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INTRODUCTION 

In recent decades, the global financial landscape has witnessed a surge in banking crises, 

causing substantial economic and social damage across developed and developing economies 

alike. The 1990s and early 2000s marked a period of heightened financial instability, with crises 

ranging from the collapse of banking systems in emerging markets to the profound disruptions 

experienced by developed western economies. The recurrence of banking crises is not a new 

phenomenon, with historical precedents such as the Great Depression serving as reminders of 

the potential catastrophic consequences. The post-World War II era saw a period of tight 

regulations on banks in response to past crises, temporarily mitigating the issue. However, a 

general trend toward financial liberalisation began in the 1970s, leading to a resurgence of 

banking problems. From the Mexican and Argentine crises in the 1990s and the Asian financial 

turmoil in 1997-1998, to the Great Financial Crisis (GFC) of 2008, these events have emerged 

across different geographical boundaries, posing significant challenges to policymakers. 

The costs associated with resolving these crises have been enormous, often reaching double-

digit percentages of GDP in affected countries (Laeven and Valencia, 2020). The global 

financial crisis of 2008 demonstrated the rapid and far-reaching consequences of a banking 

calamity. The interconnectedness of financial systems across continents led to prolonged 

economic and financial losses, with adverse effects persisting for years. The financial 

institutions, once considered guardians of depositors' savings, found themselves at the centre of 

a crisis that shook the foundations of economies worldwide. The aftermath of such crises 

includes severe unemployment, increased poverty, weakened exports, and pro-cyclical 

spending by governments, exacerbating the economic challenges faced by affected nations. 

These crises, often triggered by a variety of factors, have highlighted the strong need for 

effective early warning systems and predictive models capable of identifying the conditions 

leading to financial turmoil. Identifying robust predictors of financial crises is challenging due 

to limited observed crises, the delayed signalling of crisis indicators, missing data, and the need 

for transparent models that facilitate timely intervention by macroprudential authorities. The 

development of such systems is crucial not only for mitigating the economic and social costs 

of crises but also for guiding policymakers in crafting effective pre-emptive measures. 

This thesis has the goal to present to the reader the past evolution and the actual state of the art 

of the literature on the different models available to forecasters, their basic functioning, and the 

results obtained in terms of model effectiveness and variables’ significance. Then, a baseline 
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analysis conducted by the author, followed by multiple variants of the same analysis, is 

evaluated, and compared to the literature’s previous results. The author’s models are trained 

targeting the pre-crisis periods, defined as the three years preceding a crisis event, and then 

tested recursively year-by-year on the testing data subset, trying to classify whether any 

observation belongs to the pre-crisis or tranquil-period category. A framework including 

multiple predictors and lags is used, with the objective of identifying the best algorithms and, 

when possible, the impact of each individual variable on the predicted outcome. An important 

condition applied to this objective is to evaluate each model in a framework as close as possible 

to a real-world implementation, so to obtain an honest and unbiased look at real performance. 

This implies a strict separation between the training dataset and the testing dataset during both 

training and testing. 

This dissertation is structured as follow: first, a definition of what constitutes a financial crisis 

is given, retrieving the criteria from the same authors who built the databases used in the 

analysis. After this, the most popular machine learning models in the literature are explained in 

their basic functioning, and an explanation of the different evaluation parameters is given. 

Following this, a review of the literature on the argument shows the methodologies adopted in 

different economic papers, achieving different, and sometimes opposing, interpretations. Then 

the author of this Thesis lists the twelve specific predictors implemented in his analysis, nine 

domestic and three international, explaining their involvement in the economic mechanisms 

leading to financial distress. These predictors are then included in a baseline exercise, followed 

by multiple experiment both inspired by the literature and designed by the author. The 

predictions are then analysed and assessed, with a subsequent examination of the accuracy of 

forecasts related to specific events. The results are finally used to observe what the best models 

forecast for the future in a small, selected panel of countries. This Thesis takes inspiration 

mostly from the work of Beutel et al. (2018), whose research will be presented in the following 

chapters. 
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FINANCIAL CRISES 

The objective of this chapter is to establish a precise definition of financial crisis. Such a 

definition is crucial for conducting an accurate comparison of this dissertation with the rest of 

the literature on the subject. Furthermore, extending this research to future real-world scenarios 

requires to update crisis databases with the most recent events. It is imperative that these new 

events align cohesively with past events’ definition for consistency and relevance, so to reduce 

arbitrariness on what constitutes a financial crisis. This Thesis implements three main banking 

crises databases from three different authors. What follows is a report of crisis definition from 

each author and an overview of the databases’ content. 

 

Definitions 

The backbone of the crisis’s dataset used in this work is retrieved from Laeven and Valencia 

(2020), which is an updated version of previous datasets of the same authors (Laeven and 

Valencia, 2008, 2013, 2018). Along these many versions, the definition has remained the same. 

The authors state that a banking crisis is defined as an event that meets two baseline conditions: 

• Significant signs of financial distress in the banking system (as indicated by significant 

bank runs, losses in the banking system, and/or bank liquidations). 

• Significant banking policy intervention measures in response to significant losses in the 

banking system. 

The first year when both criteria are met is considered as the year in which the crisis became 

systemic. In case of severe losses or liquidations, the authors treat the first criterion as sufficient 

if any of these two conditions are met: 

• Non-performing loans (NPL) above 20% of total loans or at least 20% bank closures of 

banking system assets. 

• Fiscal restructuring costs of the banking sector exceeds 5% of GDP. 

The second baseline condition, policy interventions, is considered significant by the authors if 

at least three of the following six measures had been adopted: 

• Deposit freezes and/or bank holidays: this aspect gauges government-imposed 

restrictions on deposit withdrawals or bank holidays. 
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• Significant bank nationalisations: involve government takeovers of systemically crucial 

financial institutions, encompassing cases where the government acquires a majority 

stake in their capital. 

• Bank restructuring fiscal costs: refers to gross fiscal outlays dedicated to financial sector 

restructuring, notably recapitalisation costs. Considered significant if exceeding 3% of 

GDP, excluding direct treasury liquidity assistance. 

• Extensive liquidity support: measured as central bank claims on other depository 

institutions and direct liquidity support from the Treasury. An extensive ratio exceeding 

5%, more than doubling relative to pre-crisis levels, signifies significant liquidity 

support. 

• Significant guarantees put in place: highlights substantial government guarantees on 

bank liabilities, encompassing full protection of liabilities or extensions of guarantees 

to non-deposit liabilities of banks. It excludes actions that solely elevate deposit 

insurance coverage. 

• Significant asset purchases: denotes acquisitions of financial institutions' assets by the 

central bank, treasury, or government entities (like asset management companies). 

Significant asset purchases are those exceeding 5% of GDP. 

These clear-cut thresholds allow for an objective distinction of events, which is lacking in the 

similar works of other authors who implemented criteria based on a narrative approach. Laeven 

and Valencia’s database is constructed on the observations from 206 countries over the period 

1970-2017. In total, the database covers 151 systemic banking crises meeting the already 

mentioned criteria. A great advantage of Laeven and Valencia’s database is that they also report 

the duration and end period of each crisis. End dates are defined as the year before both real 

GDP growth and real credit growth are positive for at least two consecutive years. However, 

the authors truncate the maximum duration of a crisis at 5 years, because their metric may start 

picking up the impact of other shocks. This database is further extended by Nguyen et al. (2022) 

who used the same criteria as Laeven and Valencia to analyse banking crises of the years 2018 

and 2019 but found that no new events have arisen. 

The second database this dissertation draws from is that by Reinhart and Rogoff (2008). To 

define a banking crisis, they do not rely on quantitative criteria, opting for an approach based 

on narrative. Stating the authors, banking crises may be of two types: 

• Bank runs that lead to the closure, merging, or takeover by the public sector of one or 

more financial institutions. 
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• If there are no runs, the closure, merging, takeover, or large-scale government assistance 

of an important financial institution (or group of institutions) that marks the start of a 

string of similar outcomes for other financial institutions. 

The authors also argue that they are aware that such approach could lead to the identification 

of a crisis date too early (because the worst of a crisis may come later) or too late (financial 

problems usually begin well before a bank is finally closed or merged). This database analyses 

the emergence of banking crises in history up to the Great Financial Crisis, for both advanced 

and emerging countries, also indicating the duration. 

One last addition to the complete dataset of this work is drawn from Jordà et al. (2017). This 

is well-known research which encompass the main macroeconomic variables for 17 advanced 

economies since 1870 to 2013, as well as a dummy variable indicating the occurrence of a 

banking crisis in a particular year. Alas, they do not give a clear-cut quantitative definition of 

such events, nor they provide information about the duration of distress. 

 

Database 

The works of these three research groups are implemented in the Thesis by aggregating the data 

in a single database. The author started from the database of Laeven and Valencia, being it the 

one including the most countries, and having a quantitative and replicable criterion for defining 

crises. This implies that the final database will cover the period 1970-2019. Then, the events 

drawn from the other two databases after the year 1970 are added. Of course, most of the events 

between the three databases are corresponding, but some differences can be point out. For 

example, a Brazilian crisis in 1985-1986 caused by raging inflation is showed only by Reinhart 

and Rogoff, the 1995 Argentinian crisis has a duration of one year for Laeven and Valencia, and 

two years for Reinhart and Rogoff, while Jordà et al. miss all observations from developing 

countries. Jordà et al. also suffer from the missing end year of each crisis, but is partially 

bypassed by the author of this Thesis by assuming a duration of three years for each event 

uniquely pointed out by Jordà et al., which is the average duration recorded by Laeven and 

Valencia. The final database is the sum of all observations, so to achieve the maximum number 

of crisis events adopting the widest definition as possible. Including as many events as possible 

is important to the scope of this work, since banking crises are relative rare events, and their 

low number in the database could affect later analyses and the correct functioning of machine 

learning models, or the interpretability of their results. A further step is taken by separating the 

events recorded in advanced and developing countries. This will be of some importance later, 
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when analysing the behaviour of predictors before, during and after a crisis, given the 

fundamentally different structures of these two categories of economies, their different 

weaknesses, and reactions to such events. The author of this paper separates these two 

categories by referencing the distinction elaborated by the World Bank, which uses as separators 

the average income in USD, based on 2022 gross national income (GNI) per capita, calculated 

using the World Bank Atlas method. This is done so to implement an objective criterion based 

exclusively on economic factors. The four classes are: 

• Low income, $1,135 or less 

• Lower middle income, $1,136 to $4,465 

• Upper middle income, $4,466 to $13,845 

• High income, $13,846 or more 

For the purposes of this dissertation, only countries defined as high income will be accounted 

as advanced economies. 

 

Figure 1.1: Classification by income. Source: World Bank 

The overall database includes 204 separated episodes of banking crises in 204 countries over 

50 years, distributed as shown in Figure 1.2. 
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Figure 1.2: Number of crisis events. Author’s own elaboration 

Of all observations, 700 are recorded during a state of crisis by any of the three mentioned 

authors as explained above. Figure 1.3 shows the share of global GDP produced by countries 

which are facing a banking crisis year-by-year. 

 

Figure 1.3: World GDP share of countries facing a banking crisis. Author’s own elaboration 
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IMPLEMENTED MODELS 

Before getting started with the review of the literature about the argument of this dissertation, 

the author proposes a summary of the forecasting methods and algorithms implemented later in 

the Thesis, which for the great part coincide with the main models generally used in this 

research field. Machine learning (ML) algorithms are a subset of artificial intelligence (AI) that 

allow systems to learn and improve from experience, finding hidden insights and complex 

patterns without being explicitly programmed (Janiesch, Zschech and Heinrich, 2021). In other 

words, these algorithms enable pattern recognition, as well as predictions and problem-solving 

by learning from data. The history of machine learning spans several decades and has evolved 

through various stages of development, driven by advances in mathematics, computing power, 

data availability, and theoretical concepts. Even though the start of this field research can be 

traced back to Alan Turing (1950), the relatively recent explosion of computing power and the 

rise of the internet, digitisation, and cloud computing led to an explosion of data, enabling the 

development of more sophisticated algorithms. One of these evolutions is represented by 

Artificial Neural Networks (ANN), which are a sub-class of ML models inspired by the 

structure and functioning of the human brain's neural networks, and consist of interconnected 

nodes, known as artificial neurons or units, organised into one or more layers. A further 

advancement is brought by Deep Neural Networks, characterised by multiple hidden layers 

between the input and output layers. This gives an important advantage in terms of capabilities 

and complexity, but at the cost of requiring substantial computational resources or specialised 

hardware. Here follows a Venn diagram of machine learning classes: 

 

Figure 2.1: Machine learning diagram. Retrieved from Janiesch, Zschech and Heinrich (2021) 

The author of the Thesis implements both shallow and deep machine learning models. The 

process of implementation of a ML model requires three fundamental steps: 
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• Training: during training, the algorithm adjusts its parameters or internal representations 

to minimise the difference between predicted outcomes and actual results. The goal is 

to optimise the model's performance on new, unseen data. 

• Validation: after training, the model's performance needs validation on a separate dataset 

to assess how well it generalises to new data. Metrics such as accuracy, precision, 

AUROC score, or others specific to the problem domain are used to evaluate the model's 

performance and to fine-tune by adjusting hyperparameters. 

• Deployment: once satisfied with the model's performance, it can be deployed to make 

predictions or classifications on new data. 

ML models are quite heterogeneous, and can broadly be categorised into three main groups: 

• Supervised learning: involves training a model on labelled data, where the algorithm 

learns from input-output pairs to make predictions or classifications when given new, 

unseen data. These models could be split further into Classification model in which the 

output variable has a finite number of categories, and Regression model in which the 

output value is a real or continuous value. Supervised learning Classification algorithms 

represent the core of this Thesis, as well as the main tool used by the cited researchers. 

• Unsupervised learning: deals with unlabelled data and finds hidden patterns or intrinsic 

structures within it when there are no corresponding output variables. Common tasks 

include clustering, dimensionality reduction, and association rule learning. 

• Reinforcement learning: focuses on making a sequence of decisions to achieve a 

cumulative reward. Agents learn through trial and error by interacting with an 

environment with the goal of maximising the reward.  

Knowing the general functioning of these methods is also important for a later understanding 

of the results, their variability, and the differences with the results obtained by traditional 

econometric systems. For this regard, a description of the Logit Regression is also included 

since it will act as the main benchmark in this work and in great part of the papers in the 

literature. 

 

Logit Regression 

Logit (or Logistic) Regression is a statistical method which origins trace back to the 18th 

century. It is used for binary classification tasks, where the goal is to predict the probability of 

an observation belonging to a certain class. The output of the regression is a score between 0 
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and 1, interpretable as the likelihood of an observation belonging to a particular class, and in 

this Thesis represents whether the analysed year constitutes a pre-crisis period or not. This 

model has been widely used in the past, most noticeably in the medic field to assess the 

likelihood of a disease given a set of symptoms. Logistic Regression takes advantage of the 

Logistic function to model the relationship between explanatory variables and the dependent 

variable, with the Logistic function being: 

σ(𝑧)  =  
1

1 + 𝑒−𝑧
=  

𝑒𝑧

1 + 𝑒𝑧
  

with z being the linear combination of the independent variables and their coefficients: 

z𝑎 = 𝛽1𝑥1𝑎 + 𝛽2𝑥2𝑎 + ⋯ + 𝛽𝑛𝑋𝑛𝑎 

The Logit Regression then estimates the coefficients (β0, β1, ..., βn) so to minimise the error 

between predicted probabilities and actual observations, by maximising the likelihood function. 

The Logit Regression is the preferred econometric tool on this field of research given its output, 

a probability comprised between 0 and 1 for any predictors’ values, over the linear regression 

which output values may go from −∞ to +∞ as in this graph: 

 

Figure 2.2: Logit and Linear Regression. Retrieved from econometricstutorial.com 

Logit Regression has the advantage of easy interpretability since the resulting coefficients 

represent the effect of each independent variable in the log-odds of the dependent variable. 

However, Logit Regression assumes a linear relationship between all explanatory variables and 

the log-odds of the dependent variable, which is a weak assumption in the economic field this 

Thesis is studying. This is stressed by Lo Duca and Peltonen (2013) who argue that the 

probability of a crisis increases non-linearly as the number of fragilities increases. 
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Binary Classification Trees 

Binary Classification Trees (BCT), also known as Decision Trees, is a supervised machine 

learning model used for solving classification problems where the target variable has two 

possible outcomes (hence, binary classification). This technique originates from the field of 

statistics and operations research and can be dated back to the late 1950s, but one main precursor 

of this technique is the one proposed by Quinlan (1986). These models make predictions by 

recursively partitioning the feature space into regions based on feature values, and at each step, 

the data is split into “purer” sub-samples (also called child nodes) based on the feature that best 

separates the classes, that is, in this Thesis, whether the probability of a crisis either increases 

or declines significantly compared with the sample average (Duttagupta, 2011). There may be 

many different measures quantifying the homogeneity of classes within each partition to be 

used for splitting the datasets, but in the financial crisis prediction literature the predominant 

parameter is the Gini Index, which corresponds to the following impurity function i(t) to be 

minimised: 

igini (t) = Σ p0(t)p1(t) 

Another, less used, candidate is the entropy (or information gain) index: 

𝐸 = − Σ 𝑝𝑖 ∗ log (𝑝𝑖) 

These indexes reach a minimum value of 0 when the child nodes contain only one class of 

observation, either pre-crisis or tranquil period. The process starts at the root node, which 

includes the entire dataset, and then after the first split the process continues recursively for 

each resulting partition until a stopping criterion is met (e.g., maximum tree depth or minimum 

number of samples in a leaf node). Once a stopping criterion is reached, the process creates 

terminal nodes or “tree leaves” that contain the predicted class for that region of the feature 

space. To make a prediction for a new sample, the forecaster traverses the tree from the root 

node down to a leaf node based on the feature values of the sample. 
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Figure 2.3: Simple representation of a BCT outcome 

In this Thesis, BCT will be implemented using the Python scikit-learn library 

DecisionTreeClassifier, and the hyperparameters will be chosen among the following so to 

achieve the best results: 

 

Parameter ‘criterion’ determines the function used to measure the quality of a split. It can be 

set to "gini" for Gini Index or "entropy" for information gain, ‘max_depth’ sets the maximum 

number of levels in the decision tree, ‘min_samples_split’ is the minimum number of samples 

required to split an internal node, and ‘min_samples_leaf’ is the minimum number of samples 

required to be at a leaf node. It helps control overfitting by stopping the splitting of nodes if the 

number of samples is below this threshold. BCT have the advantage of great interpretability 

since the decision rules are easy to visualise and understand, and the best thresholds to split the 

data are explicitly pointed out by the algorithm. On the other hand, BCT can be prone to 

overfitting reducing the real-world forecasting capabilities, it is unable to provide the 

contribution of a particular variable and, given that at each node the model identifies one 

variable that best discriminates between pre-crisis versus tranquil-period cases, it could 

incorrectly omit other variables that are possibly equally good splitters (Duttagupta, 2011). It is 

important to notice that bigger trees fit better specific data noise but performs substantially 
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worse on new sets of observations drawn from the same population, as it is less likely to 

generalise out-of-sample data (Bluwstein et al., 2020). 

 

Random Forest 

The main issue with BCT, overfitting, can be partially solved with the use of Random Forest 

(RF) algorithms while preserving the positive characteristics of the simpler algorithm. Random 

Forest is an ensemble learning technique, resulting mainly from the contribution of Breiman et 

al. (1984), that combines multiple decision trees to create a more robust and accurate model. 

