
Università degli Studi di Padova

Dipartimento di Ingegneria dell'Informazione

Corso di Laurea in Ingegneria dell'Informazione

a local search algorithm for

matching hospitals to residents

Laureando:

Matteo Sartori

Relatore:

Dott.ssa Maria Silvia Pini

22 Novembre 2013

Anno Accademico 2013/2014

Abstract

Stable matching problems are well known to have many practical applications,
such as assigning doctors to hospitals or students to schools. In this thesis
we consider a variant of the classical stable matching problem, called Hospital
Resident matching problem (HRT). We provide a local search algorithm to
solve it and we evaluate it on instances with sizes comparable to the instances
of real-life applications.

Contents

1 Introduction 1

2 Background 3

1 Stable matching problems . 3
2 Hospital-residents problem . 5

3 A new local search algorithm for HRT 9

1 General scheme . 9
2 De�nitions . 10
3 Local search algorithm for HRT 11
4 Reducing neighborhood . 13
5 Di�erent evaluation functions 17

4 Experimental results 19

1 Maximum match size . 19
2 Temporal analysis . 25

5 Conclusions and future work 29

Bibliography 31

v

List of Figures

2.1 Instance I of SM . 4
2.2 Instance I1 of HRT . 6

4.1 The matching size varying the length of the residents' preference
list . 21

4.2 Normalized number of singles varying the number of hospitals . 21
4.3 Uniform hospital popularity . 22
4.4 Skewed hospital popularity . 23
4.5 Max match size varying the number of permitted restarts 24
4.6 Temporal execution on di�erent problem sizes 25
4.7 Time versus random walk probability 26
4.8 Comparison between UB1 and UB2 27

vii

Chapter 1

Introduction

Stable matching problems are well known problems which can be found in a
wide variety of large-scale practical applications. In a stable matching prob-
lem we seek to assign a set of agents to another set of agents, typically under
certain constraints involving preference lists and capacities. The preference
list of an agent contains the agents of the other set, listed in order of prefer-
ence. Stabilty of the returned matching is an essential property for practical
involvement, and ensures that there are no two agents of the two di�erent sets,
that are not matched to each other, but they both prefer each other to their
current partner. Examples of real-world instances of stable matching problems
include assigning medical students to hospitals, children to schools and kidney
transplant patients to donors [8].

In 1962, Gale and Shapley [1] formally de�ne the Stable Marriage (SM)
problem and they give a polynomial procedure to �nd a stable matching when
the cardinality of the two set of agents is the same. In this scheme, the algo-
rithm guarantees that everyone become engaged and that the possible returned
marriage is stable.

Actually, the classic SM is quite restrictive, indeed it requires that every
agent expresses a complete strict preference ordering over all the members of
the other set, however, this is not what is more likely to be found in practise.
For example, it's quite common that an agent �nd acceptable only some of
the other agents, or he isn't able to decide between two of them since they
are very similar. This generalization of SM is known as SMTI because it
is a stable marriage problem which involves incomplete preference lists with
ties. However, more general preference lists involve the possibility that there
exist stable marriages where some agents are not matched and there may be
matchings of di�erent sizes which are both stable. These situations introduces
new problems, such as determining if an instance I has a stable matching of

1

2 CHAPTER 1. INTRODUCTION

size bigger than a certain value K or determining if I has a stable matching
where all agents are matched. We know from the literature that these two
problems are NP-hard [7].

Another possible extension of the classical SM problem is to allow that an
agent can be matched to more agents simultaneously. This is what happens
to the possibly best known real world implementation of SM, the National
Resident Matching Program (NRMP), in the United States, which represents
a many-to-one generalization of a SMTI. In this case we talk of residents, which
express a preference list of hospitals they wish to get assigned to, and a set of
hospitals that consider each proposing resident in a preference list that can be
incomplete and with ties. We call this hospital-residents matching problem,
HRT.

In this thesis our goal is to solve the Hospitals-Residents problem with
an approximate solution, by exploiting a Local Search approach [10]. We
�nd in the literature another work [2] which uses this technology on SM and
SMTI problems: it starts from a randomly chosen matching and, at each step,
it selects a matching in the neighborhood by minimizing the distance from
stability, that is, minimizing the number of unstable pairs. We show how to
adapt this method to handle HRT.

We have evaluated this method on big arti�cial instances, that are com-
parable with practical ones, which involve thousands of agents. Experimental
results show that our algorithm is able to return a solution in few seconds and
with a high quality in terms of the size of the returned matching. Moreover,
it is comparable with ad hoc powerful methods.

The dissertation is organized as follows. In Chapter 2 we provide the
basic notions of stable matching problems and hospitals-residents problems.
In Chapter 3 we describe new local search algorithms for the HRT problem
and in Chapter 4 we evaluate experimentally this approach. Finally in Chapter
5 we summarize the results of the thesis and we provide some hints for future
work.

Chapter 2

Background

In Section 2.1 we present the classical Stable Matching problem, also called
Stable Marriage problem, the �rst matching problem to be formally studied in
the literature. We come up with the main subject of this thesis in Section 2.2, a
many-to-one generalization of the Stable Marriage problem known as the Hos-
pitals Residents problem where some form of imprecision and incompleteness
is allowed for modelling agents preferences. This introduces new concepts like
unacceptability and indi�erence, which entail important consequences about
computational complexity.

