If K1 and K2 are convex sets, so also are the sets K1∩K2, λK1,K1+K2.

A point x0 is said to be an internal point of a set K if the intersection with K of

each line through x0 contains an open interval about x0.

Definition A.36 The support function p(x|C) = p(x) of a convex set C in Rn is

defined by

p(x) = sup{y(x)|y ∈ C}.

Lemma 5 If K is a convex set containing 0 as an interior point, then the support

function p has the following properties:

i. p(λx) = λp(x) λ ≥ 0.

ii. p(x + y) ≤ p(x) + p(y).

iii. {x : p(x) < 1} ⊂ K ⊂ {x : p(x) ≤ 1}.

Definition A.37 A topological vector space is called locally convex if we can find

a base for the topology consisting of convex sets.

Definition A.38 (Cone) Given a vector space V , a set C ⊂ V is called cone if

and only if for all x ∈ C and λ ∈ R we have λx ∈ C.

A cone C is called positively homogeneous if and only if for every pair x, y ∈ int(C)

there exists a linear definitely positive mapping A such that does not affect C and

such that A(x) = y.

A.8 Measure and Integration: the Radon-Nikodym

Theorem

We will deal now with some results in measure theory, results that we will use when

defining a convex risk measure.

Definition A.39 A measurable space is a set Ω together with a collection F of

subset of Ω which is a σ-algebra. The elements of F are called measurable sets.
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Definition A.40 Let π ∈ ba(Ω,F , P ), π ≥ 0. Then π is said to be purely finitely

additive if the only countably additive nonnegative set function ξ ∈ ba(Ω,F , P )

such that ξ ≤ π is ξ = 0.

Definition A.41 Let (X,B) a fixed measurable space, and let µ and ν two mea-

sures defined on it. A measure ν is said to be absolutely continuous with respect to

a measure µ if

µ(A) = 0 ⇒ ν(A) = 0, for each A ∈ B

We use the symbolism ν ¿ µ for ν absolutely continuous w.r.t. µ.

Definition A.42 If ν ¿ µ and µ ¿ ν, then ν and µ have the same class of null

sets, and ν, µ are said to be mutually equivalent, denoted by µ ≡ ν.

On the other hand

Definition A.43 Let µ, ν be two measures on (Ω,F). If there is a set B ∈ F such

that µ(B) = 0 and ν(Bc) = 0(or equivalently ν(A) = ν(A∩B), A ∈ F), then ν and

µ are called mutually singular or orthogonal, denoted by µ ⊥ ν.

Clearly this relation is symmetric (i.e. µ ⊥ ν ⇔ ν ⊥ µ), in contrast with absolutely

continuity.

Whenever we are dealing with more than a measure on a measurable space

(X,B), the term ’almost everywhere’ becomes ambiguous, and we must specify

almost everywhere with respect to µ or a.e. with respect to ν etc. . . . These are

abbreviated µ-a.e., ν-a.e.. If ν ¿ µ and a property holds µ-a.e., then it holds ν-a.e..

Theorem A.9 (Lebesgue decomposition) Let (Ω,F , µ) be a measure space,

and ν be a given σ-finite measure on F . Then ν can be uniquely expressed as

ν = ν1 + ν2 where ν1 ¿ µ and ν2 ⊥ µ.

See [23] for the proof.

Theorem A.10 (Radon-Nikodym) Let (X,B, µ) a σ-finite measure space, and

let ν be a measure defined on B which is absolutely continuous w.r.t. µ. Then there

is a nonnegative measurable functions f s.t. for each set E ∈ B we have

ν(E) =
∫

E

fdµ.

The function f f unique in the sense that if g is any measurable function with this

property then g = f µ-a.e..

The function f given by Theorem A.10 is called the Radon-Nikodym derivative

of ν with respect to µ. It is denoted by
[

dν
dµ

]
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Definition A.44 (Probability Space) A triple (Ω,F , P ) on the domain Ω, where

(Ω,F) is a measurable space, F are the measurable subsets of Ω, and P is a measure

on with P [Ω] = 1 is called probability space.

Definition A.45 (Atom) The set A ∈ F is called an atom of (Ω,F , P ), if

P [A] > 0 and if each B ∈ F with B ⊆ A satisfies either P [B] = 0 or P [B] = P [A]

Definition A.46 (Atomless probability space ) A probability space (Ω,F , P )

is called atomless is it does not contain any atom.

