

UNIVERSITÀ DI PADOVA FACOLTÀ DI INGEGNERIA

TESI DI LAUREA

DESIGN, IMPLEMENTATION AND

ANALYSIS OF A DISTRIBUTED 3D

RECONSTRUCTION ALGORITHM FOR

MARKER-BASED MOTION CAPTURE.

Laureando: Nicholas Felicini

Relatore: Chiar.mo Prof. Angelo Cenedese

Supervisori: Paul Smyth

Jacek Czyz

Corso di laurea Magistrale in Ingegneria

Informatica

Data di laurea: 14 Marzo 2011

Anno Accademico: 2010 - 2011

1

Summary

1 Introduction ... 3

1.1 Motion Capture Definition ... 3

1.2 Vicon ... 5

1.3 Centralized and Distributed Reconstruction .. 6

2 Study of Vicon’s routine ... 11

3 Distributed Reconstruction .. 15

3.1 Implementation details .. 16

3.2 Algorithm description .. 17

3.2.1 3D + 3D function .. 21

3.2.2 3D + 2D function .. 22

3.2.3 2D + 2D function .. 23

3.3 Data structures ... 25

3.4 Parameters analysis ... 27

4 Analysis of the functionals cost .. 35

4.1 Study of the angle between cameras... 35

4.2 Study of the volume in common .. 40

4.3 Final cost function .. 41

4.4 High levels of the tree .. 43

4.5 Analysis of the functionals cost .. 44

4.6 Analysis of the tree reconstruction strategy .. 52

4.7 Full tree analysis ... 60

5 Results .. 63

5.1 Random Data .. 63

5.2 Ordered Data.. 64

5.3 Detailed analysis of the difference between the two versions 65

5.4 Detailed Analysis of the distribution of the 3D points in the nodes of the tree 71

5.5 Estimating the performance using a different number of cameras 75

5.6 Markers placed in different positions .. 84

5.7 Analysis diminishing the amount of data ... 85

5.8 Adding error to the data .. 90

2

5.9 Comparison with the centralized code .. 96

6 Conclusions and future steps ... 105

7 Bibliography ... 109

3

1 Introduction

1.1 Motion Capture Definition

Motion capture is the process of recording a live motion event and translating it into

usable mathematical terms by tracking a number of “key points” in space over time

and combining them to obtain a single 3D representation of the performance [1].

The subject to be captured can be anything that exists in the real word and has

motion. The “key points” are the areas that best represent the motion of the subject.

The location of these points is identified by one or more sensors or markers.

Motion capture is used mostly for recording people moving and the data obtained can

be used for different applications. The most popular are in the entertainment

industry. In videogames it is used to animate athletes as in Figure 1.1, or to

reproduce particular movement of the characters as to take a penalty kick in soccer,

or to score a point in basketball.

Figure 1.1. Joesph Gatt as the motion capture actor for 'KRATOS' from God

Of War II & III on the mocap stage for SCEA in San Diego.

4

In filmmaking it is used to animate digital character models in 2D or 3D. The most

famous film that used this technique is the “Lord of the ring” where the Gollum is

animated by a real person which movements are captured using a passive marker

system.

Commonly it is used in medical application for gait analysis, rehabilitation and to

increase athletes’ performance. Clinical studies require accurate motion knowledge

for the diagnosis of locomotion difficulties in patients. Sports people use motion

capture systems to record themselves in order to diagnose potential improvements in

their performance.

There are different systems to obtain this information from the “key points”:

- Passive markers:

In these systems, on each person there are attached a certain number of

markers, manually coated with stripes of retro reflective material. The density

and the position of the markers may vary depending on the number of

information to obtain. For example, if it is important to model facial

expressions, up to 350 markers should be put on the face of the person.

Otherwise, to capture the movement of a leg and the foot, three markers one

the foot to recreate its orientation and position plus one marker one the knee

and one on the hip are enough.

Around the stage where people move, there will be a certain numbers of

cameras, usually between 6 and 40. Special cameras are used, sensible only to

infrared radiation that is generated near the camera’s lens (the red dot in

Figure 1.1 is the infrared strobe of the camera). When two or more cameras

see the same marker, using epipolar geometry and knowing the exact position

of each camera, it is possible to reconstruct its 3D position.

In the reconstruction, there is a marker swapping problem, because all

markers are equals so all possible couple of points have to be tested to find

the right match.

In this work and by Vicon Motion Systems are used these passive markers

system are used these passive markers system.

5

- Active markers:

In these systems rather than reflecting back the light that is generated

externally, the markers themselves are powered to emit their own light. If

they alternately light up very quickly it is possible to triangulate their position

without matching problem.

- Markerless:

These systems don’t use markers for the 3D reconstruction. The most

common systems use cameras placed in different positions. Particular

algorithms extract the 2D shape of the body and combine them trying to

recreate the 3D model of the subject.

These algorithms first extract the shape of the human body from the image

and then they try to match the shape with a dynamic model of the human

body with usually 33 degree of freedom [2].

1.2 Vicon

For this thesis, it has been chosen to do an internship in Vicon, the world’s largest

supplier of precision motion tracking systems, and match moving software.

Vicon is a subsidiary of OMG (Oxford Metrics Group), plc., a group of technology

companies that produces image-understanding solutions for the Entertainment,

Defense, Life Science and Engineering markets. Vicon and OMG global clients

include: Life Science leaders University of Pennsylvania, the VA Hospitals, Shriners

Hospitals for Children, Titleist Golf, The Andrews Institute; Engineering industry

leaders Ford, BMW, Airbus, Lockheed, Pratt-Whitney, NASA, Caterpillar,

International Truck, and Toyota; and Entertainment companies Sony Pictures

Imageworks, Sony Computer Entertainment, Industrial Light and Magic, Sega,

Nintendo, Ubisoft, Vivendi, Electronic Arts, Square Enix.

Vicon offers a complete range of products from 2D video analysis through to the

high accuracy of the 3D digital optical systems. The main product is the Vicon Mx

system whose major components are cameras, the controlling hardware module and

the software to analyze and present the data. There are many cameras; the most

6

commons are the “Bonita”, that offers the best price – performance mix with a frame

rate of 240Hz and a VGA resolution. There are then the high resolution T-series

cameras that go from 1 megapixel to the 16 megapixel motion capture camera

capable of capturing 120 frames per second [3].

Figure 1.2. Typical Vicon 10 cameras set-up.

1.3 Centralized and Distributed Reconstruction

In collaboration with the University of Padova, Vicon and the FeedNetBack

European research project on network control systems, the aim of this work is to

create a distributed algorithm for the 3D reconstruction of the markers.

As described in chapter 2, Vicon uses a centralized algorithm; all data arriving from

the cameras reach a single machine where they are processed. The performance of

this solution although optimized, is highly dependent on the number of cameras and

markers. Complex system with hundreds of cameras and thousand of markers cannot

be analyzed in real time. In a centralized version it is difficult to increase the speed of

the reconstruction because there is a trade-off between the time required and the

accuracy.

7

In chapter 3, a distributed system is tested to spread the calculations on different

nodes to increase the performance. A binary tree is chosen, its first level has a

number of nodes equal to half of the number of cameras. Each node tries to

reconstruct all possible 3D points using the data coming from two cameras and send

these results to the nodes in the second level of the tree. These nodes try to

reconstruct all possible 3D points using the preprocessed data coming from the node

in the first level and so on, until the root merge all the information.

The nodes in the first level of the tree process data from two cameras.

In chapter 4, it is tried to evaluate if the two cameras can be associated random cally

or if there is a better way to choose them.

Computation
Figure 1.3. Centralized approach.

8

A cost functional is introduced to evaluate the association using as parameters the

volume shared and the angle between the cameras. There is also an analysis on the

number of markers reconstructed in each level of the tree to test if most of the

reconstruction is done in the first levels of the tree.

Comp Comp

Comp

Comp Comp

Comp

Comp

Figure 1.4. Distributed approach.

9

Figure 1.5. Marker reconstruction.

In Figure 1.5 there is an example on how it is possible to reconstruct a 3D marker.

From each camera a ray is traced between the optical centre of the camera and the 2d

point impressed on its image plane from the 3D point.

The intersection of the rays coming out from each camera forms a marker

(highlighted in blue).

10

 Figure 1.6. 2d point association.

 Figure 1.7. 2d points marked.

Explanation of common terms (Refer to Figure 1.6 and Figure 1.7):

2d point, centroid and ray are referred to the projection of a marker in the image

plane of a camera. I

Marked (or Grabbed) 2D point is referred to a 2D point associated with a big 3D

point. Marked 2D points cannot be used to reconstruct other markers respect the

one they are associated with.

2d points associated to a 3D point are referred to the 2D points that are used to

reconstruct a 3D point.

3d point and Marker are referred to a 3D point in the space. It can be real or

reconstructed by the algorithm.

Big / Small 3D point is referred to a 3D point that is associated with a number of

rays larger or equal / smaller than a certain threshold.

Ghost 3D point is referred to a 3D point reconstructed by the algorithm but it does

not exist for real.

Missed 3D point is referred to a 3D point that is not reconstructed by the algorithm

but it exists for real.

Associated cameras is referred to the cameras that are analysed in the same node.

P and Q are 3D points.

 p is a 2D point associated with both

P is a big 3D point while Q is a

SMALL 3D point.

The 2D points p, p’ and p’’ are

associated only with P

11

2 Study of Vicon’s routine

For the 3D reconstruction of the markers, Vicon uses a centralised approach. The

algorithm used is non disclosable. Below there is a brief explanation.

Figure 2.1. Scheme of the centralized algorithm.

The complex structures of the algorithm consist of different nodes for diverse tasks

that can run in parallel to speed up the algorithm. For example while Node D is

writing the 3D points of frame 23, Node C can do the reconstruction of frame 24 and

Node A and B can read the information of frame 25.

Cameras

information

reader

Centroids

information

reader

Centralised

Reconstructor

C3D File

Writer

Calibration

3D data

2D data

Node A Node B

Node C

Node D

Function C.1

Function C.2

12

Node A reads the cameras calibration information that contains all the intrinsic and

extrinsic parameters of the camera. Node B reads the 2D centroids position that each

camera creates in the image plane.

The core algorithm is contained in Node C that does:

1) It corrects the radial distortion of the centroid, using the hardware

information,

2) It calls two functions one after the other:

a. The first reconstructs all possible 3D points and stores them in a

queue,

b. The second analyses the queue to extract only the valid 3D points. A

3D point is valid only if it is associated with a number of rays bigger

than a certain threshold, usually equal to three
1
 but in case the number

of cameras is high (>60) the threshold can be higher.

Function C.1 for each two cameras, exploiting the epipolar geometry, tries to match

every couple of centroids. Using the fundamental matrix that correlates the two

cameras is it possible to verify whether two 2D points can create a SMALL 3D point

and if this is true, the pair of points is stored in the queue. Each time it finishes to

analyse two cameras, it analyses the queue and using the information of the position

of the 2D points and the Projection matrix of the cameras, calculates the 3D position

of the marker. Subsequently this 3D point is back projected on all other cameras

image planes looking for new correspondences. This is done looking for the closest

2D point with respect to the 3D back projection and if the distance between the two

is under a certain threshold, the 2D point can be used to reconstruct the 3D point.

After examining all other image planes, the 3D position is re-estimated using the new

2D correspondences.

When at least three cameras see a 3D point it becomes BIG therefore all 2D points

used to reconstruct it, are marked and they are not analysed again to create other 3D

points, speeding up the algorithm. With the 3D position, a score is estimated based

1
 Two cameras are needed and usually enough to correctly reconstruct a 3D point, but sometimes

more than two cameras are used to avoid ghost points.

13

on the quality of reconstruction. The easiest way to calculate the score is to count the

number of rays that are associated with the 3D marker.

Function C.2 analyses the 3D points before the output. First the queue is ordered

based on the score of the 3D reconstruction. Each point is extracted from the queue

starting from the one with the highest score. If the point is BIG (or it has more rays

than a certain threshold), it is straightaway put into the output data structure;

otherwise the algorithm checks that all the rays that form it are not used by other BIG

3D points. If no ray is already used, the point goes to the output list. If a point has

less rays than before there are two possibilities. If the rays are less than two, the 3D

point is deleted because a 3D point needs at least two cameras that can see it.

Otherwise the position of the point and its score are calculated again, using only the

current numbers of rays. Then the point is reinserted in the ordered queue.

The output list containing the valid 3D points is sent to Node D where they are saved

in a c3d file [4].

14

15

3 Distributed Reconstruction

The main aim of a distributed system is to have the largest number of different tasks

running in parallel, so that the algorithm can increase it performance in time, simply

increasing the number of cores.

In the specific case of 3D distributed reconstruction, the distributed algorithm is

realised using a binary tree. The leaves receive in input the information coming from

the cameras. The information is processed and transmitted to the internal nodes. In

each internal node of the tree, the algorithm combines the information arriving from

the two nodes of the lower level. The root node output contains the final

reconstruction of the markers.

Le
av

e

Le
av

e

In
te

rn
al

Le
av

e

Le
av

e

In
te

rn
al

R
o

o
t

Figure 3.1. Tree structure with 8 cameras.

Increasing level

Output

In
p

u
ts

Level: 1 2 3

16

The total number of levels is log2(#𝑐𝑎𝑚𝑒𝑟𝑎𝑠) and using a binary tree structure, the

total number of cores is #cameras – 1.

3.1 Implementation details

The aim is to make most of the reconstruction at the low levels of the tree, where

there are lots of cores working in parallel. Intuitively if most calculations are made at

high level, the distributed algorithm requires a longer time than a centralised one

because of its complexity.

Two different programming languages are chosen to develop the algorithm: Matlab®

and c++.

Matlab is used for the first phase of the procedure:

- to create the synthetic markers;

- to create the synthetic cameras;

- to calculate the affinity function;

- to create the tree;

- to evaluate the number of 3D markers reconstructed at each level of the tree;

- to simulate a camera that projects the 3D position of the markers on a 2D

image plane;

- to add a Gaussian error to the centroid;

- to store the centroid position information in a random or a predefined way;

- to store the cameras position information in a random or a predefined way.