1 Stable matching problems

Following examples and de�nitions are from [9]. The stable matching problem
is a well known problem with many practical applications. It has to do with two
set of agents, often called men and women to avoid focussing on a particular
application. An instance I of SM involves n men and n women, each of whom
ranks all n members of the opposite gender in strict order of preference. In I
we denote the set of men byM = {m1,m2, . . . ,mn} and the set of woman by
W = {w1, w2, . . . , wn}. We also express a preference list with this notation

ri : wi1 wi2 . . . win

where the i-th man orders the set of all woman from wi1 , the most preferred,
to win the least preferred.

Since the main problem is to couple every man to every woman we have
to �nd a matching M , that is a bijection fromM and W . If (m,w) ∈M , we
say that a man m is matched to a woman w in M , and also w is matched to

3

4 CHAPTER 2. BACKGROUND

m for a symmetry property of this bijection. Also we say that, if (m,w) ∈M
m and w are partners in M . More general, we call assignment A the set of
pairs (m,w) ∈ M×W , of course an assignment need not to be a matching.
Let A(p) denote a p's partner in A, where p ∈ M∪W . If A(p) 6= ∅, then we
say that p is assigned in A, otherwise p is unassigned in A.

De�nition 1. Given a marriage M , a pair (m,w), where m is a man and w
is a woman, is a blocking pair i� m and w are not partners in M , but m
prefers w to M(m) and w prefers m to M(w).

De�nition 2. A marriage M is stable i� it has no blocking pairs.

We can intuitively see stability as a property ensuring that no agent is allowed
to make a request in order to change its partner, because there is no incentive
for any one agent to improve. And this give us an indication that the match
we are considering is a good result, otherwise it would be merely useless.

Another important practical consideration follows. It could happen that,
even if a matchingM is stable, every man obtains his best possible partner and,
consequently, each woman obtains her worst possible partner. In the literature
this situation is referred to as man optimal marriage (the analogous for women
is woman optimal marraige) and, for certain applications this behaviour is
unacceptable, even for stable matchings. In this case we have to consider ad
hoc strategies that build stable marriages, paying attention to give balanced
consideration of both genders.
In Figure 2.1 we show an example of an SM instance I and we consider this
two subsequent matchings

M1 = {(m1, w3), (m2, w1), (m3, w2)}

M2 = {(m1, w1), (m2, w3), (m3, w2)}

we see that (m1, w1) is a blocking pair for matching M1, as both m1 prefers
w1 to M1(m1) = w3 and w1 prefers m1 to M1(w1) = m2. Instead, M2 is one of
all possible stable marriages for the instance I.

Men's preferences Women's preferences
m1 : w1 w3 w2 w1 : m1 m3 m2

m2 : w1 w2 w3 w2 : m3 m1 m2

m3 : w2 w1 w3 w1 : m3 m2 m3

Figure 2.1: Instance I of SM

2. HOSPITAL-RESIDENTS PROBLEM 5

2 Hospital-residents problem

We now introduce a many-to-one generalisation of SM called Hospitals Res-
idents problem(HRT). In HRT, each hospital has one or more posts that it
requires to �ll, and a preference list ranking a subset of the residents. Simi-
larly, each resident has a preference list ranking a subset of the hospitals. In
fact, we permit, in the case of an hospital, that it may �nd a resident unac-
ceptable, and also that it may express indi�erence between two of them. This
re�ects in having incomplete lists with ties. Obviously, we can also talk of res-
idents that do not accept hospitals or that they are indi�erent between some
of them. HRTs are a generalization of the stable matching problems with ties
and incomplete lists (SMTIs), that are SMs where we allow indi�erence in the
preference ordering and truncated list of preferences [7].

The capacity of a hospital is its number of available posts. We want to
match each resident to at most one hospital such that no hospital exceeds its
capacity, whilst observing a stability criterion to be de�ned. An instance of
HRT is de�ned formally as

• set of residents R = {r1, r2, . . . , rn}

• set of hospitals H = {h1, h2, . . . , hs}

• preference list for all ri ∈ R, each of whom ranks a subset of H.

• preference list for all hj ∈ H, each of whom ranks its applicants, the
residents who �nd that particular hospital acceptable.

• list of capacities cj (1 ≤ j ≤ s) for each hospital.

We say that a resident ri �nds a hospital hj acceptable if ri's preference list
contains hj, and vice versa. An assignment M for an instance I of HR is a
set of pairs (ri, hj) ∈ R×H such that (ri, hj) ∈M only if ri and hj �nd each
other acceptable. If (ri, hj) ∈ M we say that ri is assigned to hj, and hj is
assigned ri. For any p ∈ R ∪ H, we denote by M(p) the set of assignees of p
in M . If M(p) 6= ∅ we say that p is assigned in M , otherwise r is unassigned
in M . We say that a hospital hj ∈ H is under-subscribed, over-subscribed or
full in M when | M(hj) |< cj, | M(hj) |> cj, or | M(hj) |= cj respectively.
Consider Figure 2.2 as an example of a HRT instance I1.