A.8.1 The general Lp Spaces

If (X,B, µ) is a measure space, we denote by Lp(µ) the space of all measurable

functions on X for which
∫ |f |pdµ < ∞, considering two functions in Lp to be

equivalent if they are equal a.e.. As in Section A.4 we define L∞(µ) to be the space

of bounded measurable functions. For 1 ≤ p < ∞ we set

‖f‖p =
{∫

|f |pdµ

} 1
p

,

and for p = ∞ we set

‖f‖∞ = ess sup |f |.

Note that the space L∞(µ) depends on the choice of µ to determine the norm and

the classes of equivalent functions, but that this only requires knowing what the

set of zero measure are.

The Hölder and Minkowski inequalities and the Riesz-Fisher theorem follow just

as in Section A.4, and we summarize them in the following theorem:

Theorem A.11 For 1 ≤ p ≤ ∞ the space Lp(µ) are Banach spaces, and if f ∈
Lp(µ), g ∈ Lq(µ), with 1

p + 1
q = 1, then fg ∈ L1(µ) and

∫
|fg|dµ ≤ ‖f‖p‖g‖q.



Appendix B

Principles of Convex

Analysis

In this chapter we will give some basic definitions and results of convex analysis.

For more details see [28], [16] and [24].

B.1 Convex Functions on R

In this section we will designate by I a (closed, open or half-open, finite or infinite)

interval on R.

Definition B.1 (Convexity) Let f be a function I → R.

(a) f is said to be convex if

f(λa + (1− λ)b) ≤ λf(a) + (1− λ)f(b)

for all a, b ∈ I and all λ ∈ R s.t. 0 ≤ λ ≤ 1.

(b) f is said to be strictly convex if it is convex and the strict inequality holds in

(a) whenever a 6= b.

If we look at the graph of f , this condition can be formulated geometrically by

saying that each point on the chord between (x, f(x)) and (y, f(y)) is above the

graph of f . An important property of the chords of a convex functions is given by

the following lemma:

Lemma 6 If f is convex on (a, b) and if x, y, x′, y′ are points of (a, b) with x ≤
x′ < y′ and x < y ≤ y′, then the chord over (x′, y′) has larger slope than the chord
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over (x, y); that is,
f(y)− f(x)

y − x
≥ f(y′)− f(x′)

y′ − x′

Theorem B.1 Let f : I → R be convex. Then f has a right derivative and a left

derivative at every point of int(I), and f ′− and f ′+ are non-decreasing on int(I). If

c ∈ int(I), we have

f ′−(c) ≤ f ′+(c)

and

f(x) ≥ f(c) + f ′−(c)(x− c), f(x) ≥ f(c) + f ′+(c)(x− c)

for all x ∈ I.

It is not really difficult to prove the following inquality.

Proposition B.1 (Jensen Inequality) Let f be a convex function on (−∞,∞)

and h an integrable function on [0, 1]. Then
∫

f(h(t))dt ≥ f [
∫

h(t)dt].

This inequality has a geometric interpretation worth mentioning. Since the point

λx1 + (1 − λ)x2 is the centroid of masses λ and (1 − λ) at x1 and x2, we can say

that a function is convex if its value at the centroid of a two-point mass is less

than the weighted average of its value at the two points. The Jensen inequality is a

generalization of this fact: If we define a mass distribution µ in the line by setting

µ(a, b] = m({t : a < f(t) ≤ b}), then the
∫

f(t)dt is the centroid of this mass and∫
ϕ(f(t))dt =

∫
ϕ(x)dµ is the weighted average of ϕ.

B.1.1 The Conjugate Function

A function f : R → R is convex if and only if there exists a function g : R →
R ∪ {+∞} such that

f(x) = sup
y∈R

[xy − g(y)] (B.1)

for all x ∈ R. The above function g is called the conjugate of f .

An alternative way to define the conjugate of a function is the following:

Definition B.2 (Fenchel-Legendre transform) The Fenchel-Legendre transform

of a function f on R is defined as

f∗(y) .= sup
x∈R

{yx− f(x)}, y ∈ R
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If f 6= +∞, then f∗ is a convex and lower semi-continuous as the supremum of

the affine functions y → yx− f(x). In particular, f∗ is a convex function which is

continuous on its effective domain. If f is itself a convex function, then f∗ is also

called the conjugate function of f .

Proposition B.2 Let f be a convex function.

(a) For all x, y ∈ R,

xy ≤ f(x) + f∗(y) (B.2)

with equality if x belongs to he interior of domf and if y ∈ [f ′−(x), f ′+(x)].

(b) If f is lower semi-continuous, then f∗∗ = f , i.e.,

f(x) = sup
y∈R

{xy − f∗(y)}

See [16] for the proof.

