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Introduction

This thesis discusses a spectral method to solve the community detection prob-
lem in a Stochastic Block Model with k communities.

Network science is a modern discipline spanning the natural, social and
computer science, as well as engineering, biology, economics and ecology. In
many real-world networks it is possible to highlight a community structure,
namely we can identify clusters of vertices that are strongly connected to each
other. We should consider a community as a subset of vertices sharing the same
idea, the same belief or that are linked by a particular relation. This is why
the �eld of community detection has arised, becoming an important topic in
modern network science.

Starting from random graph theory, in the last decades mathematicians have
proposed di�erent techniques to solve the community detection problem. In this
thesis we discuss a spectral method: a remarkable observation shows that the
expected value of the adjacency matrix of the input random graph contains all
the information about the community structure of the graph. More precisely, it
is possible to detect the clusters gathering the vertices according to their values
in the eigenvectors of the expected value of the adjacency matrix. Unfortunately,
we cannot deduce such average adjacency matrix just from a realization of the
random graph: the spectral technique aims to extract the information about
the community structure directly from the adjacency matrix.

In order to develop the method, we consider random graphs generated by
the Stochastic Block Model (SBM). This is the simplest and most studied model
of random graphs with community structure and it is built with the minimal
assumptions: the edge distribution is described by an internal probability within
the communities which is greater than the edge probability between vertices
belonging to di�erent communities. In this way, the internal density is certainly
higher than external densities among communities.

This thesis focuses on the method proposed by P. Chin, A. Rao and V. Vu
in [5], and the general layout follows the de�nitions and results from [16].
We have previously said that the starting point is the SBM: being more precisely,
we consider a highly sparse SBM, where the mean number of edges per vertex
approaches a constant as the number of vertices of the graph grows. In such a
situation we cannot exploit the properties of denser graphs, as in the standard
method explained in [16]. The main result of [5] is the optimal relation between
the error rate produced by the method and the quantities describing the edge
probabilities within the graph.
Let us take a random graph such that
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• every pair of vertices is connected with probability a
n if they belong to the

same community;

• every pair of vertices is connected with probability b
n if they belong to

di�erent communities,

where n > a > b > 0 and the number of vertices of the random graph is Θ(n).

First consider the easier case of k = 2 communities. The problem can be seen
as a variant of the hidden bipartition problem, which has been studied by many
researchers in theoretical computer science, starting with the work of Bui et al.,
[3]. Earlier papers, like [12], deal with a and b large, and it is known that we

can e�ciently obtain a complete recovery if a, b ≥ C log n and (a−b)2
a+b ≥ C logn

n
for a su�ciently large constant C (see for example [17]). Moreover, taking an
even denser graph in which the internal/external probabilities are p > q > 0
�xed (so that they do not decrease as n−1) like in [16], with high probability we
can recover the communities with a spectral clustering algorithm correctly up
to a small number of mislabeled vertices.
This work, on the contrary, deals with sparser random graphs. In a previous
paper [6], Coja-Oghlan proved that it is possible to �nd a vertex partition, up to
a small error rate and with high probability, with a polynomial time algorithm

if a, b > C1 and (a−b)2
a+b > C2 log(a + b), for suitable constants C1, C2 > 0.

Coja-Oghlan proved this result as part of a more general problem, and his
algorithm was rather involved. Furthermore, the result is not yet sharp and
it has been conjectured that the log term is removable. A di�erent approach
is given, for instance, by the work of Zhang and Zhou, [18]: they proved a
minimax rate result that suggested that there is a constant c > 0 such that, if
(a−b)2
a+b ≤ c log 1

γ , then with high probability it is not possible to �nd the partition

(in expectation), regardless the algorithm. The term γ refers to an error rate:
in this manuscript we will say that a candidate vertex partition is γ-correct if
the number of mislabeled vertices in each community is less than a fraction γ.
In the paper we focus on, [5], the authors prove, as we will exhibit in this thesis,
an optimal relation for a and b involving the error rate γ produced by the
method. The optimality refers to the fact that we look for a lower bound which
is the best possible in relation to the result of Zhang and Zhou. Speci�cally,
we will show that with high probability it is possible to �nd a γ-correct vertex
partition with error rate γ > 0 using a simple spectral algorithm if a > b > C1

and
(a− b)2

a+ b
≥ C2 log

1

γ

for suitable constant C1, C2 > 0.

In the general case k > 2, the problem becomes more complicated, both for
the development of a method and for a good choice on the assumptions. In the
last part of this thesis, we will prove that, with high probability, we can recover
the vertex partition using a simple spectral algorithm and with a small error
rate γ > 0 when a > b > C3 and

(a− b)2 ≥ C4 k
2 a log

1

γ

with C3, C4 > 0 suitable constants.

The thesis is organized as follows:
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• in Chapter 1, we �rst recall some elementary de�nitions of graph theory.
Then, we thoroughly describe the community detection problem and some
applications to real networks (biological and social networks, the World
Wide Web and other examples). Afterwards, we brie�y present largely
studied techniques to solve the problem that have di�erent approaches
with respect to the spectral technique: methods based on optimisation,
methods using random walks and the spin dynamics. Finally we de�ne
the Stochastic Block Model, that will be the starting point for the rest of
the work;

• in Chapter 2, we exhibit a spectral algorithm to recover the vertex parti-
tion in a dense SBM with k = 2 communities, following the results of [16].
After de�ning the di�erence between dense and sparse random graphs,
we formulate a �rst SBM and we explain the fundamental ideas that lay
the foundations of the spectral technique. Since it is possible to deduce
the community structure from the expected value of the adjacency ma-
trix, the idea is to rewrite the adjacency matrix as a di�erence of matrices
involving its expected value. Exploiting the properties of dense graphs
and applying Davis-Kahan theorem, we prove that the eigenspace of the
adjacency matrix is close to the eigenspace of its expected value: using a
spectral algorithm directly on the adjaceny matrix, with high probability
we can �nd a good approximation of the vertex partition;

• in Chapter 3, we introduce a sparse SBM with k = 2 communities, as
described in [5]. In this case, we cannot use the properties of dense graphs,
so we need to proceed with a di�erent approach. The general idea is the
same as in the dense case, but the method requires additional steps, and to
bound the involved matrices we use the following trick: we zero-out some
rows and columns related to vertices with high degree. In this way, we
lose some information on the random graph, but we can apply the spectral
algorithm called Partition (Algorithm 3) and �nd a vertex partition with
a small error rate;

• in Chapter 4, we generalize the sparse SBM model introduced in Chapter
3 to the case k > 2. As pointed out in [5], it is not obvious how to make
approximations when there are k > 2 communities. The method requires
several additional steps and each step works on di�erent sets of edges and
vertices, chosen randomly. We call the resulting algorithm k-Partition
(Algorithm 8). In this thesis we prove the correctness of such an algorithm
and the optimality of the relation among the probabilities of the model
and the error rate.

To conclude this introductive part, we brie�y collect here the main results that
we are going to prove in the development of the thesis:

• Spectral method for a dense Stochastic Block Model with two

communities (Chapter 2): consider a random graph with 2n vertices and
such that every pair of vertices is connected with probability p or q < p if
they belong to the same community or to di�erent ones, respectively.
Let A be the adjacency matrix of the random graph and let Ā := E[A].
We rewrite A as

A = Ā+R,
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where the 2n × 2n matrix R is a sort of "noise". We will see that, with
high probability,

‖R‖ ≤ C
√
n

for a suitable constant C > 0. A key point of the spectral method is that
the eigenvector of Ā, related to the second higher eigenvalue, contains
all the informations about the two communities of the graph. Applying
Davis-Kahan Theorem (see Theorem 2) to A and Ā, we deduce that the
distance between the eigenvectors of A and Ā corresponding to their sec-
ond higher eigenvalue is small. This result permits to prove that, sorting
the vertices according to their values in the second eigenvector of A, with
high probability we �nd a vertex partition which is correct up to C/µ2

vertices, where µ = min{p− q, 2q} and C > 0 is a suitable constant.

• Spectral method for a sparse Stochastic Block Model with two

communities (Chapter 3): consider a random graph with 2n vertices and
such that every pair of vertices is connected with probability a

n or b
n , with

n > a > b > 0, if they belong to the same communitiy or to di�erent ones,
respectively.
As before, let A0 be the adjacency matrix of the random graph and let
Ā0 := E[A0]. The idea is again to rewrite A0 involving Ā0, but now it is
not easy to �nd a bound for the norm of their di�erence. For this reason,
we apply the deletion, namely we zero-out the rows and columns of A0

and Ā0 related to vertices with high degree. The resulting matrices are A
and Ā and we put

A := Ā+ E := Ā0 + ∆ + E.

We prove that, with high probability,

‖∆‖ ≤ 1 and ‖E‖ ≤ C
√
a+ b

for a constant C > 0, and applying a revised version of Davis-Kahan
theorem we prove that the eigenspaces of A and Ā0 are close. The resulting
algorithm, called Partition (Algorithm 3), consists of two parts: previously
a spectral algorithm produces a �rst candidate vertex partition, then there
is a correction process that detects the mislabeled vertices. The �nal result
is that, given as input a SBM with connection probabilities a

n and b
n , with

high probability the algorithm Partition produces a vertex partition with
a small error rate γ when a > b > C1 and

(a− b)2

a+ b
≥ C2 log

1

γ
.

In particular we prove that when the �rst part of the algorithm outputs a
partition with error rate 0.1, we get the following optimal relation for the
�nal error rate:

(a− b)2

a+ b
=

1

0.072
log

2

γ
≈ 13.89 log

2

γ
.

• Spectral method for a sparse Stochastic Block Model with k
communities (Chapter 4): consider a random graph with n vertices and
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such that every pair of vertices is connected with probability a
n or b

n , with
n > a > b > 0, if they belong to the same communitiy or to di�erent ones,
respectively.
When there are k > 2 communities, it is not obvious how to approximate
the eigenspaces of the studied matrices. The algorithm developed for this
general case is inspired by the algorithm Partition of the 2-communities
case, but it requires many additional steps. Firstly, we randomly divide all
the vertices of the graph into two subsets Y and Z, and all the edges into
Red and Blue edges, (as in Figure 4.1). The �nal algorithm, k-Partition
(Algorithm 8), is made of three steps: the �rst sub-routine outputs a par-
tition of Z as vertices of Red edges; then there is a correction process to
better the partition on Z; �nally we label the vertices in Y according to
the number of Blue connections with the communities in Z. Each step
works on di�erent sets of edges and vertices, and the �nal candidate ver-
tex partition is built from the two partitions of the random sets Y and Z.
Thus, given a SBM with k communities with connection probabilities a

n

and b
n , we prove that the algorithm k-Partition outputs with high prob-

ability a vertex partition with a small error rate γ > 0 when a > b > C1

and

(a− b)2 ≥ C2 k
2 a log

1

γ

for C1, C2 > 0 suitable constants. In particular, the requirement

(a− b)2

a
= Ω(k2)

is optimal. We prove that when the �rst sub-routine outputs a partition
of Z with error rate 0.1, the �nal error rate satisfy the following optimal
relation:

(a− b)2

k(a+ b)
=

1

0.0324
log

2k

γ
≤ 31 log

2k

γ
.
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Chapter 1

Community detection in

networks

In the 18th century, a Swiss mathematician, Leonhard Euler, introduced for the
�rst time the notion of graph. Euler wanted to answer a popular question of his
time and that's how the following anecdote led to the creation of a new branch
of mathematics: "if we are in the centre of the city of Königsberg (at the time a
Prussian city, now Kaliningrad, Russia) is it possible to cross each of the seven
bridges of the city only once?"
The crucial step made by the mathematician was to encapsulate all the relevant
information in a simpli�ed map of the city in which real distances did not matter
any more: di�erent parts of the city (large or small) were described by points
called vertices and the links between them (through bridges) were lines called
edges. The map of the city became a graph.
Starting from this kind of problems, graph theory became more and more elab-
orated and nowadays it is applied to many di�erent �elds.

In this thesis, we focus on the class of random graphs, namely graphs in
which the presence of an edge between two vertices depends on a probability
distribution. Many real-world graphs (or networks) tend to have a community
structure: it means that there are clusters of tightly connected vertices. For
this reason, one of the topics of modern network science is the Community De-
tection Problem, which consists in �nding a method to recover the communities
of vertices that naturally take shape within a random graph.
This is an important issue, indeed there are several applications in really dif-
ferent contexts including biology, the Internet, food webs, transport networks
or the brain structure. Besides, the community structure is an important de-
terminant of the behaviour of some processes on networks, such as information
di�usion or virus spreading: the community structure can both enforce as well
as inhibit di�usion processes. Another particular case is that of a structure of
overlapping communities: in some circumstances, a vertex can belong to dif-
ferent clusters at the same time. For instance, in social networks the vertices
represent people, and each person can be assigned to di�erent communities rep-
resenting its family, friends, work colleagues and any other kind of relation.
Due to the many applications, the mathematicians have been looking for dif-
ferent methods to solve the problem. Among them, it is possible to encounter
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methods for which it is necessary to know the model of graph, and others that
only require a particular property (like, for example, the connectedness). Nowa-
days, there are techniques based on di�erent mathematical tools like the random
walk, Hamiltonian functions or minmax theorems. In this thesis, we are going
to study a spectral method that relies on the eigenstructure of the adjacency
matrix of the input random graph. Among all the models of networks with a
community structure, the most used and simple is the Stochastic Block Model.
It can be considered as a "zero model" since it is built over the simplest as-
sumptions.

In this �rst chapter, we are going to de�ne and describe thoroughly the
Community Detection problem, some applications and some resolution methods.
Moreover, we introduce the Stochastic Block Model, that will be the starting
point for the following chapters.

1.1 Graphs and random graphs

First, let us recall some notions about graphs:

De�nition 1. A graph is an ordered pair G = (V,E), where V is a set of
vertices (or nodes) and E ⊆ {{i, j} | i, j ∈ V } is a set of edges.

The graph order is the number of its vertices and the graph size is the number
of its edges.
Inside the class of graphs, we can distinguish:

• directed graphs, in which the edges have an orientation ({i, j} 6= {j, i}
for every pair of vertices i and j);

• undirected graphs, in which all edges are bidirectional ({i, j} = {j, i} for
every pair of vertices i and j).

For the purposes of this thesis, we will only consider undirected graphs.

For any vertex i ∈ V of a graph G, the degree of i, δ(i), is the number of
edges that are incident to it. Moreover, given G = (V,E) with |V | = n,

• the number of edges of G is

|E| = 1

2

∑
i∈V

δ(i); (1.1)

• the maximal possible number of edges in a graph with no loops (i.e. self
edges) is

νmax :=
n(n− 1)

2
; (1.2)

• the density of G is

∆G :=
|E|
νmax

. (1.3)

The structure of a graph can be represented by means of a matrix:

9



De�nition 2. The adjacency matrix A of an undirected graph G = (V,E),
with |V | = n, is a symmetric n× n matrix whose entries are de�ned as

Ai,j =

 1 if vertices i and j are connected by an edge

0 otherwise
(1.4)

for any i, j ∈ V .

In Figure 1.1 we see the translation from a graph to its adjacency matrix or
viceversa.

1

2

3 4


0 1 1 0
1 0 1 0
1 1 0 1
0 0 1 0


Figure 1.1: Given a simple graph G on 4 vertices, we see how it can be represented
by a 4× 4 matrix.

Let us now de�ne

De�nition 3. A random graph is a graph G in which, given a set of vertices,
the edges between vertices are added according to a probability distribution.

Since the use of graphs is related to the representation of particular problems,
during the decades many graph models have been introduced to describe dif-
ferent phenomena. The most thoroughly studied and simple model of random
graph is due to the two mathematicians Paul Erdös and Alfred Rényi:

De�nition 4. The Erdös-Rényi model is a random graph G := G(n, p) con-
structed on a set of n vertices by connecting every pair of distinct vertices inde-
pendently with probability p.

The degree of a vertex in a random graph is the number of edges incident to
that vertex, as for a graph. The expected degree of every vertex in G(n, p)
is

d := (n− 1)p. (1.5)

Figure 1.2: Three random graphs generated by the Erdös-Rényi model G(50, 0.3).
According to the probability p = 0.3, these three graphs have, starting from the left,
364, 371 and 374 edges.
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Another di�erent and useful model in network science is the Barabási-

Albert model. Starting from a set of m0 vertices, the graph is built through
successive time-steps. At each step, a new vertex is added to the graph and is
linked to the old ones through m ≤ m0 edges (see Figure 1.3). This kind of
random graph is an important tool to represent the evolution of the Internet,
the World Wide Web or the social networks.

Figure 1.3: This sequence shows nine subsequent steps of the Barabási-Albert model.
For every new vertex (the red ones) we add m = 2 new edged to the graph.

There exist many other random graph models, that we do not report in this
work. For more details, see [8] or [4].

1.2 The Community Detection Problem

Most networks of interest display community structure, i.e. their vertices are
organized into groups called communities, clusters or modules. Likewise, com-
munities could represent proteins with similar function in protein-protein inter-
action networks, groups of friends in social networks, websites on similar topics
on the Web graph and so on. Identifying communities may o�er insight on how
the network is organized.

The Community Detection Problem on a network consists in identifying
the community structure of a graph accurately and e�ciently.
This is an ill-de�ned problem. There are no universal protocols on the funda-
mental ingredients, like the de�nition of community itself, nor on other crucial
issues like the validation of algorithms and the comparison of their performances.
Thus, the �eld of community detection has been expanding greatly since the
80's with a remarkable diversity of models and algorithms developed in di�er-
ent �elds. Nowadays, it is one of the most popular topics of modern network
science.

The classical view of a community structure is given by a partition of vertices
in which the di�erent communities are well separated from each other (as in
Figure 1.4). In this case, we should say that the density of edges inside each
cluster is much higher than the density of edges between the clusters.

However, there are some situations in which communities may overlap, shar-
ing some of the vertices. For instance, in social networks individuals can belong
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to di�erent circles at the same time, like family, friends and work colleagues.
A subdivision of a network into overlapping communities is called cover and
one speaks of soft clustering, as opposed to hard clustering, which deals with
division into non-overlapping groups called partitions.
In this thesis, we are going to examine graphs with classical community struc-
tures.

Figure 1.4: A classical and explicative representation of a community structure given
by three clusters of vertices.

What is a community?

A basic issue in community detection is the lack of a universal de�nition of
community.

One of the most used concept is that of clique. A clique is a complete graph,
that is, a subgraph such that each of its vertices is connected to all the others. It
is also a maximal subgraph, meaning that it is not included in a larger complete
subgraph. The notion of cliques, even if useful, cannot be considered a good
candidate for a community de�nition: while a clique has the largest possible
internal edge density, communities are not complete graphs, in general.

Other de�nitions are based on the idea that a vertex must be adjacent to
some minimum number of other vertices in the same subgraph. A k-plex is a
maximal subgraph in which each vertex is adjacent to all other vertices of the
subgraph except at most k of them.

For a proper community de�nition, one should take into account both the
internal cohesion of the candidate subgraph and its separation from the rest
of the network. A simple idea that has received a great popularity is that a
community is a subgraph such that the number of internal edges is larger than
the number of external edges.
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Furthermore, what one should be really focusing on is the probability that
vertices share edges with a subgraph. The existence of communities implies
that vertices interact more strongly with the other members of their community
than they do with vertices of the other communities. This is the reason why
edge densities end up being higher within communities than between them. We
can formulate that by saying that vertices of the same community have a higher
probability to form edges with their partners than with the other vertices.

But is a de�nition of community really necessary? Actually not, most tech-
niques to detect communities in networks do not require a precise de�nition of
community. But de�ning clusters beforehand is a useful starting point, that
allows one to check the reliability of the �nal results.

Accuracy of the detection

A further important question is related to the accuracy of a certain method:
once a clustering technique has produced as output a candidate community
structure, the e�ciency of the method is determined by the error rate between
the candidate and the real partition. As for the de�nition of community, there
is not a universal notation that classi�es an optimal, exact or weak recovery. For
instance, in [1], they de�ne some recovery requirements that di�er from those
given in [8].