The term ‘ensemble’ points to the notion of a collection of multiple decision trees, where each 

tree is trained independently on different subsets of the training data and features. The core idea 

behind Random Forest is to build multiple independent decision trees using random selection 

of data, creating multiple diverse subsets in a process called bootstrap sampling. At each split, 

a random subset of data is chosen for further splitting, ensuring diversity in each tree. The 

multitude of trees constructed constitutes a ‘forest’, the algorithm then combines all BCT 

predictions (usually with averaging) to improve overall accuracy and reduce overfitting. 

 

Figure 2.4: Simple Random Forest representation. Retrieved from ibm.com 

The author implemented Random Forest using the Python scikit-learn library 

RandomForestClassifier. Hyperparameters used to grow the individual trees can be fine-tuned, 

such as maximum depth and minimum leaves, as well as the number of total trees in the forest. 

In the author’s work, they are drawn from the following: 
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The parameter ‘n_estimators’ set the number of individuals trees to be grown, while the other 

four parameters assume the same role as in DecisionTreeClassifier. Compared to the single 

BCT, Random Forest reduces overfitting by introducing randomness so to generalise better to 

new unseen data. It is also less sensitive to outliers and can provide a measure of feature 

importance based on how much each feature contributes to the model's accuracy. However, 

single Classification Trees may be highly correlated, therefore decreasing the general accuracy 

of the bootstrapped classifier. 

 

AdaBoost 

AdaBoost (Adaptive Boosting) is an ensemble learning method firstly proposed by Freund and 

Schapire (1996). It combines multiple weak learners or classifiers to create a strong learner, 

improving the accuracy of weak models by sequentially training them on different subsets of 

the data, emphasising the misclassified samples from previous iterations so to give larger 

weights to the observations that are more difficult to predict. The weaker classifiers are simple 

models such as single level decision trees with relatively low predicting power when considered 

individually, often performing only slightly better than random guessing. AdaBoost works in 

iterations, starting by assigning equal weight to each observation and then continuing in further 

iterations by assigning higher weights to the samples that were misclassified in the previous 

one. After training each weak learner, AdaBoost assigns a weight (or importance) to it based on 

its performance in classifying the training data. Models that perform better receive higher 

weights. The final prediction is obtained through a weighted sum of the predictions made by all 

weak learners, so to create the strong learner.  
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Figure 2.5: AdaBoost representation. Retrieved from almabetter.com 

The author of this dissertation implemented AdaBoost algorithm using the dedicated scikit-

learn library AdaBoostClassifier. AdaBoost allows for a variety of hyperparameters selection 

to fine-tune the algorithm process, and in this dissertation, they are chosen among these: 

 

Parameter ‘n_estimators’ represents the number of weak learners or iterations, while 

‘learning_rate’ controls the magnitude of the update applied to the weights of misclassified 

samples from the previous iteration to emphasise their importance in subsequent rounds. The 

term ‘adaptive’ in Adaptive Boosting comes from the ability of this algorithm to adapt to 

instances difficult to classify and learn from mistakes, and represents one of its main strengths. 

This model generally shows high predictive accuracy when confronted with simpler models, 

while reducing overfitting compared to single BCT. On the other hand, it may be sensitive to 

outliers in the data, has lower interpretability that the weak learners being a combination of 

multiple models, and it is computationally expensive especially when using a large number of 

weak learners. 
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K-Nearest Neighbours 

K-Nearest Neighbors (KNN) is an instance-based supervised learning algorithm, with instance-

based meaning that it stores the entire training dataset and makes predictions based on the 

similarity of new instances to existing data points. The assumption is that similar data points 

tend to have similar labels or outcomes, so the algorithm assigns the data points close to each 

other in the feature space to the same class. KNN was first developed by Fix and Hodges (1951) 

and expanded by Cover and Hart (1967). KNN can be used for classification or regression, with 

the former being the choice for banking crisis prediction. In the training phase, KNN stores the 

entire training dataset and for each new, unseen point of data, it calculates the distance between 

that point and all other points in the training dataset. Then, it identifies the k nearest neighbours 

to the new data point based on the calculated distances where ‘k’ is a discretional parameter. 

For classification tasks, the algorithm assigns the class label most common among its k-nearest 

neighbours (based on majority voting). 

 

Figure 2.6: KNN representation. With K=4 the green observation is classified as ‘blue’, with K=9 it is classified as ‘red’. 

Retrieved from researchgate.net  

As can be seen from Figure 2.6, KNN is very sensible to the choice of the parameter ‘k’ which 

can significantly impact the results. If it is too small, the estimation could be poor given data 

scarcity, if it is too big, the estimations can be too smooth lowering prediction power. The author 

of this Thesis implemented KNN from a dedicated library from scikit-learn, 

KNeighborsClassifier, and the hyperparameters are chosen among the following: 
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Where the parameter ‘n_neighbors’ is equivalent to the number of neighbours ‘k’ as described 

above, and ‘weights’ defines the weight function used in prediction. It can take values 'uniform' 

(all neighbours contribute equally) or 'distance' (closer neighbours have more influence). 

Parameter ‘metric’ is the distance measure used by the algorithm to determine the distance value 

between the k data points and the test sample. ‘euclidean’ refers to Euclidean distance and is 

the most common metric, measuring the straight-line distance between two points in space 

measured as follow: 

ⅆ(𝑃, 𝑄) = √∑(𝑞𝑖 − 𝑝𝑖)2

𝑛

𝑖=1

 

where P = (p1, p2, ..., pn) and Q = (q1, q2, ..., qn) are the coordinates of the two points in the n-

dimensional space. ‘manhattan’ refers to the Manhattan distance, also known as the L1 distance 

or taxicab distance, and is computed as follows: 

ⅆ(𝑃, 𝑄) = ∑ |𝑞𝑖 − 𝑝𝑖|

𝑛

𝑖=1

 

where P = (p1, p2, ..., pn) and Q = (q1, q2, ..., qn) are the coordinates of the two points in the n-

dimensional space. The last parameter, ‘minkowski’, is a generalised distance metric that 

includes both the Euclidean distance and the Manhattan distance as special cases. For two points 

P and Q in an n-dimensional space, the Minkowski distance ‘d’ between these points is 

calculated using the following formula: 

ⅆ(𝑃, 𝑄) = (∑|𝑞𝑖 − 𝑝𝑖|
𝑝

𝑛

1=1

)

1
𝑝

 

The ‘p’ parameter defines the degree of the Minkowski distance when ‘metrics’ value is 

‘minkowski’. When p=2, it represents the Euclidean distance, and when p=1, it represents the 

Manhattan distance. The author decided to set it equal to 3, so obtain a metric different from 

the other two when the value ‘metrics’ is set to ‘minkowski’. KNN is simple to implement and 

understand, providing transparency in predictions but at the cost of sensitivity to irrelevant or 

redundant features, as it considers all data points equally important. 
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Support Vector Machines 

Support Vector Machines (SVM) is an advanced and versatile supervised machine learning 

algorithm used for both classification and regression tasks, first developed by Cortes and Vapkin 

(1995). It's particularly effective in high-dimensional spaces and is widely used in various 

domains such as image classification and text classification. In the training phase, the primary 

goal of SVM is to find the best possible decision boundary (hyperplane in higher dimensions) 

that separates the dataset points belonging to different classes while maximising the margin, 

which is the distance between the hyperplane and the nearest data points of each class. These 

nearest data points are the ‘support vectors’, and their location influences the position and 

orientation of the decision boundary. SVM works well for linearly separable data, and when the 

dataset is not linearly separable then separability is achieved (or at least enhanced) by 

employing different ‘kernel tricks’. These kernel tricks implicitly map the data into a higher-

dimensional space where it becomes linearly separable, so to make it possible to find the 

optimal hyperplane. The optimal hyperplane is that which maximise the margin while 

minimising classification errors. Once the training phase is complete, new data points are 

simply classified based on which side of the hyperplane they fall. 

 

Figure 2.7: Representation of a two-dimensional SVM. Retrieved from researchgate.com 

The author of this study implemented SVM algorithm in Python using a dedicated library in 

scikit-learn, SVC. The hyperparameters are selected from: 



19 

 

 

Value ‘C’ is the regularisation parameter. It controls the trade-off between maximising the 

margin and minimising the classification error by introducing a misclassification penalty. 

Adding tolerance towards misclassification (lower ‘C’) allows for larger margins and then more 

robust classification towards perturbations of the original data, for example when predicting the 

label of new data points (Beutel et al., 2018). ‘kernel’, as explained previously, is the type of 

function that maps the data onto higher-dimensional space and can assume four different values: 

‘linear’ is the simplest kernel and represents a linear relationship between input features: 

𝐾(𝑥, 𝑥′) = (𝑥𝑇𝑥′ + 𝑐)𝑑 

Value ‘rbf’ points to the Radial Basis Function, the most favourited in the literature, which uses 

a Gaussian function to project data into an infinite-dimensional space: 

𝐾(𝑥, 𝑥′) = 𝑒(−𝛾‖𝑥−𝑥′‖
2

)
 

and in which γ (gamma) is a hyperparameter that controls the influence of each training example 

and is set through the value ‘gamma’ in the scikit-learn library. ‘poly’ is the Polynomial Kernel: 

𝐾(𝑥, 𝑥′) = (𝑥𝑇𝑥′ + 𝑐)𝑑 

where d represents the degree of the polynomial, and c is a constant term. By default, using the 

scikit-learn library, these values are equal to 3 and 0 respectively. The last kernel is ‘sigmoid’, 

which corresponds to the Sigmoid kernel based on the hyperbolic tangent function: 

𝐾(𝑥, 𝑥′) = 𝑡𝑎𝑛ℎ(𝛼𝑥𝑇𝑥′ + 𝑐) 

Given its nature, SVM can effectively manage large feature sets and work well with both 

linearly separable and non-linearly separable data thanks to the different kernels available. On 

the other hand, choosing the appropriate kernel could be challenging and introduces discretion 

into the model. SVM is also very computationally expensive, especially with large datasets, and 

lacks interpretability. 

 

Artificial Neural Networks – Multi-layer Perceptron 

Artificial Neural Networks (ANN) are a fundamental concept in machine learning and artificial 

intelligence, inspired by the structure and functioning of the human brain. They are a set of 

algorithms which try to mimic the way a biological brain processes information. They are one 
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of the most researched techniques in AI development during recent years, even though their 

origin can be traced back to the 1940s, with McCulloch and Pitts (1943) being credited with 

creating the first mathematical model of an artificial neural network used as a logic gate. These 

algorithms achieved impressive results in recent years, ranging from image recognition to 

generative AI. ANNs are composed of interconnected nodes called neurons arranged in layers: 

input layer, hidden layers (if multiple), and output layer. Each neuron receives inputs, processes 

them using an activation function, and produces an output. Activation functions introduce non-

linearity into the network, enabling it to learn complex patterns, and could be of many different 

variations based on researchers’ discretion. Since the author of this dissertation uses this model 

to predict financial crisis with a set of variables, the input layer will be composed of a neuron 

for each predictor, and the output layer will consist of just a single neuron to produce a 

continuous value representing the probability of a crisis. Neurons are connected through links 

that have an associated weight, each representing the strength of the connections, that are 

adjusted during the training process impacting the network’s behaviour. 

 

Figure 2.8: Example of a single hidden layer ANN with 4 variables. Retrieved from nicolamanzini.com 

In the training phase, data is fed into the network through the input layer and proceeds to the 

following layers in a process called ‘forward propagation’. Each neuron's weighted inputs are 

summed, passed through an activation function, and forwarded to the next layer. 
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Backpropagation is then used to adjust the weights of connections so to minimise the difference 

between predicted and actual outputs using a loss function (cross-entropy for classification 

purposes). Once training is completed after a pre-determined number of iterations, the final 

layer (output layer) produces the network's prediction or output based on the learned patterns 

in the data. ANNs with this kind of structure in the literature often take the name of ‘multi-layer 

perceptron’ or MLP. Several hyperparameters could be changed to affect the behaviour of the 

network, and in the dedicated scikit-learn library MLPClassifier used in this Thesis are drawn 

from the following: 

 

‘hidden_layer_sizes’ represents the architecture of the neural network by defining the number 

of neurons and the number of hidden layers. Value (10,) specifies a single hidden layer with 10 

neurons, while (5, 5) specifies two hidden layers with 5 neurons each. This is the most important 

parameter since it dictates the ability of the network to capture patterns and to map non-

linearities in data. As shown by Cybenko (1989), a single hidden layer containing a finite 

number of neurons (even a single neuron) can approximate a wide range of continuous 

functions, even if a more recent paper by LeCun, Bengio and Hilton (2015) highlights the 

benefits of deep architectures in learning intricate representations. Regarding the number of 

nodes in each hidden layer, there is no rule for an optimal number since too few neurons might 

lead to underfitting (the network might not capture complex patterns) and too many nodes might 

result in overfitting (the network might learn noise in the data and fail to generalise). A 

commonly suggested rule of thumb is to use a number between the number of input and output 

nodes. ‘activation’ refers to the activation function present in each neuron, and which 

determines how the weighted sum of inputs received from the previous layer is transformed and 

then passed to the successive layer. ‘relu’ stands for Rectified Linear Unit and is the simplest 

activation function. It outputs 0 for negative inputs and the input value for positive inputs: 

𝑓(𝑥) = 𝑚𝑎𝑥(0, 𝑥) 

‘logistic’ corresponds to the logistic (or sigmoid) function and squashes the output to values 

between 0 and 1: 

𝑓(𝑥) =
1

1 + 𝑒−𝑥
 

‘tanh’ is similar to the logistic function but outputs values between -1 and 1: 
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𝑓(𝑥) =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
 

The ‘solver’ parameter specifies the optimisation algorithm used to train the Multi-Layer 

Perceptron (MLP) neural network, influencing how the network weights are updated in the 

training phase. ‘adam’ stands for Adam Optimiser, which computes adaptive learning rates for 

different parameters from estimates of first and second moments of the gradients. ‘sgd’ stands 

for Stochastic Gradient Descent and implements the standard stochastic gradient descent 

algorithm. The ‘max_iter’ parameter specifies the maximum number of iterations (or ‘epochs’) 

the neural network will undergo during the training phase. High values could imply the need 

for heavy computational efforts, while low values might result in underfitting. In conclusion, 

MLP models constitute a versatile and universal category of algorithms, capable of extracting 

higher-level abstractions from raw input data even in the presence of non-linearities. 

Nevertheless, MLPs are prone to overfitting, especially with a limited dataset, are sensitive to 

hyperparameter tuning, and most importantly for the purpose of this research, they act as a 

‘black box’ making it difficult to understand how the model reaches its final predictions. 

 

Recurrent Neural Networks 

Recurrent Neural Networks (RNNs) are a class of artificial neural networks specifically 

designed to work with large sequential data by retaining memory or state information. They 

were initially proposed by Werbos (1988) to be used on a model of natural gas market. Unlike 

traditional feedforward neural networks, RNNs have connections that form direct cycles, 

allowing them to exhibit temporal dynamic behaviour. They excel in handling sequential data 

such as time series, text, speech, and video frames. Connections between layers are constructed 

so to loop back on themselves, allowing information to persist and be passed from one step of 

the sequence to the next, maintaining memory of past information. The internal representation 

or memory of the network at a particular time step during sequence processing gets the name 

of ‘hidden state’. At each time step t, the RNN takes an input xt and combines it with the 

previous hidden state ht−1 to calculate the current hidden state ht. The update equations in a basic 

RNN are often formulated as: 

ht  = Activation (W ⋅ [ht−1, xt] + b) 

where W represents weights, xt is the input at time t, b is the bias term, and ‘Activation’ is an 

activation function. 
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Figure 2.9: RNN structure with two hidden layers. Retrieved from botpenguin.com  

This basic form of RNN, although very capable in handling sequential data, suffers from some 

negative aspects, such as the difficulty in capturing long-range dependencies in sequences due 

to their short-term memory, and the vanishing and exploding gradient problem, where gradients 

become too small or too large during training. More sophisticated variations of the basic RNN 

can be implemented to try overcoming these shortcomings. Long Short-Term Memory (LSTM) 

is a type of architecture designed to address the issues in handling long-term dependencies 

within sequential data. The key innovation in LSTM is the incorporation of memory cells, input 

gates, forget gates, and output gates, allowing them to effectively capture and maintain 

information over extended sequences. These four different components functions are: 

• Memory cells store and regulate the flow of information through the cell state, acting as 

a conveyor belt, allowing information to persist, or be discarded. 

• Input gates determine how much new information should be stored in the memory cell. 

It selectively updates the cell state based on the current input. 

• Forget gates decide what information should be removed or forgotten from the cell state. 

It selectively removes irrelevant or outdated information. 
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• Output gates control how much information from the memory cell should be revealed 

or used to make predictions for the current time step. 

 

Figure 2.10: Representation of LSTM. Retrieved from towardsdatascience.com 

In python, LSTM can be implemented through the dedicated library TensorFlow, thanks to the 

dedicated module. In conclusion, by regulating the flow of information through the memory 

cell, LSTM can avoid the vanishing gradient problem and capture important information across 

extended sequences more effectively than traditional RNN models. 

 

Hyperparameters tuning with k-fold cross-validation 

As explained in the previous section, each machine learning model incorporates multiple 

parameters which values can significantly alter the behaviour of the algorithms and, 

consequently, the predicted probability of being in a pre-crisis state. These settings are not 

learned during the training process but are set prior to training.  They can be assigned either 

discrete values, such as the kernel type used in SVM, or continuous values, for example the ‘C’ 

value in the same model. The choice of parameters is therefore potentially infinite. k-fold cross-

validation is an essential technique for hyperparameter tuning as it helps in assessing how well 

a set of parameters make a model able to generalise to new information, maximising the use of 

available data. It splits the test dataset into k subsets or folds of approximately equal size, 
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training the model on k-1 folds, and validating it on the remaining fold. This process is repeated 

k times, with each fold used exactly once as a validation set. After each iteration, the 

performance metrics are computed using the validation set. These metrics are recorded or 

averaged across all k iterations. 

 

Figure 2.11: 5-fold Cross-validation diagram. Retrieved from scikit-learn.org 

The most common performance metrics used by the literature when estimating the best 

hyperparameters are accuracy and the AUROC score, both of which will be explained in detail 

in the following chapter. Compared to a single train-test split, cross-validation allows for more 

reliable estimates of the model’s performance, and reduced variability. The value of k is on 

researchers’ discretion, but in the literature the dominating values are k=5 and k=10. Smaller 

values of k lower the computational cost while increasing the performance estimate’s variance, 

and vice versa for larger k values. The author of this Thesis applied k=5 to cross-validation 

along all models and used AUROC as the evaluation metrics. 
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PERFORMANCE EVALUATION METRICS 

Comparing the performance of different machine learning models is a crucial step in the model 

development process. It plays a pivotal role in selecting the best-performing models for a 

particular problem or task, and it is for these reasons that the author of this dissertation proposes 

a detailed summary of the main metrics used in the literature, as well as in this Thesis. These 

measures serve the role of comparing completely different models’ performances, as well as 

comparing the performances of the same model when different hyperparameters’ values are 

implemented, such as in k-fold cross-validation. Having at disposal multiple metrics also allows 

for a more nuanced assessment beyond simple accuracy, taking into account trade-offs between 

true positives, false positives, true negatives, and false negatives. Having clearly defined 

metrics helps in identifying the models which will be used by policymakers in a real-world 

framework, implying the critical importance and deep impact of this step.  

 

Contingency Matrix 

A contingency matrix, also known as a Confusion matrix, is a tabular representation that allows 

the visualization of the performance of any classification algorithm. It compares the actual 

values of the target variable (in this Thesis, the observed pre-crisis/tranquil-period state) with 

the predicted values produced by the model. In this binary classification problem (two classes: 

positive and negative) the contingency matrix is a 2x2 table in which each prediction is 

univocally assigned to either one of the following categories: 

• True Positives (TP): Instances that are correctly predicted as positive. 

