
Università degli Studi di Padova

Department of Physics and Astronomy
“Galileo Galilei”

Master degree in Astronomy

Master Thesis in Astronomy

Equilibrium models of rotating
compact stars: an application to the

post-merger phase of GW170817

Supervisor: Roberto Turolla

Co-supervisors: Alessandro Drago, Giuseppe Pagliara,

Prasanta Char

(Department of Physics and Earth Sciences, Ferrara)

Master Candidate: Andrea Pavan

Academic year 2018-2019



0

07/03/2019



i

Une intelligence qui pour un instant donné, connâıtrait toutes les forces
dont la nature est animée, et la situation respective des êtres qui la com-
posent, si d’ailleurs elle était assez vaste pour soumettre ces données à
l’analyse, embrasserait dans la même formule les mouvements des plus
grands corps de l’univers et ceux du plus léger atome: rien ne serait in-
certain pour elle, et l’avenir comme le passé, serait présent à ses yeux.
L’esprit humain offre, dans la perfection qu’il a su donner à l’Astronomie,
une faible esquisse de cette intelligence.

Un’intelligenza che, per un’istante dato, potesse conoscere tutte le forze
da cui la natura è animata, e la situazione rispettiva degli esseri che la
compongono e che inoltre fosse abbastanza grande da sottomettere que-
sti dati all’analisi, abbraccerebbe nella stessa formula i movimenti dei
più grandi corpi dell’universo e quelli dell’atomo più leggero. Nulla le
risulterebbe incerto, l’avvenire come il passato sarebbe presente ai suoi
occhi. L’ingegno umano offre un debole abbozzo di tale intelligenza nella
perfezione che ha saputo dare all’Astronomia.

Laplace Pierre Simon, Essai philosophique sur les probabilités (1825)
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Abstract

The topic of this thesis is the role of the rotation in relativistic stars. Equilibrium
models of static, uniformly and differentially rotating compact stars are numerically
computed applying several realistic equations of state and probing the so-called
”two-families scenario”. The work provides a differentially rotating quark star as a
possible solution for the post-merger phase of GW170817.

L’argomento di questa tesi è il ruolo della rotazione nelle stelle relativistiche. Mod-
elli di equilibrio di stelle compatte statiche, a rotazione uniforme e differenziale
vengono calcolati numericamente applicando diverse realistiche equazioni di stato
ed esaminando il cosiddetto ”scenario a due famiglie”. La tesi propone come possi-
bile soluzione della fase di post-merger di GW170817 una stella di quark a rotazione
differenziale.
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Introduction

The event of August 17, 2017, has represented the first observation of gravitational
waves (GW) generated by the merger of two neutron stars. It has been particularly
relevant because it has been also associated with an electromagnetic counterpart,
spanning from the X-rays, to optical and near infrared wavelengths, to the radio
band.

The evidence of the so-called ”Kilonova” signal has indicated that there was
not a direct collapse to a black hole immediately after the merger but that instead a
rapidly and differentially rotating compact object was formed. However, the absence
of an extend emission in the electromagnetic signal has suggested the collapse within
timescales ranging from a few tens of milliseconds up to about one second, compatible
with the damping time of the differential rotation.

Very recently, two papers have discussed possible evidences of a long-lived rem-
nant [1, 2]. In particular, [1] has suggested the existence of a post-merger GW
emission lasting about 6-7 s, while [2] has identified an X-ray feature 155 days after
the coalescence and possibly associated with the activity of a neutron star. Nev-
ertheless, it is important to remark that in [3] no evidence of a post-merger GW
emission has been found.

In this thesis we discuss a possible scenario for the post-merger phase, trying to
interpret the signal suggested in [1]. While the evidence of such a signal is quite
weak, our scheme could be useful to describe future detections of a post-merger
emission. An interpretative scheme compatible with what proposed in [1] needs to
solve three problems: the origin of the extended GW emission; the origin of the high
energy electromagnetic emission (i.e. the engine of GRB170817A); the dissipation
of the rotational kinetic energy of the remnant, compatible with the upper limits on
the energy deposited in the environment by the electromagnetic emission.

This work is organized as follows. In Chapter1 we summarize state-of-the-art
knowledge concerning masses, radii and spin frequencies of neutron stars. A short
background on rotating stars in classical physics is also reported here, just to intro-
duce fundamental results and physical quantities needed by our analysis. Therefore,
in Chapter2 we focus on the theoretical overview about rotating compact stars in rel-
ativity, which is necessary in order to probe a possible differentially rotating outcome
of a double-NS merger. In this chapter we also treat in details some numerical ap-
proaches usually applied to compute models of rotating neutron stars. In Chapter3
some of the most relevant equations of state describing dense matter are discussed.
In Chapter4 the phenomenology of GW170817/GRB170817A/AT2017gfo is summa-
rized. Finally, in Chapter5 we illustrate our suggested scenario for the post-merger
phase of the event of August, 2017.
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Chapter 1

Neutron Stars

Nowadays lots of physical research aim to probe what kind of picture seems to be the
most appropriate to describe the Beginning of the Universe. An interesting result of
these investigations is the remarkable tendency of all the branches of physics towards
a ”great” unification when the time zero is approached. Both of the two current
standard models developed by theoretical physicists and cosmologists to describe
the whole nature of the Universe point out that the Theory of Everything is hidden
somewhere in the past. But, what about the Ending? It’s surprising that the same
kind of things seem to happen when one looks in the opposite sense. Clearly it is not
possible to see the future of the Universe, nevertheless we can study the ultimate
stages of the evolution of astrophysical objects. We can probe what happens when
a star dies. We can deal with neutron stars.

Neutron stars are superdense objects; superfast rotators; superfluid and
superconducting inside; superaccelerators of high-energy particles; sources of

superstrong magnetic fields; superprecise timers; superglitching objects; superrich in
the range of physics involved. Neutron stars are related to many branches of

contemporary physics and astrophysics, particularly to nuclear physics; particle
physics; condensed matter physics; plasma physics; general theory of relativity;

hydrodynamics; quantum electrodynamics in superstrong magnetic fields; quantum
chromodynamics; radio-, optical-, X-ray and gamma-ray astronomy; neutrino

astronomy; gravitational-wave astronomy; physics of stellar structure and
evolution, etc.[4]

1.1 State of the art

Neutron stars (NSs) represent the end point of the life of stars whose initial mass
belongs to a range of [8, 20−25]M�. At the last stages of the evolution of these stars,
when the Si-burning and the formation of iron nuclei in their core is completed, the
inner nuclear fuel is exhausted. This is due to the binding energy of iron nuclei,
which is the more high among all the others nuclei. Therefore, no further energy
can be released by nuclear fusion. When this happens the progenitor leaves its
hydrostatic equilibrium state. Because of the lack of an internal energy source,
the gravity pressure triggers the dynamical collapse of the star. This generates a

3



4 CHAPTER 1. NEUTRON STARS

violent and catastrophic explosion that we call ”Supernova”. It is an astrophysical
object consisting in a sudden powerful burst in luminosity, sometimes capable of
outshining the luminosity of an entire galaxy. If observed in our Galaxy, it should
be visible in daylight and for weeks thereafter. Baade and Zwicky[5] suggested
that the source of such a magnitude must be gravitational binding energy. The
luminosity of supernovae (∼ 1053 ergs−1) is mainly due to neutrinos emission[6]
(∼ 1051 ergs−1), which carry away lots of the gravitational energy associated to
the collapse, the remaining small fraction can be released either mechanically or by
emission of gravitational waves (GWs). Baade and Zwicky also stated that that
supernovae would actually represent the transition of an ordinary star to a neutron
star. This is true only if the mass of the progenitor belongs to the previous range.
In the case of more high initial masses the outcome of a supernova should be a
black hole. Instead, if the progenitor is not so massive, there is the possibility that
the hydrostatic equilibrium of the collapsed object is restored at a certain point
during the supernova explosion. The gravitational collapse makes the star so dense
that in its inner regions the repulsive component of the strong interactions becomes
evident. The hydrostatic equilibrium is restored thanks to several components which
act against the gravity. Mainly the strong repulsion between atomic nuclei but also
the degeneracy pressure of neutrons, protons and electrons generates by the Pauli
principle. The thermal pressure also is relevant in order to stop the collapse. When
the equilibrium is restored a neutron star is born.

After the discovery of the first pulsar1[7] lot of work has been done in order
to understand the physical properties of neutron stars as well as their origin and
evolution. During the last dozen of years our knowledge about these objects has im-
proved considerably. Countless theoretical studies on spacetimes, microphysics and
high energy astrophysics have been performed together with a remarkable progress in
computational sciences. We are now able to model these peculiar objects with high
accuracy numerical codes. However, although the great improvement on theoretical
physics over the years, the major advances mainly came from astrophysical obser-
vations. Nowadays terrestrial experiments are not able to approach high densities
like those inside NSs cores, i.e. significantly higher than the nuclear mass density
at the saturation (ρ0 = 2.7 · 1014 gcm−3[8]). These extreme physical regimes can
be investigated only by space surveys. Thanks to the new generation X-ray and
γ-ray telescopes, large and high quality datasets have been obtained. Awesome im-
provements were due to the application of different observational techniques applied
to all the wavelengths of the electromagnetic spectrum, from the radio to gamma
rays. Moreover, after the first observation of GWs coming from a binary NS merger
together with a short-duration gamma-ray burst[9] a new multi-messenger era for
the Astrophysics has begun: we are now able to detect the gravitational counterpart
of the signal emitted by NSs probing new and weird features of these objects. Up
today ∼3000 NSs have been observed and a complicated picture turned out. There
is a great variety of possibly distinct observational classes of compact stars, like an
intricate zoo: rotation-powered pulsars, millisecond pulsars, isolated neutron stars,

1A pulsar is a highly magnetized rotating neutron star that emits a beam of electromagnetic
radiation which can be observed only when the beam of emission is pointing toward Earth. This
emission is seen periodically in the form of ”pulses”.
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magnetars and others types of have been catalogued. Some interesting ideas for
grand unification are emerging; for instance, models of magneto-thermal evolution
have been suggested[10]. Observationally we are not able to probe directly the deep
interior of these stars. However, severe constraints on the properties of ultra dense
and cold nuclear matter can be put through NSs masses and radii measurements
together with theoretical investigations. Given a particular equation of state, one
can solve equations of structure within the framework of general relativity comput-
ing at first static and spherical stellar models and mapping them into mass-radius
diagrams. Different equations of state allow to different maximum masses of NSs.
A measurement of the mass, even without a simultaneous estimation of the radius,
can be very useful to constrain the equation of state: candidates yielding models
with maximum masses of nonrotating stars below the observational limits must be
ruled out. Several types of equations of state have already been excluded, in par-
ticular thanks to the latest mass measurements[11, 12]. This led to new theoretical
investigations concerning nuclear matter at larger densities. Several scenarios have
been suggested taking account the possibility of different families of NSs[13] (we will
discuss them very deeply in the next chapters).

The value of the maximum mass of neutron stars is regularly discussed in the
literature[14, 15, 16, 17] because its fundamental role in defining the nature of the
compact object itself: beyond an upper mass limit the prompt collapse to a black
hole cannot be avoided. The understanding about this is so important not only for
the aim of probing new regimes of nuclear physics but also for several astrophysical
phenomena related to it, like the outcomes of supernova explosions or even of CO-CO
mergers, the signal emitted by them and their characteristic evolutionary timescales.
In order to realize a stable hydrostatic configuration, masses beyond a lower limit are
also required. The minimum neutron star mass is rather well established because of
its really weak dependence on the equation of state of nuclear matter: ≈ 0.1M�[18].
We now know precise masses for ∼35 CSs spanning the range from 1.17 to 2.00
M�[19]. The most precise measurements have been performed detecting the radio
signal associated with rotation-powered pulsars. About 2250 of them are isolated
NSs and the remaining 250 are located in binary systems. Only for the latter ones
accurate estimations are possible by applying timing techniques and evaluating the
system orbital parameters in which relativistic corrections are needful. Most of
them are ”recycled” pulsars: a great mass transfer from the companion to the NS
happened at a certain point of the dynamical evolution. Double-NS binary systems
have been also discovered. The first of them was PSR B1913+16[20], the latest
mass estimates yielding MPSR = 1.4398M� and Mc = 1.3886M� (the companion
mass ). Its discovery was of great importance since it consisted in the first indirect
observation of gravitational radiation[21]. By applying relativistic calculations, it
was possible to explain the revealed orbital decay of the system as a dissipation
mechanism in which the orbital energy is gradually converted in gravitational waves.
A number of others double-NS systems have since been observed. These provided
lots of stringent tests for general relativity proving its extraordinary precision in the
description of compact objects and thus ruling out several families of others gravity
theories. J0737-3039 is the only double-pulsar system known among them[22, 23];
all the post-Keplerian parameters have been measured independently for each of the
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two stars and they were completely consistent with relativistic predictions[24]. This
peculiar system has been well investigated because of its precious information about
the formation and the coalescence of double-NS systems, which are prime targets for
GW detectors on Earth. By combining radio and X-ray observations also pulsars
heavily recycled by a long-lived accretion phase in a low-mass X-ray binary have
been detected. These are characterized by a 10−3s absolutely stable rotational period
and a remarkable X-ray emission generated by the accretion mechanism. They also
exhibit strong pulsed high energy γ-ray emissions[25]. The first detected ”millisecond
pulsar” (MSPs) was B1937+21[26]. Their number has since increased very rapidly.
Various searches have revealed a total of 255 MSPs[27]; about ∼20% of them are
isolated CSs and most of the remaining have WD companions. Pulsar-WD systems
have well been investigated through Shapiro delay measurements. Among these,
PSR J1614-2230 represented definitely the most impressive one. Its more recently
estimated mass is about 1.928M�[28]. This allowed to fix relevant constraints on the
neutron stars equation of state as well as their mass distribution. Moreover for some
of the millisecond pulsars optically emissions from the companion were detected.
Spectroscopic investigations of the Balmer lines produced by hydrogen in the WD
atmospheres have provided important measurements, in particular the masses of the
pulsar-WD system PSR J0348+0432[12]: MPSR = 2.01M� and Mc = 0.172M�.
This ensured that NSs can reach masses around 2M�. Neutron stars in high-mass
X-ray binary systems have also been discovered by observing eclipse phenomena and
optical emissions. In Figure 1.1 the recent mass measurements of several categories
of NSs are shown.

The determination of the radius of NSs of known masses would allow to reveal
the equation of state of nuclear matter at ultra density regimes. However this would
require very small uncertainties in the measurements. Up today the precise evalua-
tion of NSs radii represents a challenge for observers. Several observational methods
have been developed over the years. Currently, two main approaches are applied:
one involves spectro-photometric analysis and the other timing techniques. Their
goal is to detect the atmospheric thermal emission of the neutron star or the effects
of spacetime on this emission to obtain information about the star radius. As for
Newtonian stars, the spectroscopic method measures the observed radius of the star
(Robs) by the estimate of the bolometric thermal flux (Fbol), the effective tempera-
ture (Teff ) and the luminosity distance (D). Assuming thermal emission from the
surface of the star we have that:{

Lbol = 4πσSBR
2
obsT

4
eff

Lbol = Fbol4πD
2

(1.1)

where σSB is the Stefan-Boltzmann constant. Thus, the NS radius is given by:

Robs = D
( Fbol
σSBT 4

eff

)1/2

(1.2)

However, numbers of complications come out in this estimation. Firstly, unlike
Newtonian stars, there is a relativistic mass-dependent correction in eq.1.2 due to
the spacetime curvature. For instance, in the case of a static-spherically symmetric
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Figure 1.1: Current measurements of compact star masses. Several classes are reported
here with different colors: Double NSs (magenta), Recycled Pulsars (gold), Bursters (pur-
ple) and Slow Pulsars (cyan). Reference: Ozel & Freire 2016, Annual Reviews of Astron-
omy and Astrophysics.

Schwarzschild spacetime the proper radius R of the NS is related to Robs by:

Robs =
(

1− 2GM

Rc2

)−1/2

R (1.3)

where G is the gravitational constant, c the speed of light and M the gravitational
mass of the star (we will define it later). Thus a mass measurement is needed to
estimate the radius. The situation even becomes more complex when considering
rotating NSs, for which the spacetime cannot be described with a Schwarzschild
metric and the gravitational mass and the radius are both affected by the spin[29]
(also this will be discussed later in this thesis), or also when non-thermal emissions or
strong magnetic fields on the surface are considered. The chemical composition of the
atmosphere also affects the results[30]. Moreover, it’s very difficult to obtain accurate
evaluations of the NS luminosity distance. Lots of radius measurements concern
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NSs located in globular clusters whose distances are quite known. However in some
cases the uncertainties on the distance can be as large as 25%[31], especially when
one considers also the effects of the interstellar absorption[30]. Detailed theoretical
modeling of emission from neutron stars in general relativity have been developed
during the last decades in order to overcome these problems[8, 19]. Essentially
these models have been applied to three types of objects: quiescent X-ray transients
(QXTs), bursting NSs (BNSs) and rotation-powered radio millisecond pulsars (RP-
MPS).

The first ones are NSs belonging to a binary system observed when the accre-
tion process is stopped or is continuing at a very low level. This allows observa-
tions of the surface thermal emission powered by the re-radiation of the heat stored
in the deep crust during the accretion phases[32]. Numbers of QXTs in globu-
lar clusters have been observed with X-ray telescopes like Chandra[33] and XMM-
Newton[34, 35]. Since they are observed during a quiescent phase their luminosity is
quite low (∼ 1032−33ergs−1). In the case of NSs belonging to a globular cluster also
the crowded environment makes their observation very difficult. Thus high angular
resolution X-ray telescopes are needed to measure their angular sizes[35]. Reliable
radii constraints have been obtained for eight QXTs located in different globular
clusters, like 47 Tuc[36, 37] and ω Cen, M13 and NGC 2808[35]. These measure-
ments have suggested radii in the 9.9-11.2 km range for a ∼1.5M� NS[37]. BNSs
are instead NSs from which recurring and strong photospheric bursts are observed.
These are helium flashes generated by the material accreting the NS in a low-mass
X-ray binary system. During these events the star luminosity increases so much
that it can reach the Eddington limit. In these cases the radiation forces overcome
the gravitational ones lift the star photosphere off of its surface. Numbers of stud-
ies make use of a combination of the Eddington flux measured during the burst
and the distance computed through a high resolution X-spectra analysis to extract
information about NSs radius. For instance, in [38] the distance of the low-mass
X-ray binary 4U 1608-52 has been evaluated by modeling the individual absorption
edges of the elements Ne and Mg in the high resolution X-ray spectrum obtained
with XMM-Newton, then analyzing the time-resolved X-ray spectra of Type-I X-ray
bursts observed from this source a mass of 1.74± 0.14 M� and a radius of 9.3± 1.0
km were found. Moreover, by combining this method with the measure of Robs one is
able to break the relativistic mass-dependence showed in eq.1.2 and thus to estimate
the radius of a NS independently by the measure of its gravitational mass. Several
measurements from QXTs and BNSs seems to be consistent with a range of values
for the observed NSs radii of 9.8−11 km [19]. Another approach that has been used
for radius measurements is to study the spectral evolution of photospheric bursts
during its cooling phase[39, 40]. By the observed spectral distortion one can extract
information about the effective surface gravity and the emitted flux during the burst
and thus estimate the stellar mass and radius. This method has been applied to some
BNSs but the results are ambiguous: some yielding too large[40] and others too small
[39] radii. As mentioned before there is also an other class of methods which use
timing investigations in order to constrain the NSs radii. By analyzing the periodic
brightness oscillations which are originated from temperature anisotropies on the
surface of a spinning pulsar, the properties of the spacetime near the star and thus
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of the beam of the emerging radiation can be probe. Several theoretical models has
been employed to describe the features of the emitted radiation allowing observers to
probe the pulsars spacetime, masses and radii. However, in order to obtain accurate
measurements, the corrections due to the rotation are required. There are already
several studies which use them, considering both slow and high rotation regimes.
They have noted that for 3 ms spin periods, the pulse fractions can be as much
as an order of magnitude larger than with simple, slowly rotating (Schwarzschild)
estimates[41]. Moreover the analysis of the pulse profiles have shown that neglecting
the oblateness of the neutron star surface leads to ∼ 5−30% errors in the calculated
profiles and neglecting the quadrupole moment leads to ∼ 1 − 5% errors at a spin
frequency of ∼ 600Hz[42]. This class of methods has been applied to several types of
NSs, like slow-pulsars[43] and magnetars[44]. Some constraints about NSs radii have
been obtained for accretion-powered millisecond pulsars (AP-MSPs), RP-MSPs and
thermonuclear X-ray BNSs. Anyway, large uncertainties in the radius measurements
are generated by various geometrical factors which appear during the modeling of
the pulse profiles[19].

1.2 Rotating Newtonian stars: a background

The angular momentum is one of the most important properties of astrophysical
objects. We konw from the Classical Mechanics that a field of central forces conserves
the angular momentum when measured in a fixed reference frame. Being the gravity
the central force which governs many astrophysical events, such as the formation
and the evolution of stars, planets and galaxies, the conservation of the angular
momentum looks like an holy rule in the Universe: every motion involved during an
event in which gravity dominates the other forces obeys it. At the beginning of the
formation of most astrophysical objects a certain amount of angular momentum was
contained in interstellar clouds which became gravitationally unstable and collapsed
towards smaller mass clumps, sharing the angular momentum over them. Because of
the conservation law a large part of this angular momentum has been conserved till
today. We can observe rotation in several astrophysical objects and with different
regimes. The Earth rotates like a rigid-body, i.e. with constant spin frequency
within it (uniform rotation), at ≈ 1× 10−5Hz. The rotation makes it slightly flat at
the poles; this flattening can be measured by the difference between the equatorial
and polar radii (Re − Rp ∼ 20km). Stars also rotate and because of their gaseous
composition the rotational effects can be more evident. They can appear more
flat and farther their spin frequency can change within them unlike solid-bodies
(differential rotation). The Sun happens to be the only star of which differential
rotation is observationally well studied. It rotates rather slowly, with a equatorial
spin frequency of 4.55× 10−7Hz changing at the pole of more than 10%.

The theory of rotating stars is a notoriously difficult subject. The rotation plays a
crucial role for these systems. It does not only change their shape but also influences
the processes occurring inside them, i.e. it may accelerate or decelerate thermonu-
clear reactions in certain conditions, it changes the gravitational field outside the
objects and it is one of the main factors that defines the lifespan of all stars, from
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their birth until their death[45, 46, 47]. Thanks to the centrifugal force, rotating
stars can sustain more mass and have larger radii respect to the non rotating ones.
Since the topic of this thesis is the role of the rotation in relativistic stars, which are
more complex to investigate, a brief discussion about rotating Newtonian stars can
be useful to the reader. Let us consider the case of a self-gravitating and uniformly
rotating fluid within the framework of Classical Mechanics. By assuming an adia-
batic motion of the fluid, the equations which describe the dynamical evolution of
the system in a co-rotating Eulerian reference frame are the following:

∂ρ

∂t
+ ~∇ · (ρv) = 0 (1.4)

∂v

∂t
+ (v · ~∇)v = −1

ρ
~∇P − ~∇Φ−Ω ∧ (Ω ∧ r)− 2Ω ∧ v + ν∇2v (1.5)

∇2Φ = 4πGρ (1.6)

where ρ is the density field, Ω is the angular velocity vector, P is the pressure, Φ is
the gravitational potential and ν is the cinematic viscosity of the fluid. There are
five equations and ten unknowns (ρ, P , v, Φ, Ω, ν) in the above set of equations. In
order to find a unique solution of the problem other five equations are required. We
can use a relation P = P (ρ), which is an equation of state independent on the fluid
temperature (according to the adiabaticity condition). This is named as barotropic
equation of state. Moreover, being Ω constant within the fluid, it’s easy to show
that Ω ∧ (Ω ∧ r) = −1/2~∇‖Ω ∧ r‖2. Thus eq.1.5 can be written as:

∂v

∂t
+ (v · ~∇)v = −1

ρ
~∇P − ~∇(Φ− 1

2
‖Ω ∧ r‖2)− 2Ω ∧ v + ν∇2v (1.7)

This equation shows that uniform rotation decreases the strength of the gravitational
potential by defining a new effective potential Φeff (Ω) = Φ− 1/2‖Ω ∧ r‖2. This is
the effect of the centrifugal forces, which push out the mass fluid elements against
the gravitational collapse. The latest two terms in the right hand side of eq.1.7
represent the Coriolis (the former) and the viscous (the latter) forces per unit of
mass. Because of the second spatial derivative ∇2v the viscosity action is relative to
the smaller length scales respect to the other terms. This allows us to neglect it in
the description of big size systems, like astrophysical objects, thus considering the
simple case of an ideal fluid2. For the hydrostationary equilibrium configuration the
ultimate set of equations is3:

Φeff (Ω) +

∫
1

ρ
~∇P = const. (1.8)

∇2Φeff (Ω) = 4πGρ− 2Ω2 (1.9)

P = P (ρ) (1.10)

where the integral in eq.1.8 is done along a streamline. Once Ω is fixed the entire
system of equations can be solved and we can study the dynamics of the rotating

2This is clearly true only when not much high viscosities are taken into account. We don’t
consider this case here.

3In cylindrical coordinates: ∇2( 1
2‖Ω ∧ r‖2) = 1

$
∂
∂$

[
$ ∂
∂$

(
1
2Ω2$2

)]
= 2Ω2.
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fluid. It is important to highlight a point. With the respect of non rotating con-
figurations, rotating models require to fix a major number of quantities in order to
be computed uniquely. Hydrostationary equilibria draw sequences of models with a
higher number of dimensions than sequences of hydrostatic equilibria. This comes
from the own expression of the structure equations. When one wants to solve directly
(i.e. without approximations) the above set of ordinary linear differential equations,
he has to specify appropriate boundary conditions. We will see later that for the non
rotating case, i.e. Ω = 0, this correspond to fix a value of one single parameter. Gen-
erally, the central mass density or the maximum value of it are specified. This fixing
corresponds to compute the constant in eq.1.8 (with Ω = 0) and thus to compute
one single solution, i.e. one single stellar model. Moreover, changing the parameter
allows to build one-parameter sequences of hydrostatic equilibrium configurations.
Nevertheless, if rotation is present, fixing one parameter in eq.1.8 corresponds to
compute a sequence of solutions; this being parameterized by the angular velocity Ω
changing among different models. Therefore to compute unique solutions we need to
specify more parameters. In particular for the above problem, where Ω is constant,
one can choose to fix the own spin frequency. Thus a single stellar model is linked
by a couple of parameters within the solutions space, for instance (ρc,Ω) where ρc
is the central mass density of the model. In the presence of differential rotation the
situation becomes more tricky and appropriate numerical technique can be applied
to solve the structure equations. We will discuss them later.

Several approaches have been used to find solutions of the Ω-constant problem
over the years. One is the so-called slow-rotation approximation. This method was
invented by James B. Hartle[48] who applied it firstly to Newtonian stars and then
to relativistic stars in order to study the effects of rotation on NSs. Subsequently,
Hartle and K. Thorne used it to create a code which computed equilibrium configu-
rations of rotating NSs applying some realistic equation of state[49]. The powerful of
this approach is its analyticity. When a star is rotating slowly4 the calculation of its
equilibrium bulk properties is much simpler, because then the rotation can be con-
sidered as a small perturbation on an already-known non-rotating configuration[48].
A solution for the non-rotating problem is used as the leading term in an expansion
of the rotating problem solution in powers of the angular velocity Ω to the order Ω2.
Then the equations governing the second-order terms are determined and a spherical
harmonics expansion of the these terms is done. Eventually the equations for each
pole are studied. This approach is useful to investigate some properties of rotating
stars, like their shape and their change on the mass over its non-rotating value for a
fixed central mass density5. However it is only valid for slowly-rotating stars. Errors
come out when considering rotating fluids with arbitrary angular velocity. In these
cases higher orders approximations can be developed in order to compute more ac-

4This means that Ω� Ωk, where Ωk is the Keplerian angular velocity that defines the so-called
mass-shedding limit, i.e. the rotation rate at which the centrifugal forces at the star’s equator start
to overcome the gravity pressure. In the Hartle formalism this implies that the relative changes in
pressure, energy density and gravitational field due to the rotation are all much smaller than the
unity.

5Since the gravity strength is reduced by the action of the centrifugal forces, the effective mass
of a rotating star is smaller than its value in a non-rotating configuration for the same central mass
density.
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curate solutions. We will not discuss them in this thesis but we will describe after
the slow-rotation method applied to rotating relativistic stars. In particular we will
focus on the order O(Ω).

An other approach was to study analytically the gravitational equilibrium of ro-
tating masses probing the geometrical deformation on their shapes induced by the
rotation. Starting with the studies of Newton about the shape of the Earth, which
showed that the effect of a small rotation on the figure must be in the direction
of making it slightly oblate[50], this analysis was carried on by some of the great-
est physicists and mathematicians of the nineteenth century. Let us consider the
equilibrium configuration of a uniformly rotating fluid whose dynamical evolution is
described by the equations 1.8-1.10. We also consider the case of an homogeneous
fluid. Thus eq.1.8 becomes:

P

ρ
+ Φ− 1

2
‖Ω ∧ r‖2 = const. (1.11)

We take ẑ as the rotation axis (i.e. Ω = (0, 0,Ω)). Because we are interested on
the shape of the fluid let us look at the geometry of its surface, which is defined by
the condition P = 0. Keeping this in mind, in a Cartesian coordinate system the
eq.1.11 reduces to the following:

Φ− 1

2
Ω2(x2 + y2) = const. (1.12)

We want to study an ellipsoidal figure of equilibrium. Thus the analytical expression
for the boundary surface has to be:

x2

a2
+
y2

b2
+
z2

c2
= 1 (1.13)

It can be shown that the gravitational potential at any point inside the ellipsoid is
given by[51]:

Φ(x, y, z) = πGρ(α0x
2 + β0y

2 + γ0z
2 − χ0) (1.14)

where

α0 = abc

∫ ∞
0

dλ

(a2 + λ)∆
(1.15)

β0 = abc

∫ ∞
0

dλ

(b2 + λ)∆
(1.16)

γ0 = abc

∫ ∞
0

dλ

(c2 + λ)∆
(1.17)

χ0 = abc

∫ ∞
0

dλ

∆
(1.18)

∆ = [(a2 + λ)(b2 + λ)(c2 + λ)]1/2 (1.19)

By inserting the expression 1.14 for the gravitational potential within the eq.1.12
for the surface, we obtain that:(

α0 −
Ω2

2πGρ

)
x2 +

(
β0 −

Ω2

2πGρ

)
y2 + γ0z

2 = const. (1.20)
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Since eq.1.13 and eq.1.20 must hold simultaneously the coefficients of x2, y2 and z2

have to be proportional. Thus we obtain an important result:(
α0 −

Ω2

2πGρ

)
a2 =

(
β0 −

Ω2

2πGρ

)
b2 = γ0c

2 (1.21)

By solving the above equation we can compute ellipsoidal equilibrium configurations.
Classical studies showed that in the case of a non rotating self gravitating fluid in a
hydrostatic equilibrium configuration the system must be spherical[52]. Tradition-
ally, for the case of a uniformly rotating fluid in hydrostationary equilibrium it is
assumed that the system is axially-symmetric. Then we assume the axial symmetry
of the system respect to the rotation axis ẑ. This implies a = b, with a, b > c for the
case of an oblate ellipsoid. The condition a = b makes more easy the integration of
eq.1.15-1.18; for instance:

α0 = a2c

∫ ∞
0

dλ

(a2 + λ)2(c2 + λ)1/2
= ·· = − 2c

ae3

∫ 0

e

ω2dω

(1− ω2)1/2
(1.22)

which can be solved using trigonometrical functions and where e =
(
1− c2/a2

)1/2
is

the eccentricity of the ellipsoid. By taking a = b inside eq.1.21 and solving all the
integrals in eq.1.15-1.18 one obtains that:

Ω2

πGρ
=

2(1− e2)1/2

e3
(3− 2e2) sin−1 e− 6(1− e2)

e2
(1.23)

The equation describes how the uniform rotation modifies the figure of the fluid
for a given uniform density. Maclaurin in 1740[51] first demonstrated the existence
of such spheroidal solutions, which were called Maclaurin spheroids in his honour.
The graph of the normalized square angular velocity Ω2/πGρ as a function of the
eccentricity e is shown in Figure1.2. We can see that when the fluid is non-rotating it

Figure 1.2: Graph of the relation between the normalized square angular velocity Ω2/πGρ
and the eccentricity e. See more details in the text.

has a spherical shape (Ω = 0, e = 0). When a certain amount of angular momentum
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is imprinted on the fluid it starts to rotate (Ω > 0) and it acquires a spheroidal
shape (e > 0). By giving it more angular momentum, Ω increases and the spheroid
becomes more and more flat until the point A. At this point, when e = 0.930,
the angular velocity reaches a maximum value. Then an extra amount of angular
momentum makes the spheroid more flat slowing it down at the same time. A simple
argument explains this. Because of the assumption that the rotation axis is also the
symmetry axis of the system, the module of the angular momentum is L = IΩ where
I is the moment of inertia. If we increase L (δL > 0) then both Ω and I can vary.
Since I ∼ Ma2, being M the mass of the fluid, an increase of e for a fixed minor
semi-axis c corresponds to an increase of a and thus of I. In particular:

δL = IδΩ + ΩδI ⇒ δΩ =
δI

I

(δL
δI
− Ω

)
(1.24)

Since δL, δI > 0 the sign of δΩ is defined by the sign of the term inside the brackets.
If the increase of I is sufficiently large we can have δL/δI < Ω and thus a decrease
of the angular velocity6. Furthermore, the behaviour of the spheroid at the point B
plotted on Figure1.2 was explained by Jacobi in 1834[51]. He showed that the eq.1.20
can admit other solutions which are associated to triaxial ellipsoids. In particular
Jacobi demonstrated that:

• for e < 0.813 only solutions with a = b > c exist (Maclaurin spheroids)

• for e > 0.813 also solutions with a 6= b 6= c (all real numbers) can exist

The latest were called Jacobi ellipsoids. Thus for e < 0.813 there is one possible
solution which is a Maclaurin spheroid. Instead for e ≥ 0.813 there are two possi-
ble solutions: one of these is again a Maclaurin spheroid and the other is a Jacobi
ellipsoid, with three unequal axes. From the point B the Jacobi sequence of ellip-
soidal equilibrium configurations ”bifurcates” from the Maclaurin sequence. Jacobi
discovered the important fact that uniformly rotating homogeneous fluids can be not
axially symmetric. The axial symmetry that is traditionally assumed to describe
rotating configurations is only a mere assumption. ”A priori” the general rotational
problem has not specific symmetries. By imprinting a sufficient amount of angular
momentum to a Maclaurin spheroid a Jacobi ellipsoid can be obtained breaking the
axial symmetry. The meaning of this spontaneous symmetry breaking is more clear
when one considers the energy of the system. It can be shown that the Jacobi ellip-
soid has less rotational kinetic energy compared to the Maclaurin spheroid[51] for the
same mass and angular momentum. Beyond the bifurcation point B the Maclaurin
spheroid becomes secularly unstable. ”Secular instability” means that if one consid-
ers the general problem in which also dissipative mechanisms are included (such as
viscosity, heat flows or also gravitational radiation) and studies the time evolution of
the system by starting with a initial equilibrium configuration and applying a small
perturbation to it, then a slowly7 evolution of the system towards an unstable con-
figuration is noted. During this process the system dissipates energy and lies into

6It can be shown that δL/δI < Ω exactly correspond to the condition e > 0.930.
7This means that the instability evolves in timescales longer than the dynamical timescale τdyn,

which corresponds to a prompt collapse/explosion of the fluid caused by the gravitational/pressure
forces. For rotating NSs this timescale is τdyn ∼ms [4].
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quasi-equilibrium configurations. In the case of a Maclaurin spheroid the secular
instability starts when e = 0.813, then if some angular momentum is added and if
some dissipative mechanisms are present the spheroid relaxes to a triaxial ellipsoid.
This is a non-axisymmetric instability and it can be studied in the perturbative
analysis considering bar-modes8. Newtonian stars develop bars in secular timescales
when this instability occurs[50]. Instead of the oblateness, one often uses the ratio
β = T/|W | between the rotational kinetic energy T and the gravitational energy
W , which reaches the value 0.1376 at the bifurcation point. Therefore, we can state
that:

• if β . 0.14 the rotating fluid is secularly stable

• if β & 0.14 the rotating fluid is secularly unstable and develop bars

All these results are valid for homogeneous and uniformly rotating fluids but they
can also be used to describe the stability of realistic rotating Newtonian stars. It can
be shown that Newtonian stars develop bars on a dynamical timescale when β &
0.27, while they develop bars on a secular timescale for β & 0.14 via gravitational
radiation or viscosity[53]. Moreover the β parameter has been also used by several
authors (e.g. [54]) in order to define the ”slow-rotation” regime without regard to
the equatorial spin frequency. According these authors, a star is considered to be
”slowly-rotating” when β � 1 and ”rapidly-rotating” when the kinetic energy of
rotation is comparable to the gravitational energy (i.e. β ≈ 1). After the studies
of Maclaurin and Jacobi lots of work has been done. For instance the Roche model
in which the self-gravitating fluid shows a not constant density profile within it (i.e.
without the assumption of homogeneous fluid) and practically all the mass is in the
center[55]. In this model one can estimate the value of the Keplerian frequency for
uniform rotation Newtonian stars. It turns out to be[56]:

Ωk =
(GM
R3
e

)1/2

(1.25)

where M and Re are the mass and the equatorial radius of the system respectively.
We will not go more into detail about this approach in this thesis. However the
results concerning the bar-mode instability and the lack of an already-known sym-
metry of rotating fluids will be very important during the analysis of relativistic
stellar models. Generally, when one wants to study rotating stars he starts com-
puting an axially symmetric model and after the stability against axisymmetric and
non-axisymmetric modes is tested through the perturbative analysis. The axial-
symmetry is just an initial assumption in order to simplify the treatment and to
obtain an initial model whose stability is studied afterwards.

