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1 Introduction 

1.1 Motion Capture Definition 
 

Motion capture is the process of recording a live motion event and translating it into 

usable mathematical terms by tracking a number of “key points” in space over time 

and combining them to obtain a single 3D representation of the performance [1].  

The subject to be captured can be anything that exists in the real word and has 

motion. The “key points” are the areas that best represent the motion of the subject. 

The location of these points is identified by one or more sensors or markers.  

Motion capture is used mostly for recording people moving and the data obtained can 

be used for different applications. The most popular are in the entertainment 

industry. In videogames it is used to animate athletes as in Figure 1.1, or to 

reproduce particular movement of the characters as to take a penalty kick in soccer, 

or to score a point in basketball. 

 

Figure 1.1. Joesph Gatt as the motion capture actor for 'KRATOS' from God 

Of War II & III on the mocap stage for SCEA in San Diego. 
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In filmmaking it is used to animate digital character models in 2D or 3D. The most 

famous film that used this technique is the “Lord of the ring” where the Gollum is 

animated by a real person which movements are captured using a passive marker 

system.    

Commonly it is used in medical application for gait analysis, rehabilitation and to 

increase athletes’ performance. Clinical studies require accurate motion knowledge 

for the diagnosis of locomotion difficulties in patients. Sports people use motion 

capture systems to record themselves in order to diagnose potential improvements in 

their performance. 

There are different systems to obtain this information from the “key points”: 

 

- Passive markers: 

In these systems, on each person there are attached a certain number of 

markers, manually coated with stripes of retro reflective material. The density 

and the position of the markers may vary depending on the number of 

information to obtain. For example, if it is important to model facial 

expressions, up to 350 markers should be put on the face of the person. 

Otherwise, to capture the movement of a leg and the foot, three markers one 

the foot to recreate its orientation and position plus one marker one the knee 

and one on the hip are enough. 

Around the stage where people move, there will be a certain numbers of 

cameras, usually between 6 and 40. Special cameras are used, sensible only to 

infrared radiation that is generated near the camera’s lens (the red dot in 

Figure 1.1 is the infrared strobe of the camera). When two or more cameras 

see the same marker, using epipolar geometry and knowing the exact position 

of each camera, it is possible to reconstruct its 3D position.  

In the reconstruction, there is a marker swapping problem, because all 

markers are equals so all possible couple of points have to be tested to find 

the right match.  

In this work and by Vicon Motion Systems are used these passive markers 

system are used these passive markers system. 

 



5 
 

- Active markers: 

In these systems rather than reflecting back the light that is generated 

externally, the markers themselves are powered to emit their own light. If 

they alternately light up very quickly it is possible to triangulate their position 

without matching problem. 

 

- Markerless: 

These systems don’t use markers for the 3D reconstruction. The most 

common systems use cameras placed in different positions. Particular 

algorithms extract the 2D shape of the body and combine them trying to 

recreate the 3D model of the subject. 

These algorithms first extract the shape of the human body from the image 

and then they try to match the shape with a dynamic model of the human 

body with usually 33 degree of freedom [2]. 

 

1.2 Vicon 
 

For this thesis, it has been chosen to do an internship in Vicon, the world’s largest 

supplier of precision motion tracking systems, and match moving software.  

Vicon is a subsidiary of OMG (Oxford Metrics Group), plc., a group of technology 

companies that produces image-understanding solutions for the Entertainment, 

Defense, Life Science and Engineering markets. Vicon and OMG global clients 

include: Life Science leaders University of Pennsylvania, the VA Hospitals, Shriners 

Hospitals for Children, Titleist Golf, The Andrews Institute; Engineering industry 

leaders Ford, BMW, Airbus, Lockheed, Pratt-Whitney, NASA, Caterpillar, 

International Truck, and Toyota; and Entertainment companies Sony Pictures 

Imageworks, Sony Computer Entertainment, Industrial Light and Magic, Sega, 

Nintendo, Ubisoft, Vivendi, Electronic Arts, Square Enix. 

Vicon offers a complete range of products from 2D video analysis through to the 

high accuracy of the 3D digital optical systems. The main product is the Vicon Mx 

system whose major components are cameras, the controlling hardware module and 

the software to analyze and present the data. There are many cameras; the most 
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commons are the “Bonita”, that offers the best price – performance mix with a frame 

rate of 240Hz and a VGA resolution. There are then the high resolution T-series 

cameras that go from 1 megapixel to the 16 megapixel motion capture camera 

capable of capturing 120 frames per second [3].  

 

 

Figure 1.2. Typical Vicon 10 cameras set-up. 

 

1.3 Centralized and Distributed Reconstruction 
 

In collaboration with the University of Padova, Vicon and the FeedNetBack 

European research project on network control systems, the aim of this work is to 

create a distributed algorithm for the 3D reconstruction of the markers.  

As described in chapter 2, Vicon uses a centralized algorithm; all data arriving from 

the cameras reach a single machine where they are processed. The performance of 

this solution although optimized, is highly dependent on the number of cameras and 

markers. Complex system with hundreds of cameras and thousand of markers cannot 

be analyzed in real time. In a centralized version it is difficult to increase the speed of 

the reconstruction because there is a trade-off between the time required and the 

accuracy. 
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In chapter 3, a distributed system is tested to spread the calculations on different 

nodes to increase the performance. A binary tree is chosen, its first level has a 

number of nodes equal to half of the number of cameras. Each node tries to 

reconstruct all possible 3D points using the data coming from two cameras and send 

these results to the nodes in the second level of the tree. These nodes try to 

reconstruct all possible 3D points using the preprocessed data coming from the node 

in the first level and so on, until the root merge all the information. 

The nodes in the first level of the tree process data from two cameras.  

In chapter 4, it is tried to evaluate if the two cameras can be associated random cally 

or if there is a better way to choose them. 

 

Computation 
Figure 1.3. Centralized approach. 
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A cost functional is introduced to evaluate the association using as parameters the 

volume shared and the angle between the cameras. There is also an analysis on the 

number of markers reconstructed in each level of the tree to test if most of the 

reconstruction is done in the first levels of the tree. 

 

Comp Comp 

Comp 

Comp Comp 

Comp 

Comp 

Figure 1.4. Distributed approach. 
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Figure 1.5. Marker reconstruction. 

In Figure 1.5 there is an example on how it is possible to reconstruct a 3D marker. 

From each camera a ray is traced between the optical centre of the camera and the 2d 

point impressed on its image plane from the 3D point.  

The intersection of the rays coming out from each camera forms a marker 

(highlighted in blue). 
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 Figure 1.6. 2d point association. 

 Figure 1.7. 2d points marked. 

  

Explanation of common terms (Refer to Figure 1.6 and Figure 1.7): 

2d point, centroid and ray are referred to the projection of a marker in the image 

plane of a camera. I 

Marked (or Grabbed) 2D point is referred to a 2D point associated with a big 3D 

point. Marked 2D points cannot be used to reconstruct other markers respect the 

one they are associated with. 

2d points associated to a 3D point are referred to the 2D points that are used to 

reconstruct a 3D point.  

3d point and Marker are referred to a 3D point in the space. It can be real or 

reconstructed by the algorithm. 

Big / Small 3D point is referred to a 3D point that is associated with a number of 

rays larger or equal / smaller than a certain threshold. 

Ghost 3D point is referred to a 3D point reconstructed by the algorithm but it does 

not exist for real. 

Missed 3D point is referred to a 3D point that is not reconstructed by the algorithm 

but it exists for real. 

Associated cameras is referred to the cameras that are analysed in the same node.  

P and Q are 3D points. 

 p is a 2D point associated with both 

P is a big 3D point while Q is a 

SMALL 3D point.  

The 2D points p, p’ and p’’ are 

associated only with P 
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2 Study of Vicon’s routine 
 

For the 3D reconstruction of the markers, Vicon uses a centralised approach. The 

algorithm used is non disclosable. Below there is a brief explanation. 

 

 

 

Figure 2.1. Scheme of the centralized algorithm. 

 

The complex structures of the algorithm consist of different nodes for diverse tasks 

that can run in parallel to speed up the algorithm. For example while Node D is 

writing the 3D points of frame 23, Node C can do the reconstruction of frame 24 and 

Node A and B can read the information of frame 25.  

Cameras 

information 

reader 

Centroids 

information 

reader 

Centralised 

Reconstructor 

C3D File 

Writer 

Calibration 

3D data 

2D data 

Node A Node B 

Node C 

Node D 

Function C.1 

Function C.2 
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Node A reads the cameras calibration information that contains all the intrinsic and 

extrinsic parameters of the camera. Node B reads the 2D centroids position that each 

camera creates in the image plane.  

The core algorithm is contained in Node C that does:  

1) It corrects the radial distortion of the centroid, using the hardware 

information,  

2) It calls two functions one after the other: 

a. The first reconstructs all possible 3D points and stores them in a 

queue, 

b. The second analyses the queue to extract only the valid 3D points. A 

3D point is valid only if it is associated with a number of rays bigger 

than a certain threshold, usually equal to three
1
 but in case the number 

of cameras is high (>60) the threshold can be higher.  

Function C.1 for each two cameras, exploiting the epipolar geometry, tries to match 

every couple of centroids. Using the fundamental matrix that correlates the two 

cameras is it possible to verify whether two 2D points can create a SMALL 3D point 

and if this is true, the pair of points is stored in the queue. Each time it finishes to 

analyse two cameras, it analyses the queue and using the information of the position 

of the 2D points and the Projection matrix of the cameras, calculates the 3D position 

of the marker. Subsequently this 3D point is back projected on all other cameras 

image planes looking for new correspondences. This is done looking for the closest 

2D point with respect to the 3D back projection and if the distance between the two 

is under a certain threshold, the 2D point can be used to reconstruct the 3D point. 

After examining all other image planes, the 3D position is re-estimated using the new 

2D correspondences.  

When at least three cameras see a 3D point it becomes BIG therefore all 2D points 

used to reconstruct it, are marked and they are not analysed again to create other 3D 

points, speeding up the algorithm. With the 3D position, a score is estimated based 

                                                           
1
 Two cameras are needed and usually enough to correctly reconstruct a 3D point, but sometimes 

more than two cameras are used to avoid ghost points. 
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on the quality of reconstruction. The easiest way to calculate the score is to count the 

number of rays that are associated with the 3D marker.  

Function C.2 analyses the 3D points before the output. First the queue is ordered 

based on the score of the 3D reconstruction. Each point is extracted from the queue 

starting from the one with the highest score. If the point is BIG (or it has more rays 

than a certain threshold), it is straightaway put into the output data structure; 

otherwise the algorithm checks that all the rays that form it are not used by other BIG 

3D points. If no ray is already used, the point goes to the output list. If a point has 

less rays than before there are two possibilities. If the rays are less than two, the 3D 

point is deleted because a 3D point needs at least two cameras that can see it. 

Otherwise the position of the point and its score are calculated again, using only the 

current numbers of rays. Then the point is reinserted in the ordered queue. 

The output list containing the valid 3D points is sent to Node D where they are saved 

in a c3d file [4]. 
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3 Distributed Reconstruction 
 

The main aim of a distributed system is to have the largest number of different tasks 

running in parallel, so that the algorithm can increase it performance in time, simply 

increasing the number of cores. 

In the specific case of 3D distributed reconstruction, the distributed algorithm is 

realised using a binary tree. The leaves receive in input the information coming from 

the cameras. The information is processed and transmitted to the internal nodes. In 

each internal node of the tree, the algorithm combines the information arriving from 

the two nodes of the lower level. The root node output contains the final 

reconstruction of the markers.  
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The total number of levels is  log2(#𝑐𝑎𝑚𝑒𝑟𝑎𝑠) and using a binary tree structure, the 

total number of cores is #cameras – 1. 

