
UNIVERSITÀ DEGLI STUDI DI PADOVA
DIPARTIMENTO DI MATEMATICA TULLIO LEVI-CIVITA

Bachelor’s degree in mathematics

The Adjoint Functor Theorem and some applications

Supervisor: Riccardo Colpi

Student: Francesco Tognetti
Student ID: 1189669

23/06/2022
Academic Year 2021/22

Contents

Introduction ii

Abstract iv

1 Categories, functors and natural transformations 1
1.1 Categories . 2
1.2 Duality . 4
1.3 Functors . 7
1.4 Naturality and equivalence . 10
1.5 Diagrams . 13

1.5.1 Initial, Terminal objects, Examples 14
1.6 Extra: the 2-category of categories . 15

2 Universal properties, representability, the Yoneda lemma 19
2.1 Representable functors . 19
2.2 The Yoneda lemma . 20
2.3 Universal properties and universal elements 23
2.4 The category of elements . 24

3 Limits and Colimits 26
3.1 Limits and colimits as universal cones . 27
3.2 Limits in Set . 28

3.2.1 Products, Terminal Objects, Pullbacks and Equalizers in Set 30
3.3 Preservation, Reflection and Creation of limits 31

4 Adjoint functors and the Adjoint functor theorem 33
4.1 Adjunctions and adjoint functors . 34
4.2 Unit and Counit . 35

i

4.3 Adjunctions, limits and colimits . 39
4.4 The Adjoint functor theorem . 41
4.5 The Special Adjoint Functor Theorem . 44

5 Applications of the Adjoint functor theorem 47
5.1 In Geometry and Topos Theory . 47

5.1.1 Topoi . 47
5.1.2 Sheaves and Sites . 49
5.1.3 Adjoint Functor Theorem for Grothendieck Topoi 50

5.2 In Module Theory . 53
5.2.1 Abelian categories . 53
5.2.2 Modules over a Ring . 55
5.2.3 AFT in module categories . 56

5.3 In Topological Algebra . 58
5.3.1 Monads and Beck’s theorem . 58
5.3.2 Algebraic categories . 59
5.3.3 Compact Hausdorff spaces . 59

Bibliography 61

Introduction

We’re no strangers to the need for a weaker definition of equivalence between mathe-
matical objects. For example, when we define a retraction by deformation between two
topological spaces, we do not require the two to be isomorphic (homeomorphic), we just
need them to be "equivalent enough", that being, to have the same fundamental group;
that is done through a pair of morphisms that are not exactly the inverse of one another.
We love this kind of definitions because they’re usually pretty easy to find and give a
simpler description of otherwise hard to check "something-preserving-property".

Our Goal for this script is, in fact, to introduce the Adjoint functor theorem and some of its
applications in mathematics: this theorem characterizes adjunctions (sort-of-equivalences
between categories) in terms of continuity.

In applying this theorem in its "if and only if" form there is no privileged hypothesis and
thesis, we use continuity to prove the presence of adjunctions and we use the presence of
adjunctions to prove continuity.

As you probably already know, the rules aren’t simple and require us to abandon our
usual perspective using groups, rings, fields and so on, giving up the strong base that is
set theory and the understanding of objects as "sets with properties" as we usually do.
I’ll explain in as much detail as I can but a full understanding of the topic is too big of a
commitment for a mere bachelor’s thesis and too costly in terms of time, space and effort.

My approach to the drafting of this thesis is meant to be Top-down-inside-bottom-up,
meaning the succession of chapters and sections follows a bottom-up scheme, going from
the basics to the more advanced topics while the explaining inside the sections tries to
be top-down, following the flow of discovery and disassembling what we see to better
explain how definitions and hypotheses came to be as they are.

What I’m thinking of is a brief recap of the base stuff,meaning Categories, Functors, natural

ii

Introduction

transformations and how to interpret usual set-theoretical concepts in the language of
categories, both with categorization (e.g. groups as 1-object groupoids) and through
contextualization (e.g. groups as objects in the category of groups).

We’ll then spend a chapter on Yoneda’s lemma, one of the most important results of the
whole subject. So important in fact that it’s used to define a lot of the language that will
follow, for example we will define limits as initial objects in an element category, a concept
that arises from the lemma itself.

We’ll learn about limits, what they mean and how they are used to build new objects with
useful properties, like products and equalizers.

Finishing with a chapter about adjunctions and the adjoint functor theorem, a theorem
giving us a bridge between the continuity of functors and adjunctions.

Up to this point I’ve been following E. Riehl’s approach to the subject (in fact my main
source is [Rie16]). Not every step of the ladder is strictly necessary to reach the top but I
beliveve they build the necessary understanding to handle the concepts more fluently.

In the last chapter I will explore some first-level applications of the adjoint functor theo-
rem, two being similar theorem regarding -in order- the relationship between continuous
and adjoint functors between Grothendieck Topoi and the relationship between exact and
cocontinuous functors between module categories. The last application characterizes the
algebraicness of compact hausdorff spaces.

Side Note: While writing I was worried you readers wouldn’t get behind this style, since
my lexic tends to be less formal than what’s normally used, but I ultimately decided to
leave it like this: I enjoy both reading and writing as informal as possible (doesn’t hurt that
it feels less like copying from my main source or any other). I don’t know if I should have
focused on putting down information in a plainer way, but if we ask Guy de maupassant,
"[...]Black words on a white page are the soul laid bare". I’ll interpret his "are" as "should
be".

Side Note 2: I’m writing in english for a couple of reasons: first being that category
theory’s translations are not always unified and most of the documentation I’m using is
in english, second I just think some of the translation are bad. Some are funny, though.

I wanna tell you how bad these get, I can’t help the way I’m feeling about them. If I gotta
make you hear one: the actual translation for "flabby sheaf" is "fascio flaccido", translated
back "flaccid fascist".

We are not going to talk about nor I fully understand flabby sheaves but come on, you get
the point.

iii

Abstract

The first four chapters are dedicated to building some basic category theory language and
notation:

In chapter 1 we define categories, functors and natural transformations, how they interact
and (as a little treat) how they assemble into a 2-category.

In chapter 2 we explore the Yoneda lemma, the representability of functors and what
derives from them: category of elements, yoneda embeddings, presheaves and universal
elements.

In chapter 3 we take a look at limits and colimits and how they define objects we already
know from a categorial standpoint. We also look at how functors interact with limits and
define Continuous functors (functors that preserve limits)

In chapter 4 we talk about Adjoint functors, adjunctions and the two flavors of adjoint
functor theorems giving us a "a functor is right adjoint if and only if it’s continuous"
under some conditions: the first (Freyd’s) being more general but with a difficult-to-check
condition, the second one (Special) more restrictive but very straight-forward.

In the fifth and last chapter we explore three applications to said Adjoint functor theo-
rem(s):

In Topos Theory we apply the adjoint functor theorem to a statement parallel to the SAFT
but regarding Grothendieck topoi (a kind of topoi that arise from algebraic geometry),
showing that any Grothendieck Topoi actually satisfies the conditions of the SAFT.

In Module Theory we apply the dual SAFT to prove a theorem about exactness and conti-
nuity in functors between R-Modules, again proving that any R-Module category satisfies
the conditions of the SAFT

iv

Abstract

Lastly, in Topological Algebra we have our first non-strictly-categorial application in which
we show that the category of compact Hausdorff algebras KHaus−A is algebraic (actually
monadic) by applying the AFT to find the monad that acts like the Free-Forgetful pair
over the category KHaus−A

v

CHAPTER 1

Categories, functors and natural transformations

As stated in the introduction, the concepts we will use are the ones of category theory.
Category theory has been described as the view of Mathematics through context instead
of content: when we want to define a new object in category theory we usually describe
the way the object interacts with others.

For an easy example when we define an equalizer using sets we write:

Given f, g ∶ A⇉ B,
A ⊇ eq(f, g) ∶= {a ∈ A ∶ f(a) = g(a)}

whereas in category theory an equalizer is

X

eq(f, g) A B
f

g

e

intuitively, the biggest object that satisfies fe = ge where e is the inclusion eq(f, g) ↪ a
(We’ll get to a more precise definition in a couple of chapters)

The latter might not be as immediate as the former but you might notice that not once
an element of the set was called, meaning that potentially we can describe objects that
aren’t sets and the definition would work just as well.

1

1 Categories, functors and natural transformations

1.1 Categories

The main objects of category theory are, unsurprisingly, categories. Let’s define them:

Definition 1.1.1 (Category).
A category C consists of a collection of objects x, y, z, ... denoted ob(C) and a collection of
morphisms (also called maps or arrows) f, g, h, ... denoted mor(C) so that:

1. Each morphism has specified domain and codomain objects:
∀f ∈mor(C) ∃x, y ∈ ob(C) ∣ f ∶ x→ y,

2. Each object has an identity morphism:
∀x ∈ ob(C) ∃1x ∶ x→ x ∈mor(C),

3. It’s closed under composition of morphisms:
∀f ∶ x→ y, g ∶ y → z ∃ gf ∶ x→ z,

4. Identities are actual identities:
∀f ∶ x→ y 1yf = f1x = f ,

5. Composition of morphisms is associative:
∀f ∶ x→ y, g ∶ y → z, h ∶ z → w ∈mor(C) h(gf) = (hg)f =∶ hgf .

In this definition objects are given more importance than they actually have: in reality
we could define a category without even talking about objects at all and using identity-
morphisms instead.

It is more practical, though, to have objects in hand but the main focus of every definition,
theorem, and so on will be how the arrows interact with each other.

We’ll distinguish between concrete and abstract categories:

Definition 1.1.2 (Concrete and Abstract categories).
We call a category concrete if its objects have an underlying set and some structure and its
morphisms are maps preserving that structure (I’ll wait to give a more rigorous definition
until we talk about functors).

An abstract category is a category that isn’t concrete.

Some examples will be useful:

Example 1.1.3 (Concrete categories).

• Set where objects are sets and morphisms are functions,

• Grp where objects are Groups and morphisms are Group homomorphisms,

• Top where objects are topological spaces and morphisms are continuous maps.

Example 1.1.4 (Abstract categories).

• Htpy where objects are again topological spaces but morphisms are the homotopy
classes of continuous maps,

2

1 Categories, functors and natural transformations

• Every group G defines a category BG with one object and an isomorphism for each item
in the group,

• MatR (where R is a unital ring) where objects are natural numbers and morphisms
n→m are R-valued m × n matrices.

We also need to distinguish between sizes of categories: the forementioned BG for any
finite group G is quite a lot smaller than Top for example.

Definition 1.1.5 (Small categories).
We’ll say that a category is small if it only has a set’s worth of morphisms.

Note. This means it also has only a set’s worth of objects:

ob(C) ≃ {identity-morphisms} ⊆mor(C).

Another definition that will be quite useful is local smallness:

Definition 1.1.6 (Locally small categories).
A category is locally small if for each pair of objects x, y ∈ ob(C) there’s only a set’s worth
of morphisms x→ y.

We’ll call that set Hom(x, y) or, more often C(x, y).

It’s quite trivial to show that every small category is locally small but not every locally
small category is small: C(x, y) ⊆mor(C) ∀x, y shows that SmallÔ⇒ Locally small.

A counterexample we pick Set, a locally small category (the set of functions x → y is a
set) that isn’t small (Russell’s "paradox" tells us that ob(Set) is too big to be a set).

Since we’ll work a lot with morphisms let’s define some types:

Definition 1.1.7 (Mono,Epi and Isomorphisms).

• A Monomorphism in C is a morphism f ∶ x→ ys.t.
∀h, k ∶ z ⇉ xfh = fk Ô⇒ h = k alternative notations are mono (for short) or in
adjectival form "monic";

• An Epimorphism in C is a morphism f ∶ x→ y s.t.
∀h, k ∶ y ⇉ z hf = kf Ô⇒ h = k alternative notations are epi (for short) or in
adjectival form "epic";

• A Split Monomorphism in C is a morphism f ∶ x→ y s.t. ∃ g ∶ y → x ∣ gf = 1x.

• A Split Epimorphism in C is a morphism f ∶ x→ y s.t. ∃ g ∶ y → x ∣ fg = 1y;

• An Isomorphism in C is a morphism f ∶ x→ y s.t. ∃ g ∶ y → x ∣ fg = 1x , gf = 1y.

We can show that:

Theorem 1.1.8.

• Every Split mono is monic;

3

1 Categories, functors and natural transformations

• Every Split epi is epic;

• Every morphism that is a both split mono and epic is an isomorphism;

• Every morphism that is both a split epi and monic is an isomorphism.

We’ll posticipate the proof to this fact to the moment we introduce the opposite category,
effectively cutting in half the work we need to do.

Let’s give a couple of definitions:

Definition 1.1.9 (Subcategory).
Given a category C a subcategory D ≤ C is defined by choosing a subcollection of objects and
morphisms in C so that they form a category.

For example the maximal groupoid of a category is always a subcategory:

Definition 1.1.10 (Groupoids, Maximal Groupoid).
A groupoid is a category where every morphism is an isomorphism.

The Maximal Groupoid of a category C is the subcategory of C where the only morphisms
are C’s isomorphisms.

Note. We need to prove that the maximal groupoid is actually a subcategory: let’s call M the
maximal groupoid of C.