All the models described until now have concern only the case of the uniform
rotation. More elaborate models consider also the differential rotation. In the astro-
physical universe we find many objects rotating not like a rigid body. We know from
classical physics that in the case of a fluid rotating with differential rotation the vis-
cosity tends to stop the relative motions amongst different fluid elements. However

8These are modes associated with different values of the number m in the spherical harmonics
expansion of the physical quantities of the problem. We will not discuss them here.
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because of its action is relative to the small length scales, the viscous damping require
time and in the case of astrophysical scales this time can be very long. Moreover
astrophysical objects often present some physical mechanisms which can maintain
the differential rotation[51] or are related to it, like the magnetic field in the case of
the Sun which is involved in the dynamo process. The differential rotation can affect
the stability of rotating bodies. In particular, not all types of differential rotation are
stable. An important result obtained by Rayleigh[57] is that a differentially rotating
uniform density fluid is stable against local and axisymmetric disturbances if:

d

d$
[($2Ω)2] ≥ 0 (1.26)

where $ is the distance from the rotation axis. This is known as Rayleigh’s criterion.
The equation 1.26 can be also written as:

d ln Ω

d ln$
≥ −2 (1.27)

Thus the variation of the angular velocity along $ inside the fluid cannot be much
sharp in order to obtain stable equilibria. In particular Ω can’t decrease more rapidly
than $−2. It should be noted that we considered Ω = Ω($). This is correct when one
studies differentially rotating, axisymmetric and barotropic fluids in hydrostationary
equilibrium. In fact with these conditions by writing eq.1.5 in cylindrical coordinates
($,φ,z) in the case of axial-symmetry respect to the ẑ axis (i.e. all the terms in the
equations are independent on φ) we obtain:{

1
ρ
∂P
∂$ + ∂Φ

∂$ − Ω2$ = 0
1
ρ
∂P
∂z + ∂Φ

∂z = 0
(1.28)

Taking the ∂/∂z of the first equation and the ∂/∂$ of the second equation we have:{
− 1
ρ2
∂ρ
∂z

∂P
∂$ + 1

ρ
∂2P
∂z∂$ + ∂2Φ

∂z∂$ − 2Ω∂Ω
∂z$ = 0

− 1
ρ2

∂ρ
∂$

∂P
∂z + 1

ρ
∂2P
∂$∂z + ∂2Φ

∂$∂z = 0
(1.29)

By considering that P = P (ρ) and applying the well known Schwarz theorem, the
difference between the two above equations gives ∂Ω/∂z = 0 (the so-called Poincaré-
Wavre theorem). Also these results about differentially rotating objects are useful
in the treatment of rotating relativistic stars and we will apply them later.

The last approach that we want to discuss here is the numerical one, which is
based on the application of numerical techniques in order to solve the more general
set of equations of rotating fluids and thus computing more realistic stellar models.
In particular we focus on one numerical method developed to study rapidly rotating
Newtonian stars. In all the models discussed before (the Maclaurin spheroids and
the Jacobi ellipsoids) besides the restrictions to very special cases for the density
profile and the spin frequency there is not even the possibility to investigate rapidly
rotating objects (β approaches the value of 0.5 for the most flattened Maclaurin
spheroids[54]). Rapid rotation can severely warp stars. It can bring to the formation
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of ring structures, self-gravitating accretion disks or even dumbbell structures. This
plays an important role during the contact-phase of binary systems. NSs can be fast
rotators and non-approximate solutions of the relativistic equations of motion (i.e.
which are obtained without the Hartle formalism) can be computed only through
appropriate numerical codes. In particular one of the relativistic codes used in
this thesis to compute rapidly-rotating NSs is based on the formalism developed
in the Newtonian code that we are going to discuss here: the so-called ”Hachisu
Self-Consistent Field Method” (HSCF method). This has been advanced by Hachisu
in 1986[58] and it represents a development of the numerical approach used by
Ostriker&Mark in 1968[54]. The HSCF method is able to converge in the case of
very rapidly-rotating and distorted configurations with high accuracy and numerical
stability. It seems also that it has no limitations for its applicability to various
configurations of gaseous bodies and to various equations of state[59]. The HSCF
method is based on a integral representation of the basic equations of motion. This
allows to handle the boundary conditions in a much easier manner and with more
high numerical stability than the differential representation. Let us consider the
undefined integral of the two equations in 1.28. The equation for the hydrostationary
equilibrium of an axisymmetric fluid rotating around the rotation axis ẑ can be
written as:

H + Φ−
∫

[Ω($)]2$d$ = const. (1.30)

where H :=
∫

(1/ρ)dP is the so-called enthalpy of the fluid. We consider also a
barotropic fluid whose equation of state has a polytropic form: P = Kρ1+1/N ; where
K is a constant and N is the polytropic index. The expression for the gravitational
potential can be obtained by using the Green’s function of the three-dimensional
Laplace operator in the Poisson equation9 ∇Φ = 4πGρ and it is the following:

Φ = −G
∫

ρ(r′)dr′

‖r− r′‖ = −G
∫ ∞

0

dr′
∫ π

0

dθ′
∫ 2π

0

dφ′(r′)2 sin θ′
ρ(r′, θ′)

‖r− r′‖ (1.31)

where the spherical coordinates (r′, θ′, φ′) and the axial-symmetry respect to the ẑ
axis have been used in the last integral. This can be computed numerically by using
the expansion series for the Green’s function:

1

‖r− r′‖ =
∞∑
n=0

fn(r, r′)
{
Pn(cos θ)Pn(cos θ′) + 2

n∑
m=1

Pnm(θ, θ′, φ, φ′)
}

(1.32)

Pnm(θ, θ′, φ, φ′) =
(n−m)!

(n+m)!
Pm
n (cos θ)Pm

n (cos θ′) cos [m(φ− φ′)]

where Pn(cos θ) are the Legendre polynomials, Pm
n (cos θ′) are the associated Legen-

dre functions, n,m ∈ N and

fn(r, r′) =
1

r

(r′
r

)n
Θ(r′ − r) +

1

r′

( r
r′

)n
Θ(r − r′) (1.33)

9The Green’s function of ∇ := ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 is G(x,x′) = − 1
4π

1
‖x−x′‖ .
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Thus by using the following results:∫ 2π

0

cos [m(φ− φ′)]dφ′ = 1

m
cosmφ

∫ 2mπ

0

cos ζdζ+ (1.34)

+
1

m
sinmφ

∫ 2mπ

0

sin ζdζ = 0 (1.35)

and10∫ π

0

dθ′ sin θ′ρ(r′, θ′)Pn(cos θ′) =

∫ 1

−1

dµ′ρ(r′, µ′)Pn(µ′) = 2

∫ 1

0

dµ′ρ(r′, µ′)P2n(µ′)

(1.36)
we obtain for the gravitational potential:

Φ = −4πG
∞∑
n=0

∫ ∞
0

dr′f2n(r, r′)

∫ 1

0

dµ′ρ(r′, µ′)P2n(µ)P2n(µ′) ≡ Φ[ρ(r, µ)] (1.37)

For a polytropic equation of state we have also:

H = NK(1 + 1/N)ρ1/N + const. (1.38)

By inserting all these results into eq.1.30, the equation for the equilibrium becomes:

ρ(r, µ) =
[

1

K(1 +N)

(
const.− Φ[ρ(r, µ)] +

∫
[Ω($)]2$d$

)]N
≡ F [ρ(r, µ)] (1.39)

This is a self-consistence problem for the density profile ρ(r, µ), which can be solved
numerically by iterations11. The constant in the equation 1.39 is determined by
specifying one boundary condition, for instance a value of the mass density or of
the enthalpy at a certain point within the model. One has also to establish the
polytropic constants, that means to specify the equation of state. Moreover, as we
discussed before, fixing an other parameter is needed in order to compute uniquely
rotating configurations. In the case of rigid rotation the equation 1.39 becomes the
following:

ρ(r, µ) =
[ 1

K(1 +N)

(
const.− Φ[ρ(r, µ)] + Ω2$

2

2

)]N
(1.40)

and one can fixed the value of Ω as the second parameter of the problem. Instead,
if one wants to compute differentially rotating models some constrains on the law
Ω($) are also required. In the HSCF method[58] two types of differential rotation
are considered:

• the so-called v-constant law, which is obtained by the condition on the velocity
v = Ω$ ≡ v0. In this case the integral in eq.1.39 becomes the following:∫

[Ω($)]2$d$ = v2
0

∫
d$

$
= v2

0 ln$ + const.

10Here µ′ = cos θ′. We’re also considering the symmetry respect to the equatorial plane, which
is an other symmetry observed on Newtonian rotating fluids, and the relation Pn(µ′) ∼ (µ′)n.

11The convergence of the iterations to the solution of the problem is ensured by the Banach-
Caccioppoli fixed-point theorem. The iteration process is stopped when errors are below a fixed
threshold.
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• the so-called j-constant law, which is obtained by the condition on the specific
angular momentum j = Ω$2 ≡ j0. In this case the integral in eq.1.39 becomes
the following: ∫

[Ω($)]2$d$ = j2
0

∫
d$

$3
= −j2

0

1

2$2
+ const.

Once the rotation law is established, the rotational parameter has to be fixed. For
instance one can fix v0 (j0) in the case of the v-constant (j-constant) law. However,
the numerical procedure developed by Hachisu works in the following way. A simple
density profile is chosen as initial guess and Φ[ρ(r, µ)] is computed. Then with eq.1.39
a new density profile is calculated for a specific rotation law and fixed polytropic con-
stants and it is used as the initial guess for the next iteration. In the HSCF method
the numerical procedure to compute uniquely equilibrium models is done by using
adimensional quantities which are obtained by fixing two parameters: the maximum
value for the density profile ρmax and the axis ratio rp/re. The last corresponds to
the rotational parameter and in particular it allows to determine solutions in a nu-
merically more stable manner compared to the code of Ostriker&Mark[58]. Hachisu
applied this method to study rapidly rotating polytropes and withe dwarfs by using
polytropic and fully degenerate equations of state respectively. Both uniformly and
differentially rotating models have been computed. The HSCF method is a very pow-
erful, brand-new, self-consistent field method for the Newtonian gravity[59]. This
approach has been extended to study rapidly rotating relativistic stars within the
framework of general relativity as we will see later.

1.3 Rotating NSs

Ordinary Newtonian stars are not strongly rotating objects. The centrifugal effects
on these stars are largely less evident respect to the gravitational ones. Because of
this we can study ordinary stars applying non-rotating and spherically symmetric
models and obtaining reasonably good results. However the situation is more com-
plicated in the case of compact stars. During the gravitational collapse leading to
the formation of these objects, the conservation of the angular momentum enhances
the rotation. For instance, being Ω ∼ 1/r2 (because of the conservation of the angu-
lar momentum), we can roughly estimate the ratio between the strength of gravity
and centrifugal forces in the following way:

∼ 1/r2

Ω2r
∼ r3

r2
= r (1.41)

Since the great decrease of the stellar radius during the collapse, one could expect a
remarkable enhancement of the rotation and thus of the centrifugal effects in compact
stars. However one has also to take in account general relativistic effects. Indeed
the collapse makes the gravity so strong inside the star that these ones cannot
be neglected. Centrifugal forces in general relativity show a different behaviour
compared to the non-relativistic case. When a compact star rotates, the spacetime
close to it is involved in the rotation. A rotating spacetime generates some very
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peculiar effects which cannot be describe within the framework of classical mechanics.
One of these effects is the ”dragging” of the local inertial frames, which is named as
Lense-Thirring effect. This means that an inertial frame near a rotating star is found
to rotate around its center relative to the distant stars. In particular, the closer it
approaches the star, the more rapidly it rotates. This should be impossible within the
Newtonian physics because of the angular momentum conservation law. However, in
the relativistic case, one has to keep in mind that all the energy sources located at a
certain point of the spacetime are also gravitational sources and then they influence
the fabric of spacetime itself. Because of this, the rotational kinetic energy of the
star is employed on modeling the gravity field and thus the spacetime, affecting
the inertial frames which fill it. The rotation of local inertial frames influences the
structure of rotating stars and also the efficiency of centrifugal forces. In particular,
for an observer located in a given point on the star the relativistic centrifugal effect
as well as the Keplerian angular velocity are not determined by the spin frequency
Ω of the star but rather by the ratio Ω/ω, where ω is the own dragging frequency of
a local inertial frame. The dependence between them can be analitically found by
using the slow-rotation approximation. In this way one discovers that the dragging
of the local inertial frames reduces the effects of the centrifugal force at the observed
frequency Ω because ω is in the same sense as Ω[60].

The conservation of the angular momentum can yield very rapidly rotating neu-
tron stars at birth. Simulations of the rotational core collapse of evolved rotating
progenitors have demonstrated that rotational core collapse could result in the cre-
ation of neutron stars with rotational periods of the order of 1ms[61]. This evolution
can be complicated by the presence of magnetic fields. These can be very strong
at the birth of a compact star because the conservation of the magnetic flux during
the collapse. According some studies, more slowly rotating neutron stars could be
expected at birth as the result of the coupling between the magnetic field and the
angular velocity between the core and the surface of the star[62]. Rotational periods
of NSs have been well explored over the years. Pulsars exhibit a remarkable stable
rotational period with a very slowly increase in time. The observed spin frequencies
are higher than those of Newtonian stars. Observations have revealed pulsars time
period approximately from 1 ms to 10 seconds[63] (i.e. from 10−1 to 103 Hz). One
can distinguish two populations of pulsars: the so-called ’normal pulsars’ with a
period of few seconds which increase secularly at rates ∼ 10−15s/s and the MSPs
with rotational period 1.4ms. P . 30ms and increasing rate . 10−19s/s[64]. MSPs
are believed to be old NSs spun-up to millisecond periods by the accretion of matter
from a binary companion[8]. Most of the observed MSPs are seen in the radio and
γ-rays. For some MSPs we can also detect X-ray signals generated by the accretion
mechanism, which allow us to measure their spin frequency. The measurements con-
cern mainly the case of X-ray APMSPs and thermonuclear X-ray BNSs. For the first
ones, X-ray pulsations due to the presence of hot spots on the stellar surface are ob-
served. The spin frequencies of 15 X-ray APMSPs have been measured with a great
accuracy[8]. In the case of X-ray BNSs, oscillations during thermonuclear X-ray
bursts are used to constrain the angular velocity. One can estimate the pulsar spin
frequency indirectly by measuring the frequency of these oscillations. Through this
method it has been possible to determine the spin frequency of 10 X-ray BNSs[8].
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Several observed pulsars have frequency bigger than 100 Hz. In particular, 10 X-ray
APMSPs and 14 radio/gamma-ray pulsars rotate at ≥500 Hz. So far, the fastest X-
ray APMSP is 4U1608-522 with a frequency of 620 Hz[65](1.613 ms). Among all the
NSs the radio MSPs PSR J1748-244 is the fastest rotating observed up to now, with
a spin frequency of 716 Hz (1.396 ms). It is located in the globular cluster Terzan
5 and it was detected using the Green Bank Telescope (GBT). Terzan 5 appears to
be a particularly good place to search for fast pulsars, and is now known to contain
5 of the 10 fastest-spinning pulsars observed anywhere in the Galaxy[66]. The fre-
quencies of currently observed radio and γ-ray pulsars and X-ray MSPs rotating at
a frequency larger than 100 Hz are shown in Figure1.3.

Figure 1.3: Currently observed spin frequencies of radio/gamma-ray MSPs and X-ray
MSPs. Reference: Haensel et al. 2016, European Physical Journal A.

NSs are faster rotators compared Newtonian stars, however it’s easy to show that
even the most rapidly spinning pulsar is distorted by rotation only slightly. In fact if
we consider again the ratio between centrifugal forces and gravity we obtain for PSR
J1748-244 that Ω2R3/GM ≈ 0.11 � 1, where we put the observed value of Ω and
we assumed M = 1.4M�, R = 10 km. Therefore, the deviations from the spherical
symmetry induced on the stellar structure by the rotation are generally quite small,
at least for ordinary NSs. Because of these we can be computed models applying for
instance the Hartle formalism. Within this approach it is possible to find quite simple
relations between masses, radii and rotational periods. Therefore a measure of the
spin frequency of NSs provides further constraints on the equation of state of ultra
dense matter when combined with masses and radii measurements. By modeling
rotating NSs we can see that rotation increase the limiting mass and the equatorial
radius of the stars. This effect doesn’t appear at the first order of the slow-rotation
approximation but we have to probe higher order terms in which, for instance,
multipole corrections on the gravitational mass are included. Clearly if one wants
to investigate rapidly rotating configurations the approximate approach is not more
valid and numerical codes are required to solve the fully general relativistic equations.
Considering high spin frequency regimes, i.e. near the Keplerian-limit, could be
useful to probe binary systems in which a NS is strongly accreted by a companion. In
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principle, accretion could drive a compact star to its mass-shedding limit. During the
recycling, the NS could attain few millisecond periods after accreting only ∼ 0.1M�
and ∼ 0.25M� to attain submillisecond periods[67]. For a wide range of candidates
for NS equation of state, it has been show that the Keplerian limit sets a minimum
period of about 0.5− 0.9 ms[43]. It can be shown that the Keplerian frequency can
be estimated with the following empirical formulae[8]:

• fK(Ms) ≈ 1.08kHz
(
Ms/M�

)1/2(
Rs/10km

)−3/2

• fK(EOS) ≈ 1.22kHz
(
Ms,max/M�

)1/2(
Rs,max/10km

)−3/2

The first estimate is valid for NSs with or without exotic core; here Ms, Rs are the
mass and the radius of a static configuration with the same baryon mass of the Ke-
plerian configuration. Moreover. this estimate is valid within the gravitational mass
range [0.5M�, 0.9Ms,max], where Ms,max is the mass of the non-rotating equilibrium
configuration with maximum mass. The second equation instead is valid both for
NSs and for strange-quark stars; it gives the value of the maximum frequency along
the sequence of Keplerian models. Here Rs,max is the radius of the star with mass
Ms,max. The dependence of this equation on Ms,max implies a tight dependence also
on the equation of state of NS, as we will see later. In particular, we could apply it
together with the condition for the stability of stars Ω < ΩK in order to constrain
the equation of state. However, it is clear by the equation that rotation rates faster
than a millisecond are required to rule out equations of state[68]. Nevertheless, these
rapidly rotating NSs have not been observed so far.

At birth a NS is expected to be rotating differentially. However after few time,
several dissipative processes act to damp the differential rotation, sharing the angular
momentum among different layers and enforcing the uniform rotation. The shear
viscosity represents the slowest mechanism; it acts against the differential rotation on
a timescale of dozens of years[69]. Other mechanisms like convective and turbulent
motions can enforce the uniform rotation within less time (∼ 1 day[70]). More
recent studies used MHD simulations to probe the stability of differentially rotating
isolated NSs. Some suggest that magnetic braking and viscosity combine together
to drive the star towards the uniform rotation, even if the seed magnetic field and
the viscosity are small[71]. A timescale ∼ 1 min for the setting of the uniform
rotation is provided by these investigations. All of these results allow us to model
accurately isolated rotating relativistic stars with an equilibrium configuration of
a uniformly rotating relativistic fluid. We will discuss later the bulk properties of
uniformly rotating NSs which are modeled numerically with high accuracy codes.
We will focus on both slowly-rotating and rapidly-rotating objects showing how the
fully relativistic treatment is necessary near the Keplerian-limit. In particular we
will probe the effects of the rotation and of the equation of state on the maximum
mass attainable by rotating stars. Moreover, even if differential rotation seems to
be an energetically unfavorable regime when a NS is already formed, the stellar
evolution can restore it at a certain moment of the star’s life. Numerical simulations
in fully general relativity[72] have shown that differentially rotating NSs can be
formed after the merging of two compact stars. It is very important to know if the
outcome of such event is a Black Hole (BH) or a compact star, since this affects
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greatly the astrophysical phenomena happening during the post-merger phase. In
particular, the signals detected from the merging (GWs, GRBs, Kilonovae, etc.) are
very different among the two cases. It has been shown that rotation allows very high
masses for neutron stars. A uniform rotation can increase the maximum NS mass up
to 20% more than the upper limit on the mass of non rotating NSs. In particular,
NSs with rest masses higher than the maximum rest mass of static models with
the same equation of state are referred to as supramassive stars[73]. In the case
of differentially rotating NSs the increase is even more high and rest masses bigger
than the maximum of uniformly rotating NSs are allowed. These objects are referred
to as hypermassive stars[53]. Their masses depend on the rotational profile within
them. In the case of a slowly rotating envelope, the inner part of these stars can
rotate very fast without bringing the star towards the Keplerian limit. Therefore,
the differential rotation allows to reach equilibria with rapid central rotations and
high masses and which don’t loose matter from the equator. It has been shown[74]
for several equations of state that the increment on the mass becomes bigger with the
increase of the ratio between the central and the equatorial frequencies (Ωc/Ωe) up
to a moderate value of it, then a decrease is seen for higher values of the ratio. More
stiff equations of state also allow bigger mass increment for the same Ωc/Ωe. Some
configurations exceed the maximum allowed mass of the corresponding non rotating
star by more than a factor of 2. However, even if the differential rotation allows to
reach these high masses equilibria, most of them are unstable. The simulations have
shown that hypermassive NSs are often unstable for non-axisymmetric modes[53].
Nevertheless, configurations which are only secular unstable for these modes can
show an increment on the mass with respect to the maximum of a static configuration
of ∼ 50 − 60% (about 30 − 40% more than the uniformly rotating case)[74]. With
a more high mass attainable, even if secularly unstable, a differentially rotating NS
could survive for a sufficiently long time. In particular, as we will discuss late, in
the case of a NS-NS merger this could allow delayed collapses to BHs. Instabilities
driven by viscous processes, magnetic field and also GWs, could also bring the
hypermassive NS towards a uniformly rotating configuration, which could remain
stable for several years as supramassive star. There are lots of research which have
studied the importance of the differential rotation during the merging of two compact
stars and during the post-merger phase. We will focus on them in the last chapter of
this thesis. In particular, we will try to model the post-merger phase of GW170817
by applying several studies concerning uniformly and differentially rotating NSs. In
order to do this a theoretical overview about relativistic stars is needed. We discuss
this in the next two chapters.
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Chapter 2

General Relativity

Most of the stars in the Universe can be described with very high accuracy by the
Newton’s theory of gravity. We often refer to us as ”Newtonian stars”. Above all,
each moment of the life of low-mass stars (M . 8M�) until their death can be in-
vestigated within the classical physics. This approach doesn’t fail to explain gravity
also when handling degenerate objects like withe dwarfs, for which quantum me-
chanics is necessary to describe the behaviour of particles inside the star. However,
compact objects generated by dying massive stars cannot be probed in this way. In
these configurations several solar masses are confined within radii less than ∼ 15 km
and thus the inner density can reach values few times bigger than the nuclear den-
sity at the saturation. Neutron stars seem like giant atomic nuclei but with masses
comparable to the mass of the Sun. The gravitational potential of these stars can
be described only within the framework of the General Relativity. In the following
paragraphs we are going to discuss the relativistic1 theory of neutron stars. We will
focus particularly on the relativistic description of rotating compact stars examining
numerical approaches applied to solve the Einstein equations.

2.1 Preliminaries

Einstein’s theory of general relativity describes the nature through laws of physics
which have the same form among different arbitrary (i.e. not only inertial) refer-
ence frames. This is the so-called General Covariance Principle. In particular, he
formulated the so-called Equivalence Principle which is based on the equality of the
inertial and the gravitational mass. At every space-time point in an arbitrary gravi-
tational field it is possible to choose a ”locally inertial coordinate system” such that,
within a sufficiently small region of the point in question, the laws of nature take
the same form as in unaccelerated Cartesian coordinate systems in the absence of
gravitation[75]. The laws of physics within inertial reference frames are known from
the Special Theory of Relativity. Because of the above principle, to extend them to
the case of accelerated observers one has to think about a gravitational field filling
the spacetime. The key to achieve this aim represents probably the ”heart” of the

1As we will see in the Chapter3 also the Quantum Physics is indispensable to deal with neutron
stars because the strong dependence of their bulk properties on the equation of state of nuclear
matter.
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General Relativity: gravity curves spacetime. The laws of nature within accelerated
observers are obtained by considering curved spacetimes. Inertial reference frames
lie on a flat, homogeneous and isotropic spacetime while accelerated reference frames
lie on a curved, inhomogeneous and anisotropic spacetime.

Let us consider the line element within the framework of special relativity for an
inertial observer:

ds2 = ηµνdx
µdxν (2.1)

where ηµν are the covariant components of the Minkowsky metric. We can perform a
coordinate transformation xµ → xµ′ from the inertial frame to an accelerated frame,
whose spacetime coordinates are labeled by xµ′. During the transformation the line
element ds2 doesn’t change because it is a relativistic invariant. If we denote with
gµν the covariant components of the new metric of the accelerated observer, because
of the transformation we have that:

ds2′ = gµνdx
µ′dxν ′ = gµν

∂xµ′

∂xρ
∂xν ′

∂xσ
dxρdxσ = ds2 = ηρσdx

ρdxσ (2.2)

Thus we can write the coefficients of the new metric as:

gµν = ηρσ

(∂xρ′
∂xµ

)−1(∂xσ ′
∂xν

)−1

(2.3)

where ∂xρ′/∂xµ = (∂xρ′/∂xµ)(x) represents the coefficients of the matrix of the
transformation between the two reference frames, which change among different
points of the spacetime because of its inhomogeneity. Given the transformation
law between the two systems, one can compute the new metric gµν . This metric
is associated with a curved spacetime. By definition we have also that gµν = gνµ.
Moreover, the general covariance principle ensures that always gµν = ηµν locally
on the spacetime. Concerning the case of a particle freely moving within a curved
spacetime, one finds the so called ”geodesic equation”:

d2xµ′

dλ2
+ Γµνρ

dxν ′

dλ

dxρ′

dλ
= 0 (2.4)

where Γµνρ := ∂xµ′

∂xα
∂2xα

∂xν ′∂xρ′
are the coefficients of the so-called Affine Connection.

In particular, the affine connection for the curved spacetime of general relativity,
which is characterized by a local flatness, is called Levi-Civita Connection. This is
symmetric in its lower indices: Γµνρ = Γµρν (because of the Schwarz theorem). This
quantity can be defined within a covariant form in terms of the first derivatives of
the metric tensor as follows:

Γµνρ =
1

2
gµλ
(∂gλρ
∂xν

+
∂gλν
∂xρ

− ∂gρν
∂xλ

)
(2.5)

An other relevant question concerns the definition of the differential operator within
the framework of general relativity. This is a matter of great interest because we often
want to study differential equations associated with relativistic systems, like neutron
stars. Therefore, for a generic tensor field, one defines the covariant derivative ∇ξ

as follows:

∇ξT
µ...ν
ρ...σ =

∂

∂xξ
T µ...νρ...σ + ΓµξλT

λ...ν
ρ...σ + ...+ ΓνξλT

µ...λ
ρ...σ − ΓλξρT

µ...ν
λ...σ − ...− ΓλξσT

µ...ν
ρ...λ (2.6)



2.1. PRELIMINARIES 27

In particular one finds that ∇ξgµν = 0. This is an other important feature of the
Levi-Civita connection. Moreover, by taking the double covariant derivative of a
vector Aµ:

∇ρ∇σAµ −∇σ∇ρAµ = AλR
λ
µσρ (2.7)

where the quantity Rλ
µσρ is the so-called Riemann curvature tensor which is defined

as:

Rλ
µσρ :=

∂

∂xσ
Γλµρ −

∂

∂xρ
Γλµσ + ΓαµρΓ

λ
ασ − ΓαµσΓλαρ (2.8)

We can see that because of the expression of the connection in terms of the derivatives
of the metric, the Riemann tensor contains second order derivatives of the metric.
These describe the curvature of spacetime. By lowering the index on the Riemann
tensor Rλµσρ = gλαR

α
µσρ it can be shown that it satisfies the following identities:

Rλµσρ = −Rµλσρ = −Rλµρσ (2.9)

Rλµσρ = Rσµλρ = Rµσρλ (2.10)

Rλµσρ +Rλσρµ +Rλρµσ = 0 (2.11)

∇ξRλµσρ +∇σRλµρξ +∇ρRλµξσ = 0 (2.12)

The trace component of the Riemann tensor is the so-called Ricci tensor, that is de-
fined as Rµν := Rα

µαν . It describes the deformation in the volume of bodies produced
by a local source of gravitational field and it vanishes in the case of an empty space-
time. From the Ricci tensor we can also define the scalar curvature: R = gµνRµν .

From the identities 2.9-2.12 we can obtain the following result:

∇ξ(R
µν − 1

2
Rgµν) = 0 (2.13)

The object inside the brackets is the so-called Einstein curvature tensor :

Gµν := Rµν − 1

2
Rgµν (2.14)

that is a covariant divergenceless tensor. It is constructed from the Riemann cur-
vature tensor and it is symmetric. In particular since only the Ricci tensor and
the scalar curvature appear inside the definition of Gµν , solutions of the equation
∇ξG

µν = 0 give us information about the non-tidal curvature of the spacetime pro-
duced by gravity. There are three possible minimal2 solutions, which are known as
Einstein’s filed equations :

Gµν = 0 (2.15)

Gµν = kT µν (2.16)

Gµν = kT µν + Λgµν (2.17)

where k and Λ are constants. Eq.2.15 is the set of differential equations describing
the case of an empty spacetime. This can be used for instance to describe the
spacetime outside a relativistic star. Equations 2.16, 2.17 instead concern the case

2This means with the least number of terms inside equations.
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of a not empty spacetime where there are gravitational sources which warp it. The
last is a mathematical extension of eq.2.16 and it contains the so-called cosmological
constant Λ. Cosmological theories deal with this constant and associate it with
the vacuum energy. This is currently related to the so-called dark energy that has
been hypothesized to explain the observed accelerated expansion of the Universe.
According to recent estimates[76] the value of the cosmological constant is very small
(Λ = (4.24± 0.11)10−66eV 2). Its effect is indeed cosmological, stellar structures are
unaffected by it. Because we want to study compact stars we focus on eq.2.16.
In this equation the right hand side term represents the reason of the spacetime
curvature. Clearly, this contains also the case of an empty space (i.e. T µν = 0).
According the Einstein’s Theory of General Relativity, the tensor T µν describes all
the mass-energy contributions to the curvature of the spacetime. It also has to be
covariant divergenceless in order to satisfy the equality with the Einstein tensor.
This particular quantity is the so-called stress-energy tensor. Its expression depends
on the properties of the mass-energy distribution associated with a system, including
viscosities, charge and magnetic fields. We need the proper form of T µν according
to the kind of physical system that we want to consider. Eventually, into the eq.2.16
we have k = 8πG/c4 because the Poisson equation is the Newtonian limit of the
Einstein’s field equation. Once we know the metric of the spacetime that wraps
bodies and assuming a suitable form for the stress-energy tensor, we can make use
of eq.2.16 in order to investigate the mass-energy distribution within these objects,
their mass-energy density and the particles motion. Otherwise, if we know all the
contributions of mass and energy, the Einstein’s field equations allow us to compute
the structure of the spacetime close and inside bodies.

Besides the gravitational field equations one needs other dynamical equations to
study the structure and the evolution of self-gravitating systems. Indeed we saw that
the dynamics of Newtonian barotropic self-gravitating fluids is described also by a
continuity equation (eq.1.4) and by the Navier-Stokes equation (eq.1.5). Also for
relativistic bodies we require other equations besides the Einstein’s field equations.
Within general relativity, the dynamical evolution of a relativistic fluid is governed
by the following differential equations:

∇νT
µν = 0 (2.18)

∇ξ(ρu
ξ) = 0 (2.19)

where ρ is the baryon density scalar field and uξ = dxξ/dλ is the 4-velocity vector
field. The first equation is the vanishing divergence of the stress-energy tensor, the
second describes the conservation of baryons. We can define the projection operator
orthogonal to the 4-velocity as: qαβ = gαβ +uαuβ. Given a vector V µ, the projection
along uν is the scalar product gµνV

µuν and the projection orthogonal to uν is given
by the vector3 qνλgλµV

µ. As we will see soon, the projection orthogonal to the 4-
velocity of the eq.2.18 gives the relativistic Euler equation; this can be used together
with the Einstein equations to solve the structure problem of a barotropic ideal
relativistic fluid in equilibrium.