A matching in the context of HRT, is a set of (resident, hospital) pairs
such that no resident is assigned to more than one hospital and no hospital
is over-subscribed. A matching is stable if it admits no blocking pairs, and
we can de�ne a blocking pair for an instance of HRT with respect to three
di�erent levels of stability, since the presence of ties forces us to extend the

6 CHAPTER 2. BACKGROUND

Residents' preferences Hospitals' preferences
r1 : h1 h3 h1 : (2) : r3 (r7 r5 r2) r4 r6 r1
r2 : h1 (h5 h4) h3 h2 : (3) : r5 r6 (r3 r4)
r3 : h1 h2 h5 h3 : (1) : (r2 r5) r6 (r1 r7)
r4 : h1 (h2 h4) h4 : (1) : r8 r2 r4 r7
r5 : h3 h1 h2 h5 : (1) : r3 (r7 r6 r8) r2
r6 : (h3 h2) h1 h5
r7 : h3 h4 h5 h1
r8 : h5 h4

Figure 2.2: Instance I1 of HRT

de�nition. In fact an hospital h can prefer ra over rb, rb over ra or to be
indi�erent between them. A pair (r, h) ∈ R × H is said to block a matching
M for an instance of HRT, and is called a blocking pairs when:

• weak stability

1. r, h �nd each other acceptable;

2. r is either unassigned or strictly prefers h to his assigned hospitals
in M ;

3. h either is under-subscribed or strictly prefers r to its worst assigned
residents in M ;

• strong stability

1. r, h �nd each other acceptable;

2. either,

(a) r is either unassigned or strictly prefers h to his assigned hos-
pital in M , and h is either under-subscribed or strictly prefers
r to its worst assigned resident in M or is indi�erent between
them;

(b) r is either unassigned or strictly prefers h to his assigned hospi-
tal in M or is indi�erent between them, and h is either under-
subscribed or strictly prefers r to its worst assigned resident in
M .

• super stability

1. r, h �nd each other acceptable;

2. HOSPITAL-RESIDENTS PROBLEM 7

2. r is either unassigned or strictly prefers h to his assigned hospital
in M or is indi�erent between them;

3. h is either under-subscribed or strictly prefers r to its worst assigned
resident in M or is indi�erent between them.

A matching is said to be weakly stable, strongly stable or super-stable if it
admits no blocking pair with respect to the relevant de�nitions above. In this
thesis, however, we consider only weak stable matchings and we refer to as
simply stable matchings.

HRT is a generalisation of SMTI, namely if we select a HRT instance where
every hospital has only one post we are in fact considering a SMTI instance,
so it inherits some important properties. In particular the NP-hardness result
[7] generalises to the case of �nding a maximum weakly stable matching for
HRT instances.

8 CHAPTER 2. BACKGROUND

Chapter 3

A new local search algorithm for

HRT

In Sections 3.1 and 3.2 we provide an introduction to local search methods and
we describe how these approaches can be adapted to matching schemes. After
the main algorithm is exposed in Section 3.3, Sections 3.4 and 3.5 we further
re�ne basic techniques of the algorithm.

1 General scheme

Local search [10] is one of the fundamental paradigms for solving computa-
tionally hard combinatorial problems and in many cases represent the only
feasible way for solving these large and complex instances. Local search al-
gorithms are also naturally suited for dealing with the optimization criteria
arising in many practical applications. The basic idea underlying local search
is to start with a randomly or heuristically generated candidate solution of a
given problem instance, which may be infeasible, sub-optimal or incomplete,
and to iteratively improve this candidate solution by means of typically mi-
nor modi�cations. Di�erent local search methods vary in the way in which
improvements are achieved, and in particular, in the way in which situations
are handled when there's no direct improvement. Most local search methods
use randomization to ensure that the search process does not stagnate with
unsatisfactory candidate solutions.

9

10 CHAPTER 3. A NEW LOCAL SEARCH ALGORITHM FOR HRT

2 De�nitions

Given an HRT instance P , we have to de�ne an heuristic procedure that
�nds the initial match to begin the computation. We consider each resident in
random order. Let

ri : hi1 hi2 . . . his

be the preference list of the i-th resident. We start by letting ri make a proposal
to hi1 , if this hospital still has free places then we match ri to hi1 , otherwise we
go ahead considering the next hospital hi2 , and so on. If we aren't able to �nd
an undersubscribed hospital, we set ri as single. Since we let each hospital to
become �lled, we obtain a match with just few singles and, of course this match
is not stable, but in this way we can start with a good number of residents
already matched.

The next step is to de�ne the catalog of minor modi�cations that will be
used at every iteration step, in order to choose the next candidate solution. If
BP is the set of blocking pairs in M we can compute the neighborhood this
way:

NGHBM = {M \ b : b ∈ BPM}

which is the set of all matchings obtained by removing one of the blocking pairs
in BP from M . More precisely, removing b = (r, h) from M (written M \ b)
means obtaining a new matchM ′ in which r is matched with h and if h is now
oversubscribed then we have to replace r with the worst preferred resident
already matched to it (written M(h) \ r∗, where r∗ was the worst preferred
resident matched to h in M). In this setting a minor modi�cation of a given
matching M is the one obtained by changing one pair that was blocking in M .
Note that by removing a blocking pair we can produce new singles.

To sistematically select the best adjacent solution M ′, we have to de�ne a
function

f(M ′) = | BPM ′ | + | SM ′ |

on the space of all possible matchings and with SM ′ as the number of singles
in M. In words we have to select the neighbor with the minimum number of
blocking pairs as well as the minimum number of singles. There are alternative
evaluation functions we will consider in following sections.

From what we've seen so far there's nothing that prevents f to exhibit
a local minimum for some matching, and if this is the case, our algorithm
will not leave it, since the criterion for which it decides the next solution is
based exclusively on f . To avoid such a situation, at each search step we
perform a random walk with probability p (where p is a parameter of the
algorithm), which removes a randomly chosen blocking pair in BP from the

3. LOCAL SEARCH ALGORITHM FOR HRT 11

current matching M . We'll se in Chapter 4 that even for big value of p our
local search method reaches satis�sable solutions.