Then

• Each morphism has specified domain and codomain:

it does since ob(M)=ob(C) and mor(M)⊆mor(C);

• Each object has an identity morphism:

1x is an isomorphism ∀x since 1x1x = 1x, meaning it is its own left and right inverse;

• It’s closed under composition:

if f and g are composable isomorphism with inverses f−1 and g−1 then (gf)(f−1g−1) =
g(ff−1)g−1 = g1yg−1 = gg−1 = 1z meaning gf is too an isomorphism;

• Identities work as identities:

this is given from being inside C;

• Composition is associative:

again as an heredity from C.

1.2 Duality

The concept of duality is nothing new to us: dual vector spaces, dual graphs, dual projective
spaces and so on: mathematical objects like to be found in pairs.

4

1 Categories, functors and natural transformations

Categories are no different: For each category C exists a dual category Cop with opposite
properties.

Definition 1.2.1 (Dual Category).
Let C be a category. The opposite (or dual) category Cop of C is made of

• ob(Cop)=ob(C),

• A morphism fop ∶ y → x for each f ∶ x→ y.

We can give it a category structure by using 1ops as identities and by defining composition as
fopgop = (gf)op.

Intuitively, Cop is C but with arrows pointing the opposite direction.

Let’s put our duality principle in practice by proving Theorem 1.1.8

Proof of Theorem 1.1.8.
Let’s first see that we can use duality, i.e. that every (split) mono in C is (split) epi in Cop

(and vice versa):

x y z x y z

x y x x y x

h

k f

fh

fk

fophop

kop

hopfop

kopfop

f g fop gop

gf=1x fopgop=1opx

The four represent a monomorphism, an epimorphism, a split monomorphism and a split
epimorphism. I believe the "arrow-flipping duality" between the left and right pairs is
pretty clear.

We just need to prove that every split mono is mono and that mono + split epi yields an
isomorphism, the other two points will follow from duality:

split mono Ô⇒ mono:

f split mono Ô⇒ ∃ g ∶ gf = 1X so fh = fk Ô⇒ gfh = gfk Ô⇒ 1Xh = 1Xk Ô⇒ h = k.

mono + split epi Ô⇒ iso:

To prove this we find useful to prove

• If f ∶ x→ y and g ∶ y → z are mono then gf ∶ x→ z too is monic,

• If f ∶ x→ y and g ∶ y → z are morphism so that gf ∶ x→ z is monic then f is monic;

and dually

• If f ∶ x→ y and g ∶ y → z are epi then gf ∶ x→ z too is epic,

5

1 Categories, functors and natural transformations

• If f ∶ x→ y and g ∶ y → z are morphism so that gf ∶ x→ z is epic then g is epic;

as usual we’ll prove just the first one and argue that the second one also holds by duality

Proof.

• gfh = gfk Ô⇒ g(fh) = g(fk) Ô⇒ fh = fk Ô⇒ h = k,

• gfh = gfk Ô⇒ h = k:

If f wasn’t monic then ∃h, k ∶ fh = fk but h ≠ k. that means gfh = gfk but h ≠ k,
contraddicting the first statement.

Now we know that fg = 1y, we need to prove that gf = 1x too f is mono so g is unique,

x y

x

f

1X
g 1x is an isomorphism, in particular an epimorphism,meaning that (using

the fact we just proved) g is epic.

(gf)g = g(fg) = g1y = g = 1xg Ô⇒ gf = 1x .

We’ll prove the last lemma before moving on:

Lemma 1.2.2.
TFAE:

1. f ∶ x→ y is an isomorphism in C.

2. ∀ c ∈ C

f∗ ∶ C(c, x)→ C(c, y)
g ↦ fg

is a bijection.

3. ∀ c ∈ C

f∗ ∶ C(y, c)→ C(x, c)
g ↦ gf

is a bijection.

Proof. 1 ⇐⇒ 2 ∶

1 Ô⇒ 2 ∶ f bijection Ô⇒ ∃ g ∶ y → x s.t. gf = 1x, fg = 1y. That means that we can
define a map g∗ ∶ C(c, y)→ C(c, x).

6

1 Categories, functors and natural transformations

g∗f∗ ∶ C(c, x) → C(c, x) sends h ↦ gfh = h Ô⇒ g∗f∗ = 1C(c,x) and f∗g∗ ∶ C(c, y) →
C(c, y) sends h↦ fgh = h Ô⇒ f∗g∗ = 1C(c,y).

2 Ô⇒ 1 ∶ f∗ bijection Ô⇒ ∃ g ∈ C(y, x) s.t. f∗ ∶ C(y, x)→ C(y, y) maps g ↦ 1y. Now by
associativity, the elements gfand 1x have the same image under f∗ ∶ C(x,x) → C(x, y)
meaning gf = 1x.

2 ⇐⇒ 3 ∶ fop∗ ∶ Cop(c, y) → Cop(c, x)is an isomorphism∀c ∈ Cop ⇐⇒ f∗ ∶ C(y, c) →
C(x, c) is an isomorphism ∀c ∈ C.

The last steps follow trivially from duality.

1.3 Functors

What we had in the last lemma was a strong relation between a (locally small) category
and its Hom-sets. There are other cases of this strong relations between categories: the
duality C ≃ Cop, the embedding Ab↪Grp and many more.

How do we encode this morphisms between categories?

Definition 1.3.1 (Functors).
Given two categories C, D, a functor F ∶ C →D is a map with the following properties:

1. Moves objects:
∃ an object Fc ∈D ∀c ∈ C;

2. Moves morphisms:
∃ a morphism Ff ∶ Fc→ Fc′ ∈D ∀ f ∶ c→ c′ ∈ C;

3. Mantains composition:
Fg ⋅ Ff = F (g ⋅ f)∀ f, g ∈ C;

4. Mantains identities:
F (1c) = 1Fc∀ c ∈ C.

We call this type of Functors "Covariant" to distinguish them from contravariant ones:

Definition 1.3.2 (Contravariant Functors).
A contravariant functor F ∶ C →D is a (covariant) functor F ∶ Cop →D

We’ll think of a covariant functor as "maintaining morphisms in the right direction" and a
contravariant functor as "flipping morphisms". Showing it in a simple diagram:

c Fc

c′ Fc′

F

f Ff

F

(a) Covariant functor

c Fc

c′ Fc′

F

f

F

Ff

(b) Contravariant functor

7

1 Categories, functors and natural transformations

Functors are morphisms between categories, and they behave as such:

Lemma 1.3.3 (Functors preserve isomorphisms).
Let A,B be categories and F ∶ A → B a functor, then if f ∈ mor(A) is an isomorphism,
Ff ∈mor(B) is too an isomorphism.

Proof.
If f is an isomorphism with inverse g we have that

F (g)F (f) = F (gf) = F (1x) = 1Fx Ô⇒ Fg is a left inverse of Ff exchanging the role of
f and g shows that it also is a right inverse.

We’ve seen the functor C(c,_) before (even though we didn’t properly call it a functor).

Lemma 1.3.4 (Pair of functors represented by an object).
Given a locally small category C we can define a pair of functors

C(c,_) ∶ C → Set (covariant) and
C(_, c) ∶ Cop → Set (contravariant) acting like we’ve seen in Lemma 1.2.2.

Proof.
We need to prove that this is actually a functor:

1. Moves objects:

C is locally small Ô⇒ C(c, x) ∈ Set∀x ∈ C;

2. Moves Morphisms:

C(c, f) = f∗ is a morphism between sets ∀ f ∈ C;

3. Mantains composition:

f∗g∗ = (fg)∗ (already proven);

4. Mantains identity:

1∗
c = 1;

and dually for the other functor.

A nicer way to encode the same information is through a bifunctor, i.e. a functor of two
variables. To define that, though, we first need to define the product category:

Definition 1.3.5 (Product category).
Let C andD be categories, the product category C ×D is a category whose objects are pairs
(c, d) ∶ c ∈ C , d ∈D and whose morphisms are pairs (f, g) ∶ f ∈ C , g ∈D simple like that.

8

1 Categories, functors and natural transformations

Using this new definition we can encode the information in C(c,) and C(,C) into a two-
sided represented functor

C(_,_) ∶ C ×Cop → Set
(x, y)↦ C(x, y) g

(f,h) ↓ ↦↓(f∗,h∗) ↧
(z,w)↦ C(z,w) hgf

From two functors F ∶ A → C and G ∶ B → C we can create what’s called a Comma
category:

Definition 1.3.6 (Comma category).
The Comma category F ↓ G is the category whose objects are triplets (x, y, f) assembled as

Fx Gy
f

and whose morphisms are pairs (h,k) so that

Fx Gy

Fx′ Gy′

f

f ′

Fh Gk

commutes.

F ↓ G is indeed a category, since

• (By definition) every morphism has domain and codomain;

• Composition is respected (because F and G are functors);

• Has identity-morphisms (the couples (1x,1y));

• Associativity is respected (because F and G are functors).

We defined categories as objects and morphisms; we now have categories and morphisms
between categories, it’s natural to ask ourselves: "does the category of all categories exist?"

Definition 1.3.7 (Cat and CAT).
We’d like to define the category of categories but we are limited by the logical constraint that
no object should contain itself (Russell, again).

Cat is the category whose objects are small categories and whose morphisms are functors,

CAT is the category whose objects are locally small categories and whose morphisms are
functors.

Note that Cat is locally small but not small, and CAT is not locally small, meaning the
constraints we put are well placed.

9

1 Categories, functors and natural transformations

Definition 1.3.8 (Some classes of functors).
Given two locally small categories C,D, a functor F ∶ C →D is:

• Faithful if C(x, y)→D(Fx,Fy) is injective ∀x, y ∈ ob(C),

• Full if C(x, y)→D(Fx,Fy) is surjective ∀x, y ∈ ob(C),

• Essentially surjective on objects if ∀d ∈D∃ c ∈ C ∶ d ≃ Fc,

• Fully faithful if it’s full and faithful,

• An embedding if it’s faithful and injective on objects,

• A full embedding if it’s full and an embedding.

We’ll see a couple of important embeddings in the next chapter.

1.4 Naturality and equivalence

We can talk about transformation between functors too:

Definition 1.4.1 (Natural transformations).
Given a pair of functors F,G ∶ C ⇉D a natural transformation α ∶ F ⇒ G consists of an
arrow αc ∶ Fc→ Gc for each object c ∈ C so that

Fc Gc

Fc′ Gc′

αc

Ff Gf

αc′

commutes.

A natural isomorphism is a natural transformation where every αc is an isomorphism.

We’ll also draw natural transformations with naturality diagrams

C D

G

F

α

when we need to emphasize that its "morphism between functors"’ nature.

Natural transformations are useful for various reasons, one of them is defining equiva-
lences: in the entirety of mathematics we use isomorphisms as "pretty much identities",
like if two groups are isomorphic we treat them as the same group.

We use naturality to give a similar, rigorous understanding of isomorphism between
categories.

10

1 Categories, functors and natural transformations

Definition 1.4.2 (Equivalences between categories).
A natural equivalence between two categories C and D is a pair of functors F ∶ C ⇄D ∶ G
equipped with two natural isomorphisms ϵ ∶ FG⇒ 1D and η ∶ 1C ⇒ GF .

If two categories possess this pair of functors and naturals they are called equivalent and we
write C ≃D.

As a diagram
D C

D C

F

G

G

GF

FG

1D

1C

ϵ

η

Of course

Lemma 1.4.3.
Natural equivalence is an equivalence relation.

Proof.

• C ≃ C: trivially using the identity for both functors and the identity for both the
naturals,

• C ≃D Ô⇒ D ≃ C: trivially by exchanging the role of F and G,

• C ≃D,D ≃ E Ô⇒ C ≃ E:

let’s call F,G, η, ϵ the equivalence C ≃ D and F ′,G′, η′, ϵ′ the equivalence D ≃
E. The two functors that we are looking for our equivalence are F ′F and GG′

C D E
F

G

F ′

G′
now F ′FGG′x ≃η F ′G′x ≃η′ 1Ex ∀x

and GG′F ′Fx ≃ϵ′ GFx ≃ϵ 1Cx ∀x.

We have an easier way to characterize a cat equivalence:

Theorem 1.4.4 (Characterization of an equivalence functor).
Any functor defining an equivalence is faithful, full and essentially surjective on objects.

Moreover, (assuming the axiom of choice) any functor with said properties defines an equiva-
lence between categories.

Proof.
Suppose F,G, η, ϵ are the two couples of functors and naturals that realize the equivalence
as per the definition:

11

1 Categories, functors and natural transformations

∀d ∈D the component ηd ∶ FGd ≃ d demonstrates that F is essentially surjective. consider
f, g ∶ c⇉ c′ in C. Ff = Fg Ô⇒

c GFc

c′ GFc′

ϵc
≃

f or g GFf=GFg

ϵc′

≃

commutes, expressing that the naturality of ϵ commutes.

using that ϵ is a natural isomorphism ∃! c→ c′ with this property, whence f = g.

This means F is faithful, and by simmetry so is G. Similarly

c GFc

c′ GFc′

ϵc
≃

h Gk orGFh

ϵc′

≃

by the naturality of ϵ we have that GFh = Gk Ô⇒ Fh = k (G is faithful) Ô⇒ F faithful
and essentially surjective.