• True Negatives (TN): Instances that are correctly predicted as negative. 

• False Positives (FP): Instances that are predicted as positive but are actually negative 

(Type I error). 

• False Negatives (FN): Instances that are predicted as negative but are actually positive 

(Type II error). 



27 

 

 

Figure 3.1: Contingency Matrix representation. Retrieved from Alessi et al. (2015) 

Once the Contingency Matrix is filled-in with the predictions of the model correctly classified 

in the four categories, it is possible to compute five different metrics to be used as performance 

indicators, each of which with its shortcomings: 

• Accuracy: (TP + TN) / (TP + TN + FP + FN) 

Accuracy is the share of correctly predicted observations to the total number of cases. 

It is widely used, but it can be misleading in imbalanced datasets where one class 

dominates as in this dissertation. In this scenario, accuracy can achieve high values even 

with poor performance in identifying the minority class. It also does not distinguish 

between types of errors. 

• Precision: TP / (TP + FP) 

Precision is the share of correctly predicted crises over total predicted crises. It neglects 

false negatives, so that high precision doesn't guarantee a good recall or ability to catch 

all positive instances. 

• Recall (Sensitivity or True Positive Rate): TP / (TP + FN) 

Recall is the share of correctly predicted crises over actual crises that verified. It neglects 

false positives, decreasing the ability to avoid false alarms. 

• Specificity: TN / (TN + FP) 

Specificity is the proportion of actual negatives correctly identified. It ignores false 

negatives, so that high specificity doesn't ensure good performance on positive 

instances. 

• F1-Score: 

2 * (Precision * Recall) / (Precision + Recall) 
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F1 is the harmonic mean of precision and recall. It is useful in imbalanced sets as it 

considers false positive and false negatives. However, it assumes that Type I and Type 

II errors have the same impact, which is highly debatable in the framework of this 

Thesis. 

There is not a best metrics for an all-around use, so that choosing the most relevant metric(s) 

depends on the problem context, class distribution, and specific objectives. 

Now that the structure of the contingency matrix and metrics are defined, there is a major 

problem to tackle. Many of the presented ML models have as output a continuous number 

comprised between 0 and 1, indicating the predicted probability of a crisis in the near future. 

These numbers must be ‘translated’ into an integer, either 0 or 1, in order to be assigned to a 

specific sector of the confusion matrix. A commonly used threshold is c = 0.5, so that 

probabilities >= 0.5 are assigned as class 1, and probabilities < 0.5 are assigned as class 0. This 

criterion is also used by default in the scikit-learn library GridSearchCV, used for the 

implementation of k-fold cross-validation in Python. A more complex threshold widely used in 

the literature, for example by Alessi and Detken (2011), can be computed by maximising a so 

called ‘Relative Usefulness Function’ which includes a Loss function representing the 

interiorised preferences of the policymaker between Type I and Type II errors, as in the 

framework elaborated by Sarlin (2013). Type I errors and Type II errors can be defined as 

follow: 

• Type I: T1 ∈ [0, 1] = FN/(TP+FN) 

• Type II: T2 ∈ [0, 1] = FP/(FP+TN) 

So that the Loss function can be written as: 

L(μ) = μT1 + (1 − μ) T2 

where the coefficient μ is the relative preference between missing crises and issuing false 

alarms. The Relative Usefulness score is then a function of the value μ defined as: 

𝑈𝑟(𝜇) = 1 −  
𝐿(𝜇) 

min(𝜇 , (1 –  𝜇))
 

so to measure the difference in algorithm’s performance against a perfectly predicting model. 

The literature sets the value of μ as 0.5 as standard, like in Casabianca et al. (2022). However, 

as argued by Alessi and Detken (2018), “after the global financial crisis policymakers’ 

preferences are likely to have become biased against missing crises, implying a lower 

threshold”. Knedlik (2013) estimated μ from the European Commission’s scoreboard of 
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macroeconomic imbalances and found that the European Commission has a higher relative 

preference for avoiding type 1 error than type 2 error, so that μ would be higher than 0.5. The 

author of this Thesis will set μ = 0.5 wherever the Usefulness Function is employed, following 

the literature standard. 

 

Receiver Operating Characteristic – Area Under Curve 

As seen in the previous section, despite the many advantages offered by the Contingency 

Matrix, the discretion in imposing a threshold value when categorising continuous probabilities 

introduces critical factors that significantly impact the construction of the matrix and 

subsequent performance evaluation metrics. Another discretion factor introduced by the 

contingency matrix is the choice of the metrics, among accuracy, precision, Relative 

Usefulness, and the others. For these reasons, the literature predominantly adopts the ROC 

curve as the evaluation metrics. The Area Under the Receiver Operating Characteristic curve 

(AUROC or ROC-AUC) is a widely used performance evaluation metric for binary 

classification models in many fields, from finance to medicine and meteorology. ROC was 

introduced during World War II for analysing radar signals, when it was used by the United 

States Army to measure the ability of their radar receiver (hence the name) to correctly identify 

the Japanese aircrafts against signal noise. It assesses the model's ability to distinguish between 

the positive and negative classes across various threshold settings. The ROC curve itself is a 

graphical representation of the trade-off between true positive rate (Sensitivity) and false 

positive rate (1 - Specificity) at all different classification thresholds. AUROC quantifies the 

entire two-dimensional area under the ROC curve, summarising the model's performance across 

all possible thresholds, assuming values between 0 and 1. An AUROC of 1 implies a perfect 

prediction model which achieves perfect separation between positive and negative classes, 

while a score of 0 implies a model which consistently predict the opposite outcome. An AUROC 

close to 0.5 implies a model which is not more informative than a naïve choice (the so-called 

coin toss). In general, the AUROC represents the likelihood that a classifier will prioritise a 

positive instance over a negative one in its ranking. 
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Figure 3.2: AUROC example. Author’s elaboration 

The author of this dissertation used AUROC as the main comparison metrics, given the ad hoc 

nature of setting a specific preference parameter μ equal for all policymakers, and took a more 

general approach following the example of many researchers who chose ROC as main metrics. 

More formally, AUROC is: 

𝐴𝑈𝑅𝑂𝐶 =  ∫ 𝑇𝑃𝑅(𝐹𝑃𝑅) ⅆ𝐹𝑃𝑅

1

0

 

where TPR and FPR are the True positive Rate and False Positive Rate functions, respectively. 

In Python, the author implements AUROC using a dedicated module of the scikit-learn library, 

roc_auc_score. 

 

Brier Probability Score 

A less common evaluation metrics in machine learning literature is the Brier Probability Score 

(BPS). BPS was firstly introduced by Brier (1950), and measures the mean squared difference 

between predicted probabilities and the actual outcomes for binary classification tasks. As a 

first step, for each prediction i a single Brier Score is computed as: 

Bi = (Pi – Oi)2 

with Oi corresponding to the real observed binary outcome (either 0 or 1), and Pi corresponding 

to the predicted probability (continuous value between 0 and 1). After this, the Brier Score for 
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a single prediction is computed as the squared difference between the predicted probability and 

the actual outcome: 

𝐵𝑟𝑖𝑒𝑟 𝑆𝑐𝑜𝑟𝑒 =
1

𝑁
∑ 𝐵𝑖

𝑁

𝑖=1
 

With N being the total number of predictions. Brier Score ranges from 0 to 1 and, inversely to 

AUROC, a lower score means better accuracy of predicted probabilities since Brier Score can 

be thought of as a cost function. In Python, the author of this work implements Brier Score 

using a dedicated module of the scikit-learn library. 

 

Shapley Values 

The previous analysed metrics have the role of comparing different methods or choosing among 

different hyperparameters. However, for the scope of this dissertation, a further metrics to 

measure the impact of each individual predictor is needed. This is of course import for academic 

reasons, but it serves also a more pragmatic goal. Having such an indicator could help in 

pinpointing in a transparent way specific financial indicators or variables that significantly 

impact the likelihood of a financial crisis. This assists financial institutions, regulators, and 

policymakers in focusing on crucial risk factors for monitoring and mitigating potential crises. 

It also provides stakeholders with an explanation of how predictions are made, increasing the 

trustworthiness and acceptance of the model's predictions. Shapley values (Shapley, 1953), 

derived from cooperative game theory, are a concept used to fairly distribute the marginal 

contributions of players (or predictors, in this Thesis) in a coalition (or collection of predictors) 

to the overall payoff (the prediction). So, in the context of machine learning and model 

interpretability, Shapley values quantify the impact of each variable on a specific prediction 

made by a model. These metrics satisfy the property of additivity, meaning the sum of Shapley 

values for all features equals the difference between the model's prediction for a specific 

instance and the average prediction of the model across all instances. The computation of 

Shapley value ϕ for observation j is carried out as follows: 

𝜙𝑗 = ∑
|𝑆|! (|𝑁| − |𝑆| − 1)!

|𝑁|!
[𝑓(𝑆 ∪ {𝐽}) − 𝑓(𝑆)]

𝑆⊆𝑁𝐽𝑎𝑦

 

where N is the total number of variables, S is the coalition of features excluding the predictor j, 

f(S∪{J}) is the model's prediction when including feature i in coalition S, and f(S) is the model's 

prediction when excluding feature i from coalition S. A positive Shapley value signifies that an 
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escalation in the predictor's value augments the predicted probability of being in a pre-crisis, 

whereas a negative Shapley value suggests that an increase in the variable aligns with a 

reduction in the probability of being in a pre-crisis. In Python, the author implements Shapley 

Values using a dedicated library called shap. 
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LITERATURE SURVEY 

In this chapter, the author reviews the literature about predictive modelling of financial crises, 

separating the traditional models from newer and more complex methods. 

 

Statistical and Signal approach 

While machine learning and neural network algorithms have become predominant in the 

banking crises forecasting literature in the last decade, the possibility of predicting such 

phenomena with quantitative means had been already explored by researchers in the past. This 

was done mainly using the signal approach, which studies the behavior of economic indicators 

both before and during a crisis event, and traditional econometric tools, namely Probit and Logit 

Regression. Specifically, a wave of research effort in this field can be observed at the end of the 

1990s, probably induced by the financial crises that hit East Asian countries in the preceding 

years. The different authors state that results obtained are significant most of the time and allow 

to identify the main drivers of crisis episodes across different time spans and different countries. 

Eichengreen and Rose (1998) tried to identify the variables that best anticipate the arising of 

banking crises in 105 developing countries from 1975 through 1992 using Probit Regression. 

They find a highly significant correlation between the increase in industrial countries’ interest 

rates and banking crises in emerging countries, implying that domestic macroeconomic 

problems do not provide the entire explanation for banking crises. Specifically, they explain 

that the rise in external interest rates is observed the year prior to the onset of the crisis. 

Domestic factors remain important nonetheless, with overvalued real exchange rates and 

slowing output growth playing a significant role. Eichengreen and Rose also find that, contrary 

to part of the literature, there is little evidence of an independent role for domestic credit booms. 

The authors test the model out-of-sample by analysing the wave of banking crisis that hit East 

Asia in the second half of 1997, finding that the fit is not exceptionally good. 

In the same year, Demirgüç-Kunt and Detragiache (1998) conducted a study using Logit 

Regression on all market economies for which data was available over the period 1980-1994, 

using exclusively domestic variables. Their findings show that the most impactful predictors of 

a banking crisis are slow GDP growth, real interest rate and inflation, confirming the well-

known vulnerability of the banking system to these kinds of shocks, but also find that exchange 

rates do not have an independent effect once other variables are controlled for. The authors test 
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the predictive capabilities of the model computing the share of crises it can correctly classify, 

finding that it performs well with an overall classification accuracy between 67 percent and 84 

percent. It is however to be noted that the tests were conducted in-sample. 

Kaminsky and Reinhart (1999) examine currency and banking crises episodes in industrial 

and developing countries in a period that spans from the 1970s through 1995, using a signal 

approach on 16 indicators divided on financial, external, and real sector. The authors set a 

threshold value for each indicator such that the noise-to-signal ratio is minimised. The results 

obtained are significant, with no banking crises with less than 20 percent of the indicators 

signalling. For banking crisis, it is to note that the real sector (output and stock prices), the 

occurrence of a credit boom and lower terms of trade give the most consistent warning signals. 

Hardy and Pazarbasioglu (1998) analyse 50 countries in the period 1980-1997. Again, the 

considered variables were split in three categories: real sector, banking sector, and potential 

shocks, analysed using a multivariate Logit Regression. They obtain reasonable predictive 

power in-sample, that is more than half of the episodes of banking system distress are predicted 

correctly, even though the predictors’ significance decreases when trying to forecast the pre-

crisis periods. The authors use the model to predict out-of-sample the East Asian crisis of 1997, 

correctly predicting three of the four episodes. The paper indicates as main events leading to 

banking distress: a fall in real GDP growth, a rise followed by a sharp fall in inflation and credit 

to the private sector, a fall in deposits at banks, a rise in real interest rates, a decline in the real 

effective exchange rate, and a sharp slowdown in the real growth in imports. 

 

Machine Learning and Neural Networks approach 

At the beginning of the 2010s the literature attention switched to a more sophisticated approach 

in predicting financial woes. Researchers implemented a variety of machine learning algorithms 

to improve their prediction against the classic econometric approach. One of the main 

advantages of these algorithms is that, unlike Logit/Probit Regression, they can factor in the 

complex interactions between different variables and reflect these interactions in the output, 

which is the estimation of crisis probabilities. On the other end, some of these machine learning 

algorithms operate as a black box, making difficult to provide the marginal contribution of a 

particular variable and defend their predictions. Of all papers examined, the great part reaches 

the conclusion that these innovations in data analysis can bring a significant improvement in 

the forecasting capabilities. Nonetheless, a minority portion of research reached the conclusion 

that Logit Regression still maintains the highest chance of predicting a future banking crisis in 
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real-world out-of-sample observation. Here follows a summary of the main papers about the 

argument with a focus on the description of the methodology used in each case. 

Duttagupta and Cashin (2011) are the first, to their knowledge, to use a Binary Classification 

Trees (BCT) to analyse banking crises, using as a test field 50 emerging markets around the 

world during 1990-2005, for a sample size of 711 observations. Industrial countries were 

excluded due to the perceived different nature of their financial crises. The crisis episodes are 

drawn from three sources: Caprio and Klingebiel (2003), Kaminsky and Reinhart (1999), and 

Carsten et al. (2004). Using this data, the authors have a disposal 38 crisis episodes. The 

economic indicators are drawn on an annual basis from the previous literature already 

mentioned, namely Demirgüç-Kunt and Detragiache (1998) and Kaminsky and Reinhart 

(1999), and comprises macroeconomic fundamentals, external environment and liquidity, 

monetary conditions, and financial sector health, for a total of 19 variables both domestic and 

international. A quick analysis of the indicators made in a signal approach fashion shows that 

macro-fundamentals variables are generally worse on the year prior to a banking crisis relative 

to tranquil time. Furthermore, both external and domestic monetary conditions tighten, and real 

domestic growth is much higher. The banking sector health is also worse off in the year 

preceding an event. An exception is the non-performing loans (NPL) ratio, which is 

counterintuitively lower than average before a crisis. Regarding the BCT specification, 

variables are lagged and all crisis observations after the first year of crisis are removed to avoid 

affecting the behaviour of the indicators. The resulting tree has 8 terminal nodes and predicts 

37 out of the 38 episodes in-sample. The terminal node that predicts the most events is also the 

simplest and represents a state of macro-instability where inflation is above 18.7% and terms 

of trade (TOT) growth below 3.3%. In this scenario the authors see a situation of an already 

fragile banking sector due to inflation, that might ultimately break down when TOT deteriorates 

affecting trade prospects and the quality of banks’ trade credit. The authors stress the 

improvements brought by BCT over traditional methods, in particular the ability to explain the 

interactions of different factors and to come up with a well-defined threshold or combination 

of thresholds which can act as a warning for regulators and supervisors if crossed. The 

indicators are then classified using the variable importance index, and find that the best 

performers are nominal depreciation, interest profitability, inflation, liability dollarisation, and 

bank liquidity. All these indicators are also splitters in the computed BCT. 

Alessi et al. (2015) compare multiple different early warning systems. Crisis datasets were 

drawn from Babecký et al. (2012) and are comprised of quarterly observations of EU-27 and 

other OECD countries economic data, over a period from 1970 Q1 to 2010 Q4. Quarters which 
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fall within the period from three quarters before the onset of an event up until the end of the 

crisis are omitted from the analysis. Predictors are drawn from a variety of sources, including 

BIS, IMF, OECD, ECB, and others, and are lagged of one quarter to account for publication 

delay. The analysis is conducted in a real-time fashion, meaning that only information that is 

available at a particular point in time is used. Performance is evaluated for a homogeneous time 

window, specifically 20 to 4 quarters before a banking crisis. A performance measure is then 

obtained with the use of contingency matrix and absolute usefulness, other than the AUROC. 

It is important to note that different researchers of this paper elaborated different models, using 

different subsets of the data available or treating the same data with different transformations. 

The models implemented are Probit Regression, Logit Regression, dynamic Probit (in which 

lags of the dependent variable are added, accounting for possible time dependence), 

multivariate logit framework, Bayesian Random Coefficient Logit Panel model, univariate 

signaling approach, Bayesian model averaging, Binary Classification Trees, and Random 

Forest. The results of in-sample testing suggest that, even though every considered model was 

somewhat capable, Classification and Regression Trees (CART) models offer a better and 

stronger predictive capability with respect to traditional Logit and Probit models, and that every 

multivariate approach considered offers considerable improvements over univariate signalling 

variables in terms of crisis prediction performance. The best performing models, which are 

Binary Tree and Random Forest, identify as most significant indicators of an upcoming banking 

crisis a shallow yield curve coupled with high money market rates and low bank profitability 

(for Binary Tree), and house price, bank credit and public debt (for Random Forest).  

Alessi and Detken (2018) present a technique based on decision tree learning, with a focus on 

credit development. Quarterly data is provided mainly by the dataset assembled by Babecký et 

al. (2014) and includes banking crises episodes in all EU countries over the period 1970-2013, 

even if the analysis is carried out only on euro area countries plus UK, Denmark, and Sweden. 

In this period 25 separate crisis events are recorded. The paper aims at building a model that 

correctly signals the event in the preceding four years, excluding from the analysis the three 

quarters immediately preceding the crisis and the crisis period itself. Early warning indicators 

consist of financial and macroeconomic variables, both domestic and global, as well as real-

estate-based indicators, and are lagged of one quarter to proxy for publication lags. Credit-

related indicators are also transformed using a backward-looking-slowly-adjusting Hodrick-

Prescott filter, a year-on-year rate of growth, or a ratio to GDP. Other macroeconomic and 

market-based indicators are transformed on a year-on-year change or as a ratio to GDP. The 

authors run a Binary Classification Trees and a Random Forest analysis with 3 parts split for 
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out-of-bag observations but drawn results mainly from the Random Forest model given its 

greater robustness when additional predictors or observations are included. Testing the model 

in-sample, they obtain very strong results, with the model able to misclassify an incoming 

quarter of data only 6% of the time and with the ROC curve achieving a score of 0.94. Two 

logistic regressions are then estimated for comparison, even though the dataset cannot be the 

same as in the CART models due to the lack of a complete balanced panel required for the 

estimation of a pooled Logit Regression. The first Logit model prioritises the time dimension, 

while the second aims at extending the types of regressors included. The two regressions are 

assessed using AUROC on a 3-fold cross-validation to have a fair comparability with Random 

Forest, obtaining a score of 0.86 and 0.94 respectively, slightly lower than the Random Forest 

AUROC. Subsequently, the models are tested out-of-sample. A Random Forest is grown with 

data up to 2006 and tasked to predict the upcoming global financial crisis. Even if the models 

cannot achieve the same precision as in the in-sample exercise, the authors interpret the results 

as fairly good in identifying particularly vulnerable and safe countries and argue that the 

implementation of such a model would have at least triggered a discussion for borderline cases 

prior to the Lehman collapse. In particular, the predicted probability of a crisis assigned to 

Denmark, France, Greece, Ireland, and the UK was above 30%. Due to the nature of Random 

Forest classifier, the authors are not able to pin down the contribution of each predictor but 

argue that it is possible to interpret crisis probability trends based on latest developments in raw 

indicators, hinting at a possible narrative approach backed by quantitative analysis. 