We now summarize some basic properties of the functions f and f∗. See [14]

for the proof.

Lemma 7 Let us assume f and f∗ as defined above. Then

1. f∗(0) = − infx∈R f(x) and f∗(y) ≥ −f(0) for all z.

2. The set N
.= {y ∈ R|f∗(y) = −f(0)}is nonempty, y1

.= inf N ≥ 0, and

f∗(y) = supx≥0(xy − f(x))for y ≥ y1. In particular, f∗ is non-decreasing in

[y1,∞).

3. y0
.= inf{y ∈ R|f∗(y) < ∞} ∈ [0,∞).

4. f∗(y)
y →∞ as y ↑ ∞

When the function is concave, as could be the utility function, we have the

notion of concave conjugate.

Definition B.3 (Concave Conjugate) Let g : R → R be a concave funciton.

Then we define the concave conjugate g∗ : R→ R ∪ {−∞} of g by:

g∗(y) .= inf
x∈R

{xy − g(x)}, y ∈ R. (B.3)

Let x ∈ int(D) and suppose that g : D → R is a strictly concave, differentiable

function and denote with I = (u′)−1 the inverse function of u′. Then

g∗(y) = yI(y)− u(I(y)).
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Remark 13 We know that if f is a convex function, g = −f is a concave function.

Then the relation between conjugate and concave conjugate is the following:

f∗(y) = −g∗(−y)

where f, g are as defined above and y ∈ R

Proof.

f∗(y) =

sup
x∈R

{yx− f(x)} = sup
x∈R

{yx + g(x)}

sup
x∈R

{−[(−y)x− g(x)]} = − inf
x∈R

{(−y)x− g(x)}

= −g∗(−y). ¤

And in the case as l(x) = −u(−x), where l is the loss function and u is the utility

function, we have

l∗(y) = −u∗(y)

The proof follows the proof given above.

B.1.2 Convex Functions With Values in R̄

We now consider more general functions, with values in R̄ := R ∪ {+∞} ∪ {−∞}.
So we can now provide a generalization of the concept of convex functions.

Definition B.4 A function f : R→ R is said to be convex if for all x, y, λ, µ, ν ∈ R
such that f(x < µ, f(y) < ν), 0 < λ < 1

f(λx + (1− λ)y) < λµ + (1− λ)ν

Definition B.5 (a) The effective domain of a convex function f : R → R̄, de-

noted by dom(f), is the set {x ∈ R|f(x) < +∞}

(b) A proper convex function on R is a convex function R → R ∪ {+∞} which

is not identically +∞.

(c) An improper convex function on R is a convex function on R which is not

proper.

Now we give the definition of some concepts closely related with the one of convex-

ity.

Definition B.6 Let f be a function I → R.
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(a) f is said to be quasi-convex if

f(λa + (1− λ)b) ≤ f(b)

for all a, b ∈ R with f(a) ≤ f(b) and all λ ∈ (0, 1).

(b) f is said to be strictly quasi-convex if

f(λa + (1− λ)b) < f(b)

for all a, b ∈ R with f(a) < f(b) and all λ ∈ (0, 1).

A strictly quasi-convex function is not necessarily quasi convex.

B.2 Convex Functions On a Linear Space

In this section we designate by V a linear space over R and by E a linear topological

space over R, both containing more than one point.

Definition B.7 (The Epigraph) Let X be a set and f a function X → R̄. The

epigraph epi(f) of f is the set

{(x, λ) ∈ X × R|f(x) ≤ λ}.

In the sequel, properties of f will sometimes be described in terms of property of

epi(f).

If X is a topological space, we endow X×R with the product topology. Closed-

ness of epi(f) turns out to correspond with lower semi-continuity of f

Let X be a topological space.

Definition B.8 (Lower Semi-Continuity) Let f be a function X → R̄. f is

said to be lower semi-continuous at a if for each K ∈ R, K < f(a) there exists a

neighborhood U such that f(U) > K. f is said to be lower semi-continuous if f is

lower semi-continuous at each point of X.

Remark 14 (a) A continuous function is lower semi-continuous.

(b) If a ∈ X is an accumulation point of X and f(a) = +∞, and if f is lower

semi-continuous at a, then

lim
x→a

f(x) = +∞

(c) If f(a) = −∞, then f is lower semi-continuous at a.
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Theorem B.2 Let f be a function X → R̄. The following conditions are equiva-

lent:

(a) f is lower semi-continuous.

(b) {x ∈ X|f(x) > λ} is open for each λ ∈ R.