The second phase of the procedure is related to the proper reconstruction algorithm.

This is written in c++ with Microsoft Visual Studio®. The reasons behind this choice

are that the first phase doesn’t need to be in real time and Matlab even if it is slower

than c++, from the workspace, permits to assess easily to the content of the variables.

Part of the Matlab’s code is taken from report[5].

The reconstruction algorithm is written in c++ for two reasons:

1) It is a compiled language so it is faster and more efficient than Matlab.

2) It is easy to integrate in Vicon algorithms that are written in c++ too.

17

3.2 Algorithm description

Two version of the reconstructor class are written.

The first reads the synthetic centroids and the cameras information from a text file

realized in Matlab. Then it simulates a distributed algorithm to reconstructs the 3D

position of the markers and saves them into a text file (Figure 3.2).

Figure 3.2. Simpler distributed reconstructor.

The second version is more complex and is integrated in the Vicon reconstruction

algorithms (Figure 3.3). It reads real data and stores them in a c3d file, which can be

opened with Vicon Nexus® (The main aim of Vicon Nexus is to reconstruct the 2D

information coming from the cameras and visualize them in a virtual 3D space) [3].

This software can display the 3D reconstruction

Cameras position

created in Matlab

Centroids position

created in Matlab

Simulated Distributed

Reconstruction

Save 3D points in a

text file

18

Figure 3.3. Full integrated distributed reconstructor.

The creation of a real distributed algorithm is complex because it requires a large

number of CPU. For example, with 512 cameras the number of nodes in the first

level of the tree is 256. The total number of node in the binary tree is equal to the

number of cameras minus one so in take case 511. In this work for simplicity a

simulated distributed algorithm is implemented and is run in only one core.

Each node of the tree should be able to manage an input coming from 2 sources.

These inputs are the 2D points arriving from one or more cameras at lowest level and

the 3D points created in other levels of the tree. Each node has an output which

consists of 2D points and 3D points and can access to a shared memory containing

the cameras information (Figure 3.4).

A node does the elaborations that are needed to correlate all possible 2D points with

all possible 3D points. When the number of rays associated with a 3D point exceed a

certain threshold, usually three, it is possible to delete or mark the 2D points for

further analysis.

Vicon Cameras

information reader

Vicon Centroids

information reader

Simulated Distributed

Reconstruction

Vicon C3D File

Writer

19

Consideration about the deletion of rays used and BIG 3D

A consideration should be done on the exact definition of marking a ray.

In the centralised version, when a ray is marked, there is a support data structure that

contains a boolean information about all the rays. The algorithm uses a ray only if it

is not marked.

In this distributed algorithm, marking a 2D point means to delete it.

In the distributed version, it is chosen to delete them rather than to mark because

every node of the distributed system has to transmit some data to the following node.

The less information is transmitted the better. By deleting the 2D points and not

having a support data structure for the marked point, the amount of information to

send between the nodes is reduced. As it is possible to see in chapter 4, the amount of

2D points sent in the first level is 7588, in the third 3436 and in the seventh 492.

Every two levels the number is halved and the communication time is lower.

When the algorithm associates new single 2D point with a 3D point, its position

cannot be recalculated. But in a big set-up, this problem is negligible, because the

high number of cameras should guarantee that each marker is seen by many cameras,

and so with the 3D+3D phase is possible to improve the precision of the

reconstruction.

As it is possible to see in Figure 3.4, these are the inputs:

1. 2d_input1

2. 3d_input1

3. 2d_input2

4. 3d_input2

2
d
 3

d

2
d
 3

d

2
d
 3

d

N
o

d
e

Figure 3.4. Inputs and Outputs of a node.

Input 1

Input 2

Output

20

There are three possible combinations to elaborate the inputs:

1. 2d_input1 + 2d_input2

2. 3d_input1 + 2d_input2 (and vice versa)

3. 3d_input1 + 3d_input2

It is very important the sequence of these operations in order to reduce the number of

centroids to analyse and to avoid the creation of multiple-equal 3D points. The best

sequence starts with the 3d_input1 + 3d_input2, then the 2d_input1 + 3d_input2

(and vice versa) and finally the 2d_input1 + 2d_input2 because it guarantees the

diminishing of most of the 2D point as soon as possible. In Figure 3.5 this sequences

are expressed by the phase 3D+3D, then the 3D+2D and finally 2D+2D.

Figure 3.5. Scheme of the distributed algorithm.

21

3.2.1 3D + 3D function

At the beginning, the algorithm merges the 2 inputs of 3D points. In a distributed

approach, in fact, it is very easy that different nodes reconstruct the same 3D points.

To avoid the problem of having multiple copies, each node checks how each 3D

point in input1 is far from every 3D point in input2. If their distance is under a

certain threshold, they can be considered as a unique point. In this case, the algorithm

creates a new 3D point and calculates its position doing a weighted mean of the 3D

points previous position, based on the number of rays that from them.

New3Dposition = (3Dpoint1_position/totalray*ray1) + (3Dpoint2_position/totalray*ray2).

Then, the algorithm associates all 2D points matched with the previous 3D points to

the new one. The 3D point just created can be put directly in the output list of the

node, because it never needs to be compared with any other 2D points. This is

because if a 3D point is obtained by merging two 3D points coming from the 2

inputs, it is already associated with the 2D points of both inputs. The two 3D points

that create it are deleted.

If the new 3D point is BIG, all rays that form it must be marked as used, so that no

other 3D points can be associated with it.

There are different cases depending on the status of the preceding 3D points. If both

were BIG, all rays forming the new 3D points are already marked; if one was not

BIG, the algorithm marks its rays; if both were not BIG, all their rays are marked.

The pseudo code 3.1 of this function can be found at the end of this chapter.

Input of this function

In this function are analysed the lists of 3D points coming from the two input.

Output of this function

The new 3D points go directly to the output of the node, while the 3D points that

didn’t matched remain in the same input data structure and they are analysed by the

22

next function. If a 3D point becomes BIG, its 2D associated points are marked and so

the 2D inputs are changed.

3.2.2 3D + 2D function

In this function the algorithm looks for new correlation between the 3D points of

input1 and the 2D points of input2 and vice versa. One possible solution to this

problem is to use a similar way to Vicon approach. Every time a 3D point is found, it

is back-projected on all the other cameras plane to look for correspondences.

Theorem 1:

In a distributed approach, considering a node that performs the 3D+2D function.

If:

(1) A node does all possible associations that it can;

(2) A 3D point becomes BIG when it is associated with at least 3 rays.

Then a 3D point from input1 can be associated with no more than 1 not marked point

from input2.

Proof: by Contradiction:

Supposing that input1 comes from node A and input2 from node B. A 3D point

coming from node A is associated with two (not marked) points from node B. In

node B those 2D points are already associated to form a SMALL 3D point for the

first hypothesis. But this SMALL 3D point in the 3D+3D phase in the current node is

merged with the 3D point coming from node A and creates a BIG 3D point for the

second hypothesis. The consequence is that all associated 2D points are marked, but

this is in contrast with the assumption that both points were not marked.

If the new 3D point is BIG, all rays that form it are marked.

The pseudo code 3.2 of this function can be found at the end of this chapter.

Input of this function

23

In this function are analysed the 3D point not matched in the previous function and

the 2D information coming from the inputs.

Output of this function

All the 3D points analysed here go to the output list of the node because they are not

used in the 2D + 2D function. In the 2D inputs there are some changes due to

possible creation of BIG 3D points that mark the associated 2D points.

3.2.3 2D + 2D function

In this function all possible new 3D points are created starting from the 2D

information.

Theorem 2:

In a distributed approach, considering a node that performs the 2D+2D function.

If:

(1) A node does all possible associations that it can;

(2) A 3D point becomes BIG when it is associated with at least 3 rays.

Then the new 3D points are created from no more than two 2D (not marked) points.

Proof: by Contradiction.

Supposing that input1 comes from node A and input2 from node B, it is possible to

create a 3D point from three 2D points, two of them must arrive from the same input

for example node A, the other arrives from node B. But for hypothesis 1, from the

same node there must be the 3D point associated with those two 2D points. In this

node in the 3D + 2D function the algorithm associates that 3D point with the single

2D point from node B and for the second hypothesis it becomes BIG because three

rays form it, which are marked as used. In this 2D+2D function all three 2D points

are marked and this is in contrast with the assumption that the three points were not

marked.

24

For creating a 3D point starting from two 2D points, it is used the same approach as

Vicon. All cameras from input1 are compared with all cameras from input2. For each

couple of cameras using the fundamental matrix, it is possible to check if they can

create a 3D reconstruction and it is true, the position of the 3D point is calculated and

is associated with the 2D points.

The pseudo code 3.3 of this function can be found at the end of this chapter.

Input of this function

Here are analysed the cameras information coming from the two inputs.

Output of this function

All the 3D points created here go to the 3D output list of the node.

25

Level (first vector)

3.3 Data structures

It is not trivial to choose the data structure to contain the 2D and 3D information.

Based on Vicon’s code, for the 3D points the class VReconHypothesis is

chosen, while for the 2D points the class VCentroidSet is chosen.

VReconHypothesis permits to store lots of information. The most important are

the x, y, z position of the point, a Boolean variable that says if the point is BIG or

SMALL, the number of rays associated with the point and a vector with a reference

to the associated 2D points. The reference is a pair that contains the number of the

camera and the number of the centroid. This information is very important because,

when a point becomes BIG, the algorithm must mark the points that create it.

The class VCentroidSet contains a vector that stores the position of the 2D

points for every image plane.

The algorithm, to simulate a real distributed situation, creates a more complex data-

structure. In particular:

std::vector< std::vector< std::vector< const VCentroidSet *> > >

std::vector< std::vector< std::vector< VReconHypothesis > > >

The first vector has the same size of the tree level number.

The second vector has the same size of the nodes number in that level of the tree.

The third vector has the same size of the cameras number in that node.

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

 Figure 3.6. Data Structure used to simulate a distributed algorithm.

N
u

m
b

er
 o

f
n

o
d

es

(s
e

co
n

d
 v

ec
to

r)
 Number of cameras in the node (third vector)

26

When the algorithm starts, it reads the number of cameras and resizes all vectors

inserting the centroids information of the cameras. The total number of levels is =

log2(# 𝑐𝑎𝑚𝑒𝑟𝑎𝑠) ; the number of nodes in level i is =
𝑐𝑎𝑚𝑒𝑟𝑎𝑠

2𝑖 ; the number of

cameras in each node of level i is = 2𝑖 .

Then it calculates the projection matrix of every camera and for every couple of

cameras it calculates the Fundamental matrix.

To simulate the distributed system, the algorithm starts a series of cycles, one cycle

for each tree levels with inside a cycle for every node using the complex data-

structure described before.

When all cycles are finished, the output of the last node contains the markers 3D

reconstruction.

In each node, a total of 5 functions are called, the 3D+3D, 3D+2D and 2D+2D plus

other two functions for preparing the output results.

The performance in time of the algorithm is calculated summing for each level the

time taken by the slowest node.

 𝑇𝑜𝑡𝑎𝑙𝑇𝑖𝑚𝑒 = max
1≤𝑘 ≤# 𝑛𝑜𝑑𝑒𝑠 𝑖𝑛 𝑙𝑒𝑣𝑒𝑙 𝑖

 𝑡𝑘

#𝐿𝑒𝑣𝑒𝑙𝑠

𝑖=1

, 𝑡𝑘 𝑡𝑖𝑚𝑒 𝑡𝑎𝑘𝑒𝑛 𝑖𝑛 𝑛𝑜𝑑𝑒 𝑘 (3.1)

This time is a good approximation of the real elaboration time of a distributed

system. The main difference is that all times due to communication between different

nodes are not taken in consideration, because those times depends on a lots of

parameters like the connection speed between nodes, the lag introduced by the

communication protocol and the fact that nowadays most processors contains 4 or 6

cores with very fast shared memory. The total amount of 2D and 3D data transmitted

is saved for each experiment.

27

3.4 Parameters analysis

In this part, the intention is to correlate the parameters used and the performance of

the algorithm.

For the reconstruction three parameters are needed.

The first is called “SampsonImageError” and is used in the 2D+2D phase to

evaluate if two 2D points can be used to reconstruct a 3D point. The Sampson Error,

in particular gives a first order approximation of the error between the back-

projection p and p’ of the reconstructed 3D point P and the two original 2D points

used to create P (Figure 3.7) [6] [7].

Figure 3.7. SampsonImageError.

The second is called “distance2d3d” and is used in the 3D+2D phase to evaluate if

an already existing 3D point can be associated with a 2D point from a new image

plane. As it is possible to see in Figure 3.8, if the distance between p and q is under

the distance2d3d threshold, the 2D point q is associated with point P.

Figure 3.8. Distance2d3d.

28

The third is called “distance3D” and is used in the 3D+3D phase to decide if two 3D

points represent the same or not. As it is possible to see in Figure 3.9, if the distance

between point Q and P is under a certain threshold, they are merged to form a unique

3D point.

Figure 3.9. Distance3D.

The first and the second parameters are very important and are usually three times

bigger than the “CameraImageError” that is an error calculated directly by each

camera it is usually equal to 0.2 pixel. When synthetic data are used they have to be

chosen manually.

The third is chosen depending on the size of the marker, a typical value is 7 mm.

Every time the numbers of makers and cameras are changed, also the parameters

required to be changed to obtain a better result in term of performance and accuracy.

An example is presented in the Graphs 3.1, 3.2 and 3.3 created with 512 cameras and

846 markers.

29

Graph 3.1. Max Time in each level.