Less enthusiastic performance of the machine learning methods is measured by Fricke (2017). 

The panel dataset used by the author comes from Schularick and Taylor (2012), who previously 

implemented a Logit model to predict financial crises and covers the period 1870-2008 (139 

years) for 14 developed countries. The author applies to data the same filters as in Schularick 

and Taylor (2012) and uses the same lagged explanatory variable, real credit growth, with 5 

lags. In total, 53 crisis events are analysed among 1,253 observations once world wars periods 

are removed. Data is then analysed using seven different supervised learning models: Logistic 

Regression, Classification Trees and Forest, K-Nearest Neighbors, single-layer Neural 

Networks, Quadratic Discriminant Analysis (QDA), and Support Vector Machines. As a first 

exercise the author evaluates the models’ performance in-sample using ROC AUC, finding that 

all prediction models are better than random guesses (AUC>0.5) and that ML methods perform 

substantially better that the Logit Regression. In particular, they find that Classification Trees 

and KNN (with k=1) are generally the best models, with the former yielding a score of 1, which 

implies perfect prediction. Moving to out-of-sample performance, the author uses 4 different 
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K-fold cross-validation approaches (with K = 2, 3, 4, 5) with the added characteristic that each 

model is trained using information present on previous (in a temporal sense) blocks only. By 

doing so, the author deals with the time-series nature of data, making sure that portions of data 

are not used to predict events of the past ruining the goodness of out-of-sample results. The 

results are substantially lower compared to in-sample values, with some model achieving a 

score below 0.5. It is noteworthy to notice that the models performing best in-sample are the 

same with lowest scores out-of-sample, suggesting that overfitting is indeed an issue. To be 

specific, with a 5-fold split for training, Classification Trees now achieves an AUC of 0.461 and 

KNN-1 an AUC of 0.539. In this setting, the authors conclude that Logit Regression achieves 

better out-of-sample performance than the ML algorithms due to overfitting. Fricke then carries 

out a deeper analysis by adding further explanatory variables with 5 lags each for a total of 35 

indicators ranging from broad money growth to inflation. Using Classification Forest, the 

author computes the variables importance by quantifying for each of them how much it reduces 

the overall classification error when it serves as a tree branch. The resulting most important 

feature in financial crises prediction is the second lag of credit growth, in line with the findings 

of Schularick and Taylor (2012). Nonetheless, credit growth’s lags 3 and 5 appear to be relevant 

features despite labelled as insignificant in many specifications from Schularick and Taylor 

(2012). 

Joy et al. (2017) implement CART methodology on an unbalanced dataset ranging from 1970 

to 2010 consisting of quarterly observations on 36 advanced countries drawing on the results 

of the survey from Babecký et al. (2014). The authors aim to predict whether a crisis will occur 

4-8 or 8-12 quarters ahead. To do so, data included in the period from 3 quarters prior to the 

crisis is removed from the analysis, as well as the observations gathered during the crisis itself 

to avoid “post-crisis bias”. 20 potential macroeconomic and financial predictor variables are 

chosen, both domestic and international. Using this data, the Random Forest algorithm 

identifies as the most important variables the current account, short-term interest rate, and the 

yield curve slope, based on their score in terms of “mean decrease in the Gini coefficient”. Of 

the original 20 predictors, only the best 10 identified by Random Forest are kept for Binary 

Tree analysis with a tree depth of only three levels to avoid overfitting. When trying to predict 

a crisis 4-8 quarters ahead, researchers find that net interest rate spread in the banking sector is 

the key predictor, and that crises are more likely when its value is low. On the contrary, when 

the value is high, then a flat or inverted yield curve becomes the crucial predictor. When trying 

to predict 8-12 quarters ahead, the most important predictor becomes house prices. The overall 

predictive power of the tree is relatively low, with overall correctness of in-sample fit estimated 
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at 40%. The authors proceed in the analysis by adding further variables that have limited 

variation across time but vary significantly across countries so to represent structural 

characteristics of each country. These added predictors range from financial development to 

overall tax burden. The analysis is carried out as before, with the best predictors selected by 

Random Forest and then analysed further with Binary Tree. This new baseline setting identifies 

as important information the country’s financial development, trade openness, and industry 

share of GDP, while Binary Tree identifies a shallow yield curve as the primary splitter. The 

authors finally extend once again the initial baseline with international factors that have only 

time variation and no cross-country variation, such as commodity price inflation and world real 

GDP growth among others. For banking crises, world inflation and short-term interest rate are 

classified as most important, while world GDP growth is the main splitter in the Binary Tree 

elaborate. Surprisingly, the results imply that most of the banking crises were preceded by very 

strong world economic growth above the 80% quantile of its distribution. 

Holopainen and Sarlin (2017) present a so called “horse race” of different conventional 

statistical methods and more recent machine learning algorithms, other than multiple 

aggregations of these models. The data collected is on a quarterly basis from Laeven and 

Valencia (2013) and Babecký et al. (2012) and covers the period 1976-2014 for 15 EU countries 

and includes 15 banking crisis events. The chosen early warning indicators cover a range of 

macro-financial variables, such as house prices, private loans, current account deficits, and 

many other, and are retrieved from Eurostat, OECD, ECB Statistical Data Warehouse, and the 

BIS Statistics. Most indicators are expressed as a ratio of GDP or in annual growth rates, while 

deviations from trend of indicators such as credit gap and asset prices are captured through a 

backward-looking HP filter. As comparing metrics, the authors choose a Usefulness indicator 

that considers the Loss Function of the policy maker, other than the usual ROC-AUC. The 

methods presented by the authors are signal extraction, Linear discriminant analysis, Quadratic 

discriminant analysis, Logit Regression, Logit Least Absolute Shrinkage and Selection 

Operators (LASSO), Naive Bayes, K-nearest Neighbors, Classification Trees, Random Forest, 

single-layer Artificial Neural Networks, Extreme learning machines, and Support Vector 

Machines (SVM). These models are trained so to forecast a crisis occurrence 5-12 quarters in 

advance, and post-crisis and crisis bias are accounted for by not including periods when a crisis 

is present or in the two years thereafter, as well as observation 1-4 quarters prior to the event. 

The authors use 10-fold cross-validation for two distinct purposes: selecting optimal free 

parameters and provide objective assessments of generalisation performance under out-of-

sample testing. To test models in a real-time analysis fashion, Holopainen and Sarlin use a 
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recursive exercise that derives a new model at each quarter using only information available up 

to that point in time, also considering a publication lag of 1-2 quarters depending on the 

variable. Moreover, any given quarter is known to be tranquil only when the forecasting period 

has passed, so a window of equal length as the forecast horizon is dropped at each quarter. The 

algorithm estimates a model at each quarter with available information up to that point, 

evaluates the current vulnerability of each country, stores them, and at the end collects all 

probabilities and evaluates how well the model has performed out-of-sample. The authors 

extend the research to aggregation procedures and identify four different methods: best-of 

simply choose the most accurate model each time; voting decides the predicted outcomes based 

on the output of most of the models; arithmetic computes the means of predicted probabilities; 

and weighted average weights predicted probability with the Usefulness score obtained in-

sample. The in-sample results show that all machine learning methos achieve impressive 

results, the best being KNN and SVM with AUC score of 0.988 and 0.998 respectively. In the 

recursive real-time estimations, results are still impressive with KNN and ANN achieving an 

AUC score of 0.979 and 0.969 respectively. Looking at aggregation of models, the authors 

conclude that the simultaneous use of many models yield in general good results, with weighted 

aggregate and non-weighted aggregate reaching the top spots with a AUROC score of 0.970 

and 0.953 respectively. The authors argue that such good results depend on the necessity of 

using multiple modelling techniques in order to collect information of different types of 

vulnerabilities. 

A paper which highlights the weaknesses of modern ML techniques is presented by Beutel et 

al. (2018), in which a benchmark Logit model is compared against several machine learning 

approaches. They use a comprehensive quarterly dataset encompassing systemic banking crises 

for 15 advanced economies in the period 1970-2016 covering a total of 22 banking crises, 

retrieved from multiple sources including Laeven and Valencia (2013), Babecký et al. (2014), 

and Reinhart and Rogoff (2008). The models are trained to predict a financial crisis starting 

between the next 5 to 12 quarters conditional on not already being in an acute crisis period. 

Explanatory variables are comprised in 4 categories: asset prices, credit developments, 

macroeconomic environment, and global factors. The authors stress that data availability is a 

real issue, and that some plausible predictors had to be dropped due to a lack of long enough 

series for all countries. Anyway, through later robustness analysis they state that “for the 

purpose of comparing different prediction methods having a sufficient number of observations 

in the sample appears to outweigh the benefits of using a complete set of all potentially 

important early warning indicators”. Credit-to-GDP, real residential real-estate prices, as well 
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as other time series are transformed with the use of a one-sided HP filter. The ML methods 

employed are K-nearest Neighbors, Classification Trees, Random Forest, and Support Vector 

Machines. Hyperparameters are chosen in a cross-validation exercise, in which only 

information before the start of the out-of-sample window is used, using the relative Usefulness 

score as optimising criterion. Differently to Holopainen and Sarlin (2017), Beutel et al. do not 

use cross-validation to evaluate models as this could lead to serious over-estimation of the 

models’ performance, as explained by Neunhoeffer and Sternberg (2018), in a political science 

paper regarding civil wars predictions. They instead use cross-validation only for 

hyperparameters selection and perform a classic out-of-sample prediction experiment. 

Predictions are then evaluated using relative Usefulness, AUC, and Brier probability score. 

Following Holopainen and Sarlin, Beutel et al. set the out-of-sample window between 2005 Q3 

and 2016 Q4, splitting total data approximately in half, and performing the predictions in a 

recursive way, quarter-by-quarter. In-sample results unsurprisingly show the dominance of ML 

algorithms, with Random Forest achieving an AUC score of 0.999 and relative Usefulness of 

0.990, against a Logit’s score of 0.810 and 0.511 respectively. When looking at out-of-sample 

results, on the other hand, Logit outperforms almost always the ML methods. It obtains a 

relative Usefulness of 0.605 against the second-best Binary Trees with 0.126, and a ROC score 

of 0.852 against the second-best SVM with 0.629. Brier scores also confirms these findings. 

ML algorithms appear to perform better than Logit out-of-sample only on a limited subset of 

macroeconomic indicators. The authors explain these striking results with ML overfit on 

training data, and the sufficient flexibility of the Logit model. They also explain that previous 

results from Alessi and Detken (2018) indicates ML algorithms as best performers because they 

did not run an out-of-sample analysis, but a k-fold cross-validation one resulting in an out-of-

sample score similar to those obtained in-sample. The same conclusions can be drawn regarding 

the work of Holopainen and Sarlin (2017) and their use of cross-validation out-of-sample. 

Ristolainen (2018) focuses mainly on single-layer artificial neural networks. A monthly dataset 

assembled by Kaminsky (2006) from January 1970 to June 2003 including 18 countries, both 

developed and developing, is used to predict banking crises out-of-sample with a 24-month pre-

crisis window. The dataset includes 14 indicator candidates, both regional and global, and 

describes a total of 32 separate banking crises. During tests, the 5 years post-crisis observations 

are removed to deal with post-crisis bias, and only data until three years before the start of a 

crisis is used, so to be able to adhere correctly to pure out-of-sample predictions. The ANN 

model is trained with 10-fold cross-validation on the training dataset so to choose the best 

hyperparameters, and then confronted with a traditional Logit Regression using ROC as the 
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scoring metrics. In-sample, ANN can fit the data almost perfectly as expected, while Logit 

obtains a still good but lower score. The out-of-sample results using the test set are based on 

the ability of the models to correctly classify the pre-crisis periods of eight specific events in 

eight different countries. The results are mixed, with the two models prevailing in different 

countries, with ANN achieving better out-of-sample results for five out of eight countries. Using 

a method proposed by Garson (1991) and Goh (1995) the author can estimate the relative 

importance of each indicator in the ANN. He finds that the most significant predictors are 

domestic credit, M2/reserves ratio, real GDP growth, inflation, and oil price. 

Different recurrent neural networks are used in the work of Tölö and Eero (2019), specifically 

RNN, RNN-LSTM, RNN-GRU and multilayer perceptron. Data is collected from Jordà, 

Schularick and Taylor (2015) and covers the financial crises and relevant annual 

macroeconomic data for 17 advanced economies in the period 1870-2016, for a total of 2499 

observations. Observations during crisis periods and on the 5 following years are removed from 

the computation. The models are trained so to predict events with a horizon from 1 to 5 years 

using a country-by-country cross-validation approach. The main results are drawn using only 5 

predictors with 5 lags each, even though 8 additional variables are used later in the sensitivity 

analysis. The main out-of-sample testing is done splitting the sample in two parts, with the 

earlier (until 2002) used for training and the latter (2003-2016) for testing so to preserve the 

temporal structure, and ranking the models based on ROC score. Overall, RNN-LSTM and 

RNN-GRU outperform the other methods, including a Logit Regression, by a “significant 

margin”. As an example, considering a forecast horizon of 2 years, RNN-LSTM achieves a 

ROC of 0.742 while Logit scores 0.521 in the sequential validation. The lowest position is that 

of the multilayer perceptron with a score of 0.431. The authors conclude stating that RNNs 

generally outperform simpler ANNs when dealing with time series and multiple lags because 

of their structure which efficiently counteracts overfitting. 

Bluwstein et al. (2023) uses the same database from Jordà, Schularick and Taylor (2015) to 

predict financial crises one to two years in advance. The observations occurred during a crisis 

episode and on the following four years are excluded to avoid post-crisis bias. For the same 

reasons the authors decided to also remove all observations from the later years of the Great 

Depression, from 1933 to 1939, and world wars. After these corrections, a total of 1249 

observations remains. The models tested are a benchmark Logistic regression, Decision Trees, 

Random Forests, Extremely Randomised Trees, SVM, and ANN. Ten different domestic 

economic indicators are considered, plus two more global variables. Out-of-sample 

performance is first evaluated with 5-fold cross-validation and then on a forecasting approach 
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using only data available until the given point in time, acknowledging that the cross-validation 

approach does not reflect the real-time performance of an early warning model as shown by 

Beutel et al. (2018). Hyperparameters are chosen with nested cross-validation out-of-sample, 

that is each training set of the 5-fold cross-validation is used in a further 5-fold cross-validation 

to assess the performance of all possible combinations of hyperparameters, and then the best 

setting is used to train the model on the complete training set. As in most papers, results are 

compared in the ROC space. In the cross-validation approach, machine learning algorithms 

have an advantage against Logit Regression, with Extreme Trees and Random Forest being the 

most accurate. These results are also confirmed by several additional robustness check exercises 

run by substituting or adding a small number of variables, or by changing the transformations 

applied to the time series. Only Decision Trees performed worse than Logit, due to its tendency 

to overfit based on the authors’ opinion. The authors then run an out-of-sample forecasting 

experiment, finding that Logistic regression performed poorly again, and that Neural Networks 

was the model with the highest AUC score in predicting the period 2004-2016. Nonetheless, 

results were generally poorer than in the cross-validation exercise and the share of false alarms 

prompted by the models substantially higher. The authors proceed by examining the relative 

importance of the single predictors elaborated by the Extreme Tree model through Shapley 

values. The variables with the largest predictive shares are the global yield curve slope and 

global credit growth, consistently across the five models. Performing a Shapley regression, the 

authors are also able to determine the statistical significance of the predictors by regressing the 

crisis indicators on the Shapley values. Consistent with previous results, they find that global 

and domestic yield curve slope obtain the highest coefficients and lowest p-values. Predictors 

that surprisingly give a signal that cannot be statistically differentiated by the null are public 

debt, current account balance, and house prices. 

Fouliard et al. (2020) experimented with several machine learning algorithms in a recursive 

“online” out-of-sample approach. They used quarterly data for seven advanced countries from 

1985 Q1 to 2019 Q3. Systemic crises episodes are retrieved from the Official European 

Database by the ECB, and financial conditions and macroeconomic indicators are drawn from 

OECD, BIS, and Cross Border Capital databases, using, whenever possible, the vintage data 

available at the time of collection and detrending variables using only data of the estimation 

sample to avoid look-ahead bias. The authors focus on predicting systemic events from twelve 

quarters ahead, also considering the delayed feedback the forecaster receives: in time t, the 

forecaster cannot know if the observations in t-1 belong to a pre-crisis period. The models 

implemented are General Additive Model (GAM), Random Forests, SVM, and several 
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Logit/Probit models with different combinations of variables. The main result is then drawn 

from an EWA (exponentially weighted average) aggregating rule. Results are evaluated by 

observing the forecasting capabilities on four countries, France, UK, Germany, and Italy, by 

observing if the signal is monotonically increasing before a crisis provided it does not have too 

many false alarms. For France, the dominating models picked by the EWA are GAM and a 

Logit combination, in UK it was again GAM and SVM, in Germany it’s a dynamic Probit 

model, and for Italy a Logit model (even though results for Italy are not very good on average). 

The authors conclude by arguing that their model aggregation technique works, stating that the 

sample crises are all predictable ahead of time based on the observed probability increasing 

significantly and monotonously, even if they admit some heterogeneity across countries in 

terms of which models and variables forecast better. A further study conducted by the same 

authors, Fouliard et al. (2021) using the Jorda-Schularick-Taylor (2017) dataset reaches the 

same conclusions. 

 A study by Casabianca et al. (2022) analyses the macroeconomic determinants of banking 

distress using the AdaBoost algorithms with a dataset of over 100 countries retrieved from 

Laeven and Valencia (2008, 2013 and 2018), Reinhart and Rogoff (2008), and Jordà et al. 

(2017), both advanced and developing, over the period 1970-2017, for a total of 142 banking 

crisis. Selected predictors are both of domestic and global nature and are detrended with a 1-

sided HP filter in most cases. The authors try to predict an event by defining the pre-crisis period 

as the three years preceding the event and removing from the pool of observations those drawn 

during active crisis periods and from the following three years so to avoid post-crisis bias. 

Dataset is split in two, with the 1970-2005 split used to train the models and to choose the 

hyperparameters so to optimise relative Usefulness in a 5-fold cross-validation, while the 2006-

2017 split is used for out-of-sample testing and models evaluation. Furthermore, advanced and 

developing countries are analysed separately given the important differences in the average 

values of the predictors. In-sample fit is evaluated running a panel-block bootstrap in which the 

length of each block is five consecutive years. AdaBoost displays a good fit with better 

performance than Logit, even if both models suffer a decrease in performance when analysing 

developing countries. In the recursive out-of-sample test the AdaBoost model consistently 

outperforms the traditional Logit, which achieve performance that is barely better that a random 

guess, using as evaluation parameters AUROC, sensitivity, specificity, and relative Usefulness. 

