
DEPARTMENT OF INFORMATION ENGINEERING

MASTER’S DEGREE IN COMPUTER ENGINEERING: ARTIFICIAL INTELLIGENCE

AND ROBOTICS

Augmentation and Ensembles: Improving Medical

Image Segmentation with SAM and Deep Networks

Supervisor Graduating

Prof. Nanni Loris Carisi Lorenzo

Co-supervisor

Prof. Fantozzi Carlo

ACADEMIC YEAR 2023-2024

Date of graduation 05/12/2024

This leads to a troubling question: how can these systems be so smart, yet also seem so

limited?

—Yann LeCun

Abstract

This study explores novel ensemble strategies to improve image segmentation performance,

particularly on medical image data. We investigate how the Segment Anything Model (SAM),

despite not being explicitly trained for medical image segmentation, can still produce relevant

information for model training. Building on these insights, we propose augmentation techniques

that integrate SAM information directly into the images, enhancing the learning process of seg-

mentation models. Each proposed augmentation method comes with its unique advantages,

thereby to leverage the strengths of each approach, we introduce AuxMix, a model trained with

three distinct SAM-based augmentation techniques. We conduct experiments on the state-of-

the-art models, evaluating the effects of each technique independently and within an ensemble

framework. The results show that our ensemble strategy, combining complementary informa-

tion from each augmentation, leads to a robust and improved segmentation performance.

v

vi

Contents

1 Introduction 1

2 Material and Methods 5

2.1 The Hybrid Semantic Network (HSNet) Model [26] 6

2.1.1 The Pyramid Vision Transformer (PVT) Encoder 7

2.1.2 Cross-Semantic Attention (CSA) . 10

2.1.3 Hybrid Semantic Complementary (HSC) 11

2.1.4 Multi-Scale Prediction (MSP) . 13

2.2 The Segment Anything Model (SAM) . 14

2.2.1 Image Encoder . 14

2.2.2 Prompt Encoder . 15

2.2.3 Mask Decoder . 15

2.2.4 Efficiency . 15

2.2.5 Training and Losses . 16

2.2.6 Segment Anything Model 2: Extension to Video 16

2.2.7 Fine-tuning of the SA Model . 18

2.3 SAMAug: Augmenting Images with Foundation Model [13] 19

2.3.1 Masks Generation . 20

2.3.2 Augmenting Input Images . 21

2.3.3 Model Training with SAM-Augmented Images 22

2.3.4 Model Deployment with SAM-Augmented Images 24

2.4 Datasets and Methodology . 25

2.4.1 The Kvasir-SEG Dataset [28] . 25

2.4.2 The CVC-ColonDB Dataset [30] . 27

2.4.3 The CVC-ClinicDB Dataset [31] . 27

2.4.4 The ETIS-Larib Polyp Database [33] 29

2.4.5 The CVC-T Dataset [34] . 29

2.5 Evaluation Metrics and Loss Functions . 31

vii

2.5.1 Structure Loss . 31

2.5.2 Q-statistic . 33

2.5.3 Dice Similarity Coefficient (DSC) . 34

3 SegAug: Augmentations and Ensembles 37

3.1 SegPrior RGB . 37

3.1.1 Steps Breakdown . 38

3.1.2 Usefulness of the Algorithm . 38

3.2 SegPrior-Logits RGB . 39

3.2.1 Steps Breakdown . 39

3.2.2 Usefulness of the Algorithm . 40

3.3 SegPrior HSV . 40

3.3.1 Steps Breakdown . 41

3.3.2 Usefulness of the Algorithm . 41

3.4 SegPrior PCA . 42

3.4.1 Steps Breakdown . 42

3.4.2 Usefulness of the Algorithm . 43

3.5 Ensemble Methods . 44

3.5.1 Overview of Ensemble Approaches 44

4 Experiments and Results 47

4.1 Model Training with SAM-Augmented Images 47

4.2 Segmentation Prior Augmentation Evaluation 48

4.3 Ensemble Strategy Evaluation . 48

5 Conclusion 53

Bibliography 63

viii

Chapter 1

Introduction

In April 2023, researchers at Meta, the multi-billion-dollar corporation, introduced a ground-

breaking model named SAM, short for ”Segment Anything Model” [1]. This ambitious model

aims to address the long-standing challenge of semantic image segmentation in Computer Vision

(CV), a task that involves partitioning an image into segments, with each pixel corresponding

to a distinct semantic class [2], an ability that has long been a secret of evolution.

To achieve state-of-the-art (SOTA) performance, the researchers took inspiration from ad-

vancements in Artificial Intelligence (AI), specifically in the field of Natural Language Pro-

cessing (NLP). The introduction of transformers in mid-2017, through the ”Attention is All You

Need” paper by Google researchers [3], enabled Deep Learning (DL) models to capture context

over longer text spans. This advance led to improved generation, comprehension, and transla-

tion capabilities compared to previous methods like recurrent neural networks (RNNs) [4] and

Long Short-Term Memory networks (LSTMs) [5], thus paving the way for what we now call

foundational models, or Large Language Models (LLMs) [6].

A defining feature of these models is their vast number of parameters and their training on

extensive text corpora from the web. This large-scale textual data enables Large LanguageMod-

els (LLMs) to exhibit novel capabilities, collectively referred to as in-context learning. Among

these are few-shot learning, where an LLM can solve a problem based on only a handful of ex-

amples, and zero-shot learning, where it can tackle new problems solely from natural language

instructions, known as prompts.

The SAM project, therefore, emulates the structure of LLMs by implementing an architec-

ture based on Visual Transformers (ViT) [7] for a total of over 600M parameters. This adap-

tation of the transformer model, introduced in mid-2021, successfully adapted the transformer

concept to image segmentation, where Convolutional Neural Networks (CNNs) [8] had previ-

ously dominated as the leading architecture. The architecture was subsequently trained on an

extensive dataset specifically curated by Meta, comprising 11 million images and over 1.1 bil-

1

lion masks. The project achieved remarkable results, with the model effectively segmenting a

wide variety of objects and establishing a new state-of-the-art benchmark in the field.

However, despite SAM’s foundational generalization capabilities, it still lacks domain-

specific expert knowledge, leaving it less effective in certain domains [9], [10], such as medical

image segmentation, where specialized state-of-the-art segmentation models outperform it. The

aim of this work is, therefore, to enhance performance in these specialized domains.

To achieve this, we once again turn to the NLP field. While LLMs offer significant advan-

tages, they are not without flaws, one of which is the phenomenon of hallucinations [11]. In this

context, the model ”perceives patterns or objects that are nonexistent or imperceptible to hu-

man observers, creating outputs that are nonsensical or altogether inaccurate.” To mitigate this

phenomenon, one promising approach is Retrieval-Augmented Generation (RAG) [12], where

LLMs are not used as standalone models. Instead, they are integrated as a component in a

broader pipeline, leveraging external knowledge sources to enhance the quality and accuracy of

their outputs.

Specifically, we adopted the strategy outlined in Zhang et al. [13], where a SAM-based data

augmentation technique is employed to produce new domain-specific images that are then feed

to the domain-specific model in couple with the original ones during training. Data augmenta-

tion [14] is a Machine Learning (ML) approach that uses pre-existing data to create new data

samples that can improve model optimization and generalizability. By introducing relevant pat-

terns and information to the original images, SAM helps to downstream train a domain-specific

segmentation model more effectively.

Building on the work of Zhang et al., we developed alternative methods to their SAMAug

approach, aiming to incorporate additional outputs generated by SAM directly into the images,

instead of relying solely on segmentation masks and stability scores. We experimented with

various techniques to enrich the data. These included alternative combination methods, such as

using Principal Component Analysis (PCA) and variance-based techniques, as well as exploring

diverse channel representations beyond simply adding information to the RGB image channels.

An alternative fundamental deep learning technique in the training process of foundation

models is fine-tuning. Fine-tuning is the process of adapting a pre-trained model for specific

tasks or use cases. In this work, we also explored this technique, specifically to determine

whether it could lead to a performance improvement in our pipeline.

Different SAM-augmentation techniques yield distinct training environments, even when

applied to a shared baseline architecture, resulting in diverse performance outcomes during test-

ing. Each trained model may better segment certain images and underperform on others. To

leverage this, we employ ensemble learning, a meta-learning strategy in machine learning de-

signed to enhance predictive accuracy by integrating the outputs of multiple models, known as

2

base learners.

Ensemble learning combine these models to achieve performance levels that surpass any

single model alone [15]. It is commonly categorized into three main methods: bagging, boost-

ing, and stacking. Typically, ensemble methods generate multiple predictive models by varying

aspects of the training process, such as model parameters, data subsets, or algorithms. The

predictions of these models are then combined, often through averaging or voting, to form the

final output. This strategy offers multiple advantages, including improved prediction accuracy,

reduced overfitting, and greater robustness to noisy data. It is especially effective when base

learners are diverse and exhibit uncorrelated errors. We therefore explore these ensemble ap-

proaches to gain a broader perspective on its potentiality.

(a) original image (b) H-channel (c) PCA-based

Figure 1.1: Augmented versions of the 99th image from the CVC-300 dataset using some of the

proposed methods: H-replacement and PCA-based analysis replacement.

To conduct experiments with the newly introduced SAM-based augmentations, we first fo-

cused on colorectal polyp (CRP) segmentation, a crucial area for early detection and prevention

of colorectal cancer (CRC). CRPs are asymptomatic growths from the inner lining of the colon

or rectum and while they are generally harmless, certain types may become dangerous if un-

treated, leading to cancer. According to Global Cancer Observatory (GCO) 2020 data, CRC is

the second most common cancer and the third leading cause of cancer-related mortality globally,

underscoring the importance of early detection and preventive strategies.

Regular screenings, such as colonoscopies, enable the identification and removal of poten-

tially precancerous adenomatous polyps, lowering the risk of CRC progression. However, these

protrusions vary considerably in size and can blend seamlessly with the surrounding mucosa,

posing identification challenges even for skilled clinicians. With this challenge in mind, our

initial experiments focused on CRP segmentation. We subsequently extended our research to

additional datasets to assess the robustness of the segmentation methods across diverse applica-

tions, including camouflaged object segmentation (both naturally and artificially camouflaged

objects) and rib segmentation.

3

The structure of this thesis is organized as follows.

Chapter 2 provides an overview of the theoretical foundations that underpin our work; it

then introduces the baseline model, HSNet, which serves as a point of comparison for the novel

augmentations and ensembles that we propose.

Chapter 3 details the newly developed models and ensemble techniques, describing the

SAM-based augmentation strategies and the ensemble learning methods employed.

Chapter 4 is dedicated to presenting and discussing the experimental results, with particular

emphasis on the impact of the proposed augmentations on segmentation accuracy across various

domains.

Lastly, Chapter 5 concludes the thesis by summarizing key findings, discussing limitations,

and suggesting potential directions for future work in this area.

4

Chapter 2

Material and Methods

Over the years, convolutional neural networks (CNNs) have become the cornerstone on polyp

segmentation, demonstrating exceptional capabilities in capturing spatial hierarchies and lo-

cal features with remarkable precision [16] [17] [18]. Among these, architectures like UNet

[19] have gained prominence, thanks to their encoder-decoder structure, which effectively bal-

ances feature extraction and reconstruction. However, despite their widespread use, CNN-based

models exhibit certain limitations, such as the loss of fine-grained details for smaller structures

during down-sampling and the semantic inconsistency between encoder and decoder represen-

tations [20] [21]. Furthermore, while CNNs excel at modeling local patterns, they struggle to

capture global context, a crucial element for comprehending the semantic relationships within

an image [22] [23].

In recent years, the introduction of Transformers has brought about a paradigm shift in com-

puter vision, enabling the modeling of long-range dependencies and global relationships through

self-attention mechanisms [3] [7]. This development has led to significant advancements in var-

ious tasks, including medical image segmentation. Transformers offer an enhanced ability to

perceive global context, which is particularly valuable in segmentation tasks. However, their

performance often falls short when recovering fine details during the decoding phase, which

remains essential for producing accurate and high-resolution segmentation masks.

Hybrid models that combine the strengths of CNNs and Transformers have emerged as a

promising direction [24] [25]. These approaches aim to leverage the complementary strengths

of both paradigms: the local precision of CNNs and the global contextual understanding of

Transformers. Nevertheless, many of these solutions rely on straightforward architectural com-

binations, which fail to fully exploit the potential interactions between the two modalities, often

resulting in suboptimal recovery of local details and semantic consistency.

To address these limitations, HSNet [26] was proposed in 2022 as a novel approach to polyp

segmentation. HSNet redefines the integration of CNNs and Transformers by enabling a deeper

5

andmore synergistic interaction between the two. This innovative framework achieves a balance

between global context modeling and local detail preservation, setting a new benchmark for

segmentation tasks and addressing the challenges faced by conventional methods.

2.1 The Hybrid Semantic Network (HSNet) Model [26]

Figure 2.1: (a) Illustration of the HSNet framework, emphasizing its four core components: (b) the

Cross-Semantic Attention (CSA) module, which mitigates semantic discrepancies between encoder and

decoder features; (c) the Linear Efficient Channel Attention (LECA) module, designed to refine fea-

ture selection with minimal computational complexity; (d) the Hybrid Semantic Complementary (HSC)

module, enabling synergistic integration of local and global semantics; and (e) the Multi-Scale Prediction

(MSP) module, which ensures robust segmentation by balancing features across multiple scales. Adapted

from [26].

The architecture of HSNet, depicted in Figure 2.1, is structured around four interconnected

modules, each addressing specific challenges in the task of polyp segmentation:

• PVT Encoder: Responsible for extracting a hierarchical set of features, capturing low-

level characteristics such as texture, color, and edges, which serve as the foundation for

6

subsequent processing.

• Cross-Semantic Attention (CSA): Aims to refine feature representations by suppressing

irrelevant noise in low-level features and aligning them with high-level semantic infor-

mation, thereby bridging the gap between the encoder and decoder stages.

• Hybrid Semantic Complementary (HSC): Combines the strengths of Transformers and

Convolutional Neural Networks (CNNs) to extract and complement diverse semantic

cues, integrating local details with global contextual understanding.

• Multi-Scale Prediction (MSP): Optimizes the segmentation process by leveragingmulti-

scale feature representations with adaptive weighting mechanisms, ensuring smooth gra-

dient propagation and precise predictions at varying scales.

In the following sections, we will analyze the internal mechanics and design principles of

these modules in greater detail, highlighting their contributions to the overall performance of

HSNet.

2.1.1 The Pyramid Vision Transformer (PVT) Encoder

The PVT encoder processes the input in a hierarchical manner, generating multi-scale feature

maps across four stages by progressively reducing spatial resolution and increasing the number

of channels. For an input image of size H ×W × 3, the feature map at the i-th stage is:

Fi ∈ R
H
Si

×W
Si

×Ci , (1)

where i ∈ {1, 2, 3, 4}, Si ∈ {4, 8, 16, 32} represents the spatial stride at the i-th stage, and
Ci ∈ {64, 128, 320, 512} denotes the number of channels at stage i. Each stage consists of the
following components:

• Patch Embedding: The input image is divided into patches, and the spatial resolution is

reduced. These patches are then projected into higher-dimensional embeddings.

• Transformer Encoder Block: The embedded patches, along with positional embed-

dings, are processed by the Transformer encoder, which aggregates features through the

self-attention mechanism.

In this way, the encoder generates a pyramid of feature maps {F1, F2, F3, F4}, where each
successive stage has a coarser resolution and larger channel dimensions, suitable for dense pre-

diction tasks such as object detection and semantic segmentation.