The only parameter modified in the different trials is the distance2d3d. This

parameter is used in the 2D + 3D phase of the distributed algorithm: increase this

parameter means to be less strict looking for new rays to associate to existing 3D

points. As soon as the 3D points become BIG, all 2D points are deleted. If the

distance2d3d parameter is increased too much, the performance in terms of accuracy

starts decreasing because some 3D points are associated with the wrong 2D points.

0

0,02

0,04

0,06

0,08

0,1

0,12

0,14

0,16

0,18

0,2

1 2 3 4 5 6 7 8 9

Ti
m

e
 (

s)

Level

Max Time in each level

distance2d3d = 0.0007;

distance2d3d = 0.001;

distance2d3d = 0.005;

30

Graph 3.2. 2D points.

Graph 3.3. 3D points.

0

2000

4000

6000

8000

10000

12000

14000

16000

1 2 3 4 5 6 7 8 9

Level

2D points

distance2d3d = 0.0007;

distance2d3d = 0.001;

distance2d3d = 0.005;

0

2000

4000

6000

8000

10000

12000

14000

1 2 3 4 5 6 7 8 9

Level

3D points

distance2d3d = 0.0007;

distance2d3d = 0.001;

distance2d3d = 0.005;

31

Pseudo code 3.1: 3D+3D function

Input: 3Dinput1, 3Dinput2.

Merge3Dpoint()

{

for i = 0 : 3Dinput1.size // for each 3D point from input1

for j = 0 : 3Dinput2.size // for each 3D point from input2

{

dist = euclidean_distance(3Dinput1[i] , 3Dinput2[j]);

if (dist > distance3D threshold) continue;

create 3Dnewpoint;

3Dnewpoint.rays.pushback (3Dinput1[i].rays);

3Dnewpoint.rays.pushback (3Dinput2[j].rays);

ray1 = 3Dinput1[i].rays.size;

ray2 = 3Dinput2[j].rays.size;

totalray = ray1 + ray2;

//new weighted position

3Dnewpoint.m_X = (3Dinput1[i].m_X/totalray*ray1) + (3Dinput2[j].m_X/totalray*ray2);

3Dnewpoint.m_Y = (3Dinput1[i].m_Y/totalray*ray1) + (3Dinput2[j].m_Y/totalray*ray2);

3Dnewpoint.m_Z = (3Dinput1[i].m_Z/totalray*ray1) + (3Dinput2[j].m_Z/totalray*ray2);

if (3Dinput1[i].isBig && 3Dinput2[j].isBig)

{

delete 3Dinput1[i] and 3Dinput2[j];

continue;

}

if (3Dinput1[i].isBig)

{

marks all rays that forms 3Dinput2[j]

delete 3Dinput1[i] and 3Dinput2[j];

continue;

} // do the same as above for the other input

if (3Dnewpoint.isBig)

{

marks all rays that forms 3Dinput1[i] and 3Dinput2[j]

delete 3Dinput1[i] and 3Dinput2[j];

continue;

}

Add 3Dnewpoint to the 3D output list.

}

end for

end for

}

32

Pseudo code 3.2: 3D+2D function

Input: 3Dinput1, 3Dinput2, 2Dinput1, 2Dinput2.

Find3Dcorrespondances()

{

for i = 0 : 3Dinput1.size // for each 3D point from input1

for j = 0 : 2Dinput2.size // for each camera from input2

{

2Dbackproj = back-projection of the 3D point i in the 2D camera image plane j

for k = 0 : 2Dinput2[j].size // for each centroid in camera j

find the nearest centroid in camera image plane j in respect of the 2Dbackproj and stores

it in nearest2Dpoint, saves its position in the 2Dinput2[j] vector in k_near

end for

dist = euclidean distance between 2Dbackproj and nearest2Dpoint

if (dist < distance2d3d threshold) // the new 2D point forms the 3D point

3Dinput1.rays.pushback (pair(j,k_near));

if (3Dinput1[i].isBig)

{

marks all rays that forms 3Dinput1[i]

}

}

end for

end for

} // do the same function reversing the two inputs.

33

Pseudo code 3.3: 2D+2D function

Input: 2Dinput1, 2Dinput2.

Matching2D()

{

for i = 0 : 2Dinput1.size // for each camera from input1

for j = 0 : 2Dinput2.size // for each camera from input2

for k = 0 : 2Dinput2[j].size // for each centroid in camera j

for w = 0 : 2Dinput1[i].size // for each centroid in camera i

{

2Dpoint1 = 2Dinput1[i][w]; // centroid number w in camera i

2Dpoint2 = 2Dinput2[j][k]; // centroid number k in camera j

if (both centroids are not marked)

{

if (the two 2D points can create a 3D point)

{

creates and stores it in 3Dnewpoint

add 3Dnewpoint to the 3D output list

}

}

}

end for

end for

end for

end for

}

34

35

4 Analysis of the functionals cost

In a distributed cameras system for motion capture reconstruction, the most vital

aspect is the way in which the cameras associate.

A group of cameras is associated if they are analysed in the same node of the tree.

If the cameras look at different directions, it is possible that, if they are associated in

a random way, some of them don’t share any marker.

The node that contains those cameras is not able to reconstruct any 3D point, so no

2D points are deleted in the first tree levels.

The best way to evaluate the association between two cameras is to estimate the total

volume that they share: the larger the volume, the higher the probability they see the

same markers.

Moreover, it is very important to estimate the position of the markers with a good

approximation. For this reason, the angle between the optical rays of the two cameras

should be as close as possible to π/2.

In the next paragraphs, two functionals costs are introduced. They evaluate the

volume and the angle between the cameras. For each couple of cameras, the

functional value is placed in a matrix, in which it is possible to find the best

associations.

4.1 Study of the angle between cameras

For a more accurate reconstruction, the 2 cameras used to reconstruct the 3D point,

should have an angle of π/2 between their normal. With this angle, the uncertainty in

the reconstruction of the rays’ intersection is at its minimum (Figure 4.1).

36

Figure 4.1. Uncertainty area with 90° cameras.

Instead, if the angle is near 0 or π the uncertainty is at its maximum (Figure 4.2).

Figure 4.2. Uncertainty area with 180° cameras.

Uncertainty

area

Uncertainty

area

37

A function that well approximates this situation is the sin function

Graph 4.1. Sin function.

In the graph, near 0 and π the function is close to zero. In π/2 the function is close to

one.

The sin function does not take into consideration practical problems that might

happen while working with markers on solid objects. For example, a marker on a

hand is seen perfectly by all cameras with an angle < π/2 with respect to the normal

of a hand. All cameras with an angle > π/2 don’t see that particular marker, because

it is hidden by the hand itself. In Figure 4.3 is possible to see an example of an

occlusion. Marker p1 is perfectly seen by camera C1 but camera C2 cannot see it

because it is obstructed by the solid object.

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Angle value

Si
n

 v
al

u
e

38

Figure 4.3. Occlusion example.

This situation can be modelled with a more complex function considering that the

probability to have an occlusion is higher when there is a large angle between the

two cameras.

A good approximation based on experimental evaluation, use the traditional sin

function between 0 and π/2 and the sin
3

function between π/2 and π.

 𝑦 𝑥 =
sin 𝑥 0 ≤ 𝑥 ≤

𝜋

2

sin 𝑥3
𝜋

2
< 𝑥 ≤ 𝜋

 (4.1)

For every two cameras the value of y(x) is estimated and is inserted into a symmetric

matrix (Figure 4.4). On the rows and columns the matrix has the numbers of the

cameras as indexes.

39

Graph 4.2. y(x) function.

The angle between the two cameras j and k is calculated as follows:

 𝜃𝑗𝑘 = arcos 𝑢𝑧𝑗 ∗ 𝑢𝑧𝑘 (4.2)

With 𝑢𝑧𝑖 normal {unit} vector of camera’s i image plane. The value in the angle

matrix for each couple j,k is:

With 𝑦(𝜃𝑗𝑘) the function (4.1).

cost Angle

k

j

Figure 4.4. Angle cost matrix.

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

 𝑐𝑜𝑠𝑡𝐴𝑛𝑔𝑙𝑒 𝑗 ,𝑘 = 𝑦 𝜃𝑗𝑘 (4.3)

Angle value

Fu
n

ct
io

n
 y

(x
)

 4
.1

40

4.2 Study of the volume in common

To evaluate how much space is shared between two cameras, the best way is to

partition the volume of the space in voxels (Figure 4.5). Their barycentres are then

calculated and projected onto every camera. The number of voxels shared by each

couple of cameras is calculated and inserted into a symmetric matrix that on the rows

and columns has the numbers of the cameras as indexes.

Figure 4.5. Partitioned Volume.

The value of the volume matrix for each couple j, k of cameras is:

 𝑐𝑜𝑠𝑡𝑉𝑜𝑙𝑢𝑚𝑒 𝑗 ,𝑘 = | 𝑣𝑜𝑥𝑒𝑙𝑗 ∩ 𝑣𝑜𝑥𝑒𝑙𝑘 | (4.4)

41

Where 𝑣𝑜𝑥𝑒𝑙𝑖 is the set of voxels seen by camera i.

cost Volume

k

j

Figure 4.6. Volume cost matrix.

4.3 Final cost function

It is very important to combine the two cost matrixes that contain the cost values.

There are different ways to do that. For example, it is possible to combine the two

values together but the angle is expressed by a sin function and is comprised between

0 and 1, while the number of voxels that two cameras share is usually very high, so

the sum of the two values will hide the value of the angle.

A better way to combine them is to normalize the matrix of the voxels from zero to

one.

The two matrixes now have comparable values, but to combine them it is important

to choose the weight of the angle matrix and the weight of the voxels matrix.

The aim of the distributed approach is to reconstruct most of the markers at the first

tree levels.

The volume is directly correlated with the number of markers that both cameras can

see, so it is more likely that giving at the volume a larger weight, the reconstruction

will become faster. After several trials, a good compromise is to use a 75% for the

voxels and 25% for the angle value.

𝑡𝑜𝑡𝑎𝑙𝐶𝑜𝑠𝑡 𝑗, 𝑘 = 𝑎 ∗ 𝑐𝑜𝑠𝑡𝐴𝑛𝑔𝑙𝑒 𝑗, 𝑘 + 𝑏 ∗ 𝑐𝑜𝑠𝑡𝑉𝑜𝑙𝑢𝑚𝑒(𝑗, 𝑘)

𝑎 = 0.25 ; 𝑏 = 0.75

(4.5)

42

To find the couple of the cameras to associate, the algorithm scans the upper right

part of the matrix (because the matrix is symmetric) looking for the biggest value

(red in Figure 4.7). The j and k indexes of the cell represent the first cameras to

couple. Then to avoid the use of those cameras again that row and column are

deleted (Figure 4.8) and the algorithm will scan recursively the matrix looking for

the new biggest value until all couples are found.

Final cost

k

j

Figure 4.7. Final cost matrix (biggest value).

Final cost

k

j

Figure 4.8. Final cost matrix (cameras value deleted).

43

4.4 High levels of the tree

After creating the first level, it is more difficult to decide how to group cameras in

the other levels of the tree. It is important to choose how to calculate the new matrix

of the costs between the groups of cameras.

The new matrix has half size of the previous one and the position d(i,j) becomes

equals the costs of the cameras in the group i compared to group j. To calculate this

value a sum is done, between the costs of each camera in group i and group j, based

on the initial matrix.

For example:

If there are two groups of cameras: j= [1 2] and k= [3 4].

To evaluate the cost function of the group [1 2 3 4], the algorithm sums the cost of

camera 1 compared to 3 and 4 plus the cost of camera 2 compared to 3 and 4.

 𝑑 𝑗, 𝑘 = 𝑐 𝑗1,𝑘1 + 𝑐 𝑗1,𝑘2 + 𝑐 𝑗2,𝑘1 + 𝑐 𝑗2,𝑘2 (4.6)

To find the best association, the algorithm uses the same strategy of the first level; it

scans the matrix recursively, looking for the biggest value until all groups are

created.

The number of cameras is a power of two, so when only two groups remain, the

algorithm stops and unifies them to obtain the root of the tree.

44

4.5 Analysis of the functionals cost

The performances of the algorithm are tested using a code written in Matlab.

A simplified scenario is simulated where:

1. the cameras can be placed on the “ceiling” or on the “wall” of the volume;

2. the markers can be placed randomly or their position can be load from a file.

The outputs of the algorithm are three graphs referred for example to the first

camera:

1. In the first graph, in X axis there is the representation of the values in the

angle matrix; the largest number is 1, because it is a sinusoidal function. In Y

axis there are the effective numbers of markers that the two cameras can see.

2. In the second graph, in X axis there is the representation of the values in the

volume matrix. In Y axis there are the effective numbers of markers that the

two cameras can see.

3. In the third graph, in X axis there are the values in the final cost matrix. The

biggest number is 1, because the values are normalized. In Y axis there are

the effective numbers of markers that the two cameras can see.

The camera with the biggest X value is chosen by the algorithm to associate with

camera 1, depending on the affinity function. The aim of this algorithm is to couple

cameras that share a large number of markers. A good algorithm should create a

graph similar to an increasing monotone function with respect to the final cost.

Case 1

 The first example is done with 64 cameras and 200 random points in a

volume of 5 x 5 x 5 meters
3
.

45

The three graphs obtained are:

Graph 4.3. Random angle value.

0

2

4

6
-1 0 1 2 3 4 5 6

-1

0

1

2

3

4

5

6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

80

angle value

c
o
m

m
o
n
 m

a
rk

e
r

Figure 4.9. 200 random points and 64 cameras.

46

0 5 10 15 20 25 30 35
0

10

20

30

40

50

60

70

80

common voxel value

c
o
m

m
o
n
 m

a
rk

e
r

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

10

20

30

40

50

60

70

moltiplicazione voxel 0.75 e angolo 0.25

c
o
m

m
o
n
 m

a
rk

e
r

Graph 4.4. Graph 4.4 Random common voxel value. .

Summing voxel value = 0.75, angle value = 0.25

Graph 4.5 Graph 4.5 Random total value. .

