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Abstract

Despite the expectation that increases in rainfall with climatic change will result in increases in

pluvial flooding, there is more historical evidence for decreases in flood magnitude in the La Vizza

basin. The small basin of La Vizza, in the Eastern Italian Alps, provides a clear example for this

type of trend divergence. In this basin, flood magnitudes are decreasing, despite increasing rainfall

extremes. In this thesis we investigate how changes in soil moisture and snow water equivalent

play a role in controlling the above divergence. Using catchment average precipitation and

temperature, and a continuous hydrological model able to specify soil moisture and snow water

equivalent at the start of each rainfall-runoff events, we aim to better understand the relative role

of the two drivers in controlling the trends in runoff events. Additionally, trends in annual maxima

of rainfall, annual maximum of runoff, mean annual temperature, antecedent soil moisture, and

antecedent snow water equivalent are scrutinized to provide a comprehensive understanding. The

study employs a hybrid approach, coupling the ICHYMOD model with the TOPMELT continuous

hydrological model to simulate antecedent soil moisture and snow water equivalent. A total of 944

rainfall-runoff events were selected between 1 October 1985 to 31 September 2018 (33-year

timeframe) for detailed analysis. Model outputs were compared with observed runoff at the La

Vizza outlet to assess model efficiency. Additionally, satellite-based MODIS snow cover area data

were incorporated for comparison using GIS analysis. The assessment of trend in antecedent soil

moisture and antecedent snow water equivalent, aligned with selected events and standards, was

conducted using the Mann-Kendall test and Sen slope statistical estimator. Results revealed

noteworthy trends. Annual maximum of rainfall demonstrated an upward trajectory, with a

maximum increase of up to 12.30% for rainfall duration of 30 minutes whereas annual maxima of

runoff was decreased by -12.4% for runoff duration of 5 minutes over a ten-year period. Mean

annual temperature depicted statistically significant rising trends, exhibiting an average increase

of 15.19% over a decade, equivalent to a rise of 0.49° Celsius. Conversely, antecedent soil moisture

and antecedent snow water equivalent indicate minor decreasing trends. The negative decreasing

trend in the runoff coefficient, antecedents snow water equivalent, and antecedents soil moisture

well explain the decreasing runoff peak. These results shed light on the role of antecedents’

conditions on runoff process.
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1. Introduction
Mountain catchments are integral components of hydrological systems, playing a pivotal role in

supplying water resources to downstream regions. However, they are exceptionally vulnerable to

the impacts of climate change, which can significantly alter the hydrological processes governing

their water supply (Moraga et al., 2021; Somers & McKenzie, 2020). Key contributors to the water

supply in mountainous areas are snowmelt and rainfall, making these catchments particularly

sensitive to variations in temperature and precipitation patterns (Day, 2009). The rapid

transformation of high mountain regions due to global warming raises concerns about the evolution

of natural hazards in these areas (Beniston et al., 2018; Musselman et al., 2017). Climate change,

as a principal driver of environmental transformation, exerts profound influence on hydrological

systems, particularly in alpine regions. In the Alps, atmospheric warming has been observed to

more than double the global mean value over the past 50 years (Böhm et al., 2001). The intricate

interplay between changing atmospheric conditions and hydrological processes underscores the

need for comprehensive investigations.

Climatic shifts, coupled with varying human impacts, emerge as the primary drivers of changes in

rainfall-runoff dynamics (Kliment et al., 2011). The indisputable influence of anthropogenic

activities on climate change is underscored by the Intergovernmental Panel on Climate Change

(IPCC) report (2013), which attributes a significant temperature increase of 0.89°C from 1901 to

2012 to human-induced factors (Umar et al., 2022). The response of streamflow to rainfall-runoff

events is influenced by various factors, including the characteristics of the events themselves, such

as their intensity, duration, and frequency (Guastini et al., 2019). Additionally, soil moisture

content in catchments plays a crucial role in modulating the rainfall-runoff response (Bronstert &

Bárdossy, 1999; Zehe et al., 2005, 2010; Zehe & Blöschl, 2004). Understanding the spatial scale-

dependent variations in rainfall-runoff events holds promise in elucidating the main drivers behind

the temporal variability of streamflow responses in catchments of diverse sizes (Guastini et al.,

2019).

Moreover, event water contributions to streamflow have been found to be influenced by antecedent

soil moisture conditions, event size, and rainfall intensity (Penna et al., 2016). This highlights the

complex interplay between antecedent conditions and hydrological response. Antecedent soil

moisture has emerged as a pivotal factor governing the non-linear behaviour of runoff (Brocca et
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al., 2005; Penna et al., 2011; Radatz et al., 2013; Western et al., 2004; Zhao et al., 2015). The role

of antecedent soil moisture, however, appears to vary when analysing different metrics of

streamflow response. Although it is acknowledged as a critical driver of runoff generation in

mountain catchments in various studies (Brocca et al., 2009; James & Roulet, 2009; Massari et al.,

2014; Tayfur et al., 2014; Tramblay et al., 2010), its role in explaining the variability of response

metrics may differ, sometimes overshadowed by event rainfall (Merz & Blöschl, 2009; Uber et al.,

2018).

Trend analysis is considered to be a crucial tool in detecting and understanding the rainfall-runoff

mechanics in a long-term series of hydrological and meteorological data and the outcomes from

such analysis stand out promising in supporting the findings from the different forecasting

hydrological model for the planning and management of water resources (Kliment et al., 2011).

The assessment of trends in hydro-meteorological data offers a valuable avenue for evaluating the

influence of climate change on hydrological systems (Chen & Georgakakos, 2014; Darand et al.,

2015; Sa’adi et al., 2019). Projections indicate that climate change will likely induce significant

hydrological alterations, leading to shifts in trends and the recurrence intervals of extreme events

(Umar et al., 2022). Consequently, researchers have increasingly utilized statistical and stochastic

techniques to detect trends and alterations in hydrological time series across varying temporal

scales (Caloiero et al., 2011).

In recent years, amidst mounting apprehensions regarding the ramifications of climatic

fluctuations (IPCC, 2007), researcher have employed a diverse array of statistical and stochastic

methodologies to detect trends and transitions within hydrological datasets, across varying

temporal granularities (Caloiero et al., 2011). In the domain of hydrometeorological variables, such

as precipitation, nonparametric statistical tests have recurrently been enlisted to corroborate

findings already perceived via more conventional analytical techniques, including moving

averages and regression analysis (Bocchiola et al., 2002; Bradley, 1998; Kundzewicz & Robson,

2004).

Man-Kendall test is one of the popular method for the trend detection and is widely used in

different studies for the trend detection in the hydrometeorological variables around the world (e.g.

Arnbjerg-Nielsen, 2006; Bormann et al., 2011; Brázdil et al., 2012; Douglas et al., 2000; Gregersen

et al., 2013; Jurko et al., 2009; Korhonen & Kuusisto, 2010; Kyselý, 2009; Madsen et al., 2009;
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Meilutytė-Barauskienė et al., 2010; Petrow et al., 2009; Petrow & Merz, 2009; Sadri et al., 2009;

Wilson et al., 2010 and others), renowned for its non-parametric nature, robustness, and

insensitivity to outliers (Chevuturi et al., 2018; Hirsch et al., 1993; Salas & Maidment, 1993). For,

this study, the trends has been assessed using the non-parametric Mann-Kendall test (Kendall,

1975; Mann, 1945) and the trend slopes has been determined by using Sen’s slope method (Sen,

1968).