 

 

3.1 Implementation details 
 

The aim is to make most of the reconstruction at the low levels of the tree, where 

there are lots of cores working in parallel. Intuitively if most calculations are made at 

high level, the distributed algorithm requires a longer time than a centralised one 

because of its complexity. 

Two different programming languages are chosen to develop the algorithm: Matlab® 

and c++. 

Matlab is used for the first phase of the procedure:  

- to create the synthetic markers; 

- to create the synthetic cameras; 

- to calculate the affinity function; 

- to create the tree;  

- to evaluate the number of 3D markers reconstructed at each level of the tree; 

- to simulate a camera that projects the 3D position of the markers on a 2D 

image plane; 

- to add a Gaussian error to the centroid; 

- to store the centroid position information in a random or a predefined way; 

- to store the cameras position information in a random or a predefined way.  

 

The second phase of the procedure is related to the proper reconstruction algorithm. 

This is written in c++ with Microsoft Visual Studio®. The reasons behind this choice 

are that the first phase doesn’t need to be in real time and Matlab even if it is slower 

than c++, from the workspace, permits to assess easily to the content of the variables. 

Part of the Matlab’s code is taken from report[5].  

The reconstruction algorithm is written in c++ for two reasons: 

1) It is a compiled language so it is faster and more efficient than Matlab.  

2) It is easy to integrate in Vicon algorithms that are written in c++ too. 
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3.2 Algorithm description 
 

Two version of the reconstructor class are written.  

The first reads the synthetic centroids and the cameras information from a text file 

realized in Matlab. Then it simulates a distributed algorithm to reconstructs the 3D 

position of the markers and saves them into a text file (Figure 3.2).  

 

Figure 3.2. Simpler distributed reconstructor. 

The second version is more complex and is integrated in the Vicon reconstruction 

algorithms (Figure 3.3). It reads real data and stores them in a c3d file, which can be 

opened with Vicon Nexus® (The main aim of Vicon Nexus is to reconstruct the 2D 

information coming from the cameras and visualize them in a virtual 3D space) [3]. 

This software can display the 3D reconstruction  

 

Cameras position 

created in Matlab 

Centroids position 

created in Matlab 

Simulated Distributed 

Reconstruction 

Save 3D points in a 

text file 
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Figure 3.3. Full integrated distributed reconstructor. 

 

The creation of a real distributed algorithm is complex because it requires a large 

number of CPU. For example, with 512 cameras the number of nodes in the first 

level of the tree is 256. The total number of node in the binary tree is equal to the 

number of cameras minus one so in take case 511. In this work for simplicity a 

simulated distributed algorithm is implemented and is run in only one core. 

Each node of the tree should be able to manage an input coming from 2 sources. 

These inputs are the 2D points arriving from one or more cameras at lowest level and 

the 3D points created in other levels of the tree. Each node has an output which 

consists of 2D points and 3D points and can access to a shared memory containing 

the cameras information (Figure 3.4). 

A node does the elaborations that are needed to correlate all possible 2D points with 

all possible 3D points. When the number of rays associated with a 3D point exceed a 

certain threshold, usually three, it is possible to delete or mark the 2D points for 

further analysis. 
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Consideration about the deletion of rays used and BIG 3D 

A consideration should be done on the exact definition of marking a ray.  

In the centralised version, when a ray is marked, there is a support data structure that 

contains a boolean information about all the rays. The algorithm uses a ray only if it 

is not marked.  

In this distributed algorithm, marking a 2D point means to delete it. 

In the distributed version, it is chosen to delete them rather than to mark because 

every node of the distributed system has to transmit some data to the following node. 

The less information is transmitted the better. By deleting the 2D points and not 

having a support data structure for the marked point, the amount of information to 

send between the nodes is reduced. As it is possible to see in chapter 4, the amount of 

2D points sent in the first level is 7588, in the third 3436 and in the seventh 492. 

Every two levels the number is halved and the communication time is lower.  

When the algorithm associates new single 2D point with a 3D point, its position 

cannot be recalculated. But in a big set-up, this problem is negligible, because the 

high number of cameras should guarantee that each marker is seen by many cameras, 

and so with the 3D+3D phase is possible to improve the precision of the 

reconstruction. 

 

 

As it is possible to see in Figure 3.4, these are the inputs: 

1. 2d_input1 

2. 3d_input1 

3. 2d_input2 

4. 3d_input2 
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Figure 3.4. Inputs and Outputs of a node. 
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There are three possible combinations to elaborate the inputs: 

1. 2d_input1 + 2d_input2 

2. 3d_input1 + 2d_input2 (and vice versa) 

3. 3d_input1 + 3d_input2 

It is very important the sequence of these operations in order to reduce the number of 

centroids to analyse and to avoid the creation of multiple-equal 3D points. The best 

sequence starts with the 3d_input1 + 3d_input2, then the 2d_input1 + 3d_input2 

(and vice versa) and finally the 2d_input1 + 2d_input2 because it guarantees the 

diminishing of most of the 2D point as soon as possible. In Figure 3.5 this sequences 

are expressed by the phase 3D+3D, then the 3D+2D and finally 2D+2D. 

 

Figure 3.5. Scheme of the distributed algorithm. 
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3.2.1 3D + 3D function 
 

At the beginning, the algorithm merges the 2 inputs of 3D points. In a distributed 

approach, in fact, it is very easy that different nodes reconstruct the same 3D points. 

To avoid the problem of having multiple copies, each node checks how each 3D 

point in input1 is far from every 3D point in input2. If their distance is under a 

certain threshold, they can be considered as a unique point. In this case, the algorithm 

creates a new 3D point and calculates its position doing a weighted mean of the 3D 

points previous position, based on the number of rays that from them. 

New3Dposition = (3Dpoint1_position/totalray*ray1) + (3Dpoint2_position/totalray*ray2). 

Then, the algorithm associates all 2D points matched with the previous 3D points to 

the new one. The 3D point just created can be put directly in the output list of the 

node, because it never needs to be compared with any other 2D points. This is 

because if a 3D point is obtained by merging two 3D points coming from the 2 

inputs, it is already associated with the 2D points of both inputs. The two 3D points 

that create it are deleted. 

If the new 3D point is BIG, all rays that form it must be marked as used, so that no 

other 3D points can be associated with it.  

There are different cases depending on the status of the preceding 3D points. If both 

were BIG, all rays forming the new 3D points are already marked; if one was not 

BIG, the algorithm marks its rays; if both were not BIG, all their rays are marked.   

The pseudo code 3.1 of this function can be found at the end of this chapter. 

Input of this function 

In this function are analysed the lists of 3D points coming from the two input. 

Output of this function 

The new 3D points go directly to the output of the node, while the 3D points that 

didn’t matched remain in the same input data structure and they are analysed by the 
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next function. If a 3D point becomes BIG, its 2D associated points are marked and so 

the 2D inputs are changed.  

 

3.2.2 3D + 2D function 
 

In this function the algorithm looks for new correlation between the 3D points of 

input1 and the 2D points of input2 and vice versa. One possible solution to this 

problem is to use a similar way to Vicon approach. Every time a 3D point is found, it 

is back-projected on all the other cameras plane to look for correspondences.  

Theorem 1: 

In a distributed approach, considering a node that performs the 3D+2D function.  

If: 

(1) A node does all possible associations that it can; 

(2) A 3D point becomes BIG when it is associated with at least 3 rays. 

Then a 3D point from input1 can be associated with no more than 1 not marked point 

from input2. 

Proof: by Contradiction: 

Supposing that input1 comes from node A and input2 from node B. A 3D point 

coming from node A is associated with two (not marked) points from node B. In 

node B those 2D points are already associated to form a SMALL 3D point for the 

first hypothesis. But this SMALL 3D point in the 3D+3D phase in the current node is 

merged with the 3D point coming from node A and creates a BIG 3D point for the 

second hypothesis. The consequence is that all associated 2D points are marked, but 

this is in contrast with the assumption that both points were not marked.  

If the new 3D point is BIG, all rays that form it are marked. 

The pseudo code 3.2 of this function can be found at the end of this chapter. 

Input of this function 



23 
 

In this function are analysed the 3D point not matched in the previous function and 

the 2D information coming from the inputs. 

Output of this function 

All the 3D points analysed here go to the output list of the node because they are not 

used in the 2D + 2D function. In the 2D inputs there are some changes due to 

possible creation of BIG 3D points that mark the associated 2D points.  

 

3.2.3 2D + 2D function 
 

In this function all possible new 3D points are created starting from the 2D 

information.  

Theorem 2: 

In a distributed approach, considering a node that performs the 2D+2D function.  

If: 

(1) A node does all possible associations that it can; 

(2) A 3D point becomes BIG when it is associated with at least 3 rays. 

Then the new 3D points are created from no more than two 2D (not marked) points. 

Proof: by Contradiction. 

Supposing that input1 comes from node A and input2 from node B, it is possible to 

create a 3D point from three 2D points, two of them must arrive from the same input 

for example node A, the other arrives from node B. But for hypothesis 1, from the 

same node there must be the 3D point associated with those two 2D points. In this 

node in the 3D + 2D function the algorithm associates that 3D point with the single 

2D point from node B and for the second hypothesis it becomes BIG because three 

rays form it, which are marked as used. In this 2D+2D function all three 2D points 

are marked and this is in contrast with the assumption that the three points were not 

marked. 



24 
 

For creating a 3D point starting from two 2D points, it is used the same approach as 

Vicon. All cameras from input1 are compared with all cameras from input2. For each 

couple of cameras using the fundamental matrix, it is possible to check if they can 

create a 3D reconstruction and it is true, the position of the 3D point is calculated and 

is associated with the 2D points.  

The pseudo code 3.3 of this function can be found at the end of this chapter. 

Input of this function 

Here are analysed the cameras information coming from the two inputs. 

Output of this function 

All the 3D points created here go to the 3D output list of the node.  
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Level (first vector) 

3.3 Data structures 
 

It is not trivial to choose the data structure to contain the 2D and 3D information. 

Based on Vicon’s code, for the 3D points the class VReconHypothesis is 

chosen, while for the 2D points the class VCentroidSet is chosen. 

VReconHypothesis permits to store lots of information. The most important are 

the x, y, z position of the point, a Boolean variable that says if the point is BIG or 

SMALL, the number of rays associated with the point and a vector with a reference 

to the associated 2D points. The reference is a pair that contains the number of the 

camera and the number of the centroid. This information is very important because, 

when a point becomes BIG, the algorithm must mark the points that create it. 

The class VCentroidSet contains a vector that stores the position of the 2D 

points for every image plane. 

The algorithm, to simulate a real distributed situation, creates a more complex data-

structure. In particular: 

 

std::vector< std::vector< std::vector< const VCentroidSet *> > > 

std::vector< std::vector< std::vector< VReconHypothesis > > > 

 

The first vector has the same size of the tree level number. 

The second vector has the same size of the nodes number in that level of the tree. 

The third vector has the same size of the cameras number in that node. 
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When the algorithm starts, it reads the number of cameras and resizes all vectors 

inserting the centroids information of the cameras. The total number of levels is =  

log2(# 𝑐𝑎𝑚𝑒𝑟𝑎𝑠) ; the number of nodes in level i is =  
# 𝑐𝑎𝑚𝑒𝑟𝑎𝑠

2𝑖  ; the number of 

cameras in each node of level i is =  2𝑖 .  

Then it calculates the projection matrix of every camera and for every couple of 

cameras it calculates the Fundamental matrix. 