47

In the Graph 4.3, the number of markers shared is not correlated with the angle

between the cameras. In fact, this value is used for a more accurate reconstruction. In

Graph 4.4 as expected the number of markers shared between two cameras is strictly

correlated with the number of voxels they share. The bigger the volume they share,

the larger the probability that they see the same markers. Graph 4.5 maintains a good

correlation between the number of markers and the number of voxels shared.

These results should guarantee a good performance of the algorithm in a generic set-

up.

Case 2

 In this second example, the algorithm tests a set-up with 18 cameras and 42

markers put on a person using real data for the position of the markers.

The resulting graphs are (always referring to camera1) Graph 4.6, Graph 4.7 Graph

4.8:

-1 0 1 2 3 4 5 6
0

2
4

6

-1

0

1

2

3

4

5

6

1

Figure 4.10. 42 points on a person and 18 cameras.

48

Graph 4.6. Ordered angle value.

Graph 4.7. Ordered common voxel value.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25
1

angle value

c
o
m

m
o
n
 m

a
rk

e
r

2 3 4

5

6 78 9

10

11

12

13

14

15 16 17 18 19

20 21

22

23

24

2526

27

28

29

30

31 32

0 50 100 150 200 250
0

5

10

15

20

25
1

common voxel value

c
o
m

m
o
n
 m

a
rk

e
r

23 4

5

67 8 9

10

11

12

13

14

151617 18 19

2021

22

23

24

2526

27

28

29

30

3132

49

Graph 4.8. Ordered total value.

Analysing for example cameras 9 and 10, from Graph 4.6 it is possible to see that

camera 10 has a better angle with camera 1, while from Graph 4.7, camera 9 shares

few more voxels with camera 1. In Graph 4.8, the algorithm prefers to associate

camera 1 with the camera 10 and this should guarantee a better accuracy in the

reconstruction.

Case 3

 In the third example, a more complex set-up is tested. It has 512 cameras

and 282 points on 6 people hugging. The dimensions of the stage are still

5x5x5 m and the positions of the markers are read from a real data file.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

5

10

15

20

25
1

moltiplicazione voxel 0.75 e angolo 0.25

c
o
m

m
o
n
 m

a
rk

e
r

23 4

5

6 7 8 9

10

11

12

13

14

151617 18 19

20 21

22

23

24

2526

27

28

29

30

31 32

Summing voxel value = 0.75, angle value = 0.25

50

Figure 4.11. 282 points on 6 people and 512 cameras.

The resulting graphs are as follows:

Graph 4.9. 512 cameras angle value.

0
2

4
6

-1 0 1 2 3 4 5 6 7

-1

0

1

2

3

4

5

6

7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

120

140 1

angle value

c
o
m

m
o
n
 m

a
rk

e
r

2
3

4

5

6

7

8 9 10

11

12

13 14 15

16
17

18

19

20

21

22

23
24

25
26 27

28 29
30

31
32

3334

35

36

37

38
39

40 41 42 43 44 45 46 47 48

49

50
51

52

53

54
55

56 57 58 59 60 61

62 63
64

65 66

6768

69

70 71 72 73 74 75 76 77 78 79 80 81 82
83 84

85
86 87 88 89 90 91 92 93 94 95 96

97 98
99 100

101
102

103104

105
106107

108109
110111

112113114115116117118
119

120

121

122

123124125126127128

129130
131132

133134135
136

137138139140141142
143144

145146

147
148149
150
151

152
153

154155
156

157158
159160

161
162
163

164

165166
167

168

169
170

171

172
173

174
175

176
177178

179

180

181

182

183

184

185

186

187

188
189

190191
192

193194195
196197

198

199

200

201
202

203

204

205
206

207
208

209210

211

212
213

214

215

216

217

218

219220

221

222223

224225226227

228
229

230231232
233

234

235

236

237238

239
240

241242243244245

246
247

248249250251

252

253

254

255

256257258
259260261262

263264

265
266

267
268269

270

271

272

273

274

275

276

277
278

279

280281282283

284

285

286

287

288
289

290

291

292

293294
295296 297298 299300 301

302
303

304

305
306

307

308
309

310
311

312

313

314

315

316

317

318
319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339
340341

342343344345
346

347

348

349
350

351

352

353

354

355

356

357

358

359

360
361

362

363364

365

366

367

368

369
370

371

372373
374

375

376

377
378

379

380

381
382

383

384

385

386

387

388

389

390

391
392

393

394
395 396

397

398

399

400401
402

403404405406407408409

410

411

412

413

414 415

416 417
418

419

420 421

422
423

424 425426

427

428

429

430
431432

433
434

435436
437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452453
454455 456

457

458

459

460

461462463464465466467468469

470

471

472

473

474

475 476

477

478

479

480

481
482

483 484

485

486

487

488489490

491
492

493494

495

496

497

498

499

500

501

502

503 504
505

506

507
508

509
510

511

512

51

Graph 4.10. 512 cameras common voxel value.

Graph 4.11. 512 cameras, summing voxel value = 0.75, angle value = 0.25.

The Graph 4.11 shows that even with a high number of cameras and markers, there is

a correlation between the number of markers and the volume shared between the

cameras.

0 50 100 150 200 250 300 350 400 450 500
0

20

40

60

80

100

120

140 1

common voxel value

c
o
m

m
o
n
 m

a
rk

e
r

2
3

4

5

6

7

8910

11

12

131415

16
17

18

19

20

21

22

23
24

25
2627
2829
30

31
32

3334

35

36

37

38
39

404142434445464748

49

50
51

52

53

54
55

565758596061

6263
64

6566

6768

69

70717273747576777879808182
8384

85

8687888990919293949596
9798

99100
101

102

103104

105
106107

108109
110111

112113114115116117118
119

120

121

122

123124125126127128

129130
131132

133134135
136

137138139140141142
143144

145146

147
148149

150
151

152
153

154 155
156

157158
159160

161
162

163

164

165166
167

168

169
170

171

172
173

174
175

176
177178

179

180

181

182

183

184

185

186

187

188
189

190191
192

193194195
196197

198

199

200

201
202

203

204

205
206

207
208

209210

211

212
213

214

215

216

217

218

219220

221

222223

224225226227
228

229
230231232

233

234

235

236

237238

239
240

241242243244245
246

247

248249250251

252

253

254

255

256257258
259260261262

263264

265
266
267
268269

270

271

272

273

274

275

276

277
278

279

280281282283

284

285

286

287

288
289

290

291

292

293294
295296297298299300301

302
303

304

305
306

307

308
309
310
311

312

313

314

315

316

317

318
319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339
340341

342343344345
346

347

348

349
350

351

352

353

354

355

356

357

358

359

360
361

362

363364

365

366

367

368

369
370
371

372373
374

375

376

377
378

379

380

381
382

383

384

385

386

387

388

389

390

391
392

393

394
395396

397

398

399

400401
402

403404405406407408409

410
411

412

413

414415

416417
418

419

420421

422
423

424425426

427

428

429

430
431432
433
434

435436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452453
454455456

457

458

459

460

461462463464465466467 468469

470

471

472

473

474

475476

477

478

479

480

481
482

483484

485

486

487

488489490

491
492

493494

495

496

497

498

499

500

501

502

503504
505

506

507
508

509
510

511

512

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

20

40

60

80

100

120

140 1

moltiplicazione voxel 0.75 e angolo 0.25

c
o
m

m
o
n
 m

a
rk

e
r

2
3

4

5

6

7

8910

11

12

131415

16
17

18

19

20

21

22

23
24

25
2627

2829
30

31
32

3334

35

36

37

38
39

404142434445464748

49

50
51

52

53

54
55

565758596061

6263
64

6566

6768

69

70717273747576777879808182
8384

85
8687888990919293949596

9798
99100

101
102

103104

105
106107

108109
110111
112113114115116117118

119

120

121

122

123124125126127128

129130
131132

133134135
136

137138139140141142
143144

145146

147
148149

150
151

152
153

154 155
156

157158
159160

161
162

163

164

165166
167

168

169
170

171

172
173

174
175
176

177178

179

180

181

182

183

184

185

186

187

188
189

190191
192

193194195
196197

198

199

200

201
202

203

204

205
206

207
208

209210

211

212
213

214

215

216

217

218

219220

221

222223

224225226227

228
229

230231232
233

234

235

236

237238

239
240

241242243244245

246
247

248249250251

252

253

254

255

256257258
259260261262

263264

265
266

267
268269

270

271

272

273

274

275

276

277
278
279

280281282283

284

285

286

287

288
289

290

291

292

293294
295296 297298 299300 301

302
303

304

305
306

307

308
309
310
311

312

313

314

315

316

317

318
319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339
340341
342343344345

346

347

348

349
350

351

352

353

354

355

356

357

358

359

360
361

362

363364

365

366

367

368

369
370
371

372373
374

375

376

377
378

379

380

381
382

383

384

385

386

387

388

389

390

391
392

393

394
395 396

397

398

399

400401
402

403404405406407 408409

410

411

412

413

414 415

416 417
418

419

420 421

422
423

424 425426

427

428

429

430
431432

433
434

435436
437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452453
454455 456

457

458

459

460

461462463464465466467 468 469

470

471

472

473

474

475 476

477

478

479

480

481
482

483 484

485

486

487

488489490

491
492

493494

495

496

497

498

499

500

501

502

503504
505

506

507
508

509
510

511

512

Summing voxel value = 0.75, angle value = 0.25

52

4.6 Analysis of the tree reconstruction strategy

EXP. 1

The following data are very important to evaluate the performance of the algorithm

for the 256 cameras and 282 markers set-up.

In each level of the tree, the total number of 3D points reconstructed by at least three

cameras is calculated. If a point is reconstructed more than once in different nodes,

only the first reconstruction is considered.

These tests are of fundamental importance because they show how fast the algorithm

is able to reconstruct all the markers. If most of the points are reconstructed in the

last levels of the tree, a distributed solution is not on advantage with respect to a

centralized version.

Reconstructed points:

These are the reconstructed 3D points in each level

Levels 1 through 8

 [0] [257] [20] [3] [2] [0] [0] [0]

Remaining points:

These are the remaining points to be reconstructed

after each level

Levels 1 through 8

 [282] [25] [5] [2] [0] [0] [0] [0]

These results are very interesting because most of the points are reconstructed at the

second level of the tree, when groups of 4 cameras are analysed. In this level, the

calculations are spread between 64 different nodes.

C
am

er
as

 =
 2

5
6

N
o

d
es

 =
 1

2
8

N
o

d
es

 =
 6

4

N
o

d
es

 =
 3

2

1
6

4

8

2 1

53

Tree analysis in a big space 40x40x5 meters
3

EXP. 2

A different situation is tested: the space is now of 40x40x5 meters
3
 and the number of

cameras is 256. The scope is to test the behaviour of the algorithm in the case of

many cameras that do not see the markers.

The markers are positioned on 18 people and are in total 846 as Figure 4.12.

Starting from the whole set of 256 cameras (EXP 2A), the number of cameras is then

reduced progressively (2B, 2C, 2D, 2E) to test more difficult situations, and to see

how the performance of the algorithm changes.

Figure 4.12. 846 points on 18 people and 256 cameras (EXP. 2A).

0

5

10

15

20

25

30

35

40
0

5

10

15

20

25

30

35

40

-1

0

1

2

3

4

5

6

54

Graph 4.12. Big space Angle value.

Graph 4.13. Big space common voxel value.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

100

200

300

400

500

600
1

angle value

c
o
m

m
o
n
 m

a
rk

e
r

2 3

4

5

6

7

8

9

10

11

12

13

14

1516171819202122
2324252627282930313233

34

35

36

37

38

39

40

41

42

43

44

45

46

47
48

4950 5152 5354 5556 5758 5960 6162 6364656667686970717273747576777879808182838485868788899091929394959697 9899 100101 102103 104105 106107 108109 110111 112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127128129

130

131

132

133

134

135
136

137

138

139

140

141142143144145146147148
149150151152153154155156157158159

160

161

162

163

164

165

166

167

168

169

170

171

172

173
174

175176 177178 179180 181182 183184 185186 187188 189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223 224225 226227 228229 230231 232233 234235 236237 238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254255 256

0 100 200 300 400 500 600 700 800
0

100

200

300

400

500

600
1

common voxel value

c
o
m

m
o
n
 m

a
rk

e
r

23

4

5

6

7

8

9

10

11

12

13

14

1516171819202122
2324252627282930313233

34

35

36

37

38

39

40

41

42

43

44

45

46

47
48

49 5051 5253 54555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104 105106 107108 109110 111112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127128129

130

131

132

133

134

135
136

137

138

139

140

141142143144145146147148
149150151152153154155156157158159

160

161

162

163

164

165

166

167

168

169

170

171

172

173
174

175 176177 178179 180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230 231232 233234 235236 237238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254255256

55

Graph 4.14. Big space summing voxel value = 0.75, angle value = 0.25.

Some markers are near the centre of the room so it is necessary to extend the

visibility range of the cameras from 6 meters to 20 meters. The Graph 4.14 shows

that lots of cameras don’t share points with camera 1; in any case the “curve” is

similar to a monotone function, so there is a good correlation between the real

common markers and the affinity function calculated by the algorithm. In this set-up,

every marker is seen by many cameras and all markers are correctly reconstructed at

the second level of the tree.

Reconstructed points:

 [0] [846] [0] [0] [0] [0] [0] [0]

Remaining points:

 [846] [0] [0] [0] [0] [0] [0] [0]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

100

200

300

400

500

600
1

moltiplicazione voxel 0.75 e angolo 0.25

c
o
m

m
o
n
 m

a
rk

e
r

23

4

5

6

7

8

9

10

11

12

13

14

1516171819202122
2324252627282930313233

34

35

36

37

38

39

40

41

42

43

44

45

46

47
48

4950 5152 5354 5556 5758 5960 6162 6364656667686970717273747576777879808182838485868788899091929394959697 9899 100101 102103104105106107108 109110 111112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127128129

130

131

132

133

134

135
136

137

138

139

140

141142143144145146147148
149150151152153154155156157158159

160

161

162

163

164

165

166

167

168

169

170

171

172

173
174

175176 177178 179180 181182 183184 185186 187188 189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223 224225 226227 228229230231232233234 235236 237238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254255 256

Summing voxel value = 0.75, angle value = 0.25

C
am

er
as

 =
 2

5
6

N
o

d
es

 =
 1

2
8

N
o

d
es

 =
 6

4

N
o

d
es

 =
 3

2

1
6

4

8

2 1

56

EXP. 2B: 128 cameras trial

In the next example, the number of cameras is 128 but even with this configuration,

all markers are reconstructed at the second level of the tree.