For the converse suppose F ∶ C →D is full, faithful and essentially surjective on objects.
Using essential surjectivity and the axiom of choice ∀d ∈ D we can choose an object
Gd ∈ C and an isomorphism ηd ∶ FGd ≃ d. ∀ l ∶ d→ d′. We have an unique morphism

FGd d

FGd′ d′

ηd
≃

l

ηd′≃

since F is fully faithful ∃!Gd→ Gd′ with this image under F , which we define to be Gl.
This definition is arranged so that the chosen isomorphisms assemble into the components
of a natural transformation η ∶ FG⇒ 1D. It remains to prove that the assignment of arrows
l ↦ Gl is functorial and to define the natural isomorphism ϵ ∶ 1C ⇒ GF .

The functoriality of G is another natural consequence of the faithfulness of F . The mor-
phisms FG1d and F1Gd both make

FGd d

FGd d

ηd
≃

FG1d or F1Gd 1d

ηd
≃

commute. This impliesG1d = 1Gd. Similarly given l′ ∶ d′ → d′′, both F (Gl′ ⋅Gl) and FG(l′l)
make

FGd d

FGd′′ d′′

ηd
≃

F (Gl′⋅Gl) or FG(l′l) l′l

η′′d
≃

12

1 Categories, functors and natural transformations

commute, whence Gl′ ⋅Gl = G(l′l).

Finally by full faithfulness ofF wemay define the isomorphisms ϵc ∶ c→ GFc by specifying
Fϵc ∶ Fc→ FGFc . Define Fϵc to be ϵ−1

Fc. ∀ f ∶ c→ c′ the outer rectangle

Fc FGFc Fc

Fc′ FGFc′ Fc′

Fηc

Ff

ηFc

FGFf Ff

Fηc′ ηFc′

commutes, both composites being Ff .

The right hand square commutes by naturality of η. since ηFc′ is an isomorphism, this
implies that the left hand square commutes; the faithfulness of F tells us that ϵc′ ⋅ f =
GFf ⋅ ϵc, i.e. ϵ is a natural transformation.

1.5 Diagrams

We’ve drawn quite a lot of shapes with arrows and objects, but what do they mean?

These so called "commutative diagrams" are a very common and useful way to express
properties, induce reasoning and even prove theorems: It’s about time we introduce them
formally.

Definition 1.5.1 (Diagram).
A diagram in a category C is a functorD ∶ J → C where J , the so-called indexing category
is a small category.

Diagrams do not exist in a void: what if we found an useful diagram in a category and
want to have it in another category?

Lemma 1.5.2.
Functors preserve commutative diagrams.

Proof.
Given F ∶ A→ B a functor and D ∶ J → A a diagram in A, then FD ∶ J → B is a diagram
in B.

Lemma 1.5.3.
If F ∶ A→ B is faithful, then any diagram in A whose image commutes in B also commutes
in A.

Proof.
A diagram in A is (WLOG) a directed graph with composable morphisms in A so that
Ffn⋯Ff1 = Fgm⋯Fg1 in B,

by faithfulness and functoriality of F , fn⋯f1 = gm⋯g1 in A.

13

1 Categories, functors and natural transformations

1.5.1 Initial, Terminal objects, Examples

Definition 1.5.4 (Initial, terminal and Zero objects).
Given a category C

• An object i ∈ C is initial if ∀ c ∈ C∃! i→ c,

• An object t ∈ C is terminal if ∀ c ∈ C∃! c→ t,

• An initial and terminal object is called a zero object.

Lemma 1.5.5.
Any map t→ i is an isomorphism.

Proof.
∀c ∈ C∃!τc ∶ t→ c and ∃! ιc ∶ i→ c

t i, t i

c c c

f−1 f

ιc

ιc

f−1

ιcτc

τc
τc

ff−1τc = τc and ιcf−1f = ιc. Since t is terminal

t c
f

∃!τc
Ô⇒ τcf = 1t Ô⇒ t split epi Ô⇒ epi dually ιc split mono Ô⇒

mono.

Ô⇒ ff−1 = 1t and f−1f = 1i.

Lemma 1.5.6.
Let 1, ..., fn and g1, ..., gm be composable sequences of morphisms so that the domain of f1
equals the domain of g1 and the codomain of fn equals the codomain ofgm. If this common
codomain is a terminal object, or if this common domain is an initial object, then fn⋯f1 =
gm⋯g1.

d2 ... dn−1

c1 cn

e2 ... em−1

⋯ ⋯

fnf1

g1

⋯ ⋯

gm

Proof.
Follows trivially from the uniqueness of the morphisms in the definition of initial and
terminal objects.

14

1 Categories, functors and natural transformations

Diagrams let us define general objects that basically behave the same way regardless of
the category they’re in, and the fact that functors preserve commutative diagrams serves
as a powerful way to comunicate between categories.

Example 1.5.7.

• A Monoid is an objectM ∈ Set with a pair of morphisms µ ∶ M ×M →M ; η ∶ 1→M
so that

M ×M ×M M ×M M M ×M M

M ×M M M

1M×µ

µ×1M µ

η×1M

1M
µ

1M×η

1M
µ

commute.

• A Topological Monoid is an objectM ∈ Top with a pair of morphisms µ ∶ M ×M →
M ; η ∶ 1→M so that

M ×M ×M M ×M M M ×M M

M ×M M M

1M×µ

µ×1M µ

η×1M

1M
µ

1M×η

1M
µ

commute.

• A Coalgebra for an endofunctor T ∶ C → C is an object c ∈ C equipped with a map
γ ∶ c → Tc. a morphism of coalgebras f ∶ (c, γ) → (c′, γ′) is a map f ∶ c → c′ so that
the square

c c′

Tc Tc′

f

γ γ′

Tf

commutes.

1.6 Extra: the 2-category of categories

For completeness we’ll now venture a bit into "higher-cat" territory. it’s not strictly neces-
sary for the subject of this thesis but we may use its terminology to describe operations
between natural transformations.

Even though adjunctions do form a 2-category we will not talk about it.

We usually have a category when we have objects andmorphisms; a 2-category has objects,
morphisms, and 2-morphisms. i.e. objects, morphisms between objects and morphisms be-
tween morphisms. It’s easy to see how this can be generalized talking about "n-categories",
"∞-categories" and (maybe someday) "(n,r)-categories" (which put some constrictions on
their k-morphisms. There are some fun examples of them, like the (∞,1)-category of "all
mathematical concepts").

15

1 Categories, functors and natural transformations

We can’t talk about 2-categories without "vertical and horizontal composition". Let’s intro-
duce them:

Lemma 1.6.1 (Vertical composition).
Suppose α ∶ F ⇒ G and β ∶ G⇒ H are natural transformations between parallel functors
F,G,H ∶ C → D. Then there is a natural transformation βα ∶ F ⇒ H defined as (βα)c ∶=
βc ⋅ αc.

We’ll call this vertical composition and draw its diagram as follows

C D C D

F

H

G

F

H

β

α
βα

Proof.
Naturality of α and β implies that for any f ∶ c→ c′ in the domain category each square
(and thus each rectangle) commutes

Fc Gc Hc

Fc′ Gc′ Hc′

αc

Ff

βc

Gf Hf

αc′ βc′

Corollary 1.6.2.
For any pair of categories C and D the functors C →D and natural transformation define a
category DC .

Proof.
Vertical composition is associative and unital ’cause of associativity and unitality of com-
position in D.

It’s pretty natural to guess that vertical composition is not the only composition we have.

Lemma 1.6.3 (Horizontal composition).
Given a pair of natural transformations α ∶ F ⇒ G,β ∶ H ⇒K between functors F,G ∶ C →
D and H,K ∶ D → E there is a natural transformation β ∗ α ∶ HF →KG defined as

HFc KFc

HGc KGc

βFc

Hαc

(β∗α)c
Kαc

βGc

16

1 Categories, functors and natural transformations

We’ll call this horizontal composition and draw the diagram as follows

C D E C E

F

G

H

K

HF

KG

α β α∗β

Proof.

HFc HGc KGc

HFc′ HGc′ KGc′

Hαc

HFf

βGc

HGf KGf

Hαc′ βGc′

The left hand square commutes by naturality of α, the right hand square by naturality of β;
H preserves commutative diagramsmeaning thatKGf ⋅(β∗α)c = (β∗α)c ⋅HFf ∀f ∶ c→ c′

in C.

Let’s see how those compositions interact with one another.

Lemma 1.6.4 (Middle four interchange).
Given functors and natural transformation as in the diagram

C D E

F

H

G

L

J

K

α

β

γ

δ

then

C D E = C E

F

H L

J
JF

LH

KGβ⋅α δ⋅γ
γ∗α

δ∗β

i.e. (δ ⋅ γ) ∗ (β ⋅ α) = (δ ∗ β) ⋅ (γ ∗ α).

Proof.

17

1 Categories, functors and natural transformations

Let’s develop the diagrams

JFc LFc JFc KFc LFc

JGc LGc

JHc LHc JHc KHc LHc

JFc KFc LFc

JGc KGc LGc

JHc KHc LHc

(δ⋅γ)Fc

J(β⋅α)c

(δ⋅γ)Hc

L(β⋅α)c((δ⋅γ)∗(β⋅α))c

γFc δFc

Jαc

Jβc

Lαc

Lβc

γHc δHc

((δ⋅γ)∗(β⋅α))c

γFc δFc

Jαc Lαc

Jβc Lβc

γHc δHc

Kαc

γGc

(δ∗β)c

δGc

Kβc

(γ∗α)c

all those diagrams are equivalent, meaning the diagonal arrow is the same arrow.

((δ ⋅ γ) ∗ (β ⋅ α))c = ((δ ∗ β) ⋅ (γ ∗ α))c ∀c .

The two are the same transformation.

All that’s left is to define a 2-category:

Definition 1.6.5 (2-category).
A 2-category is comprised of

1. A collection of objects,

2. A collection of 1-morphisms (between objects),

3. A collection of 2-morphisms (between 1-morphisms), so that

a) The objects and 1-morphisms form a category,

b) Morphisms and 2-morphisms form a category under vertical composition,

c) Morphisms and 2-morphisms form a category under horizontal composition,

d) The law of middle four interchange holds.

18

CHAPTER 2

Universal properties, representability, the Yoneda lemma

The Yoneda lemma is probably the most important theorem in this whole subject. Functors
are hard to use by their own, things get pretty big pretty fast. There are, however some
special functors, that behave like the Represented functors we already encountered.

The Yoneda lemma encodes natural transformation between functors in a quite simple
set.

We’ll see its potential in the following chapters, especially the fourth.

2.1 Representable functors

We already encountered representable functors in the previous chapter, C(c,_) sending
an object into its hom-set with c and C(_, c), its contravariant sibling.

Those functors are pretty important for our study of categories, so much that we define
Representable functors as functors that act like them:

Definition 2.1.1 (Representable functors and Representations).

1. A functor F ∶ C → D (where C and D are locally small categories) is called repre-
sentable if there is an object c ∈ C and a natural isomorphism between F and C(c,_)
(or C(_, c), depending on F ’s variance).

In that case we say that F is represented by c.

19

2 Universal properties, representability, the Yoneda lemma

2. A representation for a functor F is a choice of object c ∈ C together with a natural
isomorphism C(c,_) ≃ F (or C(_, c) ≃ F , again depending on F ’s variance).

We can characterize objects using representations:

Definition 2.1.2 (Representble characterization of initial and terminal objects).

• An object c ∈ C is initial if C(c,_) ∶ C → Set is naturally isomorphic to the costant
functor ∗ ∶ C → Set which sends every object to the singleton set.

• An object c ∈ C is terminal if C(_, c) ∶ Cop → Set is naturally isomorphic to the costant
functor ∗ ∶ Cop → Set which sends every object to the singleton set.

2.2 The Yoneda lemma

Theorem 2.2.1 (Yoneda lemma).
For any functor F ∶ C → Set, whose domain C is locally small and any object c ∈ C there is
a bijection

Hom(C(c,_), F) ≃ Fc

that associates a natural transformation α ∶ C(c,_)⇒ F to the element αc(1c) ∈ Fc.

Moreover this correspondence is natural in both F and c.

Note. In this version F is supposed covariant but the contravariant version uses C(_, c) the
exact same way.

Note also that C isn’t necessarily small, implying Hom(C(c,_), F) needn’t be a set. The
smallness of this Hom-set is one of the strong points of this lemma.

Proof of the bijection.
There is clearly a function Φ ∶ Hom(C(c,_), F)→ Fc that maps a natural transformation
to the image of 1c, i.e. Φ(α) = αc(1c).

To prove it is a bijection we need to find an inverse: let’s define Ψ ∶ Fc→Hom(C(c,_), F)
that constructs a natural transformation Ψ(x) ∶ C(c,)⇒ F for every x ∈ Fc. To achieve
this we define Ψ(x)d ∶ C(c, d)→ Fd so that

C(c, c) Fc

C(c, d) Fd

Ψ(x)c

f∗ Ff

Ψ(x)d

commutes.

20

2 Universal properties, representability, the Yoneda lemma

We have that
C(c, c) Fc

C(c, d) Fd

C(c, e) Fe

C(c, c) Fc

f ′
∗

f ′′
∗

Ψ(x)d

Ψ(x)e

g∗ Fg1c∗

Ψ(x)c

1Fc

Ψ(x)c

Ff ′

Ff ′′

also commutes, proving the naturality of Ψ(x).