The scientific community has long recognized the significance of extreme precipitation events in

shaping hydrological regimes. Analysing observed data, Madsen et al. (2014) reported a noticeable

increase in extreme precipitation across Europe. In regions marked by snowmelt-driven peak

flows, studies have documented declining trends in extreme streamflow and earlier spring

snowmelt peaks, likely attributable to rising temperatures (Madsen et al., 2014). Climate

projections further suggest a future marked by intensified extreme precipitation (Madsen et al.,

2014), posing substantial hydrological alterations such as shifts in flood magnitudes and early

spring floods in catchments with snowmelt-dominated peak flows.

Empirical studies in specific regions have provided insights into changing hydrological patterns.

For instance, investigations in Northern Italy revealed an increasing trend in annual maxima of

long daily rainfall series (Dallan et al., 2022; De Michele et al., 1998; Libertino et al., 2019;

Montanari et al., 1996), while further analyses covering a broader timespan demonstrated varying

trends in total annual rainfall, rainy days, and event intensity (Brunetti et al., 2001).

Despite the expectation that increases in rainfall with climatic change will result in increases in

pluvial flooding, there is more historical evidence for decreases in flood magnitude in the La Vizza

basin (Marcon, 2023). In this basin, flood magnitudes are decreasing, despite increasing rainfall

extremes. In this thesis we investigate how changes in soil moisture and snow water equivalent

play a role in controlling the above divergence. Using catchment average precipitation and

temperature, and a continuous hydrological model able to specify soil moisture and snow water

equivalent at the start of each rainfall-runoff events, we aim to better understand the relative role

of the two drivers in controlling the trends in runoff events (both volumes and peaks). With this

overarching objective, the thesis has the specific objectives of:

i. quantifying the diverging trends in annual maxima of rainfall and runoff events for the

study basin
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ii. quantifying the snow cover area by means of the TOPMELT model and validating it by

using MODIS satellite images

iii. quantifying the trends for event-generating precipitation, antecedent soil moisture, and

antecedent snow water equivalent and assess their role in controlling the trend in runoff

events.

While there has been research on the Italian Alps region regarding how frequent heavy

precipitation in the recent years (Borga et al., 2007) is determining trends runoff (Marcon, 2023),

the specific role of the initial conditions of soil moisture and snow water equivalent before the

events remain unexplored in the La Vizza basin. To address this gap, the integration of a

hydrological models, TOPMELT and ICHYMOD, along with the GIS, has been used in this study.

TOPMELT has been structured to simulate snowpack dynamics and its interplay with runoff,

whereas ICHYMOD has been employed for calculating streamflow behaviours. Through this

integration, the ability to analyse the influence of diverse initial conditions on runoff trends has

been facilitated. By employing the hydrological model TOPMELT, which incorporates snow and

glacier melt considerations, it has become possible to simulate the evolving dynamics of these

processes under varying initial conditions. This is exemplified in the examination of how differing

antecedent soil moisture levels impact responses related to snowmelt and runoff. The capacity of

TOPMELT to compute snow water equivalents and simulate their spatial distribution aids in

comprehending how distinct initial conditions govern the temporal and spatial characteristics of

runoff patterns. Conversely, the ICHYMOD hydrological model encompasses a wider spectrum of

runoff processes and effectively integrates the outcomes derived from TOPMELT, enabling an

assessment of their collective influence on streamflow. This comprehensive evaluation contributes

to an enhanced understanding of how initial conditions shape the hydrological response within the

La Vizza basin.
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2. Data and study area

2.1.Study area
This study centres on the small basin of La Vizza basin, which occupies a pivotal position within

the Upper Cordevole River system, nestled in the eastern Italian Alps. This basin finds its

geographical niche within the majestic Dolomite Mountains, an iconic feature of northern Italy's

landscape. More specifically, the study area is strategically situated in the western part of the

Livinallongo del Col di Lana commune, which falls under the administrative jurisdiction of the

Province of Belluno within the Veneto region. A visual depiction of this geographic alignment is

presented in Fig. 1, providing a cartographic snapshot of the study area's precise location.

Fig 1: Location map of the study basin. Red polygons indicate the study basin.

The study basin, La Vizza encompasses a geographical area of 7.3 square kilometres, characterized

by altitudes ranging from 1843 to 3152 meters above sea level (a.s.l.). The average elevation of

the basin is 2342 m a.s.l., with about a quarter of the area lying above 2500 m a.s.l. In terms of

climate, the basin experiences notable fluctuations in monthly average temperatures. January
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marks the coldest period with an average of -5.7 °C, while July registers the warmest month with

a peak of 14.1 °C.

The predominant land cover in the La Vizza basin is alpine grassland, covering approximately 74%

of the total area. Shrubs account for 14% of the land cover, while rocks make up approximately

12%. The hydrological dynamics within the basin are significantly influenced by precipitation,

with an average annual precipitation of 1220 mm. The bulk of this precipitation takes the form of

snow during the winter months. Subsequently, the melting of this snow during the spring and

summer months assumes paramount importance as it contributes significantly to the water

resources of the rivers and streams that traverse the basin (Guastini et al., 2019).

Fig 2: Elevation map of Study basin. The red dots indicate the outlet of La Vizza.

Geologically, the basin is underpinned by two primary lithological formations. The Dolomia

Cassiana formation predominantly consists of dolomite, while the San Cassiano formation
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comprises a combination of carbonate and terrigenous sandstones and claystones. The soils in this

area exhibit a moderate depth and an acidic pH. These soils are rooted in silicatic-siltic parent

material, characterized by commendable drainage capabilities. Slopes within the basin exhibit two

prominent soil types—Leptsols in steeper terrains and Cambisols in regions with more gentle

gradients (Penna et al., 2017; Zuecco et al., 2018). These geological and soil attributes contribute

significantly to the overall hydrological behaviour and environmental characteristics of the La

Vizza basin offering crucial insights into the terrain's makeup and its hydrological implications.

2.2.Data and their sources
Basin topography is described by means of a DTM with a 25 m grid resolution (Fig.2).

Precipitation, temperature data, streamflow/discharge at hourly time intervals and annual maxima

of rainfall at 5 minutes intervals for the study basin are available from ARPAV (Agenzia Regionale

per la Prevenzione e Protezione Ambentale del Veneto) for the period of 33 years (1 October 1985

to 31 September 2018). The observed discharge is available at the stream-gauge station in

Cordevole Catchment at La Vizza for the study period. Precipitation and temperature data are

obtained from the 11 different weather stations (Table 1) in and around the study area. The weather

station, Passo Pordoi lies in the study basin which records both precipitation and temperature data

(Fig.3).

Table 1: Details of weather stations. Data columns represent the type of data viz precipitation (P)
and temperature (T) collected by corresponding station. Coordinates are in Monte Mario Rome

Italy (1) projection system.

S.N. Weather Station
1.                          Arabba
2. Caprile
3. Biois a Cencenighe
4.                          Falcade
5. Malga Ciapela
6.                   Passo Falzarego
7.                     Passo Pordoi
8.                      Passo Valles
9.                           Pescul
10. Selva di Cadore
11.                     Pian Fedaia

X-Coordinate
1720708
1729697
1728252
1720777
1723204
1730654
1716656
1715621
1735771
1733595
1719830

Y-Coordinate Data
5153542                P, T
5147256                  P
5137397                  P
5137469                  P
5145688                  P
5156004                  P
5151560                P, T
5135470                  P
5147134                  P
5148836                  P
5149000                P, T
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Fig 3: Location of the weather station. The yellow triangle indicates the weather station responsible
for collecting precipitation data whereas and yellow triangle with black triangle inside indicates
the weather station responsible for collecting both precipitation and temperature data.