7

Patch Em
b

Enco
d

er

Stage 1

Patch Em
b

Enco
d

er

Stage 2

Patch Em
b

Enco
d

er
Stage 4

Patch Em
b

Enco
d

er

Stage 3

𝐹!:	
𝐻
4 ×

𝑊
4 ×𝐶! 𝐹":	

𝐻
8 ×

𝑊
8 ×𝐶" 𝐹#:	

𝐻
16×

𝑊
16×𝐶# 𝐹$:	

𝐻
32×

𝑊
32×𝐶$

𝐻×𝑊×3

Patch
Embedding

Linear

N
o

rm

Reshape

Transformer Encoder (𝐿%×)

Reshape

Stage i

𝐻!"#𝑊!"#
𝑃!$

×𝐶!

𝐻!"#
𝑃!

×
𝑊!"#
𝑃!

×(𝑃!$𝐶!"#)

𝐻!"#
𝑃!

×
𝑊!"#
𝑃!

×𝐶!

Position Embedding

Element-wise Add

Feature Map
N

o
rm

N
o

rm

Feed
Fo

rw
ard

M
ulti-H

ead
A

ttentio
n

Sp
acial

R
ed

uctio
n

SRA

Figure 2.2: Overall architecture of Pyramid Vision Transformer (PVT). Courtesy of [27]

To efficiently process high-resolution feature maps (e.g., 4-stride), the Spatial Reduction At-

tention (SRA) layer is introduced to replace the traditional Multi-Head Attention (MHA) layer.

Like MHA, the SRA receives a query Q, a key K, and a value V as inputs. However, the

key difference is that the SRA mechanism optimizes the self-attention by introducing a spatial

downsampling step. This process operates as follows:

1. Spatial Reduction of Keys and Values: The key matrixK ∈ RH×W×C and value matrix

V ∈ RH×W×C are downsampled spatially by a factor r (e.g., r = 2), resulting in reduced

versions K̂ ∈ RH
r
×W

r
×C and V̂ ∈ RH

r
×W

r
×C . This reduces the number of spatial elements

that the attention mechanism processes.

2. Computation of Scaled Attention: The scaled dot-product attention is calculated as:

A = softmax

(︄
QK̂

⊤

√
C

)︄
, (2)

where Q ∈ RH×W×C is the query matrix, K̂
⊤
is the transposed reduced key, and C

represents the feature dimension. The softmax function ensures proper normalization of

attention weights across spatial locations.

3. OutputGeneration: The attention weightsA are then applied to the reduced valuematrix

V̂ , producing the refined feature representation:

OPV T = AV̂ . (3)

8

By reducing the spatial scale of K and V , SRA significantly decreases the memory and

computational requirements of the self-attention operation. This makes it particularly effective

for processing high-resolution feature maps, as required in the PVT encoder, without sacrificing

performance.

PVTv2 improvements

PVTv2 introduces several key improvements over PVTv1, addressing limitations like compu-

tational complexity and lack of local continuity in image patches.

1. Linear Spatial Reduction Attention (SRA): Linear Spatial Reduction Attention (SRA) is

an efficient mechanism introduced in PVT v2 to address the high computational cost of tradi-

tional self-attention operations in high-resolution inputs. Unlike the original SRA in PVT v1,

which uses convolutions for spatial reduction, Linear SRA employs average pooling to down-

sample the spatial dimensions to a fixed size (P ×P) before applying the attention mechanism.

This modification reduces computational complexity from quadratic to linear with respect to the

input size, as the cost becomes independent of the spatial reduction ratio R. Specifically, for an

input of size h× w × c, the complexity of Linear SRA is:

Ω(Linear SRA) = 2hwP 2c, (4)

compared to:

Ω(SRA) =
2h2w2c

R2
+ hwc2R2, (5)

in the original SRA. By adopting average pooling, Linear SRA retains performance while

significantly improving efficiency, making it better suited for tasks requiring high-resolution

inputs.

2. Overlapping Patch Embedding To capture local continuity information in images, PVT

v2 employs overlapping patch embedding as a technique for tokenizing images. This method

involves enlarging the patch window and allowing adjacent windows to overlap by half of their

area, ensuring that the local features are better preserved. The feature map is padded with zeros

tomaintain the resolution throughout the process. Overlapping patch embedding is implemented

using convolution with zero padding. Specifically, given an input of size h×w× c, it is passed

through a convolution layer with a stride of S, a kernel size of 2S − 1, padding of S − 1, and c′

output channels. The result is an output of size h
S
× w

S
×c′, effectively capturing local continuity

while reducing spatial dimensions.

9

3. Convolutional Feed-Forward Network PVTv2 incorporates convolutional layers into the

feed-forward network, replacing traditional fully connected layers. This reduces parameters and

enhances the model’s ability to capture spatial features.

HSNet with PVTv2

By incorporating PVTv2 as its backbone, HSNet efficiently captures multi-scale features while

maintaining computational efficiency. The hierarchical structure and SRA mechanism enable

robust feature extraction across varying resolutions, making HSNet well-suited for dense pre-

diction tasks such as segmentation.

2.1.2 Cross-Semantic Attention (CSA)

The architecture incorporates a method to bridge the semantic gap between low-level and high-

level features. The low-level features, while rich in semantic details, often suffer from back-

ground noise, making it difficult for them to effectively integrate with high-level features. To

address this, the architecture uses a lateral connection that combines these features, inspired by

the strengths of both Transformers and Convolutional Neural Networks (CNNs).

The Transformer encoder extracts low-level features, which are then split along the channel

dimension into two parts. Specifically,

Eit ∈ R
H
Si

×W
Si

×Ci
2 and Eic ∈ R

H
Si

×W
Si

×Ci
2 ,

where Eit retains global information and Eic contains local spatial details. Two parallel paths

are employed to process these features: one to extract the 1D channel global descriptor U , and

the other to capture the 2D spatial relationship descriptor Z.

Channel Global Statistical Descriptor from Transformer

For the channel global descriptor, the process begins by applying global average pooling to

compute channel-wise statistics, followed by reshaping the tensor and applying a 1D convolu-

tional layer. The transformation can be formulated as:

U = σ(Rt(E1(R(AvgPool(Eit))))), (6)

Here, AvgPool(·) represents the global average pooling operation, which aggregates global

statistics over channels. The reshaping operation R(·) converts the pooled 2D tensor into a

1D vector, while E1(·) applies a 1D convolutional layer with kernel size k = 5 and stride s = 1.

The operation Rt(·) maps the 1D vector back to 2D space, and σ(·) represents the sigmoid
activation function.

10

Spatial Global Descriptors from CNN

For the spatial global descriptor, a simple convolutional operation is applied to capture local

spatial dependencies. This is formulated as:

Z = σ(F1(Eic)), (7)

where F1(·) is a 3x3 convolutional layer that reduces the output to a single channel, capturing
the spatial relationships in the low-level features.

Interactive Attention Mechanism

The final output feature tensor is obtained by calibrating both the channel and spatial dimen-

sions through an interactive attention mechanism. This process is formulated as:

OHSC = Concat((F2(Eic)⊙ U)⊙ (Eit ⊙ Z)), (8)

In this equation, ⊙ represents the Hadamard product, which performs element-wise multiplica-

tion. The operationF2(·) applies another 3x3 convolutional layer, while Concat(·) concatenates
the results of the channel and spatial information, integrating both global and local semantic fea-

tures.

Through this mechanism, the channel global descriptor U , extracted from Eit , summarizes

the global characteristics retained from the Transformer encoder. Meanwhile, the spatial de-

scriptor Z, extracted from Eic , captures local relationships between adjacent features within the

receptive field.

2.1.3 Hybrid Semantic Complementary (HSC)

In the proposed architecture, the decoder plays a critical role in transforming low-resolution

feature maps into high-resolution segmentation masks. This transformation is achieved through

a progressive up-sampling process that not only models global semantic cues but also recovers

finer details of the features. To balance these two objectives, the authors introduce a Hybrid Se-

mantic Complementary (HSC) module, which is composed of two branches designed to capture

global and local features independently.

Improved Transformer Branch

In the first branch, the authors introduce an enhanced self-attention mechanism to capture

long-range dependencies within the feature maps. Similar to the approach used in Pyramid Vi-

sion Transformer (PVT), the input features are first embedded into overlapping patches using

convolutional layers. These patches are then processed by three fully connected layers to com-

pute the queryQ, keyK, and value V . The affinity matrix is computed by taking the dot product

between the query and key, which is then used to attend to the value tensor. This results in the

11

self-attention output, denoted as OSA. The formula for this process is:

OSA = Softmax

(︃
QKT

√
d

)︃
V, (9)

where d represents the dimensionality of the feature embedding. The resulting OSA is passed

through a Convolutional Feed-Forward module to refine the output, producing OFF , as shown

by:

OFF = OSA + δ (FC,2 (DW (δ (FC,1(OSA))))) . (10)

Here, FC,1(·) and FC,2(·) are linear layers with an expansion rate r = 4, δ(·) denotes the ReLU
activation function, and DW(·) refers to a depth-wise convolution layer.

The query Q and key K are crucial as they carry important contextual information that the

attention mechanism leverages. The authors further enhance the self-attention process by cal-

culating two important descriptors—channel attention U ′ and spatial attention Z ′—after fusing

Q andK. These descriptors help to calibrate the final output OFF . To align the dimensions for

these calculations, the reshaped query and key tensors, Q and K, are expressed as:

Q′ ∈ Rn×di××H×W
Si and K ′ ∈ Rn×di××H×W

Si ,

where n represents the number of heads in the multi-head self-attention (MHSA) layer, and di

is the dimensionality of the feature embedding in the i-th stage. The channel attention U ′ is

computed as:

U ′ = σ (Rt (E2 (R(Avg(Q′ ⊙K ′))))) , (11)

and the spatial attention Z ′ is calculated as:

Z ′ = σ (F3(Q
′ ⊙K ′)) . (12)

The final attention outputOAtt is then obtained by applying both channel and spatial attention

to the self-attention output OFF :

OAtt = OFF ⊙ U ′ ⊙ Z ′. (13)

CNN Branch with Bottleneck

In the second branch, a purely convolutional bottleneck architecture is used to model local

feature details. This branch captures the fine-grained spatial relationships within the feature

map. The output tensor from this branch is expressed as:

12

OConv = δ (OHSC + F6 (δ (F5 (δ (F4(OHSC)))))) , (14)

where F4(·) and F6(·) are 1x1 convolutional layers used to adjust the feature channel dimen-
sions, and F5(·) is a 3x3 convolutional layer used for intermediate feature encoding.

Fusion Strategy

To obtain the final output of the HSC module, the two branches are fused by applying a 2x

upsampling operation to the element-wise product of the attention-enhanced tensorOAtt and the

local detail tensor OConv. The resulting output OHSC is given by:

OHSC = Up (OAtt ⊙OConv) , (15)

where Up(·) denotes the up-sampling operation. This fusion of the global semantic features

from the Transformer branch and the local details from the CNN branch enables the decoder to

progressively refine the segmentation mask.

Finally, the output tensorOHSC of the i-th stage is multiplied byOCSAi
to obtain the decoder

output tensor Di. For the final stage, D4 is computed using a 1x1 feature conversion layer.

2.1.4 Multi-Scale Prediction (MSP)

In the HSNet architecture a multi-scale prediction (MSP) module is also introduced. This mod-

ule employs a learnable mechanism to compute weight coefficients for integrating predictions

across different stages of the network. The design ensures retention of semantic information at

multiple scales while facilitating gradient flow through the network via auxiliary loss functions.

TheMSPmodule processes the decoder outputsDi at various stages by applying four parallel

1× 1 convolutional layers followed by upsampling layers, generating binary masks P1, P2, P3,

and P4. To determine the weight coefficients αi, a compact fully connected network is used.

Initially, D1, D2, D3, and D4 are spatially compressed using global average pooling. These

features are then aligned to the same dimension (m = 64 in this implementation) via 1 × 1

convolutional layers. The aligned features are combined through channel-wise addition and

processed by two consecutive fully connected layers, culminating in the generation of αi using

the sigmoid activation function.

The final output mask Omask is obtained through an adaptive weighted addition of the up-

sampled stage predictions. This process is expressed as:

Omask =
∑︂
i

Upi(Pi)αi, (16)

where Upi(·) denotes the upsampling operation applied to Pi with magnifications of

13

{4, 8, 16, 32} for i ∈ {1, 2, 3, 4}.

Implementation Framework and Architectural Modifications

To conclude, HSNet is a powerful segmentation model that was selected as the foundation for

our work due to its strong performance in complex segmentation tasks. The experiments in this

project were carried out using the PyTorch framework, with the optimization process guided

by the AdamW algorithm. The model was trained over 100 epochs to strike a balance between

computational efficiency and the risk of overfitting. The learning rate was initially set to 5 ×
10−5, with a reduction by a factor of 0.5 applied after the 15th and 30th epochs. Due to the small

size of the training set, all available data was used for training, and the final epoch weights were

adopted as the trained model.

A key aspect of the training process was the employment of the structure loss function de-

tailed in 2.5.1.

In terms of model architecture, one significant adjustment was the removal of the normaliza-

tion layer, typically employed in standard segmentation models to scale outputs between 0 and

1. While this is effective when foreground structures are consistently present, medical datasets

often feature images with varying foreground content or even the absence of foreground struc-

tures. By removing the normalization layer, the model gained greater flexibility, allowing it to

handle such variations without compromising its ability to generalize across different domains.

These architectural and methodological adaptations were essential in optimizing the model

for cross-domain segmentation tasks, ensuring that it could effectively process diverse datasets,

including those with camouflaged ribs and other domain-specific features.

2.2 The Segment Anything Model (SAM)

The Segment Anything Model (SAM) is an advanced model for flexible and promptable im-

age segmentation. SAM enables real-time, interactive segmentation by utilizing pre-trained

vision models and efficient processing techniques. The model is composed of three primary

components: the image encoder, the flexible prompt encoder, and the fast mask decoder. These

components work together to process images and generate segmentation masks based on various

input prompts.

2.2.1 Image Encoder

SAM’s image encoder is based on aVision Transformer (ViT), specifically a pre-trainedMasked

Autoencoder (MAE), which has been adapted to handle high-resolution inputs. This encoder

14

processes each image independently and generates an image embedding that is then passed on

for further processing in the next stages. By leveraging the powerful pretraining methods of the

ViT, SAM can scale efficiently and produce high-quality results. The image encoder plays a

critical role in ensuring that SAM works effectively with large-scale, high-resolution images.

2.2.2 Prompt Encoder

The flexibility of SAM arises from its prompt encoder, which allows it to accept different types

of inputs (referred to as ”prompts”) that guide the segmentation task. These prompts can be

categorized as follows:

• Sparse Prompts: These include points, bounding boxes, and text. Points and boxes are

represented through positional encodings combined with learned embeddings, while text

is processed by a CLIP-based encoder that handles free-form textual descriptions.

• Dense Prompts: These involve segmentation masks, which are embedded using convo-

lutional layers and then combined with the image embedding.

The prompt encoder is responsible for transforming these varied inputs into embeddings that

are used by the mask decoder. This enables SAM to adapt to a wide range of segmentation tasks

based on the type of prompt provided by the user.

2.2.3 Mask Decoder

The mask decoder is responsible for generating the final segmentation mask from the image and

prompt embeddings. The decoder utilizes a modified Transformer architecture that incorporates

both self-attention and cross-attention mechanisms. This allows the model to refine its segmen-

tation results by considering both the image content and the provided prompts. After processing

the embeddings through several layers, the decoder outputs a mask indicating the foreground

probability for each pixel in the image.