3In fact we have that: uαgανq
νλgλµV

µ = uλVλ + (gανu
αuν)uλgλµV

µ = uλVλ − gλµuλV µ = 0,
where we used the normalization of the 4-velocity gανu

αuν = −1.
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During our previous discussion about Newtonian fluids we have showed that the
study of equilibrium configurations is often done making some assumptions about the
symmetry degree of the problem. Symmetries yield more handy problems because
they reduce the number of degrees of freedom. In particular if one choose a suitable
coordinate system, these symmetries make more simple the dynamical equations.
Symmetries are not only a mathematical guile but they are related to actual ”good”
properties of natural systems. Clearly, we cannot find in nature systems which are
perfectly symmetric. A symmetric problem is an approximation of the real one.
However, there are some situations in which the symmetric approach works well and
it allows us to find solutions that are very close to the reality. For instance, this
is the case of non-rotating and rotating self-gravitating systems that we described
before within the Newtonian fluid dynamics. Now we want to study symmetries
within the framework of general relativity. The first consideration is the following:
if there are some symmetries associated with a relativistic system, these imply a
symmetric configuration of matter, mass and energy and thus of the spacetime itself.
Because of this, the symmetries of relativistic bodies are revealed by the own metric
of their spacetime. A symmetry of the spacetime is a coordinate transformation
which preserves the metric tensor gµν and that is called isometry. Isometries of the
spacetime are studied through the formalism of the Lie-derivatives and the Killing
fields. Briefly, the Lie-derivative is a differential operator which measures the change
of a tensor field along the flow associated with a vector field. It arises naturally in
the context of the Newtonian fluid dynamics when one wants to consider quantities
which are preserved along streamlines. Within the classical mechanics, a scalar field
φ is preserved or dragged along by the flow of a fluid if its value is constant on fluid
elements, that is:

d

dt
φ =

∂

∂t
φ+ v · ~∇φ = 0 (2.20)

where v is the velocity vector field of the fluid. In this case it’s said that φ is Lie-
derived by the vector field v that generates the flow and the Lie-derivative operator
is defined as: Lv := ∂t + v · ~∇. This notion can be generalized to the case of vector
and tensor fields and within curved spacetimes. We will not go into details about
this. The general expression for the Lie-derivative of a tensor field T a1...amb1...bn

in a
curved spacetime is the following:

LvT
a1...am
b1...bn

= vc∇cT a1...amb1...bn
−T c...amb1...bn

∇cva1−...−T a1...cb1...bn
∇cvam+T a1...amc...bn

∇b1vc+...T a1...amb1...c
∇bnvc

(2.21)

where vc are controvariant components of the vector field v and all the indices are
spatiotemporal. By using the definition of the covariant derivative one obtains that:

LvT
a1...am
b1...bn

= (..) + [vc(Γa1csT
s...am
b1...bn

+ ...+ Γamcs T
a1...s
b1...bn

− Γscb1T
a1...am
s...bn

− ...− ΓscbnT
a1...am
b1...s

)]+

+ [−T c...amb1...bn
Γa1csv

s − ...− T a1...cb1...bn
Γamcs v

s + T a1...amc...bn
Γcb1sv

s + ...+ T a1...amb1...c
Γcbnsv

s]

where the first right hand side term inside the brackets contains all the terms associ-
ated with partial derivatives. It’s easy to note that for the spacetime of the General
relativity the two last terms inside the square brackets delete one each other. This
is because of the property of the Levi-Civita connection: Γµνρ = Γµρν . Thus the
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Lie-derivative on the spacetime of general relativity can be written as follows:

LvT
a1...am
b1...bn

= vc∂cT
a1...am
b1...bn

−T c...amb1...bn
∂cv

a1−...−T a1...cb1...bn
∂cv

am+T a1...amc...bn
∂b1v

c+...T a1...amb1...c
∂bnv

c

(2.22)
A vector field ξα is called Killing field if the metric tensor is Lie-derived by it:
Lξgµν = 0. We note that:

Lξgµν = ξλ∇λgµν + gλν∇µξ
λ + gµλ∇νξ

λ = ∇µgνλξ
λ +∇νgµλξ

λ = ∇µξν +∇νξµ

where we used the fact that the metric tensor is covariant divergenceless. Thus a
Killing field is a vector field ξα that satisfy the so-called Killing equation:

∇µξν +∇νξµ = 0 (2.23)

This equation is very important. If one solves it determining all the vectors ξα thus
all the isometries of the spacetime are revealed. In fact if we have that Lξgµν = 0
for a given Killing field ξα, then the coordinate transformation xα′ = xα + ξα among
the two different reference frames (xµ) and (xµ′) preserves the metric. Vice-versa if
we know that the transformation xα′ = xα + ξα preserves the metric, then ξα is a
Killing field satisfying the Killing equation. It is important to note that generally an
expression for the metric tensor gµν doesn’t show all the spacetime symmetries. In
these situations one has to probe the Killing equation. Using Killing fields is the only
way to handle spacetime symmetries. Like the Newtonian case, usually one studies
relativistic physical systems assuming some reasonable symmetries and to do this he
applies the Killing fields formalism. However, there are special cases in which the
metric tensor shows some symmetries. These correspond to the situations where the
metric is independent on some coordinates xµ∗, i.e. ∂gµν/∂x

µ∗ = 0. In these cases
we can state that the transformation xµ∗′ = xµ∗ + αµ∗ for a constant vector αµ∗ is
an isometry of the spacetime. In these cases ξ := ∂/∂xµ∗ is a Killing field, whose
controvariant components are ξα = ∂xα/∂xµ∗ = δαµ∗ = gαρδρµ∗. Eventually, from the
geodesic equation 2.4 one can obtain the following expression:

d

dλ
uν =

1

2

( ∂

∂xν
gαβ

)
uαuβ (2.24)

This equation shows that if there is a symmetry into the expression of the metric
tensor, for instance ∂gµν/∂x

µ∗ = 0, then the quantity uµ∗ is a constant of motion.
Before starting with the study of relativistic stars some few considerations are

useful. Generally, NSs have a very complicated structure (such as solid crust, outer
and inner magnetic fields, quark core, differentially rotating layers, etc.) and several
extreme events can mark their evolution (such as mergers, strong accretion phases,
bursts, etc.). Their description represents a challenge also for the most advanced
physical theories. However there is the possibility to make some theoretical assump-
tions in order to simplify the treatment. Depending on which phase of the lifetime
of these stars one wants to investigate, several physical effects can be neglected. At
birth, a NS is expected to be hot and differentially rotating. However, if isolated,
a short time after its formation (. 1 year[61]) the NS cools down below roughly
109K and because of several mechanisms (that we discussed before) it starts to ro-
tate rigidly. The temperature corresponds to a thermal energy of particles that is
much smaller than their Fermi energy4, which is very high (∼ 60MeV) because of

4Because the high densities, fermionic matter which reside inside NSs is completely degenerate.
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the enormous densities inside the star. Moreover the magnetic fields, although really
important for the phenomena observed in the magnetosphere and for the damping
of the differential rotation, do not alter the structure of NSs, unless in the case of
configurations with magnetic field strengths significantly higher than the typical ob-
served values[61]. Because of all these reasons we can assume a barotropic, uniformly
rotating and perfect fluid to model isolated NSs. We will study differentially rotating
objects only during the analysis of post-merger neutron star configurations that we
will probe in the last part of this thesis. Within the assumption of barotropic fluid5

we need to solve only the Einstein equations and the Euler equations in order to
compute equilibrium configurations. Moreover a perfect fluid is a medium in which
the pressure is isotropic in the rest frame of each fluid element and shear stresses
and heat transport are absent. The Special Theory of Relativity shows that the
stress-energy tensor describing a perfect fluid takes the following form within an
arbitrary (inertial) frame:

Tµν = Pηµν + (P + ε)uµuν (2.25)

where P and ε are the local values of the fluid pressure and total mass-energy
density respectively. It should be noted that ε and P haven’t the same unit of
measure; actually, P and εc2 have the same unit of measure. In the eq.2.25 we
assumed c = 1. Hereafter we will ever use the so called gravitational units, for
which: G = c = kB = 1 (kB is the Boltzmann constant). The generalization of the
stress-energy tensor within the framework of the General Relativity can be obtained
directly by applying the covariance principle. Therefore, eq.2.25 is true locally on
the spacetime and for its generalization we need only to change the metric:

Tµν = Pgµν + (P + ε)uµuν (2.26)

With this expression we can formulate the structure equations in their final form.
The Einstein equations become:

Rµν − 1

2
Rgµν = 8π[Pgµν + (ε+ P )uµuν ] (2.27)

Concerning the Euler equations we note that the projection orthogonal to uξ of the
eq.2.18 is qξλgλµ∇νT

µν = 0. Moreover6:

0 = qξλgλµ∇νT
µν = (gξλ + uξuλ)gλµ∇ν(Pg

µν + (P + ε)uµuν) =

= (gξν + uξuν)∇νP +∇ν((P + ε)uξuν) + uξuµ∇ν((P + ε)uµuν) =

= qξν∇νP +∇ν((P + ε)uξuν) + uξ(P + ε)uνuµ∇νu
µ − uξ∇ν((P + ε)uν) =

= qξν∇νP + (P + ε)uν∇νu
ξ

5As we discussed before, this condition implies that we can neglect thermal effects on the
equation of state; thus P = P (ρ), where ρ is the mass density field (Newtonian case). Within the
relativistic case, the equation of state of a barotropic fluid is P = P (ε), where ε represent the total
mass-energy density. This contains both the contributions of the mass and the internal energy (e)
densities: ε = ρ+ e. The presence of e is needed because of the mass-energy equality.

6Here we use the fact that gµνu
µuν = −1 =⇒ ∇ρ(uνuν) = 0 =⇒ uν∇ρuν = 0.
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Thus the differential equations become:

(gξν + uξuν)
∇νP

P + ε
= −uβ∇βu

ξ (2.28)

It can be shown that in the Newtonian limit eq.2.28 reduce exactly to the classical
Euler equations (the Navier-Stokes equations for a perfect fluid).

We start now with modeling relativistic objects. Firstly, we discuss briefly the
case of non rotating fluids. Here we describe the metric of the spacetime and its
symmetries, then we focus on the equations of motions and on the method applied
to solve them. We discuss the main properties of models computed by solving
these equations. Eventually, in the following paragraphs, we will focus on rotating
configurations.

2.2 Static, spherically symmetric spacetimes

We have seen before that non-rotating self gravitating Newtonian fluids in a hydro-
static equilibrium configuration are spherically symmetric. The same result for the
relativistic case is not so obvious and only recently it has been proved for a generic
equation of state: static general relativistic and perfect fluid stars in asymptotically-
flat7 spacetimes are spherically symmetric for physically reasonable equations of
state[77]. Therefore in order to describe non rotating relativistic stars we consider a
static and spherically symmetric spacetime. Static means that we can choose a coor-
dinate reference frame in which the metric is time-independent, that is ∂gµν/∂t = 0.
Moreover, the spherical symmetry implies that the spacetime is isotropic, i.e. its
metric tensor is invariant under spatial rotations. Within the Special Theory of Rel-
ativity we know that the metric for the homogeneous and isotropic spacetime is the
Minkowsky metric ηµν . By assuming a signature (−,+,+,+) and using a Cartesian
coordinate frame, the line element defined by this metric is:

ds2 = ηµνdx
µdxν = −dt2 + dx2 + dy2 + dz2 (2.29)

This expression of the metric shows four Killing fields (−1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0)
and (0, 0, 0, 1), which represent the symmetry of the metric tensor for translations
along the coordinate axes, that is the homogeneity of the spacetime. By writing this
metric in spherical coordinates we have that:

ds2 = ηµνdx
µdxν = −dt2 + dr2 + r2dθ2 + r2 sin2 θdφ2 (2.30)

Now the metric shows not constant coefficients and thus the homogeneity of the
spacetime is not more evident from its expression. Nevertheless, this is only because
we changed the coordinate frame. The spacetime doesn’t change when others coordi-
nates are chosen. By computing all the Killing fields one can finds again the previous
isometries. However, the change of coordinates that we done is useful to show the
isotropy of the spacetime. Indeed this new expression for the metric shows the pres-
ence of an other Killing field in spherical coordinate (0, 0, 0, 1), which comes from

7The curved spacetime of general relativity must become flat far away from all the gravitational
sources. ”Asymptotically-flat” means flat at infinite distance from gravitational sources.



2.2. STATIC, SPHERICALLY SYMMETRIC SPACETIMES 33

the symmetry under φ-rotations: ∂ηµν/∂φ = 0. The same vector in Cartesian coor-
dinates is (0,−y, x, 0) that correspond correctly to a φ-rotation (a rotation around
the ẑ-axis). The other two Killing fields that represent the other two rotations under
which the spacetime is invariant are (0, z, 0, x) (a rotation around the ŷ-axis) and
(0, 0,−z, y) (a rotation around the x̂-axis). Thus by finding all the Killing fields
we can demonstrate the homogeneity and the isotropy of the spacetime described
with the metric 2.30. However, the static and spherically symmetric spacetime of
the General Relativity must have a quite different metric tensor. Indeed, although
it still preserves the condition of time-independence and isotropy, it is not more ho-
mogeneous. Thus we expect that the new metric tensor gµν in spherical coordinates
has a form similar to 2.30 but with coefficients which can vary. However, this varia-
tion must respect the isotropy of the spacetime and its time-independence; thus the
coefficients can be only functions of the radial coordinate r. It can be shown that in
this case the most general form of the line element is:

ds2 = −e2ν(r)dt2 + e2λ(r)dr2 + r2dθ2 + r2 sin2 θdφ2 (2.31)

Within this spacetime we want investigate the dynamics of a barotropic and perfect
fluid. The components of the 4-velocity field are the following8:

uµ =
dxµ

dτ
= (e−ν(r), 0, 0, 0)

uµ = gµσu
σ = (−eν(r), 0, 0, 0)

Therefore from the definition of the stress-energy tensor for perfect fluids (2.26) we
obtain that:

T 00 = ε(r)e−2ν(r)

T 11 = P (r)e−2λ(r)

T 22 =
P (r)

r2

T 33 =
P (r)

r2 sin2 θ
T i0 = 0 ∀i = 1, 2, 3

Moreover, in the Euler equations (2.28) we have ν ≡ 1 because the pressure depends
only on the radial coordinate. Thus by using the above results concerning the 4-
velocity we can obtain that:

1

P (r) + ε(r)

dP

dr
= −e−2ν(r)Γ1

00 (2.32)

By considering the covariant expression for the Christoffel symbols (2.5) one can ob-
tain Γ1

00 = e−2λ(r)e2ν(r)dν(r)/dr and thus the Euler equations become the following:

1

P (r) + ε(r)

dP

dr
= −e−2λ(r)dν

dr
(2.33)

8Here we choose the proper time τ as the parameter of the fluid elements worldlines.
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We need also to solve the Einstein equations (2.27) in order to compute stellar
models. The solutions of them can be found by the calculation of the Ricci curvature
tensor and the scalar curvature with the metric 2.31. In order to do this one has
to compute all the coefficients of the Christoffel symbols. We will not discuss the
details of this calculus here. However from the analysis of the Einstein equations,
by defining the mass9:

m(r) =

∫ r

0

4πr2ε(r)dr (2.34)

one finds that:

e−2λ(r) = 1− 2
m(r)

r
(2.35)

dν

dr
=
m(r) + 4πr3P (r)

r(r − 2m(r))
(2.36)

Eventually to close the problem we need also an equation of state for the barotropic
fluid, i.e. P = P (ε). The final set of structure equations whose solutions are rela-
tivistic spherical stellar models in hydrostatic equilibrium is obtained by combining
equations 2.33-2.34-2.35-2.36 and it is the following:

dm

dr
= 4πr2ε(r)

dP

dr
= −[P (r) + ε(r)]

m(r) + 4πr3P (r)

r2

dν

dr
=
m(r) + 4πr3P (r)

r(r − 2m(r))

e−2λ(r) = 1− 2
m(r)

r
P = P (ε)

This is a problem of five equations in five unknowns P , ε, ν, m, λ; thus if one
solves it a unique model is obtained. However in the above set we have three ODEs
and so we need three boundary conditions in order to compute a unique solution.
Concerning the third ODE we can use the fact that the analytical expression of ν(r)
is known outside the star. This is the Schwarzschild solution, which is obtained for
a spherically symmetric, static and empty spacetime by solving the equation 2.15
with the metric 2.31. This is the following:

ds2 = −
(

1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2dθ2 + r2 sin2 θdφ2 (r ≥ R) (2.37)

Here M = m(R) is the ”gravitational mass” of the star10, and R is the stellar radius
that is defined by the condition P (R) = 0 (the pressure vanishes at the edge of the

9The name ”mass” derives from the similar expression for the mass of a Newtonian fluid within
a sphere of radius r. However this is not the same mass: ε contains also the contribution of the
internal energy density together with the mass density ρ. Thus m(r) corresponds to the total
mass-energy contained within the radius r. We will discuss several ”masses” of NSs in the next
paragraph.

10We will explain its meaning in the next paragraph.
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star11). From the Schwarzschild solution we know that ν(r) = 1/2 ln (1− 2M/r) for
r ≥ R and thus the boundary condition for the third ODE is ν(R) = 1/2 ln (1− 2M/R).
To fix the values of R and M we need to solve the first two ODEs. The boundary
condition for the first one is m(0) = 0 (a null mass is contained within a radius
r = 0). Concerning the second one (which is the so-called TOV-equation) we take the
boundary condition P (0) = P0, which correspond to fix the value of the central mass-
energy density ε(0) = εc in the case of a barotropic equation of state. Actually, the
solution of the structure problem is a sequence of equilibrium stellar configurations
parameterized by the central mass-energy density. This is a so-called one-parameter
sequence. For each value of εc we can compute a unique model of static relativistic
star. In the following we report some results concerning non-rotating models of NSs
and we discuss their properties. We have computed models of static NSs by using
the RNS code. This code is mainly employed to study models of rapidly rotating
compact stars with polytropic or realistic equations of state. However it contains
also a task which allows to compute static configurations. Since we will use it to
investigate rotating NSs we will discuss after in details how it works. The following
models lie on three different one-parameter sequences because they are computed
applying three different realistic equations of state (EoS). The mean range of values
of εc that we have considered for these sequences is ∼ [4 · 1014, 5 · 1015]gcm−3. The
EoSs are taken from[78] and their profiles are plotted on Figure 2.1 and 2.2. We
choose these EoSs because they are already included into the code. Moreover this
selection is done only to probe very general features of NS models; indeed, they are
quite old EoSs (see [79] and [80] for references). This means that actually we will
probe after recent models of nuclear equations of state, in which we will base the
main results of this work. Anyway, although a deep investigation about the equa-
tion of state of nuclear matter will be done in the Chapter3, some considerations are
needed to understand the differences between the three sequences of models reported
here.

A barotropic EoS for the nuclear matter inside NSs can be determined through
two different approaches. The first corresponds to choose an approximate and an-
alytical form of EoS, which is the so-called polytropic EoS. We discussed it before
for the case of Newtonian fluids. This has a very simple form: P = KρΓ, where K
and Γ are constants. Lots of studies about NSs are currently done using this type of
EoS. However it is only useful to probe some general features of relativistic stars. If
one wants to investigate in details the bulk properties of NSs and how it is affected
by the matter inside them, he has to use the other approach. This corresponds to
establish what kind of particles constitute the NS matter and modeling properly
the interactions between them. There is a big number of theories which describe
differently both the particles and the interactions which are thought to be found in-
side these objects. In particular the problem concerns the inner core of these stars.
Nowadays we know what kind of equations of state are suitable for the description of
the envelope of neutron stars (for instance the HW or the BPS[60]). This is possible

11Sometime instead of the condition P = 0 one uses P = Psur 6= 0, where Psur is the pressure
computed from the equation of state at the equilibrium density of 56Fe (∼ 7.86gcm−3). This is a
more realistic condition for the surface of NSs, because from the knowledge about stellar evolution
we know that the crust of a NS is mainly composed by iron nuclei in chemical equilibrium.
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Figure 2.1: Graph of the function P = P (ε) on a logarithmic scale for three different
equations of state: EoSA, EoSB, EoSN (see the text for details).

Figure 2.2: Zoom of the Figure2.1. The different behaviour of the three EoSs at the
highest densities range is considered. We can see that EoSB is a softer equation of state
with the respect to EoSA and EoSN. The latter is the most stiff among them.

because inside these regions the NS matter has densities below the nuclear satura-
tion density, thus it can be investigated in the laboratories. However, generally, lots
of several EoSs which match the low density EoS before the saturation point show
a completely different behavior above ρ0 = 2.7 · 1014gcm−3. The reason of this is
that we actually don’t know what is inside the core of NSs. This happens because,
as discussed during the introduction, current terrestrial experiments are not able to
probe the ultra-densities expected here. In this thesis we will consider several types
of realistic EoSs. In particular, the main results of this thesis will be obtained with
EoSs for strange quark matter that we will discuss in the Chapter3. For the current
analysis concerning the general features of static NS models we apply three EoSs
well known in the literature. The first equation of state EoSA describes the nuclear
matter inside NSs as an ensemble of neutrons, whose interactions are modeled with
a non-relativistic many-body approach. The second one EoSB is characterized by a
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major number of particles. It adds protons p and the so-called exotica and describes
the particle interactions in the same way as EoSA. Here with ”exotica” we mean
hadrons heavier than baryons (i.e. with a higher rest-mass); in particular they can
be hyperons (hadrons containing strange quarks) or ∆-resonances (baryons with
spin number 3/2). EoSB contains n,p, the hyperons Λ, Σ±,0 and the resonances
∆−,0. These particles are assembled within a neutrally charged system12. Eventu-
ally EoSN considers only neutrons as EoSA but it models the particle interactions
using a relativistic mean field theory. The behaviour of P (ε) for these three EoSs
is plotted in Figure2.1. We can note from the plot that all of them show the same
behaviour below the nuclear saturation density. Instead, they have completely dif-
ferent profiles above that density. In particular they show a different stiffness, i.e.
different values of local pressure for a fixed mass-energy density. Figure2.2 shows the
same plot of Figure2.1 but with a zoom on the highest densities range. Here we can
see that when approaching the highest densities, EoSB is the most soft among the
three EoSs, and EoSN is the most stiff. EoSB becomes softer than EoSA because it
introduces exotica at high densities. Indeed, because of the complete degeneracy of
the hadronic matter inside NSs, particles are all distributed among different Fermi
energy levels according to the Fermi-Dirac statistics and the Pauli Principle. Then
adding hyperons, for instance, means that the hyperonization of the neutrons and
protons at the top of their Fermi seas (i.e. the most high energy particles) happens
inside the system. Only these high energy particles can be converted into hyperons
because they can reach the rest-mass values of hyperons with their chemical poten-
tial. Hyperons can exist only within a very energetic environments. The conversion
into hyperons13, which are more massive and thus occupying lower Fermi energy
levels, reduces the number of neutrons and protons at the top of their Fermi seas
thus lowering the total degeneracy pressure of the system. The argument is similar
for the ∆-resonances. Eventually, the great stiffness of EoSN is due to the different
modeling of the particles interaction. It can be shown that with relativistic mean
field theories very stiff EoSs can be obtained. However one has always to consider
the causality limit, i.e. dP/dε < 1 (the speed of sound must be lower than c). We
focus now on the bulk properties of NSs models, observing how a different stiffness
in the EoS can affect them.

In Figure2.3 we report the diagram gravitational mass versus central mass-energy
density for the three sequences of models. Here we can see that for all the EoSs, by
increasing the value of the parameter εc, the sequences are characterized by an initial
rapid increase of the gravitational mass until a maximum value followed by a slow
decrease of the mass. Hereafter we will call this maximum value for the gravitational
mass of the non-rotating NSs as MTOV . The existence of a maximum value of the
gravitational mass of NSs for a fixed EoS is predicted by the General Relativity.

12In all the NS models the fluid is assumed to be neutrally charged.
13The hyperonization is driven by the weak interactions, which can change the strangeness of

the system.
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Figure 2.3: Plot of the relation between the gravitational mass and the central mass-
energy density for NS hydrostatic equilibrium sequences, which are computed applying
different EoSs. Each sequence is labeled with the name of the EoS used to compute the
models.

Indeed by writing the TOV-equation in the following way14:

dP

dr
= −ε(r)m(r)

r2

(
1 +

P (r)

ε(r)

)(
1 +

4πr3P (r)

m(r)

)(
1− 2m(r)

r2

)−1

(2.38)

we can see that compared to its Newtonian limit it contains the pressure in the right
hand side terms. This terms represent the gravitational acceleration which acts to-
wards the collapse of the star and that is balanced by the pressure gradient on the
left hand side term, in analogy with Newtonian self-gravitating fluids. However, for
relativistic stars also the own pressure brings to the collapse. If we increase the
mass, the pressure gradient must become more large in order to hold an equilibrium
configuration but, at the same time, this increases also the contribution of the pres-
sure to the gravitational collapse. At a certain point, when the mass is sufficiently
high, the gravitational collapse of the star is unavoidable. This is briefly the reason
of the existence of a maximum gravitational mass for relativistic stars. From the
plot we can clearly note also that more stiff is the EoS more high is the value of
the maximum NS gravitational mass. The reason of this is the different internal
pressure values which are reached near the core of NSs by the three different EoSs.
EoSs more stiff are characterized by more high internal pressures at a fixed central
mass-energy density. This allows NS models to hold more high masses against the
gravitational collapse. Thus only with very stiff EoSs (like EoSN) we are able to
compute NS models with masses ∼ 2− 2.5M�. EoSA, EoSB allow to build models
with MTOV ≈ 1.4 − 1.6M�. Moreover we can see that the maximum value of the
NS mass is reached at different values of εc for the three EoSs. In particular EoSB
can reach more high values of the central mass-energy density. This happens be-
cause it describes nuclear matter with more heavy hadronic particles, which required

14The TOV-equation reduces to the Newtonian hydrostatic equilibrium equation within the
weak field limit. This is obtained by considering the conditions: P/ε � 1 (that implies also
(4πr3P )/m� 1) and 2m� r2.
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a more energetic environment to exist, as we briefly discussed before. Eventually,
from the perturbative analysis of the structure equations, the stability of static mod-
els can be investigated. In particular, because of the spherical symmetry, one can
study the evolution of radial pulsations inside this objects. It can be shown[81] that
the fundamental radial oscillation mode (i.e. the mode associated with the value
n = 0 in the perturbative analysis) becomes unstable from the point with maximum
mass towards higher central mass-energy densities. Thus configurations lying on
the decreasing gravitational mass branch along an equilibrium barotropic sequence
represent dynamical unstable equilibria. The unstable NS models are configurations
which collapse to a BH within a dynamical timescale.

Figure 2.4: Plot of the relation between the radius and the gravitational mass for NS
hydrostatic equilibrium sequences, which are computed applying different EoSs. Each
sequence is labeled with the name of the EoS used to compute the models.

In Figure2.4 we report the diagram radius versus gravitational mass. Here we
can show again the existence of an upper limit for the gravitational mass of NSs,
which depends on the applied EoS. In particular, the stellar radius shows a clear
decrease with an increase of the mass. This is natural for gravitationally bound
stars: more high is the mass, more high is the strength of the gravitational pressure
and thus more compact are the stars. Moreover, the three different EoSs show an
other remarkable general property. Stiffer EoSs yield models more massive and with
bigger radii, softer EoSs yield models less massive and more compact. This is clear
that because in the case of a fixed mass, more high values of the internal pressure
reduce the strength of gravity and thus implying more big stellar radii.

2.3 Stationary, axially symmetric spacetimes

In the following we describe the theoretical overview about rotating relativistic stars.
We introduce the equations which are applied to compute rotating NS models. Then
in the next paragraphs we will describe in details how these equations are handled
by numerical codes particularly focusing on their approach and we will discuss the
main features of equilibrium models of rotating NSs.



40 CHAPTER 2. GENERAL RELATIVITY

As a first step we need to define what kind of metric of the spacetime can be
related to rotating relativistic stars. It’s known that within the Newtonian limit we
are able to probe the classical approximation of the general relativistic quantities.
This can be useful for a better understanding about their physical meaning. For
instance, the weak field limit of the Schwarzschild solution 2.37 is:

ds2 = −(1− 2Φ)dt2 + (1 + 2Φ)dr2 + r2dθ2 + r2 sin2 θdφ2 (2.39)

where Φ represents the Newtonian gravitational potential. This implies that the
coefficients of the metric tensor of the general relativistic spacetime are related to
the Newtonian gravitational potential. Because of this, since we have seen that in the
case of rotating Newtonian fluids the rotation affects the strength of the gravitational
potential by defining a new effective potential, we can expect that the rotation of
relativistic stars modifies their spacetime metric. Moreover we have seen during
the introduction that it is usual to assume an axial-symmetry of the system when
treating rotating fluids. However this symmetry is only a mere assumption because
rotating fluids can be non-axially symmetric systems. Thus, at the beginning one
assumes the axial-symmetry and after he has to study the stability of the models
against axisymmetric and non axisymmetric modes. The geometry of the spacetime
associated with rotating relativistic objects in equilibrium is obtained through the
following assumptions:

• the spacetime is stationary and axisymmetric. Thus there exist two Killing
fields: one is an asymptotically time-like symmetry vector tµ and the other is
a rotational symmetry vector φµ

• the spacetime is asymptotically flat. This implies tµtµ = −1, φµφµ = +∞ and
tµφµ = 0 at spatial infinity

• the spacetime is circular, i.e. there are no meridional currents

• the Killing vectors commute, i.e. [t, φ] = 0

• there is an isometry of the spacetime that simultaneously reverses the direction
of φµ and tµ, i.e.: tµ → −tµ ∧ φµ → −φµ

The Differential Geometry allows us to infer that[61] in this case there exists a family
of 2-surfaces orthogonal to tµ and φµ, i.e. surfaces of constant t and φ. It is natural
to choose as coordinates x0 = t and x3 = φ; thus, in this way φ describes rotations
around the ẑ axis. In the absence of meridional currents, the 2-surfaces orthogonal
to tµ and φµ can be parameterized by the remaining coordinates x1, x2. Within this
coordinates frame we can write an expression for the metric tensor whose coefficients
are independent on t and φ. Thus by using the Killing fields formalism we can write:

tµ = (∂t)
µ = δµt (2.40)

φµ = (∂φ)µ = δµφ (2.41)
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and also:

tµt
µ = gµαδ

α
t δ

µ
t = gtt (2.42)

φµφ
µ = gφφ (2.43)

tµφ
µ = gtφ = gφt (2.44)

In the case of a static spacetime, defining as T the time-reversal operator, we have
that:

gtφ(t, x1, x2, φ) = (T ◦ g)tφ(t, x1, x2, φ) = −gtφ(−t, x1, x2, φ) = −gtφ(t, x1, x2, φ)
(2.45)

where we applied the isometry of the static spacetime ∂gµν/∂t = 0. Thus gtφ =
tµφ

µ = 0, i.e. within a static spacetime the two Killing fields t and φ are orthogonal.
Nevertheless, a rotating spacetime is not more invariant with the respect of the
only time-reversal operation: t → −t. Thus the two Killing fields t and φ are no
more orthogonal. This implies gtφ 6= 0. The lack of the orthogonality between the
two Killing fields is the reason of the dragging of inertial frames that we discussed
during the introduction and that we now relate to the metric coefficient gtφ. In
particular, we describe this effect with a metric potential ω. Because of this the new
metric is no more diagonal, but it presents some mixing terms related to space-time
intervals dtdφ. Rotations around the ẑ-axis affect the flow of time and the time flow
is associated with φ-rotations of reference frames : this is the Lense-Thirring effect.
There are several choice for the coordinates x1, x2. We use the so-called ”quasi-
isotropic coordinates”, for which grθ = 0 and gθθ = r2grr (in spherical coordinates).
Therefore the general form of the new metric describing the stationary axisymmetric
spacetime is the following:

ds2 = −e2ν(r,θ)dt2 + e2α(r,θ)(dr2 + r2dθ2) + e2ψ(r,θ)r2 sin2 θ(dφ− ωdt)2 (2.46)

It’s important to note that now there is also an angular dependence of the metric
coefficients. Clearly, they can depend only on the angle θ and not on φ because
of the axial-symmetry. From the new metric we can compute the 4-velocity field
associated with the fluid elements, which rotate at a frequency Ω around the ẑ-axis.
We have that:

ur = uθ = 0

uφ =
dφ

dτ
=
dt

dτ

dφ

dt
= utΩ

From the above equations and the normalization gµνu
µuν = −1, one can find that:

ut =
e−ν(r,θ)

√
1− v2

(2.47)

where we defined the quantity: v = (Ω − ω)e{ψ(r,θ)−ν(r,θ)}r sin θ. Thus we can write
the general expression of the 4-velocity field as follows:

uµ = ut(tµ + Ωφµ) (2.48)
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In describing the rotating fluid is useful to introduce a family of zero-angular-
momentum local observers, the so-called ZAMOs[82, 83]. These are reference frames
whose worldlines are normal to the spacelike hypersurfaces Σ defined by the condi-
tion t =const. They are stationary observers, because dragged at the same frequency
of the rotating fluid: ω = Ω. Thus they are locally non-rotating frames[84]. Because
of this, the ZAMOs 4-velocity field is defined as follows:

uµZAMO = utZAMO(tµ + ωφµ) = e−ν(r,θ)(tµ + ωφµ) (2.49)

where the last identity derives from vZAMO = 0. The advantage of the introduction
of these reference frames concerns the better interpretation of the physical quantities.
Firstly, we note that v is a non covariant quantity, because it changes among different
local reference frames. Thus we have to specify the physical frame with respect to
which it is measured. With the introduction of the ZAMOs it becomes clear that
v represents the 3-velocity of the fluid elements with respect to these observers.
Moreover from the last identity on the eq.2.49, we note that e−ν(r,θ) corresponds to
the time dilation factor relating the proper time of the local ZAMO to the coordinate
time t.

From the metric tensor 2.46 we can note also that there are four metric potentials
which we have to compute in order to determine the structure of the spacetime.
When an equation of state has been specified and if equilibrium solutions exist,
the structure of a relativistic rotating star and the spacetime close and inside it are
determined by solving four components of the Einstein’s field equations 2.27 together
with the equations of the hydrostationary equilibrium. The former are obtained by
computing all the components of the stress-energy tensor and of the Ricci tensor.
Indeed the Einstein equations can be written also in the following form:

Rµν = 8π
(
Tµν −

1

2
gµνT

α
α

)
(2.50)

It can be shown[59] that three of these equations can be obtained from three coef-
ficients of the Ricci tensor (t − t, φ − φ and t − φ) combined with the respective
expressions of the coefficients of the stress-energy tensor (in the case of a perfect
fluid). They look like:

∇[ρeγ/2] = Sρ(r, µ) (2.51)(
∇+

1

r

∂

∂r
− 1

r2
µ
∂

∂µ

)
γeγ/2 = Sγ(r, µ) (2.52)(

∇+
2

r

∂

∂r
− 2

r2
µ
∂

∂µ

)
ωe(γ−2ρ)/2 = Sω(r, µ) (2.53)

where:

∇ =
1

r2

∂

∂r

(
r2 ∂

∂r

)
+

1

r2

[ 1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂φ2

]
(2.54)

γ = ψ + ν (2.55)

ρ = ν − ψ (2.56)

µ = cos θ (2.57)
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and the expressions of the terms (very long) Sρ(r, µ), Sγ(r, µ) and Sω(r, µ) are re-
ported in [59] (here β corresponds to our ψ). These terms are very complicated
functions of r, µ and also of γ, ρ, α, ω and P , ε and Ω (the last comes from the co-
efficients of uµ in the stress-energy tensor). The three equations 2.51, 2.52 and 2.53
are three second order PDEs in an elliptical form. These are Poisson-like equations,
where the Newtonian gravitational potential is replaced by the metric potentials and
on the right hand side there are the source terms. These are the analogous of the
scalar density field in the Poisson equation 1.6. Eventually, the last forth equation
for the metric potentials is obtained by using identities concerning some coefficients
of the Ricci tensor, which are valid only in the case of a perfect-fluid stress-energy
tensor. This is a long first order PDE (8 lines) on the metric potential α and it is
listed in [59]. Together with the Einstein equations we need also the hydrostation-
ary equilibrium equations. In particular we need other three equations to solve the
problem; so far, we have four equations in seven unknowns γ, ρ, α, ω, P , ε and Ω.
The condition of hydrostationary equilibrium is derived from the generalized Euler
equation 2.28. Here ν = r, θ. Thus, by knowing that ur = uθ = 0 and gξνg

ξν = 1,
the Euler equation becomes:

∇νP

P + ε
= −uβ∇βuν = −uβ

(∂uν
∂xβ
− Γλβνuλ

)
Now, because β = t, φ and the spacetime is symmetric under t-translations and φ-
rotations, by using the definition of the Christoffel symbols the last equation reduces
to:

∇νP

P + ε
=

1

2
gλk
(∂gkν
∂xβ

+
∂gkβ
∂xν

− ∂gβν
∂xk

)
uβuλ

Thus by defining ∂α ≡ ∂/∂xα we have:

∇νP

P + ε
=

1

2
[ut(gtφ∂νgφt + gtt∂νgtt)ut + ut(gφφ∂νgφt + gφt∂νgtt)uφ

+ uφ(gtt∂νgφt + gtφ∂νgφφ)ut + uφ(gtφ∂νgφt + gφφ∂νgφφ)uφ]

Then by considering that uφ = Ωut and arranging the metric coefficients we obtain
that:

∇νP

P + ε
=

1

2
(ut)2

[
−∂ν

( 1

(ut)2

)
−
(

2gφt + 2
uφ

ut
gφφ

)
∂νΩ

]
=

=
1

2
(ut)2 2ut∂νu

t

(ut)4
− ut(gφtut + gφφu

φ)∂νΩ = ∂ν(lnu
t)− utuφ∂νΩ

Because ∇νP = ∂νP , we can define the vector ~∇ = (∂/∂r, (1/r)∂/∂θ) on the sub-
space r − θ and we can write:

~∇P
P + ε

= ~∇(lnut)− utuφ~∇Ω (2.58)
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Moreover we note that:

utuφ = utut
uφ
ut

= (−1− uφuφ)
uφ
ut

=
(
−1− Ωutut

uφ
ut

)uφ
ut

=⇒ utut =
−1

1 + Ω
uφ
ut

=⇒ utuφ =
l

1− Ωl
=

(Ω− ω)e2(ψ−ν)r2 sin2 θ

1− (Ω− ω)2e2(ψ−ν)r2 sin2 θ
(2.59)

where we defined15 l := −uφ/ut. Thus the final form of the hydrostationary equilib-
rium equations is the following:

~∇P
P + ε

= ~∇(lnut)− l

1− Ωl
~∇Ω (2.60)

We can define the enthalpy of the relativistic fluid similarly as we did in eq.1.30.
For the relativistic barotropic fluid we must take in account the contribution of the
mass-energy density to the enthalpy. We define:

H(P ) :=

∫ P

0

dP ′

ε(P ′) + P ′
(2.61)

and we can note that:

~∇H(P ) = ~∇
[∫ P

0

dP ′

ε(P ′) + P ′

]
=

~∇P
P + ε(P )

− 0
1

P + ε(P )
+

∫ P

0

dP ′~∇
( 1

P ′ + ε(P ′)

)
=⇒ ~∇H(P ) =

~∇P
P + ε(P )

By defining the function:

F :=
l

1− Ωl
=

(Ω− ω)e2(ψ−ν)r2 sin2 θ

1− (Ω− ω)2e2(ψ−ν)r2 sin2 θ
(2.62)

we can write the eq.2.60 in the following form:

∂

∂xi
(H − lnut) = −F ∂Ω

∂xi
(2.63)

where i = 1, 2. If we take the derivative ∂/∂xj of the above equation and we use the
spherical coordinates frame, the Schwarz theorem implies that:

∂F

∂r

∂Ω

∂θ
=
∂F

∂θ

∂Ω

∂r
(2.64)

This equation means that the jacobian of the coordinate change (r, θ) → (Ω, F ) is
identically zero. Hence the variables Ω, F are not independent. Thus it must exist
a function Φ : R2 → R such that Φ(Ω, F ) = 0. There are two possibilities:

15It can be shown that this quantity is the relativistic specific angular momentum j.