Since the notion of neighborhood is based on the set of blocking pairs in
a given matching M , we encounter a problem if this set is empty, and the
canditate solution we're considering in that moment is not good. In this case
we decide to restart the computation from the beginning, that's to generate a
random matching and to improve it step by step.

Finally, there may be conditions under which the implementation of our
code takes a lot of steps to reach a stable match and this turns into an un-
feasible situation in real systems. A possible way to prevent these long runs,
is to count the number of steps and abort if the execution get over a default
bound.

3 Local search algorithm for HRT

Algorithm 1 implements the logic described in Section 3.2. Here we give some
information to understand its behaviour. In the input P is a legal HRT instance
and in line 1 and 19 we calculate a random match from P , following the
procedure given at the beginning of Section 3.2. Parameters maxsteps and
maxrestarts serve to limit the execution and to prevent in�nite runs, which
can happen in theory. Although we can keep maxrestarts under the e�ect
of maxteps and nothing would change with only one parameter, we use both
of them. The possibility of making a restart it's very important because, if
in line 14 we �nd UBP empty it follows that M is stable, and since nothing
prohibit that this stable match is not of the maximum size as possible, we
have to retry starting with another random match. maxrestarts permits a
�ner tuning of computation, expecially it allows us to control how many new
random matches our code can exploit in order to search for a good maximum
size match. Since every restart represent a new chance to improve the current
match, we experiments with this parameter and we discover that even with a
low number of restarts our code can reach a good maximum size match.

Line 7 is about calculating the neighborhood. Lines 10, 11 and 12 take
care of the random walk, which is performed by comparing a random number,
returned between 0 and 1, with p, given as input. From line 23 to line 29, the
algorithm compare the evaluation function on each adjacent matching, which
is de�ned by UBP and chooses the best solution to move to.

12 CHAPTER 3. A NEW LOCAL SEARCH ALGORITHM FOR HRT

Algorithm: HRTLocal

Input: an HRT instance P , an integer maxsteps, an integer
maxrestarts, a probability p

Output: a matching

1 M ← random match for P
2 steps← 0
3 restarts← 0
4 Mbest ←M
5 fbest ← f(M)
6 repeat

7 UBP ← blocking pairs in M
8 if f(M) = 0 then // prefect match

9 return M
10 if rand() ≤ p then
11 randomly select b in UBP
12 M ←M \ b
13 else

14 if UBP is empty then // M is stable, random restart

15 if f(M) < fbest then
16 fbest ← f(M)
17 Mbest ←M

18 end

19 M ← random match for P
20 restarts← restarts+ 1

21 else

22 minbp← (number of residents) × (number of hospitals)
23 foreach blocking pair b in UBP do

24 M ′ ←M \ b
25 nbp← f(M ′)
26 if nbp < minbp then
27 bestbp ← b,minbp← nbp

28 end

29 M ←M \ bestbp
30 steps← steps+ 1

31 until (steps ≤ maxsteps) ∧ (restarts ≤ maxrestarts)
32 return Mbest

4. REDUCING NEIGHBORHOOD 13

4 Reducing neighborhood

If we consider pseudocode of Algorithm 1 we easly see that lines 23-28 are very
heavy in terms of computational time. We evaluate, for each element in UBP ,
the set of blocking pairs for a given matching, and we know this is at least
quadratic in the size of the problem [1]. Moreover the set UBP calculated in
line 7 could be very large and some of them may be useless, since their removal
would surely lead to new matchings that will not be chosen by the evaluation
function. Let's look an example to calrify this idea. If we consider a generic
preference list

ri : hi1 hi2 hi3 . . . hit−1 hit hit+1 . . . hir−2 hir−1 hir

with the highlighted term as blocking pairs for the current match M , it's
obvious that there is a strict order relation between blocking pairs involving
the same resident. This introduces a new de�nition

De�nition 3. A blocking pairs bp = (r, h) is said to dominate another blocking
pair (r, h′) from the resident point of view if r prefers h to h′. A similar
reasoning can be done from the hospital's point if view.

In the previous example (ri, hi2) dominates (ri, hit) and (ri, hir−1) from the
resident point of view. Directly from this case, we can deduce something
important for the pair (ri, hi2). It is not dominated by any other blocking pair
and we see that, if it is removed from the current matching, also pairs like
(ri, hit) and (ri, hir−1) turns out to be no more blocking. In this perspective
we provide the following de�nition.

De�nition 4. A resident undominated blocking pair (respectively, a hospital
undominated blocking pair) is a blocking pair such that there is no other
blocking pair that dominate it from the resident point of view (resp. hospital).
When the point of view is clear we will omit it

It is easy to see that, if we remove (r, h) which is an undominated blocking
pair from both resident and hospital point of view, there are no more blocking
pairs in which r and h are involved. This property would not be true if we
remove a dominated blocking pair. We would like to focus on the removal of
undominated blocking pairs to pass from one marriage to another, and this
because the number of blocking pairs to consider is drastically reduced.