Satellite observations-based MODIS snow cover area (SCA) data are available from the Institute

for Applied Remote Sensing, EURAC research centre in coordination with the Bolzano province.

It encompasses a comprehensive time span from 1 January 2003 to 31 December 2018. The data

was meticulously curated at a spatial resolution of 250 meters. Notably, this endeavour hinged on

the application of an algorithm grounded in MODIS observations, an approach pioneered by

Notarnicola et al. (2013a, 2013b). The algorithm's efficacy lies in its capacity to generate MODIS

maps that convey the categorical presence of snow, clouds, non-snow conditions (bare land), or

water bodies, attributing these attributes to individual or clusters of pixels. Out of a collective of

374 corresponding pre-event instances, we have culled 326 pre-event MODIS images. These

selected images boast a commendably low cloud cover percentage, clocking in at under 10%. This

judicious selection paves the way for our rigorous analysis of the initial state of snow cover area

(SCA) preceding each event.
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3. Methods

3.1.Methodology for rainfall-runoff (rr) events selection
The purpose of rainfall-runoff events selection is to understand how the catchment responds to

rainfall inputs. Rainfall-runoff event classifications serve as valuable tools for enhancing our

comprehension of catchment hydrological dynamics (Gelmini et al., 2022). In the context of this

study, the analysis encompasses rainfall-runoff events occurring October 1985 and September

2018. The selection of these events is predicated upon the application of specific criteria, aligning

with standards used by Guastini et al. (2019). The listed criteria entail the following conditions:

a) a total event precipitation equal or larger than 5 mm,

b) two events were separated by at least 6 h with no precipitation (Guastini et al., 2019; Penna et

al., 2011),

c) events with a difference between streamflow peak (Q peak) and streamflow (Q) at the beginning

of the event below 0.01mm/h are excluded. This was done by using constant-k method proposed

by Blume et al. (2007).

For the chosen rainfall-runoff events, a comprehensive set of attributes was calculated. These

attributes encompassed the duration of the rainfall, the cumulative precipitation, the average and

maximum precipitation intensity, prevailing antecedent soil moisture and the streamflow peak

(Table 2).

Table 2: Matrices used in the study for describing the rainfall-runoff events.

S.N. Metrics

1. Cumulative precipitation (mm)

2. Precipitation duration (h)

3. Average precipitation intensity (mm/h)

4. Maximum precipitation intensity (mm/h)

5. Runoff peak (m3/s)

6. Antecedent soil moisture
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3.2.The hydrological model

3.2.1. TOPMELT and its integration into ICHYMOD

TOPMELT is an enhanced temperature-index based distributed continuous hydrological model for

snowpack simulation that helps us understand how snow and glaciers melt (Zaramella et al., 2019).

In other word, TOPMELT is a model that simulates how snow and ice melt in a mountain basin

using temperature and solar radiation as inputs. To do this, it divides the basin into smaller areas

based on their elevation and how much sunlight they receive. Higher areas are colder and lower

areas are warmer, so elevation affects how fast snow and ice melt. Sunlight also affects melting,

because more sunlight means more heat. TOPMELT uses a number of classes to group areas with

similar sunlight levels. TOPMELT can calculate how much snow and ice melt in each class for

each elevation band. Some areas may have glaciers, which are large masses of ice that move

slowly. TOPMELT keeps track of how much glacier area there is in each class and elevation band,

because glaciers melt differently than snow. The smaller the areas are, the more accurate the model

is, but also the more time and resources it takes to run it. TOPMELT tries to balance accuracy and

efficiency by choosing the right number of classes and elevation bands.

TOPMELT is based on the ICHYMOD hydrological model (Norbiato et al., 2008), which is a

semi-distributed model that divides the basin into sub-basins and uses a lumped approach for each

sub-basin. The ICHYMOD hydrological model is a tool that helps us understand how water flows

through a river basin. It integrates TOPMELT model to simulate the movement of water from

snowmelt and rainfall through the soil and into the river. The model has three parts: a snow routine,

a soil moisture routine, and a flow routine which has been used for the purpose of this work.

The snow routine simulates how snow melts and turns into water. The snow routine in ICHYMOD

represents snow accumulation and melt using a distribution function approach based on a

combined radiation index degree-day concept (Norbiato et al., 2008). The degree-day method is a

simple way to estimate the amount of snowmelt based on the air temperature. It assumes that the

snowmelt is proportional to the difference between the air temperature and a base temperature,

which is usually zero degrees Celsius. The proportionality constant is called the degree-day factor

and it depends on the characteristics of the snow and the environment. The snow melt rate (M) is

computed using the following equation:
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h 0 h 0

h 0
M = { }

ᵃ�

fmEI(T − T ), T > T
0                            T > T (1)

Where M is the melt rate (mm/h), Th is the hourly mean temperature (°C), T0 is a threshold

temperature beyond which melt is assumed to occur (°C), fm is a melt factor and EI is an energy

index which represents the potential radiation energy (variable in time) for a given site in the basin

(J/m2h). This energy index is based on factors like the angle of the sun, how clear the sky is, the

elevation of the area, which way it faces, and how steep it is.

The soil moisture routine describes how water is stored in the soil and how it moves through the

ground. The soil moisture is calculated based on the probability distributed model (PDM) of the

storage capacity, c, as described by Moore (2007) as following:

ᵃ�(ᵅ�) = 1 − (1 +  
ᵅ�     

)
ᵄ�

(2)
ᵅ�ᵄ�ᵆ�

Where Cmax is the maximum soil water storage capacity per unit area, and parameter b is a Pareto

exponent which controls the degree of spatial variability of storage capacity over the basin. The

value of b is related to the spatial distribution of soil types and land use within the basin.

The flow routine calculates how water flows through the river basin. The model also considers

how much water is lost due to evaporation and plant transpiration. The ICHYMOD model's

streamflow routine, is designed to calculate the flow of water throughout the entire catchment area.

It does this by considering two essential factors: the geographical layout of the land (topography)

and the soil's hydraulic properties. This integrated approach provides a comprehensive

understanding of the movement of water within the basin, taking into account both natural features

and the characteristics of the soil.

3.2.2. Model validation
The model validation process involved a rigorous comparison between the simulated data

generated by the model and the actual data observed in real-world scenarios. In this study, our

focus was directed towards two critical types of data: outflow and snow cover area. The simulated
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NSE = 1 −
N

N

N

∑N OBS

outflow values were meticulously cross-referenced with the measured discharge data collected at

the La Vizza outlet throughout the study's duration. Similarly, we evaluated the congruence

between the simulated snow cover area produced by the model and the satellite-derived snow cover

data captured by MODIS observations. This comprehensive validation process was undertaken to

ensure that the model's predictions were consistent and reliable in representing the real-world

hydrological dynamics.

A normalized statistic, Nash-Sutcliffe efficiency (NSE) proposed by Nash & Sutcliffe (1970) is

used in this work for comparing simulated and observed parameter. It assesses how closely a

model's predictions align with real-world data. NSE serves as a valuable tool for evaluating the

model's predictive accuracy by comparing its projections to actual outcomes. It quantifies the

degree of fit between the model's projected values and the actual observations, represented by a

line on a graph.

Bias is also calculated which is crucial in assessing the efficiency of a hydrological model as it

provides insights into the systematic errors or deviations in the model's predictions. Bias refers to

the consistent overestimation or underestimation of the model's output compared to the observed

data.