To be more specific, for advanced economies, Logit achieves an AUROC score of 0.481 against 

0.874 for AdaBoost, and 0.636 and 0.822 respectively for emerging economies. AdaBoost is 

able is to predict probabilities of pre-crisis in advanced countries well, but on the other hand 
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probabilities fit poorly for emerging economies. The authors then carry out an analysis of the 

contribution of each individual predictor using the Shapley values. In advanced economies the 

most significant predictor was the US 10yr Treasury rate (implemented as a global variable) 

acting against the build-up of crisis, except for the years 2005-2007. A similar pattern of the 

effect of the 10yr rate is shown in emerging economies. Inflation stood out as the leading 

domestic indicator for both developed and developing countries. 

From the general literature about the argument, it is possible to draw the conclusion that 

machine learning and neural networks have the potential to bring improvements in this research 

filed. Most of the cited researchers state that these algorithms have a great potential in crisis 

prediction. In particular, these more sophisticated techniques show to have an impressive in-

sample ability to fit data. However, when testing on a true real-time out-of-sample approach, 

which exclude the use of cross-validation out-of-sample since it uses data that would not have 

been available at the time of the real-time testing, sophisticated methods show a general 

decrease in performance and less enthusiastic forecasting capabilities, with a significant 

variability based on the specific method, dataset and evaluation metrics implemented. In the 

mentioned papers, of those who carried out a true real-time out-of-sample analysis, it is 

interesting to highlight the results of Fricke (2017) and Beutel et al. (2018), since these works 

argue that the traditional econometric methods still preserve the role of best forecasters given 

their ability to generalise and their lower tendency to overfit data. Another observation could 

be done about the use of periods immediately preceding a crisis in the training dataset, for only 

a minority of examined dissertations excludes these from out-of-sample analysis. In a proper 

real-time application those could not have been available since it would have been too early to 

correctly determine if they were classifiable as pre-crisis or tranquil period. The author of this 

Thesis conducts the analysis on data following a true recursive out-of-sample strategy, so to 

mimic an actual prediction of future unknow outcomes, since the main purpose of this field of 

research is to provide policymakers with an effective tool to predict banking woes. Even if 

testing the models with an in-sample approach to show the algorithms’ impressive properties is 

tempting, the author of this dissertation argues that evaluating models with these strategies 

would not guarantee the replicability of results in a real-world implementation. 
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PREDICTORS 

Following the results of the examined literature, the author collected yearly data about the 

economic variables that seem to best predict upcoming financial distress. It is important to 

notice that, given the large base of countries included in the study and the relative long time-

series, data collection is a real issue. By choosing a large number of economic variables, the 

total number of complete information could shrink significantly due to data availability, posing 

to the author a trade-off between the number of variables and the number of observations to be 

included in the study. Following the argument proposed by Beutel et al. (2018), the author will 

implement only predictors that showed their relevance in previous research and for which data 

is available in a manner that does not truncate substantially the number of observations, 

prioritising total observations quantity. An example is given by domestic interest rates, which 

despite being an important variable, are available only for a limited panel of advanced countries. 

It is important to notice that including 204 countries and 50 years one would expect a total 

number of observations of 10.200. However, obtaining this number is unfeasible due to certain 

circumstances. For instance, within the 50-year timeframe considered, some countries have not 

existed (most notably the Soviet Block). Additionally, certain micro-nations (e.g., British Virgin 

Islands) and nations enduring persistent unrest or experiencing unreliable data collection (e.g., 

South Sudan) lack essential data such as real GDP, leading to their exclusion from the analysis. 

Missing data is also an issue when computing the trends for de-trending a time series. The 

literature makes extensive use of the HP filter given its ideal properties for de-trending 

economic data, but this method requires a long time series without any missing point. However, 

data collected from the author presents some discontinuity which makes the application of HP 

filter inconvenient. The same problem was faced by Ristolainen (2018), who chose to not apply 

the filter. In this dissertation, time series needing such treatment will be instead de-trended 

simply by subtracting to the observation the average of the last 5 years. If in the last 5 years an 

observation is missing, the average will be simply computed on the available values. De-

trending allows to make data stationary, which might help regression analysis, improves 

comparability, and makes so that the long-term trend does not obscure short-term fluctuations. 

Other transformations applied to the time series include winsorizing, which consists in 

substituting the values above the 99th percentile and below the 1st percentile with the values 

corresponding to the 99th percentile and the 1st percentile respectively. This transformation is 

applied to variables that may present outliers in rare instances, such as inflation, and avoid the 

adverse effects of extreme values in the prediction capabilities of some machine learning 

algorithms. Winsorizing allows for the adjustment of these extreme values without completely 
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removing them from the dataset, thus preserving the information they carry while decreasing 

their distorting influence on statistical analyses. A last transformation is standardisation, which 

is achieved by subtracting from an observation the mean of all previous observations (from that 

and every other country), and then dividing by the standard deviation. By doing so, the time 

series has an average of 0, and a standard deviation of 1. The main advantage brought by 

standardisation is that it enables easier comparison and analysis. It helps in interpreting the 

relative importance of different variables in the dataset by eliminating the influence of scale 

differences, and when performing regression analysis or similar techniques, standardisation also 

helps in interpreting the coefficients. It also helps the computational processes in some machine 

learning algorithms, resulting in reduced computing time. Standardised coefficients indicate the 

importance of predictors relative to each other, since they show the change in the dependent 

variable in terms of standard deviations for a one standard deviation change in the independent 

variable. In later experiments, all these transformations are done with a backward-looking 

approach, using only data that would have been available at the time, so to avoid any bias and 

stick to the real-time approach. 

 

Domestic variables 

The nine domestic predictors, the sources, and the transformations applied in this Thesis are 

reported in this chapter. 

• Inflation 

High inflation is usually associated with macroeconomic mismanagement. Since data 

on interest rates are not available in an extensive way across countries and time, inflation 

also serves the role as a proxy since it is likely to be correlated with high nominal interest 

rates, as explained by Demirgüç-Kunt and Detragiache (1998). Inflation also decreases 

the real return on assets and discourages saving while inducing more borrowing, as 

stated by Duttagupta and Cashin (2011). A further explanation of the effect of high 

inflation is given by Jiang (2008): “higher inflation reduces the return to domestic asset 

(currency plus capital) inducing the bank to invest more on dollars and less on capital, 

which makes it less likely that the residual claimants prefer keeping bank deposits 

instead of cashing out and increases the likelihood of banking crises”. In this Thesis, 

inflation data is proxied by the GDP deflator, which is retrieved by the World Bank 

(WB) database. The time series is then winsorised and standardised. In this study, 

figures report GDP deflator as ‘GDPdefl’. 
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• Nominal depreciation 

Kaminsky and Reinhart (1999) show that banking crises have often occurred at the same 

time, or immediately after, currency crises. Banks may be largely exposed to foreign 

exchange risk, affecting the value of banks’ assets and liabilities in foreign currency, so 

that a strong depreciation of the exchange rate might imply a situation of upcoming 

banking distress. As explained by du Plessis (2022): “Whereas a sharp currency 

depreciation reverses capital flows and reduces asset values, higher import inflation and 

a weakening in the terms of trade could increase cost-push price growth, cause an 

outflow of working capital, a contraction in domestic liquidity, and, in turn, reduce the 

ability to settle debt obligations”. In this dissertation, nominal depreciation is computed 

from the exchange rates drawn from the databases of Organization for economic 

cooperation and development (OECD), WB, and Federal Reserve Economic Data 

(FRED). Yearly exchange rates are expressed as the period-average national currency 

amount needed to buy one USD. Nominal depreciation is computed as: 

NomDepr = (Fx(t0) / Fx(t-1) - 1) * 100 

So that an increase in the exchange rate (national currency is losing value) leads to a 

positive value of nominal depreciation. The predictor is then winsorised and 

standardised and represented in future tables as ‘NomDepr’. 

• M3 / Reserves 

In the literature, some authors such as Ristolainen (2018) attributes a significant 

importance to the M2 to reserves ratio indicator in predicting financial crises. However, 

this Thesis is based on a much wider scope timewise and country-wise, and M2 

indicators for a substantial number of countries for a long enough period are not 

available. To solve this issue, the author used M3 as a proxy for money supply, given 

the availability of this indicator in the WB database. M3 has also been used as a predictor 

by Alessi et al. (2015). M3 data series are sourced from the International Monetary 

Funds (IMF) and from International Financial Statistics (IFS) and are defined as 

“Absolute value of liquid liabilities in 2010 US million dollars. Liquid liabilities are 

also known as broad money, or M3. They are the sum of currency and deposits in the 

central bank (M0), plus transferable deposits and electronic currency (M1), plus time 

and savings deposits, foreign currency transferable deposits, certificates of deposit, and 

securities repurchase agreements (M2), plus travellers’ checks, foreign currency time 

deposits, commercial paper, and shares of mutual funds or market funds held by 

residents”. The denominator, national reserves, is drawn from IMF and IFS databases 
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and is defined as “holdings of monetary gold, special drawing rights, reserves of IMF 

members held by the IMF, and holdings of foreign exchange under the control of 

monetary authorities. The gold component of these reserves is valued at year-end 

(December 31) London prices. Data are in current U.S. dollars”. The M3/reserves 

predictor could contribute to the formation of a financial crisis in two paths since it 

could indicate a monetary expansion and/or the depletion of national reserves. In the 

following exercises, this time-series is winsorised and standardised, and reported as 

‘M3/Res’. 

• Real GDP growth 

During periods of robust economic growth, businesses and individuals tend to 

experience higher incomes, increased profitability, and improved creditworthiness. 

Banks tend to see higher demand for loans, increased deposit levels, and improved 

profitability during periods of economic expansion, and, as explained by Demirgüç-

Kunt and Detragiache (1998) and Reinhart and Rogoff (2009), higher GDP growth 

affects the bank’s share of NPLs. This improved financial health of banks reduces the 

likelihood of systemic banking crises. However, it's important to note that sustained 

high growth can also create potential risks, such as overheating, asset bubbles, or 

excessive risk-taking, which if left unchecked might contribute to future banking crises. 

Real GDP growth time series are retrieved from WB, FRED, and Jordà et al. (2017), 

and the WB database reports it as “annual percentage growth rate of GDP at market 

prices based on constant local currency. Aggregates are based on constant 2015 prices, 

expressed in U.S. dollars”. In the following exercises, these time series are winsorised, 

standardised, and reported as ‘rGDPgr’. 

• Public debt 

Excessive public debt levels increase a country's vulnerability to sovereign risk. If 

investors perceive the government's ability to repay its debt as questionable, it can lead 

to higher sovereign borrowing costs, credit rating downgrades, and capital outflows. 

Sovereign debt crises can spill over to the banking sector, causing financial instability 

and banking crises due to exposure to government bonds or because of broader 

economic shocks. High debt levels can also strain fiscal policies, leading to austerity 

measures, reduced government spending or tax increases, which could dampen 

economic growth, increase unemployment, and impair borrowers' ability to service 

debts, potentially leading to increased NPLs in the banking sector. Excessive 

government debt could also postpone measures to strengthen bank balance sheets, 

according to Lindgren, Garcia, and Saal (1996), since the fiscal situation could be “too 



50 

 

weak” to allow for any consideration of banking problems by supervisors. Public debt 

may also be a proxy for countries’ vulnerability to solvency and liquidity shocks as in 

Casabianca et al. (2022). Public debt computed as a ratio of GDP is drawn from multiple 

sources, including IMF, Jordà et al. (2017), WB, FRED, Statista, and CEIC and is 

reported typically as on the last day of fiscal year. Time series are then standardised and 

reported as ‘GovDebt’. 

• Investments 

Investment growth is closely linked to economic cycles. During periods of robust 

investment, economies tend to expand, driving growth and prosperity. Investments often 

require external financing, and if a country relies heavily on foreign capital to finance 

its investment projects, sudden reversals or disruptions in capital inflows can increase 

vulnerabilities in the banking sector. According to Beutel et al. (2018): “high levels of 

investments in fixed capital may be driven by overly optimistic expectations, leading to 

problems when future returns are lower than expected”, so that when investment growth 

slows or contracts sharply, it can lead to economic downturns, rising unemployment, 

and decreased consumer and business spending. Such economic volatility can strain 

banks’ balance sheets, impacting their profitability and potentially leading to banking 

crises. This is particularly true in the case of a rapid investments growth since it might 

lead to excessive lending and inadequate capital buffers. Investments data series are 

retrieved from WB and defined as gross fixed capital formation: “Gross fixed capital 

formation includes land improvements; plant, machinery, and equipment purchases; and 

the construction of roads, railways, and the like, including schools, offices, hospitals, 

private residential dwellings, and commercial and industrial buildings”. It is expressed 

as a ratio of GDP, de-trended, standardised, and reported with the acronym ‘GFCF’. 

• Current Account Balance 

Current Account Balance (CAB) has widely been used as a proxy for external 

vulnerabilities. A sustained deficit implies reliance on external financing, such as 

borrowing or capital inflows, to fund the shortfall. High and persistent deficits may lead 

to increased external debt levels, making the country more vulnerable to sudden changes 

in investor sentiment or disruptions in capital flows, which can impact the banking 

sector's stability. As argued by Kaminsky and Reinhart (1999), large capital inflows 

from abroad may support asset price booms and induce a reversal in asset prices when 

these inflows decline or stop. In this dissertation, the CAB time series are retrieved from 

WB, IMF, and OECD databases. WB defines CAB as “the sum of net exports of goods 

and services, net primary income, and net secondary income” and expresses it as a GDP 
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ratio. The author then standardised the data series. Current account balance is expressed 

in later tables as ‘CAB’. 

• Loan-to-deposit ratio 

A high bank credit to deposit ratio indicates that banks are extending more loans relative 

to the deposits they hold. This might indicate aggressive lending practices, where banks 

extend a substantial amount of credit without adequate deposits as a funding base. This 

aggressive lending behaviour can increase banks' risk exposure, leading to higher levels 

of NPLs. If many banks are heavily leveraged and face liquidity or solvency challenges 

simultaneously, it can propagate financial instability and create systemic risks that have 

the potential to lead to broader banking crises. The denominator of this ratio, bank 

deposits, is also suggested as an indicator of impeding crises by Kaminsky and Reinhart 

(1999). The time series used by the author is drawn from IMF. IMF defines loan-to-

deposit ratio as “The financial resources provided to the private sector by domestic 

money banks as a share of total deposits. Domestic money banks comprise commercial 

banks and other financial institutions that accept transferable deposits, such as demand 

deposits”. The series is winsorised and standardised before analysis and labelled 

‘LoanDep’. 

• Credit growth 

The literature is rich in studies regarding the effects of credit growth on financial crises. 

The most frequent explanation is that high bank credit growth may fuel asset price 

bubbles, such as in real estate or stock markets, as increased lending provides more 

liquidity for investment. If these asset bubbles burst due to changes in market conditions 

or economic shocks, it can lead to a sharp reversal in asset values, as showed by Jordà 

et al. (2015) and by Schularick and Taylor (2012). Banks heavily exposed to these assets 

face significant losses, potentially causing distress in the banking sector as a whole and 

triggering financial instability (Borio and Lowe, 2002). This is confirmed by 

Eichengreen and Rose (1998) who state that expansionary monetary and fiscal policies 

fuel a lending boom, and that eventually monetary policy must be tightened to contain 

inflation, pricking the bubble. Borrowers are unable to repay, forcing banks to curtail 

their lending, further depressing property, and securities markets. In later exercises, 

credit growth is expressed as a ratio of GDP. It is retrieved from IFS and IMF and 

defined as “Private credit by deposit money banks and other financial institutions to 

GDP”. The author de-trended, winsorised and standardised the time series and labelled 

it ‘Credgr’. 
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Global variables 

Other than domestic variables, this dissertation includes three global predictors, equal for each 

country in the dataset, following a frequent practice in the literature. 

• Global real GDP growth 

Global GDP is often used in the literature as a predictor for financial crises. During 

periods of robust global economic growth, countries tend to experience increased trade, 

higher incomes, and improved economic conditions. This can positively impact 

borrowers' ability to repay loans, leading to lower default rates and better credit quality 

in banks' loan portfolios, reducing the likelihood of banking crises. On the other hand, 

during economic expansion, positive investor sentiment and market optimism prevail, 

reducing perceived risks in banking systems. The source of dataset is WB, and values 

are expressed as year-on-year percentage change. Standardisation is applied to the time 

series, with the variable being labelled ‘glGDPgr’ in later tables. 

• US 10y treasury yield 

This variable is often credited in the literature to be the most significant global predictor 

of financial distress. In fact, higher yields in the US might attract capital from other 

countries as investors seek higher returns. This can lead to capital outflows from other 

countries, potentially causing currency depreciations, reducing liquidity, and impacting 

the stability of banking sectors in those nations. Other than this, it is important to 

consider that many companies and countries, especially developing ones, borrow in 

international markets. Variations in US yields could significantly impact the borrowing 

costs for these entities straining debt sustainability. This pattern is explained by Calvo, 

Leiderman and Reinhart (1993), who show that the highest international financing costs 

incurred by banks are passed to domestic borrowers, implying eventual repaying 

problems. The foreign effects of higher US treasury rates are similarly analysed also by 

Iacovello and Navarro (2019) who highlight the impact in vulnerable emerging 

economies. The author retrieved the US 10 years treasury yield from the European 

Central Bank (ECB) website, expressed as average of the period. Standardisation is 

applied to this variable, which is labelled as ‘gl10y’. 

• Global yield curve slope 

Yield curve slope is measured by the spread between 2-year and 10-year US Treasury 

yields and is often cited as one of the main predictors of future economic conditions, 

since it reflects market’s expectations about interest rates (Estrella and Hardouvelis, 

1991 and Wright, 2006). It is particularly important for the banking sector, given that 
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banks profit from maturity transformation. Banks typically borrow at short-term rates 

and lend at long-term rates, implying positive net interest margins when the yield slope 

is positive (long-term rates are higher than short-term rates). However, a flattening or 

inverted yield curve can compress margins, potentially impacting banks' profitability 

and weakening their ability to absorb losses, which can contribute to banking crises as 

shown by Joy et al. (2017). An inverted yield curve slope could also signal negative 

market sentiment, which can lead to volatility and a risk-averse environment. In this 

paper’s exercises, the yield curve is computed as: 

𝑌𝑖𝑒𝑙ⅆ 𝑐𝑢𝑟𝑣𝑒 𝑠𝑙𝑜𝑝𝑒 = log  (
10𝑦 𝑟𝑎𝑡𝑒

2𝑦 𝑟𝑎𝑡𝑒
) 

which implies that a negative value indicates an inverted yield curve. Historical US 

interest rates are drawn from the Federal Reserve (FED) and ECB websites expressed 

as average of the period. Standardisation is then applied to the global variable ‘glYC’. 

 

Signals 

Now that the predictors have been defined, a signal approach is used to analyse the fluctuations 

of the average value of each domestic predictor in the preceding years of a crisis event and in 

the years immediately following. The average value of the predictors, including both crisis and 

tranquil periods, is also considered for comparison. Using the whole panel of countries, the 

results are as in Figure A.1 in the Appendix. Anyways, it might be more interesting to observe 

the same signals when developing and advanced economies are separated, to observe the 

different behaviour of the variables before and during a financial crisis. In Figure A.2 in the 

Appendix, the domestic predictors of developing economies are shown. Results are somewhat 

similar to the overall database, probably given that the majority of observations in the database 

come from developing countries. For developing economies, the most noticeable take-away is 

that the three years preceding a crisis are characterised by rising credit, both in terms of credit 

growth and loans to deposits ratio, and by a sharp upward trend of investments, all of them 

above the average values. Another interesting point is the decline in the current account balance 

and the nominal depreciation rate from high values to a point close to the average value, and 

the drop in inflation from higher than usual values in the year immediately preceding the event. 

