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Preface

Given its adverse impacts on health, longevity, and well-being, loneliness repre-
sents a significant public health concern. Characterised as the perceived deficit
between the actual and desired quality or quantity of social relationships, loneliness
is prevalent among older adults and the feeling is known to increase during aging.
Previous research has linked loneliness and social isolation with an elevated risk of
various mental health conditions, including depression, anxiety, cognitive decline,
and Alzheimer’s disease (Lim et al., 2020), as well as cardiovascular conditions and
coronary heart disease (Cacioppo et al., 2002).

The COVID-19 pandemic, with its stringent restrictions on physical contact
and enforced lockdowns, significantly reduced in-person interactions, increasing feel-
ings of loneliness among people. However, the increase in remote interactions may
helped to counteract the negative repercussions of diminished face-to-face social
engagement.

This research explores the causal relationship between modified contact pat-
terns and perceived loneliness among older Italian adults. Data were taken from
the Intergen-COVID online survey (Arpino et al., 2020) which aim was to assess
the impact of lockdown restrictions on people’s live posing particular attention on
social relationship and mental health.

Focusing on the influence of non-physical contacts in alleviating perceived lone-
liness, the study covers different non-physical contact patterns through various treat-
ment formulations:

• A binary comparison between individuals who increased their non-physical
contact and those who did not.

• A multi-treatment analysis exploring mixed pattern of individuals who in-
creased non-physical interactions with some contacts while decreasing or main-
taining unchanged levels with others.

Within the Neyman-Rubin causal framework the study employs a doubly ro-
bust method to estimate the Average Treatment Effect on the Treated (ATT ) for
changes in non-physical interactions, combining an outcome model with a weighting
procedure to derive consistent causal effect estimates if either the outcome model
or the propensity score (Rosenbaum and Rubin, 1983) model are correct, but not
necessarily both. Following McCaffrey et al. (2013), gradient boosted regression is
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implemented for propensity score weighting to effectively balance key pre-treatment
covariates and address potential confounders in the treatment-outcome relationship.
The outcome is modelled using the g-formula proposed by Robins (1986).

Our findings suggest that enhanced non-physical contact significantly allevi-
ates the perception of loneliness feeling during the COVID-19 lockdown across all
examined frameworks.

The work unfolds as follows: in Chapter 1 we explore the problem of loneli-
ness among older individuals with a particular focus to the context of COVID-19
lockdown. Chapter 2 shifts the focus to causal inference, defining the quantities of
interest, explaining the Rubin Causal Model, and the usage of propensity scores in
observational studies. Chapter 3 delves deeper into propensity score weighting, ex-
ploring Generalized Boosted Models (GBM) as a tool for nonparametric propensity
scores estimation. We then describe our approach to the outcome analysis through
G-computation aiming to a doubly robust estimation of the causal effect. In Chap-
ter 4 we finally apply these theoretical and methodological frameworks in order to
estimate the causal relationship between non-physical contact patterns during the
COVID-19 lockdown and perceived severe loneliness among older Italian adults.
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Chapter 1

Loneliness, Older People and

COVID-19

1.1 The Definition of Loneliness

Life in 21st is different from past periods of the human history. People are living
longer and the rise of Internet has transformed the way we interact with each other
and with the environment that surrounds us. People are increasingly connected
through digital technology that allow them to communicate in new ways but the
prevalence of loneliness also appears to be rising. Over the past 40 years loneliness
has become more widespread and example of this have been documented in previous
study. For instance in U.K. the research of Victor and Yang (2012) have estimated
a prevalence of severe loneliness between 5%-6% and people who reported to feel
lonely "sometimes" between 21%-31%.

Loneliness is characterised as the perceived deficit between actual and desired
quantity or quality of social relationship. The definition underline the fact that
feeling lonely does not necessarily mean being alone and viceversa (Cacioppo et al.,
2016), emphasizing that social being require the presence of significant others and
the need of feeling connected to not feel lonely.

Because of the strong correlation between loneliness and depression, varying
from .31 to .71 (Cacioppo et al., 2002), many believed that the loneliness was sim-
ply a dimension of depression. There is now considerable evidence showing that
loneliness and depression are separable and that the former increase the risk of
the latter (Cacioppo et al. (2002); Heinrich and Gullone (2006)), making loneliness
increasingly recognised as the next critical public health issue.

1.2 A Conceptual Model for Loneliness

Recently, new conceptual model of loneliness has been introduced illustrating the
complexity of loneliness and the importance of prevention and intervention to solve
or alleviate the problem (Lim et al., 2020).
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Figure 1.1: Conceptual model of loneliness (Lim et al., 2020)

The conceptual model proposed by Lim is made up of four section, namely:

1. Triggers,

2. Loneliness correlates and risk factors,

3. Loneliness as a consequence,

4. Solutions.

1.2.1 Triggers

Are considered triggers all the significant life event or stage transitions that precedes
and, possibly, initiate the development of problematic loneliness in a person. These
events may include a change of residence, change in marital status, illness or death
of members of the individual’s inner social network.

1.2.2 Loneliness Correlates and Risk Factors

The model examines a long list of possibles risk factors and correlates of loneliness
assuming that every individual holds a level of risk to experiencing problematic
loneliness and that this state might be maintained by multiple factors (from demo-
graphics to modifiable factors). For the sake of brevity we outline only those factors
that have been useful to this study, for a more detailed discussion, see Lim et al.
(2020) and Heinrich and Gullone (2006).
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Demography

When considering age, loneliness have been found to be higher among adults older
than 65 and in young individuals aged between 18 and 25 years old (Victor and
Yang, 2012). Women have been showed to feel more lonely then men in older adults
and the model does not exclude the presence of some unique predictor of loneliness
to women compared with opposite sex (Thurston and Kubzansky, 2009). Other
risks factors related to demographic variable are:

• marital status: where people who are unmarried typically reported being lone-
lier than those who are married (with higher levels for widowed or divorced
individuals),

• Co-living status: adults living alone were associated with higher loneliness,

• Socioeconomic status: in particular people with lower income, lower education
level and who suffered economic problems showed higher levels of loneliness.

Physical Health

Multiple health indicators are related to loneliness. In particular a number of stud-
ies have found that the feeling is associated with increase incidence of coronary
disease and increase risk of stroke (Valtorta et al., 2016). A part from that, lone-
liness exhibits an exposure-response relationship with various cardiovascular health
indicators, such as blood pressure, higher cortisol and poor sleep (Cacioppo et al.,
2002). Furthermore, Thurston and Kubzansky (2009) found that loneliness was a
risk factor for coronary heart disease in women.

Mental Health

Loneliness is associated with poorer mental health outcomes, including higher anx-
iety, depression and psychotic symptoms (Lim et al., 2020).

Cognitive Health

Loneliness is also harmful to cognitive health. In particular, there is evidence that
loneliness is a risk factor for Alzheimer’s disease and dementia. Specifically, people
who reported higher loneliness were shown to be 64% more likely to suffer from
dementia, and were associated with twice the risk to develop Alzheimer’s disease
compared with their less lonely counterpart (Wilson et al., 2007).

Socio-environmental factors

When considering digital communication Lim et al. (2020) sustain that more re-
search is needed in order to understand how digital technology shapes the way
people interact with each others. Another aspect to consider is the connection be-
tween loneliness and workplace, as a matter of fact loneliness had been found to
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have a negative effect on employee well being, work satisfaction and employment
itself, suggesting a bidirectional relationship between the latter and transitory or
sustained feeling of loneliness (Morrish et al., 2022).

1.2.3 Loneliness as Consequence

In this section of the model Lim et al. (2020) assume that all individuals have
different degrees of experiencing one or more of the above risk factors and triggers.
In particular, the model assumes that even in presence of triggering events these
will interact with one or more of the risk factors. Hence, loneliness as a consequence
can differ from person to person and, given its subjectivity, assessing how and when
it became a problem might be difficult.

1.2.4 Solutions

Because, as previously said, loneliness may be consequence of a multitude of factors,
it follows naturally, that loneliness may not be easy to solve. The conceptual model
provide that solutions can be applied either for preventing loneliness or to address
its severity. The model suggests that solutions should be relevant to the unique
experience of the person in other to be effective and that, depending on the particular
case, solutions might be delivered in four different levels: individual, relationship,
community and societal.

1.3 The Effects of Loneliness

Loneliness, a complex and universally experienced human condition, has emerged
as a critical area of interest in health research due to its profound implications on
physical and psychological well-being. The subjective sense of social isolation tran-
scends mere physical solitude, impacting individuals across various life stages and
demographics. By examining the intersection of loneliness with socio-demographic
factors and health outcomes, the studies here presented shed light on the pervasive
and multifaceted nature of loneliness.

Studies identify significant correlations between loneliness and increased to-
tal peripheral resistance along with poorer sleep quality, especially pronounced in
older demographics, suggesting age-related increases in blood pressure and sleep
disturbances due to loneliness (Cacioppo et al., 2002).

Thurston and Kubzansky (2009) revealed that loneliness increases coronary
heart disease (CHD) risk in women, even when controlling for various confounders
including depressive symptoms, establishing a clear link between emotional isolation
and cardiovascular health. This association was not observed in men indicating a
gender-specific vulnerability that underscores the necessity for individual-tailored
health interventions exhorted by Lim et al. (2020). Building upon health-related is-
sues, further studies have shown that elevated levels of loneliness and social isolation
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augment the risk of stroke for both genders by 32% (Valtorta et al., 2016).
In a longitudinal study, based on a sample of 13,752 U.S. adults aged 50 from

the Health and Retirement Study (HRS), grater loneliness was significantly associ-
ated with all-cause mortality, with a 43% increased risk for individual with the high-
est (versus lowest) level of loneliness (measure based on an 11-item revised UCLA
Loneliness Scale) even when adjusting for a wide range of covariates. Furthermore,
loneliness was linked, as risk factor, to a range of health outcomes, including lung
disease (25% increased risk) , chronic pain (13% increased risk), sleep problems, and
various aspects of psychological well-being (Hong et al., 2023).

Collectively, these studies underline the necessity of integrated approaches in
research and public health to address this issue.

1.4 Loneliness among Older People

When examining the relationship between loneliness and age groups an important
contribute was made by Victor and Yang (2012). Based on a sample of individu-
als aged 15+ from the European Social Survey, their studies have highlighted that
loneliness is a prevalent issue among older populations, demonstrating a U-shaped
distribution across the lifespan, where individuals under 25 and those over 65 expe-
rience higher levelf of it. Among the key factors that contribute to increased feelings
of loneliness in this population, their study identified:

• depression: associated with loneliness across all age groups,

• quality of social engagement: shows protective effects against loneliness
for those in mid and later life,

• marital Status: being married or in a committed relationship appears to be
more important for mitigating loneliness in older people adults,

• socioeconomic factors: lower socioeconomic status, lack of transport, and
living in rural areas have been identified as predictors of loneliness among older
adults.

Other studies underlined that for this demographic, the influence of both sub-
jective and objective isolation on risk for mortality is comparable with other well
established risk factor for mortality like obesity or substance abuse (Holt-Lunstad
et al., 2015).

1.5 COVID-19 Lowdown and Remote Contacts

During the recent COVID-19 pandemic, measures introduced to slow down the
spread of the virus, such as mandatory stay-at-home or minimizing physical contact,
may have exacerbated loneliness, particularly among older adults (Dahlberg, 2021).
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This demographic have been identified with higher risk of poor outcome if infected
and underwent a greater restriction on physical contacts. Findings have shown a
worsening of the general well-being and loneliness feeling on older individuals, with
a significant increase of 9 percentage point in perceived loneliness (Macdonald and
Hülür, 2021).

Recent studies also provided new insights on the heterogeneity of COVID-19
lockdowns effect on loneliness. Specifically, childless and unpartnered older indi-
viduals had a higher risk of loneliness compared to those with family ties. Such
conditions were significantly associated with a 5.4 and 6.7 percentage points higher
probability of feeling lonelier than before the pandemic (Arpino et al., 2022), high-
lighting the role of social ties in influencing loneliness among older adults.

On the other hand, remote contact substantially rose in Italy, Spain and
France, counteracting the lack of in-person relations (Arpino et al., 2020). This
might have helped buffer the adverse effects of the pandemic on the emotional well-
being and loneliness of older adults with studies providing evidence that, when face-
to-face relationship are not possible, technology-based interactions provides essential
emotional support helping maintain social ties and mitigate loneliness (Liddle et al.,
2020). Such claims were further supported by the work of Macdonald and Hülür
(2021), showing that adults who were more satisfied with their communication were
also related to lower level of loneliness.

It is, therefore, important to continue exploring and supporting the use of
technology to maintain social connections among older adults, especially during
times of crisis that necessitate physical distancing.
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Chapter 2

Causal Inference

2.1 The Definitions of Cause and Effects

2.1.1 Philosophical Point of View

The definition of cause finds its roots in the work of many Greek’s and later philoso-
pher. Aristotle, in his work about Physics, gave us four different definitions of the
"causes of a thing": the material cause (that out of which the thing is made), the
formal cause (that into which the thing is made), the efficient cause (that which
makes the thing) and the final cause (that for which the thing is made). It is evi-
dent, that only the definition of efficient cause is relevant for our discussions about
causation. A broader definition was first introduced by Locke (1690): "that which
produces any simple or complex idea, we denote by the general name ’cause’, and
that which is produced, ’effect’." Both these definitions, while successfully conveying
the idea of a cause, give us very little information about what conditions have to be
satisfied in order to define something as a cause or an effect.

An important contribution to the subject comes from the Hume’s analysis of
causality (1740,1748) in which the philosopher argued that an experienced event
called cause is always followed by the experienced event called effect. In his analy-
sis, Hume recognized the basics criteria for causation, namely the spatial/temporal
contiguity and the temporal succession of cause and effect. What is still lacking
is the notion that a cause may have been different from what it was and that this
difference defines the effect.

John Stuart Mill, on the other side, firstly introduced the notion of experiment
as crucial to causation. In 1843 he stated that experimentation was the only way
to establish causal relationship and distinguish them from mere correlations. In his
work, Mill, also defined what we call causal effect, or more generally, the effect of a
cause:

If an instance in which the phenomenon under investigation occurs, and
an instance in which it does not occur, have every circumstance in com-
mon save one, that one occurring in the former; the circumstances in
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which alone the two instances differ, is the effect, or the cause, or an
indispensable part of the cause of the phenomenon.