In algorithm UB1, we �nd the undominated blocking pairs from the resi-
dent's point of view and, among these, we keep only the undominated blocking
pairs from the hospital's point of view. This is done using array upb which,

14 CHAPTER 3. A NEW LOCAL SEARCH ALGORITHM FOR HRT

Algorithm: UB1

Input: an HRT instance P with n number of residents and s number of
hospitals, a matching M

Output: a set BP of undominated blocking pairs

1 BP ← ∅
2 ubp← array of length s with indices h1, . . . , hs
3 foreach hi, i = 1 . . . s do
4 ubp[hi]← null
5 end

6 foreach rj, j = 1 . . . n do
7 found← false
8 foreach (hi in rj's preference list better than M(rj)) ∧ !(found) do
9 if (rj, hi) is a blocking pair then
10 if ubp[hi] = null or hi prefer rj to ubp[hi] then
11 ubp[hi]← rj
12 found← true

13 end

14 end

15 end

16 foreach hi, i = 1, . . . s do
17 if ubp[hi] 6= null then
18 BP ← BP ∪ {(ubp[hi], hi)}
19 end

20 return BP

4. REDUCING NEIGHBORHOOD 15

after lines 6-15, contains, for each hospital h, a resident r such that (r, h) is an
undominated blocking pair from both resident's point of view and hospital's
point of view, if it exists. At the end of algorithm UB1, the set BP of block-
ing pairs returned contains at most one undominated blocking pair for each
resident and hospital.

We modify our algorithm by using Algorithm UB1 to compute the block-
ing pair set UBP in line 7 of HRTLocal. Notice that, considering the set of
undominated blocking pairs instead of all blocking pairs, we limit the size of
the neighborhood, and, since each resident or each hospital is involved in at
most one of the undominated blocking pairs found by UB1, we have at most
n + s neighboring matchings to evaluate, where n is the number of residents
and s is the number of hospitals. Algorithm UB1 is developed following the
structure of the homonymous algorithm UB1 presented in [3] for SMTIs.

Let us now analyze more carefully the set of blocking pairs obtained by
procedure UB1. Consider the case in which a resident ri is in two blocking
pairs, say (ri, hj) and (ri, hk), and assume that (ri, hj) dominates (ri, hk) from
the resident's point of view. Then, let hj be in another blocking pair, say
(rz, hj), such that (rz, hj) dominates (ri, hj) from the hospital's point of view.
In this situation, UB1 returns (rz, hj). The elimination of this blocking pair
automatically eliminates (ri, hj) from the matching, since it is dominated by
(rz, hj); however, it does not eliminate the blocking pair (ri, hk). We would like
to obtain a new algorithm that will also return the blocking pair (ri, hk), so
to avoid having to consider it again in the subsequent step of the local search
algorithm. This is the rationale underlying Algorithm UB2 which adapts to
HRTs the algorithm UB2 for SMTIs, shown in [3].

Summarizing, we have de�ned two algorithms, HRTLocal with UB1, HRT-
Local with UB2, to �nd a stable matching for a given HRT instance. These
algorithms di�er only in the set of blocking pairs considered when de�ning
the neighborhood. Due to their ability to restart, our algorithms have the
PAC (probabilistically approximate complete) property [5]. That is, as their
runtime goes to in�nity, the probability that the algorithm does not return an
optimal solution goes to zero. Starting from the initial matching, the algorithm
performs one or more steps in which we remove a blocking pair. This sequence
of blocking pair removals has been shown to converge to a stable matching
with non-zero probability in the context of SMs with incomplete preference
lists [11].

16 CHAPTER 3. A NEW LOCAL SEARCH ALGORITHM FOR HRT

Algorithm: UB2

Input: an HRT problem P of n residents and s hospitals, a matching M
Output: a set BP of undominated blocking pairs

1 pos← array of length n with residents as indices
2 fnd← boolean array of length n with residents as indices
3 ubp← array of length s with hospitals as indices
4 R(mj,M(mj))← position of hospital M(mj) in mj's preference list
5 for j = 1 . . . n do
6 pos[rj]← 1, fnd[rj]← false
7 end

8 for i = 1 . . . s do
9 ubp[hj]← null
10 end

11 finished← false, BP ← ∅
12 while !finished do
13 foreach rj, j = 1 . . . n do
14 for i = pos[rj] to R(rj,M(rj)) and !fnd[rj] do
15 if (rj, hi) is a blocking pair then
16 if ubp[hi] = null or hi prefers rj to ubp[hi] then
17 if hi prefers rj to ubp[hi] then
18 fnd[ubp[rj]] = false
19 ubp[hi]← rj
20 fnd[rj]← true

21 end

22 pos[rj]← i+ 1

23 end

24 finished← true
25 foreach rj, j = 1 . . . n do
26 if !fnd[rj] and pos[j] ≤ R(rj,M(rj)) then
27 finished← false

28 end

29 end

30 foreach i = 1 to s do
31 if ubp[i] 6= null then
32 BP ← BP ∪ {(ubp[hi], hi)}
33 end

34 return BP

5. DIFFERENT EVALUATION FUNCTIONS 17

5 Di�erent evaluation functions

The operation to compute the number of blocking pairs in a given matching
is quite expensive. If P is an HRT instance with n residents and s hospitals,
we have to consider n× s combinations of pairs to be blocking pair and, given
the de�nition of blocking pair, for a resident preference list r∗ : h1 . . . h∗ hs
and M(r∗) = hs, in the worst case one have to scan all the s elements of the
preference list to discover that r∗ prefers h∗ to hs. Of course this last situation
depends on how one has implemented the preference list data structure, so this
comment it's not genereal and serves only to understand how complicated the
computation can be.