Figure 4.13. 846 points on 18 people and 128 cameras (EXP. 2B).

Reconstructed points:

 [0] [846] [0] [0] [0] [0]

Remaining points:

 [846] [0] [0] [0] [0] [0]

0

10

20

30

40 0
10

20
30

40

-1

0

1

2

3

4

5

6

C
am

er
as

 =
 1

2
8

 =
 1

28

N
o

d
es

 =
 6

4

N
o

d
es

 =
 3

2

1
6

4

8

2 1

57

EXP. 2C: 64 cameras trial

In this experiment, the number of cameras is 64. As it is possible to see in the results,

not all markers are reconstructed in the second level of the tree.

Figure 4.14. 846 points on 18 people and 64 cameras (EXP. 2C).

Reconstructed points:

 [0] [779] [67] [0] [0]

Remaining points:

 [846] [67] [0] [0] [0]

0

10

20

30

40 0

10

20

30

40-1

0

1

2

3

4

5

6

C
am

er
as

 =
 6

4

N
o

d
es

 =
 3

2

1
6

4

8

2 1

58

EXP. 2D: 32 cameras trial

Figure 4.15. 846 points on 18 people and 32 cameras (EXP. 2D).

Reconstructed points:

 [0] [632] [192] [22]

Remaining points:

 [846] [214] [22] [0]

Even with 32 cameras all markers are reconstructed.

0

10

20

30

40 0

10

20

30

40

0

2

4

6

C
am

er
as

 =
 3

2

1
6

4

8

2 1

59

EXP. 2E: 16 cameras trial

The last test is done with 16 cameras. In this situation, 281 markers out of 846 are

not seen by at least 3 cameras; most of the other markers are reconstructed at the

second level of the tree.

Figure 4.16. 846 points on 18 people and 16 cameras (EXP. 2E).

Reconstructed points:

 [0] [538] [27]

Remaining points:

 [846] [308] [281]

The unreconstructed points are concentrated in the centre of the room. This is

because the cameras are 8 m far from each other and so there will be some areas not

covered by three cameras.

0

10

20

30

40 0

10

20

30

40
-1

0

1

2

3

4

5

6

C
am

er
as

 1
6

4

8

2 1

60

In all these tests, at least 2/3 of the total markers are reconstructed in the first half of

the tree and most of the reconstructed 3D points are always in the second. This is

very important to guarantee that the algorithm makes most of the calculations in the

first levels, when the number of nodes is high and the elaboration is spread between

many different CPU.

4.7 Full tree analysis

The tree obtained for a set-up of 16 cameras is in Table 4.1:

Table 4.1. Tree representation.

The 16 cameras in the 5x5x5 m space are installed as in Figure 4.17:

Level 1

[1 12]

[2 9]

[3 10]

[4 11]

[5 8]

[6 7]

[13 16]

[14 15]

Level 2

[1 12 4 11]

[2 9 3 10]

[5 8 6 7]

[13 16 14 15]

Level 3

[1 12 4 11 2 9 3 10]

[5 8 6 7 13 16 14 15]

61

Figure 4.17. 12 cameras set-up.

In Figure 4.18 is possible to see the volume that cameras 1 and 12 share.

The normal angle of the two cameras is 48.21° and it is bigger than all the others.

The cameras also share the biggest number of voxels. Considering a voxel size of

0.25 m, they are 4868.

These two cameras are associated at the first level of the tree. In the second level of

the tree, cameras 4 and 11 are grouped together with 1 and 12. As it is possible to see

in Figure 4.17, camera 4 has the best angle in respect to both cameras 1 and 12 and

shares 4836 voxels with camera 1. Camera 11 has a good angle with camera 1 and

shares a good volume with both cameras 1 and 12.

0

2

4

6 -1 0 1 2
3 4 5 6

-1

0

1

2

3

4

5

6

12

11

10

16

9

15

14

8

13

7

6

4

5

3

2

1

62

Figure 4.18. Cameras 1 and 12 visibility volume.

63

5 Results

In this chapter, all results obtained during the internship are shown.

The first tests presented are about the time required by the distributed algorithm to do

the reconstruction using a random or an ordered system to create the association tree.

Ordered system is referred to the use of the functional cost for creating the tree.

A set-up is synthetically created with 256 cameras and 846 markers using the Matlab

functions that store that information in two txt files. The position of the 846 markers

is taken from a real file with three groups of 6 people. This information is read by the

Reconstructor class. The cameras and centroids information are saved in the same

order of the association tree.

1

4

2

3

5.1 Random Data

The random tests are done saving all cameras information and centroids randomly in

the files. In Table 5.1 there is the mean result of 10 different tests.

In the tables below, there are in general 4 columns: the Total time is the sum of the

times taken by all nodes in each level of the tree. Their sum is the total time required

by the distributed algorithm to be executed on a single core. The Max time column

contains the time required by the slowest node in each level of the tree. Their sum is

the total time required by the distributed algorithm to be executed in a real

The txt file created contains the information in the same order of the tree

Camera 1

Camera 4

Camera 2

Camera 3

Centroids 1

Centroids 4

Centroids 2

Centroids 3

[1 4 2 3]

[1 4]

[2 3]

64

distributed environment (excluding the times of the communication). The 2D and 3D

data in each level is the sum of the 2D and 3D point in each node.

Level Total time (s): MAX time (s): 2D Data: 3D Data:

1 0.0130 0.0030 7588 123

2 0.0298 0.0045 7530 409

3 0.0378 0.0065 7348 810

4 0.0583 0.0148 6767 1454

5 0.0830 0.0218 5542 2050

6 0.0780 0.0280 3046 2205

7 0.0395 0.0208 750 1618

8 0.0193 0.0183 148 906

Sum of total time=

0.1175

Table 5.1. Random data results with 256 cameras.

5.2 Ordered Data

Using the functional costs for creating the tree, the results are Table 5.2:

Level Total time (s): MAX time (s):
2D

Data:

3D

Data:

1 0.036 0.005 7588 1892

2 0.034 0.004 5349 2256

3 0.031 0.006 3436 2169

4 0.032 0.01 2856 2072

5 0.026 0.011 2157 1923

6 0.043 0.02 1496 1966

7 0.025 0.017 492 1313

8 0.019 0.019 102 853

Sum of total time =

0.092

Table 5.2. Ordered data results with 256 cameras.

65

5.3 Detailed analysis of the difference between the two

versions

From Graph 5.2 to Graph 5.7 it is possible to see a comparison between the two

versions.

Graph 5.1. Total time in each level (ordered version).

From Graph 5.1is possible to notice that the random version is slowly in all levels

apart from the first two in which the distributed version do most of the

reconstruction. Comparing each column of Graph 5.1 with Graph 5.2 it is possible to

have an idea of the distribution of the calculation among the node. For example in

the ordered version, the first level, takes 0.035 s. In that level there are 128 nodes so

each node may constribute only with 0,27 ms. Instead the slowest node constributes

for 5 ms.

0

0,01

0,02

0,03

0,04

0,05

0,06

0,07

0,08

0,09

1 2 3 4 5 6 7 8 9

Ti
m

e
 (

s)

Level

Total time in each level

random

ordered

66

Graph 5.2. MAX time in each level (both versions).

In Graph 5.2 it is possible to see the differences in time spent by the slowest node in

each level of the tree. In the first level, the algorithm using the ordered tree is slower

than the random one and this is normal considering that the ordered algorithm in this

phase should be able to do more reconstruction. The main differences are in levels 4,

5, 6 and 7. The random algorithm in these phases is slower because the number of

2D points to analyse is very high. The ordered algorithm, instead, has already cut

most of the 2D points, so the time spent in each level is shorter. In the last level, the

time spent is almost the same for the two versions because the number of 2D points

is small for both and most of the computation time is spent for merging the 3D

points.

0,000

0,005

0,010

0,015

0,020

0,025

0,030

1 2 3 4 5 6 7 8

Ti
m

e
 (

s)

Level

MAX time in each level

random

ordered

67

Graph 5.3. 2D Data in each level (both versions).

In Graph 5.3 it is possible to see the importance of having a good affinity method.

In the first level of the tree no 2D points are deleted. In the second level, it is possible

to notice how the use of the ordered system permits to delete the 30% of the 2D

points and in the third level another 35% of the points are cut. The random

reconstruction cuts a mere 4% between level 1 and level 3. These results perfectly

demonstrate the importance of using a good association function. Between level 4

and 6, each node analyzes from 16 to 64 cameras, so it is fundamental to keep low

the number of 2D points.

0

1000

2000

3000

4000

5000

6000

7000

8000

1 2 3 4 5 6 7 8

Level

2D Data in each level

random

ordered

68

Graph 5.4. 3D Data in each level (both versions).

In the 3D data analysis in Graph 5.4 it is possible to see how the ordered

reconstruction is able to create lots of 3D points already in the first level of the tree.

The total number of points in the graph is bigger than the real number of points

(846), because it is the sum of the 3D points reconstructed in all nodes of the level.

Part of them will be deleted, because they are ghost points and other will be merged

in other levels of the tree. As it is possible to see in Graph 5.5 and Graph 5.6, the

number of BIG 3D points is higher in the ordered tree. This can be correlated to the

faster reduction of the 2D points, because when a BIG 3D point is created all the 2D

points associated with it are deleted.

The bigger number of 3D points in the first levels of the ordered version doesn’t slow

the algorithm very much because they are distributed in different nodes.

0

500

1000

1500

2000

2500

1 2 3 4 5 6 7 8

Level

3D Data in each level

random

ordered

69

Graph 5.5. 3D BIG and SMALL points in each level (ordered version).

Graph 5.6. 3D BIG and SMALL points in each level (random version).

General consideration

The time taken by the ordered version is 0.092 seconds, while the mean time of the

random version is 0.1175 seconds that corresponds to 27% more.

0

500

1000

1500

2000

2500

1 2 3 4 5 6 7 8

Level

Ordered

small

big

0

500

1000

1500

2000

2500

1 2 3 4 5 6 7 8

Level

Random

small

big

70

Graph 5.7. 2D points deleted in each level (both versions).

In this Graph 5.7 is shown in more detail the number of 2D points that are deleted in

each level of the tree. The ordered version reduces them in the first levels of the tree,

so the total time required to analyze them is lower.

During the internship the algorithm has been improved a lot so the time required may

vary respect to the first results. Every time that a comparison between two versions

has been done, to make consistent comparison, the same data has been used and the

algorithm was at the same development version.

random
order

0

500

1000

1500

2000

2500

1 2 3 4 5 6 7 8

Level

1 2 3 4 5 6 7 8

random 0 0 184 216 2011 2149 2235 608

order 0 2248 1916 573 695 655 987 391

2D points deleted

71

5.4 Detailed Analysis of the distribution of the 3D points in

the nodes of the tree

The total time required by the algorithm is calculated summing for each level of the

tree the time required by the slowest node using equation (3.1). That time is

influenced by the distribution of the markers in the volume. In case the markers are

uniformly distributed, each camera sees only a fraction of them and the

reconstruction will be faster, because the calculation are uniformly distributed on all

the nodes. Instead, in a real case it is more likely to have zones with a big amount of

markers and zones with no markers. To recreate a real situation, in the volume there

were 3 groups with 6 people each one. Between Graph 5.8 and Graph 5.13 is

possible to see the number of 3D points reconstructed in each node of the ordered

and random version of the tree.

Graph 5.8. 3D points distribution in the first level using the ordered tree.

Graph 5.8 represents the number of 3D markers reconstructed by each node of the

first level of the tree. It is possible to notice how there are some nodes that

reconstructs a big number of points and this should guarantee that the set-up

represents a real situation and it is similar to a worst case scenario. The second thing

0

50

100

150

200

250

300

1 6

1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
6

5
1

5
6

6
1

6
6

7
1

7
6

8
1

8
6

9
1

9
6

1
0

1

1
0

6

1
1

1

1
1

6

1
2

1

1
2

6

Node's number

3d points ORDERED distribution (first level)

72

is that there are “clusters”
2
 of nodes that reconstruct a big number of 3D markers, for

example node 51 and 52 participate respectively to the reconstruction of 248 and 109

3D points. In the next level of the tree all those points will be merged together. It is

very important to highlight the presence of “cluster”, because this guarantees that at

the next level this information will be matched and it is very likely that a lot of

SMALL 3D points will be matched with other SMALL 3D points to create BIG 3D

points.

Graph 5.9. 3D points distribution in the first level using the random tree.

Graph 5.9 represents the number of 3D points reconstructed in each node of the first

level of the random tree. As it is possible to see, only node 23 is able to reconstruct

something.

2
 A cluster is a group of nodes that will be analyzed in the next level of the tree; every odd node is

merged with the following even node. If the odd node number x and the node x+1 reconstruct lots of

3D points, in the next level, all this points will be merged

0

50

100

150

200

250

300

1 6

1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
6

5
1

5
6

6
1

6
6

7
1

7
6

8
1

8
6

9
1

9
6

1
0

1

1
0

6

1
1

1

1
1

6

1
2

1

1
2

6

Node's number

3d points RANDOM distribution (first level)

73

Graph 5.10. 3D points distribution in the second level using the ordered tree.

In the second level of the tree (Graph 5.10 and Graph 5.11), it is possible to notice

how some nodes do most of the work while some other don’t reconstruct any points.