All cited predictors then appear to take a sharp turn to the opposite direction once the crisis has 

burst. All these observations are coherent to the literature. Regarding advanced economies, 

results are shown in Figure A.3 in the Appendix. As before, an increase in credit and investments 
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is clearly noticeable, with the difference that the ratio of loans to deposits does not seem to be 

particularly affected, even if it is stable above the mean line. It is interesting to observe the 

depreciation, which increases until the year before the crisis, when a sharp decline (meaning an 

appreciation of the national currency) happens, and the slow but steady decline of inflation from 

above to below average values. An upwards trend in the M3 to reserves ratio up to the year 

preceding the crisis is visible, as well as the slow but constant decline of current account balance 

well below average values. In both developing and developed countries, the crisis provokes a 

decrease in GDP growth below mean rate and pushes Government debt upwards, most probably 

due to the recovery expenses incurred and the decrease in GDP which acts as the denominator. 

Both these adverse effects are most noticeable in developing countries. Looking at the global 

indicators, for developing economies, it is interesting to notice that the US 10-year Treasury 

rate is high but decreases slowly and constantly, and that the yield curve slope is stable but with 

very low values, implying a flatter than usual curve, which later grows during the crisis. 

Regarding advanced countries, the yield curve decreases until the point of being almost flat two 

years prior to the event, and then increases rapidly. The US 10-year rate shows slightly above 

average values up until the crisis year, after which it moves to the mean line. In all cases, global 

GDP growth is quite stable before the event, and drops significantly below average in the year 

after the crisis, indicating that banking distress often strikes many countries simultaneously. In 

the Appendix are also present the correlation matrices for both advanced and developing 

countries for all predictors. Given the different dynamics occurring in developing and advanced 

economies and the different crises’ nature they will face in the test sets, these two categories 

will be analysed both together and separately in the following baseline experiment proposed by 

the author of the Thesis to observe the change in the models’ performance. 
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BASELINE EXERCISE 

Now that the models’ characteristics, evaluation methods and variables have been clarified, an 

explanation for the baseline exercise run by the author is given. First, to avoid crisis-bias, every 

observation recorded in a country during a crisis is removed from the computation as it is 

standard in the literature. Other authors from the literature also removed three to five years after 

the crisis so to avoid post-crisis bias. Instead, the author of this Thesis did not remove post-

crisis years but removed the observations from the whole duration of the crisis from the 

analysis. In the baseline experiment, the crisis duration is chosen according to the indications 

retrieved from the authors of the databases implemented from Laeven and Valencia (2020) and 

Reinhart and Rogoff (2008), while for events pointed out exclusively by Jordà et al. (2017) a 

duration of three years is assumed by the author of this dissertation. This implies that the number 

of observations removed depends on the crisis duration, while in the literature it is usual to 

remove a fixed number of years/quarters for all events. 

The objective is to determine whether any year is to be classified as a pre-crisis or tranquil 

period, and to do so a year is defined as pre-crisis if in any of the following three years a crisis 

event is present. In other words, to each observation is attached a Boolean variable, equal to 1 

if at any point in the following three years a banking crisis erupts in that specific country, and 

0 otherwise. Attached at each observation at t0, there are also the values of each variable at time 

t-1, t-2, and t-3, representing the lagged variables. Even if these lags are not implemented in the 

baseline experiment, they will be useful for later experimentations. In these later exercises, 

when an observation is missing data for a lag, or when that lagged data is recorded during a 

crisis, the observation must be dropped from analysis completely, at the cost of a reduced 

database length. Following this set of rules, for the baseline experiment a total of 3576 

observations are collected, 2284 for emerging economies and 1292 for advanced ones. Of these 

observations, 330 are accounted for as pre-crisis period, 203 in developing economies and 127 

in advanced ones. 

The focus of this dissertation is a recursive real-time analysis and is achieved by proceeding 

with the following approach. The models are firstly trained on the set of data from 1970 until 

1995, using the Python programming language and various scikit-learn libraries. This portion 

of data will serve as the first training set for each model, including the choice of the 

hyperparameters using 5-fold cross-validation. Next, the trained models are used to make a 

prediction whether the year 1998 is a pre-crisis period for each country, or in other words, if 

any of the years 1999, 2000, or 2001 will be characterised by a banking crisis, using the 
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predictors’ values collected relative to the year 1998. To make the first prediction, contrary to 

what other authors in the literature have done, the author of this Thesis trained the models using 

data only up until 1995 and not until 1998 because in a real-world framework it would be 

possible to assign the label ‘pre-crisis’ or ‘tranquil period’ to the observations from the year 

1998 only at the end of 2001. Placing ourselves in the role of a forecaster at the end of 1998, 

our models could be trained only referencing years that we know for sure being pre-crisis or 

tranquil periods, so that the last serviceable year for training is 1995. Data from 1996, 1997 and 

1998 could be implemented for training purposes only at the end of 1999, 2000, and 2001 

respectively. As explained by Fouliard et al. (2020), the feedback of the forecaster is delayed. 

Doing otherwise would probably bias upwards the capability of the tested predictive models. 

 

Figure 6.1: Recursive testing. Author’s own elaboration 

Every model is built so to have as output a continuous value comprised between 0 and 1, 

corresponding to the predicted probability that the year which data it was fed (1998 as first) is 

in a pre-crisis state. These outputs are used to fill-in a vector, while another vector of equal 

length is filled-in with the real values (0 or 1) that are unknown to the forecaster at the time of 

training. The experiment then proceeds with the same approach by analysing the following year, 

that is 1999, with the training set drawn from the observations up until 1996. This procedure is 

then repeated for each following year, with the last year analysed being 2016 (even if predictors 

data is collected until 2022, the database containing financial crises events is updated only until 

2019). The vectors containing the prediction values and actual observations are extended with 

each analysed year, so that at the end they contain the true observations from 1998 to 2016, 

accompanied by the predicted values from 1998 to 2016 computed in a real-time recursive way. 

At the end, these two vectors are used to compute multiple different comparing score: AUROC, 

Relative Usefulness, and Brier Score, other than scores retrieved from the Confusion matrix. 

All cited models are tested and compared in the baseline experiment, except RNN given that 

this model is particularly well suited for dealing with many lags, therefore it will be the subject 

of a separate chapter. The initial training period 1970-1995 was chosen by the author since it 

contains more than half of crisis in the complete dataset, and roughly one third of total complete 

observations. This gives an adequate initial training dataset to be used by the algorithms in the 
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first prediction. The author thinks that this approach allows for an honest evaluation of models’ 

performance in a simulated real-world recursive implementation lasting 19 years, starting from 

1998 until 2016, but presents a major drawback. Due to the temporal distribution of financial 

crises and data availability, the testing period contains a far smaller density of pre-crisis periods 

compared to the testing portion of data, which might impair the models’ performance. 

Moreover, the crises present in the testing dataset are in great part represented by the Great 

Financial Crisis of 2007-2008, which impacted almost exclusively advanced countries and had 

a common origin, making the crisis episodes in the test dataset very homogeneous. An ideal test 

dataset would include many different crisis episodes around the world with different causes and 

dynamics so to observe the different reactions of the models in every situation. 

In the baseline experiment, developing and advanced economies are analysed both together and 

separately, and every variable is included without any lag, so that every predictor is assigned 

the value recorded at t0. Shapley values are also computed and recorded at any year for each 

variable and compared to the Logit regression coefficients. In Table 6.2 are reported the 

different performance scores relative to the recursive testing on the complete dataset. 

 

Table 6.2: Performance score, baseline experiment, complete database 

As expressed before, the main evaluation parameter of this dissertation is AUROC, given its 

objectivity and lack of a specific threshold to be set by the author. 
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Figure 6.3: AUROC, baseline experiment, complete database 

As shown in Figure 6.3, every model performed better than a random guess, even though for 

most models the difference from a random choice is not particularly significant. The best model 

is the Logit Regression, and the worst is BCT. Anyway, it is important to notice the low value 

of Precision (the share of correctly predicted crises over total predicted crises) for each model. 

This indicates that these models are not able to correctly predict a crisis when it is coming, and 

that they obtain a high Usefulness value simply by setting a low threshold and assigning almost 

all observations to the ‘tranquil period’ category, exploiting the fact that crises are rare event so 

to minimise the Loss function. It is also important to note that the traditional Logit Regression 

performed better than the average ML model in many evaluation metrics, confirming the 

hypotesis of Beutel et al. (2018): “It turns out that the logit approach is surprisingly hard to 

beat, generally leading to lower out-of-sample prediction errors than the machine learning 

methods”. 

The Shapley Values obtained recursively with each analysed year are reported in the Appendix 

(Figure A.9), as well as the coefficients of the Logit model (Figure A.8). 

Looking at the Logit coefficients, they are mostly of the expected sign throughout the whole 

testing period. Inflation, credit growth, nominal depreciation, M3/reserves, investments, and 

loans/deposits, all have positive signs, meaning that they positively contribute towards the 
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build-up of financial distress. This confirms previous findings in the literature, according to 

which an environment of great credit expansion could often be followed by credit crunches and 

market freezes, as explained by Boissay et al. (2016) in their article “Booms and Banking 

Crises”. In their model, they explain that favourable supply shocks initially lead to credit 

expansion and economic growth. Banks compete to satisfy credit demand by competing on 

interest rates and conditions, but the situation may reversal if doubts about loans quality, the 

interbank market, and economic prospects arise. At this point, the likelihood of returning to 

average productivity rises, slowing corporate demand and inducing a household saving excess. 

Stating the authors: “the larger the credit boom relative to the possibilities for productive use of 

loans, the larger the fall in interest rates, and the higher the probability of a bank run in —and 

therefore of a disastrous freeze of— the interbank market”. On the other hand, Gorton, and 

Ordoñez (2016) using their model in “Good Booms, Bad Booms” argue that not all credit booms 

are destined to turn into a financial crisis, but that if at the end of the credit expansion the 

decrease in productivity is avoided, for example thanks to technological improvements, the 

crisis may be averted. 

High inflation and rising M3/deposits ratio might proxy for a loose monetary policy by the 

central bank. A monetary expansion can be achieved in different ways, for example by reducing 

the reserve requirements for commercial banks or by lowering interest rates, causing both 

money supply and inflation to increase. This could lead to a credit boom and bust cycle as 

explained above. To this regard, Grimm et al. (2023) stated that an over accommodative 

monetary policy protracted over an extended period increases the likelihood of a financial crisis 

considerably for the medium-term, mostly through credit creation and asset price overheating. 

These findings are not new to the literature and find feedback way back to Wicksell (1898), 

who hypothesised back in the 19th century the effects of low interest rates over a long period on 

house prices and the boom-bust cycle. Dell’Ariccia et al. (2017), using US data as reference, 

also find a negative correlation between ex-ante risk taking by banks and increases in short-

term policy interest rates, due to increased leverage and search-for-yield behaviour. 

Moving forward, the current account balance shows negative coefficients’ sign, as expected. A 

strong current account deficit implies an increasing indebtedness toward foreign entities and 

reliance on capital inflows from abroad, which may eventually raise doubts about external 

solvency. The macroeconomic mechanisms through which a worsening current account balance 

could turn into a financial crisis are manyfold. It could be a “sudden stop”, as in Calvo and 

Reinhart (2000), causing a serious depletion of national reserves and GDP loss. In the 

framework of Obstfeld (2012), current account deficits could also deteriorate the net 
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international investment position (NIIP) putting pressure on external debt solvency or implying 

unsustainable macroeconomic imbalances which will be corrected with a painful reversal of the 

current account. This last point is also clearly visible in the reversal of CAB values as crises 

erupt in Figures A.1, A.2 and A.3 in the Appendix. However, it is interesting to notice how both 

current account balance and GDP growth lose significance after 2008, with their values 

approaching zero, possibly indicating that the Great Financial Crisis brought a shift in paradigm 

for the predictors’ behaviour in the years preceding crises. 

Government debt has a counterintuitive negative sign, meaning that a highly indebted state has 

lower chances of incurring in banking woes. This could be misleading though, since it might 

just indicate that advanced economies, which have usually a higher public debt to GDP ratio, 

are also the most resilient to financial crises. In fact, looking at the same coefficient computed 

on the high-income only database, its value fluctuates around zero implying low significance 

of this predictor. 

Nominal depreciation could stress banks’ balance sheets when a large share of their liabilities 

is denominated in foreign currencies, which is often the case in developing economies. As found 

by Aghion et al. (2000), firms are also negatively affected by domestic currency depreciation 

by increased difficulties in repaying bonds denominated in foreign currencies. This reduces 

firms’ profit, output, and investments, further reducing demand for the national currency in a 

vicious cycle. 

Looking at global variables, contrary to what expected, world GDP growth contributes to crises 

formation (even if its behaviour is quite erratic). Global yield curve and US 10-year rates have 

the expected signs, negative and positive respectively, but only starting from the years 

preceding the GFC. Before that, they had the opposite signs indicating that a steep yield curve 

and low interest rates in international markets lead to financial distress, opposed to what pointed 

out by the literature such as in Calvo et al. (1993) and Wright (2006). The yield curve reflects 

markets’ expectation about the future, with a flat or inverted curve indicating that markets 

expect an upcoming interest rate cut and deteriorating economic prospects. The literature on the 

effects of international interest rates, especially in developing economies, is wide. For example, 

Arteta et al. (2022) argues that increasing domestic rates in the US could spill over to low-

income countries increasing borrowing cost and the debt burden. Financial markets anticipate 

this and discourage capital inflows. Higher interest rates in the US also strengthen the dollar 

exchange rate, which implies nominal depreciation of other currencies. 
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According to the Logit Regression values, the most impactful variables in causing crises (based 

on coefficients’ values) are GDP deflator and loans/deposits ratio, while the variables which 

mitigate risks the most are government debt (which is misleading, as previously explained) and 

the current account surplus. 

Shapley values result to be less readable and coherent compared to Logit coefficients. Variables 

such as current account balance, nominal depreciation, GDP growth, gross fixed capital 

formation, and loans to deposits fluctuate greatly around the zero line, meaning that a clear 

effect over time on crises formation cannot be defined. It is also important to notice that Shapley 

values differ substantially among models, which sometimes point to opposite results, making 

so that the average line is close to zero. On the other hand, it’s nonetheless clear that public debt 

and credit growth contribute positively toward crises formation before the GFC, as expected, 

but also that models produce negative coefficients for the 10-year rate variable, which strangely 

contradicts the Logit Regression and the consensus of the literature. In this regard a critique 

could be moved to the advanced machine learning algorithms, as some other authors have 

already done, saying that they act as ‘black boxes’ which makes difficult to draw conclusions 

about the mechanisms which led to the final predictions and the contribution of each variable. 

The next step is to look at the predictions for some specific countries which experienced crises 

during the testing period. The predicted probabilities are plotted for four countries: USA, Italy, 

Dominican Republic, and Ukraine. These countries are chosen so to include different typologies 

of crises and different income level economies. USA and Italy were both hit by the GFC, which 

generated in USA in 2007 and then spread to Italy the following year. The crisis in Dominican 

Republic was caused by the abrupt stop to a period of strong economic growth, a lack of 

confidence in the financial institutions and by a botched bailout attempt (Hanke, 2004). Ukraine 

faced two crises in the testing period, one in 2008 as a direct consequence of the GFC and 

decreasing steel prices (Korduban, 2008), the second in 2014 caused by the annexation of 

Crimea by Russia and the loss of its major trading partner. This second crisis is used as 

benchmark, assuming that it is impossible for any model to predict such event and checking 

predicted probabilities in the previous years. In the below graphs, the blank spaces represent 

the crises years (which are removed from analysis to avoid crisis-bias). 
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Figure 6.4: Predicted crisis probabilities by country, complete database, recursive approach 

Looking at USA and Italy, in the three years preceding the financial crisis, predicted 

probabilities are close to the thresholds’ values, but the indicators are showing a steadily 

decreasing probability of being in a pre-crisis state. A forecaster would have received warning 

signs in the previous years, only to find out that they were false alarms. The same forecaster, 

seeing the decreasing probabilities, would conclude that values close to thresholds in 2006-

2007 are just another false alarm and that the financial situation is heading towards better 

prospects. This would prove catastrophically wrong in 2007 and 2008, showing how these 

models would have been unable to unequivocally predict that specific event in a real-world 

setting using the current framework. A completely different situation emerges both in 

Dominican Republic and Ukraine. In the Caribbean state the indicators correctly signal the 

rising risk of financial distress before 2003 and return to lower level once the crisis is over. In 

the 2000-2002 period, all indicators (except BCT) are above the warning thresholds. In Ukraine, 

contrary to Italy, in 2007 the indicators predict that the GFC would spread outside the USA. 

This is indicated especially by BCT, KNN, SVM, and MLP, which predicted probabilities shoot 

up in 2007. However, how it is easy to imagine, the models are unable to predict the 2014 

Russian annexation of Crimea and its consequences, with all indicators below warning levels. 

Summing up, the number of models unequivocally signalling a crisis are only one in USA and 
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Italy (Logit and KNN respectively), and six both in Dominican Republic and Ukraine. No 

model can singlehandedly correctly predict all four crises. 

It is interesting to observe how the performance change by splitting the complete database in 

the developing and advanced economies subsets. For developing economies, the following 

results are achieved. 

 

Table 6.5: Performance score, baseline experiment, developing economies 

 

Figure 6.6: AUROC, baseline experiment, developing economies 

It is immediately visible that the performance is slightly better for almost every model, even 

though precision scores remain equally low. The author of this dissertation hypotesis that this 

difference is due to the fact that the hard task of predicting the Great Financial Crises of 2007-

2008 in high-income countries is removed. Random Forest is the best performers in almost 

every evaluation metrics, with KNN being a close second. The Shapley values and Logit 

coefficients are reported in the Appendix (Figure A.10 and A.11). Looking at Logit coefficients, 
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they are mostly similar to what observed in the complete database and lead to the same 

conclusions. Two noticeable differences are observed in the current account balance, which is 

much less significant and even positive after the GFC, and real GDP growth which has negative 

coefficients throughout the whole testing period. This may suggest that banking systems in 

developing economies are more vulnerable to output shocks, which is a reasonable assumption, 

but also that they do not suffer particularly from current account deficits, opposed to what 

observed by Obstfeld (2012). The highest coefficients are recorded for inflation and 

loans/deposits ratio, and even higher for investments but only on the first years of analysis. The 

mitigating predictors are real GDP growth and public debt. 

Shapley values again are erratic during the testing period, with the only conclusions that can be 

drawn being the same as in the complete dataset, regarding credit growth, government debt and 

international rates. 

Regarding the subset containing only the observation retrieved from high-income countries, the 

results are presented in the following graphs. 

 

Table 6.7: Performance score, baseline experiment, advanced economies 



65 

 

 

Figure 6.8: AUROC, baseline experiment, advanced economies 

In this case, the same models achieved worse results on average, with some performing worse 

than a simple random guess and receiving a Usefulness score close to zero. The best models are 

Logit and AdaBoost, while the worst is also one of the most complex, SVM. It is important to 

note the strange thresholds set to minimise the Loss function, which are either very low (0.03 

for KNN and MLP) or extremely high (0.95 for BCT). Again, Logit performed quite well 

against the more modern methods. The author of the Thesis hypothesises that the large 

difference in results in low and high-income countries obtained by the same models is due to 

the temporal window used for out-of-sample testing. The Great Financial Crisis (GFC) of 2007-

2008 involved almost exclusively western high-income economies. The causes and dynamics 

of this event may be unique or somewhat different from previous banking crises in the western 

world, so that complex algorithms such as SVM and MLP, which are extremely good in data-

fitting, struggle to predict events that do not appear in similar forms in the training dataset. This 

could also explain why a general model such as Logit Regression could still achieve some utility 

in this framework. Again, the Shapley Values obtained recursively for the high-income dataset 

are reported in the Appendix (Figure A.13), as well as the coefficients of the Logit model 

(Figure A.12). Analysing the Logit coefficients, some differences from the complete dataset 

catch the eye. Nominal depreciation has a negative sign up until 2008, after which it loses 

significance by narrowing zero. This contradicts the literature, but it is also important to 
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consider that many of the included high-income countries are part of the Euro Area, with the 

Euro acting as the second international reserve currency, which might mitigate the average 

vulnerability of advanced countries to the exchange rate with the US dollar compared to 

developing economies. Loans to deposit ratio has the highest coefficients of all predictors, twice 

the value from the complete database setting, confirming that financial crises can be the results 

of an unchecked credit bubble. International 10-year rate are also constantly higher that zero, 

which is a reasonable result also in accordance with the literature. The lowest coefficients are 

recorded for the current account balance, and for the yield curve slope, but only after 2008. 