2.3. STATIONARY, AXIALLY SYMMETRIC SPACETIMES 45

• ∂Φ/∂F = 0, then the equation Φ(Ω, F ) = 0 implies Ω = const. that is the
case of a uniformly rotating fluid

• ∂Φ/∂F 6= 0, then the implicit function theorem ensures that F = F (Ω). Thus
F is only a function of Ω and this represents the case of a differentially rotating
fluid

Because of this we can derive some interesting results. Firstly, the equation 2.60 can
be written in the following form:

~∇P
P + ε

= ~∇Φeff (2.65)

where

Φeff =
(

lnut −
∫ Ω

Ω0

F (Ω′)dΩ′
)

(2.66)

that is the analogous of the differential form of the equation 1.8 for the relativistic
case. We can see again the lowering of the gravity strength as an effect of the
rotation16. Moreover, the global first integral of the hydrostationary equilibrium
equations is the following:

H − lnut +

∫ Ω

Ω0

F (Ω′)dΩ′ = const. (2.67)

where the constant is established by fixing two boundary conditions: one related
to the enthalpy/mass-energy density profile, for instance εc like for non rotating
objects; the other labeling the rotation inside the objects, for instance the constant
value of the spin frequency in the case of rigidly rotating models17 or its value at
a certain point within the model in the case of differential rotation (in eq.2.67 this
is labeled as Ω0). Moreover, like in the HSCF method, in the case of differential
rotation, one has to establish the rotation law. This means to define an expression
for F (Ω), from which together with eq.2.62 one can obtain the profile of Ω inside
the star. There are different choices for F (Ω) in the literature[59, 73, 53, 85, 86].
In this thesis we will consider only the one more used by the authors. This has the
following parametric form:

F (Ω) = A2(Ωc − Ω) (2.68)

and it is termed[85] as ”j-const. law”. Indeed, by considering eq.2.62 and the defi-
nition of the function F we have the following Newtonian limit:

A2(Ωc − Ω) =
l

1− Ωl
=

(Ω− ω)e2(ψ−ν)r2 sin2 θ

1− (Ω− ω)2e2(ψ−ν)r2 sin2 θ
≈ Ωr2 sin2 θ

=⇒ Ω =
A2Ωc

A2 + r2 sin2 θ

16Here we noted that the term lnut contains the metric potential ν which is the analogous of
the gravitational potential in the weak field limit.

17In this case eq.2.65 does not contain the spin frequency anymore but Ω is still present in the
Einstein’s field equations, thus we need to specify it.
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and within the limit A� 1 one can write that:

Ω =
A2Ωc

r2 sin2 θ
(2.69)

This corresponds to the case of a Newtonian fluid which rotates with constant spe-
cific angular momentum j0 = A2Ωc within it. This is exactly the same law that we
have seen during the discussion of the HSCF method. Clearly, the law 2.68 satisfies
the Rayleigh criterion for the local dynamical stability against axisymmetric distur-
bances 1.26. In fact in the Newtonian limit Ω$2 = j, hence the Rayleigh criterion
implies that j should not decrease outward. This is clearly satisfied for a j-constant
rotation law. Eventually the parameter A is related to the degree of differential
rotation. In particular, it’s easy to note that when A → ∞ thus Ω → Ωc and the
fluid becomes rigidly rotating; instead, smaller values of A imply an high differential
rotation degree. As an example, we report in Figure2.5 and Figure2.6 some profiles
of the j-constant law in the Newtonian approximation and computed at the equator
of the rotating fluid, i.e. θ = π/2. In particular, in Figure2.5 several profiles ob-
tained for different values of A−1 and for a fixed Ωc/2π = 1000Hz are shown. Here
we can note that the more big is A the more rigid is the rotation. In particular,
for a fixed equatorial radius, bigger values of A imply more high equatorial speed
frequencies. In Figure2.6 several rotational profiles computed for different values of
A and for a fixed equatorial frequency Ωe/2π = 150Hz at an equatorial radius of
13km are shown. Here we can note that the bigger is A, the lower is the central
angular velocity of the fluid.

Figure 2.5: Different profiles of the j-constant law obtained in the Newtonian approxi-
mation for a fixed central frequency Ωc/2π = 1000Hz and several values of A−1. On the
legend the values of A−1 are reported. Moreover, the rotational profile of the model with
equatorial speed frequency of 150Hz and equatorial radius of 13km is marked.

Although the hard resolution, the problem of computing rotating star models in
general relativity has a quite simple structure. As we seen before, there are seven
unknowns overall: the four metric potentials (γ, ρ, α and ω) and the quantities
associated with the system fluid dynamics P , ε and Ω. Therefore, we have four
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Figure 2.6: Different profiles of the j-constant law obtained in the Newtonian approxi-
mation for a fixed equatorial frequency Ωe/2π = 1000Hz at an equatorial radius of 13km
and several values of A. On the legend the values of A are reported. The more big is A,
the more low is the central frequency.

PDEs coming from the Einstein equations, which will need appropriate boundary
conditions in order to be solved (these will be fixed by considering the asymptotic
flatness of the spacetime). The fifth equation is the global first integral of the
hydrostationary equilibrium equations, which is solved by fixing two parameters.
Then, in the case of differential rotation with the parametric form of F (Ω) indicated
in eq.2.68, one will must fix also the parameter A. In this way, if we choose the
two parameters of the hydrostationary equilibrium equation as εc and Ω0, a unique
differentially rotating model will be linked by the triad (εc, Ω0, A); thus we will deal
with a 3-dimensional solutions space. Eventually the last two equations required to
close the problem are the barotropic equation of state P = P (ε) and the equation
2.62; the latter allowing to specify the rotational profile inside the models.

Several bulk quantities can be define in order to describe relativistic rotating
fluids. Thanks to the formalism of the Killing fields we are able to define some of
them through really general expressions. First of all, the mass. Its definition is quite
tricky and, above all, it is not unique. However, because of the mass-energy equality,
we expect that the definition of the ”total” mass of a relativistic system is a sort of
definition of its ”total” energy. In particular, this definition should be in agreement
with the mass M of the static and spherically symmetric configuration that we have
seen before (the Schwarzschild solution). Since it’s known that the conservation of
the energy of systems is related to their invariance under time translations, we search
for a definition of the mass in terms of the Killing vector t. This is possible thanks
to the so-called Komar integrals [87, 88]. Let us consider a Killing field ξ that is
related to a certain symmetry of the spacetime. We can define the current:

Jµ(ξ) = 8πqRµνξν = 8πq
(
T µνξν −

1

2
Tαα g

µνξν

)
(2.70)

where q is a constant and the last identity is obtained by using 2.50. It can be
shown[88] that this is a conserved 4-current, i.e. ∇µJ

µ
(ξ) = 0. We can define a
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conserved charge associated with the conserved current. The charge passing through
a spacelike hypersurface Σ is given by an integral over the coordinate xi within a
positively oriented chart {x0, x1, x2, x3}. In particular, Σ is the hypersurface defined
by the condition x0 = const. and by the induced metric 3gµν = gµν + nµnν , where

nµ = − δ0
µ√
−g00

(2.71)

is the future pointing unit vector orthogonal to Σ. Here we applied again a metric
signature (−,+,+,+). Therefore, being 3g the determinant of the induced metric,
we write the integral as:

Qξ =

∫
Σ

nµJ
µ
(ξ)

√
3gd3x = 8πq

∫
Σ

nµ

(
T µνξν −

1

2
Tαα g

µνξν

)√
3gd3x (2.72)

By using the generalized divergence theorem we can write this integral as a surface
integral over a 2-sphere at spatial infinity. Indeed, it can be shown that Killing fields
satisfy the following identity:

∇ν∇µξ
ν = Rµνξ

ν (2.73)

Therefore we have that:

Jµ(ξ) = 8πqRµνξν = 8πq∇ν∇µξν

By inserting the last result into the integral 2.72 and applying the generalized di-
vergence theorem we have:

Qξ = 8πq

∫
Σ

nµ∇ν∇µξν
√

3gd3x = 8πq

∫
S∞

nµσν∇µξν
√

2gd2x (2.74)

where S∞ := limr→∞
∫
Sr

(Sr is a 2-sphere of constant radial coordinate r appropriate

to an asymptotically flat spacetime), 2gµν =3 gµν − σµσν is the induced metric on
S and σµ = δ1

µ(3g11)−1/2. The last integral is called Komar integral associated with
the Killing field ξ. Therefore we can define the so-called Komar mass as the Komar
integral associated with the Killing field t of a static or even stationary spacetime
for a constant q = 1/32. This is the following:

Mt =
1

4π

∫
S∞

nµσν∇µtν
√

2gd2x (2.75)

This mass corresponds exactly with the mass M found in the Schwarzschild solution
when considering the case of the static and spherically symmetric empty spacetime.
Indeed:

nµσν∇µtν
√

2g = n0σ1Γ1
00t

0
√

2g =
(

1− 2M

r2

)1/2(
1− 2M

r2

)−1/2M

r2
r2 sin θ = M sin θ

and thus:

Mt =
1

4π

∫
S∞

M sin θdθdφ = M
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Hereafter we will call the Komar mass as the Gravitational mass MG. This mass
represents the entire amount of mass-energy contained within the relativistic system,
i.e. the contributions of the baryonic density ρ, the internal energy e, the gravita-
tional binding energy18 W and all the other possible forms of energy held by the
fluid (for instance the rotational kinetic energy in the case of rotating stars). The
contribute of the baryonic density can be estimated by using the conservation law
2.108 and the generalized divergence theorem. It follows that:

MB =

∫
Σ

ρut
√

3gd3x (2.76)

that is the so-called Baryonic mass (or even ”rest mass”) of the relativistic fluid.
Similarly, we define the contribution of the internal energy as:

U =

∫
Σ

eut
√

3gd3x (2.77)

Therefore, in the case of a rotating NS with a rotational kinetic energy T, the
gravitational binding energy will be W = MG−MB−U−T . Moreover, because of the
existence of an other Killing field φ which is related to the spacetime symmetry for
rotations around the ẑ-axis, we can define an other Komar integral (now q = −1/64):

J = − 1

8π

∫
S∞

nµσν∇µφν
√

2gd2x (2.78)

that corresponds to the total Angular momentum of the axially symmetric19 rotating
relativistic fluid. In particular, given the frequency Ω of the fluid we can define also
the moment of inertia and the rotational kinetic energy of the fluid as follows:

I =
J

Ω
(2.79)

T =
1

2

∫
ΩdJ (2.80)

Eventually by expanding all the terms contained on the two Komar integrals, from
the definition 2.72 one finds that:

MG =

∫
Σ

(2T tt + Tαα )
√−gd3x (2.81)

J =

∫
Σ

T tφ
√−gd3x (2.82)

these expressions allow to compute the gravitational mass and the total angular
momentum of NSs from the metric and the stress-energy tensor components.

18This is contained also in the Schwarzschild mass. In fact, by using the covariant volume element

M = 4π
∫ R
0
εr2
√
grrdr, in the Newtonian limit we obtain: M ≈ 4π

∫ R
0
εr2dr+

∫M
0
−(m/r)dm. The

last term is the classical gravitational binding energy.
19Since the rotation axis is also the symmetry axis as we assumed at the beginning, the total

angular momentum is the angular momentum respect to the rotational axis.
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The last quantity that we need to know when studying rotating fluids is the
so-called mass-shedding limit. We defined it during the introduction about rotating
Newtonian stars. This quantity is very important because it introduces a limit on the
sequences of equilibrium rotating fluids. Rotating configurations which exceed this
limit with their spin frequency are dynamical unstable. When Ω > ΩK , they start
to loose mass from the surface, firstly from the equator, because the fluid elements
at the surface are no more gravitationally bound: the centrifugal forces acting to
them are overcoming the gravitational ones. In order to compute this frequency, one
consider the rotational motion of particles at the star equator. Thus in the metric
2.46 we consider that: dr = 0, dθ = 0, r = R and θ = π/2. Therefore the proper
time of the particles can be written as follows:

dτ =
√
−ds2 = [e2ν(R,π/2)dt2 − e2ψ(R,π/2)R2(dφ− ωdt)2]1/2

= [e2ν(R,π/2) − e2ψ(R,π/2)R2(Ω− ω)2]1/2dt

where we used the fact that Ω = dφ/dt is the particles angular velocity. When
Ω = ΩK the particles move along a geodesic path. This path can be obtained as the
extremum of the proper time. Therefore we apply the variational principle along the
radial coordinate to the above equation:

0 = δτ = δ
{∫ t2

t1

[e2ν(R,π/2) − e2ψ(R,π/2)R2(Ω− ω)2]1/2dt
}

=

=

∫ t2

t1

δ{[e2ν(R,π/2) − e2ψ(R,π/2)R2(Ω− ω)2]1/2}dt

where we used the fact that the variation vanishes at the end points δR(t1) =
δR(t2) = 0. This implies that:

0 = δ[e2ν(R,π/2) − e2ψ(R,π/2)R2(Ω− ω)2] =

= e2ν2δν − e2ψ2δψ(Ω− ω)2R2 + e2ψ2(Ω− ω)R2δω − e2ψ(Ω− ω)22RδR

= [2ν ′e2ν − 2ψ′e2ψ(Ω− ω)2R2 + 2R2ω′e2ψ(Ω− ω)− e2ψ2R(Ω− ω)2]δR

= 2ν ′e2ν − 2ψ′e2ψ(Ω− ω)2R2 + 2R2ω′e2ψ(Ω− ω)− e2ψ2R(Ω− ω)2

where we define (..)′ = δ(..)/δR. Now by using the velocity v defined in 2.47 com-
puted at the equator, v = (Ω− ω)eψ−νR, we obtain after some algebra that:(

ψ′ +
1

R

)
v2 − ω′Reψ−νv − ν ′ = 0 (2.83)

which is a second order equation on the variable v whose solutions are:

v± =
Rω′

2ζ ′
eψ−ν ±

[(ω′Reψ−ν
2ζ ′

)2

+
ν ′

ζ ′

]1/2

(2.84)

where we defined ζ ′ = ψ′ + 1/R. We are interested only on the positive solution
because it is related to the co-rotational motion of the fluid elements. Then by
inserting this value of v into its definition we find the Keplerian frequency:

ΩK = ω +
ω′

2ζ ′
+
[( ω′

2ζ ′

)2

+
e2(ν−ψ)

R2

ν ′

ζ ′

]1/2

(2.85)
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This is the general expression of the relativistic Keplerian frequency. If we consider
the Newtonian weak field limit of the above equation we obtain:

ω ≈ 0 =⇒ ω′ ≈ 0

e2ψ ≈ 1 =⇒ ψ ≈ 0, ψ′ ≈ 0

ζ ′ ≈ 1

R

e2ν(R) ≈ 1− 2M

R
=⇒ ν(R) ≈ ln

√
1− 2M

R
, ν ′(R) ≈ M

R

(
1− 2M

R

)−1

therefore:

ΩK ≈
(M
R3

)1/2

(2.86)

which is the same expression of the Newtonian Keplerian frequency (eq.1.25) in
gravitational units.

2.4 Numerical approaches

The problem of obtaining axisymmetric rotating stationary star models has been
solved by a number of authors over the years. Two major general relativistic ap-
proaches have been adopted:

• an ”approximate” one concerning slowly rotating fluids, devised by Hartle as a
perturbation of a spherically symmetric configuration

• the ”exact” one concerning arbitrarily rotating configurations. This was based
on two different formulations: the Bonazzola&Maschio one[89], improved after
by Bonazzola&Schneider[90], and the Bardeen&Wagoner one[84]. Thereafter,
both these approaches have been developed and revisited more times together
with lots applications on computing relativistic stellar models. Several numer-
ical codes based on them are currently used by physicists to investigate rapidly
rotating NSs

We are going to discuss some of these numerical approaches, starting with a brief
analysis of the Hartle method applied to relativistic rotating objects. Afterwards, we
will describe in detail one exact code based on the formalism developed in [90]. We
will also provide equilibrium models obtained with this numerical code. Eventually
we will discuss something about an other code, this based on the formalism developed
in [84]. We will focus mainly on the comparison between the two exact codes.

2.4.1 Approximate solutions: the Hartle-Thorne method

The method developed by Hartle[48] allows to compute slowly rotating relativistic
star models. We discussed during the introduction the main features of this ap-
proach. Here we want to provide some technical details about its procedure, and
probe models obtained with it. Following [48], one has to compute firstly a static
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and spherically symmetric model of a barotropic perfect fluid, for a given equa-
tion of state P = P (ε). This means that he has to solve numerically the set of
static equations described before. Once this model is computed, all the quantities
ν(r), λ(r),m(r), P (r), ε(r), the gravitational mass M and the radius R of the star
are known.

Let us consider now the rigidly rotating barotropic perfect fluid, with the same
equation of state of the static one, whose spin frequency is very smaller than the
Keplerian frequency, i.e. Ω � ΩK . The last condition implies that the relative
changes in pressure, energy density and gravitational field of the static model due to
the rotation are all much smaller than the unity. We also assume the axial-symmetry
of the system with respect to the rotational axis. The metric tensor is similar to
2.46 but with a different choice for the metric coefficients; in particular, the Hartle’s
formalism adopts the spherical coordinates frame with the condition gφφ = gθθ sin2 θ
and maintains the signature (−,+,+,+). Thus, the metric of the spacetime has the
following general expression:

ds2 = −H2(r, θ)dt2 +Q2(r, θ)dr2 + r2K2(r, θ)[dθ2 + sin2 θ(dφ− L(r, θ)dt)2] (2.87)

Because of the stationary and axially symmetric spacetime, the metric must to
behave in the same way under time reversal t → −t as under a reversal in the
direction of the rotation of the system Ω → −Ω. Therefore the dependence of the
metric coefficients H,Q,K,L on the frequency Ω cannot be arbitrary. An expansion
in powers of the angular velocity of the coefficients H,Q,K can contain only even
powers of Ω, instead only odd powers can be contained by an expansion of L. In
the Hartle analysis[48] the effects of the perturbation on the spherical solution due
to the rotation are calculated to the order Ω2. Here we discuss the approach only to
the order Ω. A first-order slow-rotation approximation provides the dragging effect
and allows to define the star’s angular momentum and inertia momentum. We will
provide after some numerical results obtained with the Hartle method by using a
code based on the Ω-order. Higher order effects are interesting and concern mainly
the rotational corrections on the energy-pressure distribution, on the gravitational
mass and on the shape of the star. A second-order slow-rotation approximation
allows to define the star’s quadrupole moment. Clearly, the more high orders one
considers, the more accurate are the results. There are some works[91, 92] where
expansions to the order Ω3 or even Ω4 are treated. A considerable feature of the
slow-rotation approximation approach is the analyticity on defining the properties
of rotating relativistic stars. However, in general, these definitions are not accurate
enough to robustly indicate instabilities of models and thus, to obtain accurate
results for any rotation rate, one needs to change the way the problem is posed[8].
In these cases exact numerical approaches are considered.

To the first order in Ω only the metric coefficient L is perturbed, while H2 =
e2ν(r), Q2 = e2λ(r) and K2 = 1 as in the non rotating case. This implies that one
has to use again the structure equations of the non rotating fluid. Because of this
the gravitational mass and the radius of the perturbed configuration have the same
values of the static one. Also the pressure and the mass-energy density profiles don’t
change. However now there is an extra unknown: L = ω(r, θ)+O(Ω3). Thus we need
an other structure equation containing ω in order to compute the slowly rotating
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model. Since ω is related to the metric coefficient gtφ, one looks for this equation
by probing φ − t components of the Einstein’s field equations. In particular one
considers the following equation:

Rt
φ −

1

2
Rgtφ = 8πT tφ (2.88)

We immediately note that:

gtφ = gtαgαφ = gttgtφ + gtφgφφ = − gφφgtφ
(gtφ)2 − gttgφφ

+
gφφgtφ

(gtφ)2 − gttgφφ
= 0

and also that:

T tφ = Pgtφ + (P + ε)utuφ = (P + ε)e−2ν(r)r2 sin2 θ(Ω− ω(r, θ)) +O(Ω3)

Therefore, by neglecting orders higher than Ω within T tφ and Rt
φ (see [93] for the full

expression of Rt
φ), we obtain for ω̄(r, θ) := Ω− ω(r, θ) the following equation:

1

r4

∂

∂r

[
r4e−(λ+ν) ∂

∂r
ω̄(r, θ)

]
+

eλ−ν

r2 sin3 θ

∂

∂θ

(
sin3 θ

∂

∂θ
ω̄(r, θ)

)
−16π(P+ε)eλ−νω̄(r, θ) = 0

(2.89)
where ν = ν(r), λ = λ(r), P = P (r) and ε = ε(r). Now, by defining the quantity:

j(r) := eλ(r)−ν(r) =

{
e−ν(r)

√
1− 2m(r)

r
, r < R

1, r ≥ R

such that:

d

dr
j(r) = −e−ν 1√

1− 2m
r

(4πr3ε−m
r2

)
e−(λ+ν)

[m+ 4πr3P

r(r − 2m)

]
= −4π(ε+ P )eλ−νr

(2.90)
we obtain from eq.2.89 the following identity:

1

r4 ∂r

[
r4j(r)

∂

∂θ
ω̄(r, θ)

]
+

4

r
ω̄(r, θ)

d

dr
j(r)+

eλ−ν

r2 sin3 θ

∂

∂θ

(
sin3 θ

∂

∂θ
ω̄(r, θ)

)
= 0 (2.91)

The above equation can be solved by separation of variables. However an expansion
of ω̄(r, θ) in Legendre polynomials will not separate the equation because ω trans-
forms under rotations not like a scalar but like a component of a vector. This is
related to the presence of sin3 θ in the equation instead of sin θ, that is typical of the
angular part of the Laplace operator in spherical coordinates. ω(r, θ) is the angular
velocity acquired by an observer who falls freely from infinity to the point (r, θ), thus
it is associated to a vector in the space. Because of this, to solve the above equation
by separation of variables, an expansion in vector spherical harmonics must be used.
From these one can show that the appropriate expansion of ω̄(r, θ) is the following:

ω̄(r, θ) =
∞∑
l=1

ω̄l(r)
(
− 1

sin θ

dPl
dθ

)
(2.92)
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where Pl = Pl(cos θ) are the Legendre polynomials. By inserting this expansion
inside the eq.2.91 we have that:

∞∑
l=1

{
fl(r)

(
− 1

sin θ

dPl
dθ

)
+ gl(r)

[ 1

sin3 θ

d

dθ

(
sin3 θ

d

dθ

(
− 1

sin θ

dPl
dθ

))]}
= 0 (2.93)

where:

fl(r) =
1

r4

d

dr

(
r4j(r)

d

dr
ω̄l(r)

)
+

4

r

( d
dr
j(r)

)
ω̄l(r) (2.94)

gl(r) =
eλ−ν

r2
ω̄l(r) (2.95)

The separation of variables allows us to solve eq.2.98 by defining a new quantity ξl
such that the equation can be split into the two following equations:

∞∑
l=1

[fl(r)− ξlgl(r)] = 0 (2.96)

∞∑
l=1

[ 1

sin3 θ

d

dθ

(
sin3 θ

d

dθ

(
− 1

sin θ

dPl
dθ

))
+ξl

(
− 1

sin θ

dPl
dθ

)]
= 0 (2.97)

By solving the eq.2.97 we find that ξl = l(l + 1) − 2. Therefore from the equation
2.96 we obtain for the radial functions the following result:

1

r4

d

dr

(
r4j(r)

d

dr
ω̄l(r)

)
+

4

r

( d
dr
j(r)

)
ω̄l(r)− eλ−ν

l(l + 1)− 2

r2
ω̄l(r) = 0 (2.98)

Now we study the asymptotically behaviour of the above expression. Firstly, we
consider the limit r → 0. It is useful to note that from the derivative of j(r) we
have:

d

dr
j(r)→ 0, r → 0 =⇒ lim

r→0
j(r) = j0 <∞

Moreover, from the static solution we can know the values of λ and ν at the origin;
we call them λ0, ν0. Therefore within the limit r → 0 the equation 2.98 becomes:

j0

r4

d

dr

(
r4 d

dr
ω̄l(r)

)
− eλ0−ν0 l(l + 1)− 2

r2
ω̄l(r) = 0 (2.99)

Here by assuming a power expansion ω̄l(r) =
∑∞

s=0Clr
s, we solve the equation

obtaining that:

s1,2 = −3

2
±
√

9

4
+ [l(l + 1)− 2]

eλ0−ν0

j0

ω̄l(r) = Al,1r
s1 +Bl,2r

s2 , r → 0

Moreover, we require the regular behaviour of the solution; thus ω̄l(r) → 0 when
r → 0. Because of this we have the following result:

ω̄l(r) ∝ rs, r → 0

s = −3

2
+

√
9

4
+ [l(l + 1)− 2]

eλ0−ν0

j0
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Now we study the behaviour of the solution ω̄l(r) when r → ∞. We require the
asymptotic flatness of the spacetime. We know that eλ(r), eν(r) → 1 when r → +∞.
Therefore within this limit, eq.2.98 reduces to:

1

r4

d

dr

(
r4 d

dr
ω̄l(r)

)
− l(l + 1)− 2

r2
ω̄l(r) = 0 (2.100)

Here by assuming a power expansion ω̄l(r) =
∑∞

s=0 Clr
s, we solve the equation

obtaining that:

s1 = l − 1

s2 = −l − 2

ω̄l(r) = A′l,1r
s1 +B′l,2r

s2 , r →∞

However, we remember the definition: ω̄(r, θ) = Ω − ω(r, θ) where we assumed
Ω = const. (rigid rotation). Thus, since ω(r, θ) → 0 when r → ∞ because of the
asymptotic flatness of the spacetime, it is required that ω̄(r, θ) → Ω when r → ∞.
Since −l − 2 < 0 ∀l, the term B′l,2r

s2 must be associated to ω(r, θ) when r → ∞;
instead, the only possibility that the other term is associated to Ω when r → ∞ is
that l ≡ 1. This is the solution of the problem such that ω̄(r, θ)→ Ω when r →∞.
In particular since l = 1 we have also that ξl = l(l + 1) − 2 = 0; thus, the actual
solution of the problem hasn’t an angular dependence, but it is only a radial function:
ω̄(r, θ) ≡ ω̄(r). In order to compute a slowly rotating equilibrium model to the first
order in Ω, the equation that we need to solve together with the structure equations
of non rotating relativistic fluids is the following:

1

r4

d

dr

[
r4j(r)

d

dr
ω̄(r)

]
+

4

r

[ d
dr
j(r)

]
ω̄(r) = 0 (2.101)

where:

ω̄(r) = Ω− ω(r)

j(r) =

{
e−ν(r)

√
1− 2m(r)

r
, r < R

1, r ≥ R

It is also important to note that because l = 1 we have:

ω̄l(r) ∝ rs, r → 0

s = −3

2
+

√
9

4
+ [l(l + 1)− 2]

eλ0−ν0

j0

= 0

thus ω̄(r) → const. when r → 0. This is important because it implies that
(dω̄/dr)(0) = 0. Therefore, one of the boundary conditions required to solve the
2-order ODE associated with ω̄(r) corresponds to the condition of regular solution
at the origin, i.e. (dω̄/dr)(0) = 0. In order to compute models within this approxi-
mation one has to fix two parameters. One is εc that is needed to solve the structure
equations of the non rotating model, and the other is for instance the central value
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of ω(r), i.e. ω(0) = ωc ( =⇒ ω̄(0) = Ω− ωc). We can also note that from eq.2.101
and eq.2.90 it follows that:∫ R

0

d

dr

[
r4j(r)

d

dr
ω̄(r)

]
dr =

∫ R

0

[
16π(ε+ P )eλ−νr4ω̄(r)

]
dr

=⇒ R4dω̄

dr
(R) =

∫ R

0

[
16π(ε+ P )eλ−νr4ω̄(r)

]
dr

The left hand side term of the last equation has the dimension of an angular mo-
mentum in the gravitational units. Therefore we can define form it the total angular
momentum of a slowly rotating relativistic system as follows:

J :=
1

6

[
R4dω̄

dr
(R)
]

=
8π

3

∫ R

0

r4P (r) + ε(r)√
1− 2m(r)

r

[Ω− ω(r)]e−ν(r)dr (2.102)

It can be shown[60] that this result corresponds exactly to the slow-rotation approxi-
mation of the angular momentum of arbitrary rotating fluid defined with the Komar
integral 2.82. Moreover, its Newtonian weak field limit (P (r) � ε(r), ε(r) ≈ ρ(r),
2m/r � 1, ω(r) ≈ 0 and e−ν ≈ 1) is the angular momentum of a non relativistic
spherical massive body:

J =
8π

3
Ω

∫ R

0

r4ρ(r)dr (2.103)

We can define also the Moment of inertia as I := J/Ω. It is important to note that
since we’re considering the order Ω within the slow-rotation approximation, then
ω = O(Ω) and so J = O(Ω). Because of this, within this order the moment of
inertia is independent on the star spin frequency. Eventually, since j(r) = 1 outside
the star we have also that:

1

r4

d

dr

[
r4 d

dr
ω̄(r)

]
= 0 (r > R)

=⇒ r4 d

dr
ω̄(r) = R4dω̄

dr
(R) ≡ 6J (r > R)

=⇒ ω̄(r) = −2J

r3
+ Ω (r > R)

=⇒ ω(r) = −2J

r3
(r > R)

Therefore, outside the rotating star, the metric of the spacetime to the order Ω
within the slow-rotation approximation has the following analytical expression:

ds2 = −e2ν(r)dt2 + e2λ(r)dr2 + r2
[
dθ2 + sin2 θ

(
dφ−−2J

r3
dt
)2]

(2.104)

Eventually we estimate the Keplerian frequency of rotating relativistic stars within
the limit of slow rotation. This can be done making use of eq.2.85 and by considering
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that for slowly rotating NSs to the order Ω:

e2ν(R) ≈ 1− 2M

R

ν ′(R) ≈ M

R

(
1− 2M

R

)−1

ψ ≈ 0, ψ′ ≈ 0

ζ ′ ≈ 1

R

ω′(R) ≈ −3ω(R)

R

Therefore it can be shown that the following expression for the mass-shedding limit
turns out:

ΩK ≈
[
1 +

ω(R)

ΩK

− 2
(ω(R)

ΩK

)2]−1/2
√
M

R3
(2.105)

where we can clearly note the dependence on the ratio ω/Ω that we discussed during
the introduction. This underlines how the frame dragging affects the efficiency of
the centrifugal forces, especially these are determined not by Ω but rather from Ω/ω.

We report in the following some numerical results about uniformly rotating NSs
computed with a code based on the Hartle’s formalism, which works to the first order
approximation in Ω. The code solves numerically the set of differential equations
earlier discussed (the set of equations of the static model and the equation for ω(r)),
particularly by splitting the 2-order ODE 2.101 in two 1-order ODEs and applying a
fourth order Runge-Kutta method. The code computes models once two parameters
are specified. These are chosen as the central mass-energy density εc and the constant
spin frequency Ω (instead of ωc). In Figure2.7 we report the diagram moment of

Figure 2.7: Graph of the function I = I(M) for three different equilibrium sequences of
NSs uniformly rotating at 100 Hz. All the models are computed within the slow-rotation
approximation. The three different sequences are obtained with the three different EoSs:
EoSA, EoSB and EoSN. See the text for the details.

inertia versus gravitational mass for equilibrium sequences of uniformly rotating
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NSs with a 100Hz frequency of rotation. The plot shows three different sequences of
models computed by using the same three different EoSs described in the paragraph
concerning non rotating configurations. We can see from the figure that the trend of
the relation I = I(M) is mostly monotonic increasing. There is an initial increase of
the moment of inertia with the mass until an absolute maximum for each sequence,
follows by a small decrease until the maximum value of the gravitational mass. In
particular, the more stiff is the EoS the more rapidly is the increase of I. The
absolute maximum of the moment of inertia is reached at a value of gravitational
mass that is typically a few percent lower than the maximum value of M [4]. The
latest behaviour can be explain with a simple consideration. By remembering that
for these models the diagrams radius versus gravitational mass are the same plotted
in Figure2.4, because we are using the slow-rotation approximation to the first order
in Ω, then considering that dimensionally we have I ∼ MR2 therefore for a fixed
mass the more stiff is the EoS the bigger is the radius and so the more high is
the value of the inertia moment. Generally, the I(M) dependence is much more
sensitive to the stiffness of the EoS, than the R(M) dependence[4]. Moreover in
the figure, the considered range of masses is about 0.4 − 2.3 M�. If one looks at
the plot radius versus gravitational mass for these sequences within this range of
masses, thus a monotonic increasing of the mass together with an almost constancy
of the radius until the maximum mass can be noted. Moreover, near the maximum
mass a rapid decrease of the radius for an almost constant gravitational mass is the
general behaviour among all the EoSs. All of these considerations can explain the
universal20 trend of the relation I = I(M): since I ∼ MR2, before the maximum
mass δM � 0 ∧ δR ≈ 0, thus there will be an increase of I; near the maximum
mass δM ≈ 0 ∧ δR � 0 , thus there will be a decrease of the moment of inertia.
In Figure2.8 we report the logarithmic diagram angular momentum versus moment

Figure 2.8: Graph of the function J = J(I) on a logarithmic scale for a fixed Ω and a
single EoS, EoSA. Two sequences of equilibrium models a shown, these corresponding to
two different values of the angular velocity, Ω = 100 Hz and Ω = 1000 Hz. See the text
for the details.