 

To simulate the distributed system, the algorithm starts a series of cycles, one cycle 

for each tree levels with inside a cycle for every node using the complex data-

structure described before.  

When all cycles are finished, the output of the last node contains the markers 3D 

reconstruction. 

 

In each node, a total of 5 functions are called, the 3D+3D, 3D+2D and 2D+2D plus 

other two functions for preparing the output results. 

The performance in time of the algorithm is calculated summing for each level the 

time taken by the slowest node.  

 𝑇𝑜𝑡𝑎𝑙𝑇𝑖𝑚𝑒 =  max
1≤𝑘  ≤# 𝑛𝑜𝑑𝑒𝑠  𝑖𝑛  𝑙𝑒𝑣𝑒𝑙  𝑖

 𝑡𝑘 

#𝐿𝑒𝑣𝑒𝑙𝑠

𝑖=1

,   𝑡𝑘  𝑡𝑖𝑚𝑒 𝑡𝑎𝑘𝑒𝑛 𝑖𝑛 𝑛𝑜𝑑𝑒 𝑘 (3.1) 

 

This time is a good approximation of the real elaboration time of a distributed 

system. The main difference is that all times due to communication between different 

nodes are not taken in consideration, because those times depends on a lots of 

parameters like the connection speed between nodes, the lag introduced by the 

communication protocol and the fact that nowadays most processors contains 4 or 6 

cores with very fast shared memory. The total amount of 2D and 3D data transmitted 

is saved for each experiment. 
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3.4 Parameters analysis 

 

In this part, the intention is to correlate the parameters used and the performance of 

the algorithm. 

For the reconstruction three parameters are needed.  

The first is called “SampsonImageError” and is used in the 2D+2D phase to 

evaluate if two 2D points can be used to reconstruct a 3D point. The Sampson Error, 

in particular gives a first order approximation of the error between the back-

projection p and p’ of the reconstructed 3D point P and the two original 2D points 

used to create P (Figure 3.7) [6] [7]. 

 

 

Figure 3.7. SampsonImageError. 

 

The second is called “distance2d3d” and is used in the 3D+2D phase to evaluate if 

an already existing 3D point can be associated with a 2D point from a new image 

plane. As it is possible to see in Figure 3.8, if the distance between p and q is under 

the distance2d3d threshold, the 2D point q is associated with point P. 

 

 

Figure 3.8. Distance2d3d. 
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The third is called “distance3D” and is used in the 3D+3D phase to decide if two 3D 

points represent the same or not. As it is possible to see in Figure 3.9, if the distance 

between point Q and P is under a certain threshold, they are merged to form a unique 

3D point. 

 

Figure 3.9. Distance3D. 

 

The first and the second parameters are very important and are usually three times 

bigger than the “CameraImageError” that is an error calculated directly by each 

camera it is usually equal to 0.2 pixel. When synthetic data are used they have to be 

chosen manually.  

The third is chosen depending on the size of the marker, a typical value is 7 mm. 

 

Every time the numbers of makers and cameras are changed, also the parameters 

required to be changed to obtain a better result in term of performance and accuracy. 

An example is presented in the Graphs 3.1, 3.2 and 3.3 created with 512 cameras and 

846 markers. 
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Graph 3.1. Max Time in each level. 

The only parameter modified in the different trials is the distance2d3d. This 

parameter is used in the 2D + 3D phase of the distributed algorithm: increase this 

parameter means to be less strict looking for new rays to associate to existing 3D 

points. As soon as the 3D points become BIG, all 2D points are deleted. If the 

distance2d3d parameter is increased too much, the performance in terms of accuracy 

starts decreasing because some 3D points are associated with the wrong 2D points. 
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Graph 3.2. 2D points. 

 

Graph 3.3. 3D points. 
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Pseudo code 3.1:     3D+3D function 

Input:   3Dinput1, 3Dinput2. 

Merge3Dpoint() 

{ 

for  i = 0 : 3Dinput1.size // for each 3D point from input1 

for  j = 0 : 3Dinput2.size // for each 3D point from input2 

{ 

dist = euclidean_distance( 3Dinput1[i] , 3Dinput2[j] ); 

if ( dist > distance3D threshold) continue; 

create 3Dnewpoint; 

3Dnewpoint.rays.pushback (3Dinput1[i].rays); 

3Dnewpoint.rays.pushback (3Dinput2[j].rays); 

ray1 = 3Dinput1[i].rays.size; 

ray2 = 3Dinput2[j].rays.size; 

totalray = ray1 + ray2; 

//new weighted position 

3Dnewpoint.m_X = (3Dinput1[i].m_X/totalray*ray1) + (3Dinput2[j].m_X/totalray*ray2); 

3Dnewpoint.m_Y = (3Dinput1[i].m_Y/totalray*ray1) + (3Dinput2[j].m_Y/totalray*ray2); 

3Dnewpoint.m_Z = (3Dinput1[i].m_Z/totalray*ray1) + (3Dinput2[j].m_Z/totalray*ray2); 

if ( 3Dinput1[i].isBig && 3Dinput2[j].isBig ) 

{ 

delete  3Dinput1[i] and 3Dinput2[j];  

continue; 

} 

if ( 3Dinput1[i].isBig) 

{ 

marks all rays that forms 3Dinput2[j] 

delete  3Dinput1[i] and 3Dinput2[j];  

continue; 

} // do the same as above for the other input 

if ( 3Dnewpoint.isBig ) 

{ 

marks all rays that forms 3Dinput1[i] and 3Dinput2[j] 

delete  3Dinput1[i] and 3Dinput2[j];  

continue; 

} 

Add 3Dnewpoint to the 3D output list. 

} 

end for 

end for 

} 
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Pseudo code 3.2:     3D+2D function 

Input:   3Dinput1, 3Dinput2, 2Dinput1, 2Dinput2. 

Find3Dcorrespondances() 

{ 

for  i = 0 : 3Dinput1.size // for each 3D point from input1 

for  j = 0 : 2Dinput2.size // for each camera from input2 

{ 

2Dbackproj = back-projection of the 3D point i in the 2D camera image plane j 

for k = 0 : 2Dinput2[j].size // for each centroid in camera j 

find the nearest centroid in camera image plane j in respect of the 2Dbackproj and stores 

it in nearest2Dpoint, saves its position in the 2Dinput2[j] vector in k_near 

end for 

dist = euclidean distance between 2Dbackproj and nearest2Dpoint 

if ( dist < distance2d3d threshold) // the new 2D point forms the 3D point  

3Dinput1.rays.pushback ( pair(j,k_near) ); 

if ( 3Dinput1[i].isBig) 

{ 

marks all rays that forms 3Dinput1[i]  

} 

} 

end for 

end for 

} // do  the same function reversing the two inputs. 
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Pseudo code 3.3:     2D+2D function 

Input:   2Dinput1, 2Dinput2. 

Matching2D() 

{ 

for  i = 0 : 2Dinput1.size // for each camera from input1 

for  j = 0 : 2Dinput2.size // for each camera from input2 

for k = 0 : 2Dinput2[j].size // for each centroid in camera j 

for w = 0 : 2Dinput1[i].size // for each centroid in camera i 

{ 

2Dpoint1 = 2Dinput1[i][w]; // centroid number w in camera i 

2Dpoint2 = 2Dinput2[j][k];  // centroid number k in camera j 

if ( both centroids are not marked) 

{ 

if ( the two 2D points can create a 3D point) 

{ 

creates and stores it in 3Dnewpoint  

add 3Dnewpoint to the 3D output list 

} 

} 

} 

end for 

end for 

end for 

end for 

} 
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4 Analysis of the functionals cost 
 

In a distributed cameras system for motion capture reconstruction, the most vital 

aspect is the way in which the cameras associate.  

A group of cameras is associated if they are analysed in the same node of the tree. 

If the cameras look at different directions, it is possible that, if they are associated in 

a random way, some of them don’t share any marker. 

The node that contains those cameras is not able to reconstruct any 3D point, so no 

2D points are deleted in the first tree levels. 

The best way to evaluate the association between two cameras is to estimate the total 

volume that they share: the larger the volume, the higher the probability they see the 

same markers. 

Moreover, it is very important to estimate the position of the markers with a good 

approximation. For this reason, the angle between the optical rays of the two cameras 

should be as close as possible to π/2. 

In the next paragraphs, two functionals costs are introduced. They evaluate the 

volume and the angle between the cameras. For each couple of cameras, the 

functional value is placed in a matrix, in which it is possible to find the best 

associations. 

 

4.1 Study of the angle between cameras 
 

For a more accurate reconstruction, the 2 cameras used to reconstruct the 3D point, 

should have an angle of π/2 between their normal. With this angle, the uncertainty in 

the reconstruction of the rays’ intersection is at its minimum (Figure 4.1). 
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Figure 4.1. Uncertainty area with 90° cameras. 

Instead, if the angle is near 0 or π the uncertainty is at its maximum (Figure 4.2).  

 

Figure 4.2.  Uncertainty area with 180° cameras. 
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A function that well approximates this situation is the sin function 

 

 

Graph 4.1. Sin function. 

 

In the graph, near 0 and π the function is close to zero. In π/2 the function is close to 

one.  

The sin function does not take into consideration practical problems that might 

happen while working with markers on solid objects. For example, a marker on a 

hand is seen perfectly by all cameras with an angle < π/2 with respect to the normal 

of a hand. All cameras with an angle > π/2 don’t see that particular marker, because 

it is hidden by the hand itself. In Figure 4.3 is possible to see an example of an 

occlusion. Marker p1 is perfectly seen by camera C1 but camera C2 cannot see it 

because it is obstructed by the solid object. 
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Figure 4.3. Occlusion example. 

 

This situation can be modelled with a more complex function considering that the 

probability to have an occlusion is higher when there is a large angle between the 

two cameras.  

A good approximation based on experimental evaluation, use the traditional sin 

function between 0 and π/2 and the sin
3 

function between π/2 and π.  

 𝑦 𝑥 =   
sin 𝑥    0 ≤ 𝑥 ≤

𝜋

2

sin 𝑥3  
𝜋

2
< 𝑥 ≤ 𝜋

  (4.1) 

 

For every two cameras the value of y(x) is estimated and is inserted into a symmetric 

matrix (Figure 4.4). On the rows and columns the matrix has the numbers of the 

cameras as indexes. 
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Graph 4.2. y(x) function. 

 

The angle between the two cameras j and k is calculated as follows: 

 𝜃𝑗𝑘 = arcos   𝑢𝑧𝑗 ∗  𝑢𝑧𝑘   (4.2) 

 

With 𝑢𝑧𝑖   normal {unit} vector of camera’s i image plane. The value in the angle 

matrix for each couple j,k is: 

 

With  𝑦(𝜃𝑗𝑘 ) the function (4.1).  
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Figure 4.4. Angle cost matrix. 
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4.2 Study of the volume in common 
 

To evaluate how much space is shared between two cameras, the best way is to 

partition the volume of the space in voxels (Figure 4.5). Their barycentres are then 

calculated and projected onto every camera. The number of voxels shared by each 

couple of cameras is calculated and inserted into a symmetric matrix that on the rows 

and columns has the numbers of the cameras as indexes. 

 

 

Figure 4.5. Partitioned Volume. 

 

The value of the volume matrix for each couple j, k of cameras is: 

 𝑐𝑜𝑠𝑡𝑉𝑜𝑙𝑢𝑚𝑒 𝑗 ,𝑘 = |  𝑣𝑜𝑥𝑒𝑙𝑗  ∩ 𝑣𝑜𝑥𝑒𝑙𝑘  | (4.4) 
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Where 𝑣𝑜𝑥𝑒𝑙𝑖  is the set of voxels seen by camera i. 

cost Volume 
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Figure 4.6. Volume cost matrix. 