The distribution of the markers again is in “clusters” and it means that also the

function used in the high levels of tree well associate cameras.

Graph 5.11. 3D points distribution in the second level using the random tree.

0

50

100

150

200

250

300

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63

Node's number

3d points ORDERED distribution (second level)

0

50

100

150

200

250

300

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63

node's number

3d points RANDOM distribution (second level)

74

In the random version, on the second level of the tree the quantity of the 3D points

reconstructed in the nodes is still very low.

Graph 5.12. 3D points distribution in the third level using the ordered tree.

Even at the third level of the tree (Graph 5.5 and Graph 5.6), the nodes that merge

lot of points are in cluster, in this example there are 5 of them (as is possible to see).

In Graph 5.13 with the random version there is only one cluster (node’s number 11-

12).

Graph 5.13. 3D points distribution in the third level using the random tree

0

50

100

150

200

250

300

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

node's number

3d points ORDERED distribution (third level)

0

50

100

150

200

250

300

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

node's number

3d points RANDOM distribution (third level)

75

5.5 Estimating the performance using a different number of

cameras

An important thing to analyze is the speed of the algorithm changing the number of

cameras.

The tests are done with 128, 256, 512 and 1024 cameras and using an ordered tree.

The volume is 32x32x5 m and all cameras are placed on the ceiling. The actual

algorithm works only if the number of cameras is a power of 2 but it could be easily

modified adding dummy cameras. For every test, the minimum visibility distance for

each camera is always 2 m and the maximum visibility distance is specified.

Test with 128 cameras (846 markers):

Figure 5.1. Set-up with 128 cameras and 846 markers.

0

10

20

30
0 5 10 15 20 25 30

-1

0

1

2

3

4

5

6

72
71

80

70
79

69

88

78

68

87

77

67

96

86

76

66

95

85

75

104

65

94

84

74

103

93

83

112

73

102

92

82

111

101

91

120

81

110

100

90

119

109

99

128

89

118

108

98

127

117

107

64

97

126

116

106

63

125

115

56

105

62

124

114

55

61

123

48

113

54

60

122

47

53

59

40

121

46

52

58

39

45

51

57

32

38

44

50

31

37

43

49

24

30

36

42

23

29

35

41

16

22

28

34

15

21

27

33

8

14

20

26

7

13

19

25

6

12

18

5

11

17

4

10
3

9

2
1

76

Dmax = 6 m

Level
MAX

time (s):

2D

Data:

2D

Data

deleted:

3D Data

(big):

3D Data

(small):

1 0.003 3456 0 0 978

2 0.004 2905 551 185 1048

3 0.004 2089 816 418 1148

4 0.009 1618 471 450 908

5 0.013 1552 66 472 880

6 0.018 737 815 592 460

7 0.027 267 470 700 140

Total time

= 0.078

Table 5.3 846 markers and 128 cameras (Dmax = 6 m)

Markers found = 700 out of 846 Ghost = 0.

Not all markers of Figure 5.1 are reconstructed. As it is possible to see from Figure

5.2, most of the points not found are in the lower part of the volume near the borders.

Figure 5.2. Detailed view of the markers not reconstructed

(the ones without the “+”) by the 128 cameras setup.

0
5

10
15

20
25

30

0

5

10

15

20

25

30

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

77

To avoid the problem of the markers that are not reconstructed, the visibility distance

of the cameras is increased to Dmax = 8 m.

After some trials with different parameters the results are in Table 5.4:

 const double distance3D = 0.01;

 const double distance2d3d = 0.02;

 const double SamponImageError = 0.000005;

Level
MAX

time:

2D

Data:

2D Data

deleted:

3D Data

(big):

3D Data

(small):

1 0.008 7428 0 0 5367

2 0.016 3411 4017 1190 1982

3 0.011 1257 2154 1457 880

4 0.004 528 729 1260 344

5 0.013 528 0 1260 344

6 0.008 232 296 1003 183

7 0.015 11 221 849 2

Total time

= 0.075

Table 5.4. 846 markers and 128 cameras (Dmax = 8 m).

Increasing the visibility distance of the cameras, all markers are found and the time

required is lower because the algorithm will delete faster the 2D points.

78

Test with 256 cameras (846 markers):

After several optimisations of the code, using the same parameters as the other

experiment, the results with 256 cameras are in table:

Dmax = 6m

Level
MAX

time (s):

2D

Data:

2D Data

deleted:

3D Data

(big):

3D Data

(small):

1 0.006 7588 0 0 1892

2 0.003 5369 2219 635 1626

3 0.006 3517 1852 1079 1090

4 0.01 2957 560 1156 914

5 0.009 2230 727 1285 638

6 0.013 1558 672 1433 533

7 0.01 556 1002 1162 145

8 0.018 167 389 846 0

Total time

= 0.075

Table 5.5. 846 markers and 256 cameras (Dmax = 6 m).

79

Test with 512 cameras (846 markers):

Dmax = 6m

Figure 5.3. Set-up with 512 cameras and 846 markers.

Figure 5.4. Set-up with 512 cameras and 846 markers (ceiling view).

After different trials with 512 cameras the results are in Table 5.6:

 const double distance3D = 0.01;

 const double distance2d3d = 0.005;

 const double SamponImageError = 0.000005;

0

5

10

15

20

25

30

0
5

10
15

20
25

30

-1

0

1

2

3

4

5

6

272
271

288

270

287

269

304

286

268

303

285

267

320

302

284

266

319

301

283

265

336

318

300

282

264

335

317

299

281

263

352

334

316

298

280

262

351

333

315

297

279

368

261

350

332

260

314

296

278

367

349

331

259

313

295

384

277

366

348

258

276

330

312

294

383

365

347

257

275

329

311

400

293

382

364

274

292

346

328

310

399

381

363

273

291

345

327

416

309

398

380

290

308

362

344

326

415

397

379

289

307

361

343

432

325

414

396

306

324

378

360

342

431

413

395

305

323

377

359

448

341

430

412

322

340

394

376

358

447

429

411

321

339

393

375

464

357

446

428

338

356

410

392

374

463

445

427

337

355

409

391

480

373

462

444

354

372

426

408

390

479

461

443

353

371

425

407

496

389

478

460

370

388

442

424

406

495

477

459

369

387

441

423

512

405

494

476

386

404

458

440

422

511

493

475

385

403

457

256

439

421

510

492

402

420

474

456

255

438

509

491

401

419

473

254

240

455

437

508

418

436

490

472

253

239

454

507

417

435

489

434

452

252

238

224

471

453

506

488

433

451

251

237

223

470

505

450

468

250

236

222

208

487

469

504

249

235

221

207

486

449

467

248

234

220

206

192

503

485

466

484

247

233

219

205

191

502

465

483

246

232

218

204

190

176

501

482

245

231

217

203

189

175

500

497
498

481

244

230

216

202

188

174

160

499

229

215

201

187

173

159

228

214

200

186

172

158

144

243

213

199

185

171

157

143

242

212

198

184

170

156

142

128

227

241

197

183

169

155

141

127

226

196

182

168

154

140

126

112

211

225

181

167

153

139

125

111

210

180

166

152

138

124

110

96

195

209

165

151

137

123

109

95

194

164

150

136

122

108

94

80

179

193

149

135

121

107

93

79

178

148

134

120

106

92

78

64

163

177

133

119

105

91

77

63

162

132

118

104

90

76

62

48

147

161

117

103

89

75

61

47

146

116

102

88

74

60

46

32

131

145

101

87

73

59

45

31

130

100

86

72

58

44

30

16

115

129

85

71

57

43

29

15

114

84

70

56

42

28

14

99

113

69

55

41

27

13

98

83

68

54

40

26

12

97

82

53

39

25

11

67

81

52

38

24

10

66

37

23

9

51

65

36

22

8

50

21

7

35

49

20

6

34

5

19

33

4

18

3

17

2
1

0

5

10

15

20

25

30

0 5 10 15 20 25 30

259

270

258

271

260

269

272

261

268

262

267

263

266

264

265

257

275

286

274

287

276

285

288

277

284

278

283

279

282

280

281

273

291

302

290

303

292

301

289

304

293

300

294

299

295

298

296

297

307

318

306

319

308

317

305

320

309

316

310

315

311

314

312

313

323

334

322

335

324

333

321

336

325

332

326

331

327

330

328

329

339

350

338

351

340

349

337

352

341

348

342

347

343

346

344

345

355

366

354

367

356

365

368

357

364

358

363

359

362

360

361

353

371

382

370

383

372

381

369

384

373

380

374

379

375

378

376

377

387

398

386

399

388

397

385

400

389

396

390

395

391

394

392

393

403

414

402

415

404

413

416

405

412

406

411

407

410

408

409

401

419

430

418

431

420

429

417

432

421

428

422

427

423

426

424

425

435

446

434

447

436

445

433

448

437

444

438

443

439

442

440

441

451

462

450

463

452

461

464

453

460

454

459

455

458

456

457

449

467

478

466

479

468

477

465

480

469

476

470

475

471

474

472

473

483

494

482

495

484

493

481

496

485

492

486

491

487

490

488

489

499

510

498

511

500

509

512

501

508

502

507

503

506

504

505

497

246

251

245

252

247

250

244

253

248

249

243

254

242

255

241

256

230

235

229

236

231

234

228

237

232

233

227

238

226

239

225

240

214

219

213

220

215

218

212

221

216

217

211

222

210

223

209

224

198

203

197

204

199

202

196

205

200

201

195

206

194

207

193

208

182

187

181

188

183

186

180

189

184

185

179

190

178

191

177

192

166

171

165

172

167

170

164

173

168

169

163

174

162

175

161

176

150

155

149

156

151

154

148

157

152

153

147

158

146

159

145

160

134

139

133

140

135

138

132

141

136

137

131

142

130

143

129

144

118

123

117

124

119

122

116

125

120

121

115

126

114

127

113

128

102

107

101

108

103

106

100

109

104

105

99

110

98

111

97

112

86

91

85

92

87

90

84

93

88

89

83

94

82

95

81

96

70

75

69

76

71

74

68

77

72

73

67

78

66

79

65

80

54

59

53

60

55

58

52

61

56

57

51

62

50

63

49

64

38

43

37

44

39

42

36

45

40

41

35

46

34

47

33

48

22

27

21

28

23

26

20

29

24

25

19

30

18

31

17

32

6

11

5

12

7

10

4

13

8

9

3

14

2

15

1

16

80

Level
MAX

time (s):

2D

Data:

2D Data

deleted:

3D Data

(big):

3D Data

(small):

1 0.007 15787 0 0 5172

2 0.004 7951 7836 2240 3490

3 0.003 4275 3676 2501 1867

4 0.004 1644 2631 2453 767

5 0.007 1475 169 2265 694

6 0.004 842 633 1995 356

7 0.004 230 612 1470 79

8 0.01 83 147 1228 29

9 0.012 20 63 861 0

Total time

= 0.055

Table 5.6. 846 markers and 512 cameras (Dmax = 6 m).

Test with 1024 cameras (846 markers):

Dmax = 6m

Figure 5.5. Set-up with 1024 cameras and 846 markers.

0

5

10

15

20

25

30

0
5

10
15

20
25

30

-1

0

1

2

3

4

5

6

542

532533
534535

536537
538

543
544

541

529

526
525524

523522

515
516517

518519
520521

527
528

530
564
565

531

566
567568

569570

574
575576

540
539

573

561

558557
556555

514
513

554

547548
549550

551552
553

559560
562

596597
563

598599
600601

602

606607
608

572571
605

593

590
589588

587

546545

586

579
580581

582583
584585

591
592

594
628

629

595

630
631632

633634

638639
640

604
603

637

625

622621
620619

578
577

618

611612
613614

615616
617

623624
626

660661
627

662663
664665666

670
671672

636635
669

657

654
653652

651

610609

650

643
644645

646647
648649

655
656

658
692693

659

694695
696697

698

702703
704

668667
701

734

689

686685
684683

642
641

682

675676
677678

679680
681

687688
690

724
725

691

726
727728

729730

735736

700
699

733

721

718
717716

715

674673

714

707
708709

710711
712713

719
720

722

756757
723

758759
760761

762

766767
768

732731
765

753

750
749748747

706
705

746

739740
741742

743744
745

751
752

754
788

789

755

790
791792

793794

798
799800

764
763

797
830

785

782781
780779

738737

778

771
772773

774775
776777

783784
786

820821
787

822823
824825

826

831
832

796795
829

817

814
813812

811

770
769

810

803804805
806807

808809

815
816

818
852
853

819

854
855856

857858

862
863864

828
827

861

849

846845
844843

802801

842

835836
837838

839840
841

847848
850

884885
851

886887
888889

890

894895
896

860859
893

881

878
877876

875

834833

874

867
868869

870871
872873

879
880

882
916

917

883

918
919920

921922

926
927928

892
891

925

913

910909
908907

866
865

906

899900
901902

903904
905

911912
914

948949
915

950951
952953

954

958959
960

924923
957

945

942
941940

939

898897

938

931
932933

934935
936937

943
944

946
980
981

947

982
983984

985986

990
991992

956
955

989

977

974973
972971

930
929

970

963964
965966

967968
969

975976
978

10121013
979

10141015
10161017

1018

10221023
1024

988987
1021

512511
510509

508

10111010
1009

501

10051004
1003

962961

1002

995
996997

998999
10001001

10061007

994
993481482

483484
485486

487488
489490

491492
493494

495496
497

1008
498

500499

502
503504

505506
507 1020

1019

480
479478

477476

469

449
450451

452453
454455

456457
458459

460461
462463

464465
466

468
467

470471
472473

474475

448447
446445

444

437

417418
419420

421422
423424

425426
427428

429430
431432

433434
436435

438
439440

441442
443

416
415414

413412

405

385
386387

388389
390391

392393
394395

396397
398399

400401
402

404
403

406407
408409

410411

384383
382381

380

373

353354
355356

357358
359360

361362
363364

365366
367368

369370
372371

374
375376

377378
379

352351
350349

348

341

321
322323

324325
326327

328329
330331

332333
334335

336337
338

340
339

342343
344345

346347

320
319318

317316

309

289290
291292

293294
295296

297298
299300

301302
303304

305306
308307

310
311312313

314315

288287
286285

284

277

257
258259

260261
262263

264265
266267

268269
270271

272273
274

276275

278
279280

281282
283

256
255254

253252

245

225226
227228

229230
231232

233234
235236

237238
239240241

242
244

243

246247
248249

250251

224223
222221

220

213

193
194195

196197
198199

200201
202203204

205206
207208

209210
212211

214
215216

217218
219

192
191190

189188

181

161162
163164

165166
167168169

170171
172173

174175
176177

178
180

179

182183
184185

186187

160159
158157

156

149

129
130131132

133134
135136

137138
139140

141142
143144

145146
148147

150
151152

153154
155

128
127126

125124

117

97
9899

100101
102103

104105
106107

108109
110111

112113
114

116
115

118119
120121

122123

9695
9493

92

85

6566
6768

6970
7172

7374
7576

7778
7980

8182
8483

86
8788

8990
91

64
6362

6160

53

33
3435

3637
3839

4041
4243

4445
4647

4849
50

52
51

5455
5657

5859

3231
3029

28

21

12
34

56
78

910
1112

1314
1516

1718
2019

22
2324

2526
27

81

After several trials with different parameters, the best results are Table 5.7:

 const double distance3D = 0.01;

 const double distance2d3d = 0.005;

 const double SamponImageError = 0.000005;