20This means that it is the same for different EoSs.
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of inertia for a single EoS, in particular the equation of state EoSA, and for two
different equilibrium sequences of uniformly rotating models computed with two
different values of the spin frequency, Ω = 100 Hz and Ω = 1000 Hz. The plot reveals
the linearity between the two quantities. This reflects the proportionality between
J and I for a fixed Ω that we expect from the definition J = IΩ. Moreover, within
the logarithmic scale, we can clearly see that the behaviour of the relation J = J(I)
changes only on the intercept but not on the slope. This verifies the independence of
the moment of inertia one the spin frequency for a fixed EoS, as predicted from the
slow-rotation approximation to the first order in Ω. Actually, when Ω = 1000 Hz
the slow-rotation approximation doesn’t represent more a good numerical scheme
to probe rotating NSs. This is clear when looking at the Figures2.9(a)-(b) where
the relations I = I(M) and I = I(R) are plotted for 1000 Hz uniformly rotating
models computed with two different numerical codes: the approximate one, based
on the Hartle’s formalism, and an exact one (RNS), that we will describe in the
next paragraph. We can see that the slow-rotation approximation involves wrong
estimates of the quantities, underling its failing for high rotation rates.

(a) Graph of the function I = I(M). The
two sequences correspond to 1000 Hz uniformly
rotating models computed with two different
codes with the equation of state EoSA.

(b) Graph of the function I = I(R). The
two sequences correspond to 1000 Hz uniformly
rotating models computed with two different
codes with the equation of state EoSA.

Figure 2.9

2.4.2 ”Exact” solutions (1): the RNS code

The following method used to compute models of rotating NSs consists on an ”exact”
approach, in the sense that it aims to solve directly the set of structure equations
without make approximations, unlike the Hartle’s method. It is based on the for-
mulation developed by Bardeen&Wagoner[84] and on the HSCF method described
during the introduction. In particular, we discuss here the numerical scheme devel-
oped by Komatsu-Erigichi-Hachisu [59] (hereafter KEH) which applies an integral
representation of the differential relativistic structure equations by using appropriate
Green’s function. The set of equations includes the three elliptical PDEs 2.51-2.52-
2.53, the first-order PDE for the metric potential α, the global first integral of the
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hydrostationary equilibrium equations (eq.2.67), the equation for the profile of Ω
(eq.2.62) associated with the parametric expression of F (Ω) (eq.2.68), and the equa-
tion of state P = P (ε). There are seven equations on seven unknowns, and three
boundary conditions are required in order to compute unique solutions. We can ob-
tain 1-dimensional equilibrium sequences by maintaining fixed two parameters and
changing the third one, or even 2-dimensional surfaces of equilibrium models by
specifying only one parameter and changing the others. Especially, like the HSCF
method, the KEH scheme computes solutions through a numerical iterative proce-
dure, during which the maximum value of the mass-energy density εmax and the axis
ratio rp/re are fixed. The parameter A is also fixed in order to obtain unique differ-
entially rotating models. The KEH scheme represents a powerful method to probe
strong gravity objects with very high rotation rates in a really stable numerical man-
ner. The integral form of the Einstein equations is useful to satisfy automatically
the spacetime asymptotic flatness during the iterations. More recently, the KEH
scheme has been improved in the accuracy by Cook-Shapiro-Teukolsky [73] (CST),
which introduced a compactification on the radial variable. Indeed, within the KEH
scheme the integrals of equations extend to radial infinity. The numerical integration
requires integrals to be cut off at a certain large distance. Clearly, the accuracy of
the method is aggravated by this fact. The CST compactification provides a new
radial variable s := r/(r + re), where re is the coordinate equatorial radius, thus
mapping the integration range [0,+∞) to the finite segment [0, 1]. This substitu-
tion significantly increased the overall accuracy of the numerical solution, allowing
boundary conditions to be exactly enforced[94]. Eventually, Stergioulas&Friedman
[95, ?] implemented their own KEH code following the CST compactification; this
is available as a public domain code, named RNS. In the following we will discuss
the original KEH scheme and also we will report some numerical results concerning
equilibrium models of uniformly rotating NSs computed with the RNS code.

The transformation of the differential form of the structure equations into an in-
tegral representation is obtained through the Green’s function formalism, like HSCF
method. In particular for the first equation 2.51 the Green’s function of the linear
operator ∇ is considered. This is the following:

G(r, r′) = − 1

4π

1

‖r− r′‖ (2.106)

By remembering the expansion series of the function 1/‖r− r′‖ reported in eq.1.32,
one obtains the following integral form of the differential equation2.51:

ρ = −e
−γ/2

4π

∫ ∞
0

dr′
∫ 1

−1

dµ′
∫ 2π

0

dφ′(r′)2Sρ(r
′, µ′)

{ ∞∑
n=0

fn(r, r′)Gn(µ, µ′, φ, φ′)
}

(2.107)
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where n,m ∈ N and:

µ, µ′ = cos θ, cos θ′

fn(r, r′) =
1

r

(r′
r

)n
Θ(r′ − r) +

1

r′

( r
r′

)n
Θ(r − r′)

Gn(µ, µ′, φ, φ′) = Pn(µ)Pn(µ′) + 2
n∑

m=1

(n−m)!

(n+m)!
Pm
n (µ)Pm

n (µ′) cos [m(φ− φ′)]

where Pn(µ), Pn(µ′) are the Legendre polynomials. Since the system is equatorially
symmetric (see note 10 in Chapter1) Sρ(r

′, µ′) = Sρ(r
′,−µ′), therefore n → 2n

because of the typical behaviour of the Legendre polynomials Pn(µ) ∼ µn. Moreover
as we showed in eq.1.34 the term summed over m can be deleted. Thus the integral
equation reduces to the following simpler form:

ρ = −e−γ/2
∫ ∞

0

dr′
∫ 1

0

dµ′(r′)2Sρ(r
′, µ′)

∞∑
n=0

f2n(r, r′)P2n(µ)P2n(µ′) (2.108)

Concerning eq.2.52 one can note that:

∇+
1

r

∂

∂r
− 1

r2
µ
∂

∂µ
= ∇+

1

r

∂

∂r
+

1

r2 tan θ

∂

∂θ

then, by using cylindrical coordinates:
$ = r sin θ

z = r cos θ

φ = φ

one can find the following result:

∇+
1

r

∂

∂r
+

1

r2 tan θ

∂

∂θ
=

1

$

∂

∂$
+

∂2

∂$2
+

1

$2

∂2

∂φ2
+

∂2

∂z2
+

+
1√

$2 + z2

[ $√
$2 + z2

∂

∂$
+

z√
$2 + z2

∂

∂z

]
+

+
1

z2 +$2

z

$

[
z
∂

∂$
−$ ∂

∂z

]
=

=
1

$2

∂

∂$

(
$2 ∂

∂$

)
+

∂2

∂z2
+

1

$2

∂2

∂φ2

where the last term on φ can be deleted: it doesn’t affect eq.2.52 since the spacetime
is axially symmetric. Therefore by inserting this result in eq.2.52 we obtain the
following new differential equation for the γ potential:( ∂2

∂$2
+

∂2

∂z2

)
[$γeγ/2] = $Sγ(r, µ) (2.109)

Its integral representation can be obtained by using the Green’s function of the
2-dimensional Laplace operator, which is:

G(r, r′) =
1

2π
ln ‖r− r′‖ (2.110)
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We use again the series expansion of the Green’s functions. In particular, for the
above function we have that:

ln ‖r− r′‖ = −
∞∑
n=1

1

n
f 1
n(r, r′)(cosnθ cosnθ′ + sinnθ sinnθ′) + g(r, r′) ≡ F(r, r′, θ, θ′)

(2.111)
where:

f 1
n(r, r′) =

( r
r′

)n
Θ(r′ − r) +

(r′
r

)n
Θ(r − r′) (2.112)

g(r, r′) = Θ(r − r′) ln r + Θ(r′ − r) ln r′ (2.113)

Then, the integral form of eq.2.109 is the following:

r sin θγ =
1

2π
e−γ/2

∫ ∞
0

dr′
∫ 2π

0

dθ′ sin θ′(r′)2Sγ(r
′, θ′)F(r, r′, θ, θ′) (2.114)

However, g(r, r′) can be deleted from the equation because:∫ 2π

0

dθ′ sin θ′Sγ(r
′, θ′) =

∫ π

0

dθ′ sin θ′Sγ(r
′, θ′) +

∫ 2π

π

dθ′ sin θ′Sγ(r
′, θ′) =

=

∫ π

0

d(θ − π) sin (θ − π)Sγ(r
′, θ − π)+

+

∫ 2π

π

dθ′ sin θ′Sγ(r
′, θ′) =

= −
∫ 2π

π

dθ sin θSγ(r
′, θ) +

∫ 2π

π

dθ′ sin θ′Sγ(r
′, θ′) = 0

For the other terms one has to use the series expansion:

sinnθ =
∞∑
r=0

2r+1≤n

(−1)r
(

n

2r + 1

)
(cos θ)n−2r−1(sin θ)2r+1

cosnθ =
∞∑
r=0

2r≤n

(−1)r
(
n

2r

)
(cos θ)n−2r(sin θ)2r

and thus by solving integrals together with the condition of equatorial symmetry,
the following integral representation of eq.2.109 is found:

r sin θγ =− 2

π
e−γ/2

∫ ∞
0

dr′
∫ 1

0

dµ′(r′)2Sγ(r
′, µ′)

∞∑
n=1

f 1
2n−1(r, r′)

2n− 1
·

· sin [(2n− 1)θ] sin [(2n− 1)θ′] (2.115)

where µ′ = cos θ′. Eventually, concerning the third elliptical PDE (eq.2.53), by using
the same analysis done before for the linear operator in eq.2.52 (now there is only a
factor 2 more) and multiplying eq.2.53 by r sin θ cosφ, one finds that:

∇[ωe(γ−2ρ)/2r sin θ cosφ] = r sin θ cosφSω(r, θ) (2.116)
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Here by using again the Green’s function of the 3-dimensional Laplace operator and
its series expansion, it follows that:

ωr sin θ cosφ =− 1

4π
e(2ρ−γ)/2

∫ ∞
0

dr′
∫ π

0

dθ′
∫ 2π

0

dφ′(r′)3 sin2 θ′ cosφ′Sω(r′, θ′)·

·
{ ∞∑
n=0

fn(r, r′)Gn(θ, θ′, φ, φ′)
}

(2.117)

Now we consider that, firstly:

∫ 2π

0

dφ′ cosφ′ = 0

therefore the first addend in the definition of Gn(θ, θ′, φ, φ′) can be deleted. Secondly:

∫ 2π

0

dφ′ cosφ′ cos [m(φ− φ′)] =
(∫ 2π

0

dφ′ cosφ′ cosmφ′
)

cosmφ+

+
(∫ 2π

0

dφ′ cosφ′ sinmφ′
)

sinmφ

and thus, by applying the Werner’s identities:

cosα cos β =
cos (α + β) + cos (α− β)

2
(2.118)

sinα cos β =
sin (α + β) + sin (α− β)

2
(2.119)

one obtains the following result:

∫ 2π

0

dφ′ cosφ′ cos [m(φ− φ′)] =

{
0, m 6= 1

π cosφ, m = 1

By considering the equatorial symmetry of the system and that P 1
n(µ′) = P 1

n(−µ′)
only for odd values of n ∈ N, we obtain the following integral form of equation 2.116:

ωr sin θ =− e(2ρ−γ)/2

∫ ∞
0

dr′
∫ 1

0

dµ′(r′)3
√

1− (µ′)2Sω(r′, µ′)·

·
∞∑
n=1

f2n−1(r, r′)
P 1

2n−1(µ)P 1
2n−1(µ′)

2n(2n− 1)
(2.120)

where µ, µ′ = cos θ, cos θ′. For ease of reference, we report again in the following the
obtained integral representation of the three elliptical equations, which are handled
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by the KEH scheme:

ρ =− e−γ/2
∫ ∞

0

dr′
∫ 1

0

dµ′(r′)2Sρ(r
′, µ′)

∞∑
n=0

f2n(r, r′)P2n(µ)P2n(µ′)

r sin θγ =− 2

π
e−γ/2

∫ ∞
0

dr′
∫ 1

0

dµ′(r′)2Sγ(r
′, µ′)

∞∑
n=1

f 1
2n−1(r, r′)

2n− 1
·

· sin [(2n− 1)θ] sin [(2n− 1)θ′]

ωr sin θ =− e(2ρ−γ)/2

∫ ∞
0

dr′
∫ 1

0

dµ′(r′)3
√

1− (µ′)2Sω(r′, µ′)·

·
∞∑
n=1

f2n−1(r, r′)
P 1

2n−1(µ)P 1
2n−1(µ′)

2n(2n− 1)

As a really important fact, the boundary condition of asymptotic flatness is automat-
ically satisfied by these three equations. Indeed, the radial dependence of the func-
tions f(r, r′) and f 1(r, r′) implies that ρ ∼ O(1/r), γ ∼ O(1/r2) and ω ∼ O(1/r3)
for r →∞. From the above equations one can note the radial integrals extended to
infinity previously mentioned. On the original KEH scheme, these integrals are com-
puted numerically by considering the radial range [0, 2re] (where re is the coordinate
equatorial radius). Moreover the expansion over the index n is done until the values
n = 18, 19. We don’t discuss here the fourth first-order PDE on the potential α
because of its complexity. This equation, whose expression is like ∂α/∂µ = Sα(r, µ),
is solved by an integration from the pole to the equator of models with the boundary
condition of the local flatness on the rotation axis close to the pole.

In order to compute models one needs to solve the four above equations together
with the three following hydrostationary equilibrium equations:

H − lnut +

∫ Ω

Ωc

F (Ω′)dΩ′ = const.

F (Ω) =
(Ω− ω)e2(ψ−ν)r2 sin2 θ

1− (Ω− ω)2e2(ψ−ν)r2 sin2 θ
= A2(Ωc − Ω)

P = P (ε)

Being based on the HSCF method, the KEH scheme manages the set of equations
like a fixed point problem: by starting from an initial solution as guess, a number
of iterations is done until the convergence is attained, namely when the difference
between solutions of two successive iterations is below a certain threshold. Especially,
the KEH scheme works as follows:

• initial guesses for the metric potentials ρ, γ, ω, α and for the mass-energy
density ε, the pressure P and the spin frequency Ω are prepared21

• the three elliptical equations are solved through their integral representation
and new values of γ̃, ρ̃ and ω̃ are obtained

21We remember that the actual metric potentials are ν, ψ, α and ω and that γ = ψ+ν, ρ = ν−ψ.
As initial guess one can choose for instance a model computed by solving the hydrostatic equations.
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• by using the new potentials γ̃, ρ̃ and ω̃ the first order PDE for α is solved and
a new potential α̃ is obtained

• the new potentials γ̃, ρ̃, ω̃ and α̃ are used to compute new profiles of Ω, ε and
P from the three equations listed above

During the iterative process the three parameter A, rp/re and εmax are fixed. Thus in
the KEH scheme, as in the HSCF method, the axis ratio is chosen as the rotational
parameter. This choice is justified by two reasons. Firstly fixing rp/re allows to
compute models in a numerical stable manner[58]; secondly, as we saw during the
study of the Maclaurin spheroids, if one decide to fix a value of the angular velocity
as a parameter (for instance the central frequency Ωc), thus a degeneracy on the
models appears. There are two solutions with a single value of Ω for the Maclaurin
spheroids. By fixing Ω we can obtain only one model of the two corresponding models
but cannot do the other one. Therefore, a value of Ω is not a good parameter to probe
all the models on equilibrium sequences[59]. Apart from fixing the parameter A,
that is related on the degree of the differential rotation inside models, the numerical
stability of the KEH scheme originates from the resolution of the hydrostationary
equilibrium equations in terms of the other two parameters, εmax and rp/re. Three
boundary points P, Q and W are adopted to model the objects: P is located at
the pole (r = rp and µ = 1), Q at the equator (r = re and µ = 0) and W at
the location of the maximum value of the mass-energy density (ε = εmax) on the
equatorial plane (µ = 0). Thus an appropriate change of the coordinates frame
makes all the quantities dimensionless. In particular one defines the new frame in
the following way:

ŝ =
s

re
, t̂ =

t

re
, r̂ =

r

re
, θ̂ = θ, φ̂ = φ

and also the metric potentials, the parameter A and the frequencies are properly
rescaled:

α̂ =
α

r2
e

, ν̂ =
ν

r2
e

, ψ̂ =
ψ

r2
e

, ω̂ = ωre, Â =
A

re
, Ω̂ = Ωre, Ω̂c = Ωcre

Within this new frame the points P, Q have new locations on the computational
mesh22; in particular P is located at (rp/re, 1) and Q at (1, 0). Since W is identified by
the condition ε = εmax ∧ µ̂ = 0, fixing the two parameters rp/re and εmax within the
new coordinates frame corresponds to locate uniquely all the three boundary points.
During the iterative procedure, the equations of the hydrostationary equilibrium are
calculated exactly at these points, applying the profiles of all the metric potentials
known from the previous iteration. By using the EoS, the parametric form of F (Ω)
and the expression of ut (eq.2.47) in the Euler equation, one considers the following
equation:

H(ε)+r2
e ν̂+

1

2
ln [1− (Ω̂− ω̂)2r̂2(1− µ̂2)e2r2e(ψ̂−ν̂)]− 1

2
Â2(Ω̂c− Ω̂)2 = const. (2.121)

22Each mesh point is denoted by the couple (r̂i, µ̂i), where µ̂i = cos θ̂i. The integration of the
equations is done bu considering a number of mesh points of 51x101. The three elliptical equations
are integrated by using the Simpson’s formula, instead the trapezoidal formula is used for the
integration of the first order PDE.
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and computes it at P, Q and W. In particular, since Ω̂(P ) = Ω̂c, µ̂(P ) = 1 and
H[ε(P )] = 0 (because the mass-energy density vanishes at the pole), at the point P
one finds that:

r2
e ν̂P = const. (2.122)

which fixes the value of the constant. Therefore, since µ̂(Q) = 0, r̂Q = 1 and
H[ε(Q)] = 0 (because the mass-energy density vanishes at the equator), at the point
Q one finds that:

r2
e ν̂Q +

1

2
ln [1− (Ω̂Q − ω̂Q)2e2r2e(ψ̂Q−ν̂Q)]− 1

2
Â2(Ω̂c − Ω̂Q)2 = r2

e ν̂P (2.123)

Eventually, since H[ε(W )] = H(εmax) and µ̂(W ) = 0, at the point W we have:

H(εmax) + r2
e ν̂W +

1

2
ln [1− (Ω̂W − ω̂W )2r̂2

W e
2r2e(ψ̂W−ν̂W )]− 1

2
Â2(Ω̂c − Ω̂W )2 = r2

e ν̂P

(2.124)
Once εmax and Â are fixed and the metric potentials are known from the previous
iteration, the two equations 2.123-2.124 contain the four unknowns Ω̂c, Ω̂Q, Ω̂W and
re. Thus other two equations are required to close the problem. These come from
the following equation:

(Ω̂− ω̂)e2r2e(ψ̂−ν̂)r̂2(1− µ̂2)

1− (Ω̂− ω̂)2e2r2e(ψ̂−ν̂)r̂2(1− µ̂2)
= Â2(Ω̂c − Ω̂) (2.125)

which is computed at the points Q and W (in P the equation is 0 = 0). The
equations 2.123-2.124 and the above computed at Q and W are all solved through
the Newton-Raphson method. They give the values of Ω̂c and re, which are used to
compute the Ω profile from eq.2.125. The obtained distribution of Ω is applied to
determine the profile of ε (and of P through the EoS) from eq.2.121. The obtained
profiles of ε and Ω are used to restart the iterative procedure, computing new metric
potentials from the integrals of the Einstein equations.

We report now numerical results obtained with the RNS code. All of them repre-
sent uniformly rotating relativistic stars computed with a single barotropic equation
of state, the EoSA described before. Several sequences of equilibrium models are
plotted, in particular the Keplerian sequence (namely, the mass-shedding limit in
the figures). This is computed by the code making use of eq.2.85. Together with the
static configurations, it represents a boundary sequence for the stable solutions space
of uniformly rotating objects. However, the Keplerian limit alone is not enough to
determine the stability of models. As we discussed before, hydrostatic barotropic
equilibria are dynamically (and also secularly) unstable beyond the point of max-
imum gravitational mass along the equilibrium sequence. In the case of uniformly
rotating models the situation is quite different. In particular when dealing with
rotating fluids one has to study the stability against both axisymmetric and non-
axisymmetric modes, looking at the dynamical and the secular stability at the same
time. A really important and analytical result concerning the axisymmetric stability
is the Turning-Point Theorem[96]: along an equilibrium sequence of barotropic
and uniformly rotating relativistic models with constant angular momentum, models
located beyond an extremum of the mass are secularly unstable. The proof also shows
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that: along an equilibrium sequence of barotropic and uniformly rotating relativis-
tic models with constant baryonic mass, models located beyond an extremum of the
angular momentum are secularly unstable. This represents a sufficient condition for
the secular stability, in the sense that the theorem provides stable models if they
are located on a certain side of the sequence, but it doesn’t ensure their stability
when they are not located there. More recently[97] it has been shown that actually
the secular instability of models starts just before the turning-point along the equi-
librium sequence. By using fully general relativistic simulations, it has been found
that the dynamical instability line coincides with the turning-point line23 for spher-
ical stars and it departs from the latter for uniformly rotating models, providing 5%
central mass-energy density less in the case of rapid rotations. Because of this, in
order to probe the actual secular and dynamical stability of uniformly rotating NS
models one needs also numerical simulations together with the analytical theorem.
However, the difference between the dynamical instability line and the turning-point
line is quite small; thus we only applied the analytical theorem to study the stability
of models plotted on the following figures. Eventually, for the secular and dynam-
ical stability against non-axisymmetric modes one can appeal to the parameter β.
During the introduction we saw that Newtonian stars are dynamical unstable when
β & 0.27, while they are secular unstable for β & 0.14 via gravitational radiation or
viscosity. Fore relativistic stars the situation is more complex. At a sufficiently high
rotation rates (β & 0.27 in the case of Maclaurin spheroids) NSs present dynami-
cal instability driven by hydrodynamics and gravity; this instabilities deform stars
into a bar shape causing the emission of strong GWs with frequencies in the KHz
regime[61]. Instead, at lower rotation rate, NSs can become unstable to secular non-
axisymmetric instabilities, driven by GWs or viscosity. It is clear that the onset of
gravitational-radiation-driven secular instabilities does not coincide with the onset
of the viscosity-driven ones, which occur at larger β[98]. Bar-modes instabilities are
related to triaxial equilibrium configurations of NSs. Very recently, some authors
have probed the dependence on the EoS of the properties of these extreme equilibria.
For instance, it has been shown[99] that quark stars generally have a longer triaxial
sequences of solutions than NSs; quark stars can reach a larger triaxial deforma-
tion before terminating the sequence at the mass-shedding limit. Moreover, when
considering similar triaxial configurations, quark stars are (slightly) more efficient
GW sources than NSs. However, in order to reveal interesting results from non-
axisymmetric instabilities of compact stars one often needs relativistic simulations.
In this thesis we will not focus on these aspects and we will consider the model with
β = 0.14 as the starting point of the secular instability. Thanks to the RNS code we
are able to compute models by fixing the central mass-energy density εc as a first
parameter24 and not only rp/re as second parameter, but we can choose for example
the baryonic mass or the angular momentum or even others instead of rp/re. This

23This is the line connecting turning-points which belong to different equilibrium sequences of
constant angular momentum or constant baryonic mass.

24It should be noted that here we are not using εmax, that is the first parameter in the KEH
scheme. For slowly rotating configurations one can consider that εc ≈ εmax but the two values
are quite different when rotation becomes fast. For instance, quasi-toroidal rapidly differentially
rotating models show εmax > εc[100]. However we will not go so much in detail in this thesis and
we will assume εc ≡ εmax for all the models computed with RNS.
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allows to build easily sequences of models with fixed values of the bulk quantities.

In Figure2.10 we report the diagram gravitational mass versus central energy
density for several uniformly rotating models. Here, the thick-solid black line is the
static sequence and the blue line is the Keplerian sequence. The last define the
maximum mass attainable by the uniformly rotating models. In the figure we report
also with thin-solid black lines sequences of constant angular momentum and with
dashed-black lines sequences of constant baryonic mass. The extrema of both these
classes of sequences match with each other, defining the turning-point line labeled
with an arrow in the figure. On the right side of that line secularly unstable models
are located. We can clearly see that the uniform rotation yields higher gravitational
masses and also baryonic masses for a fixed εc with respect of static models. This
increase on both the masses is an effect of the rotation. Like Newtonian stars, the
rotation allows NSs to hold more baryonic mass within an equilibrium configuration;
this comes by the presence of centrifugal forces which lower the effective gravity
of the star. Moreover, only in the case of relativistic star we can note also the
increase of the total mass-energy (the gravitational mass) because of the contribute
of the rotational kinetic energy. Generally, the maximum gravitational mass of stable
uniformly rotating NSs is much higher than MTOV . By denoting this value as Mmax,
several works[73, 53, 101, 102] have shown that (Mmax − MTOV )/MTOV ≈ 20%
and also that this increment is quite universal among different EoSs and it can be
describe with a relation Mmax ≈ (1.203±0.022)MTOV . Moreover we can see that for
a fixed gravitational mass rotating models show lower central mass-energy density
than the non-rotating ones. Therefore, the rotation of relativistic stars bring to
higher gravitational masses, lowering their central mass-energy density at the same
time. Eventually in the figure, models with baryonic masses higher than those lying
on the sequence with constant baryonic mass MB = 2.05M� represent NSs which are
called supramassive[73]. Supramassive NSs are stars that cannot reach a stable static
configuration when losing angular momentum along a sequence of constant baryonic
mass. They become secularly and after dynamically unstable before to dissipate all
the kinetic rotational energy. After the overcoming of the turning-point line they
collapse promptly to a BH. As a last consideration, all the models plotted here are
stable against non-axisymmetric modes, in the sense that all the models have β <
0.14, even those on the Keplerian sequence (i.e. the most rapidly rotating models).
In Figure2.11 we report the diagram gravitational mass versus (equatorial) radius.

With the respect of Figure2.10, here the sequences with constant baryonic mass are
identified by dotted-black lines and the turning-point line with a dashed green line.
Moreover, in this plot also sequences of constant axis ratio rp/re are shown. We can
clearly note that like Newtonian stars the rotation makes relativistic stars oblate,
the axis ratio being more small for higher rotation rates. The Keplerian sequence
has the smallest axis ratio among the equilibrium models. The other relevant result
which is evident in the figure is that the rotation yields less compact NSs with the
respect of non rotating configurations for the same baryonic mass. Generally, the
increase in radius of uniformly rotating NSs is about 30−40%[61]. In Figure2.12 we
report the diagram moment of inertia versus angular velocity. Lots of information
are contained within this plot. Here, the blue line identifies Keplerian models and
the solid-black line the sequences of uniformly rotating NSs with constant baryonic
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Figure 2.10: Plot of the relation between the gravitational mass and the central mass-
energy density. Static and uniformly rotating models of NSs are plotted. The non-rotating
sequence is represented with a thick-solid black line, the mass-shedding limit with a blue
line. Also sequences with constant baryonic mass MB (dashed-black lines) and sequences
with constant dimensionless angular momentum ĵ (solid-thin black lines) are reported;
these are labeled in the plot with the corresponding values of the constant quantities.
Eventually the turning-point line is identified with a solid black line pointed by the arrow.

mass and which are stable against axisymmetric modes. Models with axisymmetric
secular instabilities (i.e. beyond the turning-point along the sequence of constant
baryonic mass) are indicated with dotted-black lines. Firstly we can note that models
with baryonic masses below 2.0− 2.05M� (i.e. not supramassive stars) are the most
slowly rotating ones, that is correct because high masses cannot be provided by a
slow rotation. Especially, we can see that within the smallest spin frequencies, ∼
[0, 500]Hz, the moment of inertia is quite independent on Ω. This is the slow-rotation
regime (to the first order on Ω) provided by the Hartle’s method. We remember
that the fastest rotating NS currently known is PSR J1748-244, which has a spin
frequency of about 716Hz. Therefore almost all the observed NSs, whose frequency
has been measured, lie along the I-constant sequences on the plot. However, it
is also evident that models deviates from the I-constant regime when Ω becomes
enough high (Ω/2π ≈ 700Hz). Close to these frequencies models approach the blue
line, that is their Keplerian limit. It is clear that the Hartle’s approximation is no
more valid here because Ω ≈ ΩK . At these frequencies the models are not more
slowly rotating. In particular, now the moment of inertia increases as Ω increases.
Moreover, not supramassive NS sequences of constant baryonic mass start from
models close to the static limit (Ω ≈ 0) and, by increasing the angular velocity, they
end at the mass shedding limit, where the higher moments of inertia and angular
momentum are attained. This sequences never reach turning points, i.e. models
never become secularly and dynamically unstable for axisymmetric modes. The
evolution of a not-supramassive NSs that slows down because of the dissipation of
angular momentum, moving along a sequence of constant baryonic mass, ends at
the static limit without becoming unstable. Instead, rapidly rotating NSs have a
completely different behaviour. The sequences of supramassive NSs plotted on the
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Figure 2.11: Plot of the relation between the gravitational mass and the equatorial radius.
Static and uniformly rotating models of NSs are plotted. The non-rotating sequence is
represented with a thick-solid black line, the mass-shedding limit with a blue line. Also
sequences with constant baryonic mass MB (dotted-thin black lines) and sequences with
constant axis ratio rp/re (dot-dashed black lines) are reported; these are labeled in the
plot with the corresponding values of the constant quantities. In particular, the value of
the axis ratio decreases from left to right on the plot. Eventually, the turning-point line is
identified with a dashed green line.

figure seem very complex. We can distinguish two classes of supramassive NSs. The
first one concerns stars with baryonic masses within the range [2.0 − 2.05, 2.1]M�.
These models move towards the static limit when slowing down, but they reach
the turning point before of the configurations with Ω = 0. In particular we can
note that there is a spin-up of the models before they become unstable and collapse
to a BH. This characteristic spin-up may be an observable precursor to black hole
formation following the collapse of massive, rapidly rotating NSs[73]. The second
class concerns stars with MB ∈ [2.15, 2.27]M�. These high-masses stars would only
spin-up by reducing the moment of inertia because of the leak of angular momentum.
More interesting is that this stars seem to be able to reach values of angular velocity
more high than the Keplerian frequency before they become unstable. We highlight
again the fact that all the models plotted here are β-stable (βmax ≈ 0.12 < 0.14).
We will see that bar-modes instabilities become relevant for stiffer EoSs, particularly
in the case of quark stars.

2.4.3 ”Exact”solutions (2): the LORENE/rotstar code (hints)

The KEH scheme represents a powerful exact approach allowing to probe rapidly
rotating relativistic objects. Nevertheless, some numerical issues are also present.
Firstly, errors related to the so-called ”Gibbs phenomena” come out when one com-
pute the surface of models. Physical variables like the baryonic density, the pressure
and the energy density show large discontinuities near the surface of compact stars.
The Gibbs phenomenon becomes very severe particularly in the case of incompress-
ible fluids (i.e. with constant density within them and null outside, like Maclaurin
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Figure 2.12

spheroids) or even in the case of EoSs of quark matter25. An other problem of the
KEH scheme concerns the resolution of the Einstein’s field equations. As we saw be-
fore, there is a first order ODE with a form like ∂α/∂µ = Sα(r, µ) which is not solved
through the Green’s functions but with a numerical integration from the pole to the
equator of models, applying appropriate boundary conditions. We didn’t report its
expression because of its great length (8 lines). However it can be shown that inside
this expression there are second order radial and angular partial derivatives. The
first ones, especially, are related to an oscillatory behaviour of numerical solutions
of the α-ODE[103]. This is particularly pronounced inside the star and generates
errors of 1-2% in the bulk properties of models, like the mass and the radius. In
the RNS code this problem has been solved by using a grid spacing two times bigger
of the original one in the finite difference formula used for the evaluation of the
second-order radial derivative. In this way, oscillations are completely damped and
improvement in accuracy of up to 2% for some equilibrium properties of models with
maximum mass has been obtained[94]. A third numerical issue comes from the use
of µ = cos θ as second variable of the numerical grid. It has been noted that when
the symmetry axis is approached some terms of the field equations are sensitive to
division of small numbers. This produces an oscillatory behaviour of the angular
derivatives generating numerical errors. Moreover, as we saw before, in the original
KEH scheme the radial integration of the equations was cut off at a distance 2re
because of the impossibility of extending it numerically to infinity. The CST com-
pactification allowed to manage this problem. Eventually, the KEH scheme and also
the RNS code can deal only with perfect fluids. This because of the α-ODE, which
comes out from two identities of the Ricci tensor that are valid only in the case of
a perfect stress-energy tensor. This represents a great limitation when one wants to
probe situations where the tensor anisotropies become relevant; for instance, in the
NS magnetosphere or even in the case of NSs with solid crust or solid interiors.