 

4.3 Final cost function 
  

It is very important to combine the two cost matrixes that contain the cost values. 

There are different ways to do that. For example, it is possible to combine the two 

values together but the angle is expressed by a sin function and is comprised between 

0 and 1, while the number of voxels that two cameras share is usually very high, so 

the sum of the two values will hide the value of the angle.  

A better way to combine them is to normalize the matrix of the voxels from zero to 

one.  

The two matrixes now have comparable values, but to combine them it is important 

to choose the weight of the angle matrix and the weight of the voxels matrix.  

The aim of the distributed approach is to reconstruct most of the markers at the first 

tree levels.  

The volume is directly correlated with the number of markers that both cameras can 

see, so it is more likely that giving at the volume a larger weight, the reconstruction 

will become faster. After several trials, a good compromise is to use a 75% for the 

voxels and 25% for the angle value.  

 

 
𝑡𝑜𝑡𝑎𝑙𝐶𝑜𝑠𝑡 𝑗, 𝑘 = 𝑎 ∗ 𝑐𝑜𝑠𝑡𝐴𝑛𝑔𝑙𝑒 𝑗, 𝑘 +  𝑏 ∗ 𝑐𝑜𝑠𝑡𝑉𝑜𝑙𝑢𝑚𝑒(𝑗, 𝑘) 

 

𝑎 = 0.25   ;   𝑏 = 0.75 

(4.5) 

 



42 
 

To find the couple of the cameras to associate, the algorithm scans the upper right 

part of the matrix (because the matrix is symmetric) looking for the biggest value 

(red in Figure 4.7). The j and k indexes of the cell represent the first cameras to 

couple. Then to avoid the use of those cameras again that row and column are 

deleted (Figure 4.8) and the algorithm will scan recursively the matrix looking for 

the new biggest value until all couples are found. 

Final cost 
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Figure 4.7. Final cost matrix (biggest value). 
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Figure 4.8. Final cost matrix (cameras value deleted). 
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4.4 High levels of the tree 
 

After creating the first level, it is more difficult to decide how to group cameras in 

the other levels of the tree. It is important to choose how to calculate the new matrix 

of the costs between the groups of cameras.  

The new matrix has half size of the previous one and the position d(i,j) becomes 

equals the costs of the cameras in the group i compared to group j. To calculate this 

value a sum is done, between the costs of each camera in group i and group j, based 

on the initial matrix.  

For example: 

If there are two groups of cameras: j= [1 2] and k= [3 4]. 

To evaluate the cost function of the group [1 2 3 4], the algorithm sums the cost of 

camera 1 compared to 3 and 4 plus the cost of camera 2 compared to 3 and 4. 

 𝑑 𝑗, 𝑘 = 𝑐 𝑗1,𝑘1 + 𝑐 𝑗1,𝑘2 + 𝑐 𝑗2,𝑘1 + 𝑐 𝑗2,𝑘2  (4.6) 

 

To find the best association, the algorithm uses the same strategy of the first level; it 

scans the matrix recursively, looking for the biggest value until all groups are 

created. 

The number of cameras is a power of two, so when only two groups remain, the 

algorithm stops and unifies them to obtain the root of the tree. 
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4.5 Analysis of the functionals cost  
 

The performances of the algorithm are tested using a code written in Matlab.  

A simplified scenario is simulated where: 

1. the cameras can be placed on the “ceiling” or on the “wall” of the volume; 

2. the markers can be placed randomly or their position can be load from a file.  

 

The outputs of the algorithm are three graphs referred for example to the first 

camera: 

1. In the first graph, in X axis there is the representation of the values in the 

angle matrix; the largest number is 1, because it is a sinusoidal function. In Y 

axis there are the effective numbers of markers that the two cameras can see. 

2. In the second graph, in X axis there is the representation of the values in the 

volume matrix. In Y axis there are the effective numbers of markers that the 

two cameras can see. 

3. In the third graph, in X axis there are the values in the final cost matrix. The 

biggest number is 1, because the values are normalized. In Y axis there are 

the effective numbers of markers that the two cameras can see. 

The camera with the biggest X value is chosen by the algorithm to associate with 

camera 1, depending on the affinity function. The aim of this algorithm is to couple 

cameras that share a large number of markers. A good algorithm should create a 

graph similar to an increasing monotone function with respect to the final cost. 

Case 1 

 The first example is done with 64 cameras and 200 random points in a 

volume of 5 x 5 x 5 meters
3
.  



45 
 

 

 

The three graphs obtained are: 

 

Graph 4.3. Random angle value. 
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Figure 4.9.  200 random points and 64 cameras. 



46 
 

 

 

 

 

 

0 5 10 15 20 25 30 35
0

10

20

30

40

50

60

70

80

common voxel value

c
o
m

m
o
n
 m

a
rk

e
r

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

10

20

30

40

50

60

70

moltiplicazione voxel 0.75 e angolo 0.25

c
o
m

m
o
n
 m

a
rk

e
r

Graph 4.4. Graph 4.4  Random common voxel value.           . 

Summing voxel value = 0.75, angle value = 0.25 
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In the Graph 4.3, the number of markers shared is not correlated with the angle 

between the cameras. In fact, this value is used for a more accurate reconstruction. In 

Graph 4.4 as expected the number of markers shared between two cameras is strictly 

correlated with the number of voxels they share. The bigger the volume they share, 

the larger the probability that they see the same markers. Graph 4.5 maintains a good 

correlation between the number of markers and the number of voxels shared.  

These results should guarantee a good performance of the algorithm in a generic set-

up.  

Case 2 

 In this second example, the algorithm tests a set-up with 18 cameras and 42 

markers put on a person using real data for the position of the markers. 

 

 

The resulting graphs are (always referring to camera1) Graph 4.6, Graph 4.7 Graph 

4.8: 
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Figure 4.10. 42 points on a person and 18 cameras. 
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Graph 4.6. Ordered angle value. 

 

 

Graph 4.7. Ordered common voxel value. 
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Graph 4.8. Ordered total value. 

 

Analysing for example cameras 9 and 10, from Graph 4.6 it is possible to see that 

camera 10 has a better angle with camera 1, while from Graph 4.7, camera 9 shares 

few more voxels with camera 1. In Graph 4.8, the algorithm prefers to associate 

camera 1 with the camera 10 and this should guarantee a better accuracy in the 

reconstruction. 

Case 3 

 In the third example, a more complex set-up is tested. It has 512 cameras 

and 282 points on 6 people hugging. The dimensions of the stage are still 

5x5x5 m and the positions of the markers are read from a real data file. 
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Figure 4.11. 282 points on 6 people and 512 cameras. 

The resulting graphs are as follows: 

 

Graph 4.9. 512 cameras angle value. 
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Graph 4.10. 512 cameras common voxel value. 

 

Graph 4.11. 512 cameras, summing voxel value = 0.75, angle value = 0.25. 

The Graph 4.11 shows that even with a high number of cameras and markers, there is 

a correlation between the number of markers and the volume shared between the 

cameras.  

0 50 100 150 200 250 300 350 400 450 500
0

20

40

60

80

100

120

140 1

common voxel value

c
o
m

m
o
n
 m

a
rk

e
r

2
3

4

5

6

7

8910

11

12

131415

16
17

18

19

20

21

22

23
24

25
2627
2829
30

31
32

3334

35

36

37

38
39

404142434445464748

49

50
51

52

53

54
55

565758596061

6263
64

6566

6768

69

70717273747576777879808182
8384

85

8687888990919293949596
9798

99100
101

102

103104

105
106107

108109
110111

112113114115116117118
119

120

121

122

123124125126127128

129130
131132

133134135
136

137138139140141142
143144

145146

147
148149

150
151

152
153

154 155
156

157158
159160

161
162

163

164

165166
167

168

169
170

171

172
173

174
175

176
177178

179

180

181

182

183

184

185

186

187

188
189

190191
192

193194195
196197

198

199

200

201
202

203

204

205
206

207
208

209210

211

212
213

214

215

216

217

218

219220

221

222223

224225226227
228

229
230231232

233

234

235

236

237238

239
240

241242243244245
246

247

248249250251

252

253

254

255

256257258
259260261262

263264

265
266
267
268269

270

271

272

273

274

275

276

277
278

279

280281282283

284

285

286

287

288
289

290

291

292

293294
295296297298299300301

302
303

304

305
306

307

308
309
310
311

312

313

314

315

316

317

318
319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339
340341

342343344345
346

347

348

349
350

351

352

353

354

355

356

357

358

359

360
361

362

363364

365

366

367

368

369
370
371

372373
374

375

376

377
378

379

380

381
382

383

384

385

386

387

388

389

390

391
392

393

394
395396

397

398

399

400401
402

403404405406407408409

410
411

412

413

414415

416417
418

419

420421

422
423

424425426

427

428

429

430
431432
433
434

435436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452453
454455456

457

458

459

460

461462463464465466467 468469

470

471

472

473

474

475476

477

478

479

480

481
482

483484

485

486

487

488489490

491
492

493494

495

496

497

498

499

500

501

502

503504
505

506

507
508

509
510

511

512

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

20

40

60

80

100

120

140 1

moltiplicazione voxel 0.75 e angolo 0.25

c
o
m

m
o
n
 m

a
rk

e
r

2
3

4

5

6

7

8910

11

12

131415

16
17

18

19

20

21

22

23
24

25
2627

2829
30

31
32

3334

35

36

37

38
39

404142434445464748

49

50
51

52

53

54
55

565758596061

6263
64

6566

6768

69

70717273747576777879808182
8384

85
8687888990919293949596

9798
99100

101
102

103104

105
106107

108109
110111
112113114115116117118

119

120

121

122

123124125126127128

129130
131132

133134135
136

137138139140141142
143144

145146

147
148149

150
151

152
153

154 155
156

157158
159160

161
162

163

164

165166
167

168

169
170

171

172
173

174
175
176

177178

179

180

181

182

183

184

185

186

187

188
189

190191
192

193194195
196197

198

199

200

201
202

203

204

205
206

207
208

209210

211

212
213

214

215

216

217

218

219220

221

222223

224225226227

228
229

230231232
233

234

235

236

237238

239
240

241242243244245

246
247

248249250251

252

253

254

255

256257258
259260261262

263264

265
266

267
268269

270

271

272

273

274

275

276

277
278
279

280281282283

284

285

286

287

288
289

290

291

292

293294
295296 297298 299300 301

302
303

304

305
306

307

308
309
310
311

312

313

314

315

316

317

318
319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339
340341
342343344345

346

347

348

349
350

351

352

353

354

355

356

357

358

359

360
361

362

363364

365

366

367

368

369
370
371

372373
374

375

376

377
378

379

380

381
382

383

384

385

386

387

388

389

390

391
392

393

394
395 396

397

398

399

400401
402

403404405406407 408409

410

411

412

413

414 415

416 417
418

419

420 421

422
423

424 425426

427

428

429

430
431432

433
434

435436
437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452453
454455 456

457

458

459

460

461462463464465466467 468 469

470

471

472

473

474

475 476

477

478

479

480

481
482

483 484

485

486

487

488489490

491
492

493494

495

496

497

498

499

500

501

502

503504
505

506

507
508

509
510

511

512

Summing voxel value = 0.75, angle value = 0.25 



52 
 

 

4.6 Analysis of the tree reconstruction strategy 
 

EXP. 1 

The following data are very important to evaluate the performance of the algorithm 

for the 256 cameras and 282 markers set-up. 

In each level of the tree, the total number of 3D points reconstructed by at least three 

cameras is calculated. If a point is reconstructed more than once in different nodes, 

only the first reconstruction is considered. 