Level
MAX

time (s):

2D

Data:

2D Data

deleted:

3D Data

(big):

3D Data

(small):

1 0.007 32631 0 0 14212

2 0.004 11042 21589 5898 3789

3 0.003 6378 4664 5269 2137

4 0.006 4696 1682 4863 1701

5 0.008 3820 876 4525 1354

6 0.01 2720 1100 4437 1080

7 0.011 1149 1571 3459 432

8 0.008 348 801 2333 88

9 0.009 256 92 1278 61

10 0.024 120 136 848 9

Total time

= 0.09

Table 5.7. 846 markers and 128 cameras (Dmax = 6 m).

82

Graph 5.14. Comparison of the time required by a different number of cameras.

As it is possible to see from Graph 5.14, increasing the number of cameras does not

correspond to a proportional increase in time required by the reconstruction. There

are two points with 128 cameras (corresponding to different visibility distance).

The fastest reconstruction is done with 512 cameras. It may seem unusual that the

fastest reconstruction is the one with 512 cameras because the initial amount of 2D

data is bigger than the 128 and 256 cameras tests .

In Table 5.8, Table 5.9 and Table 5.10 is possible to see the amount of 2D and 3D

points in each level of the tree for the different numbers of cameras.

128 D_max = 6m

128

256

512

1024

0

0,01

0,02

0,03

0,04

0,05

0,06

0,07

0,08

0,09

0,1

0 128 256 384 512 640 768 896 1024 1152

Ti
m

e
(s

)

Number of cameras

Number of cameras vs. Time

83

2D points

1024

32631 512

11042 15787 256

6378 7951 7588 128

4696 4275 5369 3456

3820 1644 3517 2905

2720 1475 2957 2089

1149 842 2230 1618

348 230 1558 1552

256 83 556 737

120 20 167 267

 Table 5.9. 2D points comparison.

Time (s)

1024:

0.007 512:

0.004 0.007 256:

0.003 0.004 0.006 128:

0.006 0.003 0.003 0.008

0.008 0.004 0.006 0.016

0.01 0.007 0.01 0.011

0.011 0.004 0.009 0.004

0.008 0.004 0.013 0.013

0.009 0.01 0.01 0.008

0.024 0.012 0.018 0.015

Table 5.10. Time comparison.

The green boxes are those with the minimum amount of points or time. It is possible

to see the high correlation between the number of 2D points and the time required by

the algorithm. The 512 cameras set-up from the sixth-last level has less 2D points.

Instead, there is not a strict correlation between the time and the number of 3D

points.

The distance between the cameras in the 512 cameras set-up is about 1 m. This is

probably the best condition for deleting quickly the 2D points associated with the

BIG 3D points.

3D total points

1024

14212 512

9687 5172 256

7406 5730 1892 128

6564 4368 2261 978

5879 3220 2169 1233

5517 2959 2070 1566

3891 2351 1923 1358

2421 1549 1966 1352

1339 1257 1307 1052

857 861 846 840

 Table 5.8. 3D points comparison.

84

5.6 Markers placed in different positions

To verify the results obtained, the markers are dislocated to a more central position.

All 256 cameras look partially at the centre of the volume so more cameras should

see the 846 markers.

The position used in all previous tests was in Figure 5.6:

Figure 5.6. Ceiling view of the standard 846 markers set-up.

The new tested position is in Figure 5.7:

Figure 5.7. Ceiling view of a different 846 markers set-up.

0

5

10

15

20

25

30

0 5 10 15 20 25 30

131

142

130

143

132

141

144

133

140

134

139

135

138

136

137

129

147

158

146

159

148

157

145

160

149

156

150

155

151

154

152

153

163

174

162

175

164

173

161

176

165

172

166

171

167

170

168

169

179

190

178

191

180

189

177

192

181

188

182

187

183

186

184

185

195

206

194

207

196

205

193

208

197

204

198

203

199

202

200

201

211

222

210

223

212

221

209

224

213

220

214

219

215

218

216

217

227

238

226

239

228

237

225

240

229

236

230

235

231

234

232

233

243

254

242

255

244

253

241

256

245

252

246

251

247

250

248

249

118

123

117

124

119

122

116

125

120

121

115

126

114

127

113

128

102

107

101

108

103

106

100

109

104

105

99

110

98

111

97

112

86

91

85

92

87

90

84

93

88

89

83

94

82

95

81

96

70

75

69

76

71

74

68

77

72

73

67

78

66

79

65

80

54

59

53

60

55

58

52

61

56

57

51

62

50

63

49

64

38

43

37

44

39

42

36

45

40

41

35

46

34

47

33

48

22

27

21

28

23

26

20

29

24

25

19

30

18

31

17

32

6

11

5

12

7

10

4

13

8

9

3

14

2

15

1

16

0

5

10

15

20

25

30

0 5 10 15 20 25 30

131

142

130

143

132

141

144

133

140

134

139

135

138

136

137

129

147

158

146

159

148

157

145

160

149

156

150

155

151

154

152

153

163

174

162

175

164

173

161

176

165

172

166

171

167

170

168

169

179

190

178

191

180

189

177

192

181

188

182

187

183

186

184

185

195

206

194

207

196

205

193

208

197

204

198

203

199

202

200

201

211

222

210

223

212

221

209

224

213

220

214

219

215

218

216

217

227

238

226

239

228

237

225

240

229

236

230

235

231

234

232

233

243

254

242

255

244

253

241

256

245

252

246

251

247

250

248

249

118

123

117

124

119

122

116

125

120

121

115

126

114

127

113

128

102

107

101

108

103

106

100

109

104

105

99

110

98

111

97

112

86

91

85

92

87

90

84

93

88

89

83

94

82

95

81

96

70

75

69

76

71

74

68

77

72

73

67

78

66

79

65

80

54

59

53

60

55

58

52

61

56

57

51

62

50

63

49

64

38

43

37

44

39

42

36

45

40

41

35

46

34

47

33

48

22

27

21

28

23

26

20

29

24

25

19

30

18

31

17

32

6

11

5

12

7

10

4

13

8

9

3

14

2

15

1

16

85

In this case the results are in Table 5.11:

Level
MAX

time:

2D

Data:

2D Data

deleted:

3D Data

(big):

3D Data

(small):

1 0.008 18592 0 0 6955

2 0.004 6495 12097 3451 2126

3 0.004 2805 3690 3283 809

4 0.008 2138 667 2970 631

5 0.007 1736 402 2638 545

6 0.008 736 1000 2148 226

7 0.008 192 544 1411 33

8 0.016 66 126 847 0

Total time =

0.063

Table 5.11. Results with a different position of the markers.

The time required is less than before (0.075 s) and analysing the data, it is possible to

notice that with the new set-up the number of 2D data is bigger in the first two levels

but then it decreases faster. The reason is that now, the markers are seen by more

cameras and the reconstruction is faster. It also confirms that the set-up used for the

previous analysis is not the best-case, for the time of the reconstruction.

5.7 Analysis diminishing the amount of data

To evaluate the performance of the algorithm changing the number of markers,

different set-ups are done.

For all tests, the number of cameras is kept fix to 256.

The number of points in the first test is half of the original.

86

The results are:

Level
MAX time

(s):
2D Data:

2D Data

deleted:

3D Data

(big):

3D Data

(small):

1 0.002 7899 0 0 2263

2 0.002 3561 4338 1286 1111

3 0.002 1899 1662 1334 568

4 0.004 1700 199 1296 520

5 0.004 1022 678 1249 302

6 0.004 317 705 1127 73

7 0.003 203 114 610 33

8 0.012 81 122 424 0

Total time =

0.033

Table 5.12. 424 markers and 256 cameras.

Then the number of markers is reduced by 1/3:

Level
MAX time

(s):
2D Data:

2D Data

deleted:

3D Data

(big):

3D Data

(small):

1 0.001 5273 0 0 1369

2 0.002 2648 2625 774 792

3 0.001 1408 1240 887 380

4 0.002 1279 129 862 363

5 0.003 838 441 836 211

6 0.003 344 494 773 64

7 0.003 218 126 445 45

8 0.008 81 137 282 1

Total time =

0.023

Table 5.13. 282 markers and 256 cameras.

87

Then by 1/4:

Level
MAX time

(s):

2D

Data:

2D Data

deleted:

3D Data

(big):

3D Data

(small):

1 0.001 3978 0 0 1019

2 0.001 2040 1938 573 616

3 0.001 1078 962 670 290

4 0.002 981 97 653 283

5 0.002 637 344 634 171

6 0.002 254 383 588 49

7 0.002 170 84 336 37

8 0.007 61 109 214 1

Total time =

0.018

Table 5.14. 212 markers and 256 cameras.

And finally by 1/6:

Level
MAX time

(s):

2D

Data:

2D Data

deleted:

3D Data

(big):

3D Data

(small):

1 0.001 2633 0 0 670

2 0.001 1341 1292 382 397

3 0.001 715 626 443 193

4 0.001 647 68 431 185

5 0.001 427 220 414 111

6 0.001 186 241 383 39

7 0.002 114 72 223 26

8 0.006 43 71 141 0

Total time =

0.014

Table 5.15. 141 markers and 256 cameras.

88

Another test is done increasing the number of markers to 1692. These were

distributed in six groups of six people like in Figure 5.8:

Figure 5.8. Ceiling view of the 1692 markers set-up.

The data obtained are:

Level
MAX

time (s):

2D

Data:

2D Data

deleted:

3D Data

(big):

3D Data

(small):

1 0.008 33160 0 0 9996

2 0.008 13956 19204 5556 4461

3 0.021 7205 6751 5556 2315

4 0.033 5706 1499 5379 1772

5 0.024 3846 1860 4750 1149

6 0.034 2165 1681 4102 616

7 0.035 865 1300 2735 118

8 0.088 492 373 1704 16

Total time

= 0.251

Table 5.16. 1692 markers and 256 cameras.

0 5 10 15 20 25 30
0

5

10

15

20

25

30

89

Graph 5.15. Comparison of the time taken by the algorithm, changing

only the number of markers.

As it is possible to see in Graph 5.15 the time required by the algorithm is strictly

correlated with the number of markers.

0

0,05

0,1

0,15

0,2

0,25

0,3

0 282 564 846 1128 1410 1692 1974

Ti
m

e
 (

s)

Markers

Number of markers vs. Time

90

5.8 Adding error to the data

Other tests are done to verify the robustness of the algorithm adding an error to the

input data. Before saving the synthetic data, a Gaussian error is added in Matlab to

the 2D position of each centroid seen by the cameras. The set-up has 256 fixed

cameras and 846 markers. Each camera can see 6 meters far with a focal length of 5

mm; the pixel size is 0.005mm.

The first error added has a variance equal to 0.000625 mm in the image plane. This

value corresponds to 1/8 of a pixel or, to a markers moved from its real position of

0.5 mm if it is 4 meters far from the camera.

The “Missed” are the real markers that the algorithm cannot reconstruct, while the

“Ghosts” are markers reconstructed that are not present in the real data set.

The result is:

 const double distance3D = 0.02;

 const double distance2d3d = 0.015;

 const double SamponImageError = 0.00000025;

Level
MAX time

(s):

2D

Data:

2D Data

deleted:

3D Data

(big):

3D Data

(small):

1 0.005 7588 0 0 2485

2 0.004 4739 2849 838 1788

3 0.007 2997 1742 1110 1042

4 0.01 2695 302 1126 963

5 0.01 2129 566 1197 751

6 0.017 1399 730 1368 584

7 0.012 459 940 1148 186

8 0.021 36 423 846 1

Total time =

0.086

Table 5.17. Gaussian error = 1/8 of a pixel.

Total Markers= 846, Missed = 0, Ghost = 0.

With this error, all 3D points are found.

91

The second test is done doubling the error to 0.00125 which consists to a Gaussian

error of 1 mm for a marker 4 meters far from the camera:

 const double distance3D = 0.04;

 const double distance2d3d = 0.01;

 const double SamponImageError = 0.000007;

Level
MAX

time (s):

2D

Data:

2D Data

deleted:

3D Data

(big):

3D Data

(small):

1 0.006 7588 0 0 2697

2 0.004 4789 2799 826 1937

3 0.006 3048 1741 1108 1125

4 0.011 2746 302 1126 1043

5 0.01 2194 552 1196 827

6 0.017 1516 678 1355 700

7 0.014 537 979 1162 218

8 0.024 94 443 846 3

Total time

= 0.092

Table 5.18. Gaussian error = 1/4 of a pixel.