25As we will see after in this thesis, quark stars are characterized by a great jump in the baryonic
density close to the surface. This is due properly to the EoS applied to describe strange-quark
matter.
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In order to overcome these problems we can appeal to an other exact approach
developed by Bonazzola-Gourgoulhon-Salgado-Marck[104, 105], the so-called BGSM
scheme. This is a different formulation of the problem of computing stationary
axisymmetric rotating relativistic stars with respect of the KEH scheme. It is based
on the so-called ”3+1 formalism”, that is the Hamiltonian formulation of the general
relativity developed by Arnowitt-Deser-Misner[106]. Briefly, it consists on writing
the second order Einstein PDEs into a system of first order PDEs, with respect on
the coordinate t, in a form of a Cauchy problem subject to certain constraints. This
is done through a foliation of the spacetime S in a family of spacelike hypersurfaces
Σt, labelled by the coordinate time t (which is constant on each Σt) and where a
system of three spatial coordinates {x1, x2, x3} is given, such that S = R × Σt. By
defining the future pointing unit vector nµ as done in eq.2.71 and the induced metric
tensor hµν = gµν+nµnν on Σt, the spacetime metric tensor is defined by the following
line element:

ds2 = gµνdx
µdxν = −N2dt2 + hij(dx

i +N idt)(dxj +N jdt) =

= −(N2 −NiN
i)dt2 − 2Nidtdx

i + hijdx
idxj (2.126)

where N and Nµ = (0, N i) are the lapse function and the shift vector respectively,
which are defined by the condition:

tµ = Nnµ +Nµ (2.127)

where tµ = (∂t)
µ = δµt is the future pointing 4-vector tangent to the world line and

Nµnµ = 0. In particular, Ndt is the time lapse along the direction of nµ between the
coordinate times t and t+dt, and N idt is the i-component of the spatial shift between
a path of length dt along nµ and the path with the same length along tµ. Therefore N
is related to time evolution on the system orthogonally to the spacelike hypersurfaces
Σt. Instead, N i is related to the frame dragging phenomenon. Under the hypothesis
of a stationary axisymmetric spacetime, without meridional circulation, a coordinate
system {t, r, θ, φ} can be chosen so that the form of the metric tensor becomes the
following:

ds2 = −N2dt2 +B2r2 sin2 θ(dφ−Nφdt)2 + A2(dr2 + r2dθ2) (2.128)

where N , Nφ, A and B are functions of the only variables r, θ. Within this formalism
the Einstein equations become a set of four elliptical equations on the above metric
potentials. In particular they take the following form[104]:

∆fu = σfieldsu + σquadu (2.129)

where ∆f is a flat space elliptic operator (the two or three dimensional flat space
Laplace operator), u is a metric potential formed from the metric coefficients, σfieldsu

is the source term involving all the fields (gravitational, magnetic, etc.) and σquadu

is an expression containing only non linear quadratic terms in the metric potentials.
All the equations are not obtained with the assumption of a isotropic stress-energy
tensor. Therefore one can probe more realistic configurations of NSs, considering the
presence of magnetic fields, solid crust or other. This was not possible within the
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KEH scheme. We don’t discuss here the equations of motion obtained for a perfect
fluid in which an electric current is circulating, generating magnetic field (see [104]
for references about this problem). However, in the particular case of a perfect fluid
we can obtain a new set of equations which is quite different compared to that listed
on the KEH scheme. The new set is the following[107]:

4πA2(E + 3P + (E + P )U2) +
B2r2 sin2 θ

2N2
(∂Nφ)2 − ∂ν∂(ν + β) = ∆3ν

−16π
NA2

B
(E + P )U − r sin θ∂Nφ∂(3β − ν) = ∆̃3(Nφr sin θ)

16πNA2BPr sin θ = ∆2[(NB − 1)r sin θ]

8πA2[P + (E + P )U2] +
3B2r2 sin2 θ

4N2
(∂Nφ)2 − (∂ν)2 = ∆2(ν + α)

(2.130)

where ν = lnN , α = lnA, β = lnB, and:
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∂2
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and also U , P and E are respectively the fluid 3-velocity, the pressure and the
energy density measured on the ZAMO’s frame: U = A2Br sin θ(Ω − Nφ)/N , E =
Γ2(E + P )− P , Γ2 = 1/(1− U2)1/2. In order to compute models, the four elliptical
equations are supplemented by the first integral of motion:

H(r, θ) + ν(r, θ)− ln Γ(r, θ) +

∫ Ω(r,θ)

Ω0

F (Ω′)dΩ′ = const. (2.131)

where H is the enthalpy of the fluid defined previously and F (Ω) is the same function
seen in the KEH scheme but here with a quite different expression because of the
new formalism:

F (Ω) =
A4B2r2 sin2 θ(Ω−Nφ)

N2 − A4B2r2 sin2 θ(Ω−Nφ)2
(2.132)

Clearly, as in the KEH scheme, one has to define the form of F (Ω). Also in the
BGSM scheme we can choose the parametric form reported in eq.2.68. This new
formulation of the problem has lots great advantages. Firstly, all the equations
for the metric potentials are in an elliptical form and thus a first order PDE is no
longer present. This allows to overcome the issue concerning the integration of that
PDE due to the presence of second order partial radial derivatives, increasing the
accuracy of the method overall. Secondly, the equations are solved using a spectral
method[94]: all the functions are expanded in terms of a set of basis functions in
both the angular and radial directions and a fast Fourier transform is used to obtain
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coefficients. Outside the star the new radial variable u = 1/r is used in order to
maps infinity to a finite distance. This allows to handle numerically infinity with
respect of the KEH scheme. Moreover this spectral method has been improved[105],
allowing for several domains of integration. The whole space is divided into three
domains: the first is inside the star, starting from its origin and having boundary
on the star surface; the second is an intermediate domain, whose inner boundary
is the star surface and the outer is a sphere located at ∼ 2re; the third is an ex-
ternal domain whose inner boundary is the outer boundary of the second domain
and which extends up to infinity, because of the compactification through the new
radial variable 1/r. As a really important fact, at the star surface (the boundary
of the first domain), a regularization procedure is applied to the discontinuity of
physical variables in order to make the numerical computation nearly free of Gibbs
phenomena. The accuracy of the BGSM approach has been greatly improved by this
multi-domain spectral method. All these updates and also many others developed
over the years are currently located inside the LORENE library, which is available as
a public domain software[108]. The LORENE/rotstar code allows us to compute
sequences of static, uniformly and also differentially rotating NSs. In this code an
equilibrium configuration is computed once the central enthalpy26 Hc and the central
angular velocity Ωc are fixed, together with a given EoS. Sequences of models can
be obtained once two ranges for the two parameters are specified.

In [109] there is a direct comparison of three different representative numerical
codes for constructing models of rapidly rotating neutron stars in general relativity.
One is based on the original KEH scheme, one is the RNS code (in which the original
KEH scheme has been improved by applying the CST compactification and the
issue concerning the second order partial radial derivative has been solved) and
the latest is a code based on the original BGSM scheme. In all three codes, the
same physical parameters, equations of state and interpolation method are used.
A typical agreement better than 0.01 − 0.1% is found for most models, which are
calculated with high accuracy especially in the case of polytropic EoSs and also
realistic equations of state without phase transitions. A certain difference in the
accuracy, with relative values of ∼ 10−3 − 10−2, between the first code and the
others two is noted for stiff polytropic EoSs. This may be related to the application
of the boundary conditions only approximately at a finite distance from the star,
which characterizes the code based on the original KEH scheme. Moreover, the
accuracy of all these codes becomes lower in the extreme case of uniform density
stars, where the Gibbs phenomena at the discontinuous surface affect the models. A
great improvement in this direction is done within LORENE/rotstar thanks to the
multi-domain spectral method. Because of its high accuracy when dealing with large
discontinuities on the surface of stars, which appear for instance when considering
EoSs of strange-quark matter, we will use LORENE/rotstar to obtain models of
differentially rotating quark stars.

26Actually, the definition in gravitational units H =
∫ P
0
dP ′/[P ′ + ε(P ′)] is referred by some

authors[104] to the so-called heat function. It can be shown that H = lnh, where h = (ε+ P )/ρ is
the relativistic enthalpy per baryon. Therefore, in LORENE/rotstar actually one fixes the central
value of lnh.
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2.4.4 Relevant comparison between the codes

During the numerical computations of NSs models executed by applying the two
codes previously discussed, RNS and LORENE/rotstar, we have noted a relevant
result that is illustrated in Figure2.13. Some hints about this fact have been also
reported in other works (for instance see [107]). When dealing with ordinary NSs,
the two codes give very similar estimates of the bulk properties of compact stars,
like the gravitational and the baryonic masses. There are very small discrepancies
between them in these cases (about ∼ 1% of difference). Anyway, for traditional
EoSs (i.e. hadron EoSs) the two codes are consistent. This is shown in the plot,
where the black and magenta curves describe static models of NSs computed apply-
ing the previously discussed EoSB and using the RNS and LORENE/rotstar codes
respectively. However, the things change a lot when one deals with strange-quark
stars. As shown in the plot, for the EoSs describing these objects, the two codes give
similar gravitational masses but, concerning the baryonic masses, the differences as
big as ∼ 20− 30% between the two codes!

According to the analysis reported in [107], the different measurements of bary-
onic masses between several codes used for studying rapidly rotating compact stars
would be due to the Gibbs phenomenon. Indeed, since quark stars are characterized
by a large discontinuity of the mass density field at the surface, there is a strong ev-
idence of the effects of this phenomenon. In particular, we can note from the eq.2.76
that the computation of the baryonic mass in these codes is directly dependent on
the mass density field. Therefore, such a discontinuity strongly affects the estimates.
Clearly, because of the previous considerations, correct estimates can be obtained
only with the LORENE/rotstar code and not with RNS in these situations.

Figure 2.13: Direct comparison between the estimates of gravitational and baryonic
masses of non rotating compact stars models, which are obtained with the two codes used
in this thesis: RNS and LORENE/rotstar.
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Chapter 3

The Nuclear Equation of State

The study of the inner structure of NSs represents a big challenge for relativis-
tic astrophysics and nuclear physics. Although there have been great advances in
the observational and theoretical researches, the complete picture of compact mat-
ter that composes NSs remains an unsolved mystery till today. Nevertheless, our
knowledge on the main properties of this extreme objects has been improved over
the years. Firstly, we know that it is possible to distinguish four principal regions
inside a NS, whose properties are partially understood. The inner structure of a NS
can be sketched in the following way, starting from the star edge towards the core:

• a very thin atmosphere (∼cm of thickness), mainly composed by photons,
accreted hydrogen and helium, and traces of heavy nuclei of the iron group

• an outer crust, which can be subdivided into two main regions. An outer
one constituted by WD-like matter, i.e. characterized by a lattice of atomic
nuclei interacting with a Fermi sea of electrons, the latest becoming relativistic
when the density reaches the value of ∼ 106 gcm−3. An inner one, where the
energies of electrons are sufficiently high to trigger electron capture processes.
This makes the nuclei more rich of neutrons up to the density of ∼ 1011 gcm−3,
where the neutron-drip begins

• an inner crust with a density spanning the range of ∼ (1011, 2.7 · 1014) gcm−3,
where the matter is constituted by a mixture of neutron-rich nuclei, completely
degenerate relativistic electrons and free neutrons, possibly in a superfluid
state. Close to the density of ∼ 1014 gcm−3, i.e. of the order of the nuclear
saturation density, the nuclei dissolve into a mixture of free electrons, protons
and neutrons in chemical equilibrium

• a central core composed by ultra-dense matter, i.e. with a density larger than
the nuclear saturation density. Completely degenerate relativistic electrons,
a neutron superfluid and a superconductive proton superfluid are expected at
least in the outer part of this region. Free muons can also be present here. The
components of the matter inside the inner region of the core are still unknown.
Hyperons, ∆-resonances, pion and kaon condensates or even deconfined quarks
could fill it together or without the nucleon-electronic fluid

77
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Figure 3.1: Picture of several NSs inner structures according to different models; from
the most traditional ones, in which the standard hadron NS model is predicted (with or
without hyperons), to the most exotic ones, in which hybrid NSs (i.e. hadron NSs with a
quark core) or even strange-quark stars are conceived. The image is taken from [110].

The EoS which describes the matter inside NSs is quite well known below the
nuclear saturation density. As we have just listed, we know what kind of matter
constitutes the regions out of the core of NSs. The big open question concerns
the ultra-dense matter that can be found in their cores. However, as we discussed
during the introduction, although we are not able to reproduce this high densities
in the terrestrial laboratories we can test them through the observations of the
bulk properties of NSs, mainly their gravitational masses and radii. Concerning
the mass, observational data has been obtained with considerable accuracy, yielding
both small and big mass values. We know NSs with masses spanning the range
∼ (1.17, 2.01)M�. The radii measurements, instead, remain still quite questionable
up to now. Generally, their estimates are affected by several systematic errors (for
instance, errors on the distance) and often the analyses are model dependent. As we
have seen in the introduction, in a few papers radii in the range ∼ (9.8, 11.2)km have
been suggested; still, larger radii cannot be excluded. We will see later that a few
papers [111] have derived radii in the range (12.00, 13.45)km from the observations
of GW170817, and by using state-of-the-art EoSs of pure hadronic matter. New
and more precise radii measurements are needed to probe definitely the EoS of NSs.
For instance, the new NASA mission NICER launched aboard a SpaceX Falcon
9 rocket on June 3, 2017, will be able to estimate NSs radii reaching a precision
of ∼ 1km. Numbers of candidates of EoSs have been suggested so far. At the
beginning, the value of about 1.4M� was generally considered the canonical upper
limit for NSs. However, the most recent observations of masses of the order of 2M�
seem to indicate that ordinary NSs have masses around 1.4M�, but NSs with more
high masses are possible at the same time. Because of the estimated high values
of MTOV , several soft EoSs have been ruled out, promoting more stiff ones. The
problem of reaching such high masses has been investigated by numbers of authors.
We are able to obtain different stiff EoSs satisfying these constraints. Nevertheless,
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even if a MTOV ∼ 2M� can be reached by the models, severe issues arise from
the uncertainties on the radii measurements. In particular, concerning the radius
R1.4 of the ordinary NS with mass M = 1.4M�, one can imagine three possibilities:
R1.4 & 13km, 11.5km. R1.4 . 13km or even R1.4 . 11.5km[112]. This represents
a great problem. Indeed, the stiffer is the EoS the bigger will be the maximum
mass and the larger will be the radius of NS models. Consequently, a big an still
open question turns up: does it exist an EoS for nuclear matter that allows to build
NS models which reach maximum masses ∼ 2M� and at the same time provides a
1.4M� NS whose radius is smaller than ∼ 11.5km? In the following we discuss some
proposed recent schemes which are trying to answer this question.

3.1 Traditional models: the hadron EoS

According to the traditional model, NSs are composed by baryons and leptons in
chemical equilibrium. A big problem concerns the presence of hyperons in the most
inner regions. The first theoretical indication for the appearance of hyperons in
the core of a neutron star dates back to the 60s[113]. It’s known that at ordinary
densities these particles are unstable and decay quickly into nucleons. Nevertheless,
at the densities expected inside the NSs cores the situation can be different. The
energy of nucleons is so high that their chemical potentials can reach the value of the
hyperons rest masses, allowing to produce them within a stable state. Notice that
the complete degeneracy limits the phase space available to nucleons, thus prevent-
ing the decay of hyperons. The appearance of these more massive baryons reduces
the Fermi pressure of the system, implying a softer EoS and thus smaller values for
the maximum mass of NSs. Within this scenario, the existence of hyperons inside
NSs whose masses are ∼ 2M� could seem improbable. But the situation is a little
more complicated. As a first important point, the softening of the EoS and the
lowering of MTOV due to the hyperons are strictly related to the density’s value at
which these particles begin to be produced. This density depends on the kind of
interactions that enable the conversion of nucleons into hyperons. Since a violation
of the strangeness is required to create hyperons from nucleons, the latter ones must
interact with each other through weak interactions1. Moreover, one needs also to
consider the strong interactions to describe the dynamics of the system. Treating
these ones still represents a big problem. Indeed, compared to the electroweak in-
teractions, close to the nuclear saturation density the strong coupling constants are
so much larger that we cannot apply a perturbative analysis. A phenomenological
treatment of baryons interactions is generally used. There are several models which
model the observed attractive and repulsive components of the nuclear strong inter-
action, taking into account several contributions: the spin coupling, the spin-orbit
interaction, tensorial forces, central potentials and others. In particular, non rela-
tivistic many-body approaches and relativistic mean field theories have been applied.
The first ones predict the appearance of hyperons at around 2-3 times the nuclear
saturation density, causing a great softening of the nuclear equation of state. On the

1In the Standard Model of particles, the weak interactions are the only interactions which can
violate the conservation of the strangeness.
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other hand, relativistic nuclear models indicate much weaker effects as a consequence
of the presence of strange baryons in the core of a NS[114]. The problem concerning
the existence of these particles inside NSs is called hyperon puzzle.

3.1.1 Non-relativistic many-body approach

In a recent investigation reported in [114], the authors have studied the effects of
different phenomenological constructions of hadrons interactions on the properties of
NSs, modeling those through a non relativistic many-body approach. In particular,
they have considered only Λ hyperons coupled to neutrons, and they have probed
what happens when a three-body repulsive interaction is also included. Like in
other non relativistic many-body approaches, baryon matter is described in terms
of point-like neutrons and Λ-hyperons. The Hamiltonian of the particles system has
the following expression:

H =
∑
i

p2
i

2mn

+
∑
λ

p2
λ

2mΛ

+
∑
i<j

vij +
∑
i<j<k

vijk +
∑
λ,i

vλ,i +
∑
λ,i<j

vλij (3.1)

where the indices i, j are associated with neutrons and λ with Λ particles. The
first two terms are simply the total kinetic energies of the two fluids of particles;
the third is the nucleon-nucleon potential; the fourth is the potential associated to
the three-nucleon interactions; the fifth represents the hyperon-nucleon potential;
the sixth describes the three-body interaction between nucleons and hyperons. Sev-
eral models have been applied to compute all these potentials. In particular the
construction of the potentials has been done phenomenologically, in the sense that
each potential must fit the scattering data about baryons interactions measured in
the laboratories. The agreement with observational data guides the calculations in
these approaches. In order to reproduce the numerous physical quantities related to
the interaction processes, several parameter have been adopted. In particular the
authors have investigated how different parametrizations of the three-body interac-
tions can affect the EoS and the NS models itself. Hyperon-hyperon interaction has
not been considered during the analysis: ΛΛ scattering data are not available and
the experimental information about double Λ hyperonculei are scarce[114]. Even-
tually chemical equilibrium between particles has been imposed, and this allowed
to compute the hyperon fraction as a function of the baryon density: the threshold
density for Λ, that is the density at which these hyperons start to be produced,
is determined when that fraction becomes larger than zero. The results of their
calculation are resumed in Figure3.2 and Figure3.3.

In Figure3.2 the plot of the several EoSs obtained for different kinds of particles
and different types of interactions is reported. In the inset, the baryon fractions
changing with the medium density are shown. We can clearly see that adding Λ hy-
perons makes the EoS softer. However, a very important role is played by the kind
of interactions. In the case of a two-body interaction alone, hypernuclei turn out to
be strongly overbound: the Λ threshold density is quite low (∼ 0.24 fm−3, less than
2 times the nuclear saturation density). In this case the formation of hyperons starts
very soon, implying a great softening of the EoS. Nevertheless, when the three-body
interaction is added and their repulsive contribution taken into account, a stiffer EoS
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Figure 3.2: Plot of different EoSs. The green curve describes the pure neutron matter.
The blue an the red ones contain also Λ particles. The former provides two and three-body
Λ-neutron interactions; the latter the two-body force alone. In the inset, neutron and Λ
fractions are plotted for each EoS. In particular, the blue curve has been obtained making
use of the ”parametrization I” (see details in the original paper [114]).

is obtained and the Λ threshold density is pushed up to ∼ 0.34 fm−3 (larger than
2 times the nuclear saturation density). In this case the appearance of hyperons is
unfavorable until high densities. In Figure3.3 the mass-radius diagram obtained by
computing static models of NSs in equilibrium is shown. Here with full dots the
configurations with maximum masses are marked. Four equilibrium sequence are
reported: the green one is that computed with the EoS of pure neutron matter; the
blue one corresponds to the EoS with neutrons and hyperons interacting through
two and three body forces; the red one describes neutrons and hyperons coupled
through two-body forces; the black one is similar to the blue curve but with an
other parametrization of the three-body interaction. The plot reveals that in order
to reach masses of the order of 2M�, compatibly with the current measurements
of the masses of PSR J1614-2230 (1.928M�) and PSR J0348+0432 (2.01M�), one
needs to prevent the production of hyperons at least up to sufficiently high densi-
ties. This is possible if one considers strong three-body repulsive interactions. By
applying the ”parametrization II” (see the details in [114]) of these forces the energy
balance favors the onset of hyperons only for densities out of the the domain that has
been considered during the analysis (ρ ≤ 0.56 fm−3). In conclusion, we stress that
this choice allows to obtain NSs models with high masses, but also with large radii
(i.e. ∼ 13km). This scenario cannot explain the smaller values estimated for NSs
radii, which range from 9km to 12km. Actually, beyond the upper limits on MTOV

and the uncertain limits on the NSs radii, there are numbers of others empirical con-
straints on the EoS which come from microphysical and astrophysical observations.
In particular, severe constraints come from to the so-called Urca-processes. These are
nuclear reactions, which can release a great amount of neutrinos. Among these, the
direct Urca-processes, for instance the reaction n→ p+ e+ ν̄e, are the simplest ones
and they are thought to be the most efficient cooling processes happening in NSs. If
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triggered, such reactions should generate a fast cooling of NSs, making them invisible
for thermal detections within few years[115]. The NS cooling data concerning iso-
lated NSs seem to indicate that the mass at which Urca-processes can be triggered is
larger than ∼ 1.5M� (the so-called strong direct-Urca constraint)[116]. The hyperon
puzzle complicates strongly this situation. Indeed, together with a great softening in
the EoS, the appearance of hyperons can also trigger others direct-Urca processes,
for instance the reaction Λ→ p+e+ ν̄e. Therefore, hyperons could promote the fast
cooling of NSs, especially within those schemes for which their production starts at
quite low densities (for instance, at ∼ 2 times the saturation density, like the pre-
vious model with only two-body interactions). In order to overcome this difficulties
a good scheme is that recently proposed in [117]. There a relativistic mean filed
method has been considered.

3.1.2 Relativistic mean field approach

Relativistic mean field (RMF) theories represent a theoretical approach developed
within the framework of the QFT (Quantum Field Theory). Particles are de-
scribed in terms of quantum-states of fields (scalar, vector or spinor) which fill
the Minkowsky spacetime, and their interaction are defined through appropriate
coupling terms. Especially, these mixing fields terms are multiplied by coupling con-
stants, whose value is related to the strength of interactions. Following the general
scheme of QFTs, a Lorentz covariant Lagrangian theory of nuclear matter is pro-
vided. This is the so-called Quantum Hadrodynamics, that has been firstly advanced
in [118, 119, 120]. It is an effective theory, in the sense that the fields of the theory
are not associated with elementary particles. Indeed, each field describes hadrons
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(baryons and mesons) but not their constituents: quarks and gluons. Moreover,
nuclear interactions between baryons are expressed in terms of exchanges of mesons.
Mainly, three kind of mesons are taken into account: a scalar meson σ, that is as-
sociated with the attractive component of nuclear forces; a vector meson ωµ, that
is related to the repulsive component of nuclear forces and a vector isospin-triplet
meson ρµi (i = 1, 2, 3), which is used to take into account the so-called nuclear sym-
metry energy2. By using appropriate symmetries one writes the Lagrangian density
function of the nuclear system, where all the particle fields and the coupling terms
are included in a dimensionally correct way. Since Quantum Hadrodynamics is not
a fundamental theory, the coupling constants cannot be determined experimentally.
These constants are parameters that one has to adjust properly in order to fit the
observational data describing nuclear matter. In particular, some empirical prop-
erties of nuclear matter are quite well measured in the laboratories[60]. The first
one is the nuclear saturation number density, n0 = 0.153fm−3, which is obtained
experimentally from electron-nucleus scattering processes. The second one is the
binding energy per nucleon, that is defined as:

B

A
=
M(A,Z)− [Zmp + (A− Z)mn]

A
(3.2)

where mp and mn are the proton and neutron masses respectively, Z is the nuclear
atomic number, A is the nuclear mass number and M(A,Z) is the mass of the
nucleus. It can be obtained that, neglecting Coulomb interactions, the binding
energy per nucleon of infinite (A → ∞), symmetric (A = 2Z), nuclear matter
is B/A = −16.3MeV [60]. In the same conditions one can measure also another
quantity, that is the symmetry energy coefficient, asym = 32.5MeV. Eventually,
at the saturation, other two empirical quantities are measured: the compression
modulus, K ≈ 234MeV, and the nucleon effective mass, m∗/m ≈ 0.7 − 0.8. All
these quantities constrain strongly the EoS of nuclear matter. In particular, n0 and
B/A define the normalization of the EoS, in the sense that they set the behaviour of
the EoS at intermediate densities, close to the nuclear saturation point. At this point,
the agreement with a low-density EoS (like the BPS) is required. K, m∗/m and asym
constrain the EoS at high density regimes; especially, the higher is the compression
modulus the stiffer becomes the EoS, and the bigger is the value of effective nucleon
mass the softer is the EoS. The computation of the EoS within the framework of the
RMF theory is done in the following standard way. The hadronic density Lagrangian
function of the system of particles is firstly defined. For instance in the case of a
system composed of nucleons and hyperons interacting through σ, ω and ρ mesons,
and also of leptons (which are needed for the charge neutrality), the Lagrangian

2This is an unbinding energy contribute observed in asymmetric nuclei, i.e. nuclei which have a
number of neutrons larger than the number of protons (A > 2Z). This happens for atomic numbers
beyond the value Z ≈ 20. When Z > 20 stable nuclei start having a neutron excess.
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function of the Quantum Hadrodynamics has the following expression[60]:

L =
∑
B

ψ̄B(iγµ∂
µ −mB + gσBσ − gωBγµωµ −

1

2
gρBγµτ

iρµi )ψB+

+
1

2
(∂µσ∂

µσ −m2
σσ

2)− 1

4
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µ − 1

4
ρiµνρ

µν
i +

1
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m2
ρρ
i
µρ

µ
i +

− 1

3
bmN(gσσ)3 − 1

4
c(gσσ)4+

+
∑
λ

ψ̄λ(iγµ∂
µ −mλ)ψλ (3.3)

where the baryon spinors3 are denoted by ψB, while ψ̄B ≡ γ0ψ
†, and the leptons

fields by ψλ. In particular, the first ones are summed over all the baryonic states B
(p, n, hyperons and eventually also ∆-resonances) according to the kind of particles
that one wants to include in the system. Instead, the last ones are summed over
the electrons and muons states (λ = e, µ)4. The first line contains the free baryon
Lagrangian density:

L =
∑
B

ψ̄B(iγµ∂
µ −mB)ψB (3.4)

and the remaining mixing fields terms are the baryon Lagrangians associated with
the nuclear interactions, which are described through the mesons fields (σ, ω and
ρ) and the coupling constants (gσB, gωB and gρB, each one specified for each baryon
species). The second line contains the free meson Lagrangians for each meson field:

Lσ =
1

2
(∂µσ∂

µσ −m2
σσ

2) (3.5)

Lω = −1

4
ωµνω

µν +
1

2
m2
ωωµω

µ (3.6)

Lρ = −1

4
ρiµνρ

µν
i +

1

2
m2
ρρ
i
µρ

µ
i (3.7)

where:

ωµν = ∂µων − ∂νωµ (3.8)

ρiµν = ∂µρ
i
ν − ∂νρiµ + gρε

ijkρj,µρk,ν (3.9)

The third line contains scalar-self interactions between the fields σ, where b and c are
the coupling constants, and mN is the nucleon rest mass. Eventually, the last line
represents the total free lepton Lagrangian. As we can see, for a fixed baryon species,
there are five coupling constants (gσ, gω, gρ, b and c). These are used to define five
parameters related to the five empirical properties of nuclear matter. In order to

3Since baryons are fermions, spinor fields are associated with them. It’s important to note that
each spinor is actually an isospin multiplet, in the sense that it contains different isospin states for
the same particle. For instance in the case of nucleons we have two isospin state: ψN = (ψp, ψn),
where ψp represents the proton state with isospin charge equal to 1/2, and ψn represents the
neutron state with isospin charge equal to −1/2.

4The leptons τ are not expected to be found inside NSs, since because the charge chemical
potential in these stars never exceed the tau lepton rest mass[60].
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do this, one puts the Lagrangian density3.3 inside the relativistic Euler-Lagrange
equations, that is the dynamical equations of the system:∑

φ

[∂L
∂φ
− ∂µ

∂L

∂(∂µφ)

]
= 0 (3.10)

splitting all the terms relative to each field φ (in the above case ψB, ψλ, σ, ωµ and
ρµi ). Therefore, the mean-field approximation is applied. This represents the ”heart”
of the RMF theories. Briefly, it consists in computing the ground-state expectation
values of all the terms in the equations of motion. The ground-state of the system
is defined by a static and uniform matter distribution and all the mesons fields are
substituted by their mean values in this state. This means to treat the interaction
field like a classical field, whose quantum fluctuations in the Minkowsky spacetime
are negligible. In such a representation, all the interacting baryons belonging to the
many-body hadron system are described each one like single particles interacting
with an effective mean field. Therefore the new meson mean fields 〈σ〉, 〈ω〉 and 〈ρ〉
are treated like classical fields and the quantum treatment is restricted to the only
baryons and leptons. By doing this approximation in all the equations of motions,
one compute the expression for each mean meson field. Then, the homogeneity of
the Minkowsky spacetime5 allows to define the following current:

T µν = −Lηµν +
∑
φ

[ ∂L

∂(∂µφ)
∂νφ

]
(3.11)

which is conserved on the spacetime ∂µT
µν = 0. This is the canonical stress-energy

tensor of the theory. One can compute the ground-state expectation value of this
tensor in the rest frame of the nuclear matter, applying the mean field approxima-
tion. In this frame, by assuming a perfect fluid configuration, it has the well known
diagonal form obtained from eq.2.25. Thus the mean local pressure and mass-energy
density of the ensemble of hadrons are defined as:

ε = −〈L〉+
〈 ∂L

∂(∂0φ)
∂0φ
〉

(3.12)

P = 〈L〉+
1

3

〈 ∂L

∂(∂iφ)
∂iφ
〉

(3.13)

The above equations define the EoS of nuclear matter within the RMF approach. It
can be shown that the five empirical quantities characterizing saturated matter can
be obtained algebraically in terms of combinations of the coupling constants of the
theory[60]. Two important points need to be highlighted. Firstly, to describe cor-
rectly the nuclear system, it is required to combine the EoS with the equations of the
chemical equilibrium and of the charge neutrality. The firsts are relations between
the chemical potentials of the different kind of particles, allowing the system to be
populated by baryon species beyond the nucleons at sufficiently high densities. The
second ones guarantee a total null charge of the system. Eventually, the relations be-
tween the empirical quantities and the coupling constants within the RMF approach

5The Minkowsky metric ηµν is invariant under spatial and temporal translations, that is they
are isometries of the spacetime of the Special Theory of Relativity.
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are formulated also in terms of the masses of mesons, when considering the case of
infinite nuclear matter. This implies that by changing the mesons masses, one can
change the fit of the bulk properties of nuclear matter and thus the EoS itself. In
the RMF scheme proposed in [117] the authors include the nucleons (n and p), the
hyperons Λ0, Σ±,0 and Ξ−,0, and the mean meson fields σ, ω, ρ and φ, the latter
being another vector meson field applied to fix more precisely the stiffness of the
EoS. As for the masses of these particles, they consider the values mN=938 MeV,
mΛ=1116 MeV, mΣ=1193 MeV, mΞ=1318 MeV, neglecting the small mass split-
ting in isospin multiplets. The lepton masses are instead me=0.5 MeV and mµ=105
MeV. The method developed by the authors consists in writing the baryon-meson
coupling constants and the masses of all the hadrons in terms of the mean scalar
field σ, through an appropriate dimensionless variable (see the details of the calcu-
lation in the original paper[117]). They consider the system as composed by cold
nuclear infinite matter, in chemical equilibrium and neutrally charged. Moreover,
the parameters of the nucleon sector are fixed in order to reproduce the five bulk
properties of saturated matter discussed before. Since the values of the compression
modulus and the nucleon effective mass are not exactly known, if not with some
large uncertainty, the fitting values can be changed in order to better satisfy the
constraints on the NS equation of state. A big repulsive potential is obtained for the
Σ hyperons, preventing their appearance in most of the computed models. Equilib-
rium configurations of non rotating NSs are computed by solving numerically the
system of static equations already discussed in this thesis. Finally, within the low
density range n . (0.6− 0.8)n0, the EoS of nuclear matter computed with the RMF
approach matches the BPS EoS.

As the main result of their work, the authors suggest three models of NS equa-
tion of state (called KVORH, MKVORHφ and MKVORHφσ), for nuclear matter
with hyperons, each one obtained by adjusting in different ways the parameters of
the theory and satisfying as much as possible the observational constraints on the
EoS. They provide a possible solution of the hyperon puzzle. In particular, chang-
ing the parameter allows to modify the hyperon population in the nuclear matter.
Especially, the MKVORHφ shows a reduced hyperon population with respect to the
KVOR model, and in the MKVORHφσ model the appearance of Λ and Ξ0 hyper-
ons is even prevented. The threshold density of the Ξ− appearance is shifted to
higher values. In this way one can prevent the beginning of direct-Urca processes at
lower densities (thus for small NS masses) due to hyperons. Moreover, the models
KVORH and MKVORHφ don’t exceed the neutron threshold for the direct-Urca
process n→ p+ e+ ν̄e for densities lower than nΛ, where nΛ is the threshold density
at which the Λ-direct-Urca process begins. For central densities higher than nΛ the
process Λ→ p+ e+ ν̄e starts. Instead in the MKVORHφσ model Λ-hyperons don’t
appear at all and the direct-Urca processes occur only for higher densities, i.e. bigger
than the neutron direct-Urca threshold[117]. In Figure3.4 the obtained gravitational
mass-radius diagram for the three models of EoS is shown. In the diagram several
constraints are also reported. The green region represents constraints on NS masses
and radii obtained from observational data about the quasi-periodic brightness os-
cillations of the low-mass X-ray binary 4U 0614+091 (the data are taken from[121]).
The choice of this particular NS comes from the fact that it shows a high maximum
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Figure 3.4: Gravitational mass-radius diagram obtained in[117]. Three sequences of
equilibrium NSs models are reported, which have been computed by using three different
EoSs. Several observational constraints are also plotted. See details in the text and in the
original paper.

frequency of oscillations, allowing to tighten the limits on NSs masses and radii. The
brown region represents the probable intervals for the mass and the radius of the iso-
lated NS RX J1856.5-3754, estimated by measurements of its thermal radiation (also
these data are taken from[121]). Here uncertainties come mainly from the distance
measures. The cyan region describing more recent constraints obtained from the X-
ray spectroscopy of PSR J04374715, together with the Bayesian probability analysis
of several X-ray burst sources, are also reported in the plot (see references in[117]).
Eventually, strong constraints on the NS masses comes from the observations of the
binary pulsar PSR J0348+0432; these are reported in the plot with purple horizon-
tal lines. It is clear that the KVORH model is not able to reproduce the high mass
estimated for PSR J0348+0432, instead the MKVORHφ and MKVORHφσ models
provide MTOV big enough to satisfy this constraint. Moreover these two models of
EoS are also able to reproduce NS configurations within the several colored regions.
The high stiffness of these EoSs is mainly due to the choice of the parameters within
the RMF approach. This allows to reproduce the high masses observed for NSs in
a well manner. However, one must to respect the causality limit; we can see that
all the models provided by the authors satisfy this limit. Eventually, even if the
presence of hyperons, the MKVORHφ and MKVORHφσ models are able to obtain
NS configurations with high masses and also quite small radii, that is of the order
of 12km. This could be a good advancement respect to the others models of hadron
EoSs listed before. However radii of the order of 10-11 km together with high masses
are still very difficult to obtain, also within the RMF approach.
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3.2 Strange-quark matter in compact stars

The so-called ”strange-quark matter hypothesis”, formulated by Witten and antic-
ipated by Bodmer[122, 123], states that the actual ground-state of strongly inter-
acting matter is a deconfined state of quark matter, consisting of an approximately
equal proportion of up, down and strange quarks. This was named ”strange mat-
ter”. It implies that the confined state of quarks into hadrons would not be the
absolute ground-state of strong interactions, but ”nuclear” systems with a larger
binding energy per nucleon than in iron (B/A = 8.8MeV) could exist in nature.
However, although there is presently no evidence that the ground state of mat-
ter must be that of confined quarks, free quark particles have not been observed
till today. The strange matter remains an hypothesis so far. Nevertheless, ultra-
relativistic heavy-ions experiments have provided many indications of the existence
of a new phase characterized by strongly interacting matter, which is obtained by
heating up hadronic matter to temperatures ∼ 100MeV[124]. This is the so-called
”quark-gluon plasma”: a hot ensemble of free gluons and quarks strong-interacting
with each other. But also another kind of quark matter could exist, not satisfy-
ing the rather extreme Bodmer-Witten hypothesis: it consists in a deconfined state
formed at very large baryon density and small temperatures, when matter is highly
degenerate. The large density regime could make energetically favorable the transi-
tion process of quarks from nuclei to the deconfined state. In particular, this kind
of matter would be in agreement with the asymptotic freedom regime predicted by
QCD. Such a degenerate matter is likely searched inside the core of NSs, where
densities can be higher than nuclear saturation density. As a surprising fact, many
attractive outlooks turn up when ones analyzes quark matter, either satisfying the
Bodmer-Witten hypothesis or not, within the relativistic astrophysical context. In
particular, the recent large mass measurements of NSs can be obtained in a more
easy way by considering the presence of free quarks inside them (at least in their
cores). Several different schemes have been developed during the last decades in
order to probe the possibility of quark matter inside NSs. In particular, the main
problem was to define an EoS for the strange matter and, above all, to combine it
together with the hadron EoS which characterizes lower densities regions. All the
different approaches have shown that another branch of equilibrium configurations
of compact stars is likely to exist for very high masses. This new branch is composed
partially (no BW hypothesis) or even totally (BW hypothesis) by quark matter; the
former are named ”Hybrid Stars” (HSs), the latter ”Quark Stars” (QSs). In particu-
lar, hybrid stars should contain free quarks within their most inner regions, because
of their higher densities compared to the envelope. This possibility modifies in a
dramatically the way we represent NSs. At the beginning they were thought to be
formed mainly by neutrons, with small fractions of protons and leptons. Later, the
evidence of an hyperon puzzle significantly complicated the view and some mod-
els of hadron (nucleons+hyperons) EoSs have been obtained, satisfying as much as
possible the observational constraints. Now, the new scenarios are suggesting that
quark matter could exist inside these stars. Because of these considerations all these
stellar systems, as highlighted in the title of this thesis, are likely called ”Compact
Stars” (CSs). In the following we briefly discuss two proposed different schemes
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which deal with hybrid and quark stars. They are called ”Twins-stars scenario” and
”Two-families scenario” respectively.