These tests are of fundamental importance because they show how fast the algorithm 

is able to reconstruct all the markers. If most of the points are reconstructed in the 

last levels of the tree, a distributed solution is not on advantage with respect to a 

centralized version. 

Reconstructed points: 

These are the reconstructed 3D points in each level 

Levels 1 through 8 

       [0]     [257]     [20]    [3]    [2]     [0]     [0]     [0] 

 

Remaining points: 

These are the remaining points to be reconstructed  

after each level 

Levels 1 through 8 

    [282]     [25]     [5]     [2]     [0]     [0]     [0]     [0] 

 

These results are very interesting because most of the points are reconstructed at the 

second level of the tree, when groups of 4 cameras are analysed. In this level, the 

calculations are spread between 64 different nodes. 
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Tree analysis in a big space 40x40x5 meters
3 

EXP. 2 

A different situation is tested: the space is now of 40x40x5 meters
3
 and the number of 

cameras is 256. The scope is to test the behaviour of the algorithm in the case of 

many cameras that do not see the markers.  

The markers are positioned on 18 people and are in total 846 as Figure 4.12. 

Starting from the whole set of 256 cameras (EXP 2A), the number of cameras is then 

reduced progressively (2B, 2C, 2D, 2E) to test more difficult situations, and to see 

how the performance of the algorithm changes. 

 

 

 

Figure 4.12. 846 points on 18 people and 256 cameras (EXP. 2A). 
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Graph 4.12. Big space Angle value. 

 

Graph 4.13. Big space common voxel value. 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

100

200

300

400

500

600
1

angle value

c
o
m

m
o
n
 m

a
rk

e
r

2 3

4

5

6

7

8

9

10

11

12

13

14

1516171819202122
2324252627282930313233

34

35

36

37

38

39

40

41

42

43

44

45

46

47
48

4950 5152 5354 5556 5758 5960 6162 6364656667686970717273747576777879808182838485868788899091929394959697 9899 100101 102103 104105 106107 108109 110111 112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127128129

130

131

132

133

134

135
136

137

138

139

140

141142143144145146147148
149150151152153154155156157158159

160

161

162

163

164

165

166

167

168

169

170

171

172

173
174

175176 177178 179180 181182 183184 185186 187188 189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223 224225 226227 228229 230231 232233 234235 236237 238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254255 256

0 100 200 300 400 500 600 700 800
0

100

200

300

400

500

600
1

common voxel value

c
o
m

m
o
n
 m

a
rk

e
r

23

4

5

6

7

8

9

10

11

12

13

14

1516171819202122
2324252627282930313233

34

35

36

37

38

39

40

41

42

43

44

45

46

47
48

49 5051 5253 54555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104 105106 107108 109110 111112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127128129

130

131

132

133

134

135
136

137

138

139

140

141142143144145146147148
149150151152153154155156157158159

160

161

162

163

164

165

166

167

168

169

170

171

172

173
174

175 176177 178179 180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230 231232 233234 235236 237238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254255256



55 
 

 

Graph 4.14. Big space summing voxel value = 0.75, angle value = 0.25. 

 

Some markers are near the centre of the room so it is necessary to extend the 

visibility range of the cameras from 6 meters to 20 meters. The Graph 4.14 shows 

that lots of cameras don’t share points with camera 1; in any case the “curve” is 

similar to a monotone function, so there is a good correlation between the real 

common markers and the affinity function calculated by the algorithm. In this set-up, 

every marker is seen by many cameras and all markers are correctly reconstructed at 

the second level of the tree. 

Reconstructed points: 

    [0]    [846]     [0]     [0]     [0]     [0]     [0]     [0] 

 

Remaining points:  

    [846]    [0]     [0]     [0]     [0]     [0]     [0]     [0] 
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EXP. 2B: 128 cameras trial 

In the next example, the number of cameras is 128 but even with this configuration, 

all markers are reconstructed at the second level of the tree. 

 

Figure 4.13. 846 points on 18 people and 128 cameras (EXP. 2B). 

Reconstructed points: 

    [0]    [846]     [0]     [0]     [0]     [0] 

 

Remaining points:  

    [846]    [0]     [0]     [0]     [0]     [0] 
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EXP. 2C: 64 cameras trial 

In this experiment, the number of cameras is 64. As it is possible to see in the results, 

not all markers are reconstructed in the second level of the tree. 

 

 

Figure 4.14. 846 points on 18 people and 64 cameras (EXP. 2C). 

Reconstructed points: 

    [0]    [779]    [67]     [0]     [0] 

 

Remaining points:  

    [846]    [67]    [0]     [0]     [0] 
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EXP. 2D: 32 cameras trial 

 

Figure 4.15. 846 points on 18 people and 32 cameras (EXP. 2D). 

Reconstructed points: 

      [0]      [632]    [192]    [22] 

 

Remaining points:  

    [846]    [214]    [22]    [0] 

 

Even with 32 cameras all markers are reconstructed.  
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EXP. 2E: 16 cameras trial 

The last test is done with 16 cameras. In this situation, 281 markers out of 846 are 

not seen by at least 3 cameras; most of the other markers are reconstructed at the 

second level of the tree.  

 

Figure 4.16. 846 points on 18 people and 16 cameras (EXP. 2E). 

Reconstructed points: 

    [0]    [538]    [27] 

 

Remaining points:  

    [846]    [308]    [281] 

 

The unreconstructed points are concentrated in the centre of the room. This is 

because the cameras are 8 m far from each other and so there will be some areas not 

covered by three cameras.  
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In all these tests, at least 2/3 of the total markers are reconstructed in the first half of 

the tree and most of the reconstructed 3D points are always in the second. This is 

very important to guarantee that the algorithm makes most of the calculations in the 

first levels, when the number of nodes is high and the elaboration is spread between 

many different CPU.  

 

4.7 Full tree analysis 
 

The tree obtained for a set-up of 16 cameras is in Table 4.1: 

 

 

 

 

 

 

 

 

 

 

Table 4.1. Tree representation. 

 

 

 

The 16 cameras in the 5x5x5 m space are installed as in Figure 4.17:  

Level   1  

[1 12] 

[2 9] 

[3 10] 

[4 11] 

[5 8] 

[6 7] 

[13 16] 

[14 15] 

Level 2 

  

 

[1 12 4 11] 

[2 9 3 10] 

[5 8 6 7] 

[13 16 14 15] 

Level 3 

  

 

 

[1 12 4 11 2 9 3 10] 

[5 8 6 7 13 16 14 15] 
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Figure 4.17. 12 cameras set-up. 

 

In Figure 4.18 is possible to see the volume that cameras 1 and 12 share.  

The normal angle of the two cameras is 48.21° and it is bigger than all the others. 

The cameras also share the biggest number of voxels. Considering a voxel size of 

0.25 m, they are 4868.  

These two cameras are associated at the first level of the tree. In the second level of 

the tree, cameras 4 and 11 are grouped together with 1 and 12. As it is possible to see 

in Figure 4.17, camera 4 has the best angle in respect to both cameras 1 and 12 and 

shares 4836 voxels with camera 1. Camera 11 has a good angle with camera 1 and 

shares a good volume with both cameras 1 and 12. 
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Figure 4.18. Cameras 1 and 12 visibility volume. 
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5 Results 
 

In this chapter, all results obtained during the internship are shown.  

The first tests presented are about the time required by the distributed algorithm to do 

the reconstruction using a random or an ordered system to create the association tree. 

Ordered system is referred to the use of the functional cost for creating the tree.  

A set-up is synthetically created with 256 cameras and 846 markers using the Matlab 

functions that store that information in two txt files. The position of the 846 markers 

is taken from a real file with three groups of 6 people. This information is read by the 

Reconstructor class. The cameras and centroids information are saved in the same 

order of the association tree. 

 

 

 

1 

4 

2 

3  

 

5.1 Random Data 
 

The random tests are done saving all cameras information and centroids randomly in 

the files. In Table 5.1 there is the mean result of 10 different tests.  

In the tables below, there are in general 4 columns: the Total time is the sum of the 

times taken by all nodes in each level of the tree. Their sum is the total time required 

by the distributed algorithm to be executed on a single core. The Max time column 

contains the time required by the slowest node in each level of the tree. Their sum is 

the total time required by the distributed algorithm to be executed in a real 

The txt file created contains the information in the same order of the tree 

Camera 1 

Camera 4 

Camera 2 

Camera 3 

Centroids 1 

Centroids 4 

Centroids 2 

Centroids 3 

[1 4 2 3] 

[1 4] 

[2 3] 
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distributed environment (excluding the times of the communication). The 2D and 3D 

data in each level is the sum of the 2D and 3D point in each node. 

 

Level Total time (s): MAX time (s): 2D Data: 3D Data: 

1 0.0130 0.0030 7588 123 

2 0.0298 0.0045 7530 409 

3 0.0378 0.0065 7348 810 

4 0.0583 0.0148 6767 1454 

5 0.0830 0.0218 5542 2050 

6 0.0780 0.0280 3046 2205 

7 0.0395 0.0208 750 1618 

8 0.0193 0.0183 148 906 

 
 

Sum of total time= 

0.1175   

 

Table 5.1. Random data results with 256 cameras. 

 

5.2 Ordered Data 
 

Using the functional costs for creating the tree, the results are Table 5.2: 

 

Level Total time (s): MAX time (s): 
2D 

Data: 

3D 

Data: 

1 0.036 0.005 7588 1892 

2 0.034 0.004 5349 2256 

3 0.031 0.006 3436 2169 

4 0.032 0.01 2856 2072 

5 0.026 0.011 2157 1923 

6 0.043 0.02 1496 1966 

7 0.025 0.017 492 1313 

8 0.019 0.019 102 853 

 
 

Sum of total time = 

0.092   

 

Table 5.2. Ordered data results with 256 cameras. 
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5.3 Detailed analysis of the difference between the two 

versions 
 

From Graph 5.2 to Graph 5.7 it is possible to see a comparison between the two 

versions. 

 

Graph 5.1. Total time in each level (ordered version). 

From Graph 5.1is possible to notice that the random version is slowly in all levels 

apart from the first two in which the distributed version do most of the 

reconstruction. Comparing each column of Graph 5.1 with Graph 5.2  it is possible to 

have an idea of the distribution of the calculation among the node. For example in 

the ordered version, the first level, takes 0.035 s. In that level there are 128 nodes so 

each node may constribute only with 0,27 ms. Instead the slowest node constributes 

for 5 ms. 
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Graph 5.2. MAX time in each level (both versions). 

 

In Graph 5.2 it is possible to see the differences in time spent by the slowest node in 

each level of the tree. In the first level, the algorithm using the ordered tree is slower 

than the random one and this is normal considering that the ordered algorithm in this 

phase should be able to do more reconstruction. The main differences are in levels 4, 

5, 6 and 7. The random algorithm in these phases is slower because the number of 

2D points to analyse is very high. The ordered algorithm, instead, has already cut 

most of the 2D points, so the time spent in each level is shorter. In the last level, the 

time spent is almost the same for the two versions because the number of 2D points 

is small for both and most of the computation time is spent for merging the 3D 

points. 

0,000

0,005

0,010

0,015

0,020

0,025

0,030

1 2 3 4 5 6 7 8

Ti
m

e
 (

s)

Level

MAX time in each level

random

ordered



67 
 

 

Graph 5.3. 2D Data in each level (both versions). 

 

In Graph 5.3 it is possible to see the importance of having a good affinity method. 