2.1.2 From Philosophy to Probability

A first attempt to build a mathematical framework for causal-effect relationship was
proposed by Patrick Suppes in his Probabilistic Theory of Causality. His goal was
to improve Hume’s analysis using the language of stochastic processes. Given that
both, cause and effect, are expressible as events, he defined:

1. the prima facie cause of an event as an event that temporally precedes it
and that is positively associated with it, if r < s the event Cr is a prima facie
cause of the event Es if

Pr(Es|Cr) > Pr(Es),

2. the spurious cause of an effect as a prima facie cause that is conditionally
independent of the effect given another event, prior to the prima facie cause.
Cr is a spurious cause of Es if, for some q < r < s, exist an event Dq such
that:

Pr(Es|Cr, Dq) = Pr(Es|Dq),

and
Pr(Es|Cr, Dq) � Pr(Es|Cr),

3. the genuine cause as a prima facie cause that is not spurious. Cr is a genuine
cause of Es if Cr is prima face cause of Es but is not a spurious cause of Es.

The major lack of the Suppes’ theory is that it does not provide the machinery to
express the effect of a cause in a particular case (or at unit level).

2.1.3 Statistically Speaking

Cause

Given the definition of Aristotle, Hume and Mill, anything can be a cause or, at
least, a potential cause. In modern causal inference, we consider causes only those
things that could, in principle, be considered as treatments in experiments or in a
hypothetical experiments. Under this notion, the cause in an experiment is defined
in the same way we define a cause in an observational study with the only difference
being the degree of control the researcher has over the investigated phenomena. In
other words, an attribute of a particular unit cannot be a cause since the notion
of potential exposability cannot be applied to it (Holland, 1986). The definition of
cause provided might looks loosely at first sight but it is already narrowing the set
of events or elements that we can define as such, giving a more specific meaning to
the word cause and brought Holland and Rubin to made up the famous motto:

"No causation without manipulation."

underlying the importance of this restriction.

12



Effect as Causal Effect

The formal statistical definition of causal effect was first introduced by Rubin (1974).
His work laid the foundation for understanding the impact of treatments in a causal
framework, marking a significant milestone in the field of statistics and causal infer-
ence.

Considering an experiment of 2N units, half exposed to a treatment (T ) and
the other half exposed to a control treatment (C), in a way that ensured that each
unit was equally likely to be exposed to T or to C (a randomized experiment). The
objective of the study is to assess, for some population units, the effect of treatment
T versus treatment C on a dependent variable Y . Let a unit be associated with a
pair of times, t1 and t2, where t1 denotes the time of initiation of a treatment and t2
denote the time of measurement of a dependent variable, Y , with t1 < t2. Assuming
that:

1. a time of initiation of treatment can be ascertained for each unit,

2. T and C are exclusive of each other, thus a unit cannot receive both T and C.

The causal effect of the treatment T versus the treatment C is defined as

Y (T )� Y (C) (2.1)

for a particular unit and the times t1 and t2. Y (T ) denote the value of Y measured
(assuming negligible "technical errors") at t2, given that the unit received T at time
t1 and Y (C) is the value of Y measured at t2, given that the unit received C at time
t1. As a result of the experimental setup in which the definition above is given, it is
clear that the effects of causes are always relative to other causes.

Figure 2.1: Causal Effect.

Much of the basics ideas on which modern causal inference is built upon, lie
in the R. A. Fisher and Neyman’s foundation of experimental design for causal
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inference in 1926 and 1923, respectively. As described by Holland (1986), both
papers (in a more or less explicit way) introduced the idea of multiple versions of
the response as potential outcomes of a treatment (in both cases the outcome was
the yield from an experimental plot of land under a particular treatment condition
in an agricultural experiment).

2.2 A Formal Framework for Causal Inference

2.2.1 Potential Outcomes

The first explicit introduction of the notion of potential outcomes is given by Neyman
(1923) who, talking about his agricultural experiment, stated: "... Uik is the yield
of the ith variety on the kth plot." In this case Uik is a "potential yield" and not
an observed yield, since each plot is exposed to only one variety of crops. Such
notation will later allow causal effects ("Neyman-Rubin model", Pearl (1996)) and
causal estimand (such as ATE or ATT ) to be defined without reference to any
particular probability model for the data in both randomized (such the one proposed
by Neyman) and observational studies.

Definition 1 (Potential Outcome) The potential outcome for each unit i and
each treatment condition T is defined as the outcome that would be observed if the
unit were exposed to that treatment condition.

In presence of two causes (Holland, 1986), two treatments or more commonly a
binary treatment T , where T = 1 indicates the treatment and T = 0 indicates the
control the potential outcomes for unit i are Yi(1) and Yi(0), respectively.

This definition of potential outcomes extend naturally to situation in which we
have more than two treatments or a multinomial treatment. In this case, the treat-
ment T = 1, 2, ...,M , with M number of different treatments, define the potential
outcomes Yi(t), where t = 1, 2, ...,M .

2.2.2 The Fundamental Problem of Causal Inference

Following from Equation (2.1), in order to asses the causal effect of a treatment ver-
sus another, we would like to compare the potential outcome Yi(1) and the potential
outcome Yi(0) of the ith unit.

From his definition of the causal effect (now considered as unit-level causal
effect) arise what Holland (1986) define as the Fundamental Problem of Causal
Inference, namely the impossibility to observe both value Yi(1) and Yi(0) for the
same unit and , therefore, the impossibility to observe the effect of the treatment
T on the unit i. This inability to directly observe the quantity of interest is what
distinguishes causal inference from standard statistical inference.

Although the definition of causal effect does not require more than one unit,
in order to learn relevant knowledge about such effect we will require multiple units.
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From the definition of potential outcome it is clear that on a unit-level we will, most
likely, observe only one potential outcome. Therefore, to make causal inference
possible again, we must rely on multiple units.

2.2.3 Rubin Model for Causal Inference

We will now give a formal introduction of the Rubin Causal Model (also referred to as
Neyman-Rubin Causal Model), one of the principal framework for causal inference,
summarizing all the notation used so far and define the quantities of interest in the
causal analysis. We will then show how one can address the Fundamental Problem
of Causal Inference under this framework.

The Formal Model

The elements that constitute the Rubin Causal Model are the following (Please
note that some notation might differ from the papers in which such model was first
introduced, but the structure is the same):

• a population of units, U , of size N indexed by i = 1, 2, ..., N ,

• a set of T defined treatment or causal agents (Holland and Rubin, 1980) to
which each unit can potentially be exposed (for the sake of notation we will
consider a binary setup with T = {1, 0} but the results naturally extends to
more than two treatments setup),

• a response variable Y that represents our outcome of interest, such variable
can be measured for each unit after the exposure to a causal agent T .

As we saw before, the intuitive definition of the causal effect described by the model
is the difference between the response variable that would be measured after exposing
a unit to treatment (t = 1) and the response that would be measured on the same
unit had it been exposed to the control (t = 0). Without lost of generality we will
consider our response, Y , as a dichotomous variable, since it is the interest of our
study. The extension to a general Y is straightforward.

The model assumes that each unit has T potential outcome one for each treat-
ment to which the unit could have been exposed. Formally, for a binary treatment
setup, we associate to each unit in U the vector

(Yi(1), Yi(0)), (2.2)

where Yi(t) is the potential outcome of the ith unit if it would be exposed to cause
t 2 T .

Assumption 1 (SUTVA) The potential outcomes of any unit do not vary with
the treatments assigned to other units (no interference), and, for each unit, there
are no different forms or versions of each treatment level (consistancy), which lead
to different potential outcomes.
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Under SUTVA (Rubin, 1978) the vector given by Equation (2.2) is fully repre-
sentative of all the possible values of Y under all pairing of t 2 T with i 2 U . This
simplify both definition and computation of the causal effect, allowing us to finally
overcome the problem of causal inference at population level.

Treatments and Outcome

Further developing the model notation, we define Ti as the treatment indicator that
takes values 0 for the control treatment and 1 for the active treatment. For each
unit i = 1, 2, ..., N the model assume one realized (and possible observed) potential
outcome denoted by:

Y obs
i = Yi(Ti) =

(
Yi(0) if Ti = 0,

Yi(1) if Ti = 1.
, (2.3)

and one missing potential outcome, denoted by:

Y mis
i = Yi(1� Ti) =

(
Yi(1) if Ti = 0,

Yi(0) if Ti = 1.
. (2.4)

It is clear, from the notation used, that causal inference is, at its root, a missing
data problem (Rubin, 1974). Given any treatment assigned to an individual, the
potential outcome associated with any alternative treatment is missing.

Attributes, Pre-treatment Variables or Covariates

Following from Equation (2.3) and Equation (2.4), to estimate the causal effect
of any particular unit in the form given by Equation (2.1) we will generally need
to estimate the missing potential outcomes. Generating such estimates may result
difficult, since they involve assumptions about the assignment mechanism and the
comparisons between different units exposed to only one treatment. In this case
unit-specific background can assist in making such predictions.

Let X denote the pre-treatment variables of each unit, the key characteristic of
such variables is that they are known, or assumed, to be unaffected by the treatment
assignment and, therefore, can be used to make our prediction task somewhat easier.

Such information commonly serve to:

• make our estimates more precise, by explaining some of the variation of the
outcome,

• might be used to select a sub-group of the population of interest on which we
would like to know typical casual effect of the treatment,

• they might have an effect on both the assignment mechanism and the potential
outcomes.
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In the last role, covariates are used to make assumptions about the relationship
between outcome and treatment which are more plausible within homogeneous sub-
population (with respect to these variable) rather than unconditionally.

2.2.4 Assignment Mechanism

Building upon the structure explained so far, we now introduce the setup in which
the model was firstly developed, randomized experiments, and then extend it to
more complicated cases concerning observational studies.

Definition 2 (Assignment Mechanism) Given a population of N units, the as-
signment mechanism is a function Pr(T|X,Y(1),Y(0)), taking values in [0, 1], sat-
isfying X

T2{0,1}N
Pr(T|X, Y (0), Y (1)) = 1,

for all X,Y(0) and Y(1).

A Randomized Control Trial or, generally speaking, a randomized experiment is an
experiment in which the assignment mechanism is known (i.e. coin flip, which would
give to each unit in the population the same probability of receiving the treatment).
Such an assignment mechanism:

1. is probabilistic,

2. has a known functional form that is controlled by the researcher.

They produce, so to speak, a "fair lottery" (Rosenbaum, 2023). Let Ti indi-
cate the treatment assignment for unit i, again taking values 1 or 0. The assignment
mechanism (namely the methods that assign treatments to units) gives us the prob-
ability of the vector T = (T1, T2, ..., TN) given the fixed values of X,Y(1) and Y(0)

(that being the arrays for all units).
In a randomized trial the assignment mechanism can be written as:

Pr(T|X,Y(1),Y(0)) = Pr(T|X). (2.5)

Since randomized experiments have the property of balancing both measured
and unmeasured covariates they are, as defined by Rubin (1976), ignorable. Practi-
cally speaking, the distribution of observed and unobserved covariates are equal in
expectation. Thus, the outcome of the exposed group is expected to be representa-
tive of the outcome of the unexposed group (or all individuals in the study) had they
all been exposed, and vice versa (property often referred to as "exchangeability").
This allows us to compute the typical causal effect of the treatment on our sample.
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2.2.5 Causal Estimands

Expanding on the definition of causal effect given in Equation (2.1) we introduce a
more formal description of the ultimate object of interest of our analysis, the causal
estimand.
Again, we consider a finite population of N individuals, indexed by i = 1, ..., N .
Each unit in the population can be exposed to one of a set of treatment that we
considered (without loss of generality) T = {0, 1}. We define the treatment indicator
as Ti 2 T, 8i, and the potential outcomes Yi(0), Yi(1) as in Equations (2.3), (2.4).

Unit-level causal effect

For each unit i and for each treatment T = {0, 1}, the unit-level causal effect is
defined as the comparison between the two potential outcomes Yi(0), Yi(1). In this
case, as in the rest of the work, it is assumed that such a comparison would be
expressed as the difference:

Yi(1)� Yi(0). (2.6)

As said before such an effect it is difficult, if not impossible, to estimate due to the
fundamental problem of causal inference (Holland, 1986). The statistical solution
will make use of our population U and will allow us to gain information about the
causal effect using information observed on different units.

Typical causal effect (population level)

If assignment to treatment is randomized, causal inference at level population is
straightforward. Since treatment assignment is independent from all the observed
or unobserved pre-treatment characteristics, observed and unobserved confounder
balance across both groups and the treatment assignment is independent of the
potential outcomes, formally {Y (0), Y (1) ?? W} (where ?? denote independence),
we define the Average Treatment Effect as:

⌧ = E(Y (1)|T = 1)� E(Y (0)|T = 0)

= E(Y |T = 1)� E(Y |T = 0). (2.7)

Equation (2.7) can be consistently estimated, in an experimental setting, by:

⌧̂ = ȳ1 � ȳ0, (2.8)

with ȳ1, ȳ0 being the sample mean of the treated and control group, respectively
(Neyman, 1923).

2.2.6 Observational Study

In some situation randomized experimentation is unethical or unfeasible. A person
cannot be imposed to undergo an harmful treatment or the costs of a randomized
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experiment might be prohibitive for the researchers. For instance, people cannot be
forced to smoke in order to understand the damages caused by smoking or emotional
trauma cannot be inflicted to people to understand post-traumatic stress syndrome.
In such situation, one might use the evidence from various sources, including non-
randomized or observational study.

Cochran (1965) identified two principal characteristic of observational studies,
namely:

• is an "empiric investigation" in which the objective is to elucidate cause-and-
effect relationship,

• it is not feasible to use controlled experimentation.

Formally speaking, are referred to as observational studies those for which the as-
signment mechanisms of the treatments are unknown.