To handle ambiguity in segmentation, SAM generates multiple masks (typically three) for

each prompt. These masks represent different levels of granularity of the object: the whole

object, parts of the object, and subparts. The model assigns a confidence score (estimated In-

tersection over Union, or IoU) to each mask, which helps rank the masks and select the most

appropriate one.

2.2.4 Efficiency

SAM is designed with a strong emphasis on efficiency. The model is optimized to run in real-

time, with the entire process—from prompt encoding to mask decoding—completing in approx-

15

imately 50 milliseconds per image on a standard CPU. This fast runtime is essential for enabling

interactive applications, where users provide prompts and receive segmentation results instantly.

2.2.5 Training and Losses

SAM is trained for promptable segmentation using a combination of focal loss and Dice loss.

During training, the model learns to predict segmentation masks based on randomly sampled

prompts, simulating an interactive environment. This training setup enables SAM to perform a

wide variety of segmentation tasks, making it versatile for many real-world applications.

Figure 2.3: SAM pipeline scheme, courtesy of [1]

2.2.6 Segment Anything Model 2: Extension to Video

SAM2 extends the capabilities of the Segment Anything Model (SAM) to the video domain.

It allows segmentation based on point, box, and mask prompts on individual video frames to

define the spatial extent of objects to be segmented across time. While SAM operates in a

similar manner spatially for each frame, SAM2 integrates temporal information by leveraging

memories of past predictions and prompted frames.

Spatial and Temporal Integration

Spatially, SAM2 behaves similarly to SAM. The model uses a promptable, lightweight mask

decoder to process image embeddings and prompts, outputting a segmentation mask for each

frame. Prompts can be iteratively added to refine masks.

The major difference in SAM2 is its use of memory for temporal integration. The frame

embedding used by SAM2’s decoder is conditioned not only on the image encoder’s output but

also on the memory of previous frame predictions and prompts. This allows SAM2 to handle

video frames that may include future prompts relative to the current frame. Memories are cre-

ated by the memory encoder based on past predictions and stored in a memory bank for use in

subsequent frames.

16

Memory Attention

Memory attention is a crucial feature in SAM2, allowing the model to condition the current

frame’s features on past frames’ features and predictions, as well as any new prompts. The

memory attention mechanism operates using multiple transformer blocks, with the first block

taking the current frame’s image encoding as input. These blocks perform self-attention, fol-

lowed by cross-attention to memories of previous frames and object pointers, stored in the mem-

ory bank. This design enables SAM2 to effectively utilize both spatial and temporal features for

segmentation.

Image Encoder and Mask Decoder

SAM2’s image encoder follows a streaming approach for processing videos in real-time. It pro-

cesses frames sequentially, consuming each frame as it becomes available. The image encoder

is based on a hierarchical MAE (Masked Autoencoder) pre-trained model, which allows SAM2

to utilize multiscale features during mask decoding.

The prompt encoder and mask decoder are similar to those in SAM. The prompt encoder

can handle sparse prompts (clicks, boxes, masks) and dense prompts (mask embedding). The

decoder predicts multiple masks for ambiguous prompts, selecting the mask with the highest

predicted Intersection over Union (IoU) when ambiguity remains.

Memory Encoder and Memory Bank

The memory encoder generates a memory by combining downsampled mask outputs with un-

conditioned frame embeddings. These memories are stored in a memory bank, which maintains

information about past frames and prompts. The memory bank employs a FIFO queue, storing

memories of up to N recent frames and M prompted frames. The memory attention cross-

attends to both the spatial memory features and object pointers to ensure accurate segmentation.

Training Process

SAM2 is trained jointly on image and video data in an interactive manner. During training,

sequences of frames are sampled, with up to 2 frames being prompted for correction. The model

learns to sequentially predict ground-truth masklets, using initial prompts that are either the

ground-truth mask, a positive click, or a bounding box. This training setup enables SAM2 to

generalize across both spatial and temporal domains, making it suitable for video segmentation

tasks.

17

2.2.7 Fine-tuning of the SA Model

In this work, we build upon the approach of previous researchers to fine-tune the Segment Any-

thing Model (SAM) on a custom medical image dataset. The objective was to adapt SAM’s

pre-trained capabilities to improve its segmentation performance in the context of medical im-

ages, which present unique challenges such as variations in tissue types, lesion characteristics,

and imaging modalities. By fine-tuning SAM, we leverage its ability to generalize from large-

scale datasets while tailoring it to specific medical tasks.

The methodology we employed for fine-tuning SAM follows the steps outlined in prior

studies that have successfully adapted SAM to medical image segmentation. Specifically, we

utilized a medical dataset consisting of pairs of images and their corresponding ground truth

masks, where the masks represent key anatomical structures, such as tumors or lesions.

We adapted the dataset for training by generating bounding box prompts from the ground

truth masks. These bounding boxes were used as simplified representations of the regions of

interest (ROI) to guide SAM during the segmentation process. SAM, which takes both image

input and bounding box prompts, was fine-tuned to predict segmentation masks based on these

inputs.

The training process was based on a custom loss function, derived from the MONAI frame-

work, which combines the Dice similarity coefficient and cross-entropy loss. This combination

is well-suited for segmentation tasks, as it balances the need for accurate pixel-wise classifica-

tion with the ability to measure overlap between predicted and true segmentation masks. Specif-

ically, the loss function is defined as follows:

L = λdice · Ldice + λce · Lce (17)

where Ldice is the Dice loss described in section 2.5, Lce is the cross-entropy loss also de-

scribed in section 2.5, and λdice, λce are weight parameters that balance the contributions of each

component.

The fine-tuning process involved initializing SAM with pre-trained weights and only up-

dating the parameters related to the mask decoder. The rest of the network—comprising the

vision encoder and prompt encoder—was kept frozen to prevent overfitting and preserve the

generalization capabilities learned from large, diverse datasets. Training was performed over

a few epochs, during which the model progressively refined its segmentation capabilities by

minimizing the overall loss.

18

2.3 SAMAug: Augmenting Images with Foundation Model

[13]

To address the limitations of SAM in domain-specific segmentation tasks, various approaches

have been proposed to adapt its capabilities. Among these, one particularly promising is the

SAMAug [13] method introduced in 2023, which serves as the foundation for this thesis.

SAMAug improves medical image segmentation by utilizing the segmentation masks and sta-

bility scores generated by SAM. Instead of fine-tuning SAM, it employs a parameter-free fu-

sion function to combine SAM’s outputs with raw input images, creating augmented inputs for

task-specific segmentation models. This method allows the segmentation model to benefit from

SAM’s foundational strengths while being trained on domain-specific datasets, proving effec-

tive across different medical segmentation tasks using both CNNs and Transformers.

Figure 2.4: Overview of the SAMAug method: integration of SAM-generated segmentation

masks with raw input images through a parameter-free fusion function, enhancing task-specific

medical image segmentation models. Courtesy of [13]

This section therefore introduces the SAMAug method, detailing how it utilizes segmenta-

tion and boundary prior maps generated by SAM to augment input images for medical segmen-

tation tasks. The process begins with the creation of segmentation and boundary prior maps,

which are combined with the raw input image to produce augmented inputs. These augmented

inputs are then employed to train task-specific segmentation models, incorporating both raw

and augmented images into the learning objective. Finally, the section discusses how SAMAug

enhances model deployment through ensemble predictions or confidence-based selection, im-

proving segmentation accuracy for domain-specific applications.

19

2.3.1 Masks Generation

In the process of generating segmentation masks, SAM leverages a grid-based approach to han-

dle a variety of plausible object locations in an image. When given a specific image, SAM pro-

duces multiple segmentation masks at different potential positions, each reflecting a possible

region of interest. These masks are then stored in a list, each accompanied by a corresponding

stability score, which quantifies the confidence of the mask’s accuracy. The higher the score,

the more reliable the mask is in representing an actual object in the image.

To construct a comprehensive view of the segmented regions, the first step is to generate

two key outputs: the segmentation prior map and the boundary prior map. The segmentation

prior map, denoted as priorseg, combines all individual segmentation masks, weighted by their

stability scores. This process aggregates the segmented regions into a unified representation of

where objects are most likely to be located within the image.

The boundary prior map, priorboundary, serves a slightly different purpose. Instead of focusing

on the full segmentation, it only considers the outer boundaries of each detected region. These

boundaries, when combined, form a map that highlights the edges of the segmented objects,

providing additional spatial context to the overall scene.

Mathematically, we can express the segmentation prior map as follows:

priorseg =
N∑︂
i=1

stabilityi ·Mi (18)

whereMi is the i-th segmentation mask, stabilityi is the stability score associated with that

mask, and N is the total number of masks. The idea here is that each mask contributes to the

final prior map in proportion to its reliability.

For the boundary prior map, we look at the boundary of each mask, denoted by ∂Mi. These

boundaries are combined to create the final map:

priorboundary =
N∑︂
i=1

∂Mi (19)

This formula shows how the boundaries of all masks are accumulated to form a comprehen-

sive view of the object boundaries within the image.

To help understand the process better, Figure 2.5 provides visual examples of both prior

maps. The second column of the figure shows the segmentation prior map, which is a composite

of all the masks that SAM generated, with each mask’s contribution weighted by its stability

score. The third column displays the boundary prior map, where we see only the boundaries of

the segmented regions, highlighting the edges of the objects in the image.

20

Figure 2.5: Examples of raw and augmented images used in the segmentation task, from the

MoNuSeg dataset. Courtesy of [13]

2.3.2 Augmenting Input Images

Algorithm 1 SAMAug Function

1: Input: tI (input image),mask_generator (SAM model mask generator)

2: Output: tI (augmented image with segmentation and boundary priors)
3: masks← mask_generator.generate(tI)
4: SegPrior ← np.zeros(tI.shape[0], tI.shape[1])
5: BoundaryPrior ← np.zeros(tI.shape[0], tI.shape[1])
6: formaskindex = 0 to len(masks)− 1 do
7: thismask ← masks[maskindex].’segmentation’
8: stability_score← masks[maskindex].’stability_score’
9: thismask_binary ← np.zeros(thismask.shape)
10: thismask_binary[np.where(thismask == True)]← 1
11: indices← np.where(thismask_binary == 1)
12: SegPrior[indices]← SegPrior[indices] + stability_score
13: BoundaryPrior ← BoundaryPrior+find_boundaries(thismask_binary,mode=’thick’)
14: BoundaryPrior[np.where(BoundaryPrior > 0)]← 1
15: end for

16: tI[: , : ,1]← tI[: , : ,1] + SegPrior
17: tI[: , : ,2]← tI[: , : ,2] +BoundaryPrior
18: Return tI

After generating the segmentation and boundary prior maps, the function proceeds to aug-

21

ment the input image x by incorporating these prior maps, adding information related to regions

of interest (ROIs) and boundaries.

More formally, let x ∈ RH×W×C represent the input image, where H is the image height,

W is the width, and C is the number of channels.

Let also priorseg ∈ RH×W be the segmentation prior map and priorboundary ∈ RH×W be the

boundary prior map.

The augmentation process consists of adding these prior maps to the input image’s channels.

We define the augmented image xaug ∈ RH×W×3 with three channels:

1. The first channel is filled with the raw grayscale image x, which is assumed to be in the

first channel of the input image:

xaug[: , : ,0] = x[: , : ,0]

2. The second channel is filled with the segmentation prior map priorseg, enhancing the

image with segmentation information:

xaug[: , : ,1] = x[: , : ,1] + priorseg

3. The third channel is filled with the boundary prior map priorboundary, enriching the image

with boundary information:

xaug[: , : ,2] = x[: , : ,2] + priorboundary

If the input image is in grayscale (i.e., it has only one channel), we expand the image to three

channels by directly assigning the prior maps to the second and third channels:

xaug[: , : ,0] = x[: , : ,0], xaug[: , : ,1] = priorseg, xaug[: , : ,2] = priorboundary

The final augmented image xaug is produced by adding the segmentation and boundary prior

maps into the image as described above, resulting in:

xaug = Aug(priorseg, priorboundary, x)

the details of the implementation are described in pseudocode in Algortihm 1.

2.3.3 Model Training with SAM-Augmented Images

The input augmentation procedure, applied to each image sample in the training set, generates a

new set of augmented images and their corresponding annotations. Specifically, for each image

22

xi in the original training set, an augmented image xaug,i is created, resulting in the augmented

training set {(xaug,1, y1), (xaug,2, y2), . . . , (xaug,n, yn)}, where:

xaug,i ∈ Rw×h×3, yi ∈ {0, 1}w×h×C .

Here, xaug,i represents the augmented input image with dimensions w×h×3 (height, width,

and three color channels), and yi is the corresponding annotation in the form of a binary mask

of size w × h× C, where C denotes the number of classes for the segmentation task, C = 1 in

case of binary segmentation background/foreground.

To train a segmentationmodelM , such as a U-Net, from the augmented training set, a typical

objective function is employed. This function measures the discrepancy between the model’s

predictions and the true labels for each augmented sample. The objective function for training

with SAM-augmented images is given by the sum of the losses across all n samples:

L =
n∑︂

i=1

loss(M(xaug,i), yi), (20)

where loss represents a suitable loss function, such as cross-entropy or Dice loss, which

quantifies the difference between the predicted segmentation map M(xaug,i) and the ground

truth label yi.

While the initial model training might solely rely on SAM-augmented images, a more flex-

ible approach can be adopted in scenarios where SAM fails to generate plausible prior maps. In

such cases, it becomes beneficial to incorporate both the raw images xi and their corresponding

SAM-augmented versions xaug,i in the training process. This leads to the following modified

learning objective, where both raw and augmented images contribute to the model’s optimiza-

tion:

Lcombined =
n∑︂

i=1

β loss(M(xi), yi) + λ loss(M(xaug,i), yi), (21)

Here, β and λ are hyperparameters that control the relative importance of the loss terms for

the raw images and the augmented images, respectively. When β = 0 and λ = 1, the objective

reduces to the original form given by Equation 20, which only considers the SAM-augmented

images. On the other hand, setting both β and λ to 1 allows for a balanced contribution from

both raw and augmented images in the training process.

In practice, the choice of β and λ is crucial for optimizing model performance. Typically,

both parameters are set to 1 by default, though further experimentation may be required to adjust

them depending on the specific dataset or task.

The loss functions used in both formulations, such as the spatial cross-entropy loss or Dice

23

loss, are designed to capture the discrepancy between the predicted and true segmentationmasks.

These loss functions are minimized using optimization techniques like Stochastic Gradient De-

scent (SGD), with popular optimizers such as Adam employed to efficiently reduce the loss

values during training. Through this optimization process, the model learns to generate accu-

rate segmentation maps for both raw and SAM-augmented images, enhancing its robustness and

generalizability.

2.3.4 Model Deployment with SAM-Augmented Images

In the context of segmentation models trained with both raw and SAM-augmented images, new

opportunities for enhancing the inference phase arise. One potential approach for utilizing the

trainedmodel involves performing inference twice for each test image: once using the raw image

and once using its corresponding SAM-augmented version. The final segmentation output can

then be derived by combining the results of these two inferences through an averaging ensemble

strategy. Mathematically, this process is expressed as:

ŷ = τ (M(x) +M(xaug)) , (22)

whereM(x) represents the segmentation output of the raw image x, andM(xaug) represents

the output from the SAM-augmented image. The operator τ denotes a transformation function

(e.g., a softmax) applied to the combined outputs, resulting in the final prediction ŷ.