In the first level of the tree no 2D points are deleted. In the second level, it is possible 

to notice how the use of the ordered system permits to delete the 30% of the 2D 

points and in the third level another 35% of the points are cut. The random 

reconstruction cuts a mere 4% between level 1 and level 3. These results perfectly 

demonstrate the importance of using a good association function. Between level 4 

and 6, each node analyzes from 16 to 64 cameras, so it is fundamental to keep low 

the number of 2D points.  
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Graph 5.4. 3D Data in each level (both versions). 

 

In the 3D data analysis in Graph 5.4 it is possible to see how the ordered 

reconstruction is able to create lots of 3D points already in the first level of the tree. 

The total number of points in the graph is bigger than the real number of points 

(846), because it is the sum of the 3D points reconstructed in all nodes of the level. 

Part of them will be deleted, because they are ghost points and other will be merged 

in other levels of the tree. As it is possible to see in Graph 5.5 and Graph 5.6, the 

number of BIG 3D points is higher in the ordered tree. This can be correlated to the 

faster reduction of the 2D points, because when a BIG 3D point is created all the 2D 

points associated with it are deleted.  

The bigger number of 3D points in the first levels of the ordered version doesn’t slow 

the algorithm very much because they are distributed in different nodes. 
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Graph 5.5. 3D BIG and SMALL points in each level (ordered version). 

 

 

Graph 5.6. 3D BIG and SMALL points in each level (random version). 

 

General consideration 

The time taken by the ordered version is 0.092 seconds, while the mean time of the 
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Graph 5.7. 2D points deleted in each level (both versions). 

 

In this Graph 5.7 is shown in more detail the number of 2D points that are deleted in 

each level of the tree. The ordered version reduces them in the first levels of the tree, 

so the total time required to analyze them is lower. 

 

During the internship the algorithm has been improved a lot so the time required may 

vary respect to the first results. Every time that a comparison between two versions 

has been done, to make consistent comparison, the same data has been used and the 

algorithm was at the same development version. 
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5.4 Detailed Analysis of the distribution of the 3D points in 

the nodes of the tree 
 

The total time required by the algorithm is calculated summing for each level of the 

tree the time required by the slowest node using equation (3.1). That time is 

influenced by the distribution of the markers in the volume. In case the markers are 

uniformly distributed, each camera sees only a fraction of them and the 

reconstruction will be faster, because the calculation are uniformly distributed on all 

the nodes. Instead, in a real case it is more likely to have zones with a big amount of 

markers and zones with no markers. To recreate a real situation, in the volume there 

were 3 groups with 6 people each one. Between Graph 5.8 and Graph 5.13 is 

possible to see the number of 3D points reconstructed in each node of the ordered 

and random version of the tree. 

 

 

Graph 5.8. 3D points distribution in the first level using the ordered tree. 

 

Graph 5.8 represents the number of 3D markers reconstructed by each node of the 

first level of the tree. It is possible to notice how there are some nodes that 

reconstructs a big number of points and this should guarantee that the set-up 

represents a real situation and it is similar to a worst case scenario. The second thing 

0

50

100

150

200

250

300

1 6

1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
6

5
1

5
6

6
1

6
6

7
1

7
6

8
1

8
6

9
1

9
6

1
0

1

1
0

6

1
1

1

1
1

6

1
2

1

1
2

6

Node's number

3d points ORDERED distribution (first level)



72 
 

is that there are “clusters”
2
 of nodes that reconstruct a big number of 3D markers, for 

example node 51 and 52 participate respectively to the reconstruction of 248 and 109 

3D points. In the next level of the tree all those points will be merged together. It is 

very important to highlight the presence of “cluster”, because this guarantees that at 

the next level this information will be matched and it is very likely that a lot of 

SMALL 3D points will be matched with other SMALL 3D points to create BIG 3D 

points. 

 

 

Graph 5.9. 3D points distribution in the first level using the random tree. 

 

Graph 5.9 represents the number of 3D points reconstructed in each node of the first 

level of the random tree. As it is possible to see, only node 23 is able to reconstruct 

something. 

                                                           
2
 A cluster is a group of nodes that will be analyzed in the next level of the tree; every odd node is 

merged with the following even node. If the odd node number x and the node x+1 reconstruct lots of 

3D points, in the next level, all this points will be merged 
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Graph 5.10. 3D points distribution in the second level using the ordered tree. 

 

In the second level of the tree (Graph 5.10 and Graph 5.11), it is possible to notice 

how some nodes do most of the work while some other don’t reconstruct any points. 

The distribution of the markers again is in “clusters” and it means that also the 

function used in the high levels of tree well associate cameras. 

 

 

Graph 5.11. 3D points distribution in the second level using the random tree. 
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In the random version, on the second level of the tree the quantity of the 3D points 

reconstructed in the nodes is still very low. 

 

 

Graph 5.12. 3D points distribution in the third level using the ordered tree. 

 

Even at the third level of the tree ( Graph 5.5 and Graph 5.6), the nodes that merge 

lot of points are in cluster, in this example there are 5 of them (as is possible to see). 

In Graph 5.13 with the random version there is only one cluster (node’s number 11-

12). 

 

 

Graph 5.13. 3D points distribution in the third level using the random tree 
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5.5 Estimating the performance using a different number of 

cameras 
 

An important thing to analyze is the speed of the algorithm changing the number of 

cameras. 

The tests are done with 128, 256, 512 and 1024 cameras and using an ordered tree. 

The volume is 32x32x5 m and all cameras are placed on the ceiling. The actual 

algorithm works only if the number of cameras is a power of 2 but it could be easily 

modified adding dummy cameras. For every test, the minimum visibility distance for 

each camera is always 2 m and the maximum visibility distance is specified.  

Test with 128 cameras (846 markers): 

 

Figure 5.1. Set-up with 128 cameras and 846 markers. 
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Dmax  = 6 m 

Level 
MAX 

time (s): 

2D 

Data: 

2D 

Data 

deleted: 

3D Data 

(big): 

3D Data 

(small): 

1 0.003 3456 0 0 978 

2 0.004 2905 551 185 1048 

3 0.004 2089 816 418 1148 

4 0.009 1618 471 450 908 

5 0.013 1552 66 472 880 

6 0.018 737 815 592 460 

7 0.027 267 470 700 140 

 
Total time 

= 0.078 
    

 

Table 5.3 846 markers and 128 cameras (Dmax = 6 m) 

Markers found = 700 out of 846 Ghost = 0. 

 

Not all markers of Figure 5.1 are reconstructed. As it is possible to see from Figure 

5.2, most of the points not found are in the lower part of the volume near the borders. 

 

 

Figure 5.2. Detailed view of the markers not reconstructed 

(the ones without the “+”) by the 128 cameras setup. 
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To avoid the problem of the markers that are not reconstructed, the visibility distance 

of the cameras is increased to Dmax = 8 m. 

After some trials with different parameters the results are in Table 5.4: 

    const double distance3D = 0.01; 

    const double distance2d3d = 0.02; 

    const double SamponImageError = 0.000005; 

 

Level 
MAX 

time: 

2D 

Data: 

2D Data 

deleted: 

3D Data 

(big): 

3D Data 

(small): 

1 0.008 7428 0 0 5367 

2 0.016 3411 4017 1190 1982 

3 0.011 1257 2154 1457 880 

4 0.004 528 729 1260 344 

5 0.013 528 0 1260 344 

6 0.008 232 296 1003 183 

7 0.015 11 221 849 2 

 
Total time 

= 0.075     

 

Table 5.4. 846 markers and 128 cameras (Dmax = 8 m). 

 

Increasing the visibility distance of the cameras, all markers are found and the time 

required is lower because the algorithm will delete faster the 2D points. 
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Test with 256 cameras (846 markers): 

After several optimisations of the code, using the same parameters as the other 

experiment, the results with 256 cameras are in table: 

Dmax = 6m 

Level 
MAX 

time (s): 

2D 

Data: 

2D Data 

deleted: 

3D Data 

(big): 

3D Data 

(small): 

1 0.006 7588 0 0 1892 

2 0.003 5369 2219 635 1626 

3 0.006 3517 1852 1079 1090 

4 0.01 2957 560 1156 914 

5 0.009 2230 727 1285 638 

6 0.013 1558 672 1433 533 

7 0.01 556 1002 1162 145 

8 0.018 167 389 846 0 

 
Total time 

= 0.075     

 

Table 5.5. 846 markers and 256 cameras (Dmax = 6 m). 
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Test with 512 cameras (846 markers): 

Dmax = 6m 

 

Figure 5.3. Set-up with 512 cameras and 846 markers. 

 

Figure 5.4. Set-up with 512 cameras and 846 markers (ceiling view). 

After different trials with 512 cameras the results are in Table 5.6: 

 
    const double distance3D = 0.01; 

    const double distance2d3d = 0.005; 

    const double SamponImageError = 0.000005; 
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Level 
MAX 

time (s): 

2D 

Data: 

2D Data 

deleted: 

3D Data 

(big): 

3D Data 

(small): 

1 0.007 15787 0 0 5172 

2 0.004 7951 7836 2240 3490 

3 0.003 4275 3676 2501 1867 

4 0.004 1644 2631 2453 767 

5 0.007 1475 169 2265 694 

6 0.004 842 633 1995 356 

7 0.004 230 612 1470 79 

8 0.01 83 147 1228 29 

9 0.012 20 63 861 0 

 
Total time 

= 0.055     

 

Table 5.6. 846 markers and 512 cameras (Dmax = 6 m). 

 

Test with 1024 cameras (846 markers): 

Dmax = 6m 

 

Figure 5.5. Set-up with 1024 cameras and 846 markers. 
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After several trials with different parameters, the best results are Table 5.7: 

 
    const double distance3D = 0.01; 

    const double distance2d3d = 0.005; 

    const double SamponImageError = 0.000005; 

 

Level 
MAX 

time (s): 

2D 

Data: 

2D Data 

deleted: 

3D Data 

(big): 

3D Data 

(small): 

1 0.007 32631 0 0 14212 

2 0.004 11042 21589 5898 3789 

3 0.003 6378 4664 5269 2137 

4 0.006 4696 1682 4863 1701 

5 0.008 3820 876 4525 1354 

6 0.01 2720 1100 4437 1080 

7 0.011 1149 1571 3459 432 

8 0.008 348 801 2333 88 

9 0.009 256 92 1278 61 

10 0.024 120 136 848 9 

 

Total time 

= 0.09     

 

Table 5.7. 846 markers and 128 cameras (Dmax = 6 m). 
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Graph 5.14. Comparison of the time required by a different number of cameras. 

 

As it is possible to see from Graph 5.14, increasing the number of cameras does not 

correspond to a proportional increase in time required by the reconstruction. There 

are two points with 128 cameras (corresponding to different visibility distance). 

The fastest reconstruction is done with 512 cameras. It may seem unusual that the 

fastest reconstruction is the one with 512 cameras because the initial amount of 2D 

data is bigger than the 128 and 256 cameras tests . 

In Table 5.8, Table 5.9 and Table 5.10  is possible to see the amount of 2D and 3D 

points in each level of the tree for the different numbers of cameras. 
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2D points 

1024 
   

32631 512 
  

11042 15787 256 
 

6378 7951 7588 128 

4696 4275 5369 3456 

3820 1644 3517 2905 

2720 1475 2957 2089 

1149 842 2230 1618 

348 230 1558 1552 

256 83 556 737 

120 20 167 267 

     Table 5.9.  2D points comparison. 

 

 

Time (s) 

1024: 
   

0.007 512: 
  

0.004 0.007 256: 
 

0.003 0.004 0.006 128: 

0.006 0.003 0.003 0.008 

0.008 0.004 0.006 0.016 

0.01 0.007 0.01 0.011 

0.011 0.004 0.009 0.004 

0.008 0.004 0.013 0.013 

0.009 0.01 0.01 0.008 

0.024 0.012 0.018 0.015 

Table 5.10.  Time comparison. 