In an observational setting, unless specific actions are taken, the treatment and
control groups are almost never balanced, and the direct comparison that defines the
causal effect may be biased. In such studies, individuals exposed to one treatment
systematically differ from those exposed to another, making the units incomparable.
This incomparability stems from the imbalance between the treatment and control
groups in their covariates (X) and the presence of heterogeneous treatment effects.
Consequently, it becomes important and interesting to distinguish between different
types of average treatment effects. The common quantities of interest are the Aver-
age Treatment Effect (ATE), which is the expected effect of the treatment across the
entire population; the Average Treatment Effect among the Treated (ATT), which
is the expected effect of the treatment on those who have been treated:

⌧T = E(Y (1)� Y (0)|T = 1)

= E(Y (1)|T = 1)� E(Y (0)|T = 1)

= E(Y |T = 1)� E(Y (0)|T = 1), (2.9)

and the Average Treatment Effect among the Control group (ATC), which is the
expected effect on the control units:

⌧C = E(Y (1)� Y (0)|T = 0)

= E(Y (1)|T = 0)� E(Y (0)|T = 0)

= E(Y (1)|T = 0)� E(Y |T = 0). (2.10)

.
Due to the imbalance and heterogeneity, ATE (2.7), ATT (2.9), and ATC

(2.10) can be significantly different, highlighting the need for a nuanced analysis to
understand the causal effects accurately.

The equations expressed in (2.9) and (2.10) cannot be estimated directly from
data. Since Y (0) and Y (1) are not observed for treated and comparison group, the
quantities E(Y (0)|T = 1) and E(Y (1)|T = 0) are unknown. Such quantities are
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counterfactuals, expressing means of the potential outcomes corresponding to the
treatment level that is the opposite of the actual received treatment.

As we saw in randomized setup, in order to compute the typical causal effect
of the treatment we require:

• the assignment mechanism to be independent from the potential outcomes,

• balance across both group in terms of observed and unobserved covariates,

in order to use information about different units to gain information about the
causal effects.

To achieve our objective, we can use the background information about the
units and assume that the assignment mechanism for the treatment is independent
to the potenital outcomes conditionally to the observable covariates. Producing
what Rubin (1974) defined as a "carefully controlled nonrandomized" experiment.

Following Rosenbaum and Rubin (1983) we assume strong ignorability.

Assumption 2 (Strong Ignorability) The strong ignorability assumtion requires
that the potential outcomes for each unit is independent from the treatment assign-
ment mechanism given the covariates. In particular:

1. Sufficeint overlap (Positivity): 0 < Pr(T = 1|X) < 1, every subject has
non-zero probability of receiving each treatment.
There are no patterns of values for the covariates which preclude the unit from
receiving one treatment or another.

2. No unmeasured confounders (conditional exchangeability):

(Y (1), Y (0)) ?? T |X

Under such assumption, that mimic the properties of an RCT (with respect to the
observed covariates) making units comparable, we obtain:

E[Y (0)|T = 1, X] = E[Y (0)|T = 0, X] = E[Y |T = 0, X],

E[Y (1)|T = 1, X] = E[Y (1)|T = 0, X] = E[Y |T = 1, X].

and the causal estimands (2.9) and (2.10) can be computed as:

⌧T = E {E(Y |T = 1, X)� E(Y |T = 0, X)| T = 1}, (2.11)

and
⌧C = E {E(Y |T = 1, X)� E(Y |T = 0, X)| T = 0}, (2.12)

where the outer expectation is taken over the distribution of X|T = 1 or X|T = 0,
which represents the distribution of the pre-treatment variables for treated and
control group, respectively.
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2.3 Propensity Scores

In order to derive knowledge about the causal effect in an observational study
we need to make units receiving different treatments look alike. Using the back-
ground information at our disposal, we want to balance the distributions of the
pre-treatments covariates X for the two (or multiple) groups. Often with hundreds
of covariates for a single unit achieve balance between the two multivariate distri-
butions might be complex or unfeasible. In one of the most cited paper in statistics,
Rosenbaum and Rubin (1983) proposed a key concept that might help us with this
task.

Definition 3 (Propensity Score) For each unit i with covariates Xi, a binary
treatment indicator Ti, and the potential oucome Yi(0), Yi(1), the propensity score
is defined as:

e(Xi, Yi(1), Yi(0)) = Pr(Ti = 1|Xi, Yi(1), Yi(0)) (2.13)

Under the hypothesys of strong ignorability, we have:

e(Xi, Yi(1), Yi(0)) = Pr(Ti = 1|Xi, Yi(1), Yi(0))

= Pr(Ti = 1|Xi),

So the propensity score reduces to:

e(Xi) = Pr(Ti = 1|Xi), (2.14)

namely the conditional probability of assignment of a particular treatment, given a
vector of observed covariates.

2.3.1 Propensity Score as a Dimensional Reduction Tool

Theorem 1 If T ?? {Y (1), Y (0)}| X, then T ?? {Y (1), Y (0)}| e(X).

Theorem (1) states that if strong ignorability holds conditional on covariates X, then
it also holds conditional on the scalar propensity score e(X). Implying that condi-
tioning on the propensity score e(X) removes all confounding induced by covariates
X. While the original covariates X can be general and have many dimensions, the
propensity score e(X) is a one-dimensional scalar variable bounded between 0 and 1
that reduces the dimension of the original pre-treatment information but still main-
tains the ignorability. Therefore, make us able to compute the causal estimands
(2.11) and (2.12) in observational studies as:

⌧T = E {E(Y |T = 1, e(X))� E(Y |T = 0, e(X))| T = 1}, (2.15)

and
⌧C = E {E(Y |T = 1, e(X))� E(Y |T = 0, e(X))| T = 1}. (2.16)
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Chapter 3

Propensity Score Weighting

3.1 Propensity Score in Observational Studies

The main challenge of non-experimental studies is confounding (VanderWeele and
Shpitser, 2013). In presence of confounding, exposed and unexposed groups differ in
term of distribution of covariates that predict both the exposure to the treatment and
the outcome (we will refer to such covariates as confounders), loosing the property of
exchangeability and impeding us to obtain unbiased estimates of the causal effects
of interest. Thus, in non-experimental studies, it is crucial that the researchers
implement some strategies to adjust for potential confounders. Such strategies can
be categorized in:

• "Analysis - based": approach involving direct modeling of the outcome and its
relationship with treatment and potential conforunders,

• "Design - based": methods attempting to create or adjust a sample in order to
balance the distribution of the observed covariates between the groups (Rubin,
2007).

While comparing the two types of strategies we would like to underline few
key benefits that design-based approaches have over the direct outcome modeling.
First, the design stage, which we will refer as balancing, is done without the use of
the outcome data, showing a clear separation between design and effect estimation
as would naturally happen in an experimental study. A second key benefits of
the design approach is that there are clear diagnostic tools to assess its success.
After a matched or weighted sample is created, covariates balance of this sample
can be checked before using such data to estimate the causal effect. Finally, such
strategy reduce the impact of potential biases introduced by extrapolation of the
outcome model when treated and control group differ substantially. For instance,
if the treated group is much younger than the untreated group, then the implicit
imputation of the missing potential outcomes under exposure for the control units
would be based on a model of the potential outcome fitted among much younger
people than those for whom the prediction is made.
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In this work we will combine analysis- and design-based approach and we will
use a doubly robust estimator of the causal effect. In particular, we will implement
regression adjustment in order to reduce any remaining imbalance in the sample
after the design stage (Chang and Stuart, 2022).

3.1.1 Propensity Score as Metrics for Adjustment

The first step is to define a measure of similarity between two individuals. At this
stage, follows from Definition (3) that propensity score is a suitable tool as measure
of similarity because of its balancing properties. Firstly, propensity score summarize
the background information about the individual in unique number between 0 and
1. Furthermore, under the hypothesis of strong ignorability, conditionally to the
propensity score the distribution of the covariates, on which the score is estimated,
are balanced between the groups.

3.1.2 Design Strategies

Focusing on the design-based approach, we will briefly describe and compare the
principal adjustment methods and then outline the particular one used in this study.

• Matching: the idea behind matching methods is to select a subset of the
sample units such that the observed covariates are balanced across treatment
and comparison (sub)groups. In literature, there are many different techniques
of matching that differs mainly regarding the number of matches in the control
group for one treated unit, what is considered to be a match (namely, the
closeness of the matches) and the matching algorithm used. Whatever the
choices on the aspects described above, matching will most likely result in
many controls individuals to be discarded and a consequently lost in precision
of the treatment effect estimate. Further description of matching methods is
out of the scope of this work, we refer the reader to Greifer and Stuart (2021)
for more details.

• Stratification: in this case the sample is divided into mutually exclusive strata
of individuals who are similar in pre-treatment characteristics based on quan-
tiles of the propensity scores. The idea is that, within each strata, the distri-
bution of the observed covariates is expected to be roughly identical. Problems
with such techniques arises from the choice of the optimal number of strata
that should be chosen in order to achieve strata small enough to provide ade-
quate balance, but large enough to get stable within-stratum estimates of the
causal effect. Poor choices of the number of strata might lead to many strata
with few treated or control units, decreasing the precision of the final estimate.

• Weighting: adjustments through weighting involve direct use of the esti-
mated propensity scores to assign weight to each individual. The main idea
is to weight all the units in order that the adjusted sample shows balanced
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distributions of the observed covariates between treated and untreated groups.
Differently from the other methods presented above the weights for each units
may vary depending on the causal estimand of interest and the technique make
a more efficient use of all the data available.

3.2 Propensity Score Weighting

We will now outline the main characteristics of the propensity score weighting (Rosen-
baum, 1987) methodology, posing particular attention on the advantages that such
procedure has over the other methods and explaining how the methods works in
both the binary and the multinomial treatment setups. The choice of weighting rely
on the following advantages when compared with other adjustment techniques:

• Efficient use of the available data: unlike matching, which may discard un-
matched units, weighting can include all the observation in the analysis. This
is particular important when many units are unmatched since the procedure
will result in great loss of sample size and increased variance of the effect esti-
mate. Such gain in efficiency is true, for other reasons, even when comparing
weighting and stratification methods. As matter of fact, stratification might
suffer from loss of information due to the grouping continuous scores into dis-
crete categories while weighting can take advantage of the entire continuous
distribution of the propensity scores.

• Flexibility: Weighting methods, particularly IPTW, can be adapted (chang-
ing the way in which units are weighted) to balance the treatment groups for
different causal estimand (ATE, ATT, ATC). Matching estimates, on the other
side, are more specific to the matched sample and can be considered to estimate
average treatment effects for the treated if only matched pairs are analyzed.

• Robustness: Matching is sensitive to the choice of matching algorithm and
parameters (e.g., caliper width, matching ratio). Poor choices can lead to poor
balance and biased estimates. Weighting is less sensitive to these choices.

On the other side weighting make direct use of the estimated propensity score
and this underline the importance of precise estimates of the scores. Moreover, if
extreme weight are present, these might increase variability and introduce numerical
instability into the causal effect estimation.

3.2.1 Balancing Groups through Weighting

Propensity score weighting, specifically inverse probability of treatment weighting
(IPTW), adjust the contribution of each unit to the analysis based on their propen-
sity score. The aim of such method is to create a synthetic sample where the
distribution of covariates is equal, or as close as possible, across treatment groups
reducing or eliminating confounding.
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Given a finite sample of N individuals, indexed by i = 1, 2, ..., N , let Ti denote
the observed treatment indicator for the ith individual. For sake of generality we
take Ti = t if individual i was observed under treatment t, where t 2 1, 2, ...,M and
M is the number of all the possible treatments.

Under the potential outcomes framework defined in Chapter 2 each unit has M
potential outcomes, but only one corresponding to the observed treatment indicator
(Ti). For a given unit i, Ti = t, then Yi = Yi[t] is the observed outcome. Let Xi

denote the vector of K observed pre-treatment covariates of unit i.
Following from Definition (3), provided that N is large enough and that As-

sumption (2) holds, propensity score weighing allows us to estimates a nearly unbi-
ased treatment effect.

As stated above, depending on causal estimand of interest, the method allows
us to estimate different set of weights and adjust the sample consequently.

Weights for ATE

Assuming a binary treatment T = {t0, t00} and the interest of the study being the
comparison of the mean outcomes had then entire population been observed under
one treatment t0, versus had the entire population had been observed under another
treatment t00, we would estimate the ATE (Equation (2.7)) as

Ê(Y [t0]� Y [t00]) = Ê(Y [t0])� Ê(Y [t00])

= µ̂t0 � µ̂t00 , (3.1)

whether the expectation is over the entire population at hand.
In this case we would weight the exposed (with treatment T = t0) units with

weights equal to
wi[t] =

1

êt0(Xi)
, (3.2)

where êt0(Xi) = P̂r(Ti = t0|Xi) are the estimated propensity scores for unit i.
From the notation used we see how this procedure can be naturally extended to

multiple treatment scenario where t = 1, 2, ...,M allowing us to produce an unbiased
estimate of what McCaffrey et al. (2013) defined pairwise ATEs.

Weighting for ATT

When the research focus is the effectiveness of one treatment on the population
that its targets, we are interested the ATT. Again, starting with a binary setup we
consider T = {t0, t00} and we aim to estimate the ATT of t0 relative to t00. The idea
is to compare the mean outcome of units treated with t0 when they received the
treatment they actually received (t0) with the mean outcome they would have had
if treated with t00. Formally

Ê(Y [t0]� Y [t00]|T = t0) = Ê(Y [t0]|T = t0)� Ê(Y [t00]|T = t0)

= µ̂t0,t0 � µ̂t0,t00 , (3.3)
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where µ̂t0,t00 for t0 6= t00 estimates the mean outcomes of units for the treatments they
did not receive, that being, the conterfactual mean.

It is clear that the definition of ATT depends on what we define as "the
treated". This group would indeed receive weight 1, while the "comparison" group
is weighted with êi

1�êi
. This choice underlines that in this case the objective of the

adjusting procedure is to make the comparison group look alike the treated group.
The multiple treatment setting, on the other side, requires more careful ex-

planation. The main difference lie in the definition of the quantity 1 � êi, namely
the probability of non receiving the treatment, that would be expressed in terms
of probability of receiving another treatment, allowing us to compute the pairwise
ATTs (McCaffrey et al., 2013).