In this work, Nash-Sutcliffe efficiency (NSE) and bias are calculated for outflow and snow cover

area by using the following statistics:

∑i=1 (OBSi−SIMi)
2

∑i=1 (OBSi−OBS )2

Bias =
∑i=1 (SIMi−OBSi)

i=1 i

(3)

(4)

where OBSi and SIMi are the observed and simulated parameter at time i, respectively, ᵄ�ᵃ�ᵄ� is the

average value of the observed parameter and N is the number of observations.

The ideal values for bias and Nash–Sutcliffe efficiency (NSE) are 0 and 1, respectively. An NSE

value of 1 signifies a perfect match between the model's predictions and the observed data, while

an NSE value of 0 indicates that the model's predictions are equivalent to the average of the
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observed data. NSE values falling between negative infinity and 0 suggest that the observed data's

average provides better predictions than the model.

3.3.Trend analysis
Trend analysis in hydrometeorology serves as a valuable tool for unravelling the intricate

interactions between climatic shifts and hydrological processes within a mountain basin (Kliment

et al., 2011) is crucial for comprehending the hydrological dynamics of a basin due to its capacity

to unveil long-term shifts and patterns in climatic and hydrological variables. By examining trends,

we can identify significant changes in hydrometeorological variables. In this study trend analysis

are done for the variable such as annual maxima of rainfall, annual maxima of runoff, mean annual

temperature, antecedent soil moisture conditions and antecedent snow water equivalent at annual

and seasonal time scale. This analysis helps us understand the evolving behaviour of these

variables, their potential impacts on the basin's water resources and reasons for the divergence

trends in rainfall-runoff events.

In the field of hydro climatology, methods for identifying significant trends in time series data can

be categorized into two main types: parametric and non-parametric approaches (Gocic &

Trajkovic, 2013). Parametric tests demand that the data is both independent and follows a normal

distribution, while non-parametric tests only necessitate data independence. In the context of this

study, two non-parametric methods, namely the Mann-Kendall test and Sen's slope estimator, are

employed to identify trends in hydrometeorological variables. These methods offer robust trend

detection capabilities and are particularly suitable for analysing the intricate dynamics of the

dataset.

3.3.1. Man-Kendall test
The Mann-Kendall test, also known as the Kendall's tau test, is a non-parametric statistical test

widely used to detect trends within hydrometeorological variables with time series data (Birsan et

al., 2005; Brabets & Walvoord, 2009; Diop et al., 2018; Kliment et al., 2011; Soltani et al., 2013;

Umar et al., 2022; Wu & Qian, 2017) has been used in this study. It assesses whether there is a

monotonic increasing or decreasing trend in the data over time. The test statistic S for the Mann-

Kendall test (Kendall, 1975; Mann, 1945) is calculated using the following formula:
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ᵅ�
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S−1

S+1

n−1
n

ᵄ� = ∑

i = 1

∑
j = i + 1

sgn(x j − xi ) (5)

Where, n is number of observations, xj and xᵅ� are the rank of the kth and ith observation respectively

where j>i and sgn(xj- xi ) is sign function given by:

+1, ᵅ�ᵅ� ᵆ�ᵅ� − ᵆ�ᵅ� > 0

ᵆ�ᵅ�ᵅ�(ᵆ� − ᵆ�ᵅ�) = { 0, ᵅ�ᵅ� ᵆ�ᵅ� − ᵆ�ᵅ� = 0} (6)
−1, ᵅ�ᵅ� ᵆ�ᵅ� − ᵆ�ᵅ� < 0

The variance is calculated using the following formula:

ᵄ�ᵄ�ᵅ�(ᵄ�) =
(ᵅ�−1)(2ᵅ�+5)−∑ᵅ�=1 ᵆ�ᵅ�(ᵆ�ᵅ�−1)(2ᵆ�ᵅ�+5)

(7)

Where, the symbol "n" signifies the total number of data points, "m" represents the count of tied

groups within the dataset, with each tied group consisting of data points that share the same value.

The variable "ti" signifies the number of ties within each tied group of a particular extent "i". For

sample size greater than 10 (n>10), the calculation of the standard normal test statistic denoted as

"ZS" is performed using Equation (8).

√Var(S)
, if S > 0

Zs =  0, if S = 0(8) {       √Var(S)
, if S < 0

}

The underlying principle of the Mann-Kendall test involves testing the null hypothesis (H0), which

asserts the absence of a significant trend within the dataset. The rejection of the null hypothesis

implies the presence of a considerable trend within the data series. The process of testing these

trends is conducted at a specified significance level denoted as "α." When the calculated value of

ZS exceeds a critical value, the null hypothesis is rejected. This indicates the existence of a

statistically significant trend within the time series under examination. The critical value is derived
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j−X

2

2

from the standard normal distribution table. In this study, level of significance (α) of 5% is

considered for the Man Kendall statistics test. At a significance level of 5%, the null hypothesis

of no trend is rejected if the absolute value of | ZS | exceeds 1.96.

Positive values of the standard normal test statistic, ZS, hold significance in the context of trend

analysis. These positive values point towards increasing trends within the examined time series

data. Conversely, when ZS assumes negative values, this suggests the presence of decreasing trends

in the data.

3.3.2. Sen slope estimator
The Mann-Kendall test serves the purpose of determining whether a significant trend exists within

a dataset. It answers the question of whether any noteworthy trend, whether upward or downward,

can be identified. However, the test itself does not provide information about the magnitude of the

detected trend.

To address this aspect, another technique known as Sen’s slope estimator, a non-parametric

procedure is applied. This method, developed by Sen (1968), is employed to calculate the actual

magnitude of the trend observed in the dataset. For a given dataset containing N sample pairs, the

slope representing the magnitude of the trend is computed using a following formula:

Qi =
X

j−k

k 
for i = 1,… . , N (9)

In equation 9, the terms xj and xk correspond to the data values associated with distinct time indices

denoted as 'j' and 'k', respectively. 'j' refers to a particular time, while 'k' represents an earlier time

point.

In case where there is only a single data value for each time period, the total number of paired

samples, N =
n(n−1)

; n is the number of time periods. For multiple observation in one or more

time periods, N <
n(n−1)

is used.

After obtaining the 'N' values of Qi, they are organized in ascending order from the smallest to the

largest. Subsequently, the median of the slopes, often referred to as Sen's slope estimator, is

computed from these ordered values by using following formula:
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if N is odd

} (10)
if N is even

The sign of Qmed represent the trend exhibited by the data, while its magnitude signifies the degree

of the trend's steepness.

3.4. Remote sensing tools for snow cover area calculation and MODIS image
selection for validation

Based on remote sensing tools, satellite observations-based MODIS snow cover area (SCA) data

are available from the Institute for Applied Remote Sensing, EURAC research centre. These

records are generated by amalgamating snow maps derived from both MODIS Terra and Aqua

sensors (Gafurov & Bárdossy, 2009; Mölg et al., n.d.; Wang & Xie, 2009). It is important to note

that these sensors operate with different acquisition modes and times, with Terra acquiring data in

the morning in descending mode and Aqua collecting information in late morning or afternoon in

ascending mode. This variation in acquisition times results in reduced cloud coverage and fewer

pixels devoid of valuable data, owing to distinct lighting conditions and satellite viewing angles.

In the context of this study, the EURAC centre provides MODIS snow cover area (SCA) data,

which is based on the algorithm developed by Notarnicola et al. (2013a, 2013b). This algorithm

offers categorical SCA data at a spatial resolution of 250 meters, as delineated in Table 3.

Table 3: EURAC MODIS product description.