Alternatively, anothermethod of utilizing both outputsM(x) andM(xaug) involves selecting

a single, most plausible segmentation output from the two candidates. This selection is made

based on the entropy of the segmentation outputs, with the goal of choosing the prediction that

is most certain. The process can be formally described as:

ŷ = τ (M(x∗)) , (23)

where x∗ is the input selected from either x or xaug, depending on which one yields a segmen-

tation output with the least uncertainty. The optimal choice of x∗ is determined by minimizing

the entropy of the segmentation prediction:

x∗ = arg min
x′∈{x,xaug}

Entropy (τ (M(x′))) . (24)

Entropy, in the context of information theory, is a measure of uncertainty or unpredictability

of a system. For a probabilistic classification task, entropy is defined as:

Entropy(p) = −
C∑︂
i=1

pi log pi, (25)

24

where pi represents the probability of the i-th class, and C is the number of classes in the

segmentation task. In the case of segmentation, the entropy measures the uncertainty of the

predicted class distribution across the pixels in the output, with higher entropy indicating greater

uncertainty and lower entropy indicating greater confidence in the prediction.

The entropy function quantifies the uncertainty of the model’s predictions, with lower en-

tropy indicating higher certainty in the segmentation output. In practice, a lower entropy score

is often correlated with a higher segmentation accuracy. By selecting the image input x∗ based

on this criterion, the model can potentially improve its prediction by favoring the input version

that the model is more confident about.

2.4 Datasets and Methodology

This section provides an overview of the datasets used in our study to evaluate the performance

of the model in polyp detection and segmentation tasks. We focus on two primary datasets:

Kvasir-SEG and ClinicDB, which were split into training and test sets. Additionally, we include

generalization testing on three unseen datasets—ColonDB, ETIS, and Endoscene—to assess the

model’s adaptability to different data distributions.

After describing the datasets, we will explain the preparation process, including how the data

was partitioned and the use of preprocessing techniques. Lastly, we will discuss the data aug-

mentation strategies applied to improvemodel robustness and generalization, including resizing,

multi-scale training, and random transformations, based on techniques introduced in [15].

2.4.1 The Kvasir-SEG Dataset [28]

The Kvasir-SEG dataset is an open-access resource specifically designed for research on polyp

segmentation within gastrointestinal (GI) tract imagery, published in 2020. It is an extension of

the original Kvasir dataset, with a dedicated focus on pixel-level segmentation of polyps. The

dataset consists of meticulously labeled images, all of which have been validated by medical

professionals, ensuring both accuracy and reliability. These images represent various segments

of the digestive system, capturing both healthy and pathological tissues.

The original Kvasir dataset includes 8,000 images spread across 8 distinct classes, with 1,000

images per class. These images, collected from gastrointestinal endoscopies, feature a variety of

conditions, including anatomical landmarks, pathological findings, and endoscopic procedures.

It was designed to facilitate classification tasks for the detection of GI tract diseases. To enhance

dataset quality, some images from the polyp class were replaced, and all were reviewed by

gastroenterologists at Vestre Viken Health Trust in Norway. The Kvasir dataset was employed

in the Multimedia for Medicine Challenge (Medico Task) during the MediaEval Benchmarking

25

Figure 2.6: Samples from the Kvasir-SEG dataset. Courtesy of [29]

Initiative for Multimedia Evaluation in 2017 and 2018, focusing on multiclass classification of

endoscopic findings. However, the dataset provided only frame-level annotations, lacking the

pixel-level annotations necessary for segmentation tasks.

The Kvasir-SEG dataset, which is based on the original Kvasir dataset, extends it by pro-

viding pixel-level annotations for polyp segmentation. It includes 1,000 annotated images of

polyps, captured at resolutions ranging from 720x576 pixels to 1920x1072 pixels. This dataset

focuses primarily on the detection and segmentation of polyps, a crucial task for colorectal can-

cer screening, given that polyps are often precursors to cancer.

The dataset is organized into three main components:

• Images Folder: Contains 1,000 images of varying resolutions.

• Masks Folder: Includes corresponding binary masks that highlight the polyp regions.

• JSON File: Stores bounding box data for the polyps, facilitating the generation of seg-

mentation masks.

Some images also feature an inset display that indicates the endoscope’s position within the

body during the procedure. The segmentation masks are created through manual tracing by a

team of experts, with the pixels corresponding to the polyp region (Region of Interest, ROI)

marked in white, while the rest of the image is filled with black. These binary masks distinctly

represent the polyp region in white and the background in black.

The generation of the segmentation masks follows a rigorous process:

1. The polyp regions were manually outlined by a team consisting of engineers and med-

ical professionals, using the Labelbox tool for image annotation. The annotations were

26

subsequently reviewed by an experienced gastroenterologist.

2. Once the annotations were complete, the coordinates of the outlined polyps were exported

in a JSON file. These coordinates were then utilized to create the segmentation masks,

with the outlines rendered on a black background and filled in with white.

2.4.2 The CVC-ColonDB Dataset [30]

Im
ag

es
G

ro
un

d
Tr

ut
h

Figure 2.7: Samples from the CVC-ColonDB dataset.

The CVC-ColonDB dataset is a custom-built collection of colonoscopy images designed to

evaluate segmentation and detection algorithms for polyps. Released in 2012, this dataset is

widely used for benchmarking polyp detection and classification models, offering a diverse set

of images with varying polyp appearances.

For this work, we utilized an updated version of the CVC-ColonDB dataset, which contains

380 high-quality images extracted from 15 randomly selected colonoscopy video sequences.

Each case represents a different video, with 20 frames chosen per sequence to provide a broad

array of viewpoints. The selected frames were picked to avoid redundancy, ensuring each frame

presents a distinct perspective.

The images have a resolution of 500x574 pixels, with the central portion cropped to remove

irrelevant black borders. The dataset includes only frames that contain polyps, ensuring that it

covers a wide range of polyp appearances, including both flat and peduncular types. This careful

selection process ensures the dataset represents various polyp forms without bias.

2.4.3 The CVC-ClinicDB Dataset [31]

The CVC-ClinicDB dataset is a publicly available resource published in 2015 designed to aid

in the research and development of polyp detection and localization techniques in colonoscopy

images. Created in collaboration with the Hospital Clinic of Barcelona, Spain, this dataset con-

sists of 612 high-resolution images (576x768 pixels) sourced from 31 different video sequences

captured using standard colonoscopy procedures under white light.

27

Im
ag

es
G

ro
un

d
Tr

ut
h

Figure 2.8: Samples from the CVC-ClinicDB dataset.

The dataset includes expert annotations for each polyp, where regions of interest are manu-

ally outlined to provide accurate segmentation masks. Additionally, the dataset includes anno-

tations for specular highlights, a feature that complicates polyp detection, and detailed clinical

metadata for each polyp. Polyps are categorized by size into three groups: diminutive (≤5 mm),

small (6-9 mm), and large (>10 mm), and classified histologically as adenomatous (79.74%)

or hyperplastic (20.26%). Furthermore, polyps are classified based on the Paris criteria, which

categorizes polyps into six types based on their appearance.

The dataset is structured as follows:

• Images Folder: Contains 612 images, each with a resolution of 576x768 pixels.

• Masks Folder: Contains binary masks outlining the polyp regions in each image.

• Specular Highlights Folder: Includes annotations for light reflections.

• Clinical Metadata File: Contains additional clinical information, including polyp size,

histological type, and classification according to the Paris criteria.

Additional Information [32]:

• Purpose: Training dataset for polyp detection.

• Institution: Hospital Clinic, Barcelona, Spain.

• Content: 612 SD frames (388×284) from Olympus Q160AL, 31 sequences.

• Device: Olympus Q160AL.

This dataset is a crucial resource for researchers focused on polyp detection, localization,

and segmentation in colonoscopy images, providing both high-quality annotations and compre-

hensive clinical data.

28

Im
ag

es
G

ro
un

d
Tr

ut
h

Figure 2.9: Samples from the ETIS-Larib PolypDB dataset.

2.4.4 The ETIS-Larib Polyp Database [33]

The ETIS-Larib Polyp Database (ETIS-Larib DB) is a significant resource for the detection

and classification of colorectal polyps during colonoscopy procedures. Developed in 2014, this

dataset provides high-resolution, real-world colonoscopy images and has become a benchmark

for training and evaluating machine learning models in clinical settings.

The dataset contains 196 annotated images of polyps, captured under unfiltered, real-world

colonoscopy conditions. These images, fixed at a resolution of 1225x996 pixels, represent a

variety of polyp types and conditions, ensuring diverse and comprehensive data for model train-

ing. The ETIS-Larib DB has been widely used in automatic polyp detection research, including

in the MICCAI 2015 Sub-Challenge on Automatic Polyp Detection in Colonoscopy Videos.

Though smaller in size compared to other major datasets like Kvasir-SEG and CVC-

ClinicDB, the ETIS-Larib DB’s focus on unfiltered, real-world imagery makes it an invaluable

resource for developing robust polyp detection algorithms.

Additional Information [32]:

• Purpose: Testing dataset for polyp detection.

• Institution: Lariboisière Hospital, Paris, France.

• Content: 196 HD frames (1225×966) from Pentax 90i series, 34 sequences.

• Device: Pentax 90i series, Exera II videoprocessor.

2.4.5 The CVC-T Dataset [34]

The CVC-T dataset, also known as CVC-300, is a subset of the larger CVC-EndoSceneStill

dataset introduced in 2016, which aims to advance endoluminal scene segmentation. The CVC-

EndoSceneStill dataset combines data from the CVC-ColonDB and CVC-ClinicDB collections,

resulting in a comprehensive set of 912 images from 44 video sequences across 36 patients.

29

Dataset Number of Samples Resolution Media Type

ETIS-Larib 196 1225 × 996 Static images

Kvasir-SEG 1000 Variable Static images

CVC-ClinicDB 612 384 × 288 Static images

CVC-ColonDB 380 574 × 500 Static images

Table 2.1: Comparison of the ETIS-Larib dataset with other key colorectal polyp detection

datasets.

Im
ag

es
G

ro
un

d
Tr

ut
h

Figure 2.10: Samples from the CVC-T dataset.

The CVC-T dataset, a curated subset, contains 60 high-quality images selected from the

CVC-EndoSceneStill collection. These images were specifically chosen to serve as a test set

for evaluating polyp detection and segmentation algorithms, covering a range of polyp appear-

ances and other GI conditions. The images have resolutions of 500x574 and 384x288 pixels

and include various complexities, including specular highlights and black borders. Annotations

include pixel-level masks for the polyp regions, lumen, background, and specular highlights.

The dataset is divided into training, validation, and test sets, with 60% of the images used for

training, 20% for validation, and 20% for testing. Importantly, images from individual patients

are not split across different sets, ensuring that the dataset can be used to evaluate models on

unseen patient data.

The CVC-T dataset is publicly available and plays a vital role in benchmarking polyp de-

tection and segmentation algorithms.

Dataset Preparation

To ensure reliable benchmarking in line with the original study, two datasets, Kvasir-SEG and

ClinicDB, were selected for primary evaluation:

• Kvasir-SEG: Partitioned into 900 training images and 100 test images.

• ClinicDB: Divided into 548 training images and 64 test images.

30

Additionally, generalization testing was conducted on three unseen datasets—ColonDB,

ETIS, and Endoscene—to evaluate the model’s ability to adapt to varying data distributions.

To evaluate the performances of our techniques, we conducted experiments on five datasets

commonly used in the field.

Preprocessing and Data Augmentation

To standardize inputs and mitigate variability, the following preprocessing and augmentation

techniques were applied:

• Image Resizing: All input images were resized to 352 × 352 to match the model’s input re-

quirements.

• Multi-Scale Strategy: Training was performed at scales of 1.25, 1.0, and 0.75 to improve the

model’s robustness to scale variations.

• Random Perspective Transformation: Applied with a 50% probability to simulate real-world

distortions.

We also experimented with a more dynamic data augmentation strategy that comprehends:

• Multi-Scale Strategy: Training was performed at scales of 1.25, 1.0, and 0.75 to improve the

model’s robustness to scale variations.

• Random Perspective Transformation: Applied with a 50% probability to simulate real-world

distortions.

• Random Color Adjustment: Applied with a 20% probability to account for lighting variations

across datasets.

These strategies were firstly introduced in [15] under the collective name of DA3.

2.5 Evaluation Metrics and Loss Functions

2.5.1 Structure Loss

To ensure high-quality predictions across all stages of the decoder, HSNet make us of a multi-

stage joint loss function, which supervises each stage independentlywhilemaintaining an overall

aggregated loss. The total loss function, defined as structure loss, is defined as:

Ltotal =
4∑︂

i=1

Li, (17)

31

where i indexes the decoder stages. Each stage’s loss, Li, combines two key components: the

weighted Binary Cross-Entropy (BCE loss and the weighted Intersection over Union (IoU loss,

mathematically formulated as:

Li = LIoU(Pi, G) + LBCE(Pi, G), (18)

where Pi represents the prediction mask at the i-th stage, and G denotes the ground truth mask.

Weighted Binary Cross-Entropy Loss

The weighted BCE loss aims to emphasize specific pixel regions, particularly boundaries, by

assigning a weight wj to each pixel based on its local context. This is mathematically expressed

as:

LBCE(Pi, G) = −
∑︂
j

wj

(︂
Gj log(Pi,j) + (1−Gj) log(1− Pi,j)

)︂
, (19)

where Gj is the ground truth label for pixel j, Pi,j is the predicted probability at the i-th stage,

and wj adjusts the contribution of each pixel to the loss.

In the implementation, the weight wj is computed using an average pooling operation over

the ground truth mask G, enhancing boundary regions. The weight map is defined as:

wj = 1 + 5 · |AvgPool(G)−G|,

where the pooling operation helps emphasize boundary regions, thus making them more signif-

icant during training.

Weighted Intersection over Union Loss

The IoU loss is designed to maximize the overlap between the predicted mask Pi and the ground

truth G. For the weighted IoU, the loss is defined as:

LIoU(Pi, G) = 1−
∑︁

j wjPi,jGj∑︁
j wj

(︁
Pi,j +Gj − Pi,jGj

)︁ , (20)

where the numerator computes the weighted intersection, and the denominator represents the

weighted union.

The weightswj are the same as those used in the BCE loss, ensuring consistency in the focus

on critical regions such as object boundaries.

32

Practical Implementation

The structure loss combines the two components described above. First, Pi is converted to prob-

abilities using a sigmoid activation, and the intersection and union are computed with weights

applied to enhance boundary sensitivity. The final combined loss is averaged across all pixels:

Li = Mean
(︂
LBCE + LIoU

)︂
.

The implementation in PyTorch for the structure loss can be written as:

Motivation and Advantages

This loss function leverages both BCE and IoU metrics to optimize segmentation performance.

The BCE component ensures pixel-wise classification accuracy, particularly for small or subtle

features, meanwhile the IoU component improves structural alignment, encouraging the model

to focus on overlapping regions between predictions and ground truth.

By dynamically adjusting the pixel-wise loss through context-dependent weights, this ap-

proach prioritizes boundary regions and adapts to various object shapes and sizes.

2.5.2 Q-statistic

In the context of ensemble methods, the Q-statistic serves as an important metric to assess the

diversity betweenmodels within an ensemble. Diversity is crucial for ensuring that the ensemble

benefits from combining models that complement each other, rather than producing redundant

predictions. The Q-statistic quantifies the relationship between the predictions of two classifiers

by evaluating their agreement and disagreement. It is defined as:

Q =
N11N00 −N10N01

N11N00 +N10N01

where:

• N11: Number of instances where both models correctly predict the positive class.

• N00: Number of instances where both models correctly predict the negative class.

• N10: Number of instances where the first model predicts the positive class while the sec-

ond predicts the negative class.