In this case, the appropriate weight for individuals receiving treatment t00 is
the ration between the probability of receiving treatment t0 and the probability of
receiving the treatment t00 for t00 6= t0 and t0, t00 = 1, 2, ...,M

wi[t
0, t00] =

êt0(Xi)

êt00(Xi)
. (3.4)

Intuitively, individuals with pre-treatment characteristic that are much more com-
mon in their own treatment group than in the target group have small weights since
they are less representative of the target group and vice versa. In this way we give
more importance to units that closely resemble the units of interest making them
heavier in the general comparison between groups.

3.3 Propensity Scores Estimation for Weighting

In practice, propensity scores are unknown and must be estimate from the data. Pro-
vided that Assumption (2) holds, the estimated propensity scores, and the respective
weights, can produce better effect estimate even compared with situation in which
e(Xi) are known. As discussed by Rosenbaum (1987) this occur because weigh-
ing by estimated propensity scores "compensates for both systematic and chance
imbalances."

In this study we aim to understand the causal effect that different pattern of
non-physical contacts had on the perceived loneliness of people who actually show
such patterns, therefore, we will now outline the technique implemented to estimates
the propensity scores relative to the ATT estimand in a multinomial setup. The
connection with the more simple case of a binary treatment is straightforward.

3.3.1 Standard Approach

In the standard approach to propensity score weighting multinomial logistic regres-
sion with the treatment indicator as outcome have been widely used to modeling
the relationship between the covariates and the assignment mechanism. Multino-
mial logistic regression models the probability that an outcome equals each of its
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possible values as a function of a linear combination of the covariates, their products
and cross product (Salvan et al., 2020). In a model for the treatment assignment Ti

this would be:

Pr(Ti = t|Xi) =
e�

0
tXi

1 +
PM�1

t0=1 e�
0
t0Xi

, t = 1, . . . ,M � 1,

Pr(Ti = M |Xi) =
1

1 +
PM�1

t0=1 e�
0
t0Xi

,

where �t, t = 1, 2, ...,M are unknown and estimated from the data and Pr(Ti =

M |Xi) is assumed as baseline. Once we estimate the unknown parameter from
the data we can generate P̂r(Ti = t|Xi) = êt(Xi) and use it to weight our sample
as described by Equation (3.4). The challenge with this approach is choosing the
correct set of interaction and polynomial terms among the covariates to capture any
nonlinearities in their relationship with the treatment assignment.

Based on the method proposed by Zanutto et al. (2005) for selecting the correct
form of the propensity score model in the context of stratification, we outline a mod-
ified approach that might be used in the context of IPWT for multiple treatments
(McCaffrey et al., 2013). The iterative approach involves the following 6 steps:

1. fit a simple model with only main effects for all the possible confounders,

2. for T = 1, 2, ...,M find the areas of common support for �̂t
0
Xi among all

the treatment groups and retain only the observation in those areas (ensuring
overlap or positivity),

3. test whether treatment indicator is a significant predictor of each covariate
running a one-way ANOVA with each observation weighted by its IPTW. If
the M �1 degree-of-freedom F -test is significant the covariate is not balanced,

4. Add to the model polynomial and interactions terms for covariates that do not
balance,

5. fit the new model,

6. repeat steps 3-5 until all covariates are balanced.

Challenges and Drawbacks

One of the key challenge of the method proposed above is the level of variable
selection required by step 4 in order to successfully obtain the correct propensity
scores model. With multiple covariates and a model for each treatment level, there
are many possible interactions and polynomial terms to add any time covariates
do not balance that would be very time consuming, or even prohibitive, for the
researcher to try all possible variation. On the other side, because to the modification
to the significance test due to the weighting, the F -test might fail in finding group
differences significant.
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Precision-wise, logistic regression has been shown to yield high MSE for the
causal effect estimates (Lee et al., 2010). Moreover, because of the underling linearity
assumptions, logistic regression can lead to very small probabilities and extreme
large weights that would exacerbate the variability and the numerical instability of
the weighting procedure.

3.3.2 Machine Learning Approach

Due to the direct incorporation of the actual propensity scores in the weighting
procedure, precision and numerical stability of such estimates are crucial for the
weightings methods. Furthermore, accurate treatment effect estimates require the
propensity score model to account for all the potential confounders and, as demon-
strated by Drake (1993), propensity score model misspecification can lead to sub-
stantially biased causal effect estimates.

Given the clear drawbacks and limitation of the method described above, in
the past decades much research has been done in estimating the propensity scores
through machine learning techniques. Such techniques do not rely on a specific data
model (as logistic regression and its extensions) but try to extract the relationship
between outcome and predictors form the data itself.

This automatic selection procedure make such algorithms better suited to avoid
propensity scores model misspecification, enabling them to learn from the data the
correct set of interaction and polynomial terms to capture the functional form of
the assignment mechanism given the covariates. As result, machine learning al-
gorithms proved to produce more numerically stable propensity scores and subse-
quent weights, achieve better balance between treatment and comparison groups
and, therefore, reduce the bias in the treatment effect estimates (McCaffrey et al.
(2004); Cannas and Arpino (2019)).

As demonstrated by the work of Lee et al. (2010), in the context of machine
learning methods one algorithm showing promising results is Generalizes Boosted
Model (GBM, Ridgeway (1999)).

3.4 Gradient Boosted Regression

Boosting is a general, automated, data adaptive modeling algorithm that can be used
with a large number of covariates to fit a nonlinear predictive surface for the outcome.
Many flavours of boosting have appeared in the statistical and machine learning lit-
erature including the original AdaBoost algorithm (Freund and Schapire, 1997),
generalized boosted models (Ridgeway, 1999) and the gradient boosting machine
(Friedman, 2001). Such methods are famous since they generally outperform alter-
native algorithms in term of predictive error (Friedman (2001); Ridgeway (1999)).
Boosting algorithms are particularly effective when the model involves a large set
of covariates and, between the others, generalized boosted models is tuned to pro-
duce models yielding well-calibrated probability estimates matching the empirical
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probabilities.
GBM adds together many simple functions to estimate a smooth function of

a large number of covariates of mixed types. Each individual simple function lacks
smoothness and is a poor approximation to the function of interest, but together
they can approximate a smooth function. In the implementation of GBM, each
simple function is a regression tree with limited depth.

We will now provide a brief outline of the algorithm starting from the de-
scription of his constituent block (referred to as weak learner), the regression tree
(CART, Breiman et al. (1984)), followed by an in depth explanation of the GBM
algorithm and its implementation in propensity scores estiamtion.

3.4.1 Regression Trees (CART)

Tree-based methods partition the covariate space into distinct regions, fitting a very
simple model on each one, to obtain regions of constant prediction. For simplicity
and ease of interpretation, "splits" parallel to the axes are used to form p-dimensional
rectangular regions (Figure 3.1).

Figure 3.1: Partition of the feature space
by CART (Hastie et al., 2009).

Figure 3.2: Prediction surface (Hastie
et al., 2009).

The estimation algorithm for regression trees is known as recursive binary
splitting and consists of two steps:

1. Divide the covariate space into J non-overlapping regions R1, R2, ..., RJ such
that the residual sums of squares (referred to as RSS) given by:

JX

j=1

X

i2Rj

(yi � ŷRj)
2 (3.5)

is minimized.
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2. For every observation that falls into the region Rj, assign the same prediction,
which is the average response of the observations within the jth partition:

f̂(x) = ŷj = ave(yi|xi 2 Rm). (3.6)

In most cases, it is computationally infeasible to calculate every possible partition
of the space into J rectangles, and the algorithm select the best split using a greedy
top-down approach.

Starting with all observations belonging to a single region, a variable Xj is
considered as an axis and a value s from its support as a split point, such that the
partition into two regions

R1(j, s) = {X|Xj  s} and R2(j, s) = {X|Xj > s}

leads to the greatest possible reduction in terms of RSS at the current step rather
than at a future step.

Among all predictors X1, X2, ..., Xp and all possible values s for each of them,
the predictor and the respective value that minimize the equation:

X

i:xi2R1(j,s)

(yi � ŷR1)
2 +

X

i:xi2R2(j,s)

(yi � ŷR2)
2 (3.7)

is selected.

Figure 3.3: Resulting tree (Hastie et al., 2009).

The operation is repeated to further divide the data by minimizing the RSS
across all resulting regions until a certain stopping condition is reached.

Such a method is particularly handy when we have to deal with a large number
of covariates even when these are correlated between them or with the outcome.
On the other side, such algorithm is particularly prone to overfitting and this is
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especially true for large tree which fit the data too close producing highly variable
estimates and lack smoothness, often resulting in poor propensity scores’ estimates.
For further details, see Breiman et al. (1984), Hastie et al. (2009).

3.4.2 Generalized Boosted Models

In this work we implemented generalized boosted models, a multivariate, non-
parametric regression techniques to estimate propensity scores. The main idea be-
hind GBM is to build a piece-wise constant function flexible enough to approximate
a smooth curve by iteratively combining simple regression trees, overcoming many
of the problem of the regression tree algorithm.

We will now describe the algorithm in the case of the propensity score estima-
tion. Let ti denote the treatment indicator and p(xi) the propensity score for unit i.
Theoretically speaking, following the likelihood principles the best estimate of the
propensity score p(x) is the one that maximize the expected Bernoulli log-likelihood
function

E(`(p)) = E(ti log p(xi) + (1� ti) log(1� p(xi))|xi). (3.8)

For computational simplicity and to ensure that p(x) will vary inside the range
[0, 1] the algorithm models the log-odds of treatment assignment

g(xi) = log

✓
p(xi)

1� p(xi)

◆
,

that substituted into Equation (3.8) gives us the log-likelihood in terms of the re-
gression function g(x)

E(`(g)) = E(tig(xi)� log(1 + exp(g(xi)))|xi). (3.9)

Equation (3.9) will yield relatively large values when we have agreement between
g(xi) and ti, that is for ti = 0 when g(x) is negative or ti = 1 when g(x) is positive.

The algorithm assumes as initial state of Equation (3.9) ĝ(x) = log(t̄/(1� t̄),
where t̄ is the average treatment assignment indicator for the entire sample, and try
to iteratively search for a small adjustment, h(x), that can improve the propensity
score model’s fit to the data. When it finds h(x) such that

E(`(ĝ + �h)) > E(`((̂g)))

it updates the current guess as

ĝ(x) ĝ(x) + �h(x) (3.10)

for some step size �.
The gradient of Equation (3.9) with respect to g(x) indicates the local "di-

rection" providing the greatest increase in the expected log-likelihood. Therefore,
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Friedman (2001) suggests to take

h(x) =
@

@g(x)
E(L(g))

= E

✓
t� 1

1 + exp(�g(x))

����x
◆

= E(t� p(x)|x). (3.11)

as adjustment to the current g.
Equation (3.11) is actually the difference between the treatment indicator and

the propensity score, we can think about it as some kind of "residual" between the
actual data and the estimates achieved so far. This residual cannot be computed
without knowing the probability of assignment to the treatment but can be esti-
mated, from our sample, with a flexible (enough) least squares regression procedure.

To find h(xi) we use a regression tree algorithm (CART, as explained in the
previous section) and obtain a nonparametric estimates of the adjustment. Now,
one approach would be to predict the quantity (t � p(x)), from x, as the mean of
each partition residuals and then find the value of � that offer the greatest increase
in the log-likelihood. Friedman (2001) suggest, instead, to solve for the best update
separately for each region of the residuals feature space (identified by the terminal
nodes of the regression tree).

In this way the tree will partition the individuals of the sample, based on
the values of their covariates, and the optimal adjustment to ĝ(x) can be found
separately in each region solving

h(x) = argmax
✓

X

xi2Tk

ti log(ĝ(xi + ✓))� log(1 + exp(ĝ(xi) + ✓))

⇡
P

xi2Tk
ti � p(xi)P

xi2Tk
p(xi)(1� p(xi))

. (3.12)

for all units that fall into the kth partition, x 2 Tk.
The variability of ĝ(x) can also be reduced using a shrinkage coefficient ↵ 2

(0, 1]. Smaller values of ↵ allow the algorithm to slowly fit the data, increasing the
number of iteration needed to produce good propensity score’s estimates but, as
empirical evidence shows (Friedman, 2001), improving the overall fit of the model.
This shrinkage strategy reduces the variance (problematic for other ML methods
such as regression trees) without necessarily increasing the bias. The number of
iterations determines the model’s complexity and must be determined from the data.
At each iteration the model becomes more complex, fitting additional features of
the data and, with enough iteration, ĝ(x) is flexible enough to overfit the data.

Since balance between pretreatment characteristic is our goal, we will then
select the optimal iteration to be the one that maximize an external balance criterion
(such as ASAM or Kolmogorv-Smirnov statistic).
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Algorithm 1 Gradient Boosted Logistic Regression

1: Initialize ĝ0(x) = log t̄
1�t̄

2: for m = 1!M do
3: Let ri = ti � 1

1+exp(�ĝm�1(xi))

4: Construct a tree structured predictor of ri to partition the features into terminal
nodes T1, . . . , Tk.

5: Compute the updates for each terminal node:

✓k =

P
xi2Tk

ti � p(xi)P
xi2Tk

p(xi)(1� p(xi))

6: Update the logistic regression model as:

ĝm(x) ĝm�1(x) + ↵✓k(x)

where k(x) determines to which terminal node an observation with features x belongs.
7: end for

Figure 3.4: Boosted estimate (black curve) versus estimate from a linear model (blu line) of the
main effects on sample data (Ridgeway, 1999)

3.4.3 GBM for Balancing

Following closely the recommendations provided by McCaffrey et al. (2013) we im-
plemented GBM in order to estimate the propensity scores which weights achieved
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the best balance across groups. After a review of the GBM method we will now dis-
cuss how measures of imbalance can be optimized as stopping rules of the algorithm
in order to eliminate or reduce confounding.

Binary treatment

The key to achieve unbiased estimate of the ATT in a binary setup is to use GBM
in a iterative fashion. Ensure that the model can fit the data closely and select the
optimal number of iteration (and, therefore, the optimal number of trees) in order to
minimize a criterion based on the difference between weighted distributions of the
pretreatment covariates in the two groups. In practice, we have two main stopping
rules:

• Absolute standardized mean difference (ASD): the absolute value of the
difference between the weighted mean for treatment and control group, divided
by the unweighted standard deviation of the treatment group (for ATT)

ASDk =

��X̄1k � X̄0k

��
�̂k1

, (3.13)

where X̄kt is the weighted mean of the kth covariate for treatment (t = 1) or
control (t = 0) and �̂k1 is the standard deviation for the treatment group of
the covariate. Note that, when computing ATT, units of the treatment group
have weight equal to one, therefore X̄kt is the actual mean of the covariate for
that group.