S.N. MODIS product

1. Not detected

2. Snow

3. No Snow/bare land

4. Cloud

5. Surface water body

EURAC code

0

1

2

3

5

3.4.1. Fractional snow cover area calculation
To verify the accuracy of the model's simulated fractional snow cover area derived from the

TOPMELT algorithm, a comparison was made with the satellite observations-based MODIS snow

cover area (SCA). In line with the methodology employed by Di Marco et al. (2020), the MODIS
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snow cover area was also converted into fractional snow cover area. This conversion process

involves calculating the ratio between the number of pixels identified as snow-covered and the

total count of pixels, excluding those obscured by clouds. This relationship is expressed through

Equation 11.

fSCA =  
ᵄ�ᵄ�ᵅ�ᵅ�ᵆ� (11)

ᵆ�ᵅ�ᵆ� ᵅ�ᵅ�ᵅ�ᵆ�ᵅ�ᵆ�

where, Nsnow represents the count of pixels indicating snow cover in the MODIS dataset, Ntot

signifies the total number of pixels encompassing the entire catchment area, and Nclouds accounts

for the pixels identified as clouds by the MODIS classification.

3.5.Method for selection of MODIS SCA for validation with model simulated
SCA

To enhance the accuracy for validating the simulated snow cover area (SCA) with real ground

data, specific criteria are employed to refine the satellite-based MODIS images. These criteria are

designed to closely approximate the actual snow cover area on the ground. The following

conditions are applied to refine the MODIS images:

i. Select MODIS image before the rainfall-runoff event with cumulative precipitation less

than 10 mm of rainfall. This selection criteria based on the understanding that intense

rainfall exceeding 10 mm has the potential to induce snowmelt, thereby distorting the

accurate representation of the actual snow cover conditions preceding the rainfall-runoff

event.

ii. Select MODIS image with least possible cloud coverage before the rainfall-runoff event.

This approach is adopted to reduce the potential overestimation of Snow-Covered Area

(SCA) that could result from the inclusion of cloud-covered regions in the calculation. In

pursuit of this, MODIS images taken up to one week prior to the rainfall event are examined

thoroughly.
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4. Results

4.1.Rainfall-runoff events
To examine how the catchment responds to rainfall and the role of soil moisture in the runoff

process, a total of 944 rainfall-runoff events were selected between 1985 and 2018 using the

criteria described in section 3.1 of the methodology. Out of these 944 rainfall-runoff events, 512

occurred between the years 2003 and 2018, during which MODIS images of snow cover area were

available for comparison and validation of the results.

4.2.Model validation
The model's accuracy was assessed through a comparison of its simulated results with real-world

observations. This evaluation was conducted by employing the Nash-Sutcliffe efficiency (NSE)

and bias calculations, as outlined in section 3.2.2 of the methodology. In this study, two key

parameters, namely runoff and snow cover area, were utilized to gauge the model's effectiveness.

For the entire study period, the NSE and bias values for the runoff were computed and yielded

values of 0.48 and -0.0041, respectively. An NSE score of 0.48 indicates a moderate level of

agreement between the model's predictions and the actual observed runoff data. Similarly, a bias

value of -0.0041 suggests that the model's predictions do not exhibit significant overestimation or

underestimation tendencies when compared to the observed data.

For the snow cover area assessment, the NSE was calculated specifically for the period spanning

from 2003 to 2018, while excluding summer events. The value for NSE was found to be 0.31

signifying a moderate agreement between the model's predictions and the actual observed snow

cover area data. The reduction in the Nash-Sutcliffe Efficiency (NSE) value could potentially be

attributed to the disparity in temporal resolution concerning the snow cover data. In the context of

the MODIS observation, a solitary instance of snow cover area data is acquired within a day, as

opposed to the model-generated dataset which encompasses 24 distinct snow cover data points.

This incongruence in temporal data granularity may plausibly account for the observed decrement

in the NSE, specifically in relation to the representation of snow cover area.
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4.3.Trend analysis
The assessment of trends was conducted on various variables, including the annual maxima of

rainfall, the annual maxima of runoff, mean annual temperature, antecedent snow water

equivalent, and antecedent soil moisture. This analysis encompassed both annual and seasonal

timeframes and was carried out using the non-parametric Man-Kendall test at , a significance level

(α) of 0.05 and Sen slope estimator, following the methodology described in section 3.3.

4.3.1. Trends in annual maxima of rainfall
The application of Mann-Kendall and Sen's slope statistical tests reveals a mix of positive,

negative, and no trends in the annual maxima of rainfall. Notably, a prevailing increasing trend

has been detected in the annual maxima for a significant portion of rainfall durations (Annex 1).

In Fig 4, only trends in the annual maxima of rainfall for three weather stations is shown for the

annual maxima of rainfall at 15 minute, 30 minute, 45 minute, 1 hour, 3 hour, 6 hour, 12 hour and

24 hours duration.

Fig 4: Trends in the annual maxima of rainfall. Red, blue, green line indicate the presence of trends
while black line indicates no trend in annual maxima. Among these, both the red and green trend
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lines signify increasing trends, with the green trend line being statistically significant (at α=5%).
On the other hand, the blue line depicts statistically insignificant decreasing trends.

Out of the total trends identified in the annual maxima of rainfall for various durations,

approximately 76% exhibit positive trends (Fig. 5), indicating an increase over time. Conversely,

about 23% demonstrate negative trends, signifying a decrease, while around 1% exhibit no trend.

Notably, among all the detected trends, only 25% are statistically significant, and interestingly, all

of these significant trends are positive, indicating a noteworthy and consistent increasing trend in

the annual maxima of rainfall.

Fig 5: Percentage of trends in the annual maxima of rainfall for various duration of rainfall. Red,
blue, and grey colour section indicates respectively the presence of positive, negative and no trends
in annual maxima of rainfall.

The analysis has identified statistically significant increasing trends in the annual maxima of

rainfall for various durations, specifically at intervals of 5 minutes, 10 minutes, 15 minutes, 30

minutes, 45 minutes, 1 hour, and 3 hours, consistently observed across multiple weather stations.

Notably, the most prominent increase, reaching up to 12.30%, is seen in the annual maxima of

rainfall for a 30-minute rainfall duration over a span of 10 years (Fig. 6). This significant finding

underscores a clear pattern of rising annual maxima for shorter rainfall durations, which becomes

evident when considering the data presented in Annex 2.
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Fig 6: Average percentage change in significant annual maxima duration in a decade time.

4.3.2. Trends in annual maxima of runoff

Cordevole stream in La Vizza
5 Annual runoff

4.5 Trend in annulal maxima of runoff

4

3.5

3

2.5

2

1.5

1

0.5

0

Fig 7: Trend in the annual maxima of runoff

21 | P a g e



The analysis has identified statistically significant decreasing trends in the annual maxima of
runoff peak (Fig. 7). This analysis revealed a decrease of -10.7% in the annual maxima of runoff
in a decade.

4.3.3. Trends in mean annual temperature
Upon subjecting the data to Mann-Kendall and Sen's slope statistical tests, a robust pattern of

statistically significant increasing trends in the mean annual temperature is found across all the

weather stations (Annex 2). This noteworthy observation is vividly represented in Fig.7,

illustrating a consistent increase in the mean annual temperature within the study basin. This

finding provides a clear and compelling elucidation of the progressively rising mean annual

temperature in the vicinity of the study area.

Fig 8: Scatter plot with trends in the mean annual temperature. Red trend line indicates
statistically significant positive trend.