In this thesis, at the right time we are going to de�ne two notions of accuracy:
the γ-correctness (De�nition 6) and optimality (that we will introduce through
an important result, namely Lemma 10). These de�nitions refer directly to [5],
which is the fundamental base of this work.

Applications of community detection in real models

The community detection is a useful topic that applies in many di�erent �elds
and situations. We mention here some of the most common applications:

• Biological networks: in recent times, the amount of information avail-
able on interactions involving proteins, genes, metabolic processes, etc.,
has allowed a great developement in genomics. In order to study cellular
systems, the graph representation is regularly used: protein-protein inter-
action networks (PIN), gene regulatory networks (GRN) and metabolic
networks (MN) are now standard objects of investigation in biology.

Biological networks are characterized by a remarkable modular organi-
zation, re�ecting functional associations between their components. For
instance, proteins tend to be associated in two types of cellular modules,
and identifying them is fundamental to uncover the organization and dy-
namics of cell functions.

A further studied example is that of a network of gene co-occurrence to
�nd groups of related genes. Communities of genes related to colon cancer
can be helpful to identify the function of the genes.

• Social networks: social networks are networks in which the vertices are
people, or sometimes groups of people, and the edges represent some form
of social interaction between them.

13



Networks describing social interactions between people have been studied
for decades. At present, we cannot avoid to think about the applications
in epidemiology. Some studies dealing with this topic focus on strongly
connected communities, in which a virus di�uses rapidly; others are related
to predictions and factors into the social structure determining the spread.
The recent work [13], for instance, is about containment, social factors,
social structure and the underlying social contact networks. The aim is to
guide communities on striking trade-o�s between the spread of epidemic
and societal inconvenience/economic distress.

Another class is that of online social networks. Recently new interaction
modes between individuals have been born, like mobile phone commu-
nications and online interactions enabled by the Internet. In particular,
the social networks as Facebook, Twitter etc. Such new social exchanges
can be accurately monitored for very large systems, including millions of
individuals. The same holds for the spread of news on the net. The ap-
plications to this �eld are similar to those for epidemics: an echo chamber
is a sort of strongly connected community in which fake news or personal
beliefs are ampli�ed, and di�erent ideas are not allowed. Detecting echo
chambers implies �nding communities in which all the members agree to
the same idea and it helps to stop the spread of fake news.

• The World Wide Web: the �rst information network, the World Wide
Web, is probably the best known example: the vertices are web pages
consisting of text, pictures or other information, and the edges are the
hyperlinks that allow us to navigate from page to page. Since hyperlinks
run in one direction only, the Web is a directed graph. Within the Web
graph, we can highlight clusters of websites concerning similar topics and
thus recover a community structure. Another famous example is the In-
ternet, the physical network of computers, routers and modems which are
linked via cables or wireless signals. An ever more modern �eld is that of
IoT (Internet of Things), whose networks are witnessing a drastic increase
over the years. The need for identifying communities within such networks
can serve as a strong complexity reduction mean for many discovery and
identi�cation services. The idea of communities in IoT networks is also
motivated by the emerging concept of socializing IoT devices.

• Most papers refer to one or more other previous papers, and one can
construct a network in which the vertices are papers and the edges are
the citations among them. Since a citation implies a correlation with the
indicated previuos work, citation networks are networks of relatedness
of subject matter. Similarly, we can build a collaboration network in
which the vertices represent a set of scientists and the edges indicate the
collaborations among them.

1.3 Di�erent methods to solve the community

detection problem

Within the �eld of community detection, plenty of di�erent algorithms have been
introduced as possible resolution methods. They can be grouped in categories,
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based on di�erent criteria.
In this thesis we are going to develop a spectral method, which approaches

the problem studying the eigenvectors of the adjacency matrix related to the
input graph. Here we brie�y present other popular methods:

• Methods based on optimisation: optimisation techniques have re-
ceived the greatest attention in the literature. The goal is �nding an
extremum, usually the maximum, of a function indicating the quality of a
clustering, over the space of all possible clusterings. Quality functions can
express the goodness of a partition or of single clusters. The most popular
quality function is the modularity. It estimates the quality of a partition
of the network in communities. Taken a graph G with n = |V | vertices,
the general expression of modularity is

Q =
1

2m

∑
i,j∈V

(Ai,j − Pi,j) δ(Ci, Cj), (1.6)

where m is the number of edges of the network, Ai,j is an element of the
n× n adjacency matrix, Pi,j is the null model term and in the Kronecker
delta Ci and Cj indicate the communities of vertices i and j. The term
Pi,j indicates the average adjacency matrix of an ensemble of networks,
derived by randomising the original graph, such to preserve some of its fea-
tures. Therefore, modularity measures how di�erent the original graph is
from such randomisations. The concept was inspired by the idea that, ran-
domising the network structure, communities are destroyed, so the com-
parison between the actual structure and its randomisation reveals how
non-random the group structure is. A standard choice is Pi,j = kikj/2m,
ki and kj being the degrees of i and j, and corresponds to the expected
number of edges joining vertices i and j if the edges of the network were
rewired such to preserve the degree of all vertices, on average. This yields
the classic form of modularity

Q =
1

2m

∑
i,j∈V

(
Ai,j −

kikj
2m

)
δ(Ci, Cj). (1.7)

Other choices of the null model term allow us to incorporate specic features
of network structure, like bipartiteness, correlations, signed edges, space
embeddedness, etc..

Optimisation techniques work looking for the maxima of such function
and gathers the vertices according to the con�gurations that satisfy the
extremum condition.

• Methods using random walks: communities can be identi�ed by run-
ning dynamical processes on the network. Random walk dynamics is by
far the most exploited: if communities have high internal edge density and
are well-separated from each other, random walkers would be trapped in
each cluster for a long time before �nding a way out and migrating to
another cluster.
A �rst class of techniques consists in using random walk dynamics to esti-
mate the similarity between pairs of vertices. For instance, in the popular
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method Walktrap the similarity between vertices i and j is given by the
probability that a random walker moves from i to j in a �xed number of
steps t. The parameter t has to be large enough, to allow the exploration
of a signi�cant portion of the graph, but not too big since one would ap-
proach the stationary limit. If there is a pronounced community structure,
pairs of vertices in the same cluster are much more easily reachable by a
random walk than pairs of vertices in di�erent clusters, so the vertex sim-
ilarity is expected to be considerably higher within groups than between
them. This class of methods have a computational complexity wich is
higher than quadratic in the number n of vertices (on sparse graphs), so
they cannot be used on large networks.
A di�erent approach is the so called Infomap. It is born as answer to the
problem of �nding a parsimonious way to describe an in�nitely long ran-
dom walk taking place on the graph. The simplest description is obtained
by listing sequentially all vertices reached by the random walker, each ver-
tex being described by a unique codeword. However, if the network has a
community structure, there may be a more compact description, which fol-
lows the principle of geographic maps, where there are multiple cities and
streets with the same name across regions. Vertex codewords could be re-
cycled among di�erent communities, which play the role of regions/states,
and vertices with identical name are distinguished by specifying the com-
munity they belong to. If clusters are well separated from each other,
transitions between clusters are infrequent, so it is advantageous to use
the map, with the communities as regions, because in the description of
the random walk the codewords of the clusters will not be repeated many
times, while there is a considerable saving in the description due to the
limited length of the codewords used to denote the vertices (see Figure
1.5).

In both methods, running a random walker does not require many infor-
mations on the graph. Thus, these technique are really useful and can be
implemented in di�erent contexts.

• Spin dynamics: this is another e�ective technique in network clustering.
It consists in de�ning a spin model on the network, namely we assign a
set of spin variable si to the vertices and de�ne an Hamiltonian function
H(s) expressing the energy of the spin con�guration s. For community
detection, vertex spins si are given by ±1 or 0 and 1, and the global
con�guration s is an integer value. Contributions to the energy are usually
given by spin-spin interaction. The coupling of a spin-spin interaction
can be ferromagnetic (negative) or antiferromagnetic (positive), if the
energy is lower when the spins are equal or not, respectively. The goal
is to �nd the spin con�gurations that minimise the Hamiltonian H(s). A
popular model consists in rewarding edges between vertices in the same
cluster and non-edges between vertices in di�erent clusters, and at the
same time penalising edges between vertices of di�erent clusters and non-
edges between vertices in the same cluster. This way, if the edge density
within communities is larger than the edge density between communities,
as it often happens, having equal spin values for vertices in the same
cluster would considerably lower the energy of the con�guration.
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Figure 1.5: This �gure is taken from [15]. It represents the Infomap. The random
walk in (A) can be described as a sequence of the vertices, each labeled with unique
codewords (B), or by dividing the graph in regions and using unique codewords only
for the vertices of the same region (C). In this way, the same codeword can be used for
multiple vertices, at the cost of indicating when the random walker leaves a region to
enter a new one, as in that case one has to specify the codeword of the new region, to
unambiguously locate the walker. This network has four communities (indicated by the
colours in (C)), and in this case the map-like description of (C) is more parsimonious
than the one in (B). This is shown by looking at the actual code needed in either case
(bottom of the �gures), which is clearly shorter for (C). In (D) the transitions between
the clusters are highlighted.

A general expression for the Hamiltonian in the case of a graph with
n = |V | vertices is

H(s) := −
∑
i,j∈V

[ai,jAi,j − bi,j(1−Ai,j)] δ(si, sj), (1.8)

where Ai,j is an element of the adjacency matrix related to the graph,
ai,j , bi,j ≥ 0 are arbitrary coe�cients and the Kronecker delta selects only
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the pairs of vertices with the same spin value.
A popular model is obtained setting ai,j = 1−bi,j and bi,j = γPi,j where γ
is a parameter and Pi,j a null model term, expressing the expected number
of edges running between vertices i and j under a suitable randomisation
of the graph structure. The resulting Hamiltonian, as de�ned in [14], is

HRB(s) = −
∑
i,j∈V

(Ai,j − γPi,j) δ(si, sj). (1.9)

If γ = 1 and Pi,j = kikj/2m, kl being the degree of vertex l and m the
total number of graph edges, the Hamiltonian (1.9) coincides with the
modularity in (1.7), up to the sign. Consequently, modularity can be
interpreted as the Hamiltonian of a spin dynamics.

This class of methods works looking for the minima of the Hamiltonian
function H(s) by varying the possible con�gurations of s. The found
con�gurations permit to separate the vertices of the graph according to
the same spin, and thus obtain a partition.

1.4 The Stochastic Block Model

In this thesis, we focus on a particular model of networks with community
structure: the Stochastic Block Model (SBM). It is the most simple and studied
model, since it just takes the basic assumptions that permit the presence of
a vertex partition within a graph. In the rest of the thesis, we will study a
resolution method to solve the community detection in random graphs generated
by this model.

De�nition 5. Let n and k < n be positive integers. The (general) Stochas-
tic Block Model is a random graph with n vertices divided in k communities
(V1, . . . , Vk). The probability that two vertices of the graph are connected depends
exclusively on their group membership: for i, j = 1, . . . , k, let

pi,j := P (a vertex in Vi is connected to a vertex in Vj)

pi,i := P (two vertices in Vi are connected ) .

Then, all the pi,j form a k × k symmetric matrix W : the diagonal elements
of W are the probabilities that vertices of the same community are neighbours,
whereas the o�-diagonal elements give the edge probabilities between di�erent
communities. We denote this model by G(n,W ).

Note that it is a natural extension of the Erdös-Rényi random graph (as de�ned
in Def. 4) to the case in which we di�erentiate the probabilities inside and
outside clusters of vertices. Indeed, if all the entries of W are the same, let us
say pi,j = p for any i, j = 1, . . . , k, then the SBM collapses to the Erdös-Rényi
random graph and no meaningful reconstruction of communities is possible.

In De�nition 5 we do not refer to the dimensions of the communities Vi:
indeed, in general the communities may have di�erent sizes. However, in this
thesis we will only consider the case

|Vi| =
|V |
k

for any i = 1, . . . , k. (1.10)
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Figure 1.6: A SBM with �ve communities generated by G(150, 0.3, 0.005), namely
with pi,i = 0.3 for every i = 1, . . . , 5 and pi,j = 0.005 for every i 6= j.

The main result of this thesis consists in solving the community detection
problem for a particular case of SBM using a spectral algorithm. This method
produces a vertex partition exploiting the properties of the eigenvectors of the
adjacency matrix related to the input graph. In order to exhibit the method,
we will proceed this way:

• in Chapter 2 we consider the SBM G(2n, p, q) with two communities
(V1, V2) such that |Vi| = n. It is a random graph over 2n vertices where
p is the probability inside a community and q is the edge probability be-
tween the two communities. In particular, to get a higher density inside
the clusters, we will take p > q;

• in Chapter 3 we consider another SBM with two communities in which
the probabilities inside/outside the communities are of the order ∼ 1

n .

Namely, we will study G
(
2n, an ,

b
n

)
with n > a > b > 0;

• in Chapter 4 we �nally analyze the general model with k > 2 communities
G
(
n, an ,

b
n

)
, where the inside and outside edge probabilities are the same

for all the k blocks.
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Chapter 2

Spectral method for a dense

Stochastic Block Model with

two communities

In this chapter we want to illustrate a spectral method to solve the community
detection problem in a dense random graph generated by the Stochastic Block
Model. The main result in this work deals with sparse random graphs, but it
is useful and on completion to �rst understand how to manage a simpler case.

First, we want to focus on the de�nitions of dense and sparse graphs, high-
lighting some properties and di�erences. Afterwards, we introduce a methodol-
ogy that will be the starting point for the central part of this thesis. Namely,
we will analyze step by step a spectral method which will allow us to recover
the community structure of a random graph.

For theoretical and technical results, we refer to the appendix.

2.1 Dense and sparse graphs

Let G(n, p) be the Erdös-Rényi random graph: as introduced in Chapter 1 (see
De�nition 4), it is a graph with n vertices where every pair of distinct vertices
is connected with probability p. It is the simplest and most studied model
of random graphs: in the following exposition, we will de�ne density/sparsity
properties only for graphs G ∼ G(n, p).

The notion of density/sparsity is related to the amount of edges that are
present in a graph. The expected degree for each vertex of G(n, p) is

d := (n− 1)p.

In this thesis, we consider the two following cases:

• we take a random graph in which the probability p < 1 is �xed and
consequently the expected degree of each vertex is d = (n − 1)p ∼ n
(dense);

• we take a random graph in which the probability p goes to zero as 1
n .

The expected degree is d ∼ k for a constant k, thus it is an in�nitesimal
fraction of all the possible edges (sparse).
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The main reason that leads to �rst consider dense graphs is their regularity:
for n very big, the degrees of all vertices approximately equal the expected
degree d. This property is no more true for sparse graphs. More precisely, we
prove the following statement, in which we suppose d ≥ C log n for a certain
absolute constant C > 0, and thus we can extend to our dense graph de�nition:

Proposition 1. Let G ∼ G(n, p) be a random graph with expected degree sat-
isfying d ≥ C log n, for an absolute constant C. Then, with high probability, all
vertices of G have degree between (1− δ)d and (1 + δ)d, for every small δ > 0.

Proof. Let i be a �xed vertex of G and let di be its degree. In particular,
di =

∑n−1
j=1 Xj , where Xj ∼ Ber(p) are independent indicators of an edge

between vertices i and j. So, observing that E[di] = d, we apply Cherno�
inequality 2 and get, for δ ∈ (0, 1],

P (|di − d| ≥ δd) ≤ 2 exp
(
−cdδ2

)
. (2.1)

Taking the union bound over all the possible choices for the vertex i ∈ {1, . . . , n},
we can use (2.1) so that

P (∃i ≤ n : |di − d| ≥ δd) ≤
n∑
i=1

P (|di − d| ≥ δd) ≤ 2n exp(−cdδ2). (2.2)

The hypothesis stated that d ≥ C log n for an absolute constant C.
Thus, for C su�ciently large, the complementary of (2.2) becomes

P (∀i ≤ n : |di − d| < δd) ≥ 1− 2n exp(−cδ2C log n) ≥ 1− ε

for every δ > 0 and ε > 0.

From now on, we represent a dense and sparse random graph with the no-
tations G(n, p) and G(n, kn ) (with k a constant), where n denotes the number
of vertices and the probabilities re�ect the same behaviour as in our de�nition
of dense/sparse. In Figure 2.1 we see examples of graphs built this way. As the
number of vertices increases, we recognize the regularity in the dense graph and
not in the sparse one, as it was expected to be.

The Stochastic Block Model is a random graph model with community struc-
ture, in which the edge probability between two vertices depends exclusively on
their community membership (see De�nition 5).
Later on, we are going to exhibit a method to solve the community detection
problem for the SBM with two communities G(2n, p, q) with 1 > p > q > 0:
this will be our dense example, since we can recognize the trend d ∼ n.
Whereas, in the next chapter we will focus on a sparse version of the SBM
with probabilities going to zero as 1

n . Namely, we will study G(2n, an ,
b
n ) with

n > a > b > 0. The same construction holds for the problem with k communi-
ties, that we are going to study in Chapter 4.
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Figure 2.1: The blue graphs are dense graphs generated by G(100, 0.3) and G(200, 0.3)

respectively. For the �rst one, the expected degree is d1 = 29.7. We computed that the vertex

degrees belong to the interval [21, 40]: it means that we get a fraction δ1 = 0.347 such that

every vertex has degree in [(1 − δ1)d1, (1 + δ1)d1]. Similarly, for the left graph we expect

d2 = 59.7 and we found a degree interval [45, 75]: in this case, δ2 = 0.256 < δ1, so we can see

that, as the number of vertices n grows, the vertex degrees approach the expected degree.

The green graphs are sparse graphs generated by G(100, 20/100) and G(200, 20/200). The

expected degrees are d3 = 19.8 and d4 = 19.9 respectively, so, as n grows, we approach to

k = 20. Moreover, looking at the values of the vertex degrees, we can compute a distance

from di such that δ3 = 0.465 and δ4 = 0.507, thus we do not see an approach to the expected

degree as the the number of vertices increases.

2.2 The spectral method

We now try to solve the community detection problem for the Stochastic Block
Model G(2n, p, q). It is a random graph of 2n = |V | vertices with a community
structure given by two subsets of vertices V1, V2 ⊂ V , each of size n. We generate
such a graph with the following distribution:

• an edge between vertices belonging to the same community appears with
probability p;

• an edge between vertices belonging to di�erent communities appears with
probability q,

where 1 > p > q > 0 are �xed.
Given the random graph G, our aim is to recover the partition (V1, V2).

A fundamental tool to represent a graph is the adjacency matrix. Let A
be the adjacency matrix related to G: recall that an entry (i, j) is either 1 or
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0 depending on the presence or absence of an edge between vertices i and j.
Namely, in our particular model, each Ai,j can be seen as a Bernoulli variable
with parameter p if i and j belong to the same community or with parameter q
otherwise.

Consider Ā = E[A]: due to what just observed, the entries of this matrix are
given by the expected values of Ber(p) and Ber(q). So, under a permutation
of rows and columns, we can collect the vertices in communities in such a way
that the 2n× 2n matrix Ā looks like

Ā = E[A] =



p . . . p q . . . q

...
. . .

...
...

. . .
...

p . . . p q . . . q

q . . . q p . . . p

...
. . .

...
...

. . .
...

q . . . q p . . . p


.

Now we compute the eigenvalues and eigenvectors of Ā in the case n = 2:

det(Ā− xI) = x2(x2 − 4px+ 4(p2 − q2))

thus, the eigenvalues are 0 with multiplicity 2, 4p+4q
2 and 4p−4q

2 .
For a general n, since rank(Ā) = 2, the only non zero eigenvalues are

λ1 =

(
p+ q

2

)
2n, λ2 =

(
p− q

2

)
2n. (2.3)

The crucial point is the structure of the corresponding eigenvectors, so let us
compute them: for the eigenspace related to λ1 in the simple case n = 2, we
need to solve 

−(p+ 2q)x1 + px2 + qx3 + qx4 = 0
px1 − (p+ 2q)x2 + qx3 + qx4 = 0
qx1 + qx2 − (p+ 2q)x3 + px4 = 0
qx1 + qx2 + px3 − (p+ 2q)x4 = 0

for any vector x̄ = (x1, x2, x3, x4).
The only solution is given for x1 = x2 = x3 = x4.
Similarly, the eigenspace corresponding to λ2 is generated by a vector such that
x1 = x2, x3 = x4, x1 = −x3. Hence, the eigenvectors of the 4× 4 case Ā are

u1 =

 1
1
1
1

 and u2 =

 1
1
−1
−1

 . (2.4)

Above all, the point is that the eigenvector related to the second eigenvalue
shows explicitly the community structure: indeed, it is su�cient to separate
the coordinates ±1 to detect the vertex partition. The structure of the second
eigenvector keeps the same also for the general dimension n, so our method will
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focus on the signs of the coordinates of such a vector: according to a positive or
negative value, the vertices will be assigned to two subsets, V1 and V2, generating
a partition.