Proof of naturality.
First we prove that the isomorphism is natural in the choice of F , i.e. given β ∶ F ⇒ G the
element of Gc representing the composite natural transformation βα ∶ C(c,_)⇒ F ⇒ G
is the image under βc ∶ Fc → Gc of the element Fc representing C(c,_)⇒ F , implying
that the diagram

Hom(C(c,_), F) Fc

Hom(C(c,_),G) Gc

ΦF

≃

β∗ βc

ΦG

≃

commutes in Set. By definition ΦG(βα) = (βα)c(1c) = βc(αc(1c)) = βc(ΦF (α)).

Now we need to prove naturality in the choice of c, i.e. given a morphism f ∶ c→ d in C,
the element of Fd representing the composite natural αf∗ ∶ C(d,_)⇒ C(c,_)⇒ F is the
image under Ff ∶ Fc→ Fd of the element Fc representing α, meaning that the diagram

Hom(C(c,_), F) Fc

Hom(C(d,_), F) Fd

Φc

≃

(f∗)∗ Ff

Φd

≃

commutes.

Here the image of α ∈Hom(C(c,_), F) along the top-right composite is Ff(αc(1c)) and
the image along the left bottom composite is (αf∗)d(1d). We know that αf∗ =

C(d, d) C(c, d) Fd

1d f αd(f)

f∗ αd

we know that αd(f) = Ff(αc(1c)) thus proving the second square commutes.

21

2 Universal properties, representability, the Yoneda lemma

This theorem lets us have two fundamental embeddings for categories:

Corollary 2.2.2 (Yoneda embeddings).
The functors

C SetCop
Cop SetC

c C(_, c) c C(c,_)

d C(_, d) d C(d,_)

y y

f f∗ f

are fully faithful embeddings.

Proof.
We need to prove that

C(c, d)→Hom(C(_, c),C(_, d)) and C(c, d)→Hom(C(d,_),C(c,_)

are bijections. We already know from the first chapter that they are injections, seen that
distinct morphisms c⇉ d induce distinct natural transformations.

Yoneda’s lemma implies that every natural transformation arises that way, i.e. every α ∶
C(d,_) ⇒ C(c,_) correspond to elements of C(c, d), which are the morphisms C → d.
The natural transformation f∗ ∶ C(d,_)⇒ C(c,_) (pre-composition by f) sends 1d to f ,
thus α = f∗ is unique, proving its surjectivity.

The analogue using pre-composition holds for the C(_, x).

It’s not strictly necessary but I feel like it’s cute to show an important application of this
lemma:

Example 2.2.3 (Cailey’s theorem).
Every group is isomorphic to a subgroup of a permutation group.

Proof.
Regarding a group G as a one-object groupoid BG we can look at the image of the
covariant Yoneda embedding BG↪ SetBGop

: Consider a G− set X ∶ BG→ Set. a natural
transformation G ⇒ X is exactly a G − equivariant map ϕ ∶ G → X, implying that the
aforementioned image is a right G-set G. The corollary tells us that the only G-equivariant
endomorphisms of the right G-set G are those maps defined by left multiplication with
a fixed element of G. In particular any G-equivariant endomorphism of G must be an
isomorphism too.

In this way the Yoneda embedding defines an isomorphism between G and the auto-
morphism group of the right G-set G, an object in SetBGop

. Composing with the faithful

22

2 Universal properties, representability, the Yoneda lemma

forgetful functor SetBGop → Set we obtain an embedding G ↪ Sym(G), the first iso-
morphism theorem tells us that means G ≃ subgroup of Sym(G) which is a permutation
group.

2.3 Universal properties and universal elements

We can use representability (actually, representable functors) to describe some interesting
elements and properties in a category.

Proposition 2.3.1 (Representable isomorphisms).
Consider a pair of objects x and y in a locally small category C, then

C(x,_) ≃ C(y,_) or C(_, x) ≃ C(_, y) Ô⇒ x ≃ y,

in particular, if x and y represent the same functor then x ≃ y.

Proof.
The Yoneda embeddings C ↪ SetCop

and Cop ↪ SetC are both fully faithful, meaning
they create isomorphisms. an isomorphism between represented functors is induced by a
unique isomorphism between their representing objects,meaning theymust be isomorphic.

From this we can extract a corollary:

Corollary 2.3.2.
The full subcategory of C spanned by its terminal objects is either empty or is a contractible
groupoid.

Where

Definition 2.3.3 (Contractible Groupoids).
A Contractible Groupoid is a category equivalent to the terminal category 1, i.e. a category
with exactly one morphism in each hom-set.

Proof.
We know that C(_, t)⇒ C(_, t′) ≃ C(t, t′) ≃ singleton set.

The last proposition tells us that the only morphism in there must be an isomorphism,
meaning that t, t′ are terminal if and only iff they represent the functor ∗ ∶ Cop → Set
(constant at the singleton set).

The Yoneda Lemma also gives us access to what we call universal properties:

Definition 2.3.4 (Universal Properties).
A Universal Property of an object c ∈ C is expressed by a functor F together with an element
x ∈ Fc which we’ll call a Universal Element that defines a natural isomorphism C(c,_) ≃ F
or C(_, c) ≃ F depending on F’s variance as usual.

23

2 Universal properties, representability, the Yoneda lemma

Example 2.3.5 (Tensor Product).
Fix 2 k−vector spaces V,W ∈ Vectk and consider the functor

Bilin(V,W ;_) ∶ Vectk → Set

sending a vector space to its bilinear maps V ×W → U U ↦ Bilin(V,W ;U). We know there is
one space realizing the Vectk(c,_)⇒ Bilin(V,W ;_) as an isomorphism, we’ll call it V ⊗kW ,
i.e.

∃!V ⊗kW s.t.Vectk(V ⊗kW,U) ≃ Bilin(V,W ;U).
This isomorphism is determined by a universal element of Bilin(V,W ;V ⊗kW i.e. the bilinear
map ⊗ ∶ V ×W → V ⊗kW .

2.4 The category of elements

The last tool we will define in this section is going to be the category of elements: We
spent some lines describing how an object c ∈ C describes elements of Fc ∈ Set via a
co(contra)variant functor F ∶ C → Set.

We can describe F using a category that we will define this way:

Definition 2.4.1 (Category of elements).
The Category of elements of a co(contra)variant functor F ∶ C → Set is defined as follows:

∫
c∶C

F or ∫ F is the category whose objects are pairs (c, x) ∶ c ∈ C,x ∈ Fc and whose
morphisms (c, x)→ (c′, x′) are the morphisms f ∶ c→ c′ ∈ C so that Ff(x) = x′ (Ff(x′) = x
for the contravariant case) every element category has an obvious forgetful functor Π ∶ ∫ F →
C that sends (c, x)↦ c and (f ∶ (c, x)→ (c′, x′))↦ (f ∶ c→ c′)

We can use this category to get a condition for representability:

Proposition 2.4.2 (Universal elements are universal elements).
A co(contra)variant functor F ∶ C → Set (or Cop → Set) is representable if and only if its
category of elements has an initial (terminal) object.

Proof.
Ô⇒ is quite trivial: ∫ F ≃ ∫ C(c,_) ≃ c ↓ 1C which has initial object 1c ∈ c ↓ 1C
⇐Ô uses the Yoneda lemma:

Consider a functor F ∶ C → Set and suppose (c, x) ∈ ∫ F is initial We will show that the
natural transformation Ψ(x) ∶ C(c,_) ⇒ F defined by the Yoneda lemma is a natural
isomorphism: For any y ∈ Fd initiality of x ∈ Fc states that ∃!f ∶ (c, x)→ (d, y) Ô⇒ ∃!f ∶
c→ d ∈ C s.t. Ff(x) = y.

That means Ψ(x)d ∶ C(c, d)→ Fd is an isomorphism.

Reversing the argument, a natural isomorphism α ∶ C(c,_) ≃ F defines an object αc(1c) ∈
Fc. For each αd ∶ C(c, d) ≃ Fd Ô⇒ ∀y ∈ Fd ∃!f ∶ c→ d ∶ Ff(αc(1c)) = y. thus

24

2 Universal properties, representability, the Yoneda lemma

∀(d, y) ∈ ∫ F∃!f ∶ (c,αc(1c))→ (d, y) ∈ ∫ F meaning (c,αc(1c)) is initial in ∫ F .

25

CHAPTER 3

Limits and Colimits

Aside from being necessary to the understanding of the theory itself, the main matter of
this thesis - the adjoint functor theorem - has a lot to do with limits. We encountered
Limits in analysis, then in topology, then in algebra but what are they?

Let F ∶ N→ Set (regarding N as a preorder) be a diagram shaped as a chain of inclusions

⋯ X2 X1 X0

The limit of this sequence, intuitively is the object at the start of this sequence, i.e. the
biggest object X∞ so that the diagram

X∞

⋯ X2 X1 X0

commutes. In other words if there is another object satisfying the commutative diagram

26

3 Limits and Colimits

it must exist an arrow pointing toward the limit.

3.1 Limits and colimits as universal cones

Definition 3.1.1 (Cones).
A cone over a diagram D ∶ J → C with summit or apex c ∈ C is a natural transformation
λ ∶ c⇒ F where c is the constant functor at c. The components λi ∶ c→ Fi are called legs of
the cone.

c

Di Dj

λi λj

Df

Dually we call a cone under or cocone over D ∶ J → C with nadir c ∈ C a natural
transformation λ ∶ D⇒ c; the legs of the diagram are the arrows λi ∶ Fi→ c.

Di Dj

c

Df

λi

λj

Note. the use of the prefix "co" in "cocone" is justified as any cocone overD ∶ J → C is exactly
a cone over D ∶ Jop → Cop. I will use the term "cocone" more often than "cone under" since I
greatly appreciate the elegance of duality and -frankly- I like that it sounds a little silly.

This eases us to define limits and colimits:

Definition 3.1.2 (Limits and Colimits).
A Limit of a diagram F ∶ J → C is the terminal object in the category of cones over F
∫ Cone(_, F).

Dually, the Colimit of a diagram F ∶ J → C is the initial object in the category of Cocones
over F ∫ Cone(F,_).

We call these Limit and Colimit cones and their apices and nadirs Limit and Colimit objects.

Definition 3.1.3 (Limits and Colimits II).
The limit of a diagram gives us a representation for the functor Cone(_, F): We can use
this as an alternate definition: the Limit of a diagram F ∶ J → C is a representation for
Cone(_, F); by the Yoneda Lemma, this consists of an object LimF together with a natural
transformation λ ∶ LimF ⇒ F so that C(_,LimF) ≃ Cone(_, F).

Dually the Colimit is a representation for Cone(F,_), consisting of an object CoLimF to-
gether with a natural λ ∶ F ⇒ CoLimF so that C(CoLimF,_) ≃ Cone(F,_).

Proposition 2.4.2 grants us that the two definitions are in fact equivalent.

27

3 Limits and Colimits

Even though we introduced them (at the beginning of the chapter) using the "classical
approach", Limits and Colimits aren’t limited in use by it.

Example 3.1.4 (Common limits).

• A terminal object is regarded as a trivial case of a limit, where the indexing category
is empty,

• A product is the limit of a diagram indexed by a discrete category with only identity-
morphisms,

• An equalizer is the limit of a diagram indexed by a parallel pair of morphisms ●⇉ ●,

• A pullback is the limit of a diagram indexed by ●→ ●← ●.

Example 3.1.5 (Common colimits).

• An initial object is regarded as a trivial case of a colimit, where the indexing category
is empty,

• A coproduct is the colimit of a diagram indexed by a discrete category with only
identity-morphisms,

• A coequalizer is the limit of a diagram indexed by a parallel pair of morphisms ●⇉ ●,

• A pushout is the colimit of a diagram indexed by ●← ●→ ●.

We must note that the existence of limits is not always granted:

Example 3.1.6 (Limits do not always exist). [Lei14]
In the discrete category with two objects (and only identity morphisms) 2 there is no product,
i.e. there’s not a limit for the diagram ● ●.

No need for an actual proof, there are no cones.

3.2 Limits in Set

It’s useful to see -mainly as a mind model to fall back on- what limits are in a set category,
to be precise the category Set (no pun intended).

Definition 3.2.1 (Complete and Cocomplete categories).
Said that a diagram F ∶ J → C is Small if and only if J itself is small, we call a category
C Complete if every C-valued small diagram has a limit and Cocomplete if every C-valued
small diagram has a colimit.

Needless to say we want to prove that Set is complete.

Let’s consider a small diagram F ∶ J → Set. A limit is a representation Set(x,LimF) ≃
Cone(x,F) of the functor sending a set x to the set of cones over F having x as its’ apex.

28

3 Limits and Colimits

Specializing to a singleton set 1, representing the identity functor in Set:

LimF ≃ Set(1,LimF) ≃ Cone(1, F)

Since obviously the embeddings of a singleton to a set’s element will result in something
isomorphic to the set itself.

x
y
z

≃
{*}

x
y
z

Defining LimF ∶= Cone(1, F) with λj ∶ LimF → Fj we just need to prove that it is indeed
a limit.

Note. We use the strong hypothesis that if J is small then SetJ is locally small, meaning
that - in particular - Cone(1, F) is a set.

Theorem 3.2.2 (Completeness of Set).
The category of sets is complete.

Proof.
First we need to prove that

LimF

Fj Fk
λj

λk

Ff

commutes.

For any element µ ∶ 1⇒ F of the set LimF

Ff(λj(µ)) = Ff(µj) = µk = λk(µ)

where the middle equality holds because µ ∶ 1⇒ F defines a cone. This is proof that the
λj define a cone over F .