• Kolmogorov-Smirnov statistic (KS): defined as the upper bound of the
absolute difference between the empirical distribution functions for the treat-
ment and control samples

KSk = sup
x

|EDF1k(x)� EDF0k(x)|. (3.14)

For covariate k,

EDFtk(x) =

Pn
i=1 wi[t]Ti[t]I(Xik  x)Pn

i=1 wi[t]Ti[t]
,

for t 2 {0, 1}.

Generally speaking, values equal or above 0.2, are considered "large". In this work
will take a more conservative approach, considering all values greater than 0.1 as
symptoms of imbalance,for both ASD an KS

Multinomial Treatment

McCaffrey et al. (2013) suggest to tuning the GBM fits specifically for the causal es-
timand of interest yield better balance and subsequent treatment estimation. There-
fore, for estimating the weights for the pairwise ATTs of t0 relative to t00 the method
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is to fit the treatment indicator for T = t0 using only the subsample with T 2 {t0, t00}
using the stopping rules for estimating ATT with binary treatment and then weight
the unit in the comparison group (t00) with the ATT weights defined by Equation
(3.4) for binary treatment. The procedure is repeated for all t00 6= t0.

Such approach follows from the fact that our target population is a particular
treatment group (t0) so we would like to find weight that make the covariate dis-
tributions for each other treatment group match the distributions of the t0 group.
Differently from the ATE procedure, it is not necessary to have all conditions in the
same estimation model for all the treatments and a pointed comparison between
pairwise treatments is sufficient to yield ATT weights with superior balance for each
comparison.

Effective Sample Size

Another important factor to take into account is the increase in sampling variance
due to the weighting procedure. The Effective Sample Size (ESS) is a conservative
way to capture such increase and its impact on precision.

Specifically,

ESSt =

⇣PN
i=1 Ti[t]wi

⌘2

PN
i=1 Ti[t]w2

i

, (3.15)

for treatment t and wi defined by Equation (3.4), provide a useful measure of dispar-
ity between the weights of the treatment group’s sample and the comparison one.
Very small values of ESSt relative to the actual sample size indicate that a small
number of units receive very high weights compared to the majority of the sample.

3.4.4 GBM hyper-parameter tuning

Like all the other ensemble methods, GBM is particularly sensible to hyper-parameter
tuning. Unlike statistical parameters, that can be learned from the data when fitting
the model, hyper-parameters are set prior to the training, cannot be estimated from
the data and dictate the behavior of the learning algorithm itself.

The choice of hyperparameters can greatly impact the performance of a ma-
chine learning model. Good hyperparameter settings can make the algorithm con-
verge faster and achieve better accuracy, while poor choices can lead to overfitting
or underfitting. Therefore, careful tuning is important to optimize these values for
the best performance on a given task.

In the GBM algorithm the parameters that controls learning process are:

• number of iterations (or regression trees): such value is crucial for governing
the overfitting - underfitting trade-off. Values that are too small result in too
general estimate of the dependant variable. The modeling algorithm did not
had time to learn the correct functional relation between the response and the
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covariates and does not capture important features of the data. On the other
side, with too many iterations we generally end up with overfitting the data.

• shrinking parameter ↵: as explained in Algorithm (1) smaller values of ↵
improve the overall fit of the model and the smoothness of the predictive surface
at cost of more iteration. There is a clear relationship with the shrinkage
parameter and the number of iteration.

• interaction depth: this parameter dictate the maximum depth (or number of
splits) of every tree added to the boosted regression model. Basically allowing
for different level of interaction between the covariates.

If we allow each tree to have only one split the update defined by Equation
(3.10) will look like:

ĝ(x) = g0 + g1(X1) + g2(X2) + g3(X2) + g4(X3) + g5(X1) + . . . (3.16)

. Since the algorithm adds terms sequentially, different variables could appear
many times. Grouping together those tree that split on the same variable will
result in an additive model allowing the algorithm to approximate any kind of
curve.

If we allow each tree to have two or more splits then we are fitting an additive
model with two or more interaction, respectively.

• bag fraction: following from Friedman (2002) GBM select at each iteration a
different random subsample of the data and use only that portion to estimate
the adjustemnt from Equation (3.12). The optimization of this stochastic
component may result in more robust estimates with lower bias and variance.

Griffin et al. (2017) have shown empirically that when using ML methods for
the task of estimating the propensity scores, optimizing the algorithm while "chasing
balance" rather than model fit provide lower bias and variance of the treatment effect
estimates, compare with the classical ML-workflow.

Practically speaking, instead of select the hyper-parameters that yield the best
prediction out-of-sample (using cross-validation or out-of-bag estimates) we focus
on the set of parameters that achieve the optimal balance with respect to causal
estimand of interest (ATT in our case) selecting the values that minimize either
Equation (3.13), either Equation (3.14) across all the covariates considered.

3.5 Outcome modeling

In this work we implemented both a design- and a analysis-based approach. In
particular, we used propensity scores weighting to balance the covariate distributions
in the different treatment groups and we computed the actual causal effect (ATT)
through G-computation (also referred to as G-formula, Robins (1986)).
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Effect Measure

A fundamental step of analysis stage is to decide how to measure the actual causal
effect. Given the binary nature of the outcome of interest we could compute the
effect as risk-difference (RD), risk-ratio (RR) or odd-ratio (OR).

In this work, the effect is measured using the risk-difference that closely re-
semble the form of the ATT expressed by Equation (2.15).

3.5.1 Doubly Robust Approach

The doubly robust (DR for short) approach aim to produce an unbiased estimator of
the treatment effect if either the model for the treatment assignment mechanism or
the model for the counterfactual data were correct, but not necessarily both. Doubly
robust estimation can also be more efficient than the simple weighted estimator, such
as IPWT (Neugebauer and van der Laan, 2005) and it can be used even if all the
covariates balance to provide protection against possible errors in the propensity
score model (McCaffrey et al., 2013).

Doubly Robust Estimator

The approach implemented in this work is trying to mimic the property of the doubly
robust estimator for ATT while maintaining a certain degree of separation between
the design stage and the effect estimation.

For the sake of completeness we will briefly introduce the doubly robust es-
timator. Starting from Equation (2.9) we know that E(Y |T = 1) is identifiable
directly from the data while the second term E(Y (0)|T = 1) is counterfactual. Un-
der the strong ignorability (Assumption (2)) we can write the counterfactual mean
as a function of the propensity score model e(X,↵), the treatment assignment T and
the outcome model µ0(X, �0) (in this case assumed to be a parametric regression
model of the covariates and the outcome)

µ̃dr
0T =

E [o(X,↵)(1� T ){Y � µ0(X, �0)}+ Tµ0(X, �0)]

e
, (3.17)

where e = pr(T = 1) is the marginal probability of the treatment and o(X,↵) =

e(X,↵)/(1� e(X,↵)).

Theorem 2 Under Assumption (2), if either the propensity score model e(X,↵) =

e(X) or the model for the potential outcome µ0(X, �0) = µ0(X) are well specified,
then µ̃dr

0T = E{Y (0)|T = 1}.

From Theorem (2) we can obtain, based on the data (Xi, Ti, Yi)ni=1, a doubly
robust estimator for ⌧T with the following procedure:

1. obtain the fitted values of the propensity scores e(Xi, ↵̂) and then obtain the
fitted values of the odds o(Xi, ↵̂) = e(Xi, ↵̂)/(1� e(Xi, ↵̂));
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2. obtain the fitted values of the outcome mean under control µ0(Xi, �̂0);

3. construct the doubly robust estimator: ⌧̂ drT = Ȳ (1)� µ̂dr
0T , where

µ̂dr
0T =

1

n1

nX

i=1

h
o(Xi, ↵̂)(1� Ti)(Yi � µ0(Xi, �̂0)) + Tiµ0(Xi, �̂0)

i
. (3.18)

In particular, we estimates the weights in the design stage using the GBM
algorithm as o(X, ↵̂) and the potential outcomes using g-computation in the analysis
stage as µ0(Xi, �̂0).

3.5.2 G - computation

We implemented G-computation as our framework of choice due to its generality.
Such method works the same regardless the form of the outcome model or the type of
outcome variable (whether continuous or binary) and can work with sample adjusted
by both weighting and matching methods. Moreover, G-computations enable us to
compute an analytic approximation of the variance of our effect estimate. Never-
theless, this approach overlooks the variability inherent in the estimated propensity
scores, which is a critical drawback. Despite this limitation, it has been established
that the analytic approximation yielded by G-computations acts as an upper bound
for the actual variability of the procedure (McCaffrey et al., 2004). This provides
a conservative estimate of the variability, circumventing the necessity for computa-
tionally demanding techniques such as bootstrapping.

Implementation

The first step of G-computation is to fit a regression of the outcome on the expo-
sure and relevant covariates, using the observed data set. This regression model is
frequently called the Q-model and this not different than a traditional regression of
a dependent variable on a set of covariates. Such model is used to predict the coun-
terfactual outcomes for each observation under each of the treatment level plugging
in T = t, with t = 1, 2, ...,M and M the number of treatments, into the regression
model. Once the counterfactual outcomes Yt are estimated we have a full data set
free of confounding (given the correct specification of the Q-model) and we have
finally resolved the missing data problem described in Chapter 2.

Having generated the full data we subsequently fit a marginal structural model
(MSM) on the outcome Yt for each of the treatment t:

E(Yt) = �0 + �1t. (3.19)

The final step is to compute the risk difference E(Yt0 � Yt00) for every t0 6= t00

considered. Since G-computation is thought to estimate marginal causal effect and
our causal estimand of interest is ATT, we only estimate potential outcomes (under
both treatment and control) using a sub-sample with only the treated units. For
further details, see Snowden et al. (2011).
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3.5.3 Weighted Logistic Regression as Q-model

When doing g-computation after weighting, the outcome model should be fit incor-
porating the estimated weights in this study we implemented, as our Q-model, a
weighted linear regression.

The model assumes a sample of n units drawn by a finite population of N

units, a given set of observation {(yi,xi); i 2 S} where y is the response variable
and x is a p-dimensional vector of possible explanatory variables. Such observation
are associated with a set of weights {wi; i 2 S}. In our case the weights are the
propensity score weight estimated by Equation (3.4).

The population is assumed to be a realisation of some probability model with
density f(Y |X; �), in which

g(E[Y |X = x]) = g(µ) = ⌘ = x0�, � 2 Rp (3.20)

where g(·) is the logistic function and marginal variance given by

V ar[Y |X = x] = �2V (µ). (3.21)

The model assume �0 as the true parameter value of the superpopulation,
namely the entire population from which the sample have been drawn, N for the
maximum quasi-likelihood estimator of �0 that would be obtained from the full
population (the census) and �⇤ is the true parameter for the limit in probability of
�̂n the estimator of the census parameter estimated from the sample.

Weighted Estimation

The classical design-based estimator solves

Û(�) =
NX

i=1

wiRiUi(�)

=
NX

i=1

Riwixi

✓
1

g0(µi)V (µi)

◆
(yi � µi(�)) = 0, (3.22)

which are unbiased estimating equation for �̃N and the resulting estimate �̂n is
asymptotically normal and a consistent estimate for �0.

The variance of �̂n is the sum of two components: the finite-population sam-
pling variance of �̂n around �̂N , of order n�1, and the model-based sampling variance
of �̂N around �0, of order N�1. When n⌧ N , the latter term is often ignored.

In this setting, the variance of
PN

i=1 wiRiUi(�) can be computed at � = �̂n by
the Horvitz-Thompson variance estimator (Horvitz and Thompson, 1952). A stan-
dard delta-method argument, gives the "sandwich" form A�1BA�1 for the estimated
variance of �̂n, with

A =
NX

i=1

wiRi
@Ui(�)

@�

����
�=�̂n

(3.23)
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and

B = ˆV ar

 
NX

i=1

wiRiUi(�)

!
. (3.24)

The relationship with our propensity score weighting problem is drawn by
Ri = Ti with Ti being our treatment assignment indicator and wi given by Equation
(3.4). A more depth discussion on the topic is out of the scope of this work, the
reader is referred to Lumley and Scott (2017).
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Chapter 4

Application

4.1 Research Question

Given its detrimental effects on health and well-being of the individual, loneliness
represents a significant public health issue (Holt-Lunstad et al., 2015). During the
COVID-19 pandemic enforced isolation measures have exacerbated this condition,
especially among older individuals (Macdonald and Hülür, 2021). Conversely, re-
mote contact has increased, potentially helping to counteract the negative effects of
reduce face-to-face interactions (Liddle et al., 2020).

Through the lens of the Intergen-COVID survey this study explores the im-
pact of non-physical contact patterns on perceived loneliness among older Italians,
providing insights into potential strategies for public health interventions in similar
future scenarios. In particular, our research question was:

How would people like those incrementing non-physical contact experi-
ence the change in frequency of loneliness feelings, had they not increased
such contacts?

To answer such question we estimated the causal effect of the increase in non-
physical contacts on severe loneliness.

4.2 Intergen-COVID

Data are based on Intergen-COVID online survey carried out in Italy, France and
Spain from 14th to the 24th of April 2020 through the market survey platform Lucid.
Data were collected through quota sampling targeting people aged 18+ for a total
sample of 9,186 individuals.

The survey aimed to investigate the indirect consequences of COVID-19 lock-
down measures on people’s lives, posing particular attention on four key domains:

1. relationship (inter-generational and other type, physical, non-physical),

2. living arrangements,
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3. mental health

4. events experienced during lockdown (income or job loss, death of a friend/relative
due to COVID-19) and future intentions (i.e., fertility, changes in marital sta-
tus, retirement).

Furthermore, the survey examined whether the effect of the restrictive measure
had an unequal impact on groups of population defined by key socio-demographic
characteristics.