Nevertheless, from the input random graph G we can just deduce the adja-
cency matrix A, and not its expected value Ā. The aim of the spectral method is
to study the eigenvectors of the adjacency matrix A and to extract community
information from them. Namely, we will see that we can use the second eigen-
vector of A to accurately estimate the eigenvector of Ā exhibiting the partition.
Producing a partition looking at the signs of the coordinates of such a vector,
the number of mislabeled vertices will be small. Thus, we will produce a vertex
partition with a small error.

2.2.1 Step 1: bounding the error

Let us rewrite the adjacency matrix A as

A = Ā+R

where we keep the previous de�nition Ā = E[A] and we consider matrix R as a
sort of "noise". First, observe that

‖Ā‖ = λ1 ∼ n.

This estimate is an operator norm property, as recalled in the appendix A.3.2.
On the other hand, a bound for ‖R‖ needs deeper results.
Recall that a random variable X is sub-gaussian if there exists K such that, for
any t > 0,

P (|X| ≥ t) ≤ 2 exp

(
− t2

K2

)
i.e. X has a sub-gaussian tail. Within this class, we can �nd, for example,
Bernoulli and bounded random variables (for further details, see [16]). It holds

Theorem 1. Let A be an m × n random matrix whose entries Ai,j are inde-
pendent mean-zero sub-gaussian random variables. Then, for any t > 0, we
have

‖A‖ ≤ CK(
√
m+

√
n+ t)

with probability at least 1− 2 exp(−t2) for a certain constant C.
Here K = maxi,j ‖Ai,j‖ψ2

and ‖Ai,j‖ψ2
:= inf

{
s > 0 : E

[
exp

(
Ai,j

2/s2
)]
≤ 2
}
.

Namely, for our purpose we need the following

Corollary 1. Let A be an n× n symmetric random matrix whose entries Ai,j
on and above the diagonal are independent mean-zero sub-gaussian random vari-
ables. Then, for any t > 0, we have

‖A‖ ≤ CK(
√
n+ t)

with probability at least 1−4 exp(−t2) for a constant C. Here K = maxi,j ‖Ai,j‖ψ2
.
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Proof. Let us decompose A into its upper-triangular part A+ and its lower-
triangular part A−, so that

A = A+ +A−,

and without loss of generality we put the diagonal in A+. Then we can apply
the previous Theorem to both A+ and A− and get simultaneously

‖A+‖ ≤ CK(
√
n+ t) ‖A−‖ ≤ CK(

√
n+ t).

Finally, since ‖A‖ ≤ ‖A+‖+ ‖A−‖, with probability at least 1− 4 exp(−t2) the
statement is true.

Since R is a symmetric matrix whose entries are mean-zero and bounded, we
can apply Corollary 1 with t :=

√
2n and get that, for a certain constant C,

‖R‖ ≤ C
√
n with probability at least 1− 4e−2n. (2.5)

2.2.2 Step 2: application of Davis - Kahan Theorem

The next step consists in showing that there is a small number of vertices of G
having representatives in the second eigenvector of A and in the second eigen-
vector of Ā with opposite sign. This will imply that a great part of information
that we found from Ā, can be extracted directly from A.
Keeping in mind this idea, we need the following

Theorem 2 (Davis - Kahan). Let S and T be symmetric matrices with the same
dimensions. Fix i and assume that the ith eigenvalue of S is well separated from
the rest of the spectrum:

min
j:j 6=i

|λi(S)− λj(S)| = δ > 0.

Then, the angle between the eigenvectors of S and T corresponding to the ith
largest eigenvalues (as a number between 0 and π/2) satis�es

sin∠(vi(S), vi(T )) ≤ 2‖S − T‖
δ

.

In particular, the unit eigenvectors vi(S) and vi(T ) are close to each other up
to a sign:

∃θ ∈ {−1, 1} : ‖vi(S)− θvi(T )‖ ≤ 23/2‖S − T‖
δ

. (2.6)

Since we would like to apply Davis - Kahan theorem to our matrices, we need
to check that the hypothesis are satis�ed. More precisely, taking S = Ā = E[A]
and T = A = Ā + R, we need to see if the second non zero eigenvalue of Ā is
well separated from the rest of the spectrum of Ā, where recall from (2.3) that

Spec(Ā) =

{
λ0 = 0, λ1 =

(
p+ q

2

)
2n, λ2 =

(
p− q

2

)
2n

}
.
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Then

δ = min
j:j 6=2

|λ2(Ā)− λj(Ā)| = min{λ2, λ1 − λ2} = min {(p− q)n, 2qn} := µn.

This means that the hypothesis of Theorem 2 is satis�ed. Then, recalling the
estimate (2.5) for ‖R‖, we apply (2.6) to the unit eigenvectors of A and Ā (v2(A)
and v2(Ā)) related to their second eigenvalue: with probability 1− 4e−2n, there
exists θ ∈ {−1, 1} such that

‖v2(Ā)− θv2(A)‖ ≤ 23/2‖Ā−A‖
δ

≤ C ′
√
n

µn
=

C ′

µ
√
n
. (2.7)

Multiplying both sides of (2.7) by
√

2n, we reconduce to u2(Ā), which we already
computed explicitly in (2.4) and we found was a key tool to detect the partition.
Therefore, we get

‖u2(Ā)− θu2(A)‖ ≤ C ′′

µ
(2.8)

which we can rewrite taking the square of the norm and expliciting the sum as

2n∑
j=1

∣∣u2(Ā)j − θu2(A)j
∣∣2 ≤ C ′′

2

µ2
:=

C

µ2
. (2.9)

For every j = 1, . . . , 2n, we know from (2.4) that u2(Ā)j = ±1: this means that,
when the signs of v2(Ā)j and v2(A)j disagree, the contribution in the sum is at
least 1.

In other words, de�ned µ = min {p− q, 2q}, we have deduced that we can
bound the number of vertices with opposite signs in the second eigenvector of
A and Ā with ∣∣{j : sign(v2(Ā)j) 6= sign(v2(A)j)

}∣∣ ≤ C

µ2
(2.10)

for a constant C > 0.

2.2.3 Résumé of the method as Spectral Algorithm

In conclusion, given a random graph G ∼ G(2n, p, q) characterized by the inside
presence of two clusters, we can detect the community structure studying its
adjacency matrix A. Indeed, we can use the eigenvector v2(A) of A related
to the second largest eigenvalue as estimate of the second eigenvector of E[A],
whose signs identify the partition: sorting the vertices according to their values
in v2(A), we recover the communities. The mislabeled vertices amount to a
small quantity bounded by C

µ2 , where µ = min {p− q, 2q}.

We can summarize the developed method as
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Algorithm 1 Spectral Algorithm

1: Input: take the graph G.

2: Compute the adjacency matrix A of the graph.

3: Compute the eigenvector v2(A) corresponding to the second largest eigen-
value.

4: Sort the vertices according to their values in v2(A): if v2(A)j > 0 put vertex
j in V1, otherwise put vertex j in V2.

5: Output the partition (V1, V2).

Following the steps collected in Spectral Algorithm, with the previous com-
putations we have then proved the following

Theorem 3. Let G ∼ G(2n, p, q) with p > q and µ = min(p−q, 2q). Then, with
probability al least 1− 4e−2n, the Spectral Algorithm identi�es the two com-
munities V1, V2 of G correctly up to C/µ2 misclassi�ed vertices, for a constant
C > 0.

It is important to observe that the quantity of misclassi�ed vertices is bounded
by a constant that does not depend on the total number of vertices 2n, thus for
n large the set of mislabeled vertices becomes negligible.
Moreover, to apply the spectral method, we only require that the graph is dense
enough (q ≥ constant) and that the probability p is great enough with respect
to q (p− q ≥ constant).

In the next chapter, we will analyze a spectral method for the community
detection in a sparse graph (i.e. with expected degree d ∼ k, for k constant).
The starting point will be the same, and the idea will already be to exploit the
informations in the expected value of the adjacency matrix. However, dealing
with probabilities of the order ∼ 1

n , we will proceed in a di�erent way and we
will introduce new steps in the method in order to recover the communities.
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Chapter 3

Spectral method for a sparse

Stochastic Block Model with

two communities

In this chapter we study a spectral algorithm for a sparse Stochastic Block
Model with two communities. Recall that we de�ned as a sparse graph a random
graph in which the mean number of edges per vertex approaches a constant as
the number of vertices of the graph grows.

Starting from the method that we are going to develop in the case of two
communities, in the next chapter we will extend the procedure to the case of k
communities and prove the main result of this thesis.

Consider a set V of 2n vertices. Denote with V1, V2 the two subsets of
vertices, each of size n, representing the community structure. We generate a
random graph with the following distribution:

• an edge between vertices belonging to the same community appears with
probability a

n ;

• an edge between vertices belonging to di�erent communities appears with
probability b

n ,

with a > b > 0, and set d := a+ b.

We will solve the community detection problem for this random graphG
(
2n, an ,

b
n

)
for a large n, recovering a great portion of the two blocks.

We de�ne the correctness of the recovery in the following way:

De�nition 6. Let G ∼ G(2n, an ,
b
n ) be a random graph with a community struc-

ture given by the partition (V1, V2) of V . Let (V
′

1 , V
′

2 ) be a candidate partition
obtained as output of any method. Then, we de�ne (V

′

1 , V
′

2 ) a γ- correct par-
tition of V if

|Vi ∩ V
′

i | ≥ (1− γ)n (3.1)

or equivalently
|Vi \ V

′

i | ≤ γn (3.2)

for i = 1, 2.
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Since γ plays the role of an error rate, we would like to compute a candidate
γ-correct partition with γ as small as possible.

Let us now introduce the real protagonists of our computations.
Let A0 be the adjacency matrix of the random graph G(2n, an ,

b
n ) generated as

in our model. A0 is a symmetric 2n× 2n matrix with (A0)i,j = 1 if there is an
edge between verteces i and j, and 0 otherwise.
De�ne

Ā0 := E[A0] and E0 := A0 − Ā0.

As already seen in the case of dense graphs, the entries of A0 can be viewed as
Bernoulli variables with probabilities a

n or b
n . In particular, the matrix Ā0 is

given by the expected values of Ber (a/n) and Ber (b/n).
Replacing p = a

n and q = b
n in the computation of the eigenvalues of Ā0 = E[A0]

as in (2.3), we get
λ1 = a+ b, λ2 = a− b. (3.3)

What is crucial, however, is the structure of the eigenvectors: the entries of
the eigenvector related to λ2 are ±1 and they allow us to recognize the two
communities (for the computations, see (2.4)).

Since we do not have Ā0 as a starting information, the idea of the spectral
method is to use the second eigenvector of A0 to approximately identify the
partition. So, we rewrite A0 = Ā0 + E0 with the hope that A results close to
Ā0. Applying the methodology introduced in 2.2, we can bound Ā0 as in 2.2.1
and it is possible to bound E0 with Bernstein inequality (A.1.3) (for further
details, see [16]). Then, in order to apply Davis-Kahan (Theorem 2), we get a
distance δ between eigevalues such that

δ = min(λ2, |λ1 − λ2|) = min(a− b, 2b) := µn

where µ becomes of the order of 1
n . This means that the estimate as in (2.9) for

the number of mislabeled vertices becomes of the kind of C
µ2 ∼ n2 for a constant

C > 0. Therefore, we would obtain a partition with a very large error.

In order to avoid this problem, we proceed in a di�erent way: we modify
E0 and the matrices A0, Ā0 deleting the rows and columns corresponding to
vertices with high degree.
We �x the bound for the deletion at a degree δ = 20d = 20(a + b): it means
that if the vertex j has degree greater than 20d, the deletion acts zeroing out
the j-th row and j-th column of the given matrix (as showed in (3.4)). Repeat
this way for every vertex with such a property.



x1,1 . . . x1,j . . . x1,2n

...
...

...
...

...
xj,1 . . . xj,j . . . xj,2n
...

...
...

...
...

x2n,1 . . . x2n,j . . . x2n,2n

⇒


x1,1 . . . 0 . . . x1,2n

...
... 0

...
...

0 0 0 0 0
...

... 0
...

...
x2n,1 . . . 0 . . . x2n,2n

 (3.4)

The deletion leads to the loss of part of information, but bounding the vertex
degrees will be an important tool to limit the size of the involved matrices.

29



Then, let A, Ā, E be the revised matrices obtained from A0, Ā0, E0 after the
deletion. Moreover, if ∆ := Ā− Ā0, we put

A = Ā+ E = Ā0 + ∆ + E.

Starting from these new matrices and assuming the absence of loops, in the next
sections we will work this way:

• in section 3.1 we de�ne a spectral algorithm, Spectral Partition, for
which we show the correctness of the output (with correctness we refer
to De�nition 6). This algorithm works on the eigenvectors of the deleted
version of the adjacency matrix (see (3.4)) and produces a candidate vertex
partition for the input random graph G

(
2n, an ,

b
n

)
.

It will rely on the following

Theorem 4. There are constant C0, C1 > 0 such that, for any a > b > C0

and γ > 0 satisfying
(a− b)2

a+ b
≥ C1 (3.5)

we can �nd a γ-correct partition with probability 1 − o(1) using Spectral
Partition.

• in section 3.2 we use Spectral Partition to build a more robust algorithm
Partition, in which we preserve the intrinsic randomness of the commu-
nity detection problem and we add a sub-routine algorithm, Correction,
that guarantees a small error rate γ. A key point will be the relation
between γ and the quantities a and b describing the probabilities between
vertices. So, we will use Theorem 4 replacing hypothesis (3.5) with

(a− b)2

a+ b
≥ C1 log

1

γ
. (3.6)

In particular, we are going to show that if Spectral Partition, run over
a subset of edges chosen randomly, gives a 0.1-correct partition, then
the sub-routine Correction, run over the other part of edges, outputs a

γ-correct partition with γ = 2 exp
(
−0.072 (a−b)2

a+b

)
.

3.1 Spectral Partition: a �rst algorithm produc-

ing a correct vertex partition

In this section we are going to de�ne a spectral algorithm that exploits the
structure of the eigenvectors of the adjacency matrix related to the input random
graph G

(
2n, an ,

b
n

)
. After some computations, it will be possible to separate the

vertices of the graph into two subsets V
′

1 , V
′

2 and get a candidate solution for
the community detection problem. We will show that the candidate partition
(V
′

1 , V
′

2 ) is γ-correct with respect to the real partition (V1, V2), i.e.

|Vi ∩ V
′

i | ≥ (1− γ)n

for a small error rate γ > 0.

The main result for this section is the following
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Theorem 5. There are constant C0, C1 > 0 such that, for any a > b > C0 and
γ > 0 satisfying

(a− b)2

a+ b
≥ C1 (3.7)

we can �nd a γ-correct partition with probability 1− o(1) using Spectral Par-
tition

where Spectral Partition is de�ned as:

Algorithm 2 Spectral Partition

1: Input: take the adjacency matrix A0, d := a+ b.

2: Deletion: zero out all the rows and columns of A0 corresponding to vertices
whose degree is bigger than 20d, and obtain the matrix A.

3: Find the eigenspace W corresponding to the top two eigenvalues of A.

4: Compute w1, the projection of all-ones vector in to W .

5: De�ne w2 as the unit vector in W perpendicular to w1.

6: Sort the vertices according to their values in w2, and let V
′

1 ⊂ V be the top
n vertices, and V

′

2 ⊂ V be the remaining n vertices.

7: Output (V
′

1 , V
′

2 ).

Recall that

A0 is the adjacency matrix related to G

(
2n,

a

n
,
b

n

)
,

Ā0 = E[A0],

E0 = A0 − Ā0.

After the deletion, namely the zeroing of rows and columns related to vertices
with degree greater than 20d = 20(a+ b) (see (3.4)), we de�ned A, Ā and E.
Moreover, we rewrote the revised adjacency matrix after the deletion as

A = Ā0 + ∆ + E

with
∆ = Ā− Ā0 = E[A]− E[A0].

In order to prove Theorem 5, later on we are going to see, step by step, that:

• Step 1: with high probability, ‖∆‖ = O(1);

• Step 2: with high probability, ‖E‖ = O(
√
d);

• Step 3: using the bounds from Step 1 and Step 2, we apply Davis - Kahan
theorem and obtain that the angle between the eigenspaces of Ā0 and
A = Ā0 + ∆ + E is small;

31



• Step 4: once the angle condition is satis�ed, we can �nd a vector (w2

of Spectral Partition) in the eigenspace of A that is close to the second
eigenvector of Ā0. Sorting the vertices according to their values in w2,
we get a candidate partition in which the number of mislabeled vertices
is small. In this way, Spectral Partition outputs a γ-correct partition (as
de�ned in Def. 6).

Step 1: bounding the distance between the expected value

of the adjacency matrix and the expected value of a revised

adjacency matrix

In order to bound the norm of the matrix ∆, we �rst prove a result on the
maximal number of vertices with degree greater than 20d:

Lemma 1. There exists a constant d0 such that if d := a + b ≥ d0, then with
probability 1− exp(−Ω(a−2n)), not more than a−3n vertices have degree ≥ 20d.

Proof. Consider X ⊂ V of size |X| = cn, where c < 1 is a constant and V is the
set of 2n vertices of our model.
We will �rst bound the probability that all the vertices in this set have degree
greater than 20d; then, we will consider the case c = a−3 and conclude thanks
to the union bound on all the possible choices for X.
Let us de�ne

E(X) = {edges with both end points in X}
E(X,Xc) = {edges with exactly one end point in X}.

We claim that if every vertex x ∈ X has degree δ(x) ≥ 20d, then either
|E(X)| ≥ 2cnd or |E(X,Xc)| ≥ 8cnd.
Indeed, suppose that |E(X,Xc)| < 8cnd: the relation for the total amount of
edges from vertices of X is given by

2|E(X)|+ |E(X,Xc)| ≥ 20cnd⇒ |E(X)| ≥ 6cnd

which is certainly greater than 2cnd. Analogously, if |E(X)| < 2cnd, we get
that |E(X,Xc)| ≥ 16cnd which is certainly greater than 8cnd.

Now, in order to apply Cherno� inequality (see Cherno� 1), we want to �nd
an upper and lower bound for the expected number of edges µE(X) := E[E(X)].
Recall the fact that V = V1 ∪ V2 with |Vi| = n for i = 1, 2; in particular, this
means that X ⊂ V1 ∪ V2:

• to �nd an upper bound, we consider the case in which we maximize the
number of edges with probability a

n >
b
n , i.e. X ⊂ V1 and X ∩ V2 = ∅, or

viceversa. We get

µE(X) ≤
1

2
(cn)2 a

n
;

• to �nd a lower bound, we consider the case in which we maximize the
number of edges with probability b

n < a
n , it means when there are 1

2cn
vertices of X in V1 and 1

2cn vertices in V2: then,

µE(X) ≥ 2
1

2
(
1

2
cn)2 a

n
.
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Therefore, we obtain

1

4
(cn)2 a

n
≤ µE(X) ≤

1

2
(cn)2 a

n
. (3.8)

Let

δ1 =:
2

c
.

We observe that

δ1 ≤
2cnd

µE(X)
(3.9)

indeed
2cnd

µE(X)
≥ 2cnd

1
2 (cn)2 a

n

=
2d
1
2ca
≥ 2

1
2c
≥ 2

c
.