To prove now that the cone is an universal cone consider ζ ∶ x⇒ F with a generic summit.
We must show that this cone factors uniquely through λ along a function r ∶ x→ LimF

Since we look at ξ ∈ x as ξ ∶ 1 → x there is a cone ζξ ∶ 1 ⇒ F defined by restricting the
cone ζ along ξ. Defining r(ξ) = ζξ, the legs of the limit cone λ abide

λj(r(ξ)) = λj(ζξ) = (ζξ)j = ζjξ

29

3 Limits and Colimits

meaning that not only ζ factors along r through λ but also that the factorization is unique,
since defining r(ξ) = ζξ is necessary to the proof ’s completion.

This means that we can describe elements in the categorical constructions to find how
they equal our usual constructions:

Example 3.2.3 (Binary product).
Given a, b ∈ Set we define a × b ∶= {(x, y) ∶ x ∈ a , y ∈ b};

a × b is also the limit of the diagram a b; as we saw just a few lines

LimF ≃ Cone(1, F)

The legs of this cone are maps a← 1→ b meaning the elements of Cone(1, F) must be pairs
(x, y) so that x ∈ a and y ∈ b, giving us the usual definition.

Limits in set help us connect our usual intuition of objects and their categorical counterpart.

Let’s analyze that further:

3.2.1 Products, Terminal Objects, Pullbacks and Equalizers in Set

We already described binary products in Set, general products are constructed the same
way.

(The following examples are contained in [Lan71])

Set has the singleton set as its terminal object. we can easily see that given ∅ the empty
diagram Lim∅ ≃ Cone(1,∅) ≃ 1 as the only morphism present is the identity.

Set has pullbacks shapen as {(x, y) ∶ x ∈ a, y ∈ b, fx = gy}

the legs in
1 a

b c
g

f

⌟

are included in the product diagram, meaning each object of P is a subset of X × Y . we
also need that its image under f and g must be the same, giving us the aforementioned
defintion.

Set has equalizers shapen as {x ∈ a ∶ fx = gx}

the legs in 1 a b
g

f

are elements x ∈ a equipped with the condition that

fx = gx.

An useful theorem that we will use in the future is:

30

3 Limits and Colimits

Theorem 3.2.4 (Completeness via Products and equalizers).
A category A is Complete if it has all small products and binary equalizers.

(dually a category is cocomplete if it has all small coproducts and binary coequalizers).

Sketch of proof.
Given a diagram D ∶ J → A, the proof is contained in the commutativity of the following
diagram

Di Dcod(f)

z ∏iDi ∏f Dcod(f)

Ddom(f) Dcod(f)

πf

u

v

πf

Df

e

ϕi

πi

3.3 Preservation, Reflection and Creation of limits

Now we are interested in seeing how functors and limits interact.

A functor that preserves limits will be called continuous, for obvious reasons.

Definition 3.3.1 (Preservation, Reflection and Creation of limits).
Given a functor F ∶ C →D we say

• F preserves limits if for any diagram A ∶ J → C F Lim(A) = Lim(FA),

• F reflects limits if for any diagram A ∶ J → C Fc = Lim(FA) Ô⇒ c = Lim(A),

• F creates limits if for any diagram A ∶ J → C d = Lim(FA) Ô⇒ ∃c ∶ Fc = d and
that c is the limit of A.

Of course creates Ô⇒ reflects, since the existence of the lift c implies Fc = d

It is true, even if less immediate, that a functor that creates limits also preserves them.

Formally

Proposition 3.3.2.
If F ∶ C →D creates limits for a class of diagrams in C and D has limits of those diagrams
then C admits those limits and F preserves them.

Proof.
For any diagram A ∶ J → C there is a limit cone µ ∶ d⇒ FA. Being that F creates limits,
there is a limit cone λ ∶ c⇒ A so that Fλ ≃ µ meaning C admits those limits.

31

3 Limits and Colimits

To see that F preserves them we use the uniqueness under isomorphisms of the limit,
meaning that if there were another limit λ′ ∶ c′ ⇒ A then λ ≃ λ′ Ô⇒ Fλ′ ≃ µ meaning
Fλ′ is itself a limit cone.

Of course equivalences between categories preserve, reflect and create limits of any kind.

32

CHAPTER 4

Adjoint functors and the Adjoint functor theorem

We’ve come to the main matter:

We’ve seen in Galois theory, topology, algebraic geometry and so on that sometimes objects
have strong relationships that let us jump back and forth from different branches:

Looking back to Galois Theory, we know that given a galois extension Ω/K over a field K
if we draw the diagrams for the intermediate extensions and the subgroups of Gal(Ω/K)
we find out that they have the same shape but the inclusions are "flipped"

Q(
√
2,
√
3) {1}

Q(
√
2) Q(

√
6) Q(

√
3) {1, f} {1, fg} {1, g}

Q {1, f, g, fg}

Figure 4.1: Example: Extensions of Q(
√
2,
√
3)

meaning that Gal(Ω/_) and Fix(_) (the maps sending respectively a field to the galois
group over it and an automorphism group to its fixed points) are - in this context - kind
of inverse transformations between a group preorder and a field preorder.

33

4 Adjoint functors and the Adjoint functor theorem

4.1 Adjunctions and adjoint functors

Let’s give some definitions:

Definition 4.1.1 (Adjoint Functors, Adjunctions).
Let A,B be categories and let F ∶ A→ B, G ∶ B → A be functors.

We say that F is left adjoint to G, or G is right adjoint to F and we write G ⊢ F if

B(Fx, y) ≃ A(x,Gy)

where ≃ is natural in both x and y.

We can express this naturality with a diagram

Aop ×B Set
B(F_,_)

A(_,G_)

≃

We call the pair of functors F,G as described above together with a choice of ≃ an adjunction.

Definition 4.1.2 (Transposed morphisms).
Under the natural isomorphism B(F_,_) ≃ A(_,G_) above we have

Fx y x Gy
f ♯ f ♭≃

we say f ♯ and f ♭ are transposes of each other.

Note that if F,G is an equivalence between categories then it’s an adjunction, but the
converse isn’t true. We will prove this equivalence-like nature of adjunction in the next
section. before though, let’s give a characterization of the adjunction between functors.
The first one is that

Gk ⋅ f ♭ = (k ⋅ f ♯)♭

meaning that composing with "flat" morphisms after G is the same as "flattening" the
composition of "sharp" morphisms before G, i.e.

B(Fx, y) A(x,Gy)

B(Fx, y′) A(x,Gy′)

≃

≃

k∗ Gk∗

commutes.

Dually if we look at pre-composition we have that

f ♭ ⋅ h = (f ♯ ⋅ Fh)♭

34

4 Adjoint functors and the Adjoint functor theorem

meaning that composing with "flat" morphisms before F is the same as "flattening" the
composition of "sharp" morphisms after F , i.e.

B(Fx, y) A(x,Gy)

B(Fx′, y) A(x′,Gy)

≃

≃

Fh∗ h∗

commutes.

This leaves us with the last condition

kf ♯ = g♯Fh ⇐⇒ Gkf ♭ = g♭h

easily proven by the series of implications:

Gkf ♭ = g♭h ⇐⇒ g♭h = (kf ♯)♭

⇐⇒ (g♯Fh)♭ = (kf ♯)♭

⇐⇒ g♯Fh = kf ♯

Making use of the first condition, then the second, and last that ≃ is in fact an isomorphism.

4.2 Unit and Counit

As previously mentioned Adjunctions are a different form of equivalences between cate-
gories: Hom-sets before and after the functors are in fact isomorphic: where in an equiv-
alence F ∶ A⇆ B ∶ G, FG ≃ 1B, GF ≃ 1A we have

A(x, y) ≃ B(Fx,Fy) ≃ A(GFx,GFy) ≃ B(FGFx,FGFy)

in an adjunction F ∶ A⇆ B ∶ G we have

G ∶ B(Fx, y)↦ A(GFx,Gy) ≃ A(x,Gy) and F ∶ A(x,Gy)↦ B(Fx,FGy) ≃ B(Fx, y)

It is not a proper inversion but works in a similar fashion. This is the same as saying that
the object Fx ∈D represents A(x,G_) ∶ D → Set. By the Yoneda Lemma this means that
the natural isomorphism B(Fx,_) ≃ A(x,G_) is represented by an element ofA(x,GFx).

This means A(x,GFx) ≃ B(Fx,Fx).

We denote (1Fx)♯ ∶= ηx, letting us assemble the ηx’s into the components of a natural
transformation 1x ⇒ GF .

Lemma 4.2.1.
Given an adjunction F ⊣ G there is a natural transformation η ∶ 1x ⇒ GF , whose componets
ηx ∶ x→ GFx are the transposes of the identity morphisms 1Fx.

35

4 Adjoint functors and the Adjoint functor theorem

Proof.
We need to prove that η is a natural isomorphism, i.e. that the square

x GFx

x′ GFx′

ηx

ηx′

f GFf

commutes. That is almost trivial using the last lemma of the previous chapter:

kf ♯ = g♯Fh ⇐⇒ Gkf ♭ = g♭h

meaning

ηx′ ⋅ f = GFf ⋅ ηx ⇐⇒ (ηx′)♯ ⋅ Ff = Ff ⋅ (ηx)♯

⇐⇒ 1Fx′ ⋅ Ff = Ff ⋅ 1Fx

Dually Gy ∈ A represents B(F_, y), meaning that there is a natural transformation ϵ ∶
FG⇒ 1B whose components ϵy are the transposes of 1Gy.

Definition 4.2.2 (Unit and Counit).
Given an adjunction F ⊣ Gwe call the two natural isomorphims described above η ∶ 1A ⇒ GF
sending x → GFx as the transpose of the identity 1Fx and ϵ ∶ FG⇒ 1B sending FGx → x
as the transpose of the identity 1Gx respectively the unit and counit of the adjunction.

With these notions we acquired we can give Adjunctions an alternative definition:

Definition 4.2.3 (Adjunctions II).
An adjunction consists of a pair of functors F ∶ A⇆ B ∶ G and two natural transformations
η ∶ 1A ⇒ GF and ϵ ∶ FG⇒ 1B so that the two triangles

F FGF G GFG

F G
1F

Fη

ϵF

ηG

1G
Gϵ

commute in BA and AB respectively.

Since adjunction is a "sort-of equivalence" we expect adjoints to be unique:

Proposition 4.2.4 (Uniqueness of the left adjoint).
If F and F ′ are left adjoint to G then ∃!θ ∶ F ≃ F ′ natural isomorphism commuting with
units and counits of the adjunctions:

1A GF FG 1B

GF ′ F ′G

η

Gθ
η′

ϵ

θG
ϵ′

36

4 Adjoint functors and the Adjoint functor theorem

Proof.
To define a natural transformation θ ∶ F ⇒ F ′ we just need to define a transposed natural
transformation η′ ∶ 1A → GF ′

Fx F ′x x GF ′x

Fx′ F ′x′ x′ GF ′x′

θx

Ff F ′f

θx′

η′x

η′
x′

f GF ′f

We can define a couple of natural transformations θ ∶ F ⇒ F ′ and θ ∶ F ′ ⇒ F as

θ ∶ F FGF ′ F ′

θ′ ∶ F ′ F ′GF F

Fη′ ϵF ′

F ′η ϵ′F

and do the legwork to prove that they’re the inverse of one another, i.e. prove that η ∶ 1⇒
GF equals the composite

1 GF GFGF ′ GF ′ GF ′GF GF
η GFη′ GϵF ′ GF ′η Gϵ′F

by naturality of η this composite equals

1 GF ′ GFGF ′ GF ′ GF ′GF GF
η′ ηGF ′ GϵF ′ GF ′η Gϵ′F

Since Gϵ ⋅ ηG = 1G we can reduce to

1 GF ′ GF ′GF GF
η′ Gϵ′FGF ′η

by naturality of η′ this equals

1 GF GF ′GF GF
η Gϵ′Fη′GF

We can reduce it once more using the triangle identity Gϵ′ ⋅ η′G = 1G

1 GF
η

Lastly we need to prove that the two triangles above commute: Using the definition of θ

1 GF GFGF ′ GF ′

1 GF ′ GFGF ′ GF ′

1 GF ′

η GFη′ GϵF ′

η′ ηGF ′ GϵF ′

η′

proves the first triangle, and duality deals with the second;

This means that the transpose of θ across F ⊣ G is η′, thereby proving uniqueness.

37

4 Adjoint functors and the Adjoint functor theorem

We now can talk about the relationship between equivalences and adjunctions:

In an equivalence you have a couple of natural isomorphisms η ∶ 1A ≃ GF and ϵ ∶ FG ≃ 1D
meaning that the composite

γ ∶ G GFG G
ηG Gϵ

is too an isomorphism. It isn’t - however - an identity.

Proposition 4.2.5 (Equivalences and adjunctions).
Any equivalence F ∶ A ⇆ B ∶ G , η ∶ 1A ≃ GF, ϵ ∶ FG ≃ 1B can be improved to be an
adjunction by changing either the unit or the counit.

Proof.
Keeping the notation used above, let ϵ′ ∶= ϵ ⋅ Fγ−1 by naturality of η the diagram

G GFG GFG G

G

ηG GFγ Gϵ

γ−1

ηG
γ

commutes, meaning Gϵ′ ⋅ ηG = 1G.