Among the other results, the survey pointed out a general increase in non-
physical contact in all countries considered and about 35% of the respondents de-
clared to have felt lonely more often than usual during pandemic (Arpino et al.,
2020).

4.3 Exploratory Data Analysis

In this analysis we focused on a sub-sample of N = 1, 573 Italian individuals aged
50+. We will now describe the data used in the study posing particular attention
on the distributions of the outcome, the treatment (in both binary and multiple
setup) and some descriptive statistics on the potential confounders included in the
analysis.

4.3.1 Outcome: Severe Loneliness

The dependent variable of the study is the measure of changes in perceived loneliness
in the week previous to the survey.

Question 1 During the past week, have you felt lonely:

• Rarely or none of the time (e.g., less than 1 day)

• Some or a little of the time (e.g., 1-2 days)

• Occasionally or a moderate amount of time (e.g., 3-4 days)

• All of the time (e.g., 5-7 days)

In particular we focus on severe perceived loneliness and, therefore, the variable has
been dichotomized taking value 1 if respondent reported to have felt lonely "all the
time" and 0 otherwise.

From Figure 4.1 we notice that only 5% of the sample experienced severe
loneliness in the period previous to the survey.

4.3.2 Treatment: Increase in non-physical contacts

The treatment variable is represented by the increase in non-physical contact. Peo-
ple were asked about their change in non-physical contacts during the COVID-19
lockdown with non-coresident individual in two different questions.
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Figure 4.1: Distribution of severe loneliness among respondents.

Question 2 Considering non-resident persons only, since the entry into force
of the first nationwide restrictions due to the Coronavirus in your country, with
whom did you increase the frequency of non-physical contacts (e.g. on the phone)?

• children (1 or more)

• grandchildren (1 or more)

• mother and/or father

• grandparents (1 or more)

• other relatives (e.g. siblings)

• friends (1 or more)

• I did not experience an increase in non-physical contacts with non-resident
persons

In the first part of our work we posed our attention on people who answered
they had increased their remote contact with at least one non-coresident. We di-
chotomized the variable to take value 0 if the respondent answered "I did not experi-
ence an increase in non-physical contacts with non-resident persons" and 1 otherwise.
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Question 3 Considering non-resident persons only, since the entry into force
of the first nationwide restrictions due to the Coronavirus in your country, with
whom did you decrease the frequency of non-physical contacts (e.g. on the phone)?

• children (1 or more)

• grandchildren (1 or more)

• mother and/or father

• grandparents (1 or more)

• other relatives (e.g. siblings)

• friends (1 or more)

• I did not experience an increase in non-physical contacts with non-resident
persons

Figure 4.2: Distribution of changes in non-
physical contacts among respondents (bi-
nary).

Figure 4.3: Distribution of changes in non-
physical contacts among respondents (multi-
nomial).

In the second setup we considered mixed contact pattern for which people
might have increased their remote relations with someone and decreased or let them
unchanged with someone else, therefore we considered a multinomial treatment of
levels: "increase", "increase-decrease", "invariant-decrease".

From both figures we notice how more than half of the individual in our sam-
ple increased their non-physical contacts during lockdown in both the setups. In
particular for the multinomial treatment (Figure 4.3) we have 59% of individuals in-
creasing their contacts against 15% and 26%, experiencing "increase-decrease" and
"invariant-decrease" respectively. In a causal lens we can say that in both setups
at least half of the sample underwent the treatment. Moreover, the time-frames in

46



which the question regarding the outcome and the question regarding the treatment
are referring deserve particular attention. In our data the treatment precede the
cause, making clear the temporal relationship between cause and effect as required
by the Rubin model. Such distinction is crucial for the observational studies and
respect the design guideline exhorted by Cochran (1965).

4.3.3 Control Variables

Control variables include socio-demographic variables such as age (divided into
three age groups: 50-59, 60-69, 70+), gender, level of education (taking value low is
defined as below secondary education, medium as up to high school, and high refers
to a university education or above), employment status, economic situation, marital
status, cohabiting situation (taking value 1 if the respondent answered of living with
someone, 0 otherwise), neighborhood self-description, kin availability (taking value
1 if the respondent reported to have kin alive, 0 otherwise).

We considered health-related variables measured retrospectively to COVID-
19 pandemic: respondent self-perceived health status (expressed by "very good",
"good", "acceptable" or "poor"), a dummy variable taking value 1 if respondent re-
ported suffering from any chronic diseases and 0 otherwise and baseline self-reported
levels of both depression and loneliness pre-pandemic.

To improve the robustness of our results, we include a set of dummy variables
accounting for whether, during lockdown, respondent experienced: change in resi-
dence, death of relative/ friend due to COVID, relative or friend infected, income
loss or job loss. Descriptive statistics of the variable are presented in Table 4.1.

Table 4.1: Descriptive Statistics of Control Variables (%)

Variables Categories Total

Age "50-59" 36.5
"60-69" 35.8
"70+" 27.7

Gender Female 52.5
Male 47.5

Educational level High 25.4
Medium 57.6
Low 17

Employment status before lockdown Employed 39.2
Unemployed 8.14
Not able to work 0.7
Retired 0.39
Home care 9.73
Other 2.7

Marital Status Single 8.52
Married 65.90
Domestic partnership 8.58

Continued on next page
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Table 4.1 Continued from previous page

Variables Categories Total

Not cohabiting partnership 2.73
Separated/ divorce 8.77
Widowed 5.47

Income before COVID-19 pandemic Living comfortably 17.36
Coping 47.07
Finding it difficult 27.92
Finding it very difficult 7.63

Self-rated health Very good 10.55
Good 45.48
Acceptable 38.10
Poor 5.85

Chronic condition Yes 60.75
No 39.25

Kin alive Yes 97.39
No 2.61

Cohabiting Yes 88.23
No 11.77

Percieved depression pre-Lockdown More often than usual 43.76
Same as usual 21.50
Less often than usual 2.67
Never been 32.06

Percieved loneliness pre-Lockdown More often than usual 31.93
Same as usual 26.97
Less often than usual 4.07
Never been 37.02

Neighborhood self-description Big city 18.82
Suburb 11.06
Town 39.63
Village 26.39
Countryside 4.10

Experiences during pandemic Suffered income loss 31.42
Lost job 4.26
Death of relative/friend due to COVID 8.01
A relative or friend was infected 12.08

Note: N = 1,573.
Source: Intergen-covid online survey (Arpino et al., 2020).

4.3.4 Is there Selection?

Due to the missingess of our data about the unobserved potential outcome we cannot
study the relationship between outcome and covariates as we would do in a standard
statistical approach. Instead we proposed a detailde examination of the selection
bias due to the observed confounders.

Definition 4 (Selection Bias) Selection bias due to confounders occurs when in-
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dividuals who are treated are substantially different from those who are untreated in
terms of covariates that are associated with the outcome (Parast and Griffin, 2020).

In order to estimate the selection bias due to each of the observed confounder we
compare an unadjusted (naive) treatment effect estimate with the propensity score
adjusted estimate. The aim of the procedure is to identify the observed covariate
that explains the largest portion of the estimated selection bias and include them in
the propensity score model in order to remove the selection bias from the estimated
treatment effect. Pragmatically speaking, we can see the selection bias as measure
of the confoundess of our data, reducing or remove the selection bias from our data
will result in a unconfounded causal effect estimate.

For this analysis we will use two different approaches, namely single confounder
removal and single confounder inclusion. In the removal approach we will estimate
the bias comparing the fully adjusted estimate of the treatment effect with the ad-
justed estimate if one were to remove the confounder of interest. Both estimates are
obtained by adjusting the sample through the propensity score weighting procedure
mentioned in Chapter 3. The fully adjusted estimate is given by

�̂ps =

P
i:Ti=1 Y

obs
i WiP

i:Ti=1 Wi
�
P

i:Ti=0 Y
obs
i WiP

i:Ti=0 Wi
, (4.1)

where Y obs
i is the observed outcome of unit i, Ti 2 {0, 1} is the treatment indicator

and Wi are the propensity score weights described in Equation (3.2).
While the estimate that exclude the confounder Xj is defined as

�̂ps(�Xj) =

P
i:Ti=1 Y

obs
i Wi(�Xj)P

i:Ti=1 Wi(�Xj)
�
P

i:Ti=0 Y
obs
i Wi(�Xj)P

i:Ti=0 Wi(�Xj)
(4.2)

where p(�Xj) = Pr(Ti = 1|Xi{Xji}, Xi{Xji}) denote the propensity score estimated
after removing the confounder Xj and weights for unit i are given by

Wi(�Xj) =

8
<

:

1
pi(�Xj)

if Ti = 1
1

1�pi(�Xj)
if Ti = 0.

We define
�̂(�Xj) = �̂ps � �̂ps(�Xj) (4.3)

such that �̂(�Xj) estimate the shift due to the removal of confounder Xj from
the fully adjusted treatment effect and estimate the proportion of observed bias
explained by such confounder as

B̂(�Xj) =
�̂(�Xj)

�R
(4.4)

with �R =
Pk

j=1

����̂(�Xj)
��� being the the total bias capture by all the included

covariates.
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In order to estimate the adjusted treatment effect we use the non-parametric
procedure explained by Chapter 3 implemented in the SBDecomp R package (Parast,
2022). One important detail is that the selection bias estimated are relative to the
ATE (and not the ATT, our estimand of interest), their only function is to help us
understand better, on a sample level, which are the potential confounders of our
analysis that have to be included in the propensity score model in order to obtain
an unbiased treatment effect estimate.

Figure 4.4: Proportion of Estimated Selection Bias explained by each confounder using the
Removal approach (non optimized).

From Figure 4.4 we see how the loneliness pre-lockdown level, the self-reported
level of health, the availability of kin and the gender of the individual explain for
more than 50% of the entire selection bias (⇡ 59.3%) while the two dummy variables
accounting for change in residence of the respondent and job loss during the lockdown
did not contributed to the selection bias at all.

A slightly different picture emerge when the propensity score are estimated
with an optimized version of the GBM algorithm (more on that later on) as we can
see in Figure 4.5.

In this case the marital status of the respondents is the confounder that justify
most of the bias, around 17%, followed by the self reported health condition, the
baseline loneliness pre-pandemic, the availability of kin and the dummy variable
accounting for whether the individual suffered an income loss during the lockdown.
Together these covariate explain around the 50% of the selection bias while the
change in residence have not contributed to the bias at all. Is important to no-
tice that, even if the the estimate for such variable changed numerically speaking,
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Figure 4.5: Proportion of Estimated Selection Bias explained by each confounder using the
Removal approach (optimized).

the most important variables in defining the shift between the treatment and con-
trol group (namely loneliness.base, health.pre, kinless, income.loss) are
present in both version of the estimates.

The reason why we see such difference in the two estimated biases has to do
with the assumption made by the removal approach. In this method we are com-
paring the fully adjusted estimate against the estimated without the jth covariate,
therefore, assuming that the full adjusted estimate is unbiased and taking it as
reference.

In order to overcome such limitation we will now introduce the single con-
founder inclusion approach. Such approach aims to provide a better understanding
of the value of each single convariate included in the propensity score model in re-
ducing the selection bias beyond all the other observed confounders. In this case we
estimate the amount of bias removed from the naive treatment effect estimate

�̂naive =
1

n1

X

i:Ti=1

Y obs
i � 1

n0

X

i:Ti=0

Y obs
i , (4.5)

if one were to use a propensity score weighted estimate of the effect adjusting for a
single pre-treatment covariate.

The adjusted effect is given by

�̂ps =

P
i:Ti=1 Y

obs
i WiP

i:Ti=1 Wi
�
P

i:Ti=0 Y
obs
i WiP

i:Ti=0 Wi
, (4.6)

where the weights are those of Equation (3.2) using the propensity score pi(Xj) =
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Pr(Ti = 1|Xji).
We define the shift in the naive estimate captured by the observed confounder

Xj as
�̂ = �̂naive � �̂ps. (4.7)

and estimate the proportion of bias explained by Xj with

B̂(Xj) =
�̂(Xj)

�I
(4.8)

where �I =
Pk

j=1

����̂(Xj)
��� is the total bias due to the inclusion of the single covariate.

Figure 4.6: Proportion of Estimated Selection Bias explained by each confounder using the
Inclusion approach (same for both optimized and non-optimized GBM).

Once again, we find that, considered singularly, the variable accounting for the
biggest proportion of the selection bias are, as expected, the baseline loneliness pre-
lockdown of the respondent, the baseline depression, the availability of kin and the
self-assessed health condition pre-pandemic. These variables were proven already as
significantly correlated with the outcome of interest (Arpino et al., 2022), validating
our hypothesis regarding their fundamental inclusion in the propensity score model.
On the other side, variables such as the age, the education level and the dummy
variables accounting for change in residence and job loss never accounted for more
than ⇡ 7% of the total observed bias.

Curiously the variable accounting for the cohabiting situation of the respondent
explain the 12% of the selection when considered alone (Figure 4.6) and less than
3% when considered in the both the removal approaches tested, indicating that such

52



information might be strongly correlated with some other variable that express the
majority of the information about the co-living situation.

We will now briefly explore the relationship between the treatment and the
covariates that account for the largest proportion of the selection bias in order to
asses how these characteristics impact the change in non-physical contact (for both
dichotomous and multinomial treatments).

Treatment vs Loneliness Pre-Lockdown

As expected we strongly refuse the hypothesis of independence between the treat-
ment and the loneliness baseline (Table 4.2)

Figure 4.7: Proportion of pre-lockdown levels of loneliness with respect to the treatment (binary)

Test Statistic Degrees of freedom p-value
Pearson’s �2 test (binary) 15.415 3 0.001494
Monte Carlo test (binary) 15.415 - 0.0014
Pearson’s �2 test (multinomial) 38.361 6 9.549⇥ 10�7

Monte Carlo test (multinomial) 38.361 - 2⇥ 10�4

Table 4.2: Independence test: Binary Treatment vs Loneliness Pre-lockdown
Number of Monte Carlo replicates: 5000.

A deeper exploration of the relationship between the treatment and the per-
ceived loneliness pre-lockdown underline that, regardless the treatment setup, people
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who increased their non-physical contact are those who felt more lonely from the be-
ginning of the enforced "stay-at-home" while the "non-increasing" group felt lonely
"as usual" or have never felt lonely.