• N01: Number of instances where the first model predicts the negative class while the

second predicts the positive class.

The Q-statistic ranges from -1 to 1:

33

• A value close to 1 indicates that the models are highly correlated and make similar pre-

dictions.

• A value near -1 signifies strong disagreement between the models.

• A value near 0 suggests independence between the models.

By leveraging the Q-statistic, researchers can evaluate and ensure sufficient diversity among

the models in an ensemble, which is a key factor for boosting overall ensemble performance in

tasks such as classification or semantic segmentation.

Figure 2.11: This figure visually demonstrates how the DSC (Cylinder Distance Calculation)

metric works. It illustrates how the distance between cylinders varies across three different

scenes. As the cylinders intersect, the DSC value increases, reflecting amore accurate alignment

of the objects within the scenes. Courtesy of [35]

2.5.3 Dice Similarity Coefficient (DSC)

The Dice Similarity Coefficient (DSC) is a widely used metric for evaluating the performance

of segmentation algorithms, particularly in biomedical image analysis. It measures the overlap

between two sets, typically the predicted segmentation and the ground truth. The formula for

the DSC is expressed as:

DSC =
2|X ∩ Y |
|X|+ |Y |

(2.1)

where |X| and |Y | denote the cardinalities of the two sets being compared. In the context
of binary classification tasks, the DSC can be reformulated in terms of true positives (TP), false

positives (FP), and false negatives (FN):

DSC =
2 · TP

2 · TP + FP + FN
. (2.2)

34

This formulation highlights the metric’s sensitivity to both precision and recall, making it

particularly effective for addressing class imbalance—a common challenge in medical imaging.

In deep learning applications, particularly for segmentation tasks, the DSC serves two crit-

ical purposes: as a performance evaluation metric and as a differentiable loss function. Its

differentiability allows for efficient optimization during training, providing an advantage over

non-differentiable metrics such as the Intersection over Union (IoU). Using the DSC as a loss

function enables models to directly optimize for segmentation accuracy.

The DSC is especially significant in biomedical imaging, where precise segmentation is

essential. For instance, it is commonly applied to evaluate the quality of contour delineations in

radiotherapy planning, ensuring accurate identification of organs-at-risk. Recent studies have

demonstrated that deep learning models can predict DSC values with high reliability, thereby

supporting improved clinical decision-making.

35

36

Chapter 3

SegAug: Augmentations and Ensembles

In this section, we present a series of methods aimed at enhancing image processing workflows

by incorporating segmentation information directly into the image content. These methods are

designed to improve both the analytical and visual properties of images, enabling more effective

applications in areas such as object detection, image segmentation, and visual data analysis. The

first method applies Principal Component Analysis (PCA) to reduce the dimensionality of im-

ages while simultaneously integrating segmentation priors to enhance semantic representation.

The second and third methods focus on modifying the blue channel of an image by replacing it

with segmentation logits or masks generated by the SAM model, embedding regions of inter-

est identified by the segmentation process. Lastly, the fourth method alters the hue channel in

the HSV color space by incorporating stability scores from segmentation masks, emphasizing

semantic regions within the image’s color structure.

All of these methods uses segmentation masks to modify image features, offering distinct

yet complementary approaches to improving image analysis. By combining dimensionality re-

duction, logit-based channel embedding, and HSV-based segmentation prior integration, these

methods form a comprehensive toolkit for advancing image processing workflows. These ap-

proaches are particularly relevant in fields such as medical imaging, computer vision, and au-

tonomous systems, where precise feature extraction and semantic enrichment are critical. The

following sections provide a detailed explanation of each method, highlighting their individual

contributions to improving image segmentation and feature extraction.

3.1 SegPrior RGB

The Segmentation Prior Modification algorithm is a variant of the previous method designed to

modify the blue channel of an image based on segmentation information generated by a mask

generator. The algorithm computes a segmentation prior matrix, which aggregates the stabil-

37

ity scores of different segmentation masks, and integrates this prior information into the blue

channel of the image. This approach is particularly useful when enhancing images with spa-

tial information from segmentation, while preserving the color structure of the original image.

The method is applicable in areas such as image segmentation, visual enhancement, and object

detection, where both the image content and segmentation results play a crucial role in analysis.

3.1.1 Steps Breakdown

1. Segmentation Mask Generation: The algorithm begins by generating segmentation

masks for the input image using a mask generator. Each mask represents a region of

interest within the image, and each is associated with a stability score that indicates the

confidence of the segmentation.

2. Segmentation PriorCalculation: TheSegPriormatrix is initialized as an emptymatrix.

The algorithm iterates over each segmentation mask, modifying the SegPrior by adding

the stability score for regions where the mask indicates the presence of a feature or object.

This results in a prior that reflects the confidence in various regions of the image.

3. Channel Separation: The image is separated into its red, green, and blue channels. The

red and green channels are kept unchanged, while the blue channel will be modified to

reflect the segmentation prior.

4. Segmentation Prior Integration: The modified blue channel is replaced with the

SegPrior, which has been calculated from the segmentation masks. This modification

injects the segmentation information into the image, highlighting areas of interest as de-

termined by the segmentation model.

5. Image Reconstruction: The final step involves reconstructing the image by combining

the unchanged red and green channels with the modified blue channel. The resulting

image now reflects both the original image content and the additional segmentation infor-

mation.

3.1.2 Usefulness of the Algorithm

This algorithm is particularly useful in scenarios where segmentation information is crucial for

image analysis, but the original blue channel of the image does not provide significant infor-

mation. By modifying the blue channel with the segmentation prior, the method enhances the

visualization of relevant features and regions.

38

Algorithm 2 Segmentation Prior Modification on RGB Channels

1: procedure RG_segPrior(tI,mask_generator)
2: masks← mask_generator.generate(tI)
3: SegPrior ← np.zeros(tI.shape[0], tI.shape[1])
4: for each mask in masks do

5: SegPrior ← SegPrior +mask.stability_score ·mask.segmentation
6: end for

7: r, g ← tI[:, :, 0], tI[:, :, 1]
8: b← SegPrior
9: modded_image← np.dstack(r, g, b)
10: returnmodded_image
11: end procedure

3.2 SegPrior-Logits RGB

The Logits-based Modification algorithm is a method used to modify the blue channel of an

image based on segmentation logits produced by the SAMmodel. This technique is particularly

useful when integrating segmentation results directly into the image, offering a visual repre-

sentation of the segmentation model’s predictions while preserving the original image content.

Such an approach can be applied in fields like image segmentation, visual data analysis, and ob-

ject detection, where combining image data with segmentation information provides enhanced

insights.

3.2.1 Steps Breakdown

1. Input Image Preparation: The algorithm starts by setting the input image to the SAM

model, preparing it for segmentation prediction. This allows the model to process the

image and generate relevant outputs, such as the segmentation mask and its corresponding

logits.

2. Segmentation Logit Prediction: The SAM model predicts the segmentation mask, re-

turning the mask along with its associated logits. These logits represent the model’s con-

fidence in different regions of the image, highlighting areas where specific features or

objects are present.

3. Channel Separation: The algorithm then separates the image into its individual color

channels—red, green, and blue—where the red and green channels are retained as-is.

The blue channel is set to be modified based on the segmentation logits.

4. Logit Normalization: The logits are normalized to fit within the standard image pixel

range of [0, 255]. This ensures that the logits can be represented as valid pixel values and

39

applied to the blue channel of the image.

5. Blue Channel Replacement: The normalized logits replace the original blue channel of

the image, resulting in a new image where the blue channel now reflects the segmenta-

tion information. This modification highlights the areas of interest as determined by the

segmentation model.

6. Image Reconstruction: The final step involves reconstructing the image by combining

the unchanged red and green channels with the modified blue channel. The resulting

image now displays the segmentation information while maintaining the original color

integrity.

Im
ag

es

Figure 3.1: Examples of SegPrior-Logits RGB augmented images.

3.2.2 Usefulness of the Algorithm

This method is especially beneficial in scenarios where semantic features are important, mean-

while the blue channel of the image is not informative.

Algorithm 3 Replace Blue Channel with SAM Logits

1: procedure RG_logits(tI,mask_generator)
2: mask_generator.predictor.set_image(tI)
3: mask, _, logits← mask_generator.predictor.predict(return_logits = True)
4: r, g, b← tI[:, :, 0], tI[:, :, 1], tI[:, :, 2]

5: b← (mask[0]−min(mask[0]))×255
max(mask[0])−min(mask[0])

6: modded_image← np.dstack(r, g, b)
7: returnmodded_image
8: end procedure

3.3 SegPrior HSV

The HSV-based Segmentation Prior Modification algorithm is a method designed to enhance

the semantic representation of an image by modifying its hue channel in the HSV color space

40

using segmentation priors. This approach leverages stability scores from segmentation masks to

create a semantic prior that highlights areas of interest while preserving the saturation and value

channels. The method is particularly useful for tasks like object detection, visual data analysis,

and feature extraction in computer vision.

3.3.1 Steps Breakdown

1. Input Image Preparation: The input image is converted to a floating-point format to

prepare it for processing. This ensures the compatibility of pixel values with subsequent

operations.

2. Segmentation Prior Generation: Using the segmentation masks generated by the SAM

model, a semantic prior map is created. For each mask, the segmentation region is

weighted by its stability score, and these weights are accumulated across all masks to

produce the segmentation prior.

3. Color Space Conversion: The image is converted from RGB to HSV color space. This

transformation separates the image into hue (H), saturation (S), and value (V) channels,

allowing for isolated modifications to the hue channel.

4. Channel Separation and Modification: The segmentation prior is assigned to the hue

channel (H), effectively encoding the semantic information in the hue component of the

HSV image. The saturation (S) and value (V) channels remain unchanged.

5. Image Reconstruction: The modified hue channel is recombined with the original sat-

uration and value channels to reconstruct the modified HSV image. The resulting image

integrates semantic information directly into its color representation.

6. Output Image Generation: The processed image, with its hue channel reflecting the

segmentation prior, is returned for further analysis or visualization.

3.3.2 Usefulness of the Algorithm

This algorithm is particularly effective in scenarios where the hue channel can serve as a visual

representation of semantic information. By embedding segmentation priors into the hue channel,

the algorithm provides an intuitive way to analyze and visualize areas of interest, making it

applicable in fields like medical imaging, autonomous systems, and environmental monitoring.

41

Algorithm 4 Replace H Channel with Segmentation Prior

1: procedure SV_segPrior(tI,mask_generator)
2: masks← mask_generator.generate(tI)
3: SegPrior ← zeros(tI.shape[0], tI.shape[1])
4: for allmask ∈ masks do
5: SegPrior ← SegPrior +mask[’segmentation’]×mask[’stability_score’]
6: end for

7: hsv_image← color.rgb2hsv(tI)
8: h, s, v ← SegPrior, hsv_image[:, :, 1], hsv_image[:, :, 2]
9: modded_image← np.dstack(s, v, h)
10: returnmodded_image
11: end procedure

3.4 SegPrior PCA

The PCA and Segmentation Prior Modification algorithm is a process used to enhance image

features by reducing dimensionality through Principal Component Analysis (PCA) and incor-

porating segmentation information to modify the image channels. This algorithm can be par-

ticularly useful in applications such as image segmentation, object detection, and visual data

analysis, where both spatial patterns (in the image) and semantic features (from segmentation)

are essential.

3.4.1 Steps Breakdown

1. Segmentation Mask Generation: The algorithm begins by generating segmentation

masks using a mask generator. These masks represent regions of interest within the im-

age, and each mask is associated with a stability score, which indicates the confidence in

the mask’s correctness or reliability.

2. Segmentation Prior Calculation: The SegPrior matrix is initialized as a blank matrix

(zeros), and for each segmentation mask, the algorithm updates SegPrior. This update

involves multiplying each mask by its corresponding stability score and accumulating

the results. The segmentation prior thus reflects the confidence in various regions of the

image based on the available segmentation masks.

3. Dimensionality Reduction via PCA: The image is then passed through a Principal Com-

ponent Analysis (PCA) to reduce its dimensionality from 3 channels (RGB) to 2 channels.

PCA is a statistical technique that finds the most significant directions of variance in the

data and projects the image data onto those directions. The reduced representation cap-

tures the key features of the image in fewer dimensions, making it more efficient for

42

further processing.

4. Scaling of PCA and Segmentation Data: The PCA output and segmentation prior are

scaled to the range [0, 255] to ensure that the data is properly adjusted for visualization

and processing. The scaling step is essential because it normalizes the values, allowing

for consistent interpretation and manipulation of the image channels.

5. Image Reconstruction: The final step reconstructs the image by combining the scaled

PCA results and the segmentation prior into the red, green, and blue channels of the im-

age. The red and green channels come from the PCA output, while the blue channel is

influenced by the segmentation prior. Thismodified image now encodes both the reduced-

dimensional representation of the image and the additional information from the segmen-

tation.

Im
ag

es

Figure 3.2: Examples of SegPrior PCA augmented images.

3.4.2 Usefulness of the Algorithm

This algorithm is beneficial in scenarios where image analysis needs to be enhanced by incor-

porating segmentation information. For example:

• Image Segmentation: The segmentation prior (SegPrior) improves the analysis by in-

jecting spatially relevant data that reflects the structure and boundaries of objects in the

image. By modifying the color channels based on segmentation, the image highlights

areas of interest, making further analysis or feature extraction more accurate.

• Dimensionality Reduction: Reducing the dimensionality of the image using PCA can

significantly simplify computational tasks, especially when processing large datasets or

when the main features of the image can be captured in fewer dimensions. It also helps

in reducing noise by focusing on the principal components of the image.

• Visual Enhancement: The combination of PCA and segmentation can also aid in visual

enhancement, where segmentation-prioritized areas are highlighted in the image, making

it easier to interpret or present visually.

43

This approach can be applied to various domains, such as medical imaging, computer vision,

autonomous systems, and image-based machine learning tasks, where both feature extraction

and segmentation are crucial for success.

Algorithm 5 PCA and Segmentation Prior Modification

1: procedure PCA_segPrior(tI,mask_generator)
2: masks← mask_generator.generate(tI)
3: SegPrior ← np.zeros(tI.shape[0], tI.shape[1])
4: for each mask in masks do

5: thismask ← mask.segmentation

6: stability_score← mask.stability_score

7: SegPrior ← SegPrior + thismask× stability_score
8: end for

9: pca← PCA(n_components = 2)
10: image_pca← pca.fit_transform(tI)
11: image_pca_scaled← scale(image_pca)
12: r, g ← image_pca_scaled[:, 0], image_pca_scaled[:, 1]
13: b← scale(SegPrior)
14: modded_image← np.dstack(r, g, b)
15: returnmodded_image
16: end procedure

3.5 Ensemble Methods

Ensemble methods are a powerful approach in machine learning, leveraging the predictions of

multiple models to achieve better performance and robustness. By combining the strengths of

different models or augmenting strategies, ensembles aim to mitigate the weaknesses of indi-

vidual models and enhance overall accuracy. In this section, we discuss the various ensemble

strategies implemented in this work, focusing on their design and how they integrate the novel

methods described earlier.

3.5.1 Overview of Ensemble Approaches

To evaluate the impact of combining models trained with different strategies, we explored sev-

eral ensemble configurations. Each configuration utilized models trained on specific data aug-

mentation strategies and incorporated the novel algorithms presented in this thesis. The ensem-

ble approaches tested include the following:

1. DA Baseline Ensemble: This ensemble serves as the control, comprising three HSNet

models trained with data augmentation as the sole augmenting strategy. It represents the

44

performance achievable without integrating any of the new algorithms described in this

work.