By naturality of η and ϵ′ and by the first triangle identity we have that

F FGF F

FGF FGFGF FGF

FGF F

Fη ϵ′F

Fη

FηGF

FGFη Fη

ϵ′FGF

ϵ′F
ϵ′F

FGϵ′F

commutes, namely ϵ′
F ⋅ Fη = 1F .

For completeness we also define morphisms of adjunctions:

Definition 4.2.6 (Morphisms of adjunctions).
A Morphisms of adjunctions (F ⊣ G)→ (F ′ ⊣ G′) is comprised of a pair of functors H,K
so that

A A′

B B′

F G F ′ G′

H

K

⊣ ⊣

commutes both along the left adjoints and the right adjoints (KF = F ′H and HG = G′K)

and (equivalently)

38

4 Adjoint functors and the Adjoint functor theorem

1. Hη = η′H (where η and η′ are the units)

2. Kϵ = ϵ′K (where ϵ and ϵ′ are the counits)

Of course we need to prove that those three conditions are in fact equivalent:

Proof.

• 1 Ô⇒ 2 ∶

FGx GFGx HGFGx G′KFGx KFGx

x Gx HGx G′Kx Kx

ϵx

G

G

Gϵx ηGx

H

H

Hη′Gx G′Kη′x

G′

G′

Kη′x ϵ′Kx

K

K

• 2 Ô⇒ 1 ∶ is the dual diagram of the one above.

4.3 Adjunctions, limits and colimits

We have limits and we have functors, we feel like we’re in the beginning of a basic topology
course. Paying respect to terminology:

Definition 4.3.1 (Continuous and Cocontinuous functors).
A functor F ∶ A→ B is called continuous if for every (small) diagram D ∶ J → C

F (LimD) ≃ LimFD

and cocontinuous if for every (small) diagram D ∶ J → C

F (ColimD) ≃ ColimFD

(WLOG using the characterization in Theorem 3.2.4 a functor is continuous ⇐⇒ preserves
all products and binary equalizers, cocontinuous ⇐⇒ preserves all coproducts and binary
coequalizers).

Limits and adjunctions are very much intertwined, since you can define limits and colimits
as the left and right adjoints of the functor that sees an object as the apex - or nadir - of a
set cone - or cocone- i.e.:

39

4 Adjoint functors and the Adjoint functor theorem

Proposition 4.3.2 (Limits and adjunctions).
a category A admits limits and colimits of J-shaped diagrams if and only if the constant
diagram functor ∆ ∶ A→ AJ admits respectively right and left adjoints.

A AJ
∆

colim

lim

⊣
⊣

Note that we can take this as an alternate definition for limits and colimits.

Proof.
From the definition of limit we know that Cone(x,D) ≃ A(x,LimD) is natural, rewriting
the category of J-indexed cones overD asAJ(∆x,D) (natural transformations between the
constant x and the diagram) we have that AJ(∆x,D) ≃ A(x,LimD) is natural, prooving
that Lim ∶ AJ → A is right adjoint to ∆.

Lim ∶ AJ → A forms a functor if and only if every J-shaped diagram D has limit.

Duality gives us the same thing for the colimit.

Looking at this square

A B

AJ BJ

F

G

∆ ∆Lim Lim

⊢

⊣ ⊣

we can guess the two theorems:

Theorem 4.3.3 (RAPL). Right adjoints preserve Limits.

and

Theorem 4.3.4 (LAPC). Left adjoints preserve colimits.

Proof.
We just need to prove (RAPL) and let duality take care of (LAPC).

Given an adjunction F ⊣ G then given a diagram D ∶ J → B then G(LimD) is a limit for
G(D)

we know that

AJ(∆x,GD) ≃1 BJ(F∆x,D) ≃2 BJ(∆Fx,D) ≃3 B(Fc,LimD) ≃4 A(x,GLimD)

and where every ≃ is natural because:

1. Lifting an adjunction results in an adjunction: since F ⊣ G we have that post-
composition with F and G in AJ or BJ trivially respect the natural triangle of Defi-
nition 4.2.4,

40

4 Adjoint functors and the Adjoint functor theorem

2. F∆x =∆Fx,

3. Definition of limit,

4. Definition of adjunction.

Now, is the converse true? does any continuous/cocontinuous functor give birth to an
adjunction?

4.4 The Adjoint functor theorem

Freyd’s Adjoint functor theorem, main matter of this thesis states that

Given a locally small, complete category A, if a continuous functor G ∶ A → X satisfies
the solution set condition

∀x ∈ X ∃Φx = {fi ∶ x → Gai} ∈ Set so that any f ∶ x → Ga factors through some fi ∈ Φx

along an arrow (ai → a) ∈ A

x Ga a

Gai ai

Ggi
fi

f

gi

then it admits a left adjoint.

To be fair, the theorem is an ⇐⇒ but we’re only interested in the Ô⇒ side since the
important part of the ⇐Ô side has been covered in the previous section.

To prove it we lean onto a lemma characterizing adjunction through comma categories:

Lemma 4.4.1.
A functor G ∶ A→ B has a left adjoint if and only if ∀ y ∈ B the comma category y ↓ G has
an initial object.

Reminding that the comma category y ↓ G is a category whose objects are pairs (a, f)

y Ga
f

and whose morphisms are maps h ∶ a→ a′ so that

y Ga

Ga′

f

Gh
f ′

commutes.

41

4 Adjoint functors and the Adjoint functor theorem

Proof.
We know that y ↓ G ≃ ∫ B(y,G_). If a left adjoint F ⊢ G then the component of the unit
at y defines an initial object ηy ∶ y → GFy in this category:

recalling that ∫ B(y,G_) has as objects pairs (a ∈ A,f ∈ B(y,Ga)) and morphisms g ∶ a→
a′ so that B(y,Ggf) = f ′,

meaning that the object in the category of elements is actually (Fy, ηy ∶ y → GFy) it is
initial ⇐⇒ ∀(a, f ∶ y → Ga) ∈ ∫ B(y,G_)∃!g ∶ Fy → a so that f = Gg ⋅ ηy.

(Fy, y GFy)

(a, y Ga)
f

ηy

g Gg

This is true because of the adjunction: f is by definition the transpose of g.

Conversely, suppose y ↓ G admits an initial object for each y, we can basically try to trace
back the previous proof: we want to prove that the initial objects ηy ∶ y → GFy assemble
into the unity of an adjunction F ⊢ G.

We need to prove that F is indeed a functor.

That is true if we define Ff ∶ Fy → Fy′ to be the unique morphism closing the square

y GFy

y′ GFy′

ηy

ηy′

f GFf

The initiality of ηy means that map exists and is unique, meaning F ∶ B → A is indeed a
functor and η ∶ 1B ⇒ GF is a natural transformation, meaning we can define a natural
transformation

Φ ∶ A(F_,_)⇒ B(_,G_)

with components Φy,a ∶ A(Fy, a)→ B(y,Ga). defining

Φy,a ∶= y GFy Ga
ηy Gg

The initiality of the ηys gives us injectivity and surjectivity of the Φy,as, meaning it is a
natural isomorphism, meaning F ⊢ G is indeed an adjunction.

This theorem suggests why we need the solution set condition, since we want to take
advantage of the initial object in the comma category.

The solution set is a stronger condition than having an initial arrow in the condition of
the theorem though, if we build the comma x ↓ G we notice that Φx is the set of "initial
object without uniqueness".

42

4 Adjoint functors and the Adjoint functor theorem

Let’s give them a name:

Definition 4.4.2 (Weakly initial objects, Jointly weakly initial sets).

• An object c ∈ C is weakly initial if ∀ x ∈ C∃c→ x,

• A set Φ ∶ {ci ∈ C ∶ i ∈ I} is jointly weakly initial if ∀ x ∈ C∃ci ∈ Φ ∶ ∃ci → x.

And in the right conditions this is stronger than having an initial object:

Lemma 4.4.3.
If a category C is complete, locally small and has a jointly weak initial set Φ, then C has an
initial object.

Proof. [Lan71]
Since C is complete we can build the product object ∏ ci where Φ = {ci}.

∀x ∈ C ∃ ci → x meaning for each x ∈ C we can compose a morphism λx ∶∏ ci → ci → x.

Let’s look at the hom-set C(∏ ci,∏ ci) and construct the equalizer of all the endomor-
phisms ∏ ci →∏ ci e ∶ i→∏ ci

∀x ∈ C ∃i→∏ ci → x means i is weakly initial.

to prove that i is initial suppose there were two distinct f, g ∶ i→ x then we can pick the
equalizer e′ = eq(f, g), the diagram

j i x

∏ ci ∏ ci ci

f

g

e′

πi

e

ee′s

s

commutes.

Wewant to prove that ee′s is the identity. that is true because ewas defined as the equalizer
of all the endomorphisms of ∏ ci, so

ee′se = 1Πcie = e1i

Now e is an equalizer, in particular it’s monic, meaning e′se = 1i meaning e′ has right
inverse, making it an isomorphism.

this concludes the proof, since this way f = g, i.e. i is initial in C.

And like that the proof of Freyd’s adjoint functor theorem is basically done: we just need
to do some stirring.

I’ll repeat here the statement:

Theorem 4.4.4 (Freyd’s Adjoint Functor Theorem).
Given a locally small, complete category A, any continuous functor G ∶ A→X that satisfies
the solution set condition admits a left adjoint

43

4 Adjoint functors and the Adjoint functor theorem

Proof.
The solution set condition is equivalent to having a jointly weakly initial set in the category
x ↓ G. C is locally small and complete meaning x ↓ G is locally small and complete:
x ↓ G((a, f), (a′, f ′)) is the collection of morphisms g ∶ a→ a′ so that

x Ga

Ga′

f

f ′
Gg

commutes, meaning it’s contained in A(a, a′).

Since A is complete and G is continuous let’s pick a cone over a diagram D′ ∶ J → x ↓ G

Gl

x Ga

Ga′

f

f ′
Gg

ϕ

Gλa

Gλa′

This is clearly equal to x⇒ G(Cone(l,D)) where D ∶ J → A is a diagram in A, meaning
that (LimD,ϕ ∶ x→ GLimD) = LimD′, meaning x ↓ G is complete too.

We have a jointly weakly initial set in the locally small complete category x ↓ G, thus we
have an initial object in x ↓ G, meaning G admits left adjoint.

4.5 The Special Adjoint Functor Theorem

Our new objective is to get rid of the solution set condition: for that we need to define
some objects and properties:

Definition 4.5.1 (Subobjects).
Given a category C, a subobject of x ∈ ob(C) is an isomorphism class of monomorphisms
s↪ x (two morphims a→ x b→ x are said to be isomorphic if exists an isomorphism a→ b
that makes the triangle commute).

Definition 4.5.2 (Well-powered categories).
A category is well-powered if every object has a small poset of subobjects, i.e. if the category
subC(x) of its subobjects is a small poset (antisymmetric preorder, i.e. there is no pair of
morphisms a⇆ b for any pair of objects a, b).

Definition 4.5.3 (Generating families).
A generating family for a category C is a family of objects S ∶= {si}i∈I so that every object
x ∈ C can be written as the quotient of a S-indexed coproduct, i.e.

44

4 Adjoint functors and the Adjoint functor theorem

for each object x ∈ C exists a map
ϵx ∶∐ si → x

and that map is an epimorphism.

The dual concept is

Definition 4.5.4 (Cogenerating families).
A cogenerating family for a category C is a family of objects S ∶= {si}i∈I so that every object
x ∈ C can be included in a S-indexed product, i.e.

for each object x ∈ C exists a map
ηx ∶ x→∏ si

and that map is a monomorphism.

Theorem 4.5.5 (Special Adjoint Functor Theorem). [Bor94]
Let A be a complete, well-powered category with a cogenerating family, F ∶ A→ B a functor,
then

F is continuous Ô⇒ F admits left adjoint.

Proof.
We just need to prove the solution set condition for every object b ∈ B. To do this we pick
a cogenerating family in A (ui)i∈I , then look at the product

Pb ∶=∏
i∈I
u
∣B(b,Fui)∣
i

(where u∣B(b,Fu)∣ means as many copies of u as elements of the set B(b,Fu)) and define

Sb ∶= {subobjects ofPb}

We want to prove that Sb is a solution set for b: let a ∈ A, g ∶ b → Fa, we need to find an
mor(Sb) ∋ j ∶ s→ a, g′ ∶ b→ Fs so that Fj ⋅ g′ = g. The pull-back

s ∏u
∣B(b,Fu)∣
i

a ∏u
∣(b,Fu)∣
i

k

j

α

β

⌟

of α,β gives us an element s ∈ ob(Sb) with a morphism j ∶ s→ a

meaning that applying F (which is continuous) to the diagram means that Fs is still a

45

4 Adjoint functors and the Adjoint functor theorem

pullback, i.e. ∀b ∈ ob(B) including our chosen b

b

Fs ∏Fu
∣B(b,Fu)∣
i

Fa ∏Fu
∣(b,Fu)∣
i

Fk

Fj

Fα

Fβ

⌟g

∃! g′

Any g ∶ s→ a factors uniquely through a morphism Fj ∶ Fs→ Fa.

46

CHAPTER 5

Applications of the Adjoint functor theorem

5.1 In Geometry and Topos Theory

5.1.1 Topoi

We’re not new to non-set structures (we talked about abstract categories before) but we
like Set since it has nice properties, like computing limits pointwise, completeness, subsets,
etc.