Figure 4.8: Proportion of pre-lockdown levels of loneliness with respect to the treatment (multi-
nomial)

Treatment vs Depression Pre-lockdown

Further confirmation of the importance of the baseline depression levels when ad-
dressing the selection bias can be found in the comparison between treatment indica-
tor. Such comparison show clearly how almost half of the people who increased their
non-physicial contact had a higher baseline depression compared with the "invariant-
decrease" group and such relationship does not differ in the multinomial setup. Fur-
thermore, we see how the "non-increased" group is composed by almost 40% of
people who have never suffer of depression.

Test Statistic Degrees of freedom p-value
Pearson’s �2 test (binary) 21.88 3 6.91⇥ 10�5

Monte Carlo test (binary) 21.88 - 0.0003999
Pearson’s �2 test (multinomial) 30.386 6 3.319⇥ 10�5

Monte Carlo test (multinomial) 30.386 - 0.0002

Table 4.3: Independence test: Treatment vs Depression Pre-lockdown
Number of Monte Carlo replicates: 5000.
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Figure 4.9: Proportion of pre-lockdown levels of depression with respect to the treatment (binary)

Figure 4.10: Proportion of pre-lockdown levels of depression with respect to the treatment
(multinomial)
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Treatment vs Availability of Kin

The analysis of the availability of kin with the respect to the treatment show a clear
trend in which people with no kin were less prone to not increase their non-physical
contacts. This might suggest that having kin available is associated with greater
flexibility or variability in nonphysical contact changes, whereas those without kin
show less variation and are less likely to increase their nonphysical contact.

Figure 4.11: Proportion of kinless people
with respect to the treatment (binary)

Figure 4.12: Proportion of kinless people
with respect to the treatment(multinomial)

Test Statistic Degrees of freedom p-value
Pearson’s �2 test (binary) 36.52 1 1.511⇥ 10�9

Monte Carlo test (binary) 38.729 - 0.0002
Pearson’s �2 test (multinomial) 39.835 2 2.238⇥ 10�9

Monte Carlo test (multinomial) 39.835 - 0.0002

Table 4.4: Independence test: Treatment vs Availability of Kin
Number of Monte Carlo replicates: 5000.

Treatment vs Health Condition Pre-pandemic

Curiously, the self-reported health condition, even if accounting for 7.7% - 14.2%
(Figures 4.4, 4.6) of the selection bias, result independent from the treatment as-
signment mechanism (Table 4.5).
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Test Statistic Degrees of freedom p-value
Pearson’s �2 test (binary) 7.3383 3 0.0618
Monte Carlo test (binary) 7.3383 - 0.0549
Pearson’s �2 test (multinomial) 11.16 6 0.0835
Monte Carlo test (multinomial) 11.16 - 0.0803

Table 4.5: Independence test: Treatment vs Self-Reported Health Pre-Lockdown
Number of Monte Carlo replicates: 5000.

Figure 4.13: Proportion of self-reported health condition pre-lockdown with respect to the treat-
ment (binary)

Figure 4.13 and Figure 4.14 enforce the idea that the health status does not
cause treatment assignment. However, it still affects the outcome, thereby inducing
selection bias in the estimation of the treatment effect. The independence from the
treatment indicator make the variable a perfect instrument to balance the treatments
group and would be considered in the propensity score model.

In any case, our analysis is to considered limited to our sample and relatively
to the treatment and outcome of choice. Therefore, given the uncertainty about
the real model and relationship that might affect the perceived loneliness we will
continue to consider all the background information as potential confounders and
include them in the final model for the propensity scores.
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Figure 4.14: Proportion of self-reported health condition pre-lockdown with respect to the treat-
ment (multinomial)

4.4 Balancing

After a detailed analysis of the sample we will now proceed explaining the necessary
steps we made in order to apply propensity score weighting to our data and the
results of such procedure.

As said before, due to its great flexibility in handling a large number of covari-
ates and its capability in capture any nonlinearities between the treatment assign-
ment mechanism and the potential counfounders, we will estimate the propensity
scores using GBM in the iterative fashion described in Chapter 3 (McCaffrey et al.,
2013).

The necessary step in order to implement propensity score weighting are:

1. Estimating the propensity scores for each treatment.

2. Compute the propensity score weights based on the causal estimand of interest
(in our case we will use ATT: Equation (3.4)).

3. Assess balance among groups using the desired balance metrics (Equation
(3.13); Equation (3.14)),

4. Assess overlap among treatment groups (this step might be considered as a
positivity check)
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5. Analysis-stage and causal effect estimation.

The entire workflow for propensity scores weighting is implemented in the twang R
package (Cefalu et al., 2022).

4.4.1 Binary Setup

We first start by defining our propensity score model including all the variables
mentioned earlier as covariates and the binary treatment assignment indicator Ti as
response variable

Ti =

(
1 if unit i increased the non-physical contacts
0 otherwise

Due to the implementation of the GBM, Table 4.6 represents categorical vari-
ables assigning a dummy to each level of the variable. The balancing statistics,
namely the absolute standardized difference and the Kolmogorov-Smirnov statistic,
are then computed for each dummy. Such procedure aim to minimize the difference
(or maximize the balance) between each level of the single factor.

From the balance table (Table 4.6), we notice that the majority of the variable
result balanced between treatment and comparison group with the exception of: em-
ployment status, income status, marital status, cohabiting situation (or coliving),
kinless, self-reported health status, depression baseline, loneliness baseline, self-
reported neighborhood description, the level of education, the dummy variable re-
garding the infection of a close connection experience and the one regarding income
loss (marked by red). In particular, the most unbalanced variables are the loneliness
baseline and the availability of kin.

Table 4.6: Unweighted Balance Table

Variable Treatment Control ASD KS

Mean SE Mean SE

female 0.487 0.500 0.443 0.497 0.088 0.044
agecat: 50-59 0.368 0.482 0.355 0.479 0.026 0.013
agecat: 60-69 0.352 0.478 0.375 0.484 -0.047 0.022
agecat: 70+ 0.280 0.449 0.270 0.444 0.022 0.010
edu: low 0.164 0.370 0.187 0.390 -0.064 0.024
edu: medium 0.590 0.492 0.535 0.499 0.111 0.055
edu: high 0.246 0.431 0.277 0.448 -0.072 0.031
empstatus: Employed 0.393 0.488 0.389 0.488 0.007 0.003
empstatus: Unemployed 0.077 0.266 0.095 0.293 -0.069 0.018
empstatus: Not Able to work 0.005 0.072 0.012 0.110 -0.098 0.007
empstatus: Retired 0.400 0.490 0.382 0.486 0.036 0.018

Continued on next page
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Table 4.6 – continued from previous page

Variable Treatment Control ASD KS

Mean SE Mean SE

empstatus: Home care 0.099 0.299 0.092 0.290 0.022 0.007
empstatus: Other 0.027 0.161 0.029 0.168 0.015 0.002
income: comfortable 0.171 0.377 0.180 0.384 0.023 0.009
income: sufficient 0.492 0.500 0.411 0.492 0.161 0.081
income: struggling 0.267 0.442 0.314 0.464 0.106 0.047
income: desperate 0.070 0.255 0.095 0.293 0.099 0.025
marital: Single 0.069 0.253 0.131 0.338 0.247 0.062
marital: Married 0.670 0.470 0.628 0.483 0.090 0.042
marital: Domestic partnership 0.087 0.282 0.083 0.275 0.015 0.004
marital: Not Cohabiting 0.030 0.171 0.019 0.138 0.062 0.011
marital: Separated/ divorced 0.084 0.278 0.097 0.296 0.046 0.013
marital: Widowed 0.059 0.236 0.041 0.199 0.076 0.018
coliving 0.898 0.302 0.837 0.370 0.203 0.061
changeres 0.010 0.101 0.012 0.110 0.018 0.002
kinless 0.011 0.105 0.068 0.252 0.541 0.057
healthpre: very good 0.096 0.295 0.131 0.338 0.118 0.035
healthpre: good 0.469 0.499 0.416 0.493 0.105 0.053
healthpre: acceptable 0.382 0.486 0.380 0.485 0.004 0.002
healthpre: poor 0.053 0.225 0.073 0.260 0.087 0.020
chronic 0.408 0.492 0.348 0.477 0.123 0.060
DDC 0.087 0.282 0.061 0.239 0.093 0.026
RFI 0.137 0.344 0.075 0.264 0.179 0.062
incomeloss 0.331 0.471 0.268 0.443 0.134 0.063
jobloss 0.041 0.199 0.046 0.210 0.025 0.005
depr.base: more often 0.471 0.499 0.343 0.475 0.257 0.128
depr.base: as usual 0.208 0.406 0.234 0.423 0.062 0.025
depr.base: less often 0.023 0.151 0.036 0.188 0.088 0.013
depr.base: never been 0.297 0.457 0.387 0.487 0.196 0.090
lone.base: more often 0.343 0.475 0.253 0.435 0.921 0.090
lone.base: as usual 0.253 0.435 0.316 0.465 0.145 0.063
lone.base: less often 0.045 0.207 0.029 0.168 0.075 0.016
lone.base: never been 0.359 0.480 0.401 0.490 0.088 0.042
neighbor: big city 0.185 0.388 0.197 0.398 0.031 0.012
neighbor: suburb 0.107 0.309 0.122 0.327 0.048 0.015
neighbor: town 0.402 0.490 0.380 0.485 0.046 0.023
neighbor: village 0.273 0.446 0.238 0.426 0.078 0.035
neighbor: countryside 0.033 0.178 0.063 0.243 0.172 0.031
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The first step of the procedure is to fit the GBM model and assessing the
convergence of the statistic. In a first moment we used the default parameters
of the algorithm. To assess the balance procedure we used the average over all the

Parameter Value

n.trees 10000
interaction.depth 3
shrinkage 0.01
bag.fraction 1
n.minobsinnode 10

Table 4.7: Default Parameters

covariates of both the absolute standardized difference and the Kolmogorov-Smirnov
statistics (referred as ASD, KS from now on).

Assessing Convergence

As explained in Chapter 3 the objective is to let GBM overfit the data and than
select the optimal iteration to be the one that minimize the balancing criterion.

Figure 4.15: Convergence plot of the GBM algorithm

The convergence plot in Figure 4.15 show the balance measures as a function of
the number of iterations of the GBM algorithm, where higher iterations correspond
to more complicated models. For both the statistics considered we can notice how
the optimal iteration is achieved between the first thousands iterations. This is
partially due to the fact that our two groups were already similar. On the other
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side, we notice how as the number of iterations and the complexity of the model
increase, manly due to the inclusion of the interaction terms, the balancing does not
improve, instead it get worse.

n.treat n.ctrl ess.treat ess.ctrl mean.es mean.ks iter
unw 1161 411 1161.00 411.00 0.114860 0.312611 -
es.mean 1161 411 1161 258.6691 0.034840 0.01336 1053
ks.mean 1161 411 1161 259.2129 0.034849 0.01335 1037

Table 4.8: Weighting summary statistics for binary treatment (no optimization)

From a numerical perspective Table 4.8 shows us different aspects of the weight-
ing procedure. At first glance, we see the comparison between the actual number
of units, in the treatment and comparison group, before and after the weighting
procedure capture by the effective sample size (ess). It is important to notice that
since we are interested in the ATT the treatment units are not weighted and the
value of units remain the same after the weighting procedure. For the control group,
instead, we see a reduction due to the increase variability added by the weighting
procedure.

Even if the difference between the two statistics is quantitatively very small,
the bigger effective sample size and the smoother converge curve Figure 4.15 brought
us to prefer the KS statistic as the main balancing criterion for the rest of the anal-
ysis. Furthermore, such statistics consider the differences along the entire empirical
cumulative distribution of the covariates and not the punctual difference in mean (as
for ASD) favoring a balance among the entire distribution of the variable at hand.

Assessing Overlap

In order to control if the positivity assumption is confirmed by the data we evaluate
the overlap between the distributions of the estimated propensity scores for both
groups. Contrarily to other balancing method, which require almost perfect overlap
(at the cost of discarding units), covariate balance can be achieved with weighting
even when propensity scores distributions show little overlap. In such cases tho, to
balance units that are very far apart in term of propensity scores, the weights must
increase in magnitude, potentially bringing numerical instability and degrading the
overall balance.

Evaluating Figure 4.16 we see few areas of non-overlap in the propensity scores
distributions, namely for value smaller than 0.3 or bigger then 0.9. While the dis-
tribution of the weights shown by Figure 4.17 does not underline any particularly
big weight.

Assessing Balance

Figure 4.18 illustrates the results of the balancing procedure comparing the magni-
tude of differences between groups on each pretreatment covariate before and after
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Figure 4.16: Boxplot of the estimated propensity scores for treatment (2) and control (1) group

Figure 4.17: Histogram of propensity score weights

weighting. The plot shows a substantial reduction in ASD for most of the covariates
(blue lines), with few variable showing a trivial increase (red lines), such increase
is mostly due to the covariate lone.base and kinless that had very different val-
ues between groups. In order to balance these two variables the algorithm slightly
increase the imbalance for other covariates that were closer before the weighting.
After the weighting we only have two covariates that register an absolut standard
difference greater than 0.1, namely chronic, dummy variable accounting for the
presence of chronic disease and agecat accounting for the age of the respondent,
with 0.137 and 0.104 respectively. Only the variable accounting for chronic disease
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results statistically significant after weighting (closed red circle).

Figure 4.18: Absolute standard differences before and after weighting (non optimized GBM)

Hyper-parameters Optimizations

After this first result we tested whether the optimization of the hyper-parameters
of the GBM algorithm would yield a better balance between groups. As we antici-
pated we found that, following Griffin et al. (2017), pursuing covariate balance when
optimizing the algorithm, indeed, yielded better results than the default setup.

We, therefore, defined the opt.balance.gbm function that, taking as input the
data and a grid of possible parameters for the algorithm (explained in Chapter 3),
train a GBM algorithm for each possible combination of the grid. For each instance
of the GBM the function proceeds to the numerical optimization of the KS statistic
over the predicted values of each iteration of the algorithm and find the one which
predictions minimize the balance criterion.