2. SAMAug Ensemble: This configuration builds on the DA3 Baseline Ensemble by train-

ing three HSNet models on SAMAug images generated using the SAM2 model. This

ensemble explores the benefits of augmentations based on SAM2-produced segmentation

masks.

3. AuxMix Triple: This ensemble combines one model trained with each of the follow-

ing algorithms: DA3 Baseline, Logits-based Modification Algorithm, and SAMAug with

SAM2. It aims to evaluate whether diversity in model training approaches can enhance

ensemble performance.

4. AuxMix Ninefold: Extending AuxMix Triple, this ensemble includes three models for

each strategy, resulting in a total of nine models (3x DA3 Baseline, 3x Logits-based Mod-

ification Algorithm, and 3x SAMAug with SAM2). This configuration evaluates the im-

pact of increased model diversity within each algorithm.

5. Segmentation-Prior Ensemble: This ensemble includes one model from each of the fol-

lowing algorithms: SAMAug with SAM2, Segmentation Prior Modification Algorithm

using SAM2, and DA3 Baseline. It tests the combination of models trained with segmen-

tation logits and traditional augmentation strategies.

6. Semantic Ensemble: Similar to Segmentation-Prior Ensemble, this ensemble consists of

one model for each algorithm, but replaces the DA3 Baseline with the Logits-based Mod-

ification Algorithm. This configuration assesses the performance of ensembles relying

exclusively on segmentation-based augmentations.

45

46

Chapter 4

Experiments and Results

This section presents the outcomes of the conducted experiments and provides an analysis of

the results.

4.1 Model Training with SAM-Augmented Images

We first experimented with the two different training approaches detailed in Section 2.3.3: one

based solely on SAM-augmented images (Equation 20), and another combining both raw and

SAM-augmented images (Equation 21). The second approach, which incorporates both raw and

augmented images, yielded the best performance as shown in Figure 4.1.

Figure 4.1: Comparison of model performance across multiple datasets for two training ap-

proaches. The plot shows the mean performance for each approach, with error bars representing

the sample standard deviation over three test runs.

47

4.2 Segmentation Prior Augmentation Evaluation

Building on the findings from the SAMAug evaluation, we observed that the first approach led

to a decline in performance, indicating that the initial enhancement did not have the desired

impact. However, the second approach, which incorporated an entropy-based selection method,

showed promising results. This approach suggested a more effective strategy for improving

segmentation accuracy, as it appeared to address key limitations identified in the first approach.

Encouraged by the success of the entropy-based method, we decided to explore further im-

provements by testing the new set of enhancements, as outlined in 3. Bymaintaining consistency

in our experimental setup, we were able to make a more direct comparison between the new and

previous methods.

Method CVC-T ClinDB Kvasir ColDB ETIS Mean

No DA 0.886 ± 0.009 0.930 ± 0.005 0.925 ± 0.005 0.799 ± 0.009 0.806 ± 0.008 0.869 ± 0.002

DA 0.885 ± 0.007 0.933 ± 0.005 0.927 ± 0.005 0.793 ± 0.015 0.811 ± 0.009 0.870 ± 0.004

SAM2Aug 0.895 ± 0.005 0.939 ± 0.006 0.921 ± 0.006 0.817 ± 0.008 0.783 ± 0.006 0.871 ± 0.004

SAMAug 0.895 ± 0.010 0.939 ± 0.008 0.918 ± 0.006 0.816 ± 0.010 0.776 ± 0.015 0.869 ± 0.005

SegPriorHSVSAM2 0.899 ± 0.005 0.932 ± 0.009 0.912 ± 0.005 0.804 ± 0.007 0.763 ± 0.015 0.862 ± 0.005

SegPriorHSV 0.899 ± 0.006 0.936 ± 0.005 0.912 ± 0.004 0.796 ± 0.011 0.783 ± 0.008 0.865 ± 0.002

SegPriorLogitsSAM 0.890 ± 0.007 0.935 ± 0.008 0.920 ± 0.002 0.818 ± 0.007 0.794 ± 0.006 0.871 ± 0.003

SegPriorLogits 0.889 ± 0.010 0.932 ± 0.008 0.918 ± 0.005 0.819 ± 0.005 0.797 ± 0.006 0.871 ± 0.004

SegPriorPCASAM2 0.889 ± 0.006 0.940 ± 0.006 0.909 ± 0.005 0.810 ± 0.006 0.771 ± 0.012 0.864 ± 0.003

SegPriorPCA 0.895 ± 0.007 0.943 ± 0.004 0.913 ± 0.004 0.819 ± 0.010 0.760 ± 0.008 0.866 ± 0.003

SegPriorRGB 0.892 ± 0.004 0.934 ± 0.007 0.918 ± 0.005 0.807 ± 0.010 0.790 ± 0.005 0.868 ± 0.004

Table 4.1: Dice score coefficients (Mean ± Standard Deviation) for different methods on five

datasets: CVC-T, ClinDB, Kvasir, ColDB, and ETIS.

Overall, both tables 4.1 4.2 provide valuable insights into how different segmentation prior

augmentations impact performance, offering a clear view of the trade-offs involved in selecting

the most effective method for specific datasets or tasks. The choice of presenting the results

with mean scores and standard deviations, along with the detailed performance breakdown for

each dataset, ensures that both the overall effectiveness and the consistency of the methods are

thoroughly evaluated.

4.3 Ensemble Strategy Evaluation

In this section, we focus on the evaluation of the ensemble strategy, building on the insights

gained from the Q-statistic comparison presented in Table 4.3. This table compares the per-

formance of three different approaches: the baseline method (denoted as ”Baseline da”), the

HSNet model enhanced with logits from SAM1 (”SAM1 logits”), and the SAMAug method

using SAM2 (”SAM2 SAMaug”).

The Q-statistic, as shown in Table 4.3, reflects the relative performance of these approaches,

48

Method POLYP

SegPrior-Logits RGB (wSAM2) 0.871

SAMAug (wSAM2) 0.871

SegPrior-Logits RGB (wftSAM) 0.871

Baseline (wDA) 0.870

Baseline 0.869

SAMAug (wftSAM) 0.869

SegPrior RGB (wftSAM) 0.868

SegPrior PCA (wftSAM) 0.866

SegPrior HSV (wftSAM) 0.865

SegPrior PCA (wSAM2) 0.864

SegPrior HSV (wSAM2) 0.862

Table 4.2: Methods ordered by performance on the Polyp dataset, ranked by average Dice score

over 10 runs. Higher scores indicate better segmentation performance. In the table, wftSAM
refers to ”with a fine-tuned version of SAM” and wSAM2 refers to ”with SAM2”.

Baseline da SAM1 logits SAM2 SAMaug

Baseline da 0.9945 – –

SAM1 logits 0.9867 0.9918 –

SAM2 SAMaug 0.9885 0.9837 0.9910

Table 4.3: Q-statistic comparison across different approaches: Baseline da3, SAM1 logits, and

SAM2 SAMaug.

and the results reveal distinct differences between them. Notably, the baseline approach per-

forms well with a Q-statistic value of 0.9945, serving as a reference point for comparison.

Meanwhile, the integration of SAM1 logits leads to a slight improvement, with a Q-statistic

of 0.9918, demonstrating the effectiveness of adding logits from SAM1 to the baseline. The

best performance, however, is achieved with SAM2 SAMaug, which reaches a Q-statistic of

0.9910, slightly outperforming SAM1 logits.

These results suggest that using a combination of methods, such as SAM1 and SAM2, could

lead to further performance improvements. This opens the door to exploring ensemble methods,

which combine multiple models to achieve superior results by leveraging their complementary

strengths. The subsequent analysis, will explore how these ensemble strategies can enhance the

overall segmentation performance.

49

Ensemble CVC-T ClinDB Kvasir ColDB ETIS Mean

AuxMix Ninefold 0.904 ± 0.002 0.938 ± 0.007 0.926 ± 0.002 0.843 ± 0.002 0.829 ± 0.002 0.888 ± 0.002

AuxMix Triple 0.900 ± 0.003 0.939 ± 0.008 0.924 ± 0.003 0.836 ± 0.005 0.818 ± 0.006 0.884 ± 0.003

DA Baseline 0.903 ± 0.002 0.921 ± 0.007 0.915 ± 0.002 0.818 ± 0.005 0.827 ± 0.004 0.877 ± 0.001

SAMAug 0.896 ± 0.003 0.941 ± 0.005 0.927 ± 0.003 0.825 ± 0.005 0.792 ± 0.006 0.876 ± 0.002

Segmentation-Prior 0.902 ± 0.003 0.943 ± 0.006 0.919 ± 0.004 0.835 ± 0.004 0.816 ± 0.007 0.883 ± 0.002

Semantic 0.895 ± 0.006 0.941 ± 0.008 0.924 ± 0.005 0.828 ± 0.005 0.796 ± 0.009 0.877 ± 0.003

Table 4.4: Dice score coefficients (Mean ± Standard Deviation) for different methods on five

datasets: CVC-T, ClinDB, Kvasir, ColDB, and ETIS. The methods tested include: AuxMix

Ninefold, which consists of an ensemble of 9 models; AuxMix Triple, which is based on an

ensemble of 3 models; and DA Baseline, SAMAug Ensemble, Segmentation-Prior, and Se-

mantic, each formed by an ensemble of 3 models. Each method’s performance is averaged over

10 independent tests.

Method POLYP

AuxMix Ninefold 0.888

AuxMix Triple 0.884

Segmentation-Prior Ensemble 0.883

Semantic Ensemble 0.877

Baseline Ensemble 0.877

SAMAug Ensemble 0.876

Table 4.5: Performance of different ensemble strategies, ordered by descending average Dice

score. Higher scores indicate better segmentation results. All strategies are made with three

models, except for the AuxMix Ninefold.

50

Method CVC-T ClinDB Kvasir ColDB ETIS Average

AuxMix 0.904 0.938 0.926 0.843 0.829 0.888

Ens2 0.899 0.935 0.927 0.840 0.833 0.887

HSNet 0.903 0.948 0.926 0.810 0.808 0.879

MIA-Net 0.900 0.942 0.926 0.816 0.800 0.877

P2T 0.879 0.923 0.905 0.761 0.700 0.834

DBMF 0.919 0.933 0.932 0.803 0.790 0.875

HarDNet 0.887 0.932 0.912 0.731 0.677 0.828

PraNet 0.871 0.899 0.898 0.709 0.628 0.801

SFA 0.467 0.700 0.723 0.469 0.297 0.531

U-Net++ 0.707 0.794 0.821 0.483 0.401 0.641

U-Net 0.710 0.823 0.818 0.512 0.398 0.652

SETR 0.889 0.934 0.911 0.773 0.726 0.847

TransUnet 0.893 0.935 0.913 0.781 0.731 0.851

TransFuse 0.894 0.942 0.920 0.781 0.737 0.855

UACANet 0.910 0.926 0.912 0.751 0.751 0.850

SANet 0.888 0.916 0.904 0.753 0.750 0.842

MSNet 0.869 0.921 0.907 0.755 0.719 0.834

Polyp-PVT 0.900 0.937 0.917 0.808 0.787 0.869

SwinE-Net 0.906 0.938 0.920 0.804 0.758 0.865

AMNet - 0.936 0.912 0.762 0.756 -

MGCBFormer 0.913 0.955 0.931 0.807 0.819 0.885

Table 4.6: Performance of our best ensemble strategy, compared with the proposed models in

the literature.

51

52

Chapter 5

Conclusion

This work demonstrates the potential of ensemble methods to significantly improve segmenta-

tion performance, particularly when combiningmodels trainedwith diverse augmentation strate-

gies. Each augmentation provides unique training information, enabling the ensemble to better

understand different sets of image features. By integrating complementary models, the ensem-

ble approach enhances segmentation accuracy and robustness, as the models capture various

aspects of the data.

While the current results show a slight improvement in performance with HSNet, there is

considerable room for optimization. Future work should focus on tailoring augmentation strate-

gies to target the specific characteristics of the dataset. This refinement could yield even better

results, as augmentation directly influences how well the model adapts to the images at hand.

Additionally, this study opens the door for further exploration of different segmentation

architectures. Expanding the ensemble beyond HSNet, by including other segmentators with

varying architectures, could introduce more diversity in the learned features, leading to further

improvements in segmentation accuracy. Fine-tuning SAM2 is another potential direction to

enhance performance.

The success of ensemble methods in segmentation tasks also points to future opportunities

for optimization. For instance, model selection could be improved by weighing the models

based on their individual performance or dynamically choosing models based on the input char-

acteristics. Such optimizations would enable the ensemble to adapt more effectively to varying

input data, improving overall model performance in real-world scenarios.

The integration of ensemble methods into real-world applications, such as medical imaging

and autonomous systems, could significantly enhance segmentation reliability and accuracy. In

these critical fields, the ability to produce precise and reliable segmentation results is paramount.

By refining ensemble strategies and exploring further innovations in segmentation architectures

and augmentation techniques, we can make strides toward more effective and trustworthy seg-

53

mentation systems.

In conclusion, this research underscores the power of ensemble methods in segmentation

tasks. By combining models trained with different augmentations and embedding strategies,

we have demonstrated a significant improvement in segmentation performance. With further

fine-tuning and exploration of new models and strategies, these methods hold great promise for

enhancing segmentation in a variety of domains.

Appendix A: Detailed Tables

Instance CVC-T ClinDB Kvasir ColDB ETIS Mean

1 0.9016 0.9262 0.9231 0.8035 0.7992 0.8707

2 0.8834 0.9354 0.9209 0.8029 0.8015 0.8688

3 0.8920 0.9289 0.9242 0.7877 0.8213 0.8708

4 0.8861 0.9257 0.9263 0.8049 0.8033 0.8693

5 0.8690 0.9356 0.9279 0.8166 0.7995 0.8697

6 0.8917 0.9384 0.9197 0.7903 0.8037 0.8687

7 0.8844 0.9243 0.9332 0.7947 0.7951 0.8663

8 0.8850 0.9348 0.9328 0.7971 0.8138 0.8727

9 0.8799 0.9275 0.9218 0.7871 0.8102 0.8653

10 0.8891 0.9240 0.9234 0.8044 0.8082 0.8698

Avg. 0.8862 0.9301 0.9253 0.7989 0.8056 0.8692

Table 1: Dice score coefficients for all ten different HSNet with the default data augmentation

Instance CVC-T ClinDB Kvasir ColDB ETIS Mean

1 0.8721 0.9321 0.9238 0.8152 0.8098 0.8706

2 0.8783 0.9321 0.9302 0.7980 0.7981 0.8673

3 0.8948 0.9267 0.9268 0.7831 0.8049 0.8673

4 0.8868 0.9283 0.9309 0.7621 0.7993 0.8615

5 0.8899 0.9363 0.9301 0.7921 0.8235 0.8744

6 0.8835 0.9328 0.9348 0.8065 0.8042 0.8724

7 0.8829 0.9446 0.9266 0.7910 0.8219 0.8734

8 0.8810 0.9271 0.9181 0.8029 0.8149 0.8688

9 0.8843 0.9339 0.9284 0.7993 0.8194 0.8731

10 0.8934 0.9324 0.9239 0.7817 0.8120 0.8687

Avg. 0.8847 0.9326 0.9274 0.7932 0.8108 0.8697

Table 2: Dice score coefficients for all ten different HSNet with the new data augmentation.