In the category of Sets a stronger version of Freyd’s theorem holds:

Theorem 5.1.1 (AFT in Set).
Given a functor F ∶ Set→ Set, F is continuous ⇐⇒ it has left adjoint.

That is because, of course, Set has all the properties descripted in the SAFT. Can we
generalize the category of sets to some kind of categories in which the same is true?

Definition 5.1.2 (Topoi). [Wra90]
A Topos (pl. Topoi) is a category that

• Has finite limits,

• Is cartesian closed,

• Has a subobject classifier.

Where having finite limits means that it contains the limit of any diagram indexed by a
finite category (category with a finite number of morphisms).

We are left to define what’s a cartesian closed category and what’s a subobject classifier:

47

5 Applications of the Adjoint functor theorem

Definition 5.1.3 (Cartesian closed categories). [Pet89]
A category C is Cartesian closed if for each x ∈ ob(C) the endofunctor x × _ ∶ C → C has
right adjoint.

This definition is not as intuitive as we usually like them to be, let’s develop it:

The functor _ × x has a right adjoint, meaning that there is a functor that we’ll call _x so
that ∀y, z ∈ ob(Set) Set(x × y, z) ≃ Set(y, zx).

That’s what we usually call "currying":

C(x × y, z) C(y, zx)

(x, y)↦ f(x, y) (y)↦ f(x)(y)

≃

Meaning that the right adjoint we’re look for is the exponential object; If we’re dealing
with Set or a concrete category the exponential object is exactly the set zx of morphisms
from z to x or its preimage under the forgetful functor if it exists. in fact the functor
Set(x,_) is left adjoint to x × _ .

And

Definition 5.1.4 (Subobject classifier). [Sau93]
In a category C with finite limits, a Subobject classifier is a monomorphism ⊺ ∶ ∗ → ω
(where ∗ is the terminal object of C) so that for each monomorphism u→ x ∈ C there is an
unique morphism χu ∶ x→ ω so that

u ∗

x ω

⊺

χu

⌟

is a pullback diagram.

Again, this is convoluted. Let’s deconstruct it:

In Set we have subsets: y′ ⊂ y ⇐⇒ (x ∈ y′ Ô⇒ x ∈ y)

I.e. there is a function χy′ ∶ y → {⊺,�}

χy′(x) =
⎧⎪⎪⎨⎪⎪⎩

⊺ if x ∈ y′

� if x ∈ y ∖ y′

This uses Boolean, binary logic, but it doesn’t matter: we don’t even need the false element.

We can modify the function as χy′ ∶ y → ω

χy′(x) ≡ ⊺ ∀x ∈ y′

48

5 Applications of the Adjoint functor theorem

meaning that looking at the inclusion y′ ↪ y then picking out any element in y′ (y′ → ∗)
results in it being "true" (inside y), thus the commutativity of the square.

We would like Set’s AFT to hold for any pair of topos but sadly it doesn’t.

This leads us to talk about Grothendieck topoi, which intuitively are "not-too-big-not-too-
small" topoi.

5.1.2 Sheaves and Sites

(Most of this section is derived from [Car])

Definition 5.1.5 (Presheaves on a topological space).
A Presheaf F on a topological space (X,τ) consists of

• A set F(U)∀U ∈ τ ,

• A morphism ru,v ∶ F(U)→ F(V) for each U ⊆ V so that rU,U = 1F(U) and ∀U ⊆ V ⊆
W ru,w = rv,w ⋅ ru, v.

Morphisms of presheaves F → G are collections of maps F(U)→ G(U) compatible with the
restrictions r_,_ .

We can see the functorial nature of these items. A stronger notion is the Sheaf:

Definition 5.1.6 (Sheaves on a topological space).
A Sheaf F on a topological space (X,τ) is a presheaf on (X,τ) so that ∀U ∈ τ if {Vi}i∈I is
an open covering of U then

• Taken a pair of elements s, t ∈ F(U), s∣Vi
= t∣Vi

∀i Ô⇒ s = t,

• Taken an element si for each Vi, if si∣(Vi∩Vj) = sj∣(Vi∩Vj) then ∃s ∈ F(U) so that s∣Vi
= si.

Morphisms of sheaves are morphisms of the underlying presheaves.

Categorizing these notions, for any topological space (X,τ) exists a category O(X), the
poset category corrresponding at the lattice of open sets of the topological space X with
the inclusion, meaning that sheaves and presheaves are functors O(X)op → Set.

A morphism of presheaves is nonother than a natural transformation between presheaves
(morphism that mantains structure), meaning that SetO(X)op (presheaves on a topological
space) is a category.

Trying to move from topological spaces regarded as categories to categories in general.
We have that inclusions generalize seemlessly to arrows, while coverings are a little less
immediate.

Definition 5.1.7 (Presieves and Sieves).
Given a category C a Presieve Pc is a collection of arrows with codomain c, a Sieve Sc is a
presieve in which ∀f ∶ a→ c ∈ S∀g ∶ b→ a ∈mor(C), fg ∈ S.

49

5 Applications of the Adjoint functor theorem

This means we can define the categorical equivalent to a topology.

Definition 5.1.8 (Grothendieck Topologies).
A Grothendieck Topology on a small category C is a map J ∶ c↦ {collections of sieves on c}
so that

• If Sc is a sieve in J(c) then ∀ g ∶ d→ c the pullback g ∗ Sc is a sieve in J(d),

• If Sc is a sieve on c so that Sd = ⋃d{g ∶ d → c∣g ∗ Sccoversd} contains a sieve of J(c)
then Sc ∈ J(c),

• The maximal sieve (collection of all arrows with codomain c, corresponding to the
functor C(_, c)) is in J(c);

Meaning that a presheaf becomes just a functor Cop → Set.

Definition 5.1.9 (Presheaves on a category).
A Presheaf on a category C is a functor P ∶ Cop → Set.

The last generalization is the one regarding the two points in the definition of sheaves on
a topological space:

Definition 5.1.10 (Matching families and Amalgamations).
Fixed a Presheaf P ∶ Cop → Set and a sieve Sc we call a Matching family for Sc a map
α ∶ (f ∶ d→ c)↦ xf ∈ P (d) so that ∀g ∶ e→ d Pg xf = xfg.

Given a matching family, an Amalgamation is a single element x ∈ Pc ∶ Pf x = xf∀f ∈ Sc.

Definition 5.1.11 (Sites, Sheaves on a site).
We call a Site the pair (C,J) where C is a category and J a Grothendieck Topology.

Given a site (C,J), a presheaf on C is called a J-sheaf if every matching family for any sieve
in J has an unique amalgamation.

Finally we call Sh(C,J) of sheaves on the site (C,J) the full subcategory of SetCop formed
by the J -sheaves.

5.1.3 Adjoint Functor Theorem for Grothendieck Topoi

All this is to finally define the Grothendieck Topos:

Definition 5.1.12 (Grothendieck Topoi).
A Grothendieck Topos is a category equivalent to the category of the sheaves on a site.

It’s quite interesting to show that this is in fact a topos. First though we show that The
presheaf category is a topos:

Theorem 5.1.13 (The Presheaf Category is a Topos). [Ell]
Given a small category C, the functor category SetCop (also called presheaf category on C) is
a topos.

50

5 Applications of the Adjoint functor theorem

Proof.
We need to prove that SetCop

has a subobject classifier, finite limits and is cartesian closed.
To prove that we have a subobject classifier we use the Sieves: fixed an object c Since
Mc is a sieve we can define a map (a natural transformation) ⊺ ∶ 1 → Ω where Ω is the
collection of sieves over c.

This actually works as a subobject classifier: Suppose G ≤ F are presheaves. For each
morphism f ∶ c → d ∈ mor(C) we have a function Fd → Fd (the restriction x∣f) in Set
which may or may not take an element Fd into Gc ≤ Fc. Given x ∈ Fd we write

ϕd(x) = {g∣cod(g) = d, x∣g ∈ G(dom(g))}

then ϕd(x) is a sieve on d and ϕ ∶ F → Ω is a natural transformation of presheaves.
Moreover ϕd(x) is the maximal sieve Md ⇐⇒ x ∈ Gd meaning the subfunctor G is the
pullback

G 1

F Ω

⊺

ϕ

⌟

meaning that ϕ, if unique, is a subobject classifier in SetCop
.

ϕ is unique, since for any other candidate map ψ, the pullback condition implies x∣f ∈
Gc ⇐⇒ ψc(x∣f) = ⊺c(1) = Mc by the naturality of ψ this is equivalent to ψd(x)∣f = Mc

meaning f ∈ ψd(x) i.e. ψd = ϕd ∀d.

Now we need exponential objects: the obvious choice would be GFc = hom(Fc,Gc) but
sadly it’s not a functor of C. looking at the definition we need that

hom(H ×F ,G) ≃ hom(H,GF)

Using the yoneda embedding, we can define

GFc = hom(C(c,_) × F,G)

which clearly acts as an exponential object.

The fact that the category of presheaves over a small category is a topos means that its
reflective subcategory of sheaves over a small site is a topos too.

Theorem 5.1.14 (AFT For Grothendieck Topoi).
Let A,B be Grothendieck Topoi, F ∶ A → B a functor. if F is continuous then F has left
adjoint.

Sketch of proof.
We need to show that Sh(C,J) is complete, well powered and has a cogenerating family:

• Completeness is a given: we can compute limits pointwise like we did for Set in
chapter 3, using 1Sh(C,J) = the functor sending every object to the singleton set.

51

5 Applications of the Adjoint functor theorem

• To show that Sh(C,J) isWell-Powered we can show that the subobjects (character-
ized before in SetCop

) form a complete Heyting Algebra, there’s a complete proof
in section III.8 of [Sau94].

• As a Cogenerating family we use the inclusions in the product of power objects
Ωc where c ranges over representables functors for (C,J) and Ω is the Truth value
object described in the latest sections.

52

5 Applications of the Adjoint functor theorem

5.2 In Module Theory

5.2.1 Abelian categories

Another interesting application comes from the algebra of modules.

What we’ve seen so far are "plain" categories, categories where the arrows didn’t have any
structure.

We know more than one example where that’s not the whole picture: given U,V vector
spaces hom(U,V) is itself a vector space.

Definition 5.2.1 (Enrichment).
Given a categoryC, aC-enriched categoryD is a category for which ∀x, y ∈ ob(D)D(x, y) ∈
ob(C) .

For example, we saw a few lines upward that Vect is a Vect-enriched category.

The enrichment on Ab, the category of abelian groups and abelian group homomorphisms
allows us to define preadditive and additive categories:

Definition 5.2.2 (Preadditive and Additive categories).
A Preadditive category C is an Ab-enriched category in which the composition of morphisms
distributes on the sum, i.e.

• C(a, b) ∈Ab ∀ a, b ∈ ob(C),

• ∀f, g ∶ a→ b h, k ∶ c→ a
f(h + k) = fh + fk , (f + g)h = fh + gh.

An Additive category is a preadditive category with finite coproducts and a zero-object.

In this context finite products and coproducts coincide, we call those "biproducts" or direct
sums, using the symbol ⊕.

We want one more thing, we want kernels, cokernels, images and coimages as we are
used to with abelian groups. let’s define them:

Definition 5.2.3 (Kernel, Cokernel, Image, Coimage).
Given a map f ∶ a→ b in an additive category C we call

• Kernel ker(f) the pullback
ker(f) a

0 b

f
⌟

53

5 Applications of the Adjoint functor theorem

• Cokernel coker(f) dually, the pushout

a 0

b coker(f)

f ⌟

• Image im(f) the equalizer

b b ⊔a b where a b

b b ⊔a b

f

f ⌟

• Coimage coim(f) dually, the coequalizer

a ×b a a where a ×b a a

a b

f

f

⌟

It’s easier though to think of the image as the quotient b/ker(f) and the coimage as
a/ coker(f), even though we haven’t really defined what a quotient space means in this
context.

Now we can define preabelian and abelian categories:

Definition 5.2.4 (Preabelian and Abelian categories).
A Preabelian category C is an additive category in which ∀ f ∈mor(C) ∃ ker(f), coker(f)
and the diagram

ker(f) a b coker(f)

coim(f) im(f)

f

f̄

commutes.

An Abelian category is a preabelian category in which the f̄ defined in the diagram is an
isomorphism.

As we usually do,we define objects andmorphisms, so what’s a morphism between abelian
categories?

Definition 5.2.5 (Additive functors).
Given two preadditive categories C,D, a functor F ∶ C → D is Additive if C(x, y) →
D(Fx,Fy) is a morphism between abelian groups.

54

5 Applications of the Adjoint functor theorem

and

Definition 5.2.6 (Exact Functors).
A functor F ∶ A→ B between abelian categories is

left-exact if it preserves direct sums and kernels and

right-exact if it preserves direct sums and cokernels.

5.2.2 Modules over a Ring

We know how vector spaces work: we can build a n-dimensional space from a field by
setting elements of a field in different dimensions.

For example, a 2-D vector space on R is {α(1,0) + β(0,1) ∶ α,β ∈R}.

If we loosen the condition of having a field, what we obtain doesn’t have the same prop-
erties: to say one we don’t have commutativity as a given anymore.

This sort of vector spaces on a Ring R are called R−Modules, and they -obviously- have
their own category Mod−R.

Lemma 5.2.7 (Abelianity of Mod−R).
Mod−R is an abelian category.