By trying to predict the crises in the USA, Italy, Dominican Republic, and Ukraine using the 

split datasets, this figure is obtained. 

 

Figure 6.9: Predicted crisis probabilities by country, database split in low and high-income countries 

By splitting the database in low and high-income countries, a slight improvement can be notice 

in advanced economies, no longer signalling decreasing probabilities, even if the models still 

fail to clearly anticipate the GFC. In both USA and Italy, only the AdaBoost model correctly 

put up a warning sign. In the low-income countries the signals are still present, as in the 

complete database case. Five models correctly predict the Dominican crisis, while they are six 

for Ukraine. The best model appears to be AdaBoost, which correctly warns about all four 

upcoming crises. Overall, it can be said that splitting the database in developing and advanced 
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countries could bring only modest to no improvements to the models’ predictive capabilities, 

depending on the countries income level. 

The next step is to check the performance of the same models, using the exact same data, with 

a different approach. Instead of a real-time recursive approach, the models are tested using 10-

fold cross-validation along the whole dataset period, from 1970 to 2016, as has been previously 

done in the literature. This procedure divides the entire dataset in ten folds of roughly equal 

length and containing adjacent observations, and then each fold is used as testing dataset while 

the other nine act as the training dataset, independently of their temporal positioning. The author 

implemented the module cross_val_predict from the Python library sklearn to run this analysis. 

The results for the complete database evaluated using cross-validation are presented below. 

 

Table 6.10: Performance score, cross-validation, complete database 

 

Figure 6.11: AUROC, cross-validation, complete database 
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The out-of-sample testing done through cross-validation leads to slightly better performance 

scores for most of the models, not so much regarding AUROC and Usefulness but more 

significantly on the other indicators. Precision and F1 scores doubled compared to the recursive 

approach. It is also interesting to notice how the curves in AUROC graphs now have a much 

more smooth and consistent shape, and how the results are more homogeneous between 

different models. In this framework Logit is no longer the preferred method, being surpassed 

by the more sophisticated MLP and KNN. The improvements in prediction capabilities may 

probably be explained by the fact that the training set now contains a bigger portion of data, 

part of which recorded after the testing year. This supplies the algorithms with a larger number 

of crisis events from which they could learn different patterns leading to financial troubles. The 

models trained with this data ‘learned’ that a similar combination of predictors’ values must be 

associated with a pre-crisis period, and later successfully uses this information in the testing-

fold. In the Appendix, in Figure A.15 and A.17 and Table A.14 and A.16, are reported the cross-

validation results for the low and high-income datasets. As for the complete dataset, there are 

noticeable improvement in Precision and F1 score, but not so much in AUROC. Advanced 

countries dataset benefited particularly from cross-validation evaluation, with all curves in the 

AUROC graph now well above the random guessing line. Again, in this framework Logit 

Regression is surpassed by the advanced machine learning algorithms in predictive capabilities. 

Using cross-validation estimated crisis probabilities, the author generates the following four 

graphs regarding the usual four-countries panel used as example. 
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Figure 6.12: Predicted crisis probabilities by country with cross-validation 

Contrary to the real-time recursive approach, it is noticeable that the models can perceive the 

upcoming financial crisis both in the USA and Italy two or three years in advance. Predicted 

probabilities are growing in both countries starting in 2004, with five and six signals above 

warning levels in the USA and Italy respectively. It is interesting also to observe the high values 

signalled in the USA before the Dot-com bubble of 2000. This is a great improvement from the 

recursive approach, in which the signals were flat or even slowly declining before the event, 

and mostly below warning levels. On the other hand, in Ukraine the signal is somewhat less 

strong than in the case where recursive evaluation is used (four warnings out of seven models), 

and in Dominican Republic the signal is mostly lost (only two warnings). This reinforces the 

AUROC scores computed previously, indicating that, in this specific framework, cross-

validation evaluation leads to higher performance of the models when analysing high-income 

countries. These findings partially reinforce the conclusions of Beutel et al. (2018), who 

discussed the work of Alessi and Detken (2018) stating that “the cross-validation procedure 

may provide an inflated estimate of the performances of these methods”, even if in this Thesis 

this is particularly true for high-income regions, while in the case of Dominican Republic the 

opposite result is drawn. In Figure A.18 in the Appendix the cross-validation evaluation is 

applied to the split datasets, resulting in impaired predictive capabilities in Italy and Dominican 

Republic, without significant gains for the other two countries of the example panel.  
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VARIATIONS 

In this chapter, some variations of the baseline exercise are experimented with. The objective 

is to try different approaches, some taken from the literature, and some elaborated by the author 

of this Thesis, and compare the results with the baseline variation. The analyses are run on the 

complete database, for brevity reason and given the modest improvement and mixed results 

brought by the low and high-income split. All variations are run and evaluated using the usual 

real-time recursive approach. 

 

Removing Micro-nations 

The presence of multiple micro-nations in the dataset could impair the predictive capabilities 

of the models, given that the dynamics that drive such small nations could be non-comparable 

or non-appliable to larger countries. Moreover, the models do not assign a greater weight to 

larger countries, so that variables collected in a micro-state such Aruba could potentially affect 

the model as much as variables collected in the United States. The presence of micro-states 

could especially harm prediction for high-income countries, given that nations with small 

population overwhelmingly belong to the high-income specification. For these reasons, the 

baseline experiment is run again, filtering data to remove the smallest countries. The author 

decided to label a country as a micro-nation if its population is below one million individuals 

in 2022. Data about population numbers is retrieved from World Bank database. 

 

Table 7.1: Performance score, no micro-nations 
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Figure 7.2: AUROC, no micro-nations 

The results show that the models do not benefit in a significant way from a dataset filtered from 

the smaller states’ data. The average performance score is just slightly higher than in the 

baseline experiment. The predictions on the four-countries panel are as follow. 
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Figure 7.3: Predicted crisis probabilities by country, no micro-nations 

As in the baseline experiment, the models do not show increased probabilities before the GFC 

in high-income countries, but both in USA and Italy four out of seven models are in a warning 

state in the preceding years, which is an improvement from the baseline framework. The signals 

appear to be slightly weaker in low-income nations, even if five models are still signalling in 

each country. The Logit model again presents the highest performance scores, and together with 

SVM is able to signal the upcoming crisis in all four examined economies. This variation of the 

baseline exercise brings some improvements when looking at the number of models able to 

correctly warn about financial distress, however it is important to notice how, especially in high-

income countries, false alarms in tranquil periods (before 2004) are even more relevant than in 

the baseline framework and may probably lead to underestimate the correct signals and dismiss 

them as another false alarm. Because of this, the author reaches the conclusion that the presence 

of values recorded in micro-nations is not the cause of the low performance of the models when 

using the high-income dataset. 
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Standard crisis duration 

As an ulterior test, the definition of crisis period is changed. In the baseline experiment, the 

duration of a crisis was set as reported by the authors from which the crises databases are 

retrieved. This duration could span from just one year, to a decade. In the literature the standard 

approach is to set the duration of a crisis to just one year, the year in which the event began, 

and then to consider the following three (but in some case five) years as a post-crisis period to 

be removed from the analysis to avoid the post-crisis bias. By not considering the effective 

duration of a crisis, assuming a standard duration of one year and removing from the analysis 

all observations in the three following years, the following results are obtained. 

 

Table 7.4: Performance score, standard crisis duration 

 

Figure 7.5: AUROC, standard crisis duration 

The results show that the average score obtained by the models is similar, but slightly lower, 

than the baseline framework. Precision values are still very low, and the Logit Regression 
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achieves the best results in almost every parameter. On the other hand, the AdaBoost algorithm 

seems to benefit the most from this change in approach. The predictions of the four-countries 

panel are presented below. 

 

Figure 7.6: Predicted crisis probabilities by country, standard crisis duration 

By looking at how the signals changed with the new crises’ duration settings, it appears that no 

improvements are made for the USA and Italy, while the models show decreasing probabilities 

for the 2003 Dominican banking crisis, even if five models still produce values above the 

thresholds. Ukraine signals are still present, even though with weaker emphasis. Overall, the 

models achieve slightly better performance when only the actual period of financial distress is 

removed from the training dataset, and not a generalised number of years equal for all crisis 

events. As seen from the crises databases, the effects of such events require a very 

heterogeneous time to vanish, and the author of this Thesis thinks that considering a standard 

fixed duration when the real observations are available is a waste of useful data, which most 

probably is reflected on the above results. 
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Models’ aggregation 

As a further variation on the main exercise, the author takes inspiration and follows the example 

of Fouliard et al. (2020) and Holopainen and Sarlin (2017) and set an aggregating rule to 

combine the results of all models. The method used is the Exponentially weighted average 

(EWA) aggregation rule, which combines the results of the seven models by assigning the 

weights based on performance in an exponentially increasing way. For each recursive training 

dataset, all models are run, and the AUROC score of out-of-sample predictions is recorded for 

each model. The AUROC score then determines the weights associated to each model 3 years 

ahead. The weights are computed with this 3-year delay so to keep a real-world setting, since it 

would be impossible for a forecaster to compute the AUROC score for recent prediction, given 

that the pre-crisis status of a year is determined only at the end of the following third year. After 

all models have been run, the probabilities predicted by each method are multiplied by the 

corresponding weight. Since the AUROC scores for the first three years are missing due to the 

real-world framework, the author implemented equal weights for all models in the period 1998-

2000. The weighted probabilities estimated by each model for each observation are then 

summed to obtain a single probability, the EWA output. The formula used by the author is as 

follows: 

𝐸𝑊𝐴 =
∑ 𝑤𝑖

𝑛
𝑖=1 ⋅ 𝑥𝑖

∑ 𝑤𝑖
𝑛
𝑖=1

 

in which n is the number of models implemented, xi is the probability predicted by model i, and 

wi is the weight assigned to that prediction based on the AUROC score computed on the 

predictions up to three years before, as in: 

𝑤𝑖 = 𝑒𝑘⋅𝐴𝑈𝑅𝑂𝐶 

Where k is the parameter used to control the exponential growth of the weights. In this 

dissertation k is set equal to 10. This might seem a quite high value, but after some 

experimenting by the author it is found to be necessary to reduce the weight of the least 

performing models to low values. By running the analysis using the usual database, the 

following weights are applied to the seven different algorithms over the testing period. As 

explained before, in the first three years of recursive testing the weights are set in equal 

proportions, since an AUROC score is not yet available to the forecaster at that time. 
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Figure 7.7: Weights computed by the EWA model 

The weights computed show how Random Forest is the preferred method up to the burst of the 

Financial Crisis of 2007-2008, after which the Logit Regression gains larger weights. The 

author of this dissertation hypotesis that the timing may not be coincidental and may be due to 

overfitting of the machine learning models and the entrance on the scene of an unpredicted kind 

of crisis which may benefit the Logit model. 

Here are presented the results obtained by the EWA in the usual real-time recursive approach. 

 

Table 7.8: Performance score, EWA 



77 

 

 

Figure 7.9: AUROC, EWA 

Given the complexity of the model involving seven different models and their thoughtful 

combination, the results obtained are quite disappointing. This might indicate that the 

algorithms which achieve the best out-of-sample performance up to a certain point in time are 

not necessarily the ones that will also perform best in future predictions. This result is quite 

discomforting, since it may imply that the search for a general best model is vane and may only 

lead to the detection of the model which worked best in the past. The predictions regarding the 

four-countries panel are presented in Figure 7.10. 
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Figure 7.10: Predicted crisis probabilities by country, EWA 

As in the baseline experiment, the models can predict financial distress in developing 

economies but erroneously signal the opposite outcome in high-income regions. In advanced 

economies, values are high and signal a warning until 2003, and then decrease rapidly at the 

eve of the GFC. 
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LAGS ANALYSIS 

In this chapter, the author uses the same database as in the baseline framework, with the addition 

of three lags for each observation. This approach has an adverse effect on the dataset length, 

since as explained before if any of these three lags is recorded during a crisis period, the 

observation must be removed from the analysis to avoid crisis-bias. This approach effectively 

leads to the removal of three consecutive years at the end of each crisis episodes, shortening the 

available dataset from 3576 observations to 3181. 

 

Machine Learning algorithms – Adding 3 Lags 

For this variation, the author runs the same recursive test using the same seven algorithms and 

using the values recorded at t0 plus three more lags for each variable, recorded at t-1, t-2, and 

t-3, taking inspiration from what has been previously tried in a similar fashion by Fricke (2017) 

and Tölö and Eero (2019). By doing so, each model works with a total of 48 variables. The 

results achieved are here presented. 

 

Table 8.1: Performance score, three lags 
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Figure 8.2: AUROC, three lags 

Looking at the results, adding three lags for each predictor and analysing all lags simultaneously 

brings no improvements to the machine learning algorithms on average, while the Logit 

Regression show marginally higher scores. AdaBoost also shows improved performance 

compared to the baseline experiment. It is interesting to notice how adding three lags especially 

reduces predictive performance of the trees models, BCT and Random Forest, weakening them 

to the point of being predictors as good as random guessing. The predictions on the four-

countries panel are presented below. The crisis duration is three years longer than in the baseline 

setting because of the three years lags adopted and the need to avoid crisis-bias as previously 

explained. 
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Figure 8.3: Predicted crisis probabilities by country, three lags 

As can be deduced from the performance table, the predictive performance of this setting is 

weaker than in the baseline framework. Not only the GFC is preceded by weaker warnings in 

high-income countries, especially in Italy, but the signals in developing countries are now much 

less strong, with fewer models producing outputs above alarm thresholds. As previously 

highlighted, Logit and AdaBoost somewhat benefit from this setting and show higher crisis 

probabilities than the other models. 

In the next experiment, the analysis involves multiple training stages using only one variable, 

with only one lag at a time: t0, t-1, t-2, and then t-3. The lag which yields the highest AUROC 

score in a 10-fold cross-validation evaluation is recorded for each variable in each year, 

assuming that is the lag which best contributes to correct predictions. Then, the overall out-of-

sample testing involving all predictors, each chosen based on its best lag for each testing year, 

is run in the same recursive approach. As a side note, in the phase in which the best lag for each 

predictor is estimated in the MLP model, the hyperparameters regarding the neurons and layers 

numbers are adjusted given that the analysis is executed with only one predictor at a time. 
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The hyperparameters of all other models are kept the same. The results are presented in Table 

8.4 and Figure 8.5 and 8.6. 

 

Table 8.4: Performance score, best lags 

 

Figure 8.5: AUROC, best lags 
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Figure 8.6: Predicted crisis probabilities by country, best lags 

A quick analysis of the results suggests that only a marginal improvement is brought by the in-

sample selection of the best lag for each variable. Using this approach, the upward trend of 

signals for the low-income countries is lost when comparing with the baseline case. Most 

signals are still above alarm level in USA, Dominican Republic, and Ukraine, but flat or 

declining trends may do so that a forecaster would dismiss them as false alarms. In Italy, only 

SVM produces a probability above warning level. Again, the author hypotesis that this may be 

due to the fact that the lags that best suit the crises dynamics in the past might not be the same 

that will best explain the surge of such events in the future. 

 

Recurrent Neural Networks 

A last experiment is carried out using the most sophisticated algorithms present in this 

dissertation, Recurrent Neural Networks. The dataset implemented is the same as in the 

previous experiments using lags, which implies that RNN will be fed each observation’s data 

at t0 accompanied by three lags. Two different typologies of RNN are used, Simple RNN and 

Long short-term memory (LSTM), in this order, each built with a six neuron – single hidden 

layer structure. 
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Regarding Simple RNN, the results achieved are as follow. 

 

Table 8.7: Performance score, Simple RNN 

 

Figure 8.8: AUROC, Simple RNN 

The performance of Simple RNN is substantially higher than the previous machine learning 

models, achieving the highest AUROC score up to now. Precision, however, is still lacking even 

if F1 and Usefulness scores are well above the previous results’ average. The author also 

elaborated the corresponding signals for the four-countries panel. 
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Figure 8.9: Predicted crisis probabilities by country, Simple RNN 

Comparing the graphs to the result of the experiments involving multiple lags, the prediction 

values in high-income countries display an erratic behaviour in the three – four years preceding 

the event. A clear indication of what is coming is still absent, but it is an improvement compared 

to the constantly decreasing predicted probability signalled by previous models. Furthermore, 

in the USA, it is reassuring seeing that the signal is constantly above warning levels (0.15) in 

the three years preceding the GFC. Again, high predicted probabilities in the USA (above 80%) 

in 1998 and 1999 might be due to rising Dot-com bubble. Regarding Dominican Republic and 

Ukraine, predicted probabilities are much higher above warning level in the period preceding 

the crisis, compared to the results achieved in the framework in which the less sophisticated 

machine learning algorithms were implemented with multiple lags. 

A last analysis is conducted with the same framework using the LSTM Recurrent Neural 

Network type. Results are displayed below. 

 

Table 8.10: Performance score, LSTM 
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Figure 8.11: AUROC, Simple LSTM 

 

Figure 8.12: Predicted crisis probabilities by country, LSTM 
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The deterioration in performance compared to the Simple RNN model is clear, resulting both 

in decreased score measures and misleading signals for both income-level countries. Except for 

Ukraine, predicted probabilities have a decreasing trend, which could be wrongly perceived as 

reassuring by the forecaster. Overall, it is possible to say that when dealing with multiple lags 

of the same variables, in this specific framework, a Simple RNN could bring tangible 

improvement over the other machine learning methods examined, and that LSTM is not suitable 

for the same purpose being specifically engineered to work with much longer time series. The 

effectiveness of Simple RNN and its better performance compared to MLP is highlighted as 

well by Tölö and Eero (2019), who state that the structure of RNN counteract the harmful effects 

of overfitting. 
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2023 - 2025 PREDICTIONS 

Given the results achieved in the previous chapters, the author of this Thesis applies the most 

promising strategies to observations up to 2022, the most recent year for which data is available 

for some countries, to seek what the models signal for the upcoming years 2023, 2024, and 

2025. The testing panel is limited to the US, Italy, and China. Italy is chosen based on the 

author’s nationality, while USA and China are chosen due to their importance in the global 

economy and their recent 2023 woes caused by the failure of SVB and other smaller regional 

banks in America, and filing for bankruptcy of Evergrande, China’s second largest property 

developer. The models are trained with data up to 2016 using the crises database available up 

to 2019, and the testing dataset consists of years 2016 to 2022 observations in order to evaluate 

the trend of the predictions. The frameworks used for predictions are the one used in the baseline 

experiment, and the Simple RNN model, in this order. The author also computes the threshold 

which minimise the Loss function for each model in the whole training period, so to have a 

reference value for assessment. 