Then, Cherno� 1 gives

P(|E(X)| ≥ 2cnd) ≤ e−µE(X)e2cnd
(µE(X)

2cnd

)2cnd

=
(
e1−

µE(X)
2cnd

µE(X)

2cnd

)2cnd

≤
for (3.9)

(
e1− c2

c

2

)2cnd

≤
(
e( 2
c−1) c2

1

2/c

) 2
cµE(X)

≤
(exp(δ1 − 1)

δ1
δ1

)µE(X)

≤
for (3.8)

exp
((2

c
− 1− 2

c
log
(2

c

))1

4
(cn)2 a

n

)

≤ exp
(
−1

c
log
(1

c

)1

4
(cn)2 a

n

)

= exp
(
−1

4
log
(1

c

)
acn
)

(3.10)

where we used the fact that the quotient in brackets is smaller than 1 and that
c is small.

Similarly for µE(X,Xc) := E[E(X,Xc)]:

• to �nd an upper bound, we consider the case in which we maximize the
number of edges with probability b

n < a
n , it means when there are 1

2cn
vertices in V1 and 1

2cn vertices in V2, so

µE(X,Xc) ≤ 2(
1

2
cn)(n− 1

2
cn)

a

n
+ 2(

1

2
cn)(n− 1

2
cn)

b

n
< 2cn(n− 1

2
cn)

a

n
;
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• to �nd a lower bound, we maximize the number of edges with probability
a
n , i.e. X ⊂ V1 and X ∩ V2 = ∅, or viceversa:

µE(X,Xc) ≥ (cn)(n− cn)
a

n
= c(1− c)n2 a

n
.

Therefore,

c(1− c)n2 a

n
≤ µE(X,Xc) ≤ c(2− c)n2 a

n
. (3.11)

Let
δ2 := 4.

As before,

δ2 ≤
8cnd

µE(X,Xc)
(3.12)

because
8cnd

µE(X,Xc)
≥ 8cnd

c(2− c)n2 a
n

=
8d

(2− c)a
≥ 8

2− c
≥ 4.

Then we apply Cherno� inequality 1 and get

P(|E(X,Xc)| ≥ 8cnd) ≤
(

exp(δ2 − 1)

δ2
δ2

)µE(X,Xc)

≤ exp
(

(3− 4 log(4)) c(1− c)n2 a

n

)
≤ exp(−c(1− c)an). (3.13)

Substituting c = a−3 in (3.10) and (3.13) we get the bound for the probability
that a subset X ⊂ V , with |X| = a−3n, has all the vertices with degree greater
than 20d:

P (|E(X)| ≥ 2cnd) ≤ exp

(
−3

4
log(a)a−2n

)
(3.14)

P (|E(X,Xc)| ≥ 8cnd) ≤ exp
(
−a−2n

)
. (3.15)

Using the binomial coe�cient property A.2, we see that the subsets with cardi-
nality cn in V are at most(

2n

cn

)
≤
(2ne

cn

)cn

=
(2

c

)cn
ecn

= exp
[
cn+ cn log

(2

c

)]
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= exp
[
−c(log

( c
2

)
− 1
)
n
]

(3.16)

so substituting c = a−3 in (3.16) we get(
2n

a−3n

)
≤ exp

[
−a−3

(
log

(
a−3

2

)
− 1

)
n

]

= exp
[
−a−3n(−3 log(a)− log(2)− 1

]
= exp

[
3a−3 log(a)n+ a−3n (log(2) + 1)

]
≤ exp[4a−3 log(a)n] (3.17)

where the last inequality holds because we can take a big enough so that
log(2) + 1 ≤ log(a).
Finally, we join (3.14), (3.15) and (3.17) to conclude with the union bound:

P{every set of order a−3n has every vertex with degree ≥ 20d}

≤ exp(4a−3 log(a)n) exp(a−2n)

= exp
(
−a−2n

(
1− 4

log a

a

))
≤ exp(−Ω(a−2n))

since we can choose a big.
Then we can state that with probability 1− exp(−Ω(a−2n)), there are at most
a−3n vertices with degree ≥ 20d.

Now, let us use Lemma 1 to bound ‖∆‖:
recalling the de�nition of ∆ = Ā − Ā0, we observe that the zero entries of the
matrix Ā, obtained after the deletion of Ā0, correspond to the non-zero entries
of ∆. So, since we should represent the matrix ∆, under a permutation of rows
and columns, as

∆ '

(
O O
O ¯ai,j

)
−

(
¯ah,k ¯ah,j

¯ai,k ¯ai,j

)
=

(
¯−ah,k ¯−ah,j
¯−ai,k O

)
,

if there are at most a−3n vertices with degree greater than 20d, then the non-
zero entries of ∆ are certainly at most

|{∆i,j 6= 0}| ≤ 4a−3n2.
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Moreover, every entry ∆i,j ≤ a
n , so we use the Hilbert-Schmidt norm (see A.3.2)

and get

‖∆‖HS =

 2n∑
i=1

2n∑
j=1

(∆i,j)
2

1/2

≤
(

4a−3n2
(a
n

)2
)1/2

=
2√
a

and, since a can be large, we can state that ‖∆‖HS ≤ 1.
In particular, recalling form A.3.2 that ‖M‖ ≤ ‖M‖HS for every matrix M , we
�nally obtain that

Corollary 2. Let d = a + b ≥ d0 and ∆ = Ā− Ā0 = E[A]− E[A0]. Then, for
d0 su�ciently large, ‖∆‖ ≤ 1 with probability 1− exp(−Ω(a−2n)).

Step 2: bounding the distance between a revised adjacency

matrix and its expected value

Now we focus on the matrix E = A− Ā = A− E[A].
We will proceed this way: at �rst, we introduce three statements (Lemma 2, 3
and 4) for n × n symmetric matrices with bounded entries distribution. Then
we use those statements to prove a key result (Lemma 5) that we are going to
apply to the 2n× 2n matrix E.

Let us introduce the results we need:

Lemma 2. Let M be a random symmetric matrix of size n with zero diagonal
whose entries above the diagonal are independent with the following distribution:

Mi,j =

{
1− pi,j with probability pi,j
−pi,j with probability 1− pi,j

.

Let σ2 ≥ C1
logn
n be a quantity such that pi,j ≤ σ2 for all i, j, where C1 is a

constant. Then with probability 1 − o(1), ‖M‖ ≤ C2σ
√
n for some constant

C2 > 0.

Lemma 3. Let G̃ = (Ṽ , Ẽ) be any graph whose adjacency matrix is denoted by

Ã, and x, y be any two unit vectors. Let d̃ be such that the maximum degree is
≤ c1d̃. Further, let d̃ satisfy the property that for any two subsets of vertices
S, T ⊂ Ṽ one of the following holds for some constants c2 and c3:

e(S, T )

|S||T | d̃n
≤ c2 (3.18)

e(S, T ) log

(
e(S, T )

|S||T | d̃n

)
≤ c3|T | log

n

|T |
(3.19)

where e(S, T ) is the number of edges between S and T .

Then
∑
H xiÃi,jyj ≤ max(16, 8c1, 32c2, 32c3)

√
d̃.

Here H := {(i, j) | |xiyj | ≥
√
d̃/n}.
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Lemma 4. Let d̃ := σ2n. Then with probability 1− o(1), the maximum degree

in the graph GA is ≤ 20d̃ and for any S, T ⊂ V one of the conditions of Lemma
3 holds.

The proofs of Lemma 2 and Lemma 4 will be a starting point for later results.
Thus, now we are going to prove them, whereas we consider Lemma 3 as a fact.

Proof (Lemma 2) . Consider a 1
2 -net N of the unit sphere Sn.

For a property of nets, we have |N | ≤ 5n (see A.4 for de�nitions and properties).
Referring to an equivalent de�nition for the norm of a matrix (see A.3.2), to
show our statement it su�ces to prove that for all x, y ∈ N there exists a
constant C ′2 > 0 such that with probability 1− o(1),

|xTMy| ≤ C ′2σ
√
n.

Let x, y ∈ N and de�ne a pair

(i, j) :

{
light if |xiyj | ≤ σ√

n

heavy otherwise
.

Moreover, let L and H be the classes of light and heavy pairs. Then we can
rewrite

xTMy =

n∑
i,j=1

xiMi,jyj =
∑

(i,j)∈L

xiMi,jyj +
∑

(i,j)∈H

xiMi,jyj . (3.20)

The goal becomes to bound the two summands.

First, let us focus on the light couples.
De�ne

X :=
∑

(i,j)∈L

xiMi,jyj =
∑

(i,j)∈L,i>j

Mi,jai,j

where

ai,j =

 xiyj + xjyi if (i, j), (j, i) ∈ L
xiyj if (i, j) ∈ L
xjyi if (j, i) ∈ L

.

By de�nition of light pairs, |ai,j | ≤ 2 σ√
n
. Moreover, since x, y are unit vectors,∑

(i,j)∈L,i>j

ai,j
2 ≤

∑
(i,j)∈L,i>j

(xiyj + xjyi)
2

≤
∑

(i,j)∈L,i>j

2
(
x2
i y

2
j + x2

jy
2
i

)

= 2

(
n∑
i=1

x2
i

) n∑
j=1

y2
j

+ 2

 n∑
j=1

x2
j

( n∑
i=1

y2
i

)
≤ 4. (3.21)
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Then, we would like to apply Bernstein inequality (see A.1.3) for X, indeed the
hypothesis are satis�ed:

X =
∑

(i,j)∈L

xiMi,jyj =
∑

(i,j)∈L,i>j

Mi,jai,j

where
|Mi,jai,j | ≤ 2

σ√
n

for every (i, j) ∈ L and∑
(i,j)∈L

E[M2
i,ja

2
i,j ] =

∑
(i,j)∈L

a2
i,j

[
(1− pi,j)2

pi,j + p2
i,j (1− pi,j)

]

=
∑

(i,j)∈L

a2
i,jpi,j (1− pi,j)

≤ σ2
∑

(i,j)∈L,i>j

a2
i,j

≤
for (3.21)

4σ2.

So we apply Bernstein:

P (X > t) ≤ exp

(
− 1

2 t
2

4σ2 + 1
32 σ√

n
t

)
. (3.22)

Setting t = 10σ
√
n in (3.22), we get

P
(
X > 10σ

√
n
)
≤ exp

(
−50σ2n

4σ2 + 20
3 σ

2

)
= exp

(
−3n

50

32

)
≤ exp(−3n) (3.23)

and we can conclude that ∣∣∣ ∑
(i,j)∈L

xiMi,jyj

∣∣∣ ≤ 10σ
√
n (3.24)

with probability at least 1− exp(−3n).

Now let us focus on the heavy pairs. Since x, y are unit vectors, and thanks
to the de�nition of heavy, we observe that

1 ≥
∑

(i,j)∈H

x2
i y

2
j =

∑
(i,j)∈H

|xiyj ||xiyj | ≥
σ√
n

∑
(i,j)∈H

|xiyj |

which implies ∑
(i,j)∈H

|xiyj | ≤
√
n

σ
. (3.25)
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De�ne
Ai,j := Mi,j + pi,j

and rewrite ∑
(i,j)∈H

xiMi,jyj =
∑

(i,j)∈H

xiAi,jyj −
∑

(i,j)∈H

pi,jxiyj . (3.26)

Since pi,j ≤ σ2 by hypothesis, we easily bound the second term of (3.26) as∑
(i,j)∈H

pi,j |xiyj | ≤ σ2

√
n

σ
= σ
√
n. (3.27)

Finally, dealing with the �rst term of (3.26), we observe that A can be seen as
the adjacency matrix of a certain graph GA, in fact

Ai,j = Mi,j + pi,j =

{
(1− pi,j) + pi,j = 1 with probability pi,j
−pi,j + pi,j = 0 with probability 1− pi,j

.

Lemma 4 guarantees that A satis�es the hypothesis of Lemma 3 with d̃ = σ2n
and H = { (i, j) | |xiyj | ≥ σ/

√
n }. Therefore with probability 1− o(1) holds∣∣∣ ∑

(i,j)∈H

xiAi,jyj

∣∣∣ ≤ C ′σ√n (3.28)

for some constant C ′ > 0.
Finally, we collect relations (3.24), (3.27) and (3.28) to conclude that with

high probability
|xTMy| ≤ C

′

2σ
√
n

and then
‖M‖ ≤ C

′

2σ
√
n.

Proof (Lemma 4). Let k be a vertex in GA and let

X :=

n∑
i=1

Ai,k

be the random variable denoting the number of edges incident on it. Having
the same hypothesis as in Lemma 2, we deduce that

µ := E[X] =

n∑
i=1

pi,k ≤ σ2n. (3.29)

Thanks to Cherno� inequality 1, we �nd the desired bound for the maximum
degree of the graph GA : let l ≥ 4 and recall the hypothesis σ2 ≥ C1

logn
n ,

P(X > lσ2n) ≤ e−µ
( eµ

lσ2n

)lσ2n

39



=

(
el−

µ

σ2n

( µ

lσ2n

)l)σ2n

≤

(
e4−σ2n

σ2n

(
σ2n

lσ2n

)l)σ2n

=
(
e3l−l

)σ2n

= exp
(
σ2n(3− l log l)

)
= exp

(
3σ2n

(
1− l log l

3

))

≤ exp

(
−σ

2nl log l

3

)

≤ exp

(
−C1

logn
n nl log l

3

)

≤ exp

(
− l log n

3

)
. (3.30)

Applying (3.30) with l = 20 and taking the union bound over all the n vertices,
we can state that, with probability 1− o(1), the maximum degree is ≤ 20σ2n.

Now, let S, T ⊂ V be two subsets of vertices with |S| ≤ |T |, and let
X := e(S, T ) be the number of edges between S and T . If ei,j is the edge
between i ∈ S and j ∈ T , we have that

E[X] =
∑

i∈S,j∈T
pi,jei,j ≤ σ2|S||T |. (3.31)

If |T | ≥ n
e , since we have shown that the maximum degree in the graph GA is

≤ 20σ2n, we get that

e(S, T ) ≤ |S|20σ2n ≤ 20eσ2|S||T |

or equivalently
e(S, T )

|S||T |σ2
≤ 20e

which is condition (3.18) of Lemma 3 with d̃ = σ2n.

Let us now assume |T | ≤ n
e (this part of the proof follows [9]).

From Cherno� 1 it follows that, for any k ≥ 4,

P(X > kσ2|S||T |) ≤ e−µ
(

eµ

kσ2|S||T |

)kσ2|S||T |
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≤
(
e3k−k

)σ2|S||T |

≤ exp

(
3σ2|S||T |

(
1− k log k

3

))

≤ exp

(
−σ

2|S||T |k log k

3

)
. (3.32)

We would like to �nd a minimal k ≥ 4 such that the event
{
e(S, T ) ≤ kσ2|S||T |

}
holds with high probability for every possible S and T . Let us say we want that

exp
(
−1

3
(k log k)σ2|S||T |

)( n

|S|

)(
n

|T |

)
≤ 1

n3
. (3.33)

Observe that (3.33) holds if and only if

exp

(
−1

3
(k log k)σ2|S||T |

)(
ne

|S|

)|S|(
ne

|T |

)|T |
exp(3 log n) ≤ e0 (3.34)

which is equivalent to

1

3
(k log k)σ2|S||T | ≥ |S|

(
1 + log

n

|S|

)
+ |T |

(
1 + log

n

|T |

)
+ 3 log n. (3.35)

We know that |S| ≤ |T | ≤ n
e , and in particular this implies that log n

|T | ≥ 1.

Let us consider f(x) := x log n
x : this is an increasing function in [1, ne ], in fact

f ′(x) = log
n

x
+ x

x

n
(− n

x2
) = log

n

x
− 1

and it is greater than zero if and only if x ≤ n
e .

It follows that
|T | log

n

|T |
≥ |S| log

n

|S|
. (3.36)

Then, instead of (3.35), it is su�cient to require that

1

3
(k log k)σ2|S||T | ≥ 4|T | log

n

|T |
+ 3 log n. (3.37)

Again, for the monotonicity of x log n
x , it holds that |T | log n

|T | ≥ log n, so it is

not restrictive to substitute (3.37) with

1

3
(k log k)σ2|S||T | ≥ 7|T | log

n

|T |
. (3.38)

Highlighting the dependence on k, we obtain that

k log k ≥ 21|T |
σ2|S||T |

log
n

|T |
. (3.39)
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Therefore, let k be the smallest number such that k log k ≥ C
σ2|S||T | |T | log n

|T | .

If it happens that k ≤ 4, since we want the Cherno� bound (3.32) to hold, we
set k := 4. So, let

k′ := max{k, 4}.
Using the union bound, we get that

P{e(S, T ) ≥ k′σ2|S||T | for every possible choice of S and T}

≤
n∑
|S|=0

n∑
|T |=0

(
n

|S|

)(
n

|T |

)
exp
(
−1

3
(k′ log k′)σ2|S||T |

)

≤ n2 1

n3
=

1

n
(3.40)

thereby, for every choice of S and T ,

e(S, T ) ≤ k′σ2|S||T |

with probability at least 1− 1
n .

Finally, if k′ = 4, we easily recognize condition (3.18) of Lemma 3:

e(S, T )

σ2|S||T |
≤ 4.

At the contrary, if k log k = C
σ2|S||T | |T | log n

|T | , we have

e(S, T ) ≤ C

σ2|S||T | log k
|T | log

( n

|T |

)
σ2|S||T |

which is equivalent to

e(S, T ) log k ≤ C|T | log
n

|T |

and since k ≥ e(S,T )
σ2|S||T | we obtain (3.19)

e(S, T ) log

(
e(S, T )

σ2|S||T |

)
≤ C|T | log

n

|T |
.

With these preliminary results, we are ready to prove the key lemma for this
section:

Lemma 5. Suppose M is a random symmetric matrix with zero on the diagonal
whose entries above the diagonal are independent with the following distribution

Mi,j =

{
1− pi,j with probability pi,j
−pi,j with probability 1− pi,j

.

Let σ be a quantity such that pi,j ≤ σ2 and M1 be a matrix obtained from M by
zeroing out all the rows and columns having more than 20σ2n positive entries.
Then with probability 1− o(1), ‖M1‖ ≤ Cσ

√
n for some constant C > 0.
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Proof. We follow the same reasoning adopted in the proofs of Lemma 2 and
Lemma 4 with some modi�cations. Consider the light and heavy couples de�ned
as before.

Dealing with the light couples, we �rst bound the norm of a matrix MS

given by the deletion of a �xed set S of rows and corresponding columns from
M ; then, we will deduce the expected bound for M1 as the union bound among
all the possible choice for S. So, given S, we can apply the same reasoning of
Lemma 2 since the only di�erence is that some entries (MS)i,j are zero. Then,
we get that with probability at least 1− exp(−3n)∣∣∣ ∑

(i,j)∈L

xi(MS)i,jyj

∣∣∣ ≤ 10σ
√
n (3.41)

for every x, y ∈ N1/2.
If k := |S|, the possible choices for S are at most

n∑
k=0

(
n

k

)
= 2n = exp(n ln 2).

Consequently, the bound (3.41) holds for every possible S with probability at
least 1− exp(−(3− ln 2)n), and in particular it holds that∣∣∣ ∑

(i,j)∈L

xi(M1)i,jyj

∣∣∣ ≤ 10σ
√
n.

In the case of heavy couples, let us consider the same de�nitions as for
Lemma 2 and let us show that we can bound the sum for A1 using conditions
(3.18) and (3.19), where A1 is the matrix obtained from M1. First, we observe
that A1, the adjacency matrix of a certain graph GA1

, has bounded degree:
indeed, by construction ofM1, we zeroed out the rows and columns correspondig
to vertices with degree ≥ 20σ2n. Now, as in the proof of Lemma 4, consider
S, T ⊂ V . In the case |T | ≥ n

e , since the maximum degree is bounded, we
obtain condition (3.18). If |T | < n

e , since zeroing out rows and columns can only
decrease the number of edges between S and T , we obtain the same relation
for e(S, T ) and get that (3.18) or (3.19) holds for A1. This implies that we can
apply Lemma 3 and conclude.

Finally, we go back to our goal, which is to bound ‖E‖, and prove the
following:

Corollary 3. There exist constants C0, C > 0 such that if a > b ≥ C0, and E
is the matrix produced by the deletion on E0 = A0 − Ā0, then we have

‖E‖ ≤ C
√
d with probability 1− o(1).