Proof.
This proof is omitted but can be found in [Dat].

We want to show some important properties of Mod−R:

Lemma 5.2.8 (Cocompleteness of Mod−R).
Mod−R is cocomplete.

Sketch of proof.
We need to show that Mod−R has all coproducts and all binary coequalizers.

Coproducts in ModR are direct sums as we’re used to in vector spaces: given two modules
m = {(m1, ...,mk, ...)}, n = {(n1, ..., nl, ...)} ∈Mod−R , we define

m⊕ n = (m1, n1, ...mk, nk, ...,ml, nl, ...)

and we know that this kind of reasoning works for direct sums of any size.

Coequalizers in preadditive categories are defined as cokernels: coeq(f, g) = coker(g − f)
which we can quickly make sense of by dualizing eq(f, g) = ker(g − f), trivial.

Since in an abelian category we have all cokernels, we have all coequalizers.

A similar argument can prove completeness but we don’t care right now.

55

5 Applications of the Adjoint functor theorem

Lemma 5.2.9 (Co-well-poweredness of Mod−R).
Mod−R is co-well-powered, i.e. Mod−Rop is well-powered.

Sketch of proof.
This is true if and only if any object of Mod−R has a small poset of sup-objects. we know
that Mod−R forms a poset with inclusions, the category m⊕ Mod−R of the direct sums
with an object m is again a poset of objects bigger than m.

Lemma 5.2.10.
Mod−R has a generating family.

Sketch of proof.
Any large enough direct sum of R with itself acts as a generator (any map onto any object
is a projection Ô⇒ an epimorphism), meaning {R}i∈I is a generating family.

5.2.3 AFT in module categories

The Special Adjoint functor theorem can be used to prove a theorem about adjunctions
between module categories.

A more complete version of the theorem with an alternative proof (that doesn’t use the
SAFT) can be found in [Ste75] as proposition 10.1.

Theorem 5.2.11.
A functor S ∶ Mod−A→Mod−B has a right adjoint ⇐⇒ S is right-exact

Proof.
We want to use the dual SAFT: given a cocomplete, co-well-powered category A with a
generating family:

F ∶ A→ B has right adjoint ⇐⇒ it is cocontinuous.

The dual SAFT holds since if we define F op ∶ Aop → Bop where A is cocomplete, co-
well-powered and with a generating family, Aop will be complete, well-powered and with
a cogenerating family, meaning it satisfies the conditions for the SAFT, giving that F op

56

5 Applications of the Adjoint functor theorem

continuous ⇐⇒ it has left adjoint. ∀ diagram D ∶ J → A (and Dop ∶ J → Aop)

x y F opx F opy

LimD LimF opD

x y Fx Fy

CoLimDop CoLimFDop

f F opf

f Ff

clearly F op cocontinuous ⇐⇒ F cocontinuous, and a right adjoint Gop ⊢ F op

Bop(F opx, y) ≃ Aop(x,Gopy)

yields
B(y,Fx) ≃ A(Gy,x)

meaning G is left adjoint to F .

We’ve already proven that Mod−R is cocomplete, co-well-powered with a generating
family for any ring R, we just need to see that a right-exact functor is cocontinuous.

We know that a functor is cocontinuous if it preserves direct sums and binary coequalizers,
since we defined direct sums as coproducts and coequalizers as cokernels in the previous
sections we know it is true.

57

5 Applications of the Adjoint functor theorem

5.3 In Topological Algebra

In section 5.1 we did some topology to algebraic structures (categories in this instance).
What about the converse? Can we "do algebra" on topological structures?

In this section we will discuss Algebraic categories and their topological counterparts.

Intuitively an algebraic category is a category of "sets with some algebraic structure": in
this sense the categories of groups, rings and vector spaces are all algebraic categories.
How do we formalize this notion in a categorical sense?

5.3.1 Monads and Beck’s theorem

First we need to talk about monads and specifically monads that arise from adjunctions.

Definition 5.3.1 (Monads).
Given a category A, a Monad on A is an endofunctor T ∶ A→ A equipped with two natural
transformations η ∶ 1A ⇒ T,µ ∶ T 2 ⇒ T so that both

T 3 T 2 T T 2

T 2 T T 2 T

Tµ

µT

µ

µ

ηT

Tη µ

µ

(where Tnx = T (T (...Tx))(n times)) commute.

The name is not random at all: this is in fact a monoid in AA.

One could think that such a behaviour could arise from composing adjoint functors F ⊣ G,
using T = GF,η = η (the unit of the adjunction) and µ = Tϵ (where ϵ is the counit) but
unfortunately not every adjunction can be promoted to a monad. In fact we call a functor
monadic if its adjoint composes into a monad.

Definition 5.3.2 (Monadic functors).
A functor F ∶ A → B is Monadic if it has left adjoint G and (GF,η,GϵF) (where η, ϵ are
unit and counit of G ⊢ F) is a monad.

Theorem 5.3.3 (Beck’s monadicity theorem).
A functor F ∶ A→ B is monadic if

• It has left adjoint,

• It creates coequalizers of F-split pairs, where an F-split pair is a parallel pair f, g ∶ x⇉
y ∈ mor(A) so that the pair Ff,Fg ∶ Fx ⇉ Fy has a split coequalizer (coequalizer
which is also a split epimorphism) in B.

Proof.
An accurate (if very long) proof is contained in [Lan71] in section VII.7.1

58

5 Applications of the Adjoint functor theorem

5.3.2 Algebraic categories

The categories we would like to call algebraic (groups, rings, vector spaces, modules,
algebras, ...) have a very strong monad, formed from the adjunction "Free⊣Forgetful" but
not every algebraic category is monadic. We don’t give an accurate definition for what
an algebraic category is since we will never use it and we just need to know that every
monadic category is algebraic.

For example Grp is algebraic: We know the Free group on a set

Fs ∶= {words with elements of s as letters, product by concatenation and cancellation} ∶

the monad T ∶ x → Free(x) sends a group to the free group on its elements. η is the
map including a group x to the free group as strings of length 1 and the µ is the natural
concatenation of strings.

For completeness I will give the definition of Algebraic category but I will not elaborate
on it, we just need the fact that every monadic category is algebraic.

Definition 5.3.4 (Algebraic categories).
A concrete category A, U ∶ A→ Set is Algebraic if

• It has all binary coequalizers,

• It has free objects (objects that act like the adjoints of U),

• U preserves and reflects extremal epimorphisms (an epimorphism e is extremal if e =mn
where m is a monomorphism Ô⇒ m is an isomorphism).

5.3.3 Compact Hausdorff spaces

The theorem we’re going to prove in the following section makes use of topological spaces
and particularly compact topological spaces.

Knowing Top is the category of topological spaces and continuous maps, We can define
the category of compact hausdorff spaces:

Definition 5.3.5 (KHaus).
We call KHaus the subcategory of Top where the objects are Compact Hausdorff spaces .

We can also apply this restriction to other categories:

Definition 5.3.6 (Top −A, KHaus−A).
Let A be an algebraic category, we call Top − A the category of topological algebras on A
so that the algebra operations are continuous, and KHaus−A its full subcategory made of
Compact Hausdorff spaces.

Lemma 5.3.7.
The forgetful functor KHaus→ Set has a left adjoint β ∶ Set→ KHaus .

59

5 Applications of the Adjoint functor theorem

Proof.
The left adjointβ is precisely the functor sending a set into the Stone-Cech compactification
of the corresponding discrete space. This fact is stated and proven as a corollary of theorem
2.1 of [Joh82].

Theorem 5.3.8. [Joh82]
For any algebraic category A the category KHaus−A is algebraic.

Proof.
First we use the AFT to verify the existence of a left adjoint to the forgetfulU ∶ KHaus−A→
Set. It is clear that this functor creates arbitrary limits since the forgetful functorsKHaus→
Set and A→ Set both do so;

The ssc is verified by inducing a map between algebras:

let F ∶ Set → A denote the free functor for A and consider f ∶ x → a sending a set to
a compact hausdorff algebra a. a is an algebra, meaning that f extends uniquely to an
homomorphism of algebras f ′ ∶ Fx→ a whose image is the subalgebra a′.

the closure a′′ of a′ is too a subalgebra of a.

If we further extend f ′ to f ′′ ∶ β(Fx)→ a by the adjunction, the image of f ′′ is precisely
a′′ ∈ ob(KHaus−A), showing that any map f ∶ x → a factors through one for which the
induced map β(Fx) → a is surjective. There is only a set of non-isomorphic maps x → a
with this property, since there’s only a set of surjective images of β(Fx).

We’re now using Beck’s theorem,meaning we have left to prove thatU creates coequalizers
for pairs of maps which become contractible in Set, but given a pair of maps a ⇉ b like
that, its coequalizer b → c inherits a unique algebra structure and a unique hausdorff
topology since the forgetful functors of A and KHaus are both monadic.

The two structures are compatible since bn → cn is a quotient map is a quotient map,
meaning that the algebra operations cn → cn are continuous.

60

Bibliography

[Lan71] Saunders Mac Lane. Categories for the Working Mathematician. Springer Sci-
ence+Business Media New York, 1971. isbn: 978-1-4757-4721-8.

[Ste75] B.T. Stenström. Rings of Quotients: An Introduction to Methods of Ring The-
ory. Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellun-
gen. Springer-Verlag, 1975. isbn: 9783540071174. url: https://books.
google.it/books?id=YYY%5C_AQAAIAAJ.

[Joh82] Peter T. Johnstone. Stone spaces. Cambridge university press, 1982. isbn: 0
521 33779 8.

[Pet89] Andre Scedrov Peter J. Freyd. Categories, Allegories. Elsevier Science Publishers
B.V., 1989. isbn: 0 444 70368 3.

[Wra90] G. C. Wraith. “J. L. Bell. Toposes and local set theories. An introduction. Oxford
logic guides, no. 14. Clarendon Press, Oxford University Press, Oxford and New
York1988, xii 267 pp.” In: Journal of Symbolic Logic 55.2 (1990), pp. 886–887.
doi: 10.2307/2274680.

[Sau93] Ieke Moerdijk Saunders MacLane. Sheaves in Geometry and Logic,A First In-
troduction to Topos Theory. Springer, New York, NY, 1993. isbn: 978-1-4612-
0927-0. doi: https://doi.org/10.1007/978-1-4612-0927-0.

[Bor94] Francis Borceux. Handbook of categorical algebra Volume 1. Encyclopedia of
mathematics and its applications 50-51, 53 [i.e. 52]. Cambridge University
Press, 1994.

[Sau94] Ieke Moerdijk Saunders MacLane. Sheaves in geometry and logic: a first intro-
duction to topos theory. Corrected. Universitext. Springer, 1994.

[Lei14] Tom Leinster. Basic Category Theory. Cambridge University Press, 2014.
[Rie16] Emily Riehl. Category Theory in Context. Dover Publications, 2016. isbn:

048680903X.
[Car] Olivia Caramello. Topos Theory, lectures 7-14: sheaves on a site. url: https:

//www.oliviacaramello.com/Teaching/Lectures7_to_14.pdf.
[Dat] Rankeya Datta. The category of modules over a commutative ring and abelian

categories. url: https://www.math.columbia.edu/~ums/pdf/
Rankeya_R-mod_and_Abelian_Categories.pdf.

61

https://books.google.it/books?id=YYY%5C_AQAAIAAJ
https://books.google.it/books?id=YYY%5C_AQAAIAAJ
https://doi.org/10.2307/2274680
https://doi.org/https://doi.org/10.1007/978-1-4612-0927-0
https://www.oliviacaramello.com/Teaching/Lectures7_to_14.pdf
https://www.oliviacaramello.com/Teaching/Lectures7_to_14.pdf
https://www.math.columbia.edu/~ums/pdf/Rankeya_R-mod_and_Abelian_Categories.pdf
https://www.math.columbia.edu/~ums/pdf/Rankeya_R-mod_and_Abelian_Categories.pdf

Bibliography

[Ell] Patrick Elliot. The category of sheaves is a topos: part one. url: http://
therisingsea.org/notes/ch2018-lecture10.pdf.

62

http://therisingsea.org/notes/ch2018-lecture10.pdf
http://therisingsea.org/notes/ch2018-lecture10.pdf

	Introduction
	Abstract
	Categories, functors and natural transformations
	Categories
	Duality
	Functors
	Naturality and equivalence
	Diagrams
	Initial, Terminal objects, Examples

	Extra: the 2-category of categories

	Universal properties, representability, the Yoneda lemma
	Representable functors
	The Yoneda lemma
	Universal properties and universal elements
	The category of elements

	Limits and Colimits
	Limits and colimits as universal cones
	Limits in Set
	Products, Terminal Objects, Pullbacks and Equalizers in Set

	Preservation, Reflection and Creation of limits

	Adjoint functors and the Adjoint functor theorem
	Adjunctions and adjoint functors
	Unit and Counit
	Adjunctions, limits and colimits
	The Adjoint functor theorem
	The Special Adjoint Functor Theorem

	Applications of the Adjoint functor theorem
	In Geometry and Topos Theory
	Topoi
	Sheaves and Sites
	Adjoint Functor Theorem for Grothendieck Topoi

	In Module Theory
	Abelian categories
	Modules over a Ring
	AFT in module categories

	In Topological Algebra
	Monads and Beck's theorem
	Algebraic categories
	Compact Hausdorff spaces

	Bibliography