(c) {x ∈ X|f(x) ≤ λ} is closed for each λ ∈ R.

(d) epi(f) is closed (as subset of X × R).

B.3 Duality Theory

In this section we denote with E as a normed linear space (containing more than

one point) over R, with norm x → ‖x‖, and with E′ the dual of E. The separation

theorem implies (see [28]) that for each x ∈ E, x 6= 0 there exists x′ ∈ E′ such that

x′(x) 6= 0.

B.3.1 The Conjugate Function

Definition B.9 (Conjugate) (a) The conjugate(or dual or polar) of a func-

tion f : E → R̄ is the function f∗ : E′ → R̄ defined by

f∗(x′) = sup
x∈E

{x′(x)− f(x)} (x′ ∈ E′).

(b) The conjugate of a function g : E′ → R̄ is the function g∗ : E → R̄ defined

by

g∗(x′) = sup
x′∈E′

{x′(x)− g(x′)} (x ∈ E).

(c) The bipolar(or biconjugate) f∗∗ of a function f from E to R̄ or from E′ to

R̄ is the conjugate (f∗)∗ of the conjugate of f .

Remark 15 If f∗(x′) is finite, then it equals to the smallest number α satisfying

f(x) ≥ x′(x)− α

whenever x ∈ E.

We give now some simple properties of the conjugate function.

(a) If f, h are functions from E to R̄ such that f ≤ h, than f∗ ≥ h∗.

(b) (+∞)∗ = −∞.
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(c) If there is a point where f : E → R̄ has the value −∞, then f∗ = +∞. In

particular (−∞)∗ = +∞.

Note that (b) and (c) imply that the formula f∗∗ = f is generally not true.

One can show that for all f : E → R̄ we have f∗∗ ≤ f .

(d) If {fα|α ∈ A} is an arbitrary collection of functions E → R̄, then
(
inf
α

fα

)∗
= sup

α
f∗α

(
sup

α
fα

)∗
≤ inf

α
f∗α

In the last inequality, equality does not hold in general.

(e) If f is a function E → R̄ and λ > 0, then

(λf)∗(x′) = λf∗
(

x′

λ

)
(x′ ∈ E′).

(f) If f is a function E → R̄ and α ∈ R, then

(f + α)∗ = f∗ − α

(g) If f is a function E → R̄ and x ∈ E, x′ ∈ E′, then

f∗x(x′) = f∗(x′) + x′(x)

where the function fx is defined as fx(y) = f(y − x)(y ∈ E).

(h) If f is a function E → R̄, then

inf{f(x)|x ∈ E} = −f∗(0).

Theorem B.3 Let f be a function E → R̄. Then f∗ is a lower semi-continuous

convex function on E′ (with the norm topology).

Theorem B.4 Let f be a function E → R̄. For each x ∈ E, x′ ∈ E′,

f∗(x′) ≥ x′(x)− f(x)

hence

f(x) + f∗(x) ≥ x′(x) (B.4)

whenever the left-hand side is defined. The (B.4) is called Fenchel’s inequality.(Cf.

B.1.1 )
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Theorem B.5 Let f b a function E → R̄, and let x be a point of E where f is

finite. Then

x′ ∈ ∂f(x) ⇔ f∗(x′) = x′(x)− f(x).

The following theorem is the well-known 1-1 correspondence between closed

convex functions f on X and closed convex functions f∗ on X ′.

Theorem B.6 (Rockafellar [25], Theorem 5) If the function f : X → R ∪
{+∞} is convex and lower semi-continuous, then f = f∗∗, i.e.

f(x) = sup
x′∈X′

{x′(x)− f∗(x)}, ∀x ∈ X. (B.5)

Theorem B.7 (Fenchel duality theorem - Luenberger [22], Th.1, Ch. 7.12)

Let f : L∞ → R ∪ {+∞} be convex, g : L∞ → R ∪ {−∞} be concave and set

C = {z ∈ L∞ : f(z) < +∞}, D = {z ∈ L∞ : g(z) > −∞}. Suppose that

C ∩ D contains points in the relative interior of C and D and either the epi-

graph [f, C] or [g, D] has no empty interior in the product topology of L∞ × R. If

supz∈L∞ g(z)− f(z) is finite then

sup
z∈L∞

g(z)− f(z) = min
µ∈(L∞)∗

f∗(µ)− g∗(µ)

where f∗ (resp. g∗) is the convex (resp. concave) conjugate functional:

f∗ : (L∞)∗ → R, f∗(µ) = sup
z∈L∞

{µ(z)− f(z)},

g∗ : (L∞)∗ → R, g∗(µ) = inf
z∈L∞

{µ(z)− g(z)},



Appendix C

Implementation of the

programs

We present in this chapter the simple R programming we used to implement the

empirical analysis and obtain the estimations and the graphics.