Proof. This result follows directly from Lemma 5. Remember that E is obtain
from the deletion of E0 = A0 − Ā0, where A0 is the adjacency matrix of the
input random graph and Ā0 = E[A0]. In particular,

(E0)i,j =

{
1− a

n with probability a
n

− a
n with probability 1− a

n
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if i and j belong to the same community and

(E0)i,j =

{
1− b

n with probability b
n

− b
n with probability 1− b

n

if i and j belong to di�erent communities.
In particular, E0 is a symmetric matrix with a distribution on the entries as
requested and, since we study a graph with no loops, E0 has zero diagonal.
Moreover, we observe that in this case pi,j ∈ { an ,

b
n}, so in particular pi,j ≤ d

n .

Therefore, we can apply Lemma 5 to this 2n× 2n matrix, with σ2 = d
n :

‖E‖ ≤ Cσ
√

2n = C

√
d

n

√
2n = C

′√
d.

Step 3: bounding the angle between the eigenspace of the

expected value of the adjacency matrix and the eigenspace

of the revised adjacency matrix

In this section, we introduce some new notations.
Let v̄1, v̄2 and v1, v2 be the eigenvectors of Ā0 = E[A0] and A = Ā0 + ∆ + E,
respectively, corresponding to their two largest eigenvalues.
Moreover, set

W̄ := Span{v̄1, v̄2}, W := Span{v1, v2}.

For any two vector subspaces W1,W2 of the same dimension, we use the con-
vention

sin∠(W1,W2) := ‖PW1
− PW2

‖, (3.42)

where PWi
is the orthogonal projection onto Wi.

At this step of the method, we are going to prove that if

(a− b)2

a+ b
≥ C1

and a > b > C0 for C0, C1 > 0, then the angle between the eigenspaces W and
W̄ is small. In other words, under the conditions of Theorem 5, the eigenspace
of A = Ā0 + ∆ +E is close to the eigenspace of Ā0, from which we can deduce
the community structure of the related random graph G(2n, an ,

b
n ) (as seen at

the beginning of the chapter).
In order to do so, we are going to apply Davis-Kahan theorem (in a di�erent

version with respect to Theorem 2), employing the estimates for the matrices
∆ and E obtained from Step 1 and Step 2.

Hence we now prove the following

Lemma 6. Let W̄ = Span{v̄1, v̄2} and W = Span{v1, v2}, with v̄i and vi, for
i = 1, 2 be the eigenvectors related to the two largest eigenvalues of Ā0 and A
respectively. For any constant c < 1, we can choose constants C2, C3 > 0 such
that if a ≥ C3 and

a− b ≥ C2

√
a+ b = C2

√
d, (3.43)
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then
sin∠(W̄ ,W ) ≤ c < 1

with probability 1− o(1).

Proof. The lemma follows from Davis - Kahan sin Θ theorem as in [2] or [7].
For our matrices Ā0 and A = Ā0 + ∆ + E we �nd that

sin∠(W̄ ,W ) ≤ ‖A− Ā0‖
a− b

=
‖∆ + E‖
a− b

. (3.44)

Since C3 is a constant such that a ≥ C3, Corollary 2 says that

‖∆‖ ≤ 1.

Moreover, we know from Corollary 3 that exists C such that

‖E‖ ≤ C
√
d.

This means that, employing also the hypothesis (3.43), we can rewrite (3.44) as

sin∠(W̄ ,W ) ≤ 1 + C
√
d

C2

√
d
≤ 1

C2

(
1√
d

+ C

)
< c

for C2 big enough.

Notice that the de�nition of the constants Ci in Lemma 6 and Theorem 5 is
just a notation. Indeed, C0 and C3 can be identi�ed as the same lower bound
for the choice of a and the further condition b > C0 in the Theorem 5 is not a
limit for the proof of Lemma 6. Besides, C1 can be taken as the square of C2.

Step 4: correctness of the recovery of the community struc-

ture

Up to now, we have showed that under the hypothesis of Theorem 5, i.e.
when condition (3.7) on a and b holds, the spaces W̄ = Span{v̄1, v̄2} and
W = Span{v1, v2} given by the eigenvectors of Ā0 and A are close. The aim of
the spectral method is to �nd a way to extract information about the commu-
nity structure of the input graph G(2n, an ,

b
n ) from the adjacency matrix.

Recall that A0 is the adjacency matrix of the graph, Ā0 = E[A0] and A is the
revised adjacency matrix obtained from the deletion (see (3.4)).

In this �nal step we are going to prove the correctness of Spectral Partition.
Starting from Lemma 6, we are going to see that there exists a vector in W
really close to the eigenvector of Ā0 illustrating the vertex partition (as seen in
(2.4)). Such a vector is w2 as de�ned into Spectral Partition. Finally, sorting
the vertices of the graph in two subsets according to their values in w2, we prove
that the number of mislabeled vertices is small. As a consequence, the output
partition given by the algorithm will be γ-correct for a small error rate γ > 0
(as in De�nition 6).

Recall that

W̄ := Span{v̄1, v̄2}, W := Span{v1, v2}
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with v̄i and vi, for i = 1, 2 eigenvectors related to the two largest eigenvalues of
Ā0 = E[A0] and A = Ā0 + ∆ +E respectively. The �rst result we want to prove
is the following:

Lemma 7. If sin∠(W̄ ,W ) ≤ c ≤ 1
4 , then we can �nd a vector w ∈ W such

that
sin∠(w, v̄2) ≤ 2

√
c := c′.

Proof. Recalling the de�nition (3.42), our hypothesis is that

sin∠(W̄ ,W ) = ‖PW̄ − PW ‖ ≤ c. (3.45)

To prove the result, we will de�ne a certain vector and then we will verify that
such a vector satis�es the statement.
Given the eigenvectors v̄1, v̄2 ∈ W̄ , the hypothesis (3.45) implies that, for
i = 1, 2,

‖PW v̄i − v̄i‖ ≤ c. (3.46)

For i = 1, 2, let
ui := PW v̄i and xi := ui − v̄i

Observe that condition (3.46) implies that ‖xi‖ ≤ c.
Now, let w ∈ W be a unit vector perpendicular to u1: we want to prove that
this unit vector, orthogonal to the projection in W , satis�es the statement.
Let

u⊥ := u2 −
uT1 u2

‖u1‖2
u1.

It is a vector in W such that

〈u⊥, u1〉 = 0 and ‖u⊥‖ ≤ 1. (3.47)

Recalling that the symmetry of Ā0 implies the orthogonality of the eigenvectors
v̄1, v̄2, we observe that

|uT1 u2| = |xT1 x2 + v̄1
Tx2 + xT1 v̄2| ≤ c2 + 2c. (3.48)

Moreover, since ‖ui‖ ≤ ‖v̄i‖ = 1 as a property of orthogonal projections, we
deduce that

c ≥ ‖xi‖ = ‖ui − v̄i‖ ≥ | ‖ui‖ − ‖v̄i‖ | = ‖ui‖ − 1

so in particular
‖ui‖ ≥ 1− c. (3.49)

Then, let us compute the scalar product of u⊥ and v̄2

uT⊥v̄2 = uT2 v̄2 −
(uT1 u2)(v̄2

Tu1)

‖u1‖2

and taking the absolute value we get that

|uT⊥v̄2| ≥ 1− c− (2c+ c2)c

(1− c)2
. (3.50)
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As hypothesis c ≤ 1
4 , so (3.50) can be estimated with

|uT⊥v̄2| ≥ 1− c− c18

32

16

9
= 1− 2c. (3.51)

Since ‖w‖ = 1 ≥ ‖u⊥‖, (3.51) gives a bound for the absolute value of the scalar
product between w and v̄2 so that

|wT v̄2| ≥ |uT⊥v̄2| ≥ 1− 2c. (3.52)

Finally, thanks to the de�nition of cross product and (3.52), we conclude that
for the unitary vectors w and v̄2 holds that

sin∠(w, v̄2) =

√
‖w‖2‖v̄2‖2 − |wT v̄2|2

‖w‖‖v̄2‖
≤
√

1− (1− 2c)2 ≤ 2
√
c.

From now on, let w2 be the vector in W that satis�es Lemma 7. As de�ned
in Spectral Partition and in the proof of Lemma 7, w2 is the unit vector in W
perpendicular to the projection in to W of the �rst eigenvector of Ā0 (de�ned
as u1 in the proof of the Lemma and w1 in the algorithm).

Joining Lemma 6 and Lemma 7, we can state that

Corollary 4. For any constant c < 1, we can choose constants C2 and C3

in Lemma 6 and �nd a vector w2 in W such that sin∠(v̄2, w2) ≤ c′ < 1 with
probability 1− o(1).

Since we have proved that w2 is really close to the eigenvector of Ā0 exhibit-
ing the vertex partition, we now want to exploit the information inside w2 to
extract a candidate partition. Spectral Partition splits the set of 2n vertices in
two subsets V

′

1 and V
′

2 according to the values in w2. We now prove that the
number of misclassi�ed vertices in (V

′

1 , V
′

2 ) with respect to the real partition
(V1, V2) is small. Namely, we see that if the angle between the spaces W̄ and
W is really small, then the output candidate partition is γ-correct for a really
small error rate γ > 0, i.e.

|Vi ∩ V
′

i | ≥ (1− γ)n.

for i = 1, 2.

Lemma 8. Let W̄ = Span{v̄1, v̄2} and W = Span{v1, v2}, with v̄i and vi, for
i = 1, 2 be the eigenvectors related to the two largest eigenvalues of Ā0 = E[A0]
and A = Ā0 + ∆ + E respectively. If sin∠(W̄ ,W ) ≤ c < 1/16, we can recover
a 8c/3 - correct partition.

In spite of proving directly Lemma 8, we are going to demonstrate the following
equivalent deterministic fact:

Lemma 9. If sin∠(v̄2, w2) < c′ ≤ 1
2 , then we can identify at least a (1− 4

3c
′2)

fraction of vertices from each block correctly.
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Proof. Given w2 the vector that satis�es the hypothesis for the angle, let us
de�ne the two sets of vertices

V
′

1 = {i |w2(i) > 0 } and V
′

2 = {i |w2(i) < 0 }.

One of the sets will have less than or equal to n vertices, let us suppose |V ′1 | ≤ n.
We decompose the vector w2 as a sum

w2 = c1v̄2
′ + err,

where v̄2
′ is the vector parallel to v̄2 with entries ± 1√

n
and err is a vector

perpendicular to v̄2 and with ‖err‖ < c′. Observe that we can obtain a relation
for c′ and c1 so that

c1 >
√

1− c′2.
Now, starting from the size of err, we bound the number of entries of this

vector that can be greater than a certain quantity, namely
√

1−c′2√
n

. In order to

do so, we consider the extremum case in which all the other entries are zeros

and we deduce the requested bound for ξ = |{ i | err(i) >
√

1−c′2√
n
}|:

c′2 > ‖err‖2 ≥ ξ
(

1− c′2

n

)
⇔ ξ <

c′2

1− c′2
n.

Finally, we want to �nd a lower bound for the number of vertices, among
those that realize v̄2

′(i) = 1√
n
, such that w2(i) > 0. Since w2 = c1v̄2

′ + err and

thanks to the previous estimate on ξ, there are at least
(

1− c′2

1−c′2

)
n coordinates

of w2 that are positive and that are correctly located in the set V
′

1 .
In particular, since c′ ≤ 1

2 , we obtain that∣∣∣{i|w2(i) > 0 with v̄2(i) =
1√
n

}∣∣∣ > (1− c′2

1− c′2
)
n ≥

(
1− 4

3
c′2
)
n.

Summing up, given a sparse graph G
(
2n, an ,

b
n

)
such that the probabilities

satisfy the conditions a > b > C and

(a− b)2

a+ b
≥ C ′

for some constant C,C ′ > 0, we have proved that, handling the adjacency matrix
of the graph as in the steps of Spectral Partition, we produce a γ-correct vertex
partition. Thus, we get a solution for the community detection problem on a
SBM using a spectral method. Moreover, the error rate γ > 0 can be small
according to the values of the bounds C and C ′.

3.2 Re�nement of the method with the addition

of a correction algorithm

In this second part, we would like to make some modi�cations on Spectral Par-
tition algorithm in order to get a good dependence between γ and the quantities
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a and b describing the probabilities among vertices, and thus, obtain a better
recovery. The idea will be to identify the mislabeled vertices and move them in
the correct community.

Recall that, given the sparse random graph G(2n, an ,
b
n ), Spectral Partition

produces a partition (V
′

1 , V
′

2 ) which is γ-correct with respect to the real partition
(V1, V2), namely

|Vi ∩ V
′

i | ≥ (1− γ)n

for i = 1, 2 and γ > 0.
Let v be a vertex belonging to V

′

1 ∩ V2, i.e. a vertex put in the wrong block.
Since v ∈ V2 and |V1|, |V2| = n, we expect that

E[ | neighbors of v in V1| ] = n
b

n
= b

E[ | neighbors of v in V2| ] = n
a

n
= a.

From now on, suppose that Spectral Partition outputs a 0.1-correct partition;
it means that we have a partition (V

′

1 , V
′

2 ) such that

|Vi ∩ V
′

i | ≥ 0.9n

or equivalently
|Vi \ V

′

i | ≤ 0.1n

for i = 1, 2.
In this case, the vertex v ∈ V ′1 ∩ V2 as above is supposed to be such that

E[ | neighbors of v in V
′

1 | ] ≤ 0.1n
a

n
+ 0.9n

b

n
= 0.1a+ 0.9b

E[ | neighbors of v in V
′

2 | ] ≥ 0.9n
a

n
+ 0.1n

b

n
= 0.9a+ 0.1b.

Since 0.1a+0.9b < a+b
2 < 0.9a+0.1b, it is possible to determine if a certain vertex

has been assigned to the right or wrong community looking at a thresholding.
In principle, this kind of thresholding should raise some issues since it is

expressed in terms of expectation: in the proof of the main result for this section
(Lemma 10), we will see that the majority of mislabeled vertices can be detected
this way. Moreover, it is exactly at this step that we are going to determine the
relation between γ and a and b.

We now go back to Spectral Partition and we want to point out a little
serious problem within it: once the algorithm has run, the neighbors of every
vertex are no longer random. It means that within the community detection
resolution, there is a lack of independence and randomness.
A solution for this problem is a new algorithm, in which we introduce a step
that randomly assigns the edges of the input graph to a Red graph or a Blue
graph:

• on the Red edges, we apply Spectral Partition;

• for the Blue part we introduce a new procedure (the sub-routine Correc-
tion) that detects the mislabeled vertices.

49



Figure 3.1: The edges of the input random graph are randomly assigned to a Red or
a Blue subgraph. This particular model is generated by G(100, 15/50, 1/50).

Therefore, let us de�ne

Algorithm 3 Partition

1: Input: the adjacency matrix A0, d := a+ b.

2: Randomly color the edges with Red and Blue with equal probability.

3: Run Spectral Partition on the Red graph, outputting V
′

1 , V
′

2 .

4: Run Correction on the Blue graph.

5: Output the corrected sets V
′

1 , V
′

2 .

where the sub-routine Correction is given by

Algorithm 4 Correction

1: Input: a partition V
′

1 , V
′

2 and a Blue graph on V
′

1 ∪ V
′

2 .

2: For any v ∈ V ′1 , label v bad if the number of neighbors of v in V
′

2 is at least
a+b

4 and good otherwise.

3: Do the same for any u ∈ V ′2 .

4: Correct V
′

i by deleting its bad vertices and adding the bad vertices from

V
′

3−i.

At last, we have to show that the method given by Partition produces a good
output. In section 3.1 we have already proved that Spectral Partition produces
a γ-correct vertex partition. Then, what remains to prove is the correctness of
Correction. In particular, taking as input a 0.1-correct partition (V

′

1 , V
′

2 ), we
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prove that the sub-routine Correction outputs an optimal vertex partition in
the following sense:

Lemma 10. Given a 0.1-correct partition (V
′

1 , V
′

2 ) and a Blue graph on V
′

1 ∪ V
′

2

as input to the sub-routine Correction, we obtain a γ-correct partition with

γ = 2 exp(−0.072 (a−b)2
a+b ).

Proof. We consider a 0.1-correct partition V
′

1 , V
′

2 as output of Spectral Partition
on the Red graph. Besides, since the graph is sparse, we say that with proba-
bility 1− o(1) the maximum Red degree of a vertex u is at most d(u) = log2 n.
Let us focus on the Blue graph. Let e = (u, v) be an edge between the vertices
u and v. For i = 1, 2

P(e is Red) = P(e is Blue) =


a

2n if u, v ∈ Vi

b
2n if u ∈ Vi, v ∈ V3−i

.

Then, for i = 1, 2,

P(e is Blue | e is not Red) =


a/2n

(1− an )+ a
2n

= a/2n
1− a

2n
:= τ if u, v ∈ Vi

b/2n

(1− b
n )+ b

2n

= b/2n

1− b
2n

:= µ if u ∈ Vi, v ∈ V3−i

.

(3.53)
De�ne ξui and ζuj iid indicator random variables with mean µ and τ respectively.
Then, for i = 1, 2,

∣∣∣{Blue neighbors in V ′3−i for u ∈ V
′

i ∩ Vi
}∣∣∣ ≤ 0.9n∑

i=1

ξui +

0.1n∑
j=1

ζuj := S(u)

∣∣∣{Blue neighbors in V ′3−i for u ∈ V
′

i ∩ V3−i

}∣∣∣ ≥ 0.9n−d(u)∑
i=1

ζui +

0.1n∑
j=1

ξuj := S′(u).

The second step of Correction identi�es u ∈ V ′1 as a bad vertex if

• u ∈ V ′1 ∩ V1 and S(u) ≥ a+b
4 ;

• u ∈ V ′1 ∩ V2 and S′(u) ≤ a+b
4 .

Thus, putting

ρ1 := P
(
S(u) ≥ a+ b

4

)
ρ2 := P

(
S′(u) ≤ a+ b

4

)
, (3.54)

the misclassi�ed vertices in V
′

1 are at most

M :=

n∑
k=1

Γk +

0.1n∑
l=1

Λl (3.55)

where Γk and Λl are iid indicator random variables with mean ρ1 and ρ2 re-
spectively.
Now our goal becomes to estimate the misclassi�ed vertices M .
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Using Cherno� inequality 3, we want to �nd an estimate for ρ1 and ρ2: �rst
observe that

E[S(u)] = 0.9nµ+ 0.1nτ

= 0.9n

(
b/2n

1− b
2n

)
+ 0.1n

(
a/2n

1− a
2n

)

= 0.9
b

2
+ 0.9

b

2

(
1

1− b
2n

− 1

)
+ 0.1

a

2
+ 0.1

a

2

(
1

1− a
2n

− 1

)
, (3.56)

where in the last passage we have added and subtracted 0.9 b2 and 0.1a2 .
Next, set

t :=
a+ b

4
− E[S(u)].