Across the given weather stations, there is a notable range in the increase of mean annual

temperature, ranging from 12.34% to 19.37% over a span of 10 years (Fig. 8). To derive a

comprehensive perspective, the average mean annual temperature increase has been calculated by

computing the mean of observed temperature increments. This calculation yields a significant
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value of 15.19% rise over a decade, equivalent to a rise of 0.49 ° Celsius. This analysis effectively

captures the overall trend of temperature escalation within the designated timeframe.
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Fig 9: Percentage change in the mean annual temperature for 10 years’ time

4.3.4. Trends in antecedents SWE at annual and seasonal timescale
A negligible negative trend has been found for the antecedent Snow Water Equivalent (SWE) at

the annual timescale (Fig 10). However, when shifting the focus to the seasonal timescale, a

distinct pattern emerges. Notably, a marked positive trend, characterized by a significant

magnitude, becomes apparent for the winter season. In contrast, significant negative trends is

observed for the spring season, while smaller negative trends are detected for the autumn period.

Intriguingly, no discernible trend is identified for the summer season, as shown in Fig 11. It is

crucial to highlight that, upon closer inspection of statistical significance (as detailed in Annex 3),

the previously noted positive trend for the winter season is deemed insignificant. When this factor

is taken into consideration, the analysis conclusively indicates the presence of decreasing trends

in the Snow Water Equivalent.
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Fig 10:Scatter plot with trend in antecedents SWE at annual timescale

Fig 11: Scatter plot with trend in antecedents SWE at seasonal timescale. Red trend line indicates
increasing trend and blue trend line indicates decreasing trend and black line indicates no trend.

When examining the antecedent snow water equivalent, a markedly positive trend during the

winter season indicates substantial snowpack accumulation. This could be the result of increased

snowfall or reduced melting rates but since there is limited data point in the winter, there could
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also be no trend as well. Conversely, substantial negative trends during spring suggest rapid

snowpack depletion, potentially due to warmer temperatures and accelerated snowmelt. Smaller

negative trends in autumn indicate a gradual reduction in snow water equivalent leading up to

winter. Notably, no discernible trend in summer implies that there is no significant accumulation

or reduction in snow water equivalent during this season.

25.00%

20.00%

15.00%

10.00% Annual

5.00% Winter

0.00% Spring

-5.00%                                                                Summer

-10.00%                                                                
Autumn

-15.00%

-20.00%

-25.00%

Fig 12: Percentage change in antecedents SWE in a decade

When considering statistics, a striking finding surfaces: a noteworthy and statistically significant

decrease in the antecedent Snow Water Equivalent (SWE) is evident across both annual and

seasonal timescales (Annex 4). The most prominent decline in the antecedent SWE by 24.46% has

been found, specifically within the spring season, over a decade-long span (Fig. 12). This result

underscores a significant alteration in the snow water equivalent, emphasizing the pronounced

shift observed in the springtime SWE dynamics.

4.3.5. Trends in antecedent SM at annual and seasonal timescale
At the annual timescale, a negligible negative trend is discernible in the antecedent soil moisture

(Fig. 13). Upon shifting the focus to the seasonal timescale, distinct observations emerge. Notably,

positive trends are detected for the summer, winter, and autumn seasons, while conversely, a
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negative trend is identified for the spring period, as visually depicted in Fig. 14. It is essential to

emphasize that, upon closer scrutiny (Annex 4), all of these identified trends lack statistical

significance at the 5% level of significance. This underscores that the observed variations in

antecedent Soil Moisture, although noticeable, do not attain a level of statistical significance within

the specified confidence interval.

Fig 13:Scatter plot with trend in antecedents SM at annual timescale. Blue trend line indicates
decreasing trend.

Fig 14: Scatter plot with trends in antecedents SM at seasonal timescale. Red trend line indicates
increasing trend and blue trend line indicates decreasing trend.
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During summer, winter, and autumn, positive trends in antecedent soil moisture suggest that the

soil tends to retain more moisture over time, potentially due to factors like increased rainfall or

reduced evaporation. However, the limited numerousness in winter hinders the understanding of

soil moisture trends. Conversely, the negative trend in antecedent soil moisture during spring

implies a drying trend leading up to this season, possibly attributed to factors such as increased

evaporation or decreased precipitation in preceding months.
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Fig 15: Percentage change in antecedents SM in 10 years’ time

Over a span of 10 years, an intriguing pattern has emerged within the antecedent Soil Moisture

(SM) dynamics, as illustrated in Fig. 15. The maximum increase, reaching 5.74%, is in the

antecedent SM in winter, while the maximum decrease of 2.63% is in the spring season. Although

none of these trends exhibit statistical significance, it's worth noting that the spring trend comes

closest to being statistically significant, with a p-value of 0.08. This finding highlights the notable

fluctuations in soil moisture content within the specified timeframe, underscoring the dynamic

nature of the studied parameter.
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4.3.6. Trends in event characteristics
The study examined trends in event attributes like cumulative precipitation, average precipitation

intensity, streamflow peak, and runoff coefficient. The analysis employed statistical methods

including Man-Kendall statistics and the Sen slope estimator. The objective was to gain insights

into how these event characteristics contribute to shaping the trends observed in runoff events.

Fig 16: Scatter plot with trend in event characteristics in (a) cumulative precipitation, (b) average
precipitation intensity, (c) streamflow peak, (d) runoff coefficient. Red and blue trend line indicate
positive and negative trend respectively.

The analysis conducted using the statistical methods of Man-Kendall test and Sen slope estimator

for event characteristics yielded important insights. These findings indicated the presence of

significant positive trends in cumulative precipitation and average precipitation intensity.

Conversely, negative trends were observed in both streamflow peak and runoff coefficient, as

illustrated in Fig. 16. However, it's essential to emphasize that the observed negative trend in

streamflow peak did not attain statistical significance at the specified significance level (α) of 0.05

(Annex 5).

An examination of the data revealed a notable rise in cumulative precipitation by 3.62% and in

average rainfall intensity by 4.81% over a span of ten years within the context of rainfall events.
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On the contrary, for the same period, a decline of 2.8% in streamflow peak and 3.5% in runoff

coefficient was observed (Fig 17).
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Fig 17: Percentage change in event characteristics in a decade

5. Discussion

5.1.Trend divergence in annual maxima of rainfall and annual maxima of
runoff

A positive increasing trend in the annual maxima of rainfall, as reported in section 4.3.1 of the

results, aligns with studies conducted by De Michele et al. (1998) and Montanari et al. (1996) for

northern Italy. Similar findings were demonstrated in the study carried out by Madsen et al. (2014)

for Europe. The findings from another study by Caloiero et al. (2011) also support the increasing

trend in annual maxima of rainfall.

Negative decreasing trend results emerged in the context of annual maxima of runoff, as reported

in section 4.3.2 of the results, aligned with the study conducted by Mason (2023) for the La Vizza

basin. This result is also supported by the study of Madsen et al. (2014), which indicates a

decreasing trend in annual maxima of runoff. This trend was also evident in other studies from

regions dominated by snow in Europe.
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The increasing trend in annual maximum rainfall suggests that the region is experiencing more

intense rainfall events, as evident from section 4.3.6 of the results. This can lead to higher water

input into the river systems. However, the decreasing trend in annual maxima of runoff implies

that this increased rainfall is not translating into an equivalent increase in river discharge. This

discrepancy could be due to various factors affecting hydrological processes, but in this study, we

tried to understand the role of the antecedent SWE and soil moisture conditions on the runoff

generation. The trend analysis of antecedent snow water equivalent and antecedent soil moisture

conditions, both on an annual timescale from sections 4.3.4 and 4.3.5 of the results respectively,

indicates that snow water equivalent is significantly decreasing, while soil moisture is decreasing

negligibly. The reduction in snow water equivalent (SWE) correlates with a decrease in the

snowpack, resulting in a decreased volume of meltwater for runoff generation in snow-dependent

regions. This process involves decreased snow accumulation during winter, with the subsequent

warming in spring initiating the snowmelt, which contributes significantly to streamflow. Lower

SWE translates to a reduced snowpack available for meltwater, thus diminishing the volume of

meltwater entering watercourses and subsequently decreasing the runoff peak.