Let's focus on the operation that removes one blocking pair from a matching
to understand how many new blocking pairs may arise. So from matching M
we can buildM ′ =M\(r, h). If both r was single and h was undersubscribed in
M then in the new match there will be one less blocking pair for sure, because
there are no other pairs involved. Let's consider other cases separately:

• if h was full then it has to replace let's say r∗, the worst element that
was matched to it. In this case r∗ becomes single and like we see in r∗

preference list, from hit+1 to his there may be new blocking pairs.

r∗ : hi1hi2 . . . h = hit hit+1 . . . his−1his

Thus we can have only elements of type (r∗, hij) with j = t + 1 . . . s as
new blocking pairs involving r∗.

• at the same way h∗ is the old hospital matched to r and it now has
free places, so it may introduce new blocking pairs involving itself and
possible residents found in its preference list.

At the opposite side, we have r and h that were blocking in M and if we
consider for example r's preference list

r : hj1hj2 . . . h =M ′(r) . . . h∗ =M(r) . . . hjn−1hjn

where h have to come �rst in order respect to h∗, because of the blocking
pairs (r, h), we deduce that the number of blocking pairs involving r can only
decrease from M to M ′. The same results by considering h's preference list.

In conclusion, the only sources of new blocking pairs are those which can
involve r∗ and h∗ against elements found in theirs preference lists, because
these are the only elements which undergo a change of partner in the new

18 CHAPTER 3. A NEW LOCAL SEARCH ALGORITHM FOR HRT

match and because, with respect to r and h, the number of blocking pairs
involving them can only decrease.

In the context given by consideringM ′ =M \ (r, h) for (r, h) blocking pair,
h∗ =M(r) and r∗ as the worst element ∈M(h), we can de�ne new functions

fα(M
′) = number of blocking pairs considering (r, hr) and (rh, h)

fβ(M
′) = number of blocking pairs considering (r∗, hr∗) and (rh∗ , h

∗)

with r(·) and h(·) representing generic elements which belong to r's and h's
prederence lists. After all, with these new de�tions we can change the way we
select a new candidate solution and most importantly make a decision in O(λ)
where λ is the maximum lenght in preference lists.

Chapter 4

Experimental results

This chapter is devoted to present experimental results about how HRTLocal
performs on arti�cial situations. Since matching algorithms are primally used
in practice as large-scale centralized matching infrastructures and given that
stability is a required property for this schemes to be useful, the issue to obtain
the largest possible match is greatly important. This is the main foucus of
Section 4.1. In Section 4.2 we consider the temporal behaviour, and we learn
about how e�ciently HRT local approaches can perform.

1 Maximum match size

In generating HRT instances, a whole range of parameters and data charac-
teristics can be varied, including

− number of residents, hospitals and posts

− length of residents' preference lists

− way in which posts are distributed among hospitals

− variation in hospitals and residents popularity

− number, length and distribution of ties

Since the number of possible combinations of these parameters is huge, in what
follows we state a default instance which, as the discussion proceeds, we modify
in order to show how the variation of this key factors a�ect the performance
of our algorithms.

19

20 CHAPTER 4. EXPERIMENTAL RESULTS

We now give an insight of the procedure used to build arti�cial instances.
With a setting of 100 residents and 10 hospitals, we choose to assign 10 posts
each hospitals, in order to potentially match all residents and to guarantee
that all posts are uniformally distributed among hospitals. For each resident
we randomly select, with uniform distribution, a sequence of hospitals for a
lenght of npref (this, of course, have to be less then the number of hospitals).
For instance, if we are building the preference list of r and we select a random
hospital h then we add r to the preference list of h, this way the acceptance
between residents and hospitals is symmetric. Once we've considered all the
residents we shu�e all the hospitals' preference list so, in this manner, no
one resident is preferred over another. Then for setting ties we iterate over
each hospital's preference list as follows: for each resident in a preference
list, in position j ≥ 2, with probability ptie we set the preference for that
resident as the preference for the resident in position j − 1 (thus putting the
two in a tie). Note that we consider to allow indecision only for hospitals
side. With a tie probability of 0.5, we decided to run our HRTLocal with
maximumstep = 5000, maxrestarts = 10 and a probability of random walk of
0.2. For each instance, since we let the execution employing di�erent restarts
(that is maxrestarts), we sample the max value, min and average on that
instance, and we execute the computation on 100 instances for each value of
the parameter under analysis. At the end we calculate an arithmetic mean for
each value.

Now, we want to study the best value for npref . In Figure 4.1, where
it's plotted the match size when varying the number of preferences for each
resident, we see that for npref ≥ 6, HRTLocal almost always �nds a perfect
matching. Since we are considering the maximum match size problem we
have to set this parameter in such a way we can produce a sort of worst-case
analysis. Moreover, with this setting, we can also show another key factor for
this problem, tie probabilty. For what follows we decide npref = 2.

Figure 4.2 serves to show a further re�nement in the worst case analysis.
Here we vary the number of hospital, paying attention to calculate the number
of free posts in each hospital in order to potentially match almost all residents.
Thus

hcap =
100

nhos

where hcap is the hospital capacity and nhos the total number of hospitals.
hcap has to be an integer so, as an example, for nhos = 30 the operation yields
hcap = 3, and the total number of available posts is ncap×nhos = 90. This is
why we plot a normalized number of singles: that is the number obtained by
comparing the maximum number of resident that can be match for a given nhos

1. MAXIMUM MATCH SIZE 21

 88

 90

 92

 94

 96

 98

 100

 1 2 3 4 5 6 7 8 9 10

m
a
tc

h
 s

iz
e
 (

a
v
e
ra

g
e
)

of preferences in resident preference list

Figure 4.1: The matching size varying the length of the residents' preference
list

 0

 0.5

 1

 1.5

 2

 2.5

 3

 5 10 15 20 25 30 35 40

n
o
rm

a
liz

e
d
 n

u
m

b
e
r

o
f

si
n
g
le

s

of hospitals

Figure 4.2: Normalized number of singles varying the number of hospitals

22 CHAPTER 4. EXPERIMENTAL RESULTS

 70

 75

 80

 85

 90

 95

 100

 0 0.2 0.4 0.6 0.8 1

m
a
tc

h
 s

iz
e

p_tie

max
min

average

Figure 4.3: Uniform hospital popularity

value and the actual number of singles in the match, returned by HRTLocal
execution. Form the �gure we deduce that for nhos = 20, and hcap = 5, we
have the largest number of singles and so we keep this value as default for the
rest of the analysis.