We equivalently have

t = 0.2a− 0.2b− 0.9
b

2

(
1

1− b
2n

− 1

)
− 0.1

a

2

(
1

1− a
2n

− 1

)

= 0.2(a− b)− 0.9
b

2

b

2n− b
− 0.1

a

2

a

2n− a
(with a, b < n)

≥ 0.2(a− b)− 0.9
b

2

b

n
− 0.1

a

2

a

n
= a

(
0.2− 0.05

a

n

)
− b

(
0.2 + 0.45

b

n

)

≥ 0.19(a− b) (3.57)

for n su�ciently large.
Then we apply Cherno� 3 and get that

ρ1 = P
(
S(u) ≥ a+ b

4

)

= P (S(u) ≥ E[S(u)] + t)

≤ exp

(
− (0.19(a− b))2

2(0.9nµ+ 0.1nτ) + 0.19(a− b)

)
. (3.58)

Since we would like to simplify the expression (3.58), we modify the denominator
in this way:

2(0.9nµ+ 0.1nτ) + 0.19(a− b) = 1.8n
b/2n

1− b
2n

+ 0.2n
a/2n

1− a
2n

+ 0.19a− 0.19b
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= 0.9b+ 1.8
b

2

(
1

1− b
2n

− 1

)
+ 0.1a+ 0.2

a

2

(
1

1− a
2n

− 1

)
+ 0.19a− 0.19b

= 0.29a+ 0.71b+ o(1)

≤ a+ b

2
(3.59)

for n su�ciently large and for a > b big enough.
Consequently, we employ the estimate (3.59) into (3.58) and �nd that

ρ1 ≤ exp

(
−0.036(a− b)2

a+b
2

)
= exp

(
−0.072

(a− b)2

a+ b

)
. (3.60)

Proceeding in the same way, we have an equivalent estimate for ρ2, where the
presence of d(u) = log2 n is negligible. Therefore, recalling the de�nition (3.55)
of M and using the bound on ρ1, ρ2 given by (3.60), we can state that

E[M ] = nρ1 + 0.1nρ2 ≤ 1.1n exp

(
−0.072

(a− b)2

a+ b

)
. (3.61)

Applying Cherno� inequality 3 with t = 0.9n exp
(
−0.072 (a−b)2

a+b

)
, we deduce

that

P (M ≥ E[M ] + t) ≤ exp

−
(

0.9n exp
(
−0.072 (a−b)2

a+b

))2

2(nρ1 + 0.1nρ2) + 0.9n exp
(
−0.072 (a−b)2

a+b

)


≤ exp

(
−Cn exp

(
−0.072

(a− b)2

a+ b

))
(3.62)

for a certain constant C. So, �nally, we can state that with probability 1−o(1),

M ≤ E[M ] + t = 2n exp

(
−0.072

(a− b)2

a+ b

)
. (3.63)

In conclusion, these computations lead to a�rm that with probability 1− o(1),
the misclassi�ed vertices in V

′

1 , and equivalently for those in V
′

2 , are

|V
′

1 \ V1| ≤ 2n exp

(
−0.072

(a− b)2

a+ b

)
.

This means that setting γ := 2 exp
(
−0.072 (a−b)2

a+b

)
, we have proved that, for

i = 1, 2,

|Vi ∩ V
′

i | = n− |Vi ∩ V
′

3−i| = n− |V
′

3−i \ V3−i| ≥ n(1− γ).
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With this proof, we have shown that, given a 0.1-correct partition as output
of Spectral Partition on the Red graph, the Correction algorithm outputs a
corrected partition (V

′

1 , V
′

2 ) which is γ-correct, where γ is related to a and b in
this way:

(a− b)2

a+ b
=

1

0.072
log

2

γ
≈ 13.89 log

2

γ
. (3.64)

Notice that Spectral Partition relies on the truthfulness of Theorem 5, in which
we required that

(a− b)2

a+ b
≥ C

for a su�ciently large constant C. On the other hand, Correction requires also
the relation between γ and a and b exhibited in (3.64). This is not a problem:
in fact, if γ < ε for a su�ciently small ε, the condition (3.64) given by Lemma
10 implies hypothesis (3.7) of Theorem 5.

In general, in order to apply Partition, we can substitute condition (3.7) of
Theorem 5 with the following hypothesis:

(a− b)2

a+ b
≥ C1 log

1

γ
(3.65)

for a certain constant C1.
In this way, both Spectral Partition and Correction work and we can run
the algorithm obtaining the desired community vertex partition.
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Chapter 4

Spectral method for a

Stochastic Block Model with

k communities

In this �nal chapter, we broach the crucial subject of this thesis. We are going to
display a spectral method to solve the community detection problem in a sparse
(as de�ned in Chapter 1) Stochastic Block Model with k > 2 communities. The
previous chapters, in particular Chapter 3, are the starting point from wich we
will deduce and prove the method for the general case k > 2. We should think
of this part as an extension of what we already saw for k = 2 in Chapter 3,
however the general case involves several complications.

Let us consider the SBM G(n, an ,
b
n ) with k > 2 communities. Given a set of

n = |V | vertices, this random graph has a community structure described by k
subsets V1, . . . , Vk, each of size n

k . The probability distribution of the edges is
the following:

• an edge between vertices belonging to the same community appears with
probability a

n ;

• an edge between vertices belonging to di�erent communities appears with
probability b

n ,

with n > a > b > 0. Observe that we standardize the probabilities and we
do not di�erentiate them according to the di�erent communities as in the more
general case of De�nition 5.
Like in the previous chapters, we are going to solve the community detec-
tion problem for this model G(n, an ,

b
n ), recovering the partition (V1, . . . , Vk)

by means of a spectral algorithm.

The method we are going to develop for the case of k > 2 communities
essencially relies on the steps that we exhibited in Chapter 3 for the case k = 2.
However, there will be some complications: for example, it is not obvious how
to approximate k > 2 eigenvectors. Hence, we are going to add new steps to
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the method, in which we will introduce more random splittings of the edges and
also of the vertices of the graph.

The structure of the algorithm will re�ect that of the previous seen Partition:
given as input the adjacency matrix of the random graph, the algorithm will
randomly assign all the edges to a Red or a Blue subgraph. Then, it will run a
spectral method on (a part of) the Red graph and will correct the �rst candidate
partition using the left Blue (and also Red) edges. Since there will be many
passages and di�erent random splittings, we now describe the method step by
step.

Let A0 be the n × n adjacency matrix related to G
(
n, an ,

b
n

)
. In order to

preserve the randomness of the community detection problem, we split the edges
in two sets as in 3.2, namely we randomly assign each edge of the graph to a
Red or a Blue subgraph (see Figure 4.1).

Figure 4.1: The edges of the input random graph are randomly assigned to a Red or
a Blue subgraph. In this representation, we see a SBM with k = 4 communities over
120 vertices.

Furthermore, we randomly split the set of vertices as

V := Y ∪ Z. (4.1)

We are going to focus on the vertices in Y and Z separately. In particular, we
are going to look for the community structures of the two subsets, so that the
global clustering will be given by their union.

Let us de�ne B as the adjacency matrix of the bipartite graph consisting
only of the Red edges between Y and Z. We index the rows by Z and the
columns by Y , then B ∈ M|Z|×|Y |. Notice that matrix B does not keep track
of the edges between vertices in the same subset and of Blue edges between Y
and Z (see Figure 4.2).

Matrix B becomes the input of the spectral part of the algorithm. The aim
of the spectral method is to �nd an approximation of the eigenvectors of the
expected value of the adjacency matrix: as shown for k = 2 in (2.4), the entries
of such vectors determine the partition in communities. The steps in Spectral
Partition are no more su�cient to �nd a k-community structure: we now need
to make other random splittings and compute di�erent kinds of operations.

First, let us randomly split the subset Y :

Y := Y1 ∪ Y2. (4.2)
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(a) (b)

Figure 4.2: Given a random graph as in Figure 4.1, we randomly assign the vertices
to two subsets Y and Z, (a). Then, we exclude all the Blue edges and the internal
Red edges, (b). The above de�ned matrix B represents only the Red edges between
the two subsets that remain in (b).

Let A1 and A2 be the submatrices of B given by the columns related to vertices
belonging to Y1 and Y2 respectively. In particular, rearranging the vertices in
such a way that Y = {Y1, Y2}, we can think of B as

B ∼


A1 A2


. (4.3)

Now we do the deletion, as showed in (3.4), on the submatrix A1 for

δ = 20d := 20 (a+ (k − 1)b) ,

namely, we zero out the rows and columns of A1 related to vertices with degree
greater than 20d. Losing part of the information is a cost that we pay in order
to �nd better bounds on the involved matrices.
Then, let A be the resulting matrix after the deletion on A1 and let W be the
space spanned by the k left singular vectors of A (we recall the de�nition of
singular values and singular vectors in A.3.1). The next step consists in taking
randomlym = 2 log n columns of A2, let us say a1, . . . , am. De�ned ã a constant
vector such that

ã(j) :=
a+ b

2n
for every j ∈ Z, (4.4)

then, project the vectors
ai − ã := bi (4.5)

for every i = 1, . . . ,m onto W .
Now, as in the methods developed in Chapter 2 and 3, let us look to the values
of the vectors: select the higher n

2k coordinates of the m = 2 log n projected
vectors. Then, keep half of the subsets of coordinates (i.e. log n), taking those
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with higher Blue edge density.
Finally, call U

′

1, . . . , U
′

k k of them with the following property:

|Ui′ ∩ U
′

j | < 0.2
n

2k
for i 6= j. (4.6)

If we say that Z is clustered as

Z = U1 ∪ · · · ∪ Uk (4.7)

with
Ui := Z ∩ Vi

for every i = 1, . . . , k, then the generated partition of vertices (U
′

1, . . . , U
′

k) is an
approximation of the real partition (U1, . . . , Uk) of Z .

We can then summarize the spectral part of the method as

Algorithm 5 k-Spectral Partition

1: Input: B (a matrix of dimensions |Z| × |Y |), a, b and k.

2: Let Y1 be a random subset of Y by selecting each element with probability
1
2 independently and let A1, A2 be the sub-matrices of B formed by the
columns indexed by Y1, Y2 := Y \ Y1, respectively.

3: Deletion: let d := a + (k − 1)b. Zero out all the rows and columns of A1

corresponding to vertices whose degree is bigger than 20d, and obtain the
matrix A.

4: Find the space spanned by k left singular vectors of A, say W .

5: Let a1, . . . , am be some m = 2 log n random columns of A2. For each i,
project ai − ã onto W , where ã(j) = a+b

2n for all j is a constant vector.

6: For each projected vector, identify the top (in value) n
2k coordinates. Of the

2 log n sets so obtained, discard half of the sets with the lowest Blue edge
density in them.

7: For the remaining subsets, identify some k subsets U
′

1, . . . , U
′

k such that

|U ′i ∩ U
′

j | < 0.2 n
2k , for i 6= j.

8: Output (U
′

1, . . . , U
′

k).

This �rst sub-routine k-Spectral Partition produces a �rst candidate parti-
tion only for the vertices in the subset Z. Starting from (U

′

1, . . . , U
′

k), the other
part of the method focuses on a correction of such candidate partition of Z and
looks for the partition of the remaining vertices in Y . The �nal result will be
given by the union of the two sub-partitions.

The next step already works on the Red edges, but now we consider only
internal edges between vertices of Z.

58



Figure 4.3: Now we just keep the Red edges between vertices belonging to the same
subset Z.

The goal is to improve the accuracy of the output of k-Spectral Partition. Look-
ing at the degrees of the vertices, every u ∈ Z is assigned to a revised partition
(U”

1 , . . . , U
”
k ). Namely, we de�ne

Algorithm 6 k-Correction

1: Input: a vertex partition (U
′

1, . . . , U
′

k) of Z and the Red edges internal to
Z.

2: For every u ∈ Z, if i ∈ {1, . . . , k} is such that u has maximal neighbors in
U
′

i , then add u to U”
i . Break ties arbitrarily.

3: Output (U”
1 , . . . , U

”
k ).

Finally, it remains to �nd a clustering for Y . We now get the Blue edges
back, but we just need those between Y and Z.

Figure 4.4: In the �nal step, we focus on Blue edges between vertices of the two
di�erent subsets Y and Z.

Similarly to what we did in Correction for the case k = 2, we classify the vertices
of Y by thresholding on their neighbors. In this way, we produce a partition
(X
′

1, . . . , X
′

k) of Y where
Y = X1 ∪ · · · ∪Xk
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with
Xi := Y ∩ Vi.

Algorithm 7 k-Merging

1: Input: a vertex partition (U
′

1, . . . , U
′

k) of Z and the Blue edges between Y
and Z.

2: For every u ∈ Y , label u with ”i” if the number of neighbors of u in U
′

i is

at least a+b
8 and add u to X

′

i . Label the con�icts arbitrarily.

3: Output (X
′

1, . . . , X
′

k).

Therefore, following the three sub-routines k-Spectral Partition, k-Correction
and k-Merging we have produced separately a partition of the random subsets
of vertices Y and Z. The �nal step consists in unifying the vertex clusters
according to the same index:

(V
′

1 , . . . , V
′

k ) := (U”
1 ∪X

′

1, . . . , U
”
k ∪X

′

k). (4.8)

This is our candidate vertex partition for the SBM G
(
n, an ,

b
n

)
.

We summarize it all in the following algorithm:

Algorithm 8 k-Partition

1: Input: the adjacency matrix A0, a and b.

2: Randomly color the edges with Red and Blue with equal probability.

3: Randomly partition V into two subsets Y and Z. Let B be the adjacency
matrix of the bipartite graph between Y and Z consisting only of the Red
edges, with rows indexed by Z and columns indexed by Y .

4: Run k-Spectral Partition on matrix B, and get (U
′

1, . . . , U
′

k) as output.
This part uses only the Red edges that go between vertices in Y and Z and
outputs an approximation to the clustering in Z = U1 ∪ · · · ∪ Uk, where
Ui := Z ∩ Vi.

5: Run k-Correction on the Red graph. This procedure only uses the Red
edges that are internal to Z and improves the clustering in Z.

6: Run k-Merging on the Blue graph. This part uses only the Blue edges that
go between vertices in Y and Z and assigns the vertices in Y to a cluster in
(X
′

1, . . . , X
′

k).

7: Output (V
′

1 , . . . , V
′

k ) := (U”
1 ∪X

′

1, . . . , U
”
k ∪X

′

k).

Later on, we are going to show that the output produced by k-Partition is a
good vertex partition. More precisely, extending De�nition 6 to the case k > 2,
we will say that (V

′

1 , . . . , V
′

k ) is γ-correct in the following sense:
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De�nition 7. Let G ∼ G
(
n, an ,

b
n

)
be a random graph with a community struc-

ture given by the partition (V1, . . . , Vk) of V . Let (V
′

1 , . . . , V
′

k ) be a candidate

partition obtained as output of any method. Then, we de�ne (V
′

1 , . . . , V
′

k ) a
γ-correct partition of V if

|Vi ∩ V
′

i | ≥ (1− γ)
n

k
(4.9)

or equivalently

|Vi \ V
′

i | ≤ γ
n

k
(4.10)

for any i = 1, . . . , k.

In the same way we did in Chapter 3, we can treat γ as an error rate, thus we
wish to obtain a γ-correct partition with γ small.

In the following part, we will proceed this way:

• Step 1: we analyze the algorithm k-Spectral Partition using the machinery
developed in section 3.1. Here we do not directly manage the adjacency
matrix of the input graph, but we handle the two blocks A1 and A2 of the
matrix B as in (4.3). Indeed, we are going to rewrite the submatrix A1 as
a di�erence of matrices involving its expected value. Bounding the norm
of new de�ned matrices, we will �nd particular conditions for a, b and k
such that it will be possible to apply Davis - Kahan theorem, and thus to
go along the steps of section 3.1. Then, we will use the columns of the
block A2 to produce the vectors whose entries will permit us to de�ne the
partition.

The truthfulness of k-Spectral Partition is related to the following

Theorem 6. There are constants C1, C2 > 0 such that for any �xed
integer k, γ > 0 and a > b > C1 satisfying

(a− b)2

a
≥ C2k

2 (4.11)

we can �nd a γ-correct partition (U
′

1, . . . , U
′

k) of Z with high probability
using k-Spectral Partition.

• Step 2: we take a 0.1-correct partition of Z produced by k-Spectral Par-
tition and we try to make a further correction detecting the mislabeled
vertices. We prove that the sub-routine k-Correction outputs a modi�ed
partition (U”

1 , . . . , U
”
k ) which is γ-correct, with

γ = 2k exp

(
−0.04

(a− b)2

k(a+ b)

)
. (4.12)

• Step 3: �nally we focus on Y and we try to compute a partition for this
remaining part of vertices. Similarly to Step 2, we prove that given a
0.1-correct partition of Z, the sub-routine k-Merging produces a γ-correct
partition of Y with an error rate

γ = 2k exp

(
−0.0324

(a− b)2

k(a+ b)

)
. (4.13)
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Showing all these steps is equivalent to prove the following main result:

Theorem 7. There exist constant C1, C2 > 0 such that if k is any constant as
n→∞ and if

1. a > b > C1

2. (a− b)2 ≥ C2 k
2 a log 1

γ ,

then we can �nd a γ-correct partition with probability at least 1 − o(1) using a
simple spectral algorithm.

Namely to prove Step 2 and Step 3 we �x an error rate γ = 0.1 for the candidate
partition produced by the �rst algorithm k-Spectral Partition. In this way,
we �nd the explicit relations (4.12) and (4.13). These two expressions satisfy
condition 2 of Theorem 7. In fact, up to a constant, it holds that

log
1

γ
= log

 1

k exp
(
− (a−b)2
k(a+b)

)


= log

exp
(

(a−b)2
k(a+b)

)
k



≤ log

(
exp

(
(a− b)2

k2(a+ b)

))

=
(a− b)2

k2(a+ b)

≤ (a− b)2

k2a
. (4.14)

Of course, the same computations can be done choosing any small error rate
di�erent from 0.1. The resulting relations of the kind of (4.12) and (4.13) will
depend on that choice and will already satisfy Theorem 7.

Step 1: correctness of k-Spectral Partition

In this �rst step, we want to prove that the algorithm k-Spectral Partition
permits to recover a large portion of the blocks representing the community
structure in Z, given by

U1 = Z ∩ V1, . . . , Uk = Z ∩ Vk.

Recall that Z is a randomly chosen subset of vertices of V = Y ∪ Z and
(V1, . . . , Vk) is the real partition of our Stochastic Block Model G

(
n, an ,

b
n

)
.

The main result of this part is the following
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Theorem 8. There are constants C1, C2 > 0 such that for any �xed integer k,
γ > 0 and a > b > C1 satisfying

(a− b)2

a
≥ C2k

2, (4.15)

we can �nd a γ-correct partition (U
′

1, . . . , U
′

k) of Z with probability 1−o(1) using
k-Spectral Partition.

It is clear that Theorem 8 is an extention of Theorem 5 proved in section 3.1.
The k-community structure implies a di�erent condition for a and b: now, unlike
relation (3.7), it also depends on the number of the communities.
The �rst part of the proof is quite similar to the proof of Theorem 5, but it
deals with di�erent matrices. The last part, on the contrary, follows another
path.

Recall that all the edges of the random graph are independently assigned to a
Red or a Blue subgraph (see Figure 4.1). Moreover, we de�ned

A0 := adjacency matrix of the input random graph G

(
n,
a

n
,
b

n

)
;

V := Y ∪ Z splitted randomly with equal probability;

Y := Y1 ∪ Y2 splitted randomly with equal probability;

B := adjacency matrix related to the bipartite graph consisting

only of the Red edges between Y and Z, as in Figure 4.2 ;

A1, A2 := sub-matrices of B formed by the columns indexed

by Y1 and Y2 respectively, as in (4.3).

The k-Spectral Partition algorithm takes as input the |Z|×|Y | matrix B and fo-
cuses on the two blocks A1 and A2. With the purpose to simplify the exposition,
we say that

De�nition 8. The splitting Y = Y1 ∪ Y2 is perfect if it holds that

|Y1 ∩ Vi| =
n

4k
= |Y2 ∩ Vi| (4.16)

for any i = 1, . . . , k.

The splitting Y = Y1 ∪ Y2 will almost always not be perfect, but it su�ces to
carry throughout an o(1) error and the estimates that we are going to prove will
be still true.

Let us now begin the proof of Theorem 8. Consider the sub-matrix A1 and
let A be the resulting matrix after the deletion on A1: referring to (3.4), with
deletion we intend the zeroing out of rows and columns related to vertices with
degree greater than

20 d = 20 (a+ (k − 1)b). (4.17)
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Since we want to use the same machinery of section 3.1, let

Ā1 = E[A1], Ā = E[A] (4.18)

E1 = A1 − Ā1, E = A− Ā (4.19)

∆ = Ā− Ā1 (4.20)

so that we can rewrite matrix A as

A = Ā+ E = Ā1 + ∆ + E. (4.21)

The reason that leads to rewrite A as in (4.21) is the fact that we can bound
the norms of ∆ and E and show that A and Ā1 are close in a sense that we will
de�ne later.
Now we want to apply the estimates that we deduced in section 3.1 for the
equivalent matrices ∆ and E.