54

Instance CVC-T ClinDB Kvasir ColDB ETIS Mean

1 0.9035 0.9313 0.9231 0.8268 0.7965 0.8762

2 0.9021 0.9463 0.9150 0.8334 0.7825 0.8759

3 0.8857 0.9347 0.9124 0.8130 0.7978 0.8687

4 0.8983 0.9437 0.9265 0.8115 0.7583 0.8677

5 0.8837 0.9460 0.9160 0.8189 0.7651 0.8659

6 0.9025 0.9431 0.9146 0.8100 0.7787 0.8698

7 0.9045 0.9249 0.9102 0.8105 0.7667 0.8633

8 0.8829 0.9421 0.9222 0.8044 0.7630 0.8629

Avg. 0.8954 0.9390 0.9175 0.8161 0.7761 0.8688

Table 3: Dice score coefficients for all eight different HSNet with SAMAug data augmentation,

where SAM is fine-tuned

Instance CVC-T ClinDB Kvasir ColDB ETIS Mean

1 0.8939 0.9363 0.9198 0.8245 0.7790 0.8707

2 0.9052 0.9449 0.9190 0.8183 0.7831 0.8741

3 0.8927 0.9435 0.9313 0.8091 0.7896 0.8732

4 0.9007 0.9443 0.9225 0.8230 0.7886 0.8758

5 0.8901 0.9308 0.9168 0.8103 0.7791 0.8654

6 0.8923 0.9356 0.9284 0.8100 0.7779 0.8688

7 0.8911 0.9354 0.9146 0.8101 0.7774 0.8657

8 0.8993 0.9472 0.9131 0.8319 0.7776 0.8738

9 0.8878 0.9402 0.9217 0.8178 0.7789 0.8693

10 0.8949 0.9284 0.9188 0.8185 0.7955 0.8712

Avg. 0.8948 0.9387 0.9206 0.8173 0.7827 0.8708

Table 4: Dice score coefficients for all eight different HSNet with SAMAug data augmentation,

where SAM is the SAM2 version

55

Instance CVC-T ClinDB Kvasir ColDB ETIS Mean

1 0.8915 0.9337 0.9116 0.8018 0.7829 0.8643

2 0.8955 0.9300 0.9258 0.7918 0.7980 0.8682

3 0.8917 0.9260 0.9143 0.7985 0.7834 0.8628

4 0.8966 0.9396 0.9221 0.8042 0.7970 0.8719

5 0.8886 0.9437 0.9190 0.8223 0.7883 0.8724

6 0.8939 0.9309 0.9137 0.8044 0.7889 0.8664

7 0.8844 0.9254 0.9165 0.8138 0.7872 0.8655

8 0.8915 0.9295 0.9145 0.8164 0.7918 0.8687

9 0.8972 0.9445 0.9254 0.8111 0.7886 0.8734

Avg. 0.8923 0.9337 0.9181 0.8071 0.7896 0.8682

Table 5: Dice score coefficients for all eight different HSNet with SegPriorRGB data augmen-

tation, where SAM is fine-tuned

Instance CVC-T ClinDB Kvasir ColDB ETIS Mean

1 0.8936 0.9320 0.9147 0.8167 0.7895 0.8693

2 0.8973 0.9261 0.9156 0.8143 0.7920 0.8691

3 0.8647 0.9216 0.9201 0.8138 0.7976 0.8636

4 0.8884 0.9328 0.9163 0.8171 0.8020 0.8713

5 0.8918 0.9231 0.9237 0.8250 0.7981 0.8723

6 0.8854 0.9368 0.9109 0.8227 0.7977 0.8707

7 0.8972 0.9470 0.9171 0.8288 0.7999 0.8780

8 0.8975 0.9296 0.9237 0.8172 0.7861 0.8708

9 0.8840 0.9281 0.9170 0.8125 0.7966 0.8676

10 0.8855 0.9375 0.9247 0.8186 0.8053 0.8743

Avg. 0.8885 0.9315 0.9184 0.8187 0.7965 0.8707

Table 6: Dice score coefficients for all eight different HSNet with the logits of the SegPriorRGB

data augmentation, where SAM is fine-tuned

56

Instance CVC-T ClinDB Kvasir ColDB ETIS Mean

1 0.8961 0.9308 0.9193 0.8167 0.7876 0.8701

2 0.8888 0.9239 0.9221 0.8131 0.7885 0.8673

3 0.8801 0.9331 0.9208 0.8058 0.7969 0.8674

4 0.8823 0.9461 0.9224 0.8201 0.7906 0.8723

5 0.8930 0.9232 0.9179 0.8303 0.7905 0.8710

6 0.8846 0.9361 0.9188 0.8233 0.7908 0.8707

7 0.8873 0.9400 0.9203 0.8188 0.7944 0.8722

8 0.8974 0.9317 0.9216 0.8136 0.8007 0.8730

9 0.8966 0.9459 0.9203 0.8196 0.8049 0.8775

Avg. 0.8896 0.9346 0.9204 0.8179 0.7939 0.8713

Table 7: Dice score coefficients for all eight different HSNet with the logits of the SegPriorRGB

data augmentation, where SAM is the SAM2 version

Instance CVC-T ClinDB Kvasir ColDB ETIS Mean

1 0.9075 0.9326 0.9103 0.7960 0.7884 0.8670

2 0.8956 0.9249 0.9079 0.8088 0.7797 0.8634

3 0.8939 0.9337 0.9145 0.7854 0.7913 0.8638

4 0.9030 0.9400 0.9133 0.7866 0.7894 0.8664

5 0.8914 0.9383 0.9159 0.8048 0.7758 0.8653

6 0.9024 0.9398 0.9114 0.7941 0.7759 0.8647

7 0.9020 0.9417 0.9190 0.7872 0.7799 0.8659

8 0.8928 0.9407 0.9096 0.8192 0.7756 0.8676

9 0.9049 0.9337 0.9065 0.7882 0.7976 0.8662

10 0.8969 0.9345 0.9071 0.7881 0.7750 0.8603

Avg. 0.8990 0.9360 0.9115 0.7958 0.7829 0.8651

Table 8: Dice score coefficients for all eight different HSNet with SegPriorHSV data augmen-

tation, where SAM is fine-tuned

57

Instance CVC-T ClinDB Kvasir ColDB ETIS Mean

1 0.8940 0.9297 0.9111 0.8072 0.7700 0.8624

2 0.8949 0.9286 0.9063 0.8014 0.7436 0.8550

3 0.9132 0.9146 0.9044 0.8030 0.7659 0.8602

4 0.8980 0.9398 0.9143 0.8052 0.7534 0.8621

5 0.9002 0.9469 0.9077 0.8184 0.7808 0.8708

6 0.8973 0.9307 0.9099 0.7953 0.7619 0.8590

7 0.8978 0.9410 0.9151 0.7981 0.7827 0.8669

8 0.8960 0.9269 0.9184 0.8114 0.7627 0.8631

9 0.8992 0.9378 0.9172 0.7977 0.7725 0.8649

10 0.8980 0.9261 0.9173 0.8014 0.7375 0.8561

Avg. 0.8989 0.9322 0.9122 0.8039 0.7631 0.8620

Table 9: Dice score coefficients for all eight different HSNet with SegPriorHSV data augmen-

tation, where SAM is the SAM2 version

Instance CVC-T ClinDB Kvasir ColDB ETIS Mean

1 0.8876 0.9433 0.9155 0.8257 0.7530 0.8650

2 0.8998 0.9451 0.9092 0.8191 0.7499 0.8646

3 0.8909 0.9455 0.9141 0.8019 0.7555 0.8616

4 0.8899 0.9463 0.9162 0.8116 0.7659 0.8660

5 0.9020 0.9407 0.9086 0.8205 0.7573 0.8658

6 0.8887 0.9463 0.9097 0.8313 0.7764 0.8705

7 0.8991 0.9361 0.9176 0.8260 0.7546 0.8667

8 0.9053 0.9345 0.9181 0.8058 0.7541 0.8635

9 0.8990 0.9473 0.9116 0.8301 0.7609 0.8698

10 0.8839 0.9442 0.9100 0.8189 0.7679 0.8650

Avg. 0.8946 0.9429 0.9131 0.8191 0.7595 0.8659

Table 10: Dice score coefficients for all eight different HSNet with SegPriorPCA data augmen-

tation, where SAM is fine-tuned

58

Instance CVC-T ClinDB Kvasir ColDB ETIS Mean

1 0.8912 0.9311 0.8990 0.8158 0.7843 0.8643

2 0.8853 0.9323 0.9123 0.8102 0.7750 0.8630

3 0.8856 0.9451 0.9039 0.8061 0.7711 0.8623

4 0.8811 0.9462 0.9099 0.8031 0.7722 0.8625

5 0.8967 0.9421 0.9143 0.8019 0.7808 0.8672

6 0.8965 0.9336 0.9139 0.8199 0.7692 0.8666

7 0.8830 0.9427 0.9141 0.8089 0.7528 0.8603

8 0.8851 0.9415 0.9114 0.8067 0.7461 0.8582

9 0.8901 0.9468 0.9041 0.8090 0.7753 0.8650

10 0.8987 0.9433 0.9074 0.8137 0.7822 0.8691

Avg. 0.8893 0.9405 0.9090 0.8095 0.7709 0.8639

Table 11: Dice score coefficients for all eight different HSNet with SegPriorPCA data augmen-

tation, where SAM is the SAM2 version

Instance CVC-T ClinDB Kvasir ColDB ETIS Mean

1 0.9028 0.9227 0.9172 0.8219 0.8227 0.8775

2 0.8997 0.9201 0.9157 0.8124 0.8312 0.8758

3 0.9024 0.9226 0.9130 0.8235 0.8228 0.8769

4 0.9039 0.9144 0.9134 0.8214 0.8262 0.8759

5 0.9037 0.9279 0.9121 0.8186 0.8240 0.8773

6 0.9026 0.9347 0.9137 0.8239 0.8230 0.8796

7 0.9052 0.9089 0.9138 0.8136 0.8305 0.8744

8 0.9036 0.9213 0.9152 0.8139 0.8294 0.8767

9 0.8997 0.9201 0.9157 0.8124 0.8312 0.8758

10 0.9047 0.9159 0.9150 0.8210 0.8238 0.8761

Avg. 0.9028 0.9209 0.9145 0.8183 0.8265 0.8766

Table 12: Dice score coefficients for all ten different Ensembles created with the HSNet model

trained with data augmentation

59

Instance CVC-T ClinDB Kvasir ColDB ETIS Mean

1 0.9007 0.9448 0.9264 0.8209 0.7917 0.8769

2 0.8971 0.9449 0.9225 0.8335 0.7981 0.8792

3 0.8902 0.9421 0.9258 0.8224 0.7900 0.8741

4 0.8964 0.9334 0.9287 0.8243 0.7967 0.8759

5 0.8956 0.9437 0.9279 0.8267 0.7943 0.8776

6 0.8934 0.9327 0.9304 0.8243 0.7909 0.8743

7 0.8950 0.9466 0.9277 0.8310 0.7825 0.8766

8 0.8993 0.9425 0.9213 0.8279 0.7986 0.8779

9 0.8924 0.9441 0.9291 0.8193 0.7913 0.8752

10 0.8945 0.9366 0.9271 0.8220 0.7824 0.8725

Avg. 0.8955 0.9411 0.9267 0.8252 0.7916 0.8760

Table 13: Dice score coefficients for all ten different Ensembles created with the HSNet model

trained with SAMAug augmentation

Instance CVC-T ClinDB Kvasir ColDB ETIS Mean

1 0.9020 0.9500 0.9200 0.8372 0.8193 0.8857

2 0.9017 0.9376 0.9248 0.8273 0.8126 0.8808

3 0.9045 0.9323 0.9280 0.8302 0.8177 0.8825

4 0.8920 0.9412 0.9255 0.8319 0.8165 0.8814

5 0.9005 0.9509 0.9231 0.8424 0.8259 0.8886

6 0.8971 0.9265 0.9271 0.8376 0.8161 0.8809

7 0.9005 0.9334 0.9203 0.8350 0.8265 0.8831

8 0.9018 0.9422 0.9253 0.8439 0.8164 0.8859

9 0.9009 0.9467 0.9236 0.8399 0.8204 0.8863

10 0.9016 0.9315 0.9249 0.8360 0.8041 0.8796

Avg. 0.9003 0.9392 0.9243 0.8361 0.8175 0.8835

Table 14: Dice score coefficients for all ten different AuxMix Triple Ensembles

60

Instance CVC-T ClinDB Kvasir ColDB ETIS Mean

1 0.8975 0.9488 0.9143 0.8399 0.8047 0.8810

2 0.9050 0.9397 0.9189 0.8437 0.8063 0.8827

3 0.9058 0.9464 0.9178 0.8341 0.8261 0.8860

4 0.9007 0.9470 0.9165 0.8358 0.8187 0.8837

5 0.9004 0.9456 0.9247 0.8299 0.8081 0.8817

6 0.9022 0.9471 0.9214 0.8379 0.8155 0.8848

7 0.8977 0.9325 0.9203 0.8329 0.8194 0.8806

8 0.9058 0.9366 0.9163 0.8330 0.8190 0.8821

9 0.9036 0.9487 0.9150 0.8301 0.8229 0.8841

10 0.9053 0.9411 0.9230 0.8319 0.8164 0.8835

Avg. 0.9024 0.9434 0.9188 0.8349 0.8157 0.8830

Table 15: Dice score coefficients for all ten different Segmentation-Prior Ensembles

Instance CVC-T ClinDB Kvasir ColDB ETIS Mean

1 0.8975 0.9435 0.9209 0.8370 0.7870 0.8772

2 0.9004 0.9487 0.9217 0.8255 0.8120 0.8817

3 0.8991 0.9480 0.9176 0.8329 0.7977 0.8791

4 0.8919 0.9327 0.9271 0.8304 0.8042 0.8773

5 0.8905 0.9476 0.9158 0.8283 0.7929 0.8750

6 0.8922 0.9415 0.9223 0.8276 0.7826 0.8732

7 0.8818 0.9411 0.9317 0.8231 0.7881 0.8732

8 0.8945 0.9288 0.9269 0.8196 0.7994 0.8738

9 0.8987 0.9491 0.9272 0.8263 0.7908 0.8784

10 0.9007 0.9329 0.9242 0.8317 0.8054 0.8790

Avg. 0.8947 0.9414 0.9235 0.8282 0.7960 0.8768

Table 16: Dice score coefficients for all ten different Semantic Ensembles

61

Instance CVC-T ClinDB Kvasir ColDB ETIS Mean

1 0.9066 0.9457 0.9211 0.8429 0.8292 0.8891

2 0.9042 0.9317 0.9282 0.8449 0.8278 0.8874

3 0.9042 0.9374 0.9275 0.8401 0.8286 0.8876

4 0.9052 0.9505 0.9249 0.8432 0.8288 0.8905

5 0.9034 0.9370 0.9269 0.8412 0.8335 0.8884

6 0.9035 0.9342 0.9252 0.8428 0.8305 0.8872

7 0.9030 0.9334 0.9276 0.8426 0.8276 0.8868

8 0.9053 0.9342 0.9242 0.8436 0.8290 0.8873

9 0.8981 0.9322 0.9259 0.8405 0.8287 0.8851

10 0.9012 0.9462 0.9267 0.8441 0.8259 0.8888

Avg. 0.9035 0.9382 0.9258 0.8426 0.8290 0.8878

Table 17: Dice score coefficients for all ten different AuxMix Ninefold Ensembles

62

Bibliography

[1] A. Kirillov, E. Mintun, N. Ravi, et al., Segment anything, 2023. arXiv: 2304 . 02643
[cs.CV]. [Online]. Available: https://arxiv.org/abs/2304.02643.