Parameter Value
n.trees 30000
interaction.depth 1
shrinkage 0.005
bag.fraction 0.5
n.minobsinnode 15

Table 4.9: Optimized GBM Parameters
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Afterwards, the set of parameters that yield the best value of the statistic (at
the optimal iteration) is selected as the best combination and returned to the user.
Such function provide an in-sample optimization of the algorithm and should be
re-applied any time the sample is modified.

In our case, we found that the suspicious about the worsening effect of the
increasing complexity of the model were correct and that simpler model (basically
without any interaction) would allow for better balance between groups. Also, our
findings suggested that increasing the number of iteration and decreasing the shrink-
age parameter resulted in better performance overall.

Using the parameters presented in Table 4.9 we were able to address, at the
cost of a higher number of iterations (Table 4.10), the problems of the first balancing
procedure, namely increasing the overlapped areas of the estimated propensity scores

(a) (b)

(c) (d)

Figure 4.19: (a) Converge plot, (b) Overlap of estimated propensity scores, (c) Distribution of
propensity score weights, (d) Absolute standard difference reductions, for optimized GBM
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distributions and removing any significant difference between the groups.

n.treat n.ctrl ess.treat ess.ctrl mean.es mean.ks iter
unw 1161 411 1161.00 411.00 0.114860 0.312611 -
ks.mean 1161 411 1161 259.2129 0.034849 0.01335 1037
ks.mean.opt 1161 411 1161 226.103 0.028653 0.00986 25003

Table 4.10: Numerical comparison with optimized GBM

4.4.2 Multinomial Setup

For a multiple (or multinomial) treatment setup McCaffrey et al. (2013) suggest to
repeat the same procedure of the binary case using only the subsample defined by
the treatment level of interest and only one other level, taken as comparison. We,
therefore, repeated the procedure twice, adjusting first the sample units identified by
the level "invariant-decrease" and then those who underwent the "increase-decrease"
treatment, in order to match the pretreatment characteristics of those individual who
"increased" their non-physical contacts.

Due to the differences between the two sub-groups we will now report the
table with the maximum values for the balancing descriptive statistics collapsed by
covariate. For the sake of brevity, we focus on the variables that shows unweighted
ASD greater than 0.1 in one of the two pairwise comparisons.

Table 4.11: Summary of balance statistics for covariate

Variable Max ASD Max KS

female 0.26 0.13
agecat:50-59 0.16 0.08
edu:low 0.10 0.04
edu:high 0.18 0.08
empstatus:Employed 0.16 0.08
empstatus:Retired 0.18 0.09
income:comfortable 0.10 0.04
income:sufficient 0.18 0.09
income:struggling 0.10 0.04
income:desperate 0.13 0.03
marital:Single 0.26 0.07
marital:Married 0.15 0.07
marital:Domestic partnership 0.11 0.03
marital:Not Cohabiting with partner 0.16 0.03
marital:Separated or divorced 0.11 0.03
marital:Widowed 0.17 0.04

Continued on next page
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Table 4.11 – continued from previous page

Variable Max ASD Max KS

coliving 0.16 0.05
kinless 0.64 0.06
healthpre:very good 0.12 0.03
healthpre:good 0.11 0.05
healthpre:poor 0.13 0.03
chronic 0.16 0.08
DDC 0.11 0.03
changeres 0.15 0.01
RFI 0.21 0.08
incomeloss 0.12 0.06
lone.base:more often 0.20 0.09
lone.base:as usual 0.30 0.13
lone.base:less often 0.11 0.02
lone.base:never been 0.27 0.13
depr.base:more often 0.25 0.13
depr.base:as usual 0.16 0.06
depr.base:less often 0.11 0.02
depr.base:never been 0.17 0.08
neighbor:suburb 0.11 0.03
neighbor:countryside 0.14 0.03

Given the computational complexity of the optimization procedure described
above, we decided to start with the optimized parameters selected, using the entire
sample, for the binary setup and to adjust them with empirical trials. We selected
the parameters presented in Table 4.12 as the set of hyper-parameters that showed
the best result in balancing both the sub-sample.

Parameter Value
n.trees 30000
interaction.depth 1
shrinkage 0.005
bag.fraction 0.75
n.minobsinnode 10

Table 4.12: Optimized parameter (multinomial GBM)

The only difference with the parameters used in the binary setup is the value
of the bag.fraction parameter that set the proportion of sample randomly selected
by the algorithm at each new iteration (Friedman, 2002). In this case, due to the
cardinality of the sub-samples (particularly the one relative to the comparison treat-
ment "increase-decrease", see Figure 4.3), we need more units in order to achieve
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good precision of the estimates.
The low number of units available for the comparison between treatment "in-

crease" and comparison "increase-decrease" is notable from the convergence plot of
the GBM algorithm that show a clear degradation of the balancing performance
after few thousands iterations.

Figure 4.20: Convergence plot of the GBM algorithm for pairwise ATT.

Nevertheless, overlap is achieved in both the pairwise comparisons.

Figure 4.21: Boxplot of the estimated propensity scores for pairwise ATT.

Balancing is achieved for both pairwise comparisons, with the only problem-
atic variable being the self-reported neighborhood description showing an absolute
standard difference of 0.1 in the "increase" versus "increase-decrease" weighted sub-
sample.
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Figure 4.22: Absolute standard differences before and after weighting for pairwise ATT.

4.5 Outcome Modeling

The last step of the procedure is the estimation of the actual effect that different
contact patterns had on the perceived severe loneliness. As explained in Chapter
3, we implemented a doubly robust estimator using G-computation with missing
potential outcomes estimated through a weighted logistic regression.

For the G-computation step we considered four different Q-models, each based
on a different set of covariates:

• Model 1: only the treatment indicator.

• Model 2: treatment indicator and baseline level of perceived loneliness pre-
lockdown.

• Model 3: treatment indicator, baseline level of loneliness and the pre-lockdown
level of depression (considered as a strong predictor of the outcome).

• Model 4: considering all the covariates included in the propensity score model.

Each model was fitted using the survey R package (Lumley, 2023) and the
respectively ATT was computed with the marginaleffects library (Arel-Bundock,
2023). We will now report the results of such fitting procedure of each model.
We will indicate only the estimate for the treatment indicators since all the other
coefficients might be strongly biased, due to the weighting procedure, and they do
not represent any causal relationship with the response variable.

4.5.1 Binary Setup

We quantified the effect of the increase in non-physical contacts as the risk-difference
in terms of the probability of experiencing severe loneliness.
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Specifically, we compare the probability of experiencing severe loneliness among
those who increased their non-physical contacts (denoted by 1) against the conter-
factual probability, of these same individuals, in experiencing loneliness had they
not increased their remote contacts (denoted by 0).

Table 4.13: Treatment coefficients and ATT estimates for each Q-model (binary treatment)

Treatment Model 1 Model 2 Model 3 Model 4

�̂ (SE) �̂ (SE) �̂ (SE) �̂ (SE)

Increase -0.7557** (0.2848) -0.8214** (0.3001) -0.8267** (0.3014) -0.9611** (0.3329)
ATT: 1-0 -0.0395* (0.018) -0.0392* (0.0167) -0.0395* (0.0168) -0.0362** (0.0125)

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

We find that in result to the increment of such contacts people experienced,
on average, a reduction in the probability of experiencing severe loneliness by ⇡ 4

percentage points.
As shown in Table 4.13, such a reduction was constant across all the models

adapted. In particular, we obtained very similar results for Model 1, Model 2 and
Model 3 , while for Model 4 we have small quantitative reduction of the effect and
an increase in its significance, suggesting that some of the variables included in the
model still account for some confoundness even after the weighting procedure.

Our results suggest that the treatment had a statistically significant and poten-
tially meaningful impact on reducing severe loneliness among the treated individuals.

4.5.2 Multinomial Setup

In the multinomial setup we fitted the weighted regression model using "invariant-
decrease" as reference level of the treatment factor, therefore, the estimates of the
regression coefficient are intended with respect to such level.

For the sake of clarity we will now denote the level "increase" as "1", the level
"increase-decrease" as "2" and the level "invariant-decrease" as "3".

Table 4.14: Treatment coefficients and ATT estimates for each Q-model (multinomial treatment)

Treatment Model 1 Model 2 Model 3 Model 4

�̂ (SE) �̂ (SE) �̂ (SE) �̂ (SE)

1 -0.8251* (0.3223) -0.8903** (0.3396) -0.8940** (0.3411) -1.1178** (0.3961)
2 -0.4236 (0.4970) -0.5365 (0.5106) -0.5294 (0.5094) -0.5599 (0.4666)
ATT: 1-3 -0.0459* (0.0222) -0.0441* (0.0198) -0.0442* (0.0198) -0.0411** (0.0148)
ATT: 1-2 -0.0182 (0.0233) -0.0143 (0.0204) -0.0148 (0.0205) -0.0177 (0.0164)
ATT: 3-2 0.0277 (0.0309) 0.0298 (0.0271) 0.0295 (0.0271) 0.0234 (0.0186)

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

In the multiple treatment analysis we found that the people who only increased
their non-physical contact during COVID-19 lockdown had a significant reduction
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in the probability of experiencing sever loneliness compared to the probability they
would had if they had let them unchanged or decrease. In this setup, such effect,
denoted as "ATT: 1-3" (see Table 4.14), is greater than 4 pp for all model tested.

Our suspicious is that considering only the individuals who only increased their
remote contacts allowed us to see clearly the effect of such an increase against what
would happened if they had not, after accounting for the impact of mixed pattern
of contacts.

In particular, we found the "increase" treatment diminished, from a numerical
perspective, the probability of perceived severe loneliness even when compared with
the mixed pattern "increase-decrease", but the comparison did not yield a significant
effect. Such result might be due in first place to the lower number of units undergoing
the mixed-pattern treatment. Secondly, it might be the case that, when considering
the severe loneliness as response, any pattern concerning an increase of connections
is helpful in lowering the probability of such outcome.

Regarding the comparison of the ATTs of the "increase-decrease" and "invariant-
decrease" treatments among people who increased their non-physicial contacts (de-
noted by "ATT: 3-2" in Table 4.14) we observe a positive numerical effect in all
model. This result is aligned with what we said so far, suggesting that the probabil-
ity of severe loneliness for individuals who increased their remote contacts (we are
always referring to the treated population) would have been higher if they did not
increase such connection even compared with a mixed situation in which, aside for
increasing non-physical contacts with someone, they also decreased their relations
with someone else. The lack of statistical significance of the effect suggests, anyway,
that there is insufficient evidence to do any claim regarding such comparison.

Finally, when examining the results of the different models we have that Model
4, accounting for all the covariates, produce a slightly more accurate estimate of
the ATTs of interests (lower SE) making the effect even more evident (p-value =
0.00542).

4.6 Limitations and Further Development

As in all statistical works, the key limitations of this study are assumptions. In
Chapter 3 we discussed that the results here presented are based on the strong
ignorability assumption and, therefore, they are valid only if the assumption holds.
Now, if positivity was measured and assessed checking the overlap of the distributions
of the propensity scores, unconfoundness remain an open question. In this study
we considered a set of variables accounting for potential confounders as robustness
check in order to account for all the possible observed confounders but we do not have
control over unmeasured characteristic that might influence the relationship between
non-physical contacts and severe loneliness (treatment and outcome, respectively).
Future studies might address the problem implementing sensitivity analysis and
assess the robustness of the results against potential unmeasured confounders or
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increase, based on new research, the set of covariates considered in the analysis.
Another limitation of our approach concerns with the variability of the treat-

ment effect. As we saw, the standard error of the Q-model account for the weight-
ing procedure through the Thomson-Horvitz estimator of the variance (Horvitz and
Thompson, 1952), such estimator assumes that the weights are given and, therefore,
does not take into account the uncertainty due to the propensity score estimation.
McCaffrey et al. (2004) suggest that ignoring the uncertainty of the estimation pro-
cedure and computing the variance using analytical estimator results in an upper
bound for the actual sampling variability of the estimated treatment effect for the
observed sample. This critique, while not posing any threat to the validity of our
results, could be easily addressed whit the implementation of bootstrap procedures
that empirically factor in such variability. In our work, due to the computational
complexity of the GBM, such procedures resulted prohibitive, so other solutions
might be explored to obtain the precise estimate of the effect variability.

Further research might also explore the treatment heterogeneity using the in-
formation (available in the Intergen-COVID survey data) on the specific commu-
nication technology used by the individual in order to understand which of them
(video-calls, instant messaging or social networks) have been more helpful in coun-
teract the loneliness feeling during the lockdown.
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Chapter 5

Conclusions

This study investigated the impact of different patterns of non-physical contacts
on mitigating the feelings of severe loneliness, especially among older Italian adults
during the COVID-19 lockdown.

While previous research have examined the efficacy of non-physical interactions
this work represents, to the best of our knowledge, the first application of a doubly
robust method combining a machine learning based approach to propensity score
weighting and G-computation for estimating the Average Treatment Effect on the
Treated (ATT). The integration of this methodological approach in our analysis
provides a novel perspective for future research in social health and well-being.

Utilizing data from the Intergen-COVID online survey, we demonstrated that
enhanced non-physical contact during the pandemic alleviated feelings of loneli-
ness among the study population. The analysis revealed that individuals who in-
creased their non-physical contacts saw, on average, a reduction in the probability
of experiencing severe loneliness by approximately 4 percentage points. This effect
was consistent and statistically significant across all models tested, highlighting the
potential of remote interactions in reducing the adverse effects of social isolation.
Although the increase treatment group showed a numerically lower probability of
severe loneliness compared to the ’mixed pattern’ group, the statistical analysis did
not reveal a significant difference. Our results also suggest that scenarios where
contacts are both increased and decreased might be beneficial in reducing the risk
of severe loneliness when compared with situation of complete reduction in connec-
tions. However, the absence of statistical significance in this comparison calls for
cautious interpretation of these findings.

For policymakers, these insights suggest the importance of promoting and fa-
cilitating non-physical interactions among older populations as a possible public
health intervention, particularly in times of enforced physical distancing.

In conclusion, our research has highlighted the potential of non-physical in-
teractions to mitigate loneliness. It is a clarion call for a collective and informed
response to one of the silent epidemics of our time – loneliness.
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