3.2.1 Twin-stars scenario

The twin-stars scenario has been developed by several authors in many papers, for
instance in [125, 126]. The main feature of this scenario is that, once the low-density
hadron EoS (only with nucleons or also with hyperons) and the EoS of quark matter
are specified, the hybrid EoS is obtained by matching the two through an appropri-
ate phase transition region, whose parametrization (under certain conditions) can
generate via an unstable branch another disconnected family of compact stars in
equilibrium. In particular, this new branch can describe configurations having equal
or even higher masses than the most massive stars belonging to the hadronic branch,
but with smaller radii. Because of the appearance of different families of equilib-
rium stars having equal masses, the authors refer to them as twin stars. As an
example, in [126] the authors have studied hybrid stars configurations by consider-
ing for the hadronic part two models of EoSs called BHF and DBHF. The former
is obtained through a non relativistic approach and the latter with a relativistic
one. Their trends are very similar until quite high densities (∼ 0.3fm−3 ≈ 2n0) from
where DBHF starts to be slightly stiffer. The two EoSs don’t contain hyperons.
For the high density region the authors have applied a common technique, that is
called ”constant speed of sound” (CSS) parametrization. This consists in consider-
ing a sharp interface6 between nuclear matter and a high-density phase region, for
instance a quark matter phase. A first-order phase transition is considered and a
constant speed of sound in the high density region is assumed. In particular, in the
case of a cold EoS, the square of sound velocity is defined as:

c2
s =

dP

dε
(3.14)

A first-order transition phase is characterized by a constant pressure during the
transition. However, because of the hydrostatic equilibrium condition, a region
with constant pressure inside these stars cannot exist. Then, from the Maxwell
construction, such a phase transition can be realized thanks to a discontinuity on
the mass-energy density profile. Called this discontinuity ∆ε andPtrans the value of
the pressure at the phase-transition, if c2

s is constant in the high density region, it is
easy to show that the overall EoS ε(P ) for the hybrid stars can be written as follows:

ε(P ) = εNM(P )Θ(Ptrans−P )+
[
εNM(P )+∆ε+

1

c2
s

(P−Ptrans)
]
Θ(P−Ptrans) (3.15)

where εNM(P ) represents the EoS of the hadronic matter (purely nucleonic). There-
fore, the EoS can be parameterized by three parameters: Ptrans/εtrans, ∆ε/εtrans and
c2
s (where εtrans = εNM(Ptrans)). It is very important to note that the authors have

not specified the nature of the matter constituting the high density region. One can
assume that this region is composed by quark matter. However, the conditions for

6This means that there is not a mixed-phase region between the low-density and the high-density
regions. This is valid when assuming the case of a Maxwell phase transition.
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the chemical equilibrium have been not considered here. The choice of a constant
speed sound EoS for the high density region is based on the fact that this assump-
tion is valid for a large class of models of quark matter. In particular, CSS EoS fits
very well quark EoSs obtained via the field correlator method[126]. We report some
results of the authors’ analysis in the following.

Figure 3.5: Schematic phase diagram for hybrid star branches in the mass-radius relation
of compact stars. This is a representative plot obtained for a fixed value of the constant
square speed of sound c2

s. Different topologies of mass-radius diagram are shown in the
inset. These are collected within four classes in the plot, each one identified by different
values of the parameters ∆ε/εtrans, Ptrans/εtrans. See details in the text and in the original
paper [126].

In Figure3.5 several models of hadron and hybrid stars are shown. In partic-
ular, mass-radius diagrams are depicted in inset plots. Here, green lines represent
equilibrium sequences of static hadron stars; red lines models of static hybrid stars.
In particular, the solid-thin red curves are related to stable equilibrium models, in-
stead the dashed ones to unstable equilibria. This fact follows from the stability
principle of static solutions discussed in the previous chapter. Moreover in the plot,
different topologies of mass-radius diagrams are located in different regions. These
ones are defined by the values of two parameters (∆ε/εtrans, Ptrans/εtrans) and for
a fixed constant speed of sound cs. In particular two specific lines constrain them:
the solid-thick red one is defined by the threshold values of ∆ε/εtrans below which
there is always a stable hybrid star branch connected to the neutron star branch;
the dashed and dot-dashed ones mark the border of regions where a disconnected
hybrid star branch exists. The different topologies of mass-radius diagrams are clas-
sified in four classes. The class C contains sequences of models in which the hybrid
branch connects continuously to the hadron branch; therefore, there is only a unique
branch of compact stars. Within the class D, the two branches appear disconnected,
i.e. the connecting sequence is composed by unstable equilibria. Class B contains
models of hybrid stars which are both connected and disconnected with the hadron
branch. Eventually, within the class A, no stable equilibria of hybrid stars appear.
Once the two EoSs are specified, i.e. the hadron one and the CSS EoS, changing the
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Figure 3.6: Sequences of hybrid stars with M = 1.4M� and constant radii as functions
of the CSS parameters. The two upper plots contain models computed by using the stiffer
hadron EoS (DBHF), in the lower two the softer one (BHF) is applied. The two plots on
the left are characterized by c2

s = 1/3, the two on the right side buy c2
s = 1. See more

details in the text and in the original paper [126].

values of the two parameters (∆ε/εtrans, Ptrans/εtrans) for a fixed cs corresponds to
locate models in this plot. This allows to know to what kind of class they belong,
thus indicating also what sort of hybrid branches will be present. Eventually, by
changing the value of the third parameter cs, one can modify the classes’ location
on the plot. In particular, it can be shown that cs affects only the two black curves
but not the solid-thick red one. By looking at the inset mass-radius diagrams in
Figure3.5, we can clearly note that, for a fixed gravitational mass, stable solutions
belonging to different branches with the same mass but different radii are possible.
These are the so-called twin-stars. However, even in the absence of twin-stars, when
a stable hybrid branch exist for a fixed set of parameters, the models belonging to it
will have always smaller radii than hadron stars. Eventually, when the two branches
coexist, the highest mass values allowed are reached by hybrid configurations.

In Figure3.6 static models of hybrid stars with a fixed gravitational mass of
1.4M� and computed for different constant values of radius are collected within
four diagrams. In particular, for a fixed radius, different sequences of models are
obtained by changing the variables of the method: the three parameters of the CSS
parametrization and the EoS of the hadron matter. Each of the four diagrams is
identified by a specific choice of the hadron EoS and of the values of the parameter
cs. In particular, the two upper diagrams are obtained with the stiffer hadron EoS
(DBHF), the lower two with the softer hadron EoS (BHF). On the left hand side,
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plots with c2
s = 1/3 are reported and, on the right hand side, the two plots with

c2
s = 1 are shown. Moreover, inside each diagram, sequences of models with fixed

radius (and M = 1.4M�) are computed as functions of the other two parameters
(∆ε/εtrans and Ptrans/εtrans). Within each plot the four classes A, B, C and D are also
reported, together with the red and black boundary curves (here the dashed and dot-
dashed black curves are substituted by a single solid-green line). Different values of
the ratio ntrans/n0 are also listed in the diagrams, where n0 is the nuclear saturation
number density and ntrans the number density of hadron matter at the transition
phase. In particular, the hatched band at low density (where ntrans < n0) represents
an excluded region. Indeed, here the bulk nuclear matter would be metastable since
the transition to quark matter would occur below nuclear saturation density. There
is also another hatched band at high density, which is related to another excluded
region. This is excluded since here the transition pressure would be above the central
pressure of the heaviest stable hadronic star. In this case no transition towards
stable hybrid stars would happen. Clearly, for a fixed transition pressure Ptrans,
an hydrostatic equilibrium hybrid configuration with stiffer hadron EoS will have a
smaller number density at which the phase transition occurs. We can note this trend
by looking at the values of ntrans/n0 on the diagrams: ntrans/n0 is lower for the two
upper plots, where a stiffer EoS is applied. Therefore, the right side excluded region
begins at lower values of ntrans/n0 for the two upper plots compared to the lower ones.
Moreover within all the diagrams a grey dashed region is also plotted. This contains
all the sequences of models whose maximum mass is smaller than 2M�, thus they are
excluded by the observed existence of a 2M� NS. Eventually, the dashed-magenta
lines delimit sequences which extends only up to moderate transition pressure. A
part from the behaviour showed by the sequences according different values of the
parameters, that we will not investigate here, an important result turns up from
this plot. Models of hybrid stars obtained with this scheme can allow R1.4 ∼ 11km
only when one considers a constant speed of sound equal to (or of the order of) the
speed of light in vacuum, that is a request very difficult to justify. Observational
data about NS masses and radii can be explained within the twin-stars scenario only
if extreme conditions are considered. From the plot we can note that this result is
almost independent on the EoS for the low density regime. This means that, even if
slightly smaller radii can be obtained with a softer hadron, the main change on the
models radii is due to the choice of c2

s, i.e. by the EoS applied for the high density
matter phase.

3.2.2 Two-families scenario

The two-families scenario is a scheme in which the strange-matter hypothesis is
tested on NSs. It has been proposed in many papers[112, 127, 8, 128]. Similarly to
the twin-stars scenario, it predicts the existence of another branch of massive com-
pact stars distinguished from the traditional family of hadron stars. Nevertheless,
now the second branch is provided in a new, different fashion. Firstly, the two pop-
ulations of stars appear always as disconnected branches. Therefore, one actually
distinguishes two different kinds of compact objects: the hadron stars and the quark
stars, i.e. two populations of stars which depict indeed the so-called ”two-families
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scenario”. The disconnection between them is provided by the fact that there is a
rapid transition process from hadron stars to quark stars, i.e. hybrid stars appear
only within timescales which are very short compared to the lifespan of stars. In
particular, the formation of a quark star from a hadron star is characterized initially
by a fast burning of the most inner part of the hadron star. Inside very high den-
sities regions, when a sufficiently amount of strangeness is formed and appropriate
microphysical conditions are satisfied (see details in [127]), a small drop of quark
matter can be produced, pulling the trigger of the nuclear burning. The conver-
sion of hadron matter into quark matter happens through a adiabatic and turbulent
mechanism, which involves most of the stellar core. The adiabaticity of the process
is guaranteed by its very short timescales (∼ms), which don’t allow the system to
dissipate outwards its energy by neutrino emissions. Since the process is exother-
mic, the system warms up and a hybrid configuration with a hot EoS is generated.
After the fast initial burning of the core, the envelope of the newborn hybrid star is
deconfined through a diffusive mechanism, that is characterized by longer timescales
(∼ 10s). During this process the system can release the internal energy into the
environment, cooling down by the neutrino flows. Notice that the amount of energy
dissipated by the cooling corresponds exactly to the binding energy acquired by the
system when deconfinement is ultimated. At this point a cold quark star is formed.
Unlike the twin-star scheme, in the two-families scenario the transition from hadron
stars towards quark stars is always obtained via a stable process; moreover, extreme
values of the speed of sound are never required. In particular, the authors have
provided a detailed microphysical analysis, taking into account of all the equations
for the chemical equilibrium and the charge neutrality of the system. Within this
approach the speed of sound is always smaller than the speed of light in vacuum.

Concerning the EoSs applied by the authors, some interesting points need to be
highlighted. Firstly, for the hadron family they have considered the relativistic mean
filed approach. Here, hyperons Λ, Σ, Ξ and also ∆-baryons have been considered
together with the nucleon-electronic fluid. The ∆-baryons are heavy baryons com-
posed only by up and down quarks, and they have spin number 3/2. Because of this
their equation of motion is not the usual Dirac equation; the latter indeed describes
fermions whose spin number is equal to 1/2. This implies that for the ∆-particles
one needs a different Lagrangian compared the hadronic one within a RMF theory.
According the mean-field scheme considered by the authors, the Lagrangian density
associated with the ∆-particles is the following:

L = ψ̄ν∆[iγµ∂
µ − (m∆ − gσ∆σ)− gω∆γµω

µ − gρ∆γµI3ρ
µ
3 ]ψν∆ (3.16)

where ψν∆ is the Rarita-Schwinger spinor for the ∆-isobars (∆++, ∆+, ∆−, ∆0) and
I3 =diag(3/2,1/2,-1/2,-3/2) is the matrix containing the isospin charges of the ∆s.
The other coupling terms are related to the strong nuclear interactions mediated
by mesons. There are numbers of studied which have suggested the existence of
∆-baryons in the core of neutron stars[129, 130, 131, 132]. By considering these
particles, some very important results turn up. Firstly, in the two-families scenario,
the early appearance of ∆-baryons, the first being the ∆−, considerably shifts the
onset of hyperons which start to form at densities as large as 5n0 [112]. In this way,
the large amount of strangeness in the core of hadron stars needed for the beginning
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of the quark deconfinement is reached only for quite massive stars (M ∼ 1.5M�
[112])7. Moreover, the ∆-resonances produce a considerable softening of the hadron
EoS. Particularly, the two-families scenario predicts that the most massive hadron
stars have masses ∼ 1.5 − 1.6M� and radii ∼ 10.5 − 11km, thus interpreting the
estimates of R1.4 < 11.5km as the radii of massive hadron stars. Eventually, within
the two-families scenario, the presence of ∆s should not be a problem for the NSs
fast cooling caused by Urca processes. Indeed, it has been shown[133] that if the
nucleon Urca process is forbidden (which observations show to be triggered only for
NSs masses bigger than ∼ 1.5M�[116]), the Urca-processes Σ− → n + l + ν̄l and
∆− → n+ l+ ν̄l (where l is a lepton) are also forbidden. Under these circumstances,
the only Urca processes that could still be allowed are those involving Λ hyperons:
Λ → p + l + ν̄l, Σ− → Λ + l + ν̄l and ∆− → Λ + l + ν̄l. The two-families scheme
predicts the formation of the Λs only at very high densities (∼ 5n0), where models
are close to the end of the hadron branch, at densities close to the ones triggering
quark deconfinement.

Concerning the EoS of quark matter, several models have been discussed by the
authors, some applying the so-called ”MIT Bag-model” or slightly modified versions
of it[134], and others based on perturbative-QCD calculations[112] or even on chiral
models. Basically, the actual EoS of quark matter is still unknown. As we saw
during the discussion of the twin-stars scenario, generally one models it making use
of some parameters which are fixed in order to reproduce the observational properties
of massive compact stars. However, within the two-families scenario, more detailed
microphysical considerations are done. In particular, we consider here the model
of quark matter’s EoS reported in [134]. We will apply it later for the modeling
of the post-merger phase of GW170817. This EoS belongs to the class of bag-
models, which are developed in order to describe the quark confinement observed
for strong-interactions at the non-perturbative regime. Their usual approach is to
collect all the non-perturbative effects of strong interactions into a bag constant B.
In particular, the quark fluid is described here by an appropriate formulation of its
Grand-canonical potential. This is defined as follows:

ΩQM =
∑

i=u,d,s,e

Ωi +
3µ4

4π2
(1− a4) +Beff (3.17)

where Ωi are the Grand potentials for the up, down and strange quarks, and the
electrons. The last ones are treated as non interacting particles. Moreover, µ is
the baryon chemical potential of quarks. The two quantities a4 and Beff , eventu-
ally, represent the parameters of the model which allow to include non-perturbative
QCD effects. Also the chemical equilibrium and the charge neutrality conditions
are assumed in this model. Therefore several static configurations of quark stars are
computed and the whole parameter range of a4 and Beff is explored. In particular,
the smaller is a4 the more effective are QCD corrections. The authors have probed
how the maximum non rotating mass MTOV of quark stars change by varying the
two parameters. Values 2.2M� . MTOV . 2.4M� of quark stars can be reached

7This is due to the fact that ∆-baryons don’t contain strange quarks. Therefore the presence
of hyperons is needed to produce strangeness in the core of NSs.
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in this scheme. Some microphysical constraints concerning chemical potentials turn
up beyond values ∼ 2.4M�. In this thesis we have considered the quark matter
EoS characterized by the values a4 = 0.65 and Beff = 129 of the parameters. By
using the RNS code we have computed the static sequence of quark stars and we
have obtained a maximum mass of MTOV = 2.38M�. Again, with this code, we
have computed static sequences of hadron stars and hybrid stars making use of
the corresponding EoSs provided within the two-families scenario. The obtained
mass-radius diagrams are reported in Figure3.7. Here both the gravitational mass

Figure 3.7: Gravitational/baryonic mass-radius diagram. Sequences of static models
are computed by applying three different EoSs developed within the two-families scenario.
The blue curves represent sequences of hadron stars; the red curves sequences of hybrid
stars; the black ones sequences of quark stars. The gravitational mass-radius diagrams are
plotted with solid lines, the baryonic mass-radius diagrams with dashed lines. See the text
for the other details.

and the baryonic mass are plotted as functions of the stellar radius. In particular,
the gravitational mass-radius diagrams are depicted with solid curves, the baryonic
mass-radius ones with dashed curves. We stress here that this is just a rough anal-
ysis of the features of compact stars within the two-families scenario. Indeed, as
we have noted in the previous chapter, the RNS code presents some troubles when
evaluating the baryonic masses of stars composed by quark matter. Therefore the
numbers that we report here are not exact, but concerning the hybrid and quark
models some corrections on the baryonic mass should be made. However, here we
are just interested on the general behaviour of such stars. Therefore, even by using
the RNS code, we can figure these typical properties.

In the plot, the blue lines represent the sequences of hadron models, the red
ones the sequences of hybrid stars and the black curves configurations of quark
stars. Schematically, we report here the evolutionary track of a hadron star with
gravitational mass M = 1.5M�, labeled with the point A in the plot, whose core
undergoes the quark nucleation process. During the entire process the baryonic
mass is conserved. Its value is established by the gravitational mass of the initial
hadron star. In the case discussed here, this is 1.69M�. Firstly the hadron star
(A) evolves towards the hybrid star (B). The conservation of the baryon mass is
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underlined by the horizontal grey line painted in the plot. The horizontal magenta
lines, instead, connect models with the same gravitational mass, that is models with
the same amount of mass-energy. We can note that the two models A and B have
both equal baryonic masses and equal gravitational masses. This is correct since we
have seen before that this process is realized within very short timescales (∼ms),
therefore via an adiabatic mechanism. The absence of dissipation of energy together
with the conservation of the baryonic mass implies also the conservation of the
gravitational mass. Once the hybrid configuration B is attained, this evolves within
longer timescales (τ ∼ 10s) towards the quark model C by conserving again the
baryonic mass. Since now the transition is no more adiabatic, some energy will be
lost by the star. Indeed when the quark configuration is attained, the gravitational
mass is smaller (MC = 1.39M�). In particular, because of the efficiency of the
neutrino cooling during this transition, the 0.11M� mass loss corresponds to the
amount of thermal energy lost by the star. This causes necessarily the cooling of the
EoS itself. Another very important result can be noted from the plot. The two long-
life families of compact stars8, that is the blue-hadron and the black-quark sequences,
appear completely disconnected and with mass-radius diagrams showing absolutely
different behaviours. Unlike the twin-stars scheme, we can see from the plot that the
two-families scenario predicts quark configurations which have both higher masses
and larger radii than the hadron ones. In particular, within these scheme, the
maximum masses of quark stars still satisfy largely the observational constraint
M ∼ 2M�. The trend of the black sequence in the plot is due to the fact that the
construction of the quark EoS is done by considering the microphysical implications
of the Bodmer-Witten hypotesis. According this one, the absolute energy minimum
of the strong interactions is reached for a certain amount of strangeness in a mixture
of quarks up, down and strange, and at a finite value of density (slightly larger than
the nuclear saturation density). This is the value of the quark matter density in
equilibrium, i.e. when P = 0. Since the condition of null pressure defines the edge
of a star, we will have quark stars with a edge characterized by a density of the order
of the nuclear saturation density. This implies that compared to ordinary NSs, where
the density profile inside the star decreases monotonically and continuously with the
pressure from the high central densities until the value of the nuclear matter density
in equilibrium (e.g. nP=0 ∼ 5 · 10−15fm−3 � n0, in the case of matter composed
by iron nuclei), quark stars present a density discontinuity at the surface ∆n & n0:
strange-quark stars have probably the hardest smoothest surface of any object in the
universe[60]. A behaviour M ∝ R3 along the equilibrium sequence of these compact
objects is thus expected. We can clearly note that this is the trend of the black
curves in the plot. Actually, the behaviour changes for very massive quark stars.
Indeed in these cases the gravity is so strong that it is able to increase the density
of the quark matter at the center of stars. This growth of the density explains the
stiffer increase of the mass with the radius.

It is very important to underline the fact that the two-families scenario is cur-
rently the only scheme which could satisfy both the constraints on the measured NSs
masses and radii without invoking a sound velocity close to that of light in vacuum.

8This means that the lifespan of hadron stars and quark stars is much longer compared that of
hybrid stars, as the two-families scenario predicts.
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Clearly, more precise measurements on the radii are needed to draw final conclu-
sions. However, we can also note that the hyperon puzzle is easily solved within
this scenario: hyperons and deltas do reduce the maximum mass of compact stars
to values significantly smaller than 2M� but this fact does not represent a puzzle
since the most massive objects are actually quark stars[112]. Eventually, concerning
double-NS mergers, a new kind of event is allowed within the two-families scenario:
the coalescence of a hadron star and a quark star.
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Chapter 4

Phenomenology of
GW170817/GRB170817A/AT2017gfo

On August 17, 2017, at 12h41m04s UTC the Advanced LIGO and Advanced Virgo
gravitational-wave detectors made their first observation of gravitational waves from
the coalescence of two compact objects whose estimated masses were in agreement
with masses of known neutron stars. The GWs signal (GW170817) allowed to lo-
calize the binary system within the host galaxy NGC4993, constraining a sky region
of 31deg2 and a distance of 40+8

−8 Mpc. This represented the first direct detection of
a double neutron star merger[135]. Moreover, GW170817 was associated with the
short γ-ray burst GBR170817A observed independently by the Fermi Gamma-ray
Burst Monitor and the Anti-Coincidence Shield for the Spectrometer for the Inter-
national Gamma-Ray Astrophysics Laboratory[9]. The short-GRB was delayed by
about 1.7s with respect to the coalescence time. Eventually, the two detections were
followed by multiple observations which revealed the existence of an electromagnetic
transient counterpart in the same location of the GRB and GW signals. The elec-
tromagnetic signal covered a large range of spectral frequencies, from the X-rays,
to UV, optical, IR and finally even the radio bands. The optical transient was
detected about 10h52m after the coalescence. The blue one faded within 48 hours.
The X-ray and radio signals were observed at the transient’s position about 9 and 16
days, respectively, after the merger. No ultra-high-energy gamma-rays and no neu-
trino signals consistent with the source were found during follow-up searches. The
electromagnetic observations clearly enforced the hypothesis that the gravitational-
wave event was produced by the merger of two compact stars. All these observations
marked the beginning of the so-called Multi-messenger Astronomy [136].

4.1 GW170817

The GW signal detected by LIGO and VIRGO has allowed to infer the so-called
chirp mass of the binary system as Mc = 1.188+0.004

−0.002M�. This quantity is defined in
terms of the mass of the two stars m1, m2; precisely, Mc = (m1m2)3/5/(m1 +m2)1/5.
General Relativity makes detailed predictions for the inspiral phase. However, al-
though we can constrain the chirp mass very well, concerning the component masses
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there is a degeneracy between mass ratio q = m2/m1 (here we assume m2 ≤ m1)
and the aligned spin components of the two stars. Therefore, the evaluation of q is
done by making some assumptions about the spins. Under the hypothesis that the
two stars have spins compatible with those observed in ordinary binary neutron star
systems (the so-called ”low spin case”), it has been inferred that q ≥ 0.7. Therefore
the masses of the two components belong to the range (1.17, 1.60)M� and we can
measure the total gravitational mass before the merger as M = 2.74+0.04

−0.02M�[137].
During most of the inspiral phase the two stars can be treated as point like sources.
However when the distance between them becomes sufficiently small, i.e. the length-
scale of the process becomes of the order of the stars radii, the GW signal is affected
by the sizes of the two stars. During this phase, particularly relevant are the tidal
forces, which perturb the stars structure and accelerate the process. The parame-
ter that quantifies the action of the tidal forces and thus the deviation of the GW
signal from the case of point like sources is the so-called tidal parameter Λ̃. This
strongly depends on the properties of the two stars. In particular, for fixed masses,
the larger are the radii of the two stars the bigger is the tidal deformability and
thus the parameter Λ̃ too. If one knows the mass of the system during the inspiral
phase, a precise measurement of Λ̃ can allow to constrain the radius of NSs and thus
the underlying EoS. During the GW170817 event it has not be possible to follow
the gravitational-wave signal up to the merger. Nevertheless, an upper limit on the
value of the tidal parameter has been set. In [138], under minimal assumptions
about the nature of the compact objects, the authors have obtained the constraint
for the tidal deformability parameter 70 . Λ̃ . 720. Moreover, in [139] by using
a generic family of NS EoSs interpolating state-of-the-art theoretical results at low
and high baryon densities and applying the constraints about the tidal deformability,
the authors have obtained for the 1.4M� NS an upper limit on the radius of NSs:
R1.4 . 13.4km.

The possibility that GW170817 has led to a prompt collapse seems to be very
improbable because of the following observation of an electromagnetic counterpart.
In particular, in the case of a delayed collapse, several different outcomes are possi-
ble. Full general relativity simulations have shown that in this situation an initial
differentially rotating object is formed[72]. More recent investigations have also re-
vealed that the rotational profile of the remnant is quite complicated, but it is almost
universal for several different EoSs[140]. This object could be stable only as long as
differential rotation is present (hypermassive star), or it could evolve to a rapidly
uniformly rotating compact star which is stable as long as rigid rotation is present
(supramassive star), or it could evolve to a totally stable non-rotating stable object.
These different scenarios depend mainly on the dissipative mechanisms affecting the
remnant, like magnetic fields or the GW emission itself. In all these cases we expect
a GW signal during the post-merger phase, whose spectral features are quite differ-
ent from the signal detected during the inspiral phase and also depend on the kind
of rotation which governs the remnant dynamics. Indeed, the initial differentially
rotating configuration can last no longer than about 1s, while the rigid rotation
phase can last from ∼ 104s up to ∼ 106yr[141]. Therefore, if an hypermassive NS is
formed, a big amount of energy would be released through GWs within very short
timescales (< 1s). Instead, in the case that a uniformly rotating NS is formed, a
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long-life signal should be detected.
The absence of an extended emission (EE) both in the GW and electromagnetic

wave (EMW) signals, together with the subsequent observation of an electromagnetic
transient, promotes a hypermassive NS as the outcome of the event, which survived
at least some milliseconds after the merger. This would imply that the gravitational
mass of the system at the merger was higher than the maximum mass of supramassive
NSs (Mmax). Since the latter is estimated ∼ 1.20MTOV quite universally, from the
total mass at the merger (M) one can constrain the value of MTOV . By assuming
a gravitational binding energy of the binary to be ≈ 0.06M� ∼ 2%M , which is lost
through GWs during the merger, and considering also the mass ejection mechanisms
involved during the event, which allow to loose a maximum amount of mass of
≈ 0.1M� ∼ 4%M (as we will see later), the total mass at the beginning of the post-
merger phase is ∼ 94%M ≈ 2.58M�. Therefore, the constraint Mmax . 2.58M�
implies that MTOV . 2.15M�. We stress here that, in this calculus, we have assumed
that the collapse to BH takes place when the object is still rapidly rotating with a
frequency of ∼kHz. This assumption is based on the two considerations previously
mentioned: the absence of an EE in the GW signal and the absence of a large EMW
emission in the environment. This result has been investigated also in [142] where
the authors have provided the range 2.01+0.04

−0.04M� ≤MTOV ≤ 2.16+0.17
−0.15M�. Here, the

lower limit is derived from accurate observations of massive pulsars in binary systems
and the error bars on the upper limit take into account some uncertainties, which are
associated with the leak of knowledge about the post-merger phase. For instance, as
reported in the introduction, in [1] a weak EE in GWs could has be revealed after
the merger. In this case, other evolutionary scenarios should be considered.

A delayed collapse would also imply that the mass of the differentially rotating
NS was smaller than the threshold mass Mthreshold. This quantity correspond to the
maximum gravitational mass sustainable by the remnant of the double-NS merger.
In [86] it has been shown that Mthreshold scales with MTOV by a relation containing
the compactness (M/R) of the non rotating configuration with maximum mass.
Therefore, the information M < Mthreshold allows to constrain the mass and the
radius of the object, and thus to probe the EoS. According the result of [143], the
constraint Mthreshold & 2.74M� would suggest R1.6 & 10.7km.

4.2 Electromagnetic signals

4.2.1 GRB170817A

The indication of a short-GRB after the GW signal strongly suggested that the
merger involved two NSs. This has been named as GRB170817A and it has been
detected ∼ 2s after the merger, appearing particularly weaker than ordinary short-
GRBs. In particular, none EE has been detected. The faintness of the signal could
be explained by assuming an intrinsically sub-luminosity or even quasi-isotropy of
it[144]. An other possibility is that it was actually an ordinary short-GRB but ob-
served off-axis[145]. Future investigations about the time-evolution of the γ-emission
will allow us to distinguish between these two possibilities.

Generally, two different types of short-GRBs can be observed. The first ones
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present only a strong prompt emission (PE) within short timescales (∼ 10s); the
second ones present a PE together with a following extended emission (EE), which
is a quasi-plateau emission lasting about 103 − 104s[146]. Lots of doubts are still
present about the inner engine of short-GRBs. In the presence of a PE alone, a
short-GRB could be explained with a post-merger phase consisting in a prompt
collapse to a BH[147]. In particular within this scenario, a rapidly rotating BH
would be formed with a hot and strongly magnetized torus surrounding it. The
toroidal distribution of matter would emit promptly the GRB (PE) in the case of
a rapid ablation caused by the central BH. Instead, in the presence of an accretion
process towards the BH, the timescale of the γ-emission would be longer and thus
an EE would be observed[148]. An other completely different scenario considers a
proto-magnetar as the inner engine of the two types of emission observed in short-
GRBs. In particular, the EE is identified with a pulsar-like emission generating by
a long-lived rotating NS. Within this scenario, several schemes have been proposed.
One considers the short-GRBs with only PE as the result of a delayed collapse to
a BH. If a supramassive NS is formed after the merger, since the rotation can last
for timescales ∼ 104s, a delayed collapse is expected. In the presence of an EE, this
scheme requires a ”time-reversal” mechanism[149]. The EE should be generated by
the star formed after the merger before the collapse to a BH, but observed after the
PE because of the time needed by the soft EE signal to leak out the thick cocoon
surrounding the star. The PE would be emitted immediately after the BH formation
and would exit the cocoon along the rotation axis. This would allow it to be detected
before the EE, since the torus is less thick in that direction. Within this scheme
the time delay between the moment of the merger and the PE is of the order of the
lifespan of the supramassive star (i.e. ∼ 104s). An other scheme considers that a
stable rotating NS is formed after the merger. In particular, the final outcome of
the event is not a BH but rather a quark star. Therefore, the light curve observed
during the EE would be provided by a pulsar-like emission coming from a long-
lived quark-proto-magnetar with surface magnetic fields ∼ 1015 − 1016G and spin
frequencies ∼ 1kHz. In particular, the EE would have timescales of the order of the
lifespan of the rotating quark star. Concerning the PE, the quark deconfinement
reaching the stellar surface could allow it. In this case the time separation between
the merger and the PE would be ∼ 10s, that is the timescale required to the quark
deconfinement for reaching the star surface. This timescale is different from that
predicted by the other scheme. Therefore from the observations we would be able
to differentiate them.

4.2.2 AT2017gfo

Although the absence of an EE in GRB170817A, a prompt collapse scenario cannot
be invoked. Indeed an electromagnetic signal has been detected after the short-GRB.
This signal corresponds to a transient signal spanning a large range of wavelengths
within a quiet long time interval. Firstly, a blue component has been observed,
involving the X and UV bands. Then a rapid evolution towards redder wavelengths
has been noted: at 1.5 days after the merger the signal had peak at about 5000Å, and
already at about 4.5-7.5 days it left the optical regime. By 10 days the wavelength
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was bigger than 15000Å. In particular, the decline of the signal was more rapid
in the blue component, making the red the dominant component of the spectrum
during the last observations. The electromagnetic signal extended in time from
about 0.47 to 18.5 days after the merger, overall. The data in the UV, optical and
NIR bands were consistent with a Kilonova signal expected after a NS merger[137].
The signal has been called AT2017gfo. Being based on the observational data, this
signal has been modeled in the following way. A first component with wavelength
within the UV and blue optical bands, characterized by the highest luminosities
(∼ 5 · 1041 ergs−1) and the shortest timescales (∼ 1), has been identified as the
so-called Blue Kilonova. This kind of emission was modeled for the first time in
[150]. It is related to mass ejections with very low opacity. The Blue Kilonova signal
is likely to be associated with r-processes involving the formation of nuclei lying
between the first and the second peaks. Comparison to models have provided that
Mej ∼ (0.01− 0.03)M�, βej ∼ 0.3 and a Lanthanide fraction of ∼ 10−5 − 10−4 were
associated with this component of the Kilonova[151, 152]. Moreover, by modeling
the entire electromagnetic data set, it has been found that models with heating from
radioactive decay of 56Ni, or those with only a single component of opacity from r-
process elements, failed to capture the rapid optical decline and red optical/NIR
colors of the signal. Therefore, an other model has been required to fit the red
component of the Kilonova. This has was called Red Kilonova[152]. It represents
the late and less luminous component of the signal (∼ 5 ·1040 ergs−1). In particular,
it is characterized by a higher opacity; then, this component is associated with an
ejected material containing r-process heavy nuclei filling the third peak (A > 140).
This data have been fitted by considering Mej ∼ 0.04M�, βej ∼ 0.1 and a Lanthanide
fraction of ∼ 10−2[152, 153].

These observations have shown that in principle a not unique value of the opacity
and thus of Lanthanide fraction can be used to describe Kilonovae associated with
NS-mergers. In particular, the existence of at least two components of the ejecta, a
Lanthanide poor (Blue Kilonova) and a Lanthanide rich (Red Kilonova), is needed.
The evidence of two not overlying components is likely related to two different matter
ejections, which come from two different regions of the remnant, with varying opacity,
and moving along two different angles of emission. A deep investigation on the
opacity estimated from the analysis of the Kilonova would allow to infer information
about the ejection mechanism and, in particular, about the nuclear equation of state
of NSs. The blue component of AT2017gfo, characterized by a very low opacity,
has been related to a dynamical mass-ejection mechanism, particularly to a shock-
wave mechanism. Concerning the Lanthanide richer Red Kilonova, a dynamical
mechanism of tidal ejection along the equatorial plane seems to be the better one to
explain the signal origin. In particular, by considering that MRed

ej > MBlue
ej , it seems

that the tidal mechanism dominated the mass ejection during the merging.