From the trend analysis of mean annual temperature from sections 4.3.3 of the result, it is evident

that temperatures are consistently increasing. The calculation yields a significant value of a 15.19%

rise over a decade, equivalent to a rise of 0.49°C in mean annual temperature. The increasing trend

in mean annual temperature, as evident from this study, has implications for changing water

dynamics in the basin due to melting snow cover. The melting of snow cover, primarily attributed

to increasing temperatures, reveals a cascade of hydrological consequences. Snow meltwater,

which plays a pivotal role in sustaining streamflow during warmer months, indicates shifts in

timing and magnitude of runoff. Consequently, alterations in the availability of meltwater would

have significant impacts on runoff patterns, accentuating the observed divergence between rainfall

and runoff trends.
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5.2.Trends in hydrometeorological variables and influence of antecedent’s snow
water equivalent and antecedent’s soil moisture in runoff process

The implications of the observed trends in cumulative precipitation, average precipitation intensity,

streamflow peak, and runoff coefficient, as determined by the Man-Kendall test and Sen slope

estimator, are significant when considering the role of antecedent soil moisture (slightly

decreasing) and antecedent snow water equivalent (significantly decreasing in spring) in runoff

events.

The result obtained as in section 4.3.6 for rainfall intensity shows increasing trend in the rainfall

intensity which is in the line with the study conducted by Brunetti et al. (2001) for the northern

Italy. The increasing trend in the rainfall intensity was also demonstrated in the study conducted

by Caloiero et al. (2011). The notable increase in cumulative precipitation (3.62%) and average

rainfall intensity (4.81%) over a decade indicates a changing precipitation pattern.

The observed decline in streamflow peak (2.8%) and runoff coefficient (3.5%) over a decade

justify a reduction in the magnitude of runoff generated from rainfall events as obtained in the

section 4.3.2 of the result. This could be due to various factors, one of which is antecedent soil

moisture. Since, the trend in the soil moisture content before a rainfall event is decreasing, the soil

can absorb more of the incoming precipitation, reducing the immediate generation of surface

runoff in the future. As such, changes in antecedent soil moisture can influence the runoff response

to rainfall.

While there's a negligible decrease in antecedent SWE, it's important to note that changes in

snowpack dynamics can significantly affect runoff, especially in regions where snowmelt is a

significant contributor to streamflow like La Vizza basin. Changes in SWE can influence the

timing and magnitude of snowmelt runoff. Even small changes can impact the overall hydrological

regime, affecting the availability of water during different seasons.
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6. Conclusion
The assessment of trends in rainfall-runoff events in the La Vizza mountain basin has yielded

valuable insights into the changing hydrological dynamics of the region. Notably, there is a clear

divergence between the trends in annual maxima of rainfall and annual maxima of runoff. While

annual maxima of rainfall have exhibited a significant upward trajectory, annual maxima of runoff

have experienced a marked decrease over the same period. This divergence between increasing

rainfall and decreasing runoff suggests that the hydrological response to precipitation events is

undergoing notable changes.

The analysis of hydrometeorological variables, including cumulative precipitation and average

rainfall intensity, indicates a shifting precipitation pattern characterized by more intense rainfall

events. These changes, combined with the decreasing trend in antecedent soil moisture, imply that

initial soil conditions are becoming drier before rainfall events. This, in turn, can lead to increased

infiltration capacity, reduced surface runoff. Moreover, the observed trends in antecedent snow

water equivalent underscore the significance of snowpack dynamics in influencing runoff patterns,

particularly in regions largely dependent on snowmelt for streamflow.

In light of these findings, several recommendations emerge. Firstly, there is a pressing need for

further research to understand the multifaceted factors influencing these trends, including land use

changes, evapotranspiration rates, and soil properties. The use of hydrological models like the

ICHYMOD and TOPMELT has proven valuable in understanding the role of initial conditions of

parameters like soil moisture and snow water equivalent in runoff events in absence of observed

data. Further refinement and application of such models can enhance predictive capabilities and

inform sustainable water resource management practices.
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Appendix
Annex 1: Statistics for annual maxima of rainfall. * indicate statistically significant trend at
level of significance (α)= 0.05

Weather Station Stat Max_5min Max_10min Max_15min Max_30min Max_45min Max_1h Max_3h Max_6h Max_12h Max_24h
Sen_slope_1d     0.00018 0.00027 0.00043 0.00064 0.00062 0.00057 0.00074 0.00037 0.00034 0.00000

p_value
Arabba Mean

Sen_10y

0.04 * 0.04 *
5.80 9.07
0.67 1.00

0.01 * 0.00 *
11.37 15.34
1.55 2.33

0.01 * 0.01 *     0.00 *     0.31 0.65 0.99
17.74 19.27 29.75 41.87 60.66 77.21
2.27 2.08 2.71 1.33 1.23 0.00

Sen_10y_perc (%) 11.49 11.02 13.67 15.20 12.77 10.77 9.12 3.18 2.03 0.00
Sen_slope_1d 0.00003 0.00008 0.00015 0.00027 0.00035 0.00028 0.00027 0.00008 -0.00021 0.00004

p_value 0.59 0.54
Caprile Mean 6.48 10.25

Sen_10y 0.12 0.29

0.39 0.29
12.67 16.52
0.53 1.00

0.22 0.30 0.24
18.32 19.76 30.56
1.29 1.04 1.00

0.90 0.57 0.98
42.59 60.36 79.30
0.30 -0.75 0.13

Sen_10y_perc (%) 1.93 2.78 4.21 6.05 7.06 5.24 3.27 0.70 -1.24 0.17
Sen_slope_1d 0.00013 0.00025 0.00011 -0.00005 -0.00004 -0.00025 -0.00053 -0.00185 -0.00160 -0.00175

p_value 0.31 0.40
Biois a Cencenighe Mean 6.16 9.68

Sen_10y 0.47 0.90

0.76 0.87
11.42 14.93
0.40 -0.18

0.94 0.53 0.59
18.34 20.48 38.43
-0.14 -0.91 -1.94

0.34 0.51 0.69
60.62 90.46 120.79
-6.74 -5.83 -6.38

Sen_10y_perc (%) 7.66 9.28 3.50 -1.18 -0.78 -4.45 -5.05 -11.12 -6.44 -5.29
Sen_slope_1d 0.00013 0.00025 0.00011 -0.00005 -0.00004 -0.00025 -0.00053 -0.00185 -0.00160 -0.00175

p_value 0.31 0.40
Falcade Mean 6.16 9.68

Sen_10y 0.47 0.90

0.76 0.87
11.42 14.93
0.40 -0.18

0.94 0.53 0.59
18.34 20.48 38.43
-0.14 -0.91 -1.94

0.34 0.51 0.69
60.62 90.46 120.79
-6.74 -5.83 -6.38

Sen_10y_perc (%) 7.66 9.28 3.50 -1.18 -0.78 -4.45 -5.05 -11.12 -6.44 -5.29
Sen_slope_1d 0.00018 0.00024 0.00024 0.00026 0.00032 0.00033 0.00039 0.00059 0.00058 0.00025