Firstly, notice that we can bound the number of vertices with degree greater
than 20 d as in Lemma 1: indeed, the hypothesis (4.15) implies that we can �nd
a constant d0 > 0 such that d ≥ d0. Thus, with probability 1− exp

(
−Ω(a−2n)

)
there are at most a−3n vertices with high degree. This means that, since
∆i,j ≤ a

n for every entry (i, j) of the matrix, we can repeat the estimate with
the Hilbert-Schmidt norm and extend Corollary 2 to

Corollary 5. Let d = a+(k−1)b ≥ d0 and ∆ = Ā− Ā1 = E[A]−E[A1]. Then,
for d0 su�ciently large,

‖∆‖ ≤ 1

with probability 1− exp
(
−Ω(a−2n)

)
.

Furthermore, we observe that the entries of matrix E1 = A1 − Ā1 are

(E1)u,v =

{
1− a

n with probability a
n

− a
n with probability 1− a

n

if u and v both belong to Y1 ∩ Vi for some i ∈ 1, . . . , k and

(E1)u,v =

{
1− b

n with probability b
n

− b
n with probability 1− b

n

if u ∈ Y1 ∩ Vi and v ∈ Y1 ∩ Vj with i 6= j.
Since the probabilities of the model { an ,

b
n} are certainly ≤ a

n , we can apply

Lemma 5 to the deleted version of E1 with σ2 = a
n ≤

a+b
n and get a bound for

its norm. In other words, we have the following result:

Lemma 11. There exist constants C1, C > 0 such that if a > b ≥ C1 and E is
the matrix produced by the deletion on E1 = A1 − Ā1, then we have

‖E‖ ≤ C
√
a+ b with probability 1− o(1).

In short, Corollary 5 and Lemma 11 permit to bound the norms of matrices
∆ and E, and now we would like to use them in an application of Davis - Kahan
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theorem as in Step 3.1 of the 2-communities case. Before that, we need to make
some considerations on matrix A1.

Let us recall that we are supposing that the splitting Y = Y1 ∪Y2 is perfect,
as de�ned in De�nition 8. Since |Yj ∩ Vi| = n

4k for j = 1, 2 and i = 1, . . . , k,
in particular B ∈ Mn

2×
n
2
and the blocks A1, A2 have dimension n

2 ×
n
4 . Then,

rearranging the columns of A1 and A2 collecting the community blocks in the
diagonal, we can represent matrix B before and after the splitting as

B '


 −→


 (4.22)

where in this representation we have considered k = 4. Therefore, looking at the
expected value of the �rst block, Ā1, we can �nd the same structure in blocks.
Moreover, the entries of Ā1 are the expected values of Bernoulli variables of
probabilities a

n or b
n , according to the membership to the same community or

not. With this observation, it is easy to conclude that matrix Ā1 has rank k.
Since we are handling a rectangular matrix, we cannot study the eigenvalues

of Ā1. This time, unlike Chapter 3, we are going to look at the singular values
(we recall the de�nition in A.3.1), and in particular at the least non-trivial
singular value σk

(
Ā1

)
.

Let us make some computations in the particular case n = 12, k = 3, Ā1 ∈M6×3.
Taking ĀT1 Ā1, we �nd that its least eigenvalue is

2

(
a

n
− b

n

)2

= 2

(
a− b

12

)2

=

(
a− b

3

)2

=

(
a− b
k

)2

, (4.23)

and the related singular value is the square root of (4.23). For a general choice
of n and k, it is possible to prove that the least non-trivial singular value is still
of the form

σk(Ā1) =
a− b
k

. (4.24)

Now, let σ1, . . . , σk be the singular values of Ā1 and v̄1, . . . , v̄k be the related
singular vectors. Moreover, de�ne λ1, . . . , λk the singular values of A, i.e. the
deleted version of A1, and v1, . . . , vk its singular vectors. Furthermore, de�ne

W := Span{v1, . . . , vk}, W̄ := Span{v̄1, . . . , v̄k}. (4.25)

Finally recall from (3.42) that given two vector subspaces W1,W2 of the same
dimension, we de�ned

sin∠(W1,W2) := ‖PW1 − PW2‖. (4.26)

Combining Corollary 5, Lemma 11 and the lower bound for the singular values
of Ā1 given by (4.24), we can now apply Davis-Kahan theorem and prove that

Lemma 12. Let W̄ := Span{v̄1, . . . , v̄k} and W := Span{v1, . . . , vk}, with v̄i
and vi, for i = 1, . . . , k, be the singular vectors of Ā1 and A respectively. For
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any constant c < 1, there exist constants C1, C3 > 0 such that if a > b ≥ C1

and
(a− b) > C3 k

√
a, (4.27)

then
sin∠(W̄ ,W ) ≤ c

with probability 1− o(1).

Proof. The proof is essencially equal to the proof of Lemma 6: we apply Davis-
Kahan theorem as in [2] or [7]. Then, exploiting the bounds given by Corollary
5 and Lemma 11, we get

sin∠(W̄ ,W ) ≤ ‖∆ + E‖
a− b

k ≤ 1 + C
√
a+ b

C3k
√
a

k =
1

C3

1 + C
√
a+ b√
a

< c

for C3 su�ciently large.

Notice that we can associate the constants C2 of Theorem 8 and C3 of Lemma
12 so that C2 = C2

3 .

Now, the submatrix A2 comes into play. Let us rewrite this block as a
di�erence of matrices involving its expected value:

A2 := E[A2] + E′ = Ā2 + E′. (4.28)

Since the splitting of Y in Y1 and Y2 is random and the formed blocks A1 and
A2 have the same inner construction, we expect that the space spanned by the
k left singular values of Ā2 matches on average with W̄ . Thus, we extend the
notation W̄ also to the related space of Ā2.
As indicated at step 5 of k-Spectral Partition, pick randomly m = 2 log n indices
in Y2 and a1, . . . , am the related columns of A2. De�ne

ā1, . . . , ām and e1, . . . , em (4.29)

as the columns of Ā2 and E′ respectively, corresponding to the chosen indices.
Let

ã(j) :=
a+ b

2n
for any j ∈ Z

be a constant vector and de�ne

bi := āi − ã.

Observe that if i ∈ Y2 ∩ Vni ,

āi(j) =


a
n if j ∈ Z ∩ Vni

b
n otherwise

and in particular

bi(j) =


a−b
2n if j ∈ Z ∩ Vni

b−a
2n otherwise

.
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Since both āi and ã are in the column span of Ā2, for any i ∈ {1, . . . ,m}

bi = PW̄ bi. (4.30)

Moreover,

‖bi‖ =

√
n

4

(
a− b
2n

)2

+
n

4

(
b− a
2n

)2

=
a− b
2
√

2n
. (4.31)

If we can recover bi, we can identify the set Z ∩ Vni . For this reason, now we
show that the projections PW (ai− ã), i.e. the vectors that we will use to recover
the partition, are close enough to the bi. Recall thatW is the subspace spanned
by the k left singular vectors of the deleted version of A1.

Rewriting from (4.28)

ai − ã = āi + ei − ã = bi + ei,

we have that

PW (ai − ã) = PW bi + PW ei = PW̄ bi + PW ei + erri =
for (4.27)

bi + PW ei + erri.

(4.32)
Now we try to bound the norms of the addends in (4.32). Even talking of A2,
we can extend Lemma 12 so that sin∠(W, W̄ ) ≤ δ1 for a small δ1 > 0. So,

‖erri‖ = ‖(PW − PW̄ )bi‖ ≤ δ1‖bi‖. (4.33)

Let us focus on PW ei. Since dimW = k,

E[ ‖PW ei‖2 ] =

k∑
τ=1

E
[
(PW ei)

2
τ

]
≤ σ2k, (4.34)

where σ2 = a
n was an upper bound for the variance of the entries of matrix E

that we repropose for E′. Then, by a variant of Markov's inequality (see A.1.1)
we get that

P
(
‖PW ei‖ > 2σ

√
k
)
≤ E[ ‖PW ei‖2 ]

(2σ
√
k)2

≤ σ2k

4σ2k
=

1

4
. (4.35)

By a simple application of Cherno� bound, it follows that

Lemma 13. With probability at least 1 − o(1), at least m/2 of the vectors
e1, . . . , em satisfy

‖PW ei‖ ≤ 2σ
√
k.

Let m1 ≥ m/2 be the number of vectors that satisfy Lemma 13, so that we
de�ne ei1 , . . . , eim1

as good vectors related to the good indices. Then, observe
that if

(a− b) > C1

√
ka for a constant C1 > 0 (4.36)

and since σ ≤
√
a/n, it holds that

2σ
√
k ≤ 2

√
a

n

(a− b)
C1
√
a

=
2

C1

(a− b)√
n

=
4
√

2

C1

(a− b)
2
√

2n
≤ δ2 ‖bij‖, (4.37)

where we can take any δ2 > 0 small as the constant C1 grows.

Therefore collecting (4.33), Lemma 13 and (4.37), we deduce that for good
indices the projection PW (aij − ã) is close to vertex bij :
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Lemma 14. For any δ > 0 exist costants C1, C2 > 0 such that, if a > b > C2

and
(a− b) > C1

√
ka,

then for all good indices ij it holds that

‖PW (aij − ã)− bij‖ ≤ δ ‖bij‖.

Observe that given the hypothesis of Theorem 8, the requirements for Lemma 14
are satis�ed: if we ask (a− b) > Ck

√
a, certainly it holds that (a− b) > C

√
ka,

with C a constant.
Going back to the algorithm k-Spectral Partition, after the projection of the
ai − ã onto W we take the �rst n

2k coordinates of higher value of such vectors.

De�ning U
′

i1
, . . . , U

′

im1
the sets of selected coordinates, we can choose constants

C1, C2 in such a way that the intersection of the Uij with Z ∩ Vnij is large, we
can say

|Uij ∩ (Z ∩ Vnij )| ≥ 0.9
n

2k
.

Finally, what remains to prove is step 6 of k-Spectral Partition, namely the
fact that discarding half of the sets of coordinates with the lowest Blue edge
densities is a good choice to detect the vertex partition. For this purpose, we
prove that

Lemma 15. Let X be a subset of Z of size |X| = n
2k . Then, there exists a

constant c > 0 such that the following hold:

1. if for all i ∈ {1, . . . , k}
|X ∩ Vi| ≤ 0.9|X|,

then with probability at least 1 − e−cn the number of Blue edges in the
graph induced by X is at most an/16k − 0.09(a− b)n/16k;

2. if for some i ∈ {1, . . . , k}

|X ∩ Vi| ≥ 0.95|X|,

then with probability at least 1 − e−cn the number of Blue edges in the
graph induced by X is at least an/16k − 0.09(a− b)n/16k.

Proof. We start showing 1. Let e(X) be the number of Blue edges in the graph
induced by vertices in X. Since we suppose that |X ∩ Vi| ≤ 0.9|X| for every
i ∈ {1, . . . , k},

E[e(X)] ≤ 1

2
k
(

0.9
n

2k

)2 a/2n

1− a
2n

+
1

2
k
(

0.1
n

2k

)(
0.9

n

2k

) b/2n

1− b
2n

+
1

2
k
(

0.1
n

2k

)2 a/2n

1− a
2n

= 0.81
an

16k

1

1− a
2n

+ 0.09
bn

16k

1

1− b
2n

+ 0.01
an

16k

1

1− a
2n
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= 0.91
an

16k

1

1− a
2n

− 0.09
n

16k

(
a

1− a
2n

− b

1− b
2n

)

≤ an

16k
− 0.09(a− b) n

8k
. (4.38)

In order to bound the desired probability, we apply Cherno� 3 with

t := 0.045(a− b) n
8k

so that

P (e(X) ≥ E[e(X)] + t) = P
(
e(X) ≥ an

16k
− 0.045(a− b) n

8k

)

≤ exp

(
− (0.045(a− b)n/8k)2

2an/16k + 0.045(a− b)n/8k

)
.

The proof of 2. is essencially equal.

We have thus concluded the analysis of the sub-routine k-Spectral Partition.
Following the steps in the algorithm, we have proved that we can e�ciently re-
cover a vertex partition of the random chosen set of vertices Z which is γ-correct,
for a small error rate γ. Starting from the output partition (U

′

1, . . . , U
′

k), the

other part of the method will work on a re�nement of the U
′

i and on the partition
on the other set of vertices Y .

Step 2: correctness of k-Correction

In the previous step, we have proved that k-Spectral Partition produces a par-
tition (U

′

1, . . . , U
′

k) of the random subset of vertices Z which is γ-correct with
respect to the real partition (U1, . . . , Uk), i.e. for every i = 1, . . . , k

|Ui ∩ U
′

i | ≥ (1− γ)
n

2k
.

for a small error rate γ > 0.
In the following part, we want to prove that the sub-routine k-Correction outputs
a modi�ed partition (U”

1 , . . . , U
”
k ) wich is optimal in a sense that we will specify

later. Recall that k-Correction works on the candidate partition of Z and on
the Red edges internal to Z (see Figure 4.3).

Assuming that the candidate partition produced by k-Spectral Partition is
0.1-correct, we focus on the mislabeled vertices and we proceed as in 3.2. In the
proof of the main result of this part we will also �nd a relation between γ and
a and b that leads to a good candidate partition.

Consider a misclassi�ed vertex u ∈ U1 ∩U
′

i for i 6= 1. Since we suppose that
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|Uj ∩ U
′

j | ≥ 0.9 n
2k for every j = 1, . . . , k, we expect that

E
[∣∣∣ Red neighbors of u in U

′

1

∣∣∣] ≥ 0.9
n

2k

a

2n
+ 0.1

n

2k

b

2n
= 0.9

a

4k
+ 0.1

b

4k

E
[∣∣∣ Red neighbors of u in U

′

i

∣∣∣] ≤ 0.1
n

2k

a

2n
+ 0.9

n

2k

b

2n
= 0.1

a

4k
+ 0.9

b

4k
.

Therefore, since 0.1 a
8k +0.9 b

8k <
a+b
8k < 0.9 a

8k +0.1 b
8k , we can reclassify the mis-

labeled vertices looking at a thresholding. Namely, we now prove that following
the procedure of k-Correction we get an optimal vertex partition of Z in the
sense that:

Lemma 16. Given a 0.1-correct partition (U
′

1, . . . , U
′

k) of Z = (Z ∩ V1) ∪ · · · ∪
(Z ∩ Vk) and the Red graph over Z, the sub-routine k-Correction computes a

γ-correct partition with γ = 2k exp
(
−0.04 (a−b)2

k(a+b)

)
.

Proof. Let (U
′

1, . . . , U
′

k) be a 0.1-correct partition of Z related to the real parti-
tion (U1, . . . , Uk). Moreover, recall that in this part we only take the Red edges
between vertices in Z.
Let e = (u, v) be an edge between vertices u and v: for every i, j ∈ {1, . . . , k},

if u ∈ Ui, v ∈ Uj with i 6= j, P (e is a Red edge) =
b

2n
:= µ (4.39)

if u, v ∈ Ui, P (e is a Red edge) =
a

2n
:= τ. (4.40)

Let ξui and ζui be iid indicator random variables with mean µ and τ respectively.
Then, for any u ∈ U1,∣∣∣{Red neighbors of u in U

′

j

}∣∣∣ ≤ 0.9n/2k∑
i=1

ξui +

0.1n/2k∑
j=1

ζuj := S1,j(u)

∣∣∣{Red neighbors of u in U
′

1

}∣∣∣ ≥ 0.9n/2k∑
i=1

ζui +

0.1n/2k∑
j=1

ξuj := S1,1(u).

After the correction sub-routine, if a vertex u ∈ U1 is mislabeled, then one of
the following holds:

• S1,j(u) ≥ a+b
8 for j 6= 1;

• S1,1(u) ≤ a+b
8 .

Set

ρ1 := P
(
S1,1 ≤

a+ b

8

)
ρ2 := P

(
S1,j ≥

a+ b

8

)
. (4.41)

Applying Cherno� 3 as in the proof of Lemma 10, it is possible to bound ρ1,
and similarly ρ2, with

ρ1 ≤ exp

(
−0.04

(a− b)2

k(a+ b)

)
. (4.42)
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Thus, de�ne ρ as the probability that one of the two conditions of misclassi�ca-
tion holds. Furthermore, let us de�ne the number of mislabeled vertices in U1

after the correction step as

M :=

n/2k∑
l=1

Γl, (4.43)

where Γl are iid indicator random variables with mean ρ. Since

E[M ] ≤ n

2k
k exp

(
−0.04

(a− b)2

k(a+ b)

)
, (4.44)

we use again Cherno� 3 with t := n
2 exp

(
−0.04 (a−b)2

k(a+b)

)
and get that

P (M ≥ E[M ] + t) ≤ exp

−
(
n
2 exp

(
−0.04 (a−b)2

k(a+b)

))2

n
k exp

(
−0.04 (a−b)2

k(a+b)

)
+ n

2 exp
(
−0.04 (a−b)2

k(a+b)

)


= exp

(
− nk

2(2 + k)
exp

(
−0.04

(a− b)2

k(a+ b)

))
.

Therefore, with probability 1− o(1), the number of mislabeled vertices in U1 is

M ≤ n exp

(
−0.04

(a− b)2

k(a+ b)

)
(4.45)

and we can repeat the same way for each of the k blocks. In conclusion, setting

γ := 2k exp
(
−0.04 (a−b)2

k(a+b)

)
, we have proved that for every i = 1, . . . , k

|Ui ∩U
′

i | =
n

2k
− |Ui \U

′

i | ≥
n

2k
− n exp

(
−0.04

(a− b)2

k(a+ b)

)
=

n

2k
(1− γ). (4.46)

Thanks to Lemma 16, we obtain a relation between the error rate γ and the
quantities a and b describing the probabilities in the model. Namely, taking as
input a 0.1-correct partition (U

′

1, . . . , U
′

k) of Z, the algorithm k-Correction with
probability 1− o(1) produces a modi�ed γ-correct partition (U”

1 , . . . , U
”
k ) where

γ satis�es
(a− b)2

k(a+ b)
=

1

0.04
log

2k

γ
= 25 log

2k

γ
. (4.47)

We have already observed in (4.14) that this expression of the error rate satis�es

(a− b)2 > C1 k
2 a log

1

γ
,

as requested in Theorem 7.
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Step 3: correctness of k-Merging

Up to now, working on the Red edges we have found a vertex partition (U”
1 , . . . , U

”
k )

on Z wich is optimal in the sense given by Lemma 16. What remains to do is
to �nd a partition on the other set of vertices of our graph G

(
n, an ,

b
n

)
, i.e. on

the subset Y . For this purpose, we are going to consider the Blue edges, but in
particular only those edges between Y and Z. Once computed the partition for
Y , we will obtain the candidate partition on the entire V = V1 ∪ · · · ∪ Vk.

We now prove that the sub-routine k-Merging produces a partition of Y with
a really small error rate and thus will be optimal in the same sense we de�ned
in Lemma 16. The proof of the following result is similar to the proof of Lemma
16:

Lemma 17. Given a 0.1-correct partition of Z = (Z ∩ V1) ∪ · · · ∪ (Z ∩ Vk)
and the Blue graph between Y and Z, the sub-routine k-Merging computes a

γ-correct partition of Y with γ = 2k exp
(
−0.0324 (a−b)2

k(a+b)

)
.

Proof. Let (U
′

1, . . . , U
′

k) be a 0.1-correct partition of Z. As in step 2 of k-
Merging, we are going to label the vertices in Y according to the number
of neighbors in the U

′

i . Recall that the real partition of the random graph
G
(
n, an ,

b
n

)
is (V1, . . . , Vk) and in this proof we only consider Blue edges be-

tween Y and Z. Moreover, we assume that the maximum Red degree of a
vertex is at most d(u) := log2 n.

Let e = (u, v) be an edge between vertices u and v not belonging to the Red
graph. Recalling what we deduced in (3.53), for i, j ∈ {1, . . . , k},

P(e is Blue | e is not Red) =


a/2n
1− a

2n
:= τ if u ∈ Vi ∩ Y, v ∈ Vi ∩ Z

b/2n

1− b
2n

:= µ if u ∈ Vi ∩ Y, v ∈ Vj ∩ Z
.