At this point we have arranged the parameters for the maximum match size
problem and we can now test the presence of ties in our local search approach.
This is an important issue because, from the literature, we already know that
the key in obtaining a big match size is to �nd the proper way of breaking
ties [7] and since our approach doesn't care of how ties are broken, it's quite
interesting to see how it can resolve this hard problem. In fact our algorithm
only uses the de�nition of blocking pair.

In Figure 4.3 we can see that bigger ties probability provides bigger spread
around the average value, which is about 96, starting from a tie probability
of 0, where all the match sizes (max, min and average) overlap around the
same value, and ending with those values spaced around the average. As the
tie probability increases the max value is barely two resident more than the
average, so it doesn't vary so much. The same reasoning for skewed hospital
probability in Figure 4.4. We modi�ed the way in which we generate the in-
stance, precisely, when each resident has to choose some hospitals, the random
choice for the most popular hospital is �ve times more popular then the less
one, and the distribution is approximately linear between this two extremes.
In this new setting we see the mean value (this time around 89) decreses but

1. MAXIMUM MATCH SIZE 23

 70

 75

 80

 85

 90

 95

 100

 0 0.2 0.4 0.6 0.8 1

m
a
tc

h
 s

iz
e

p_tie

max
min

average

Figure 4.4: Skewed hospital popularity

the progress is the same as above.
In these experiments we sampled, and then reported, all values (like max,

min and average), among di�erent restarts. We see that as the max doesn't
increase a lot, also the min value doesn't loose too much residents. This is
signi�cant because it suggests that if one is not interested in obtained the
most largest match size, however, he is capable of running the algorithm for
few restarts and yet obtaining a good solutions in terms of the size of the
returned matching and time needed to �nd it. We will consider in Section
4.2, about time analysis, that this is good because a solution, even for big
instances, can be obtained in few seconds.

In following table we consider a comparison between HRTLocal and another
heuristic-based approach found in literature [6]. This method is very intelligent
in the way it breaks ties and it is considered ad hoc for this kind of problems.

Uniform hos. pop.

Algo Max Min Ave

IM 999.6 993.0 994.9

HRTLocal 994.6 991.5 993.8

Skewed hos. pop.

Max Min Ave

975.2 971.8 973.5

965.8 961.2 963.6

Instances of this type are generated with 1000 residents, 100 hospitals, 1000
posts and residents' preference list of lenght 5. Under a tie probability of 0.5 we

24 CHAPTER 4. EXPERIMENTAL RESULTS

 95

 95.5

 96

 96.5

 97

 97.5

 98

 1 2 3 4 5 6 7 8 9 10

m
a
x
 m

a
tc

h
 s

iz
e

of permitted restarts

tie prob. = 0.3
tie prob. = 0.5
tie prob. = 0.7
tie prob. = 0.9

Figure 4.5: Max match size varying the number of permitted restarts

let hospitals either to be uniformly popular or to exhibit a skewed popularity,
with the most popular hospital attracting 5 times the number of applicants
as the least popular. We see that what is a little better behaviour, under
uniform popularity, becomes quite considerable under skewed conditions. This
shows how much an implementation, which considers as primary logic advanced
method of tie-breaking, can beat our local search approach, which does not
inspect into how ties are involved.

Let's consider Figure 4.5 where we have plotted the maximum match ob-
tained when varying the number of restarts permitted, that's maxrestarts. As
usual, we average samples on 100 instances for a given parameter value and we
let maxrestarts varying from 1 to 10 (more than this doesn't show interesting
results). In addition, we consider this experiment under di�erent tie probabili-
ties, low as 0.3 and very high. We see that, even if the idea for which the more
restarts permitted, the more the probability to get a great max match is right,
the gradient of such variation is really smooth and we deduce that the random
match upon which the computation is started is quite irrelevant. HRTLocal
needs an handful of restarts to reach a max match size as big as it can. That's
why we can set the number of allowed restarts to values even around 10 and
have a good probability to obtain a big max match size.

To summarize, we used the �rst part of this section to �nd the parameters
of arti�cial instances generation by which the algorithm give the lower max
size match. Thus, we considered a sort of worst case analysis and we saw that

2. TEMPORAL ANALYSIS 25

 0

 2

 4

 6

 8

 10

 12

 14

 16

 100 200 300 400 500 600 700 800 900 1000

ti
m

e
(s

)

of residents

f1
f2
f3

Figure 4.6: Temporal execution on di�erent problem sizes

HRTLocal can match a good number of residents, even under these conditions.
When we compared our algorithm to ad-hoc and powerful tie breaking strate-
gies, we discovered that it has di�culties on very speci�c instances. We also
noticed that the number of restarts does not a�ect too much the maximum
size match returned by HRTLocal.