The results from the baseline framework are showed in Figure 9.1. 
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Figure 9.1: Predicted crisis probabilities by country, Baseline framework 

All three countries follow a similar pattern in the considered period. The signals are quite flat, 

with just a marginal upward trend starting in 2020. Predicted probabilities for crisis in the 

Chinese economy are slightly higher compared to the other two western countries. The models 

which signal a coming crisis in future years are Logit and KNN both in the US and China 

(thresholds 0.08 and 0.14). Logit especially signals a 0.40 probability for China being in a pre-

crisis state in 2022. SVM and MLP give a timid warning for all three countries (thresholds 0.08 

and 0.10 respectively). 

Moving to the Simple RNN analysis, the following predictions are computed. 
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Figure 9.2: Predicted crisis probabilities by country, Simple RNN 

The more advanced algorithm presents a similar picture for China, but a quite different one for 

western economies. The model clearly signals an increasing warning for the USA after 2020, 

while in Italy predicted probabilities are decreasing but still more than double respect to the 

baseline setting prediction. Warning levels in China are noticeably higher than in the western 

economies. Running the Simple RNN model using the whole training database, the threshold 

minimising the Loss Function is 0.11, implying that the model does not give any warning sign 

for coming years. Only China crossed this threshold in 2019, which may have been an early 

warning about the growing bubble in the real-estate sector, leading to the 2023 bankruptcy of 

Evergrande, or more simply, just a false alarm. 
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CONCLUSIONS 

This dissertation accomplished an extensive review of the literature on the subject, an 

explanation of the most widely implemented machine learning models and variables’ effects, 

and then proceeded by testing different methodologies and different subsets of the available 

databases. A great focus is put on the attempt to simulate a continuous implementation of the 

models in a real-world environment, so to mimic in the most realistic way the results that would 

have been achieved. This implies that data used for testing must be strictly separated from the 

training datasets. The author achieves this by not including observations in the training subsets 

until the outcome (pre-crisis or tranquil period) is confirmed after the third year, by choosing 

the best hyperparameters with cross-validation using only the testing dataset, applying 

standardisation, winsorizing, and de-trending in a backward-looking fashion, and repeating all 

these passages for each testing year when new information is made available to the forecaster. 

The results show that, using different parameters for evaluation and focussing mainly on 

AUROC and the ability to predict specific events in a four-countries panel, some models or 

methodology have an advantage over the others. In particular, as previously noticed by other 

authors such as Beutel et al. (2018) and Fricke (2017), in a strictly out-of-sample environment 

Logit Regression is clearly amongst the most reliable methods. These authors critique some 

results of the past literature and explain the over optimistic performance assigned to machine 

learning models with the evaluation techniques used, in particular cross-validation. When a 

strict separation of training and testing data is applied taking in consideration the temporal 

sequence of data, as in a real-world application, these authors state that machine learning’s 

performance greatly decays. The author of this dissertation finds this true, but mostly for the 

high-income countries, and not so much for the low-income dataset. In fact, the author of this 

Thesis speculates that this might be a direct consequences of crises distribution in the database, 

with a single event, the GFC (which impacted mostly advanced economies), constituting the 

origin of most crises in the testing subset. Other than Logit, AdaBoost is also able to achieve 

good results on average, and correctly calls for warning most of the times in the four-countries 

panel testing. When adding lags to the predictors, it is clear how the standard machine learning 

methods are surpassed by the more advanced Simple RNN, which is specifically engineered to 

deal with long and complex time series. This model achieves the highest out-of-sample AUROC 

score and achieves above-average prediction capabilities in the four-countries panel sample. 

Logit can however still deal successfully with multiple lags and reach reasonable predictions, 
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reinforcing the opinion of Beutel et al. (2018), according to which machine learning algorithms 

tend to overfit on training data, while the Logit Regression retains sufficient flexibility. 

Overall, the author of this research reaches the conclusion that the best models are either the 

simplest and most general, such as Logit, or the most complex ones, such as Recurrent Neural 

Networks with lags and AdaBoost, with the less sophisticated machine learning algorithms such 

as BCT and KNN being stuck in the middle and reaching non-satisfactory performance. A 

strong limit of these models is their apparent inability to predict events which do not follow 

similar patterns to crises of the past. This is expected, given the basic functioning of these 

algorithms which learn and repeat from a finite dataset. However, it is somewhat disappointing 

to see how a clear consensus of the models regarding the burst of the GFC, a credit-fuelled 

bubble, is missing in advanced economies. On the other hand, it is important to add that models’ 

flawed performance could also be the fault of lacking data availability which, as stated by many 

other researchers, could impose significant restrictions on analysis. Having at disposal data 

about house prices and derivatives diffusion in each country could have made possible a more 

meaningful training of the models from similar, preceding crises and prompted better and 

clearer early warnings before the Great Financial Crisis, given the importance of those two 

predictors in the evolution of that event. 

Regarding models’ readability, Logit coefficients are mostly adherent to what the author 

expected and what the literature suggests. On the other hand, trying to understand how the 

single variable contributes to the final prediction in each ML algorithm turns out to be a much 

harder task, with results being very heterogeneous among different models and throughout the 

testing period, and coefficients often having signs opposite to what expected from widespread 

opinions. This has the adverse effect of rendering the adoption of the more advanced models by 

policymakers difficult, due to the lack of clear interpretability and causal effect of predictors. 

To conclude, the author argues that a real-world implementation of the best forecasting 

strategies could not bring a magic sphere level of prediction, but that it would nonetheless still 

be able to at least spur a discussion and warn policymakers about current and future financial 

conditions. For example, results obtained from data up to 2022 could induce further analysis in 

the US and China, given the signal obtained from multiple models, and could also be reinforced 

by recent events in those countries. The quantitative analyses carried out with the 

methodologies presented in this Thesis should not be used as the sole warning indicators and 

should not in any case substitute an in-depth qualitative analysis. 

  



93 

 

BIBLIOGRAPHY 

Aghion, Philippe & Bacchetta, Philippe & Banerjee, Abhijit (2001). "Currency crises and monetary policy in an 

economy with credit constraints," European Economic Review, Elsevier, vol. 45(7), pages 1121-1150. 

Alessi, Lucia and Detken, Carsten, (2011), Quasi real time early warning indicators for costly asset price boom/bust 

cycles: A role for global liquidity, European Journal of Political Economy, 27, issue 3, p. 520-533. 

Alessi, L., Antunes, A., Babecký, J., Baltussen, S., Behn, M., Bonfim, D., ... & Zigraiova, D. (2015). Comparing 

different early warning systems: Results from a horse race competition among members of the macro-prudential 

research network. 

Alessi, Lucia and Detken, Carsten, (2018), Identifying excessive credit growth and leverage, Journal of Financial 

Stability, 35, issue C, p. 215-225. 

Arteta,Carlos & Kamin,Steven Brian & Ruch,Franz Ulrich (2022). "How Do Rising U.S. Interest Rates Affect 

Emerging and Developing Economies? It Depends," Policy Research Working Paper Series 10258, The World 

Bank. 

Babecký, J., Havránek, T., Matějů, J., Rusnák, M., Šmídová, K. and Vašíček, B. (2012). Leading Indicators of 

Crisis Incidence: Evidence from Developed Countries. Czech National Bank, mimeo. 

Babecký Jan, Havránek Tomáš, Matějů Jakub, Rusnák Marek, Šmídková Kateřina, Vašíček Bořek (2014). 

Banking, debt, and currency crises in developed countries: Stylized facts and early warning indicators, Journal of 

Financial Stability, Volume 15, 2014, Pages 1-17, ISSN 1572-3089. 

Beutel, J., List, S., & Von Schweinitz, G. (2018). An evaluation of early warning models for systemic banking 

crises: Does machine learning improve predictions?. 

Betrán, C., & Pons, M. A. (2013). Understanding Spanish Financial crises, 1850-2000: What determined their 

severity? (No. 48). EHES Working Papers in Economic History. 

Bluwstein, K., Buckmann, M., Joseph, A., Kapadia, S., & Şimşek, Ö. (2023). Credit growth, the yield curve and 

financial crisis prediction: Evidence from a machine learning approach. Journal of International Economics, 

103773. 

Boissay, F., Collard, F., & Smets, F. (2016). Booms and banking crises. Journal of Political Economy, 124(2), 489-

538. 

Borio, Claudio and Lowe, Philip, (2002), Assessing the risk of banking crises, BIS Quarterly Review, issue. 

Breiman, L., & Ihaka, R. (1984). Nonlinear discriminant analysis via scaling and ACE. Davis One Shields Avenue 

Davis, CA, USA: Department of Statistics, University of California. 

Brier, G.W. (1950) Verification of Forecasts Expressed in Terms of Probability. Monthly Weather Review, 78, 1-

3. 

Calvo, G. A., Leiderman, L., & Reinhart, C. M. (1993). Capital inflows and real exchange rate appreciation in 

Latin America: the role of external factors. Staff Papers, 40(1), 108-151. 

Calvo, Carmen, Guillermo, and Reinhart (2000), When Capital Inflows Come to a Sudden Stop: Consequences 

and Policy Options, MPRA Paper, University Library of Munich, Germany. 

Caprio, G. and Klingebiel, D. (2003) Episodes of Systemic and Borderline Financial Crises. In: Klingebiel, D., 

Ed., The World Bank, Washington DC. 

Carstens, A.G., Hardy, D.C., Pazarbasioglu, C. (2004). Avoiding Banking Crises in Latin America. Finance and 

Development. (September). International Monetary Fund, Washington, DC. 



94 

 

Casabianca, E. J., Catalano, M., Forni, L., Giarda, E., & Passeri, S. (2022). A machine learning approach to rank 

the determinants of banking crises over time and across countries. Journal of International Money and Finance, 

129, 102739. 

Cortes, C., Vapnik, V. Support-vector networks. Mach Learn 20, 273–297 (1995). 

https://doi.org/10.1007/BF00994018. 

Cover, T.M. and Hart, P.E. (1967) Nearest Neighbor Pattern Classification. IEEE Transactions on Information 

Theory, 13, 21-27. 

Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function. Math. Control Signal Systems 2, 

303–314. 

Dell’Ariccia, Giovanni, Luc Laeven, and Gustavo A. Suarez. (2017). Bank Leverage and Monetary Policy’s Risk-

Taking Channel: Evidence from the United States. Journal of Finance 72(2): 613–654. 

Demirgüç-Kunt, A., & Detragiache, E. (1998). The Determinants of Banking Crises in Developing and Developed 

Countries. Staff Papers (International Monetary Fund), 45(1), 81–109. 

du Plessis, Emile (2022). Multinomial Modeling Methods: Predicting Four Decades of International Banking 

Crises (March 27, 2022). Economic Systems, Vol. 46, No. 2, 2022. 

Duttagupta, Rupa and Cashin, Paul, (2011), Anatomy of banking crises in developing and emerging market 

countries, Journal of International Money and Finance, 30, issue 2, p. 354-376. 

Eichengreen Barry & Rose Andrew K., 1998. "Staying Afloat When the Wind Shifts: External Factors and 

Emerging-Market Banking Crises," NBER Working Papers 6370, National Bureau of Economic Research, Inc. 

Estrella, A., & Hardouvelis, G. A. (1991). The term structure as a predictor of real economic activity. The journal 

of Finance, 46(2), 555-576. 

Fix, E. and Hodges, J.L. (1951) Discriminatory Analysis, Nonparametric Discrimination: Consistency Properties. 

Technical Report 4, USAF School of Aviation Medicine, Randolph Field. 

Fouliard, J., Howell, M., & Rey, H. (2021). Answering the queen: Machine learning and financial crises (No. 

w28302). National Bureau of Economic Research. 

Fouliard, Jérémy, Héléne Rey, and Vania Stavrakeva (2021) “Is this Time Different? Financial Follies across 

Centuries,” London Business School and CEPR. 

Freund, Y., & Schapire, R. E. (1996). Experiments with a new boosting algorithm. In icml (Vol. 96, pp. 148-156). 

Fricke, Daniel (2017). Financial Crisis Prediction: A Model Comparison (November 29, 2017). 

Garson, G.D. (1991) Interpreting Neural Network Connection Weights. AI Expert, 6, 47-51. 

Goh, A. (1995), Back-propagation Neural Networks for Modeling Complex Systems, Artificial Intelligence in 

Engineering 9, 143–151. 

Gorton, G., & Ordonez, G. (2020). Good booms, bad booms. Journal of the European Economic Association, 

18(2), 618-665. 

Grimm, M., Jordà, Ò., Schularick, M., & Taylor, A. M. (2023). Loose monetary policy and financial instability 

(No. w30958). National Bureau of Economic Research. 

Hanke, Steve. (2004). The Dominican Republic Resolving the Banking Crisis and Restoring Growth. 

Hardy, Daniel and Pazarbasioglu, Ceyla (1998). Leading Indicators of Banking Crises: Was Asia Different? (June 

1998). IMF Working Paper No. 98/91. 

Holopainen, Markus and Sarlin, Peter, (2017), Toward robust early-warning models: a horse race, ensembles and 

model uncertainty, Quantitative Finance, 17, issue 12, p. 1933-1963. 



95 

 

Iacoviello, M., & Navarro, G. (2019). Foreign effects of higher US interest rates. Journal of International Money 

and Finance, 95, 232-250. 

Janiesch Christian & Zschech Patrick & Heinrich Kai (2021). "Machine learning and deep learning," Electronic 

Markets, Springer;IIM University of St. Gallen, vol. 31(3), pages 685-695, September. 

Jiang Janet Hua (2008). "Banking crises in monetary economies," Canadian Journal of Economics, Canadian 

Economics Association, vol. 41(1), pages 80-104, February. 

Jordà, Ò., Schularick, M., and Taylor, A. M. (2015), Leveraged Bubbles, Journal of Monetary Economics 76, S1-

S20. 

Jordà Ò., Richter, B., Schularick, M., and Taylor, A.M. (2017), “Macrofinancial History and the New Business 

Cycle Facts”, NBER Macroeconomics Annual 2016, Vol. 31, pp. 213-263. 

Joy, M., Rusnák, M., Šmídková, K., & Vašíček, B. (2017). Banking and currency crises: Differential diagnostics 

for developed countries. International Journal of Finance & Economics, 22(1), 44-67. 

Kaminsky, G. L., & Reinhart, C. M. (1999). The Twin Crises: The Causes of Banking and Balance-Of-Payments 

Problems. The American Economic Review, 89(3), 473–500. 

Kaminsky, Graciela, (2006), Currency crises: Are they all the same?, Journal of International Money and Finance, 

25, issue 3, p. 503-527. 

Knedlik, Tobias, (2013), The European Commission's Scoreboard of Macroeconomic Imbalances: The impact of 

preferences on an early warning system, VfS Annual Conference 2013 (Duesseldorf): Competition Policy and 

Regulation in a Global Economic Order, Verein für Socialpolitik / German Economic Association. 

Korduban, Pavel (2008). The Jamestown Foundation. Hard Times for Ukrainian Banks, Central Bank Chairman 

Under Fire, December 17, 2008. Retrieved from https://jamestown.org/program/hard-times-for-ukrainian-banks-

central-bank-chairman-under-fire/. 

Laeven, Luc & Valencia, Fabian. (2008). Systemic Banking Crises: A New Database. International Monetary Fund, 

IMF Working Papers. 08. 10.5089/9781451870824.001. 

Laeven, L., Valencia, F. (2013). Systemic Banking Crises Database. IMF Econ Rev 61, 225–270. 

Laeven Luc & Valencia Fabian (2018). "Systemic Banking Crises Revisited," IMF Working Papers 2018/206, 

International Monetary Fund. 

Laeven Luc & Valencia Fabian (2020). "Systemic Banking Crises Database II," IMF Economic Review, Palgrave 

Macmillan;International Monetary Fund, vol. 68(2), pages 307-361, June. 

LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015 May 28;521(7553):436-44. doi: 10.1038/nature14539. 

PMID: 26017442. 

Lindgren, Garcia, Saal. (1996). “Bank soundness and macroeconomic policy”. Washington, D.C. : International 

Monetary Fund. ISBN / ISSN: 155775599X. 

Lo Duca Marco, Peltonen Tuomas A. (2013), Assessing systemic risks and predicting systemic events, Journal of 

Banking & Finance, Volume 37, Issue 7, 2013, Pages 2183-2195, ISSN 0378-4266. 

McCulloch, W.S., Pitts, W. (1943) A logical calculus of the ideas immanent in nervous activity. Bulletin of 

Mathematical Biophysics 5, 115–133. 

Neunhoeffer, M., & Sternberg, S. (2019). How cross-validation can go wrong and what to do about it. Political 

Analysis, 27(1), 101-106. 

Nguyen Thanh Cong, Castro Vítor, Wood Justine, (2022). A new comprehensive database of financial crises: 

Identification, frequency, and duration, Economic Modelling, Volume 108, 2022, 105770, ISSN 0264-9993. 



96 

 

Obstfeld, Maurice, (2012), Does the Current Account Still Matter?, No 17877, NBER Working Papers, National 

Bureau of Economic Research, Inc. 

Quinlan, J. R. (1986). "Induction of Decision Trees." Machine Learning, 1(1), 81-106. 

Reinhart Carmen M.  & Rogoff Kenneth S. (2008). "This Time is Different: A Panoramic View of Eight Centuries 

of Financial Crises," NBER Working Papers 13882, National Bureau of Economic Research, Inc. 

Ristolainen, Kim, (2018), Predicting Banking Crises with Artificial Neural Networks: The Role of Nonlinearity 

and Heterogeneity, Scandinavian Journal of Economics, 120, issue 1, p. 31-62. 

Sarlin, Peter and Peltonen, Tuomas, (2013), Mapping the state of financial stability, Journal of International 

Financial Markets, Institutions and Money, 26, issue C, p. 46-76. 

Schularick, M., & Taylor, A. M. (2012). Credit Booms Gone Bust: Monetary Policy, Leverage Cycles, and 

Financial Crises, 1870–—2008. The American Economic Review, 102(2). 

Shapley, L. (1953) A Value for n-Person Games. In: Kuhn, H. and Tucker, A., Eds., Contributions to the Theory of 

Games II, Princeton University Press, Princeton, 307-317. 

Tölö, Eero (2019). "Predicting systemic financial crises with recurrent neural networks," Bank of Finland Research 

Discussion Papers 14/2019, Bank of Finland. 

Turing, A.M. (1950) Computing Machinery and Intelligence. Mind, 59, 433-460. 

Werbos Paul J. (1988), Generalization of backpropagation with application to a recurrent gas market model, Neural 

Networks, Volume 1, Issue 4, 1988, Pages 339-356, ISSN 0893-6080. 

Wicksell, Knut. (1898). Geldzins und G ¨uterpreise. Eine Studie ¨uber die den Tauschwert des Geldes bestim-

menden Ursachen. Jena: Verlag von Gustav Fischer. 

Wright, J. H. (2006). The yield curve and predicting recessions. 

  



97 

 

APPENDIX 

 

Figure A.1: Signals, overall database 1970-2019 
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Figure A.2: Signals, developing economies 1970-2019 
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Figure A.3: Signals, advanced economies 1970-2019 
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Figure A.4: Correlation matrix, overall database 

 

Figure A.5: Correlation matrix, developing economies 
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Figure A.7: Correlation matrix, advanced economies 
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Figure A.8: Logit coefficients over time, overall database 
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Figure A.9: Shapley Values over time, overall database 
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Figure A.10: Logit coefficients over time, developing economies 
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Figure A.11: Shapley Values over time, developing economies 
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Figure A.12: Logit coefficients over time, advanced economies 
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Figure A.13: Shapley Values over time, advanced economies 
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Table A.14: Performance score, cross-validation, developing economies 

 

Figure A.15: AUROC, cross-validation, developing economies 

 

Table A.16: Performance score, cross-validation, advanced economies 
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Figure A.17: AUROC, cross-validation, advanced economies 
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Figure A.18: Predicted crisis probabilities by country with cross-validation, database split in low and high-income countries 