 

The green boxes are those with the minimum amount of points or time. It is possible 

to see the high correlation between the number of 2D points and the time required by 

the algorithm. The 512 cameras set-up from the sixth-last level has less 2D points. 

Instead, there is not a strict correlation between the time and the number of 3D 

points. 

The distance between the cameras in the 512 cameras set-up is about 1 m. This is 

probably the best condition for deleting quickly the 2D points associated with the 

BIG 3D points. 

3D total points  

1024 
 

 
 

14212 512 

9687 5172 256 

7406 5730 1892 128 

6564 4368 2261 978 

5879 3220 2169 1233 

5517 2959 2070 1566 

3891 2351 1923 1358 

2421 1549 1966 1352 

1339 1257 1307 1052 

857 861 846 840 

       Table 5.8.  3D points comparison. 
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5.6 Markers placed in different positions 
 

To verify the results obtained, the markers are dislocated to a more central position. 

All 256 cameras look partially at the centre of the volume so more cameras should 

see the 846 markers. 

The position used in all previous tests was in Figure 5.6: 

 

Figure 5.6. Ceiling view of the standard 846 markers set-up. 

The new tested position is in Figure 5.7: 

 

Figure 5.7. Ceiling view of a different 846 markers set-up. 
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In this case the results are in Table 5.11: 

Level 
MAX 

time: 

2D 

Data: 

2D Data 

deleted: 

3D Data 

(big): 

3D Data 

(small): 

1 0.008 18592 0 0 6955 

2 0.004 6495 12097 3451 2126 

3 0.004 2805 3690 3283 809 

4 0.008 2138 667 2970 631 

5 0.007 1736 402 2638 545 

6 0.008 736 1000 2148 226 

7 0.008 192 544 1411 33 

8 0.016 66 126 847 0 

 
Total time = 

0.063     

 

Table 5.11.  Results with a different position of the markers.  

 

The time required is less than before (0.075 s) and analysing the data, it is possible to 

notice that with the new set-up the number of 2D data is bigger in the first two levels 

but then it decreases faster. The reason is that now, the markers are seen by more 

cameras and the reconstruction is faster. It also confirms that the set-up used for the 

previous analysis is not the best-case, for the time of the reconstruction. 

 

5.7 Analysis diminishing the amount of data 
 

To evaluate the performance of the algorithm changing the number of markers, 

different set-ups are done. 

For all tests, the number of cameras is kept fix to 256.  

The number of points in the first test is half of the original. 
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The results are: 

Level 
MAX time 

(s): 
2D Data: 

2D Data 

deleted: 

3D Data 

(big): 

3D Data 

(small): 

1 0.002 7899 0 0 2263 

2 0.002 3561 4338 1286 1111 

3 0.002 1899 1662 1334 568 

4 0.004 1700 199 1296 520 

5 0.004 1022 678 1249 302 

6 0.004 317 705 1127 73 

7 0.003 203 114 610 33 

8 0.012 81 122 424 0 

 
Total time = 

0.033     

 

Table 5.12.  424 markers and 256 cameras. 

 

 

 

Then the number of markers is reduced by 1/3:  

Level 
MAX time 

(s): 
2D Data: 

2D Data 

deleted: 

3D Data 

(big): 

3D Data 

(small): 

1 0.001 5273 0 0 1369 

2 0.002 2648 2625 774 792 

3 0.001 1408 1240 887 380 

4 0.002 1279 129 862 363 

5 0.003 838 441 836 211 

6 0.003 344 494 773 64 

7 0.003 218 126 445 45 

8 0.008 81 137 282 1 

 
Total time = 

0.023     

 

Table 5.13.  282 markers and 256 cameras. 
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Then by 1/4: 

Level 
MAX time 

(s): 

2D 

Data: 

2D Data 

deleted: 

3D Data 

(big): 

3D Data 

(small): 

1 0.001 3978 0 0 1019 

2 0.001 2040 1938 573 616 

3 0.001 1078 962 670 290 

4 0.002 981 97 653 283 

5 0.002 637 344 634 171 

6 0.002 254 383 588 49 

7 0.002 170 84 336 37 

8 0.007 61 109 214 1 

 
Total time = 

0.018     

 

Table 5.14.  212 markers and 256 cameras. 

 

 

 

And finally by 1/6: 

Level 
MAX time 

(s): 

2D 

Data: 

2D Data 

deleted: 

3D Data 

(big): 

3D Data 

(small): 

1 0.001 2633 0 0 670 

2 0.001 1341 1292 382 397 

3 0.001 715 626 443 193 

4 0.001 647 68 431 185 

5 0.001 427 220 414 111 

6 0.001 186 241 383 39 

7 0.002 114 72 223 26 

8 0.006 43 71 141 0 

 
Total time = 

0.014     

 

Table 5.15.  141 markers and 256 cameras. 
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Another test is done increasing the number of markers to 1692. These were 

distributed in six groups of six people like in Figure 5.8: 

 

Figure 5.8. Ceiling view of the 1692 markers set-up. 

The data obtained are: 

Level 
MAX 

time (s): 

2D 

Data: 

2D Data 

deleted: 

3D Data 

(big): 

3D Data 

(small): 

1 0.008 33160 0 0 9996 

2 0.008 13956 19204 5556 4461 

3 0.021 7205 6751 5556 2315 

4 0.033 5706 1499 5379 1772 

5 0.024 3846 1860 4750 1149 

6 0.034 2165 1681 4102 616 

7 0.035 865 1300 2735 118 

8 0.088 492 373 1704 16 

 

Total time 

= 0.251     

 

Table 5.16.  1692 markers and 256 cameras. 
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Graph 5.15. Comparison of the time taken by the algorithm, changing 

only the number of markers. 

 

As it is possible to see in Graph 5.15 the time required by the algorithm is strictly 

correlated with the number of markers.  
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5.8 Adding error to the data 
 

Other tests are done to verify the robustness of the algorithm adding an error to the 

input data. Before saving the synthetic data, a Gaussian error is added in Matlab to 

the 2D position of each centroid seen by the cameras. The set-up has 256 fixed 

cameras and 846 markers. Each camera can see 6 meters far with a focal length of 5 

mm; the pixel size is 0.005mm. 

The first error added has a variance equal to 0.000625 mm in the image plane. This 

value corresponds to 1/8 of a pixel or, to a markers moved from its real position of 

0.5 mm if it is 4 meters far from the camera.  

The “Missed” are the real markers that the algorithm cannot reconstruct, while the 

“Ghosts” are markers reconstructed that are not present in the real data set. 

The result is: 

    const double distance3D = 0.02; 

    const double distance2d3d = 0.015; 

    const double SamponImageError = 0.00000025; 

 

Level 
MAX time 

(s): 

2D 

Data: 

2D Data 

deleted: 

3D Data 

(big): 

3D Data 

(small): 

1 0.005 7588 0 0 2485 

2 0.004 4739 2849 838 1788 

3 0.007 2997 1742 1110 1042 

4 0.01 2695 302 1126 963 

5 0.01 2129 566 1197 751 

6 0.017 1399 730 1368 584 

7 0.012 459 940 1148 186 

8 0.021 36 423 846 1 

 

Total time = 

0.086     

 

Table 5.17. Gaussian error = 1/8 of a pixel. 

 

Total Markers= 846, Missed = 0, Ghost = 0. 

With this error, all 3D points are found. 
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The second test is done doubling the error to 0.00125 which consists to a Gaussian 

error of 1 mm for a marker 4 meters far from the camera: 

    const double distance3D = 0.04; 

    const double distance2d3d = 0.01; 

    const double SamponImageError = 0.000007; 

 

Level 
MAX 

time (s): 

2D 

Data: 

2D Data 

deleted: 

3D Data 

(big): 

3D Data 

(small): 

1 0.006 7588 0 0 2697 

2 0.004 4789 2799 826 1937 

3 0.006 3048 1741 1108 1125 

4 0.011 2746 302 1126 1043 

5 0.01 2194 552 1196 827 

6 0.017 1516 678 1355 700 

7 0.014 537 979 1162 218 

8 0.024 94 443 846 3 

 

Total time 

= 0.092     

 

Table 5.18. Gaussian error = 1/4 of a pixel. 

Total Markers= 846, Missed = 0, Ghost = 0. 

Also with this error, all markers are found. 
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Then the error is doubled again to 0.0025, which corresponds to a Gaussian error on 

each axe of 2 mm for a marker 4 meters far from the camera: 

    const double distance3D = 0.04; 

    const double distance2d3d = 0.03; 

    const double SamponImageError = 0.00002; 

 

Level 
MAX 

time (s): 

2D 

Data: 

2D Data 

deleted: 

3D Data 

(big): 

3D Data 

(small): 

1 0.006 7588 0 0 3099 

2 0.005 4909 2679 796 2339 

3 0.008 3199 1710 1087 1406 

4 0.013 2906 293 1105 1321 

5 0.013 2358 548 1179 1064 

6 0.019 1697 661 1345 926 

7 0.018 656 1041 1184 268 

8 0.028 206 450 844 24 

 

Total time 

= 0.11     

 

Table 5.19. Gaussian error = 1/2 of a pixel. 

Total = 844, Missed = 3, Ghost = 1. 

With this error, three real markers are not reconstructed and 1 extra marker is 

reconstructed by the algorithm. 
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Next test is done doubling again the error to 0.005, which corresponds to a Gaussian 

error on each axe of 1 pixel or 4 mm for a marker 4 meters far from the camera: 

    const double distance3D = 0.04; 

    const double distance2d3d = 0.03; 

    const double SamponImageError = 0.00002; 

 

Level 
MAX time 

(s): 

2D 

Data: 

2D Data 

deleted: 

3D Data 

(big): 

3D Data 

(small): 

1 0.006 7588 0 0 2592 

2 0.006 5390 2198 703 2220 

3 0.007 3668 1722 1085 1320 

4 0.015 3389 279 1108 1266 

5 0.019 2870 519 1191 1067 

6 0.023 2264 606 1347 977 

7 0.031 1163 1101 1265 440 

8 0.055 606 557 859 159 

 

Total time = 

0.162     

 

Table 5.20. Gaussian error = 1 pixel. 

Total = 859, Missed = 20, Ghost = 33. 

 

An added error of 4mm is quite big considering that the standard marker has a 

diameter of 1 cm; however only 2.3% of the real markers are not reconstructed. 
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Last test is done to stress the algorithm: the Gaussian error added is 0.01, which 

corresponds to a Gaussian error on each axe of 8 mm for a marker 4 meters far from 

the camera.  

    const double SamponImageError: 0.0002 

    const double distance2d3d: 0.03 

    const double distance3D: 0.07 

 

Level 
MAX 

time (s): 

2D 

Data: 

2D Data 

deleted: 

3D Data 

(big): 

3D Data 

(small): 

1 0.008 7588 0 0 4858 

2 0.014 5696 1892 595 4572 

3 0.01 3963 1733 1064 3247 

4 0.019 3439 524 1146 2730 

5 0.026 2875 564 1259 2362 

6 0.047 2419 456 1374 2683 

7 0.075 1065 1354 1372 851 

8 0.066 545 520 898 287 

 

Total time 

= 0.265     

 

Table 5.21. Gaussian error = 2 pixels. 

Total=898, Missed = 45, Ghost = 97. 

In this situation, the accuracy of the algorithm is low, 5.3% of the original markers 

are not reconstructed and 11% of the total markers reconstructed are ghosts. 

The different performances are in Graph 5.16 and Graph 5.17: 
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Graph 5.16. Number of missed and ghost point adding a Gaussian 

error to the data. 