(4.48)
Set ξui and ζui iid indicator random variables with mean µ and τ respectively.
Then, taken i, j ∈ {1, . . . , k}, for any u ∈ Vi ∩ Y ,

∣∣∣{Blue neighbors of u in U
′

j

}∣∣∣ ≤ 0.9n/2k∑
i=1

ξui +

0.1n/2k∑
j=1

ζuj := Sj(u)

∣∣∣{Blue neighbors of u in U
′

i

}∣∣∣ ≥ 0.9n/2k−d(u)∑
i=1

ζui +

0.1n/2k∑
j=1

ξuj := Si(u).

After the correction sub-routine, if a vertex u ∈ Vi∩Y is misclassi�ed, then one
of the following holds:

• Sj(u) ≥ a+b
8k ;

• Si(u) ≤ a+b
8k .

Set

ρ1 := P
(
Sj(u) ≥ a+ b

8k

)
ρ2 := P

(
Si(u) ≤ a+ b

8k

)
. (4.49)
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We follow the same idea as in the proofs of Lemma 10 and Lemma 16: we use
Cherno� inequality 3 to bound the probabilities ρ1 and ρ2 and to bound the
number of mislabeled vertices. Then, we observe that

E[Sj(u)] = 0.9
n

2k

b/2n

1− b
2n

+ 0.1
n

2k

a/2n

1− a
2n

= 0.9
b

4k
+ 0.1

a

4k
+ 0.9

b

4k

(
1

1− b
2n

− 1

)
+ 0.1

a

4k

(
1

1− a
2n

− 1

)
.

(4.50)

De�ning

t :=
a+ b

8k
− E[Sj(u)], (4.51)

we further see that

t = 0.1
a

k
− 0.1

b

k
− 0.1

a

4k

(
1

1− a
2n

− 1

)
− 0.9

b

4k

(
1

1− b
2n

− 1

)

≥ 0.1
a− b
k
− 0.9

b

4k

b

n
− 0.1

a

4k

a

n

≥ 0.09
a− b
k

(4.52)

for n su�ciently large. Applying Cherno� 3 we get

ρ1 ≤ exp

(
−

(
0.09 a−b

k

)2
2(0.9 n

2kµ+ 0.1 n
2k τ) + 0.09a−bk

)
(4.53)

and it is possible to modify the denominator in such a way that

ρ1 = P
(
Sj(u) ≥ a+ b

8k

)
≤ exp

(
−0.0324

(a− b)2

k(a+ b)

)
. (4.54)

Similarly, we can bound ρ2. If we set ρ as the probability that at least one of
the two conditions of misclassi�cation happens, then the number of mislabeled
vertices in Y is at most

M :=

n/2∑
k=1

Γk, (4.55)

where the Γk are iid indicator random variables with mean ρ. Since

E[M ] ≤ n

2
k exp

(
−0.0324

(a− b)2

k(a+ b)

)
,

we apply Cherno� 3 with t := n
2 k exp

(
−0.0324 (a−b)2

k(a+b)

)
and conclude that with

probability 1− o(1) the number of mislabeled vertices in Y is

M ≤ E[M ] + t = nk exp

(
−0.0324

(a− b)2

k(a+ b)

)
. (4.56)
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We have proved that given a 0.1-correct partition of Z, the algorithm k-
Merging outputs a γ-correct partition of Y for which we relate γ and a and b
this way:

(a− b)2

k(a+ b)
=

1

0.0324
log

2k

γ
≤ 31 log

2k

γ
. (4.57)

As observed at the end of Step 2, this kind of expression satis�es the hypothesis
of Theorem 7, so that we can conclude that all the spectral method works when

(a− b)2 ≥ C k2 a log
1

γ

for a constant C > 0.

Summarizing, with k-Spectral Partition and k-Correction we have produced
a γ-correct partition of the random subset of vertices Z, where the error rate γ
is small, as given by Lemma 16. The sub-routine k-Merging outputs a partition
on the remaining vertices collected in Y with a small error rate γ deduced by
the proof of Lemma 17. The last step consists in gathering the two partitions
and generating the clustering over the entire random graph: given (U”

1 , . . . , U
”
k )

and (X
′

1, . . . , X
′

k) the two semi-partitions, we construct

(V
′

1 , . . . , V
′

k ) := (U”
1 ∪X

′

1, . . . , U
”
k ∪X

′

k)

where we have just joint the local subsets according to the same index. Since the
X
′

i have been de�ned looking at the higher densities of edges between vertices

of Y and Z, the partition (V
′

1 , . . . , V
′

k ) is γ-correct with respect to the real one.
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Conclusions

In this thesis we have discussed a spectral method to solve the community
detection problem in a sparse Stochastic Block Model with k communities and
n >> 1 vertices. The method for the general case k > 2 follows as an extension
of a resolution technique for the simplest case k = 2.

The sparsity of the input random graph determines di�erent approaches
to the problem. In Chapter 2, we have seen that when the graph is dense,
we can exploit the properties induced by the edge densities to recover with
high probability the community structure correctly up to a small number of
misclassi�ed vertices.

On the contrary, if a random graph with k = 2 communities is sparse as in
the model we have analyzed, the problem becomes more complicated. Given
the SBM G(2n, an ,

b
n ), we have proved that with high probability the algorithm

Partition produces a γ-correct vertex partition (in the sense of De�nition 6)
with a small error rate γ > 0 when a, b and γ satisfy the condition

(a− b)2

a+ b
≥ C log

1

γ

for a suitable constant C > 0.
The generalization to k > 2 starts as an extension of the simpler case of two

communities. Nevertheless, additional steps and random splittings are needed.
Our algorithm k-Partition contains three di�erent sub-routines that work on
randomly chosen sets of vertices and edges, keeping the randomness and the
independence of the community detection problem. In Chapter 4 we have proved
that, taken as input the random graph G(n, an ,

b
n ) with k > 2 communities, k-

Partition produces with high probability a γ-correct partition with a small error
rate γ > 0 when

(a− b)2

a
≥ C k2 log

1

γ

for a suitable constant C > 0.

In the development of the method, we have always assumed that the com-
munities, identi�ed as V1, . . . , Vk, had all the same size. However, the algorithm
also works without signi�cant changes when the blocks are not equal, but they
must have comparable sizes, let us say n ≤ |Vi| ≤ cn for some c ≥ 1. In this
case, the relation among a, b and γ also depends on c.
Moreover, the results that we have proved do not necessarily require a and b
constant. This means that the algorithm works on denser graphs too.
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On the other hand, the SBM is the simplest model of random graphs with
community structure. Even if it provides a fertile ground for studying various
central questions in machine learning, computer science and statistics, it cannot
be extended to many complex models (see for instance [4] or [8]). Another
important limit is the fact that spectral methods need to know the number of
communities within the graph as a starting information.

The �eld of community detection is characterized by the presence of really
di�erent approaches to the problem. Indeed in literature we can �nd techniques
that consider many points of view. This is certainly a consequence of the fact
that we can employ this topic to various scopes. Nowadays, the rapid growth
of the Internet, the Web and online interactions lead to new situations and
network structures, dealing with a huge quantity of information, that require
attention. But there are lots of other open questions dealing with particular
graph models (e.g. graphs with labels, with overlaps, dynamic graphs...), ac-
curacy of the recovery or the de�nition of community itself. The remarkable
progress of the last decades suggests that the problem is indeed important and
rich, and mathematicians are thus treating this topic with interest.
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Appendix A

Appendix

We collect here all the theoretical results and properties that we use in the
developement of the thesis.

A.1 Concentration inequalities

We gather some fundamental inequalities describing bounds for the tails of ran-
dom variables or concentration properties of sums of iid random variables. No-
tice that, here and in the applications, when the bound refers to the absolute
value of a certain object, we add a coe�cient 2 ahead.

A.1.1 Markov inequality

Markov. For any non-negative random variable X and t > 0, we have

P (X ≥ t) ≤ E[X]

t
.

Proof. Fixed t > 0, the result follows from the fact that for any real number we
can apply the identity

x = x I{x≥t} + x I{x≤t}.

Then, taking the random variable X and applying the expected value both sides
we get

E[X] = E[X I{X≥t}] + E[X I{X≤t}] ≥ E[t I{X≥t}] + 0 = tP (X ≥ t) . (A.1)

Dividing by t, we �nd the desired relation.

Speci�cally, in the development of the thesis we need the following version:

Corollary 6. For any random variable X and t > 0, we have for n > 0

P (|X| ≥ t) ≤ E[ |X|n ]

tn
.
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Proof. This variant follows from a quick consideration on the original: we raise
to the nth power the event for which we measure the probability and then we
apply Markov's inequality:

P (|X| ≥ t) = P (|X|n ≥ tn) ≤ E[ |X|n ]

tn
.

A.1.2 Cherno� inequality

Cherno� 1. Let Xi be independent Bernoulli random variables with parameters
pi. Consider their sum SN :=

∑N
i=1Xi and denote µ = E[SN ]. Then, for any

t > µ, we have

P (SN ≥ t) ≤ e−µ
(eµ
t

)t
.

Proof. We are going to bound the probability multiplying both sides of the
inequality by a parameter λ > 0, exponentiating and using Markov inequality
as in A.1.1:

P (SN ≥ t) = P

(
exp

(
λ

N∑
i=1

Xi

)
≥ exp (λt)

)

≤ e−λt E

[
exp

(
λ

N∑
i=1

Xi

)]

= e−λt
N∏
i=1

E [exp (λXi)] (A.2)

where the last equality in (A.2) holds for the independence of the Xi.
Then, it remains to bound the moment generating function E [exp (λXi)] for
every Bernoulli random variable Xi. Observing that 1 + x ≤ ex, we have

E [exp (λXi)] = eλpi + (1− pi) = 1 + pi(e
λ − 1) ≤ exp

(
(eλ − 1)pi

)
. (A.3)

Then, (A.2) becomes

P (SN ≥ t) ≤ e−λt exp

(
(eλ − 1)

N∑
i=1

pi

)
= e−λt exp

(
(eλ − 1)µ

)
. (A.4)

Since (A.4) holds for every λ > 0, we substitute λ := log
(
t
µ

)
, which is positive

for the hypothesis t > µ. In this way, we conclude that

P (SN ≥ t) ≤
(µ
t

)t
exp (t− µ) = e−µ

(eµ
t

)t
.
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Cherno� 2. Let Xi be independent Bernoulli random variables with parameters
pi. Consider their sum SN :=

∑N
i=1Xi and denote µ = E[SN ]. Then, for

δ ∈ (0, 1], we have

P (|SN − µ| ≥ δµ) ≤ 2 exp
(
−cµδ2

)
,

where c > 0 is an absolute constant.

Proof. To prove this alternative form of Cherno� inequality, we will use version
1 and we will also show the bound for the lower tail.

For the upper tails, we take t = (1 + δ)µ:

P (SN ≥ (1 + δ)µ) = P (SN − µ ≥ δµ)

≤
(

eδ

(1 + δ)(1+δ)

)µ

= exp (µ (δ − (1 + δ) log(1 + δ))) . (A.5)

Using the fact that

log(1 + x) ≥ x

1 + x/2

for every x > 0, (A.5) becomes

P (SN ≥ (1 + δ)µ) ≤ e−
δ2

2+δµ. (A.6)

Similarly, take t = (1− δ)µ and see that

P (SN ≥ (1− δ)µ) = P (µ− SN ≤ δµ)

≤
(

e−δ

(1− δ)(1−δ)

)µ

= exp (µ (−δ − (1− δ) log(1− δ))) . (A.7)

Noticing that for every x > 0

log(1− x) ≥ −δ +
δ2

2
,

(A.7) can be rewritten as

P (SN ≥ (1− δ)µ) ≤ e− δ
2

2 µ. (A.8)

Combining (A.6) and (A.8) we have the result.

Cherno� 3. Let Xi be independent indicator random variables with mean at
most ρ ≤ 1

2 . Consider their sum X :=
∑n
i=1Xi. Then, then for any t > 0

max {P(X ≥ E[X] + t),P(X ≤ E[X]− t)} ≤ exp

(
− t2

2V ar(X) + t

)
≤ exp

(
− t2

2nρ+ t

)
.
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A.1.3 Bernstein inequality

We only consider the Bernstein inequality for bounded distributions.

Bernstein. Let X1, . . . , XN be independent mean-zero random variables such
that |Xi| ≤ K for all i. Then, for every t ≥ 0, we have

P

{∣∣∣∣∣
N∑
i=1

Xi

∣∣∣∣∣ ≥ t
}
≤ 2 exp

(
− t2/2

σ2 +Kt/3

)
.

Here σ2 =
∑N
i=1 E[Xi

2] is the variance of the sum.

A.2 Binomial coe�cient

We make a brief reference to the binomial coe�cient just to point out a partic-
ular property:

Binomial coe�cient bound. For any k < n, it holds(
n

k

)
≤
(ne
k

)k
.

Proof. Starting from the de�nition of the binomial coe�cient, we have(
n

k

)
=

n!

k!(n− k)!
=
n(n− 1) . . . (n− (k − 1))

k!
≤ nk

k!
.

Recall that ek =
∑∞
m=0

km

m! . In particular,

ek >
kk

k!
⇒ 1

k!
<
( e
k

)k
.

Thus, (
n

k

)
≤ nk

k!
<
(en
k

)k
.

A.3 Properties on matrices

A.3.1 Eigenvalues and singular values

Firstly, we brie�y recall the de�nitions of eigenvalues and eigenvectors of a
(square) matrix A:

De�nition 9. Let V be a vector space with dim(V ) = n. Consider en endo-
morphism φ of V and let A ∈Mn×n be the related matrix. The eigenvalues of
A are the roots of the characteristic polynomial

pA(x) := det (xIn −A) = (−1)n det (A− xIn) .

For any eigenvalue λi of A, we de�ne the related eigenvectors as the vectors
vij generating the vector space

ker (φ− λiidV ) = {v ∈ V |φ(v) = λiv}.
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In the case of a rectangular matrix A, let us say of dimensions m×n, we can no
more �nd its eigenvalues and eigenvectors. Indeed in this case we can describe
the matrix with its singular values:

De�nition 10. Given an m × n matrix A with rank(A) = k, the singular

values s1, . . . , sk of A are the square roots of the eigenvalues λi of both AA
T

and ATA:

si :=
√
λi(AAT ) =

√
λi(ATA). (A.9)

For convenience, we extend the sequence by setting si = 0 for k < i ≤ n and we
arrange them in a non-increasing order

s1 ≥ s2 ≥ · · · ≥ sn ≥ 0.

In the particular case A symmetric, the singular values are

si := |λi|. (A.10)

Moreover, we de�ne u1, . . . , uk the left singular vectors of A as the orthonor-
mal eigenvectors of AAT . Similarly, the right singular vectors v1, . . . , vk are
the orthonormal eigenvectors of ATA.

A.3.2 Matrix norm

An m× n matrix A can be seen as a linear operator from Rn to Rm.
So, we can de�ne its operator norm as

‖A‖ := max
x∈Rn\{0}

‖Ax‖2
‖x‖2

= max
x∈Sn−1

‖Ax‖2 (A.11)

where ‖ · ‖2 is the Euclidean norm and Sn−1 is the unit sphere in Rn.
Equivalently, the operator norm of A can be computed by maximizing the
quadratic form 〈Ax, y〉 over all unit vectors x, y:

‖A‖ := max
x∈Sn−1,y∈Sm−1

〈Ax, y〉. (A.12)

In terms of its spectrum, the operator norm of A equals the largest singular
value (see De�nition 10) of A:

‖A‖ := s1(A). (A.13)

De�nition 11. The Hilbert-Schmidt norm, also called Frobenius norm, of
a matrix A with entries Aij is de�ned as

‖A‖HS :=

 m∑
1=1

n∑
j=1

|Aij |2
1/2

. (A.14)

Thus, the Hilbert-Schmidt norm is the euclidean norm on the space of matrices
Rm×n. Its relation with the operator norm is given by

‖A‖ ≤ ‖A‖HS . (A.15)
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A.4 ε-nets

De�nition 12. Let (T, d) be a metric space. Consider a subset K ⊂ T and let
ε > 0. A subset N ⊆ K is called an ε-net of K if every point in K is within a
distance ε of some point of N , i.e.

∀x ∈ K, ∃x0 ∈ N : d(x, x0) ≤ ε. (A.16)

Equivalently, N is an ε-net of K if and only if K can be recovered by balls with
centers in N and radii ε.

De�nition 13. The smallest possible cardinality of an ε-net of K is called
covering number of K and is denoted N (K, d, ε). Equivalently, N (K, d, ε) is
the smallest number of closed balls with centers in K and radii ε whose union
covers K.

De�nition 14. A subset N of a metric space (T, d, ε) is ε-separated if d(x, y) > ε
for all distinct points x, y ∈ N . The largest possible cardinality of an ε-separated
subset of a given set K ⊂ T is called the packing number of K and is denoted
P(K, d, ε).

Let us now focus on the case T = Rn. We take the usual Euclidean metric

d(x, y) = ‖x− y‖2

for any x, y ∈ Rn and we ease the notation writing N (K, ε) = N (K, d, ε) and
P(K, ε) = P(K, d, ε). Let | · | denote the volume in Rn and Bn2 be the unit
Euclidean ball in R3. Then, it holds that

Proposition 2. Let K be a subset of Rn and ε > 0. Then

|K|
|εBn2 |

≤ N (K, ε) ≤ P(K, ε) ≤ |K + (ε/2)Bn2 |
|(ε/2)Bn2 |

.

Proof. The middle inequality is true for any metric space (see [16]).
Let us prove the lower bound: K can be covered by N := N (K, ε) balls with

radii ε. Comparing the volumes we get

|K| ≤ N |εBn2 |

so we just need to divide both sides by |εBn2 | to obtain the relation.
For the upper bound, set N := P(K, ε). Then one can construct N closed

disjoint balls B(xi, ε/2) with centers xi ∈ K and radii ε/2. While these balls
may not need to �t entirely intoK, they do �t into a slightly in�ated set, namely
K + (ε/2)Bn2 (see [16]). Comparing the volumes we get

N |(ε/2)Bn2 | ≤ |K + (ε/2)Bn2 |

which leads to the upper bound in the proposition.

For our purposes, we need in particular the following
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Corollary 7. The covering numbers of the unit Euclidean ball Bn2 satisfy the
following for any ε > 0:(

1

ε

)n
≤ N (Bn2 , ε) ≤

(
2

ε
+ 1

)n
.

The same upper bound is true for the unit Euclidean ball Sn−1.

Proof. The proof follows from Proposition 2. For the lower bound it su�ces to
observe that the volume in Rn scales like

|εBn2 | = εn|Bn2 |.

For the upper bound we see that

N (Bn2 , ε) ≤
|(1 + ε/2)Bn2 |
|(ε/2)Bn2 |

=
(1 + ε/2)n

(ε/2)n
=

(
2

ε
+ 1

)n
.

The upper bound for the sphere can be proved in the same way.

A.5 Orders of approximation

We recall here the notation identifying some orders of approximation:

f(n) = O (g(n)) ∃K > 0 and ∃n0 s.t.
|f(n)| ≤ Kg(n) ∀n ≥ n0

lim supn→∞
|f(n)|
g(n) <∞

f(n) = o (g(n)) ∀ ε > 0, ∃n0 s.t.
|f(n)| ≤ ε g(n) ∀n ≥ n0

limn→∞
f(n)
g(n) = 0

f(n) = Ω (g(n)) ∃K > 0 and ∃n0 s.t.
f(n) ≥ K g(n) ∀n ≥ n0

lim infn→∞
f(n)
g(n) > 0

f(n) = Θ (g(n)) ∃K1,K2 > 0 and ∃n0 s.t.
K1 g(n) ≤ f(n) ≤ K2 g(n)
∀n ≥ n0

f(n) = O(g(n)) and
f(n) = Ω(g(n))

f(n) ∼ g(n) ∀ ε > 0, ∃n0 s.t.∣∣∣ f(n)
g(n) − 1

∣∣∣ ≤ ε ∀n ≥ n0

limn→∞
f(n)
g(n) = 1
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