p_value
Malga Ciapela Mean

Sen_10y

0.02 *         0.10
5.98            9.34
0.67 0.88

0.16 0.27
11.59 15.68
0.86 0.97

0.21 0.20 0.17
18.21 20.18 31.14
1.16 1.21 1.44

0.15 0.50 0.81
44.09 65.16 87.08
2.16 2.12 0.90

Sen_10y_perc (%) 11.14 9.46 7.43 6.16 6.38 5.98 4.63 4.90 3.25 1.03
Sen_slope_1d 0.00018 0.00024 0.00024 0.00026 0.00032 0.00033 0.00039 0.00059 0.00058 0.00025

p_value
Passo Falzarego Mean

Sen_10y

0.02 *         0.10
5.98            9.34
0.67 0.88

0.16 0.27
11.59 15.68
0.86 0.97

0.21 0.20 0.17
18.21 20.18 31.14
1.16 1.21 1.44

0.15 0.50 0.81
44.09 65.16 87.08
2.16 2.12 0.90

Sen_10y_perc (%) 11.14 9.46 7.43 6.16 6.38 5.98 4.63 4.90 3.25 1.03
Sen_slope_1d 0.00008 0.00018 0.00026 0.00050 0.00061 0.00062 0.00059 0.00033 -0.00023 -0.00043

p_value 0.26 0.11
Passo Pordoi Mean 5.62 8.92

Sen_10y 0.29 0.65

0.05 * 0.01 *
11.14 15.82
0.93 1.83

0.00 * 0.01 *     0.07
18.67 20.49 30.43
2.23 2.25 2.15

0.33 0.63 0.54
38.77 48.89 59.99
1.20 -0.84 -1.57

Sen_10y_perc (%) 5.08 7.25 8.37 11.58 11.97 10.97 7.07 3.09 -1.72 -2.62
Sen_slope_1d 0.00008 0.00018 0.00026 0.00050 0.00061 0.00062 0.00059 0.00033 -0.00023 -0.00043

p_value 0.26 0.11
Passo Valles Mean 5.62 8.92

Sen_10y 0.29 0.65

0.05 * 0.01 *
11.14 15.82
0.93 1.83

0.00 * 0.01 *     0.07
18.67 20.49 30.43
2.23 2.25 2.15

0.33 0.63 0.54
38.77 48.89 59.99
1.20 -0.84 -1.57

Sen_10y_perc (%) 5.08 7.25 8.37 11.58 11.97 10.97 7.07 3.09 -1.72 -2.62
Sen_slope_1d 0.00008 0.00018 0.00026 0.00050 0.00061 0.00062 0.00059 0.00033 -0.00023 -0.00043

p_value 0.26 0.11
Pescul Mean 5.62 8.92

Sen_10y 0.29 0.65

0.05 * 0.01 *
11.14 15.82
0.93 1.83

0.00 * 0.01 *     0.07
18.67 20.49 30.43
2.23 2.25 2.15

0.33 0.63 0.54
38.77 48.89 59.99
1.20 -0.84 -1.57

Sen_10y_perc (%) 5.08 7.25 8.37 11.58 11.97 10.97 7.07 3.09 -1.72 -2.62
Sen_slope_1d 0.00008 0.00018 0.00026 0.00050 0.00061 0.00062 0.00059 0.00033 -0.00023 -0.00043

p_value 0.26 0.11
Selva di Cadore Mean 5.62 8.92

Sen_10y 0.29 0.65

0.05 * 0.01 *
11.14 15.82
0.93 1.83

0.00 * 0.01 *     0.07
18.67 20.49 30.43
2.23 2.25 2.15

0.33 0.63 0.54
38.77 48.89 59.99
1.20 -0.84 -1.57

Sen_10y_perc (%) 5.08 7.25 8.37 11.58 11.97 10.97 7.07 3.09 -1.72 -2.62
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Annex 2: Statistics for mean annual temperature. * indicate statistically significant trend at
level of significance (α)= 0.05

Statistics→
Weather
Station↓

Pian
Fedaia

Arabba

Passo
Pordoi

Sen_slope_1d

0.000103

0.000171

0.000130

p_value
(at α= 0.05)

0.0156 *

0.0301 *

0.0424 *

Min Mean Max St_dev

1.3371 2.7062 3.9008 0.6298

3.9292 5.0724 6.3271 0.6166

0.8423 2.4439 3.4832 0.6611

Sen_10y

0.3752

0.6258

0.4734

Change in
Sen_10y
(%)

13.8653

12.3371

19.3682

Annex 3: Statistics for antecedent SWE. * indicate statistically significant trend at level of
significance (α)= 0.05

Statistics→
Timescale↓

Annual

Winter

Spring

Summer

Autumn

Sen_slope_1d

-5.02E-06

6.76E-03

-4.97E-03

0.00E+00

-6.78E-06

p_value
(at α= 0.05)

6.53E-16 *

5.36E-01

2.14E-05 *

1.26E-11 *

4.43E-02 *

Min Mean

0.000 30.706

20.808 106.144

0.000 74.207

0.000 23.792

0.000 11.360

Max

1046.558

207.065

1011.814

1046.558

410.323

St_dev

89.522

62.753

103.959

92.371

43.275

Sen_10y

-0.018

24.679

-18.150

0.000

-0.025

Change
in
Sen_10y
(%)

-0.060

23.251

-24.459

0.000

-0.218

Annex 4: Statistics for antecedent SM. * indicate statistically significant trend at level of
significance (α)= 0.05

Statistics→
Timescale↓

Annual

Winter

Spring

Summer

Autumn

Sen_slope_1d

-1.65E-07

7.68E-06

-5.00E-06

1.22E-06

6.43E-07

p_value
(at α= 0.05)

0.844

0.108

0.084

0.277

0.752

Min Mean Max

0.281 0.697 1.000

0.453 0.488 0.563

0.281 0.695 1.000

0.479 0.714 1.000

0.394 0.656 1.000

St_dev Sen_10y

0.108 -0.001

0.037 0.028

0.127 -0.018

0.102 0.004

0.089 0.002

Change in
Sen_10y
(%)

-0.086

5.736

-2.628

0.625

0.358
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Annex 5: Statistics for event characteristics. * indicate statistically significant trend at level of
significance (α)= 0.05

Statistics→
Event Characteristics↓

Cumulative
Precipitation

Average
Rainfall Intensity

Qmax

(Streamflow Peak)

RC
(Runoff Ratio)

Sen_slope_1d

0.0002

2.75E-05

-4.90E-06

-8.81E-07

p_value
(at α= 0.05)

0.009 *

0.00 *

0.07 *

0.05 *

Min Mean

1.800 22.614

0.325 2.084

0.070 0.639

0.001 0.091

Max St_dev

342.400 26.433

12.467 1.420

3.980 0.519

0.989 0.113

Change in
Sen_10y

(%)

3.620

4.814

-2.798

-3.536

Annex 6: Acronyms
ARPAV Agenzia Regionale per la Prevenzione e Protezione Ambentale del Veneto

AM Annual Maxima

DTM Digital Terrain Model

EURAC Réseau Européen pour l'Afrique Centrale

GIS: Geographic Information System

IPCC Intergovernmental Panel on Climate Change

MODIS Moderate Resolution Imaging Spectroradiometer

min Minute

mm Millimetre

NSE Nash Sutcliff Efficiency

PDM Probability Distributed Model

Q Runoff

SCA Snow Cover Area

SM Soil Moisture

SWE Snow Water Equivalent

y Year
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