Two important results about the Kilonova signal turn out. Firstly, the Mej

estimated to explain the blue component of the signal seems to indicate quite small
NS radii. Indeed, it can been shown that the shock-wave mechanism associated with
this component becomes more efficient in the case of softer EoSs, i.e. small radii. By
applying these considerations, the GW170817 blue ejecta mass can be reached by
nearly-equal mass binaries and soft EOSs with very small NS radii (< 11− 12km).
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This estimate for the radius of NSs is particularly crucial. Such small radii would
be in fact difficult to explain together with the observed NS masses ∼ 2M� within
a one-family scenario. Nevertheless, these measurements could be easily explained
by considering a two-families scenario. Other recent studies [154] have considered
also the existence of a disk of matter surrounding the outcome of the merger. These
have estimated a mass of the disk ≈ 0.04M�. In particular, from the analysis of
the EMW signal, the authors have inferred a lower limit on the tidal deformability
Λ̃ & 300 − 400. According them, this would imply the constraint on the radius
R1.4 = 12.2+1.0

−0.8 ± 0.2km.

4.3 Possible post-merger GW signal

In the analysis reported in [1] the authors have look for a post -merger GW signal
finding an extend emission started before the short-GRB, i.e. during the gap of
1.7s between the coalescence time inferred from LIGO observations (tc = 1842.43s)
and the onset of GRB170817A. They have revisited the LIGO H1, L1 and V1 data
from the LIGO Open Science Center (LOSC) by applying a model-independent
analysis which uses matched filtering over chirp-like templates, allowing the detection
of ascending and descending chirps with phase-coherence within appropriate time
scales. The obtained data are shown in Figure4.1.

Figure 4.1: Ascending-descending chirp in the (H1,L1)-spectrogram produced by the
double neutron star merger GW170817 concurrent with GRB170817A past the coalescence.
Color coding (blue-to-yellow) is proportional to amplitude defined by butterfly output of
time-symmetric chirp-like template correlations to data. See more details in the text and
in the original paper[1].

Their analysis has yielded the following results:

• the relative loud merger signal of GW170817 with binary coalescence at the
time tc = 1842.43s, as estimated by LIGO, is described by an ascending chirp
in GW frequency identified up to 260Hz before the coalescence (t < tc). In
particular, the luminosity in GWs at the highest detected frequency would be
LGW ' 1.35 · 1050ergs−1
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• there is continuation of GW170817 with an exponentially descending chirp
during GRB170817A and lasting few seconds, whose initial frequency is about
700Hz identified at the time ts = tc + 0.67s, and the final frequency is about
300Hz

This chirp would start in the 1.7s gap between GW170817 and GRB170817A. In
particular, from the exponential track the authors have estimated the frequency of
the GW signal at the coalescence time as 774Hz, stressing that this value of frequency
is below the orbital frequency at which the stars approach the Inner Most Stable
Circular Orbit (ISCO) of the system as a whole, i.e. ∼1100 Hz at ∼16km according
to the Kerr metric[1]. Since in the case of a prompt collapse to a ∼ 3M� Kerr BH
any gravitational-radiation from remaining debris orbiting about the ISCO would be
above 2 kHz, the <1kHz descending chirp would be related to the GW emission of
a long-lived rotating hyper-massive neutron star or magnetar induced by dynamical
and secular instabilities that may include magnetic fields[1]. From the measured
frequencies one can estimate the amount of energy released through GWs during
the descending chirp:

EGW ' 0.2%M�c
2 ≈ 3.6 · 1051erg

All of these results would support the idea that the outcome of the merger was an
hypermassive NS. Up to now, this is the only suggested evidence of a post-merger
GW emission. It is worth noticing that in [3] no evidence of such an emission has
been found.
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Chapter 5

Modeling the post-merger phase

The event of August, 2017, is routinely described as the merger of two neutron
stars, forming in the post merger a hypermassive configuration, which collapses
to a BH on a timescale from tens of milliseconds up to about one second. This
interpretation is rather successful, but it faces at least one difficulty when used to
describe the Kilonova signal (KN): from one side, in order to be able to describe the
blue component it is necessary to assume radii for the stars undergoing the merger
smaller than ∼ (11 − 12)km. On the other side, in order to describe the red (or
purple [155]) KN a large amount of mass should be ejected from the disk and this
indicates a not too small value for the tidal polarisability, Λ̃ > 300−400. These two
requests are conflictual [128] and a possible way out is offered by the two-families
scenario in which the merger was not of two neutron stars, but of a neutron star
and of a strange quark star. In that way the limit on Λ̃ can be respected while the
radius of the neutron star participating to the merger was of the order of 11 km or
smaller. Notice also that radii of 11 km for NSs having a mass of about (1.3-1.4)
M� are difficult to obtain if only one family of compact stars exist, as described in
Chapter 3.

It is also important to remark that since the total gravitational mass estimated
for the system at the merger (∼ 2.74M�) is bigger than the threshold mass of
binary hadron star systems in the two-families scenario, i.e. ∼ (2.52 − 2.72)M� as
estimated in [156], the hypothesis that the binary system involved during GW170817
was a HS-HS system is disfavored. In the following we will therefore assume that
the merger was of a NS (first family) with a QS (second family). This possibility
is particularly relevant for binaries having at least a moderate mass asymmetry,
because in that way the probability that the most heavy component is a QS is
maximized. In the following we will consider q = 0.85. As described in De Pietri
et al. (to be published) the product of the merger in that case is a compact object
whose central region is entirely made of quarks, while the external region is still made
of hadrons. This configuration is reached a few milliseconds after the merger and it
takes a significantly longer time, of the order of seconds, for the quark deconfinement
process to be completed [157].

In the following we first evaluate the total baryonic mass during the post-merger
phase and then we describe the evolution of the remnant in three temporal steps:
t . a few ms; a few ms. t . (10− 20)ms; t & (10− 20)ms.

107



108 CHAPTER 5. MODELING THE POST-MERGER PHASE

5.1 Estimate of the baryonic mass after the merger

The evaluation of the baryonic masses of the binary stars from their gravitational
masses is done by applying two different EoSs previously discussed (see Figure3.7),
i.e. the hadron and the quark EoSs. It’s known from GW170817 that: Mtot =
(m1 + m2) ≈ 2.74M�, which is the total gravitational mass before the merger.
Therefore, by considering that q = 0.85 and that the most massive compact object
of the binary system is the quark star (i.e. m1 = mQ and m2 = mH , with m1 > m2),
we obtain that:

m2

m1

= 0.85 ∧ m1 +m2 = 2.74M�

=⇒ m2 = mH = 1.26M� m1 = mQ = 1.48M�

The calculation of the corresponding value of the hadron star’s baryonic mass we use
the results plotted in Figure3.7, which are obtained applying the RNS code. Instead,
the baryonic mass of the quark star is estimated by using the LORENE/rotstar code,
since it is more accurate than other codes for treating stellar objects characterized
by a strong density discontinuity at the surface (as well discussed in the Chapter
2). Also, LORENE/rotstar gives MTOV = 2.36M� instead of the value 2.38M�
estimated by RNS. The calculation gives mB

H = 1.38M� for the hadron star and
mB
Q = 1.66M� for the quark star. Therefore, the total baryonic mass of the system

before the merger is easily estimated as:

MB
tot = mB

H +mB
Q = 3.04M�

During and immediately after the merger the mass-ejection mechanisms can reduce
slightly this value. This mass loss can be estimated from the Kilonova signal. As we
have discussed before, concerning the Blue-KN it has been estimated Mej ∼ (0.01−
0.03)M�. Instead, for the Red-KN a larger amount of ejected mass is estimated:
Mej ∼ 0.04M�. Therefore, we can consider here a maximum amount of mass-
ejection of 0.1M�. The total baryonic mass after the merger, which characterizes
the hypermassive star formed as outcome, is then:

MB
tot,fin ≡MB = (3.04− 0.1)M� = 2.94M�

This quantity must be conserved during the entire evolution of the remnant.

5.2 Evolution for t . a few ms

Numbers of numerical simulations in full general relativity of binary NS mergers have
been realized probing the differential-rotation law of the outcome of such events,
when a prompt collapse to BH doesn’t occur. The analysis reported in [140] have
studied the angular velocity profile for a large set of EoSs, finding that there is a
quasi-universal behaviour characterized by a central slowly and almost uniformly ro-
tating core, surrounded by a differentially rotating ”disk”. This disk is characterized
by a rapidly rotating inner part, whose frequency is larger than the core’s frequency,
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Figure 5.1: Time and azimuthally averaged rotational profiles obtained from the simu-
lations of binary-NS mergers, applying different EoSs. Solid curves describe the profiles
in the case of low-mass binaries, whereas dashed curves refer to the case of high-mass
binaries. See more details in the text and in the original paper [140].

and an outer part with a velocity profile scaling like ∼ r−3/2. The transition between
the slower inner core and the rapidly rotating exterior takes place across a narrow re-
gion which is only 3−4 km wide. This behaviour has been obtained for both stiff and
soft EoSs. It’s important to stress that this trend of the frequency is largely different
from that depicted by the already discussed ”j-constant law”. Although its several
applications in studying rotating compact stars developed over the years, such a
simple rotational law is not the correct one to investigate post-merging configura-
tions, which are very chaotic and complex systems. However, we will see soon that
it could still be useful to treat more quietly differentially rotating objects. Although
its quasi-universality, the profile law obtained in [140] changes a little between the
several EoSs investigated. The authors have considered five nuclear-physics EoSs:
the APR4 and SLy ones belong to the class of variational-method EOSs and they
describe a composition consisting mainly of neutrons, with little admixtures of pro-
tons, electrons and muons; the GNH3 and H4 ones are computed by applying a
RMF approach, in which hyperons are included at high densities; the last one ALF2
describes hybrid nuclear matter, since it contains a phase transition. All these EoSs
satisfy the observational constraint MTOV ∼ 2M�. Moreover, the merger between
the binary compact stars has been simulated for two different choices of the total
gravitational mass of the system1 M = 1.25M� and M = 1.35M�. It has been
found that the spatial size of the slow inner core depends both on the EOS and on
the initial mass of the binary; in particular the small-mass binaries (M = 1.25M�)
generate a remnant with larger core with respect the case of high-mass binaries.
Eventually, the maximum frequency reached in the core weakly depends on the EoS:
stiffer EoSs are associated with lower central angular velocities than softer EoSs. We
can note that all the central frequencies are of the order of ∼ 1kHz, spanning the
range ∼ (0.5, 1.0)kHz. The results obtained by the authors are showed in Figure5.1.
We can expect that, during the event of August 2017, the hypermassive compact
star formed after the merger had an inner rotational profile like this.

1The two binary stars are assumed to have equal masses.
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5.3 Evolution for a few ms. t . (10− 20)ms

Here we first discuss the evolution of the differential rotation profile inside the rem-
nant due to the presence of viscosity, by applying the analysis reported in [158].
We then discuss properties of the final configuration assuming for simplicity that it
corresponds to a quark star.

5.3.1 Effects of the viscosity

Several simulations show that during the first milliseconds after the merger the vis-
cosity plays a relevant role for the evolution of the outcome, when a prompt collapse
doesn’t occur. In order to study these first stages of the life of our hypermassive
star, we can apply the analysis reported in [158]. Here the authors have performed
long-term general relativistic neutrino-radiation hydrodynamics simulations for a
canonical remnant formed after the binary NS merger. The simulations have been
done in full general relativity, applying the 3+1 formalism, where also non-isotropic
stresses in the stress-energy tensor have been considered. Concerning the micro-
physics context, the authors have applied a hadron hot EoS2 built with a RMF
approach, in which Λ hyperons and also light and heavy nuclei have been included.

It’s known that in a differentially rotating medium the tangential stresses be-
tween adjacent layers, which are connected with the existence of magnetic field,
turbulence (eddy) and molecular (shear) and radiative viscosities, are the mecha-
nisms of transport of angular momentum[159]. Generally, the last two viscosities
can be neglected in compact stars. In particular, in [160] it has been pointed out
that the Reynolds number estimated for quark stars is very big (∼ 1014), implying
a very small share viscosity. Concerning the effects of the magnetic field and the
turbulence, in the Newtonian approximation, one can estimate the total stress as
follows[159]:

wrφ = µ
∂vφ
∂r

= −
[
ρc2

s

(vt
cs

)
+ ρc2

s

( B2

4πρc2
s

)]
(5.1)

where wrφ is the tangential stress, µ is the viscosity coefficient, vφ is the circular
Keplerian velocity, vt the turbulent velocity, cs the speed of sound, ρ the density of
the medium and B the strength of the magnetic field. The first right hand side term
describes the stress generated by the turbulence, instead the last one represents
the magnetic stress. Usually one applies the parametrization for the total stress
−wrφ ≡ αρc2

s where α is a viscosity parameter. This one in the case of a turbulent
mechanism is always smaller than 1 [159]. Since the simulations have been done
through a neutrino-radiation-viscous hydrodynamics code, the authors have studied
the general evolution of the massive NS-binary merger determined only by the eddy
neutrino-radiation-driven viscosity, without considering magnetic fields. Being the
eddy viscosity defined also as ηt = ρvtL, where L is the maximal scale of the turbulent
cell [159], from the eq.5.1 the authors have chosen the following prescription for the

2The dependence of the EoS on the temperature must be taken into account to probe the first
moments after the merger.
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kinematic viscosity ν:

ν =
ηt
ρ

= αcsL (5.2)

where they have put L = 10km, because it should be approximately equal to the
size of the remnant. As the fiducial model they have considered α = 0.02, which
is in agreement, at least for the outer part of the remnant, with some recent high-
resolution global magneto-hydrodynamical simulations for a binary neutron star
merger[158]. The simulations have shown that within the first . 20ms, the vis-
cosity plays a relevant role in the angular momentum redistribution. In particular,
the angular momentum of the high angular-velocity disk located out of the star’s
core (see Figure5.1) is transported towards low angular-velocity regions, especially
spinning-up the central core. This quite rapid process produces a mostly uniformly
rotating object with a central spin frequency of the order of 1kHz. These results are
shown in Figure5.2. We consider such an evolution for the remnant of the HS-QS
merger.
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Figure 5.2: Angular velocity profiles on the equatorial plane at different times. The
evolutionary track has been obtained for the fiducial model DD2-135135-0.02-H. See more
details in the text and in the original paper [158].

5.3.2 Stability of a uniformly rotating QS

During the earliest stages of the post-merger phase, a large number of quark-nucleation
processes take place inside the remnant. Indeed, due to the high masses involved in
this phase (MB

tot = 3.04M�), a quark deconfinement in the core of the star is well
expected. Within timescales ∼ms mostly of the inner part of the remnant is com-
posed of quark matter. Moreover, since one of the two binaries before the merger
was already a QS, lots of quark-drops should be located also in the star’s envelope.
In this way, the slow (∼ 10s) diffusive mechanism converting hadron matter into
quark matter in the outer regions of the star, predicted by the two-families scenario,
should be accelerated because of the decrease of the lengthscales of the process. In
fact, like ordinary diffusive processes, the time involved during the deconfinement
scales with the distances like τ ∼ d2. Because of these considerations, we expect
that the process of quark deconfinement is completed in . 1s. For simplicity we
assume in the following that a quark star is already formed after few tens of ms.
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Therefore at the end of the evolution depicted in Figure5.2, a 1kHz mainly uniformly
rotating quark stars is formed. The main features of uniformly rotating quark stars
are investigated in Figure5.3.

Figure 5.3: Gravitational mass-radius diagram obtained with LORENE/rotstar applying
the quark matter EoS. Here, the point A represents our model of 1kHz uniformly rotating
model quark star, with baryonic mass of 2.94M�, which we expected to be formed ∼ 10ms
after the coalescence. See more details in the text.

Here we report the gravitational mass vs central mass-energy density diagram
computed by using the LORENE/rotstar code and applying the quark-matter EoS.
In the plot, the thick-solid black line represents the sequence of non-rotating mod-
els, the thin-grey curves instead represent sequences of uniformly rotating models
with constant angular momentum (whose values are indicated on the left side of
the diagram) and the green curve describes models with constant spin-frequency
of 1kHz. Moreover, the sequences of uniformly-rotating stars with constant bary-
onic mass are represented with cyan lines; each value of the mass is reported in
the plot. We can note that supramassive quark star configurations have baryonic
masses bigger than 2.83M�. The yellow curve is the Keplerian sequence and the
magenta curve is the turning-point line. Eventually, all the solid/dashed curves are
related to models which are secularly stable against non-axisymmetric instabilities
(i.e. β < 0.14); instead, all the dotted curves are associated with unstable models.
We have indicated in the plot with the point A the quark star that we assumed to
be formed ∼ 10ms after the merger, whose baryonic mass is equal to 2.94M�. It is
a supramassive star. Therefore if it loses angular momentum along a sequence with
constant baryonic mass it will pass the turning-point line, collapsing to a BH within
dynamical timescales. An other important result turns up from the plot: the triaxial
secular-instability is a very common feature of rapidly rotating quark stars. This is
in agreement with others recent studies previously discussed, in which it has been
shown that quark stars can reach large triaxial deformations before terminating the
sequence at the mass-shedding limit[99]. There are several works which have noted
that the values of β are generally higher in quark stars compared to others NSs.
These values are high for rapidly rotating quark stars also with moderate masses
(for which cases one could expect more stable objects since |W | is bigger); for in-
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stance, β ∼ 0.2 for a rotational period of 0.86ms and a baryonic mass of 1.60M�
[107]. Therefore, this seems to indicate that triaxial instabilities could develop more
easily in rotating strange stars. This is probably due to the fact that QSs are strong-
self-bound objects, and not self-gravity bound systems like ordinary NSs. Here we
have just reported a rough analysis of the triaxial instability in quark stars. In-
deed we have based it on the Newtonian limit for the secular bar-mode instabilities,
i.e. β . 0.14, which corresponds to the bifurcation point between the Maclaurin
and the Jacobi sequences. Actually, for relativistic compact stars the bifurcation
point depends on the compactness of the star (M/R) and it differs slightly from the
classical value. However, we can consider an other recent result. As shown in [99]
the bifurcation point to triaxial sequence of QSs happens at a spin period of ∼ms,
corresponding to a GW emission due to the instability with frequencies ∼kHz. Our
model labeled with the point A in Figure5.3 has a spin frequency of 1kHz and it
is correctly located very close to the edge of the β-stable region. In fact, models
on the right of A are all stable against bar-mode instabilities. We can expect that
β-instabilities have played an important role during its early evolution. Actually,
in Figure5.3 we have report only the secularly-unstable/stable models. For bigger
values of β dynamical bar-modes instabilities allow to dissipate a great amount of
energy within very short timescales (∼ms). In our plot these β-instabilities concern
models with the same baryonic mass of A (2.94M�) and higher frequencies, which
are closer to the mass shedding limit. In particular, on the Keplerian curve β ≈ 0.25.
Therefore, we can expect that the considerable amount of rotational kinetic energy
of the quark star has been dissipated mainly through dynamical bar-mode instabili-
ties during the early times after the merger. The secular-stable configuration labeled
by A would be the end-point of this early evolution, where the dissipation of energy
through bar-mode instabilities is over. In our scheme the stellar remnant formed
after GW170817 has not collapsed rapidly to a BH once a Keplerian configuration
with maximum mass has been reached (as predicted in [161]), but it has dissipated
enough rotational-energy to attain a 1kHz uniformly rotating configuration within
timescales ∼ (10 − 20)ms. This object is far from the mass-shedding limit, as we
can see from Figure5.3. The energy dissipation happening during the first tens of
milliseconds after the merger has restored the β-stability of the object at this point.
Therefore it should be an axially-symmetric β-stable quark star, uniformly rotating
at 1kHz frequency.

5.4 Evolution for t & (10− 20)ms

In this section we discuss the ultimate evolution of the QS, lasting up to some
seconds. At the end of the previous step we have considered that a 1kHz uniformly
rotating QS was formed. We now discuss the possibility of emitting GWs due to a
deformation of the star’s shape induced by an internal toroidal magnetic field. The
braking due to the GWs will slow down the region deformed by the toroidal field.
While we assume that the most inner region of the star preserves its initial angular
momentum during the evolution. Initially we discuss the strength of the toroidal
field needed to generate such a deformation. We also show that there can be an
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external poloidal field strong enough to generate a short-GRB but at the same time
sub-leading respect to GWs in the braking of the rotation. Finally, we illustrate the
evolution of the differentially rotating QS down to its collapse to a BH.

5.4.1 Toroidal and poloidal magnetic fields

Until this point our scheme provides a possible evolutionary scenario for the first
∼(10-20)ms of the post-merger phase. This early phase is characterized by a great
dissipation of energy through GWs, due to β-instabilities, whose frequencies are
expected to be ∼kHz. This is confirmed by numerical simulations showing a strong
GW emission during the post-merger. Nevertheless, the comparison of this scenario
with the observational data represents a great challenge for us, since GW170817
has been detected only during the inspiral phase and no signals have been observed
during the merger and in the ring-down phase.

However as we have previously reported, in [1] the evidence of a GW post-
merger signal has been proposed. While this observation has been challenged in
the analysis of [3], here we ask ourselves how this emission could be explained. In
particular, an interpretative scheme has to include: a mechanism that is able to
explain the descending chirp starting at frequencies of ≈ 700kHz and ending at
≈ 300Hz, through a sequence of configurations which are dynamically stable during
the entire evolution; the emission of ∼ 3.6·1051erg by GWs; a mechanism that allows
to generate the short-GRB observed after the merger.

It’s known that NSs are generally characterized by very strong poloidal magnetic
fields, since the conservation of the magnetic flux during the core collapse SNe which
form them. This field is frozen into the stars and it can couple with the rotational
field inside them. A differential rotation in the star would create an inner toroidal
field from the poloidal component thanks to the so-called ω-process. This is a well
known mechanism described within the classical one-fluid Magneto-Hydrodynamics.
In our scheme the best moment to generate the differential rotation is during the
process of quark deconfinement driven by the diffusive mechanism. This phase that
can last up to ∼ 1s in our scenario and it is characterized by the presence of two
components which rotate with different velocities. The inner toroidal field could
reach strengths ∼ 1017G inside NSs, as reported in some recent analysis (e.g. [162]).
In particular, one may estimate the maximum interior magnetic field to be as high
as 1018G. With such a mechanism the star looses part of its rotational kinetic energy
increasing the strength of the toroidal field. This would happen within a not steady
process but oscillating: when much of the available kinetic energy of the differential
rotation has been transformed into toroidal magnetic energy, the magnetic tension
forces react back and reverse the motion, developing a torsional, standing, Alfvén
wave in the star [162]. This wave is not damped inside NSs because their very
low shear and bulk viscosities, above all in the case of quark stars. In this way
the system starts to oscillate like a torsion pendulum. This oscillation generates a
quadrupole-mass moment, allowing the star to emit GWs.

We consider the process above described as the guiding mechanism of the dynam-
ical evolution of our quark star model. In particular, we can estimate the strength
of the inner toroidal magnetic field by considering the amount of energy emitted
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through GWs during the descending chirp. The module of the rate of the energy
emission due to the mechanism is [163]:

Ė
Bφ
GW =

32G

5c5
(IεB)2Ω6 (5.3)

where I ≈ 0.2MR2 is the star’s moment of inertia, εB is the ellipticity induced by
the magnetic field and Ω/2π is the spin frequency of the object, which is equal to
half of the emission frequency of the GWs (this fact is well demonstrated in [163]).
The ellipticity is given by[164]:

εB = −ke × 10−12R4
10M

−2
1.4B

2
φ12 (5.4)

where ke is a parameter depending on the internal magnetic field configuration, Bφ12

is the toroidal magnetic field (in units of 1012G) and M1.4 is the mass (in units of
1.4M�) and R10 is the radius (in units of 10km) of the star. By combining the above

equations and writing the emitted energy as Ė
Bφ
GW ≈ xM�c

2τ−1 (where τ ∼ 1s as
inferred from [1]), one finds that:

Bφ12 ≈ 7× 108
( M1.4

√
x

keR6
10Ω3

100

)1/2

(5.5)

where Ω100 is the angular velocity in units of 100Hz. In our case, at the beginning
of the chirp, from the data in [1] and the results of LORENE/rotstar we have
that: M ≈ 2.5M� and R ≈ 16km, Ω/2π ≈ 350Hz and x ' 2 × 10−3. Moreover,
ke ' [0.5− 5] [164]. We take the mean value ke ≈ 2. Therefore, the strength of the
inner toroidal field is:

Bφ ≈ 3× 1017G (5.6)

which is in agreement with the estimates reported in [162] and, above all, it is well
below the maximum field ∼ 1018G. This is the inner field required to our quark star
for emitting the amount of energy estimated in [1] through GWs. Moreover, concern-
ing the strength of the external poloidal field Bθ, we can estimate it by considering

a magnetic-dipole emission of EMWs at a rate . Ė
Bφ
GW . This is comparable with

the typical luminosity of short-GRBs (∼ 1051ergs−1). We can apply the well known
”magnetic-dipole model” of pulsars [163]. In the case of a NS rotating uniformly
in vacuum at a frequency Ω and which possess a magnetic dipole moment m, the
energy radiated by the time-varying dipole moment at the frequency Ω/2π (half of
the frequency of GW signals) can be estimated from:

ĖBθ
EMW ∼ −

B2
θR

6Ω4

6c3
(5.7)

By taking the module of the above equation and considering again that ĖBθ
EMW =

xM�c
2τ−1 with τ ≈ 1s, we obtain that:

Bθ ≈ 1.7× 1021G

√
x

R3
10Ω2

100

(5.8)

Now by using the above values for the radius and the spin frequency of the star, the

condition ĖBθ
EMW . Ė

Bφ
GW gives Bθ . 3.8× 1016G. This strength is comparable with
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some estimates provided by recent works, in which the authors have modeled the
observed X-ray light curves of several short-GRBs by assuming a proto-magnetar as
the inner engine of such events (e.g.[165]).

From this calculus we have pointed out a very important result. By assuming an
external poloidal magnetic field of ≈ 1 × 1016G, we can easily power a short-GRB
via the proto-magnetar model and at the same the rotational energy emitted via
EMWs is one order of magnitude smaller than the energy emitted via GWs. Notice
that in our discussion we are considering values of the poloidal magnetic field one
order bigger than those reported in [166].

Eventually, we discuss the effects of the viscosity during the conversion process
of the poloidal field into the inner toroidal field. As we have previously argued
the shear viscosity is largely negligible inside quark stars. However, as reported in
[162], the energy of the torsional oscillation could leak out of the star because of the
presence of a second viscosity due to the magnetic field. In [162] this is named as bulk
viscosity. The Alfven wave, being non-compressive, is not damped by bulk viscosity
at the linear approximation. Nevertheless, the Alfvén torsional oscillation is not
linear and, because of a non-resonant coupling, magnetic-pressure gradients make
compressive the oscillation. Therefore, the bulk viscosity acts on this compressive
part of the non-linear oscillation, damping it within a few time. The calculation
of such a damping is done by solving the MHD equations perturbatively to second
order. In [162] a more simple and approximate estimate is proposed, treating the
specific case of a strange-quark star. Here it’s shown that for normal quark stars the
time-scale of the damping process is about:

τ = 4.8× 1010T 2
9m
−4
s100 s (5.9)

where T9 is the equilibrium temperature of the medium (in units of 109K) and ms100

is the mass of the quark strange (in units of 100MeV). Clearly, this time is very
long. Therefore, during the evolution of our quark star model, lasting about few
seconds, we can assume that the effects of the bulk viscosity are largely negligible.
This guarantees the efficiency of the process of GW emission driven by the magnetic
field during the entire descending chirp.

We suggest that the descending chirp in GWs observed in [1] would be due to the
coupling between the rotation of the star and magnetic field frozen into the plasma of
quarks. In particular, as shown in [164], with the growth of the internal toroidal field
the ellipticity of the star becomes dominated by the magnetically induced, prolate
deformation. This deformation is particularly relevant in the outer regions of the
star, slowing them down together with the GW emission. Therefore, we assume
here a bi-component structure of the quark star: an outer slowly-rotating matter
distribution, strongly deformed by the toroidal field; a inner central core still rapidly-
rotating at a ∼ 1kHz frequency. Since the weakness of the viscosity forces, such a
differential rotation coupled with the magnetic field inside the star is maintained for
a sufficiently long time (& 1s), i.e. up to the collapse to a BH.

Modeling the descending chirp

We depict here our interpretative scheme of a post-merger extended emission in
GWs, based on the detection of the descending chirp reported in [1]. During its
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evolution towards the collapse our supramassive quark star looses rotational energy
by emitting GWs, according the mechanism previously discussed. It also preserves
its baryonic mass. In particular, since the last detected frequency of the descend-
ing chirp is ≈ 300Hz, the evolutionary track in our scheme starts from the 1kHz
uniformly rotating object and ends at a differentially rotating configuration with
equatorial spin frequency of ≈ 150Hz and central frequency still of 1kHz. Eventu-
ally, part of the rotational energy is also dissipated via EMWs in order to generates
the short-GRB.

In our analysis we make use of the LORENE/rotstar code, without employing
full general relativity time-dependent simulations. Therefore, we figure the entire
evolution through stationary equilibrium configurations characterized by different
degrees of differential rotation. We need to verify if stable differentially rotating ob-
jects with equatorial frequency as small as ≈ 150Hz can be obtained with our EoS.
As shown in [167], we can apply the turning-point line criterion to study the stability
of differentially rotating compact stars with good accuracy. We use it to determine
both the secular and the dynamical stability against axially-symmetric modes of the
several configurations. Therefore, along the sequence of constant baryonic mass of
2.94M�, the model with the minimum angular momentum represents the last stable
equilibrium model. The secular and dynamical stability against non-axially symmet-
ric modes are studied here by considering again the criterion β ≤ 0.14. Eventually,
we apply the well discussed ”j-constant law” for defining the differential rotation
inside the star. Clearly, this represent a remarkable limit for our evolutionary sce-
nario; however, it ensures the Rayleigh local stability for each configuration during
the track. A representation of the typical rotation profile inside our configurations
is reported in Figure5.4.

(a) 1-dimensional plot of the rotational profile
on the equatorial plane obtained with the ”j-
constant law”.

(b) 2-dimensional plot of the rotational profile ob-
tained with the ”j-constant law”.

Figure 5.4

The results of our analysis are shown in Figure5.5. Here we report the gravita-
tional mass vs central mass-energy density diagram for several equilibrium configura-
tions together with the track of the differentially rotating QSs during the descending
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Figure 5.5: Gravitational mass-central mass-energy density diagram for several models
of QSs computed with the LORENE/rotstar code. Here, both static and uniformly and
also differentially rotating objects are probed. The dashed-dotted light-blue line is the
evolutionary track proposed to explain the descending chirp in GWs reported in [1]. See
more details in the text.

chirp. In the plot, the black curve represents the sequence of static models, instead
the green one is the Keplerian sequence. With different colours and dashed curves we
mean differentially rotating QSs, whose central frequency is fixed at Ωc/2π =1kHz
and the equatorial frequency changes among them. In particular, the value of Ωe/2π
for each curve is reported in the plot. For all the sequences, the dotted branches are
associated with models having β & 0.14. Eventually, the dashed-dotted light-blue
curve describes the sequence of models with constant baryon mass of 2.94M�. This
is the evolutionary track of our quark star. A first important point that turns up
from the plot is that the model evolves through configurations which become more
and more β−stable as the equatorial frequency decreases. Therefore, the differential
rotation acts for the stability of the star against non-axisymmetric modes. This can
be explained by considering that β = T/|W | and along the track the model preserves
its baryonic mass decreasing the mean angular velocity. In particular, we have that:

T

|W | =
T

|MG −MB − T − U |
=

1

|(MG −MB − U)/T − 1| (5.10)

Since MB is conserved and also MG doesn’t change very much along the track (the
relative change is ∼ 10%, as inferred from the plot), we need to know the variation
of the internal energy U during the decrease of the mean angular velocity of the star
(δT < 0). From the plot we can note that the mass-energy density increases as the
envelope of the model slows down. This is due to the weakening of the centrifugal
forces on the ourter regions during the evolution. Because we are treating a cold
EoS, which describes a completely degenerate quark matter’s fluid, the increasing of
the density implies δU > 0. Together with δT < 0, this provides the decreasing of
the β parameter as the star slows down. Eventually, our results show that the turn-
ing point of the sequence with constant baryonic mass is very close to the maximum
gravitational-mass configuration of the sequence with equatorial frequency of 500Hz.
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Figure 5.6: Gravitational mass-central mass-energy density diagram for several models
of QSs computed with the LORENE/rotstar code. Here, the black line is the sequence
of static models. Sequences of differentially rotating QSs are represented by the dashed-
curves; these have a fixed equatorial frequency of 150Hz and different central frequencies,
from 500Hz to 2kHz. As reported on the plot, all the models compute are β-stable.

Unfortunately, our quark star never reaches an equilibrium configuration with equa-
torial spin frequency of ∼ 150Hz, but it overcomes the last stable configuration thus
collapsing to a BH within dynamical timescales. The problem is that with such a
small frequency at the equator, the gravitational mass of a compact star cannot be
quite bigger than MTOV . In particular in Figure5.6 we note that this behaviour is
almost independent on the value of the central spin frequency. Indeed, even consid-
ering Ωc/2π = 2kHz for a fixed Ωe/2π = 150Hz, the increasing on the gravitational
mass is very small. Unfortunately, our scheme seems not able to explain correctly
the descending chirp in GWs reported in [1]. Nevertheless, one could investigate
how the results change by taking for instance a more stiff EoS for the quark matter,
i.e. a more high MTOV . This would allow the sequence with Ωe/2π ∼ 150Hz to be
closer to our evolutionary track. An other possibility could be the changing of the
rotational law. Indeed in our models only the inner part of the core rotates fast, as
it can be easily noted in Figure5.4. It is clear that a rotational law involving a more
large rapidly rotating core at frequencies ∼ 1kHz, satisfying the Rayleigh local sta-
bility criterion at the same time, would allow sequences with more high gravitational
masses because of the strengthening of the centrifugal forces.
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Conclusions

Our analysis have pointed out that in order to explain a possible extended emission
in GWs as suggested in [1] three ingredients are required: a value of MTOV at least
of the order of 2.3 − 2.4M�; a differential rotation lasting at least few seconds,
indicating a very small viscosity; a very strong internal toroidal field generating the
deformation at the origin of the post-merger GW signal.

All these requests somehow support that a strange-quark star was formed during
the post-merger phase. Indeed, within a one-family scenario, such large a value of
MTOV is in tension with the upper limit on the tidal deformability Λ̃ < 720: as
reported in [139] the parameter space allowing that value of MTOV is rather limited.
Instead, in this thesis, we have explicitly built an example of a model, basing on
the two-families scenario and satisfying both the request on MTOV and the limit on
Λ̃. Moreover, a very low value of viscosity is also compatible with quark matter as
indicated in [162]. Finally, the formation of a very strong internal toroidal magnetic
field is facilitated by the presence of a relevant differential rotation. Within the two-
families scenario, at t. 1s the compact object is constituted by an inner part entirely
made of quarks and an external hadronic layer: such a bi-component structure could
be at the origin of the strong differential rotation. In the future the present analysis
could be extended to a larger set of differential rotation profiles, in particular having
a larger rapidly rotating inner core. In such a way a better interpretation of the
post-merger signal reported in [1] could be obtained.
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[42] D. Psaltis and F. Özel, “Pulse Profiles from Spinning Neutron Stars in the
Hartle-Thorne Approximation,” , vol. 792, p. 87, Sept. 2014.

[43] D. Page, “Surface temperature of a magnetized neutron star and interpretation
of the ROSAT data. 1: Dipole fields,” , vol. 442, pp. 273–285, Mar. 1995.
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