[2] G. Csurka, R. Volpi, and B. Chidlovskii, Semantic image segmentation: Two decades of

research, 2023. arXiv: 2302.06378 [cs.CV]. [Online]. Available: https://arxiv.
org/abs/2302.06378.

[3] A. Vaswani, N. Shazeer, N. Parmar, et al., Attention is all you need, 2023. arXiv: 1706.
03762 [cs.CL]. [Online]. Available: https://arxiv.org/abs/1706.03762.

[4] R. M. Schmidt, Recurrent neural networks (rnns): A gentle introduction and overview,

2019. arXiv: 1912.05911 [cs.LG]. [Online]. Available: https://arxiv.org/abs/
1912.05911.

[5] R. C. Staudemeyer and E. R. Morris, Understanding lstm – a tutorial into long short-

term memory recurrent neural networks, 2019. arXiv: 1909.09586 [cs.NE]. [Online].
Available: https://arxiv.org/abs/1909.09586.

[6] H. Naveed, A. U. Khan, S. Qiu, et al., A comprehensive overview of large language

models, 2024. arXiv: 2307.06435 [cs.CL]. [Online]. Available: https://arxiv.
org/abs/2307.06435.

[7] A. Dosovitskiy, L. Beyer, A. Kolesnikov, et al., An image is worth 16x16 words: Trans-

formers for image recognition at scale, 2021. arXiv: 2010.11929 [cs.CV]. [Online].
Available: https://arxiv.org/abs/2010.11929.

[8] K. O’Shea and R. Nash, An introduction to convolutional neural networks, 2015. arXiv:

1511.08458 [cs.NE]. [Online]. Available: https://arxiv.org/abs/1511.08458.

[9] J. Ma, Y. He, F. Li, L. Han, C. You, and B. Wang, “Segment anything in medical im-

ages,”Nature Communications, vol. 15, no. 1, Jan. 2024, issn: 2041-1723. doi: 10.1038/
s41467-024-44824-z. [Online]. Available: http://dx.doi.org/10.1038/s41467-
024-44824-z.

63

https://arxiv.org/abs/2304.02643
https://arxiv.org/abs/2304.02643
https://arxiv.org/abs/2304.02643
https://arxiv.org/abs/2302.06378
https://arxiv.org/abs/2302.06378
https://arxiv.org/abs/2302.06378
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1912.05911
https://arxiv.org/abs/1912.05911
https://arxiv.org/abs/1912.05911
https://arxiv.org/abs/1909.09586
https://arxiv.org/abs/1909.09586
https://arxiv.org/abs/2307.06435
https://arxiv.org/abs/2307.06435
https://arxiv.org/abs/2307.06435
https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/1511.08458
https://arxiv.org/abs/1511.08458
https://doi.org/10.1038/s41467-024-44824-z
https://doi.org/10.1038/s41467-024-44824-z
http://dx.doi.org/10.1038/s41467-024-44824-z
http://dx.doi.org/10.1038/s41467-024-44824-z

[10] R. Deng, C. Cui, Q. Liu, et al., Segment anything model (sam) for digital pathol-

ogy: Assess zero-shot segmentation on whole slide imaging, 2023. arXiv: 2304.04155
[eess.IV]. [Online]. Available: https://arxiv.org/abs/2304.04155.

[11] L. Huang, W. Yu, W. Ma, et al., A survey on hallucination in large language mod-

els: Principles, taxonomy, challenges, and open questions, 2023. arXiv: 2311.05232
[cs.CL]. [Online]. Available: https://arxiv.org/abs/2311.05232.

[12] P. Zhao, H. Zhang, Q. Yu, et al., Retrieval-augmented generation for ai-generated con-

tent: A survey, 2024. arXiv: 2402 . 19473 [cs.CV]. [Online]. Available: https : / /
arxiv.org/abs/2402.19473.

[13] Y. Zhang, T. Zhou, S. Wang, P. Liang, and D. Z. Chen, Input augmentation with sam:

Boosting medical image segmentation with segmentation foundation model, 2023. arXiv:

2304.11332 [cs.CV]. [Online]. Available: https://arxiv.org/abs/2304.11332.

[14] Z. Wang, P. Wang, K. Liu, et al., A comprehensive survey on data augmentation, 2024.

arXiv: 2405.09591 [cs.LG]. [Online]. Available: https://arxiv.org/abs/2405.
09591.

[15] L. Nanni, A. Lumini, and C. Fantozzi, “Exploring the potential of ensembles of deep

learning networks for image segmentation,” Information, vol. 14, no. 12, 2023, issn:

2078-2489. doi: 10.3390/info14120657. [Online]. Available: https://www.mdpi.
com/2078-2489/14/12/657.

[16] R. Zhang, G. Li, Z. Li, S. Cui, D. Qian, and Y. Yu, “Adaptive context selection for polyp

segmentation,” inMedical Image Computing and Computer Assisted Intervention –MIC-

CAI 2020, A. L. Martel, P. Abolmaesumi, D. Stoyanov, et al., Eds., Cham: Springer In-

ternational Publishing, 2020, pp. 253–262, isbn: 978-3-030-59725-2.

[17] D.-P. Fan, G.-P. Ji, T. Zhou, et al., “Pranet: Parallel reverse attention network for polyp

segmentation,” inMedical Image Computing and Computer Assisted Intervention –MIC-

CAI 2020, A. L. Martel, P. Abolmaesumi, D. Stoyanov, et al., Eds., Cham: Springer In-

ternational Publishing, 2020, pp. 263–273, isbn: 978-3-030-59725-2.

[18] D. Jha, P. H. Smedsrud, M. A. Riegler, et al., “Resunet++: An advanced architecture

for medical image segmentation,” in 2019 IEEE International Symposium on Multimedia

(ISM), 2019, pp. 225–2255. doi: 10.1109/ISM46123.2019.00049.

[19] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical

image segmentation,” inMedical Image Computing and Computer-Assisted Intervention

– MICCAI 2015, N. Navab, J. Hornegger, W. M. Wells, and A. F. Frangi, Eds., Cham:

Springer International Publishing, 2015, pp. 234–241, isbn: 978-3-319-24574-4.

64

https://arxiv.org/abs/2304.04155
https://arxiv.org/abs/2304.04155
https://arxiv.org/abs/2304.04155
https://arxiv.org/abs/2311.05232
https://arxiv.org/abs/2311.05232
https://arxiv.org/abs/2311.05232
https://arxiv.org/abs/2402.19473
https://arxiv.org/abs/2402.19473
https://arxiv.org/abs/2402.19473
https://arxiv.org/abs/2304.11332
https://arxiv.org/abs/2304.11332
https://arxiv.org/abs/2405.09591
https://arxiv.org/abs/2405.09591
https://arxiv.org/abs/2405.09591
https://doi.org/10.3390/info14120657
https://www.mdpi.com/2078-2489/14/12/657
https://www.mdpi.com/2078-2489/14/12/657
https://doi.org/10.1109/ISM46123.2019.00049

[20] X. Xiao, S. Lian, Z. Luo, and S. Li, “Weighted res-unet for high-quality retina vessel seg-

mentation,” in 2018 9th International Conference on Information Technology inMedicine

and Education (ITME), 2018, pp. 327–331. doi: 10.1109/ITME.2018.00080.

[21] V. Iglovikov and A. Shvets, Ternausnet: U-net with vgg11 encoder pre-trained on ima-

genet for image segmentation, 2018. arXiv: 1801.05746 [cs.CV]. [Online]. Available:
https://arxiv.org/abs/1801.05746.

[22] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in

2016 IEEEConference on Computer Vision and Pattern Recognition (CVPR), Las Vegas,

NV, USA: IEEE, 2016, pp. 770–778. doi: 10.1109/CVPR.2016.90.

[23] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”

in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016,

pp. 770–778. doi: 10.1109/CVPR.2016.90.

[24] Y. Gao, M. Zhou, and D. N.Metaxas, “Utnet: A hybrid transformer architecture for medi-

cal image segmentation,” inMedical Image Computing and Computer Assisted Interven-

tion – MICCAI 2021, M. de Bruijne, P. C. Cattin, S. Cotin, et al., Eds., Cham: Springer

International Publishing, 2021, pp. 61–71, isbn: 978-3-030-87199-4.

[25] J. Chen, Y. Lu, Q. Yu, et al., Transunet: Transformers make strong encoders for medical

image segmentation, 2021. arXiv: 2102.04306 [cs.CV]. [Online]. Available: https:
//arxiv.org/abs/2102.04306.

[26] W. Zhang, C. Fu, Y. Zheng, F. Zhang, Y. Zhao, and C.-W. Sham, “Hsnet: A hybrid

semantic network for polyp segmentation,”Computers in Biology andMedicine, vol. 150,

p. 106 173, 2022, issn: 0010-4825. doi: https://doi.org/10.1016/j.compbiomed.
2022.106173. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S0010482522008812.

[27] W. Wang, E. Xie, X. Li, et al., Pyramid vision transformer: A versatile backbone for

dense prediction without convolutions, 2021. arXiv: 2102.12122 [cs.CV]. [Online].
Available: https://arxiv.org/abs/2102.12122.

[28] Y. M. Ro, W.-H. Cheng, J. Kim, et al., Eds., MultiMedia Modeling, 26th International

Conference, MMM 2020, Daejeon, South Korea, January 5–8, 2020, Proceedings, Part

II (Lecture Notes in Computer Science), 1st ed. Springer Cham, 2020, pp. XXX, 820,

isbn: 978-3-030-37733-5. doi: 10.1007/978-3-030-37734-2. [Online]. Available:
https://doi.org/10.1007/978-3-030-37734-2.

65

https://doi.org/10.1109/ITME.2018.00080
https://arxiv.org/abs/1801.05746
https://arxiv.org/abs/1801.05746
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://arxiv.org/abs/2102.04306
https://arxiv.org/abs/2102.04306
https://arxiv.org/abs/2102.04306
https://doi.org/https://doi.org/10.1016/j.compbiomed.2022.106173
https://doi.org/https://doi.org/10.1016/j.compbiomed.2022.106173
https://www.sciencedirect.com/science/article/pii/S0010482522008812
https://www.sciencedirect.com/science/article/pii/S0010482522008812
https://arxiv.org/abs/2102.12122
https://arxiv.org/abs/2102.12122
https://doi.org/10.1007/978-3-030-37734-2
https://doi.org/10.1007/978-3-030-37734-2

[29] D. Jha, P. H. Smedsrud, M. A. Riegler, et al., “Kvasir-seg: A segmented polyp dataset,”

in MultiMedia Modeling: 26th International Conference, MMM 2020, Daejeon, South

Korea, January 5–8, 2020, Proceedings, Part II 26, 2020, pp. 451–462.

[30] J. Bernal, J. Sánchez, and F. Vilariño, “Towards automatic polyp detection with a polyp

appearance model,” Pattern Recognition, vol. 45, no. 9, pp. 3166–3182, 2012, Best Pa-

pers of Iberian Conference on Pattern Recognition and Image Analysis (IbPRIA’2011),

issn: 0031-3203. doi: https : / / doi . org / 10 . 1016 / j . patcog . 2012 . 03 . 002.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0031320312001185.

[31] J. Bernal, F. J. Sánchez, G. Fernández-Esparrach, D. Gil, C. Rodríguez, and F. Vilariño,

“Wm-dova maps for accurate polyp highlighting in colonoscopy: Validation vs. saliency

maps from physicians,” Computerized Medical Imaging and Graphics, vol. 43, pp. 99–

111, 2015, issn: 0895-6111. doi: https://doi.org/10.1016/j.compmedimag.
2015.02.007. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S0895611115000567.

[32] J. Bernal, N. Tajbakhsh, F. Sanchez, et al., “Comparative validation of polyp detection

methods in video colonoscopy: Results from the miccai 2015 endoscopic vision chal-

lenge,” IEEE Transactions on Medical Imaging, vol. PP, pp. 1–1, Feb. 2017. doi: 10.
1109/TMI.2017.2664042.

[33] J. Silva, A. Histace, O. Romain, X. Dray, and B. Granado, “Toward embedded detection

of polyps in wce images for early diagnosis of colorectal cancer,” International Journal of

Computer Assisted Radiology and Surgery, vol. 9, no. 2, pp. 283–293, 2014, issn: 1861-

6429. doi: 10.1007/s11548-013-0926-3. [Online]. Available: https://doi.org/
10.1007/s11548-013-0926-3.

[34] D. Vázquez, J. Bernal, F. J. Sánchez, et al., A benchmark for endoluminal scene segmen-

tation of colonoscopy images, 2016. arXiv: 1612.00799 [cs.CV]. [Online]. Available:
https://arxiv.org/abs/1612.00799.

[35] M. Barat, G. Chassagnon, A. Dohan, et al., “Artificial intelligence: A critical review of

current applications in pancreatic imaging,” Japanese journal of radiology, vol. 39, Feb.

2021. doi: 10.1007/s11604-021-01098-5.

66

https://doi.org/https://doi.org/10.1016/j.patcog.2012.03.002
https://www.sciencedirect.com/science/article/pii/S0031320312001185
https://www.sciencedirect.com/science/article/pii/S0031320312001185
https://doi.org/https://doi.org/10.1016/j.compmedimag.2015.02.007
https://doi.org/https://doi.org/10.1016/j.compmedimag.2015.02.007
https://www.sciencedirect.com/science/article/pii/S0895611115000567
https://www.sciencedirect.com/science/article/pii/S0895611115000567
https://doi.org/10.1109/TMI.2017.2664042
https://doi.org/10.1109/TMI.2017.2664042
https://doi.org/10.1007/s11548-013-0926-3
https://doi.org/10.1007/s11548-013-0926-3
https://doi.org/10.1007/s11548-013-0926-3
https://arxiv.org/abs/1612.00799
https://arxiv.org/abs/1612.00799
https://doi.org/10.1007/s11604-021-01098-5

	Introduction
	Material and Methods
	The Hybrid Semantic Network (HSNet) Model ZHANG2022106173
	The Pyramid Vision Transformer (PVT) Encoder
	Cross-Semantic Attention (CSA)
	Hybrid Semantic Complementary (HSC)
	Multi-Scale Prediction (MSP)

	The Segment Anything Model (SAM)
	Image Encoder
	Prompt Encoder
	Mask Decoder
	Efficiency
	Training and Losses
	Segment Anything Model 2: Extension to Video
	Fine-tuning of the SA Model

	SAMAug: Augmenting Images with Foundation Model zhang2023inputaugmentationsamboosting
	Masks Generation
	Augmenting Input Images
	Model Training with SAM-Augmented Images
	Model Deployment with SAM-Augmented Images

	Datasets and Methodology
	The Kvasir-SEG Dataset Ro2020
	The CVC-ColonDB Dataset BERNAL20123166
	The CVC-ClinicDB Dataset BERNAL201599
	The ETIS-Larib Polyp Database Silva2014
	The CVC-T Dataset vázquez2016benchmarkendoluminalscenesegmentation

	Evaluation Metrics and Loss Functions
	Structure Loss
	Q-statistic
	Dice Similarity Coefficient (DSC)

	SegAug: Augmentations and Ensembles
	SegPrior RGB
	Steps Breakdown
	Usefulness of the Algorithm

	SegPrior-Logits RGB
	Steps Breakdown
	Usefulness of the Algorithm

	SegPrior HSV
	Steps Breakdown
	Usefulness of the Algorithm

	SegPrior PCA
	Steps Breakdown
	Usefulness of the Algorithm

	Ensemble Methods
	Overview of Ensemble Approaches

	Experiments and Results
	Model Training with SAM-Augmented Images
	Segmentation Prior Augmentation Evaluation
	Ensemble Strategy Evaluation

	Conclusion
	Bibliography