To get the estimation for ˆVaR and ÊS in Figure 7.1 we first generated a variable

a from a uniform in (0,1) with 10000 observation. Then we sorted it and called it

alpha. This to get different estimation of ˆVaR and ÊS for alpha ∈ (0, 1). The we

computed formulas in Example 3 for these different values of alpha.

%%%%% VaR and Es in the case that the returns are distributed as a N(0,1) %%%%%%%

rm(list=ls())

a<-runif(10000, 0,1)

alpha<-sort(a)

z<-rnorm(10000)

value<--qnorm(alpha, mean=0, sd=1)

es<-array(0, 10000)

for (i in 1:10000)

es[i]<-(exp(-(value[i])^2/2))/(alpha[i]*sqrt(2*3.14))

plot(alpha, value, type="l", col=4)

points(alpha, es, type="l", col=3)
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To get estimations for ˆVaR and ÊS for the returns of the FTSE index, we first

obtained, starting from the basis points, the log-returns and we sorted them in

increasing order. Then, as done before, we generated and sorted the vector of

variables theta, uniformly distributed in (0,1). To get the estimations for different

theta we just applied the formulas in Equation (7.11) and Theorem 7.5.

%%% VaR and ES for the serie of the returns of FTSE %%%

rm(list=ls())

p<-scan("c:/ftse.txt")

n_p<-length(p)

rend<-array(0,c(n_p-1,1))

for (i in 2:n_p)

rend[i-1]<-log(p[i])-log(p[i-1])

theta_rand<-runif(1000, 0,1)

theta<-sort(theta_rand)

m<-length(theta)

n<-length(rend)

r_o<-sort(rend)

v_a_r_1<-array(0, c(m,1))

es_1<-array(0,c(m,1))

for(i in 1:m)

v_a_r_1[i]<--r_o[floor(n*theta[i])]

for(j in 1:m)

es_1[j]<--sum(r_o[1:floor(n*theta[j])])/(floor(n*theta[j]))

plot(theta, v_a_r_1, type="l", col=7,xlab="theta", ylab="VaR, Es")

points (theta, es_1, type="l", col=8)

And to conclude, we created the weighted portfolio. We used the data we found

in the site finance.yahoo.it. Unfortunately, the available data are in decreasing

order. So we had to sort them. To get different portfolio for different weights,

we created a vector of variables theta-rand distributed as a uniform in (0,1). We
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sorted it and called it theta. Then we obtained the matrix of the possible returns

for different values of theta in (0,1). We fixed α, the confidence level, to be 0.01.

We sorted all that value in increasing order and computed ˆVaR0.01 and ˆES0.01 as

done above.

rm(list=ls()) p1_d<-scan("c:/intel.txt", dec=",")

n1<-length(p1_d)

p1<-array(0, c(n1,1))

for( i in 1:n1 )

p1[n1+1-i]<-p1_d[i]

r1<-array(0, c(n1-1,1))

for (i in 2:n1)

r1[i-1]<-log(p1[i])-log(p1[i-1])

n<-n1-1

p2_d<-scan("c:/coca.txt",dec=",")

p2<-array(0, c(n1,1))

for( i in 1:n1 )

p2[n1+1-i]<-p2_d[i]

r2<-array(0, c(n1-1,1))

for (i in 2:n1)

r2[i-1]<-log(p2[i])-log(p2[i-1])

r1_o<-sort(r1)

r2_o<-sort(r2)

theta_rand<-runif(1000, 0,1)

theta<-sort(theta_rand)

m<-length(theta)

alpha<-0.01

level<-floor(alpha*n)

c<-array(0, c(n,m))



96 Implementation of the programs

for( i in 1:m )

for( j in 1:n)

c[j,i]<- r1[j]*theta[i]+ r2[j]*(1-theta[i])

c_ordered<-array(0, c(n,m))

for (i in 1:m)

c_ordered[,i]<-sort(c[,i])

v_a_r<-array(0, c(m,1))

es<-array(0, c(m,1))

for (j in 1:m)

v_a_r[j]<--c_ordered[level,j]

for(j in 1:m)

es[j]<--sum(c_ordered[1:level,j])/(level)

plot(theta, es, type="l", col=3, xlab="Weights", ylab="VaR, Es",

ylim=c(0,0.09))

points(theta, v_a_r, type="l", col=4)
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