 

The times required by the algorithm vary, the larger the error the longer the time: 

 

 

Graph 5.17. Time required by the algorithm adding a Gaussian error 

to the data. 
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5.9 Comparison with the centralized code 
 

The other main step is to compare between the distributed and the centralised 

algorithm using real data. The big limitation of these tests is that the tree is not 

created using the association function but is obtained by random association, so the 

performance of the distributed algorithm is lower. The second factor is that the 

distributed algorithm is not as optimised as the centralised version on which Vicon 

has worked for years. 

The results have been obtained using a big file captured for a movie. In this file 

people has lots of markers on the face and on the hands to capture in details also the 

information about facials expressions and hands movements. 

The number of cameras used is 220 and the number of markers is about 2350. The 

exact number of markers is not known a priori but for evaluating the differences 

between the two versions this is not very important. With a big amount of cameras, 

the threshold for the BIG 3D points must be increased to 5 o 6 otherwise it is very 

likely the presence of ghost markers with 3 or more rays forming it.  

The set-up of the cameras is shown in Figure 5.9 (Captured with Vicon Nexus®): 
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Figure 5.9. Cameras set-up of the real data. 

In Figure 5.10 is possible to see more in detail the 9 people with the open arms plus 

some objects in the scene: 

 

Figure 5.10. Markers set-up of the real data. 

 



98 
 

The tests are done with a different number of cameras starting from 8 to 128. The 

results for the distributed version with 8 cameras are: 

Level 
MAX time 

(s): 

2D 

Data: 

2D Data 

deleted: 

3D Data 

(big): 

3D Data 

(small): 

1 0.013 2750 0 0 322 

2 0.035 2589 502 52 901 

3 0.08 1867 2157 260 1039 

 
Total time = 

0.128     

 

Table 5.22. Distributed algorithm with 8 cameras (real data). 

 

The summarize data for the other set-up is: 

Max Time in each level (s): 

128 
 

 
 

0.022 64 

0.054 0.022 32 

0.152 0.054 0.023 16 

0.302 0.153 0.043 0.013 

0.509 0.346 0.097 0.043 

0.814 0.494 0.238 0.097 

1.379 0.814 0.474 0.229 

Total time 

= 3.232 

Total time 

= 1.883 

Total time 

= 0.875 

Total time 

= 0.382 

 

Table 5.23 Distributed algorithm with all the cameras (real data) 
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The results of the centralised and distributed version are:  

 

 

The performance is in Graph 5.18: 

 

128 Cameras: 

The time taken by the centralised algorithm is 3.451 

The total number of markers found is 4950 

The time taken by the distributed algorithm is 3.232 

The total number of markers found is 3635 

 

64 Cameras: 

The time taken by the centralised algorithm is 1.758 

The total number of markers found is 3522 

The time taken by the distributed algorithm is 1.883 

The total number of markers found is 2467 

 

32 Cameras: 

The time taken by the centralised algorithm is 0.811 

The total number of markers found is 2225 

The time taken by the distributed algorithm is 0.875 

The total number of markers found is 1371 

 

16 Cameras: 

The time taken by the centralised algorithm is 0.416 

The total number of markers found is 1437 

The time taken by the distributed algorithm is 0.382 

The total number of markers found is 700 

 

8 Cameras: 

The time taken by the centralised algorithm is 0.135 

The total number of markers found is 707 

The time taken by the distributed algorithm is 0.128 

The total number of markers found is 206 
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Graph 5.18. Comparison between the centralized and the distributed version 

using real data. 

 

The graph shows that the two curves are very similar. With a big number of cameras, 

in particular 128, the centralised version of the algorithm is slower than the 

distributed version of the 6.78%. Analysing the trend of the graph, it seems that when 

the number of cameras increases, the difference between the two versions becomes 

larger. 

An analysis of the time spent in each part of the distributed algorithm shows that the 

time is almost equally distributed among the three different functions. 
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Graph 5.19. Time required by each reconstruction function of the distributed 

algorithm. 

 

A synthetic set-up is created to do an analysis of the algorithm behaviour with a 

larger number of cameras. It is not a trivial process. First, the 3D position of all 

markers is calculated and saved using the software developed by the company Vicon 

Nexus®. Second, to the stage are added 36 cameras in random positions so the total 

number grows to 256. Third, using a cpp code all markers are projected to the image 

plane of all the cameras and then stored to a file. 

The new input file is similar to the previous one with the only difference that there 

are no occlusions so the total number of markers that the cameras could see is larger. 

Even in this example the tree is randomly built. 
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The data obtained with 8 cameras are: 

Level 
MAX 

time (s): 

2D 

Data: 

2D Data 

deleted: 

3D Data 

(big): 

3D Data 

(small): 

1 0.141 8650 0 0 2194 

2 0.134 4563 4087 1334 1861 

3 0.044 81 4482 1993 37 

 

Total 

time = 

0.319     

 

Table 5.24.  Distributed algorithm with 8 cameras (real data, no occlusions). 

 

The other results are: 

Max Time in each level (s): 

256 
 

 
 

 

0.186 128 

0.208 0.186 64 

0.115 0.209 0.185 32 

0.078 0.114 0.209 0.185 16 

0.048 0.048 0.06 0.14 0.14 

0.083 0.038 0.041 0.059 0.139 

0.054 0.035 0.031 0.041 0.043 

0.053 0.036 0.033 0.03 0.033 

Total 

time = 

0.825 

Total 

time = 

0.666 

Total 

time = 

0.559 

Total 

time = 

0.455 

Total 

time = 

0.355 

 

Table 5.25.  Distributed algorithm with all cameras (real data, no occlusions). 
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The results of the centralised and distributed version are:  

 

 

 

256 Cameras: 

The time taken by the centralised algorithm is 1.373 

The total number of markers found is 2264 

The time taken by the distributed algorithm is 0.825 

The total number of markers found is 2491 

 

128 Cameras: 

The time taken by the centralised algorithm is 0.882 

The total number of markers found is 2264 

The time taken by the distributed algorithm is 0.666 

The total number of markers found is 2264 

 

64 Cameras: 

The time taken by the centralised algorithm is 0.561 

The total number of markers found is 2261 

The time taken by the distributed algorithm is 0.559 

The total number of markers found is 2260 

 

32 Cameras: 

The time taken by the centralised algorithm is 0.393 

The total number of markers found is 2256 

The time taken by the distributed algorithm is 0.455 

The total number of markers found is 2237 

 

16 Cameras: 

The time taken by the centralised algorithm is 0.308 

The total number of markers found is 2232 

The time taken by the distributed algorithm is 0.355 

The total number of markers found is 2220 

 

8 Cameras: 

The time taken by the centralised algorithm is 0.242 

The total number of markers found is 2030 

The time taken by the distributed algorithm is 0.355 

The total number of markers found is 1993 
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In Graph 5.20 there are the new results obtained. 

 

Graph 5.20. Comparison between the centralized and the distributed version 

using real data (no occlusion). 

 

With 128 cameras the centralised version is 24.5% slower and with 256 cameras it is 

40% slower than the distributed version. 

Using synthetics data, both versions are faster. This fact may seem strange because 

without occlusions, cameras see a bigger amount of 2D points. A possible 

explanation of this difference is that now, in the distributed version more 2D points 

are deleted in the first levels of the three and in the centralised version, for the same 

reason, a 3D points will mark its rays sooner and the algorithm will not try to use 

them for other reconstructions. 

The trend of the Graph 5.20 suggests that the gap between the two versions could 

further enhance increasing as the number of cameras. 
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6 Conclusions and future steps 
 

The main aim of this research work was to find a way to do motion capture faster, 

optimizing its performance. The aim was reached using a distributed approach 

instead of the centralized one used before.  

 The first argument discussed was to verify if it is possible to find a good way 

to associate groups of cameras in the nodes of the binary tree used to 

distribute the elaboration and to design a distributed algorithm. The 

experiments done demonstrate that using functional costs that evaluate the 

volume and the angle between the cameras, the time required by the 

algorithm to do the reconstruction is the 22% lower than a random function. 

Using the data generated in Matlab, are obtained other results. It is important 

to highlight that the synthetic set-up used, with lot of markers near the edge 

of the room, is similar to a worst-case scenario, because lot of points are seen 

only by few cameras. The position of the points on three groups of six people 

is not the best situation because there are volumes with a high density of 

markers and volumes with no markers so the reconstruction is not equally 

distributed between all the nodes. In a distributed system created using a 

binary tree, the bottleneck is the slowest node in each level so if a node has 

more works, it will slow the entire algorithm. 

The results show that the algorithm is also robust to error in the camera data. 

With a reasonable Gaussian error introduced on both axes of one pixel, the 

number of markers not found is the 2.36%. This result is very good 

considering that the accuracy of the cameras is under one pixel. 

It is very hard to study the computational complexity of the algorithm 

because as soon as a 3D point becomes BIG, all 2D points associated with it 

are not used again by the algorithm, so the total number of points to analyze 

varies during the execution.  The speed of the 3D point’s creation is very 
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dependent on the position of them and the cameras. To try to find a trend of 

the algorithm speed, have been performed some tests.  

Keeping the number of markers fixed and increasing the numbers of cameras, 

the time required does not increase. Surprisingly the fastest reconstruction is 

with 512 cameras. The reason is that using 512 cameras, in that particular 

configuration, the number of 2D points to reconstruct decrease quickly 

respect to the same set-up with 128, 256 or 1024 cameras. 

Keeping the number of cameras fixed and increasing the number of markers, 

the reconstruction time required increases. The curve time versus the number 

of markers looks like quadratic but this is normal considering that in the 

3D+3D phase the comparison between the two lists of 3D points is quadratic. 

 The second main aim of this work was to compare the distributed algorithm 

with the centralized one. To obtain this data, the distributed algorithm has 

been modified to work in the same condition as the centralized and using the 

same data. 

The tests show that with real data and 128 cameras, the distributed version is 

the 6.34% faster. Increasing the number of cameras to 256 and using the same 

data (but without occlusions) the distributed version is the 40% faster. The 

real data consist of a very difficult scenario with almost 2300 marker of 

different sizes very close each other and 2 types of cameras. 

With a smaller amount of cameras, the performances of the two versions are 

very similar. 

 The results of the distributed algorithm are very impressive considering that it 

is not optimized. In fact the time required by the 3D+3D function (that is not 

present in the centralized version) is quadratic respect to the number of 3D 

points and in the 3D+2D function, while the distributed algorithm have to 

scan all the centroids in the image plane, the centralized algorithm, using a 

more complex data structure, does this search almost immediately. 
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The time required by the distributed algorithm, in any case, does not consider 

the communication times. The amount of data to transfer is not very high 

considering the fast network connections existing nowadays. 

The biggest problem may be in the times required for initializing the 

connection. This problem can be partially solved using multicore CPU or 

motherboard with two or more multicore CPU installed, so that many nodes 

can be executed on the same machine. 

A very interesting prospective is to make the distributed algorithm, to execute 

on a graphic card that has lot of different cores. 

Future steps 

Possible optimization or analysis of the solution can be: 

- In the volume cost function, give a bigger weight to the voxels closest to the 

camera, because the accuracy of their capture depends on how far are they from 

the camera. 

- In the 3D+3D function, use a more efficient way to merge the two 3D inputs 

using a more complex data structure. 

- In the 3D+2D function, try to increase the accuracy of the reconstruction of the 

3D point when matching them with a 2D point. 

- Using real data, create the association tree using the functionals cost. 

- Test the accuracy of the reconstruction using partial data in the second-last level 

of the tree. 

- Try the distributed algorithm on a real distributed system. 
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