2 Temporal analysis

In this section we study the temporal behaviour of HRTLocal. As we did in
Section 4.1 for the maximum match size problem, here, we consider di�erent
parameters and how our algorithm performs on them. In particular from
Section 3.5 we test all the evaluation functions we have de�ned.

f1(M ′) = fα(M
′)+ | SM ′ |

f2(M ′) = fβ(M
′)+ | SM ′ |

f3(M ′) =| SM ′ |

In our code these functions are used to choose the matching that represents
the best canditate solution. Figure 4.6 shows an experiment where we let
the number of residents varying from 100 to 1000. For each resident size we

26 CHAPTER 4. EXPERIMENTAL RESULTS

 500

 550

 600

 650

 700

 750

 800

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ti
m

e
 (

m
s)

p_random_walk

Figure 4.7: Time versus random walk probability

calculate the number of hospitals to be present in that instance using

hcap =
number of residents

nhos
= 10

thus keeping capacities constant. We also set npref = 5, the number of prefer-
ence a resident can express. Since we are considering the temporal execution,
we �x maxrestarts = 1 and we average on 10 instances for each set of param-
eters. We note that the behaviour is quadratic and this happen because of the
computation of the neighborhood in line 7 of HRTLocal. Also, f3 is the best
one, in fact we have used it in all previous experiments.

In Figure 4.7 we show that, increasing the random walk probability param-
eter p, we speed the execution and this is possible because we spend no time
choosing the proper neighboring. We do this in order to prevent stagnation in
local minimums for the evaluation function.

Section 3.4 gives foundation for two di�erent methods which compute the
set of undominated blocking pairs, that's UB1 and UB2. In Figure 4.8 there
is a comparison, which shows that UB1, the simpler, is nearly faster (we have
used UB1 in all previous experiments). In fact, UB2 returns a set which, in
theory, would save computation time because it prevents to reconsider the
same blocking pair twice. Maybe, real bene�ts of such logic can be seen in
larger instances than those we have considered in our experiments.

2. TEMPORAL ANALYSIS 27

 0

 2

 4

 6

 8

 10

 12

 14

 100 200 300 400 500 600 700 800 900 1000

UB1
UB2

Figure 4.8: Comparison between UB1 and UB2

We conclude this chapter noting that our algorithm is e�ective. Indeed, it
computes a stable matching for instances of size 1000 in ten seconds, and it
returns a match size which is at least comparable with powerful adhoc strate-
gies.

28 CHAPTER 4. EXPERIMENTAL RESULTS

Chapter 5

Conclusions and future work

We have studied the HRT problem due to its important practical applica-
tions. We have discovered that it comes as a generalization of a mathematical
model to matching two generic sets and, in respect to the classic one, which
is polynomial, it introduces computational complexity because of the presence
of a certain degree of imprecision and incompleteness. We have de�ned a local
search algorithm for �nding the largest stable matchings and we have evaluated
it on large instances. It turns out that it behaves similarly to ad hoc methods
when each hospital has the same popularity. In fact, for certain con�gura-
tions our algorithm always succeeds in matching all residents involved, but for
instances where hospitals exhibit a skewed popularty, it loses performance.

A possible future work direction is to develop a more speci�c algorithm.
For example it would be worth to increase the awareness in tie-breaking, since
it has been proven to be a key factor[7], and our method is completely indipen-
dent of how ties are considered. Another direction is to specialize our local
search approach to speci�c input, for example to handle instances where some
hospitals are more popular than others, and that occurs often in real scenarios.
This could be done by de�ning in more sophisticated way the neighborhood
and the evaluation function.

29

Bibliography

[1] D. Gale and L.S. Shapley. College admissions and the stability of marriage.
Amer. Math. Monthly. 69:9-14. 1962.

[2] M. Gelain, M.S. Pini, F. Rossi, K.B. Venable, T. Walsh. Local Search Ap-
proaches in Stable Matching Problems. Algorithm 6(4). 591-617. 2013

[3] M. Gelain. Reasoning with incomplete and imprecise preferences. PhD the-
sis. Universita' di Padova e Universita' di Bologna. 2010.

[4] D. Gus�eld and R.W. Irving. The Stable Marriage Problem: Structure and
Algorithms. MIT Press, Boston, Mass., 1989

[5] H. Hoos. On the runtime behaviour of stochastic local search algorithms for
SAT. In Proc. AAAI'99, 661-666. 1999.

[6] R. Irving, D. Manlove. Finding large stable matchings. ACM Journal of
Experimental Algorithmics 14, 2009.

[7] D. Manlove. The structure of stable marriage with indi�erence. Discrete
Applied Mathematics. 122(1-3):167-181. 2002.

[8] D. Manlove. Algorithmics of Matching Under Preferences. World Scienti�c
Publishing, 2013.

[9] G. O'Malley. Algorithmic aspects of stable matching problems. PhD thesis.
University of Glasgow.

[10] F. Rossi, P. Van Beek, T. Walsh, editors. Handbook of Constraint Pro-
gramming. Elsevier. 2006.

[11] Alvin E. Roth and John H. Vande Vate. Random paths to stability in
two-sided matching. Econometrica, 58(6):1475-1480. 1990.

31

	1 Introduction
	2 Background
	1 Stable matching problems
	2 Hospital-residents problem

	3 A new local search algorithm for HRT
	1 General scheme
	2 Definitions
	3 Local search algorithm for HRT
	4 Reducing neighborhood
	5 Different evaluation functions

	4 Experimental results
	1 Maximum match size
	2 Temporal analysis

	5 Conclusions and future work
	Bibliography