Total Markers= 846, Missed = 0, Ghost = 0.

Also with this error, all markers are found.

92

Then the error is doubled again to 0.0025, which corresponds to a Gaussian error on

each axe of 2 mm for a marker 4 meters far from the camera:

 const double distance3D = 0.04;

 const double distance2d3d = 0.03;

 const double SamponImageError = 0.00002;

Level
MAX

time (s):

2D

Data:

2D Data

deleted:

3D Data

(big):

3D Data

(small):

1 0.006 7588 0 0 3099

2 0.005 4909 2679 796 2339

3 0.008 3199 1710 1087 1406

4 0.013 2906 293 1105 1321

5 0.013 2358 548 1179 1064

6 0.019 1697 661 1345 926

7 0.018 656 1041 1184 268

8 0.028 206 450 844 24

Total time

= 0.11

Table 5.19. Gaussian error = 1/2 of a pixel.

Total = 844, Missed = 3, Ghost = 1.

With this error, three real markers are not reconstructed and 1 extra marker is

reconstructed by the algorithm.

93

Next test is done doubling again the error to 0.005, which corresponds to a Gaussian

error on each axe of 1 pixel or 4 mm for a marker 4 meters far from the camera:

 const double distance3D = 0.04;

 const double distance2d3d = 0.03;

 const double SamponImageError = 0.00002;

Level
MAX time

(s):

2D

Data:

2D Data

deleted:

3D Data

(big):

3D Data

(small):

1 0.006 7588 0 0 2592

2 0.006 5390 2198 703 2220

3 0.007 3668 1722 1085 1320

4 0.015 3389 279 1108 1266

5 0.019 2870 519 1191 1067

6 0.023 2264 606 1347 977

7 0.031 1163 1101 1265 440

8 0.055 606 557 859 159

Total time =

0.162

Table 5.20. Gaussian error = 1 pixel.

Total = 859, Missed = 20, Ghost = 33.

An added error of 4mm is quite big considering that the standard marker has a

diameter of 1 cm; however only 2.3% of the real markers are not reconstructed.

94

Last test is done to stress the algorithm: the Gaussian error added is 0.01, which

corresponds to a Gaussian error on each axe of 8 mm for a marker 4 meters far from

the camera.

 const double SamponImageError: 0.0002

 const double distance2d3d: 0.03

 const double distance3D: 0.07

Level
MAX

time (s):

2D

Data:

2D Data

deleted:

3D Data

(big):

3D Data

(small):

1 0.008 7588 0 0 4858

2 0.014 5696 1892 595 4572

3 0.01 3963 1733 1064 3247

4 0.019 3439 524 1146 2730

5 0.026 2875 564 1259 2362

6 0.047 2419 456 1374 2683

7 0.075 1065 1354 1372 851

8 0.066 545 520 898 287

Total time

= 0.265

Table 5.21. Gaussian error = 2 pixels.

Total=898, Missed = 45, Ghost = 97.

In this situation, the accuracy of the algorithm is low, 5.3% of the original markers

are not reconstructed and 11% of the total markers reconstructed are ghosts.

The different performances are in Graph 5.16 and Graph 5.17:

95

Graph 5.16. Number of missed and ghost point adding a Gaussian

error to the data.

The times required by the algorithm vary, the larger the error the longer the time:

Graph 5.17. Time required by the algorithm adding a Gaussian error

to the data.

0
10
20
30
40
50
60
70
80
90

100

0,000625 0,00125 0,0025 0,005 0,01

N
u

m
b

e
r

o
f

m
ar

ke
rs

 (
o

u
t

o
f

8
4

6
)

Gaussian Error added

Error vs. Missed and Ghost

Missed

Ghost

0

0,05

0,1

0,15

0,2

0,25

0,3

0 0,0025 0,005 0,0075 0,01

Ti
m

e
 (

s)

Error(mm on each axe, pixel size=0.005)

Time vs. Error

96

5.9 Comparison with the centralized code

The other main step is to compare between the distributed and the centralised

algorithm using real data. The big limitation of these tests is that the tree is not

created using the association function but is obtained by random association, so the

performance of the distributed algorithm is lower. The second factor is that the

distributed algorithm is not as optimised as the centralised version on which Vicon

has worked for years.

The results have been obtained using a big file captured for a movie. In this file

people has lots of markers on the face and on the hands to capture in details also the

information about facials expressions and hands movements.

The number of cameras used is 220 and the number of markers is about 2350. The

exact number of markers is not known a priori but for evaluating the differences

between the two versions this is not very important. With a big amount of cameras,

the threshold for the BIG 3D points must be increased to 5 o 6 otherwise it is very

likely the presence of ghost markers with 3 or more rays forming it.

The set-up of the cameras is shown in Figure 5.9 (Captured with Vicon Nexus®):

97

Figure 5.9. Cameras set-up of the real data.

In Figure 5.10 is possible to see more in detail the 9 people with the open arms plus

some objects in the scene:

Figure 5.10. Markers set-up of the real data.

98

The tests are done with a different number of cameras starting from 8 to 128. The

results for the distributed version with 8 cameras are:

Level
MAX time

(s):

2D

Data:

2D Data

deleted:

3D Data

(big):

3D Data

(small):

1 0.013 2750 0 0 322

2 0.035 2589 502 52 901

3 0.08 1867 2157 260 1039

Total time =

0.128

Table 5.22. Distributed algorithm with 8 cameras (real data).

The summarize data for the other set-up is:

Max Time in each level (s):

128

0.022 64

0.054 0.022 32

0.152 0.054 0.023 16

0.302 0.153 0.043 0.013

0.509 0.346 0.097 0.043

0.814 0.494 0.238 0.097

1.379 0.814 0.474 0.229

Total time

= 3.232

Total time

= 1.883

Total time

= 0.875

Total time

= 0.382

Table 5.23 Distributed algorithm with all the cameras (real data)

99

The results of the centralised and distributed version are:

The performance is in Graph 5.18:

128 Cameras:

The time taken by the centralised algorithm is 3.451

The total number of markers found is 4950

The time taken by the distributed algorithm is 3.232

The total number of markers found is 3635

64 Cameras:

The time taken by the centralised algorithm is 1.758

The total number of markers found is 3522

The time taken by the distributed algorithm is 1.883

The total number of markers found is 2467

32 Cameras:

The time taken by the centralised algorithm is 0.811

The total number of markers found is 2225

The time taken by the distributed algorithm is 0.875

The total number of markers found is 1371

16 Cameras:

The time taken by the centralised algorithm is 0.416

The total number of markers found is 1437

The time taken by the distributed algorithm is 0.382

The total number of markers found is 700

8 Cameras:

The time taken by the centralised algorithm is 0.135

The total number of markers found is 707

The time taken by the distributed algorithm is 0.128

The total number of markers found is 206

100

Graph 5.18. Comparison between the centralized and the distributed version

using real data.

The graph shows that the two curves are very similar. With a big number of cameras,

in particular 128, the centralised version of the algorithm is slower than the

distributed version of the 6.78%. Analysing the trend of the graph, it seems that when

the number of cameras increases, the difference between the two versions becomes

larger.

An analysis of the time spent in each part of the distributed algorithm shows that the

time is almost equally distributed among the three different functions.

0

0,5

1

1,5

2

2,5

3

3,5

4

0 16 32 48 64 80 96 112 128 144

Ti
m

e
(s

)

Number of cameras

Centralised vs Distributed

Centralised

Distributed

101

Graph 5.19. Time required by each reconstruction function of the distributed

algorithm.

A synthetic set-up is created to do an analysis of the algorithm behaviour with a

larger number of cameras. It is not a trivial process. First, the 3D position of all

markers is calculated and saved using the software developed by the company Vicon

Nexus®. Second, to the stage are added 36 cameras in random positions so the total

number grows to 256. Third, using a cpp code all markers are projected to the image

plane of all the cameras and then stored to a file.

The new input file is similar to the previous one with the only difference that there

are no occlusions so the total number of markers that the cameras could see is larger.

Even in this example the tree is randomly built.

0

0,5

1

1,5

2

2,5

3

3,5

8 16 32 64 128

Ti
m

e
 (

s)

Number of cameras

Detailed time analysis

3d-3d

3d-2d

2d-2d

102

The data obtained with 8 cameras are:

Level
MAX

time (s):

2D

Data:

2D Data

deleted:

3D Data

(big):

3D Data

(small):

1 0.141 8650 0 0 2194

2 0.134 4563 4087 1334 1861

3 0.044 81 4482 1993 37

Total

time =

0.319

Table 5.24. Distributed algorithm with 8 cameras (real data, no occlusions).

The other results are:

Max Time in each level (s):

256

0.186 128

0.208 0.186 64

0.115 0.209 0.185 32

0.078 0.114 0.209 0.185 16

0.048 0.048 0.06 0.14 0.14

0.083 0.038 0.041 0.059 0.139

0.054 0.035 0.031 0.041 0.043

0.053 0.036 0.033 0.03 0.033

Total

time =

0.825

Total

time =

0.666

Total

time =

0.559

Total

time =

0.455

Total

time =

0.355

Table 5.25. Distributed algorithm with all cameras (real data, no occlusions).

103

The results of the centralised and distributed version are:

256 Cameras:

The time taken by the centralised algorithm is 1.373

The total number of markers found is 2264

The time taken by the distributed algorithm is 0.825

The total number of markers found is 2491

128 Cameras:

The time taken by the centralised algorithm is 0.882

The total number of markers found is 2264

The time taken by the distributed algorithm is 0.666

The total number of markers found is 2264

64 Cameras:

The time taken by the centralised algorithm is 0.561

The total number of markers found is 2261

The time taken by the distributed algorithm is 0.559

The total number of markers found is 2260

32 Cameras:

The time taken by the centralised algorithm is 0.393

The total number of markers found is 2256

The time taken by the distributed algorithm is 0.455

The total number of markers found is 2237

16 Cameras:

The time taken by the centralised algorithm is 0.308

The total number of markers found is 2232

The time taken by the distributed algorithm is 0.355

The total number of markers found is 2220

8 Cameras:

The time taken by the centralised algorithm is 0.242

The total number of markers found is 2030

The time taken by the distributed algorithm is 0.355

The total number of markers found is 1993

104

In Graph 5.20 there are the new results obtained.

Graph 5.20. Comparison between the centralized and the distributed version

using real data (no occlusion).

With 128 cameras the centralised version is 24.5% slower and with 256 cameras it is

40% slower than the distributed version.

Using synthetics data, both versions are faster. This fact may seem strange because

without occlusions, cameras see a bigger amount of 2D points. A possible

explanation of this difference is that now, in the distributed version more 2D points

are deleted in the first levels of the three and in the centralised version, for the same

reason, a 3D points will mark its rays sooner and the algorithm will not try to use

them for other reconstructions.

The trend of the Graph 5.20 suggests that the gap between the two versions could

further enhance increasing as the number of cameras.

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

0 32 64 96 128 160 192 224 256 288

Ti
m

e
 (

s)

number of cameras

Centralised vs. Distributed algorithm
with real data (no occlusion)

Centralised

Distributed

105

6 Conclusions and future steps

The main aim of this research work was to find a way to do motion capture faster,

optimizing its performance. The aim was reached using a distributed approach

instead of the centralized one used before.

 The first argument discussed was to verify if it is possible to find a good way

to associate groups of cameras in the nodes of the binary tree used to

distribute the elaboration and to design a distributed algorithm. The

experiments done demonstrate that using functional costs that evaluate the

volume and the angle between the cameras, the time required by the

algorithm to do the reconstruction is the 22% lower than a random function.

Using the data generated in Matlab, are obtained other results. It is important

to highlight that the synthetic set-up used, with lot of markers near the edge

of the room, is similar to a worst-case scenario, because lot of points are seen

only by few cameras. The position of the points on three groups of six people

is not the best situation because there are volumes with a high density of

markers and volumes with no markers so the reconstruction is not equally

distributed between all the nodes. In a distributed system created using a

binary tree, the bottleneck is the slowest node in each level so if a node has

more works, it will slow the entire algorithm.

The results show that the algorithm is also robust to error in the camera data.

With a reasonable Gaussian error introduced on both axes of one pixel, the

number of markers not found is the 2.36%. This result is very good

considering that the accuracy of the cameras is under one pixel.

It is very hard to study the computational complexity of the algorithm

because as soon as a 3D point becomes BIG, all 2D points associated with it

are not used again by the algorithm, so the total number of points to analyze

varies during the execution. The speed of the 3D point’s creation is very

106

dependent on the position of them and the cameras. To try to find a trend of

the algorithm speed, have been performed some tests.

Keeping the number of markers fixed and increasing the numbers of cameras,

the time required does not increase. Surprisingly the fastest reconstruction is

with 512 cameras. The reason is that using 512 cameras, in that particular

configuration, the number of 2D points to reconstruct decrease quickly

respect to the same set-up with 128, 256 or 1024 cameras.

Keeping the number of cameras fixed and increasing the number of markers,

the reconstruction time required increases. The curve time versus the number

of markers looks like quadratic but this is normal considering that in the

3D+3D phase the comparison between the two lists of 3D points is quadratic.

 The second main aim of this work was to compare the distributed algorithm

with the centralized one. To obtain this data, the distributed algorithm has

been modified to work in the same condition as the centralized and using the

same data.

The tests show that with real data and 128 cameras, the distributed version is

the 6.34% faster. Increasing the number of cameras to 256 and using the same

data (but without occlusions) the distributed version is the 40% faster. The

real data consist of a very difficult scenario with almost 2300 marker of

different sizes very close each other and 2 types of cameras.

With a smaller amount of cameras, the performances of the two versions are

very similar.

 The results of the distributed algorithm are very impressive considering that it

is not optimized. In fact the time required by the 3D+3D function (that is not

present in the centralized version) is quadratic respect to the number of 3D

points and in the 3D+2D function, while the distributed algorithm have to

scan all the centroids in the image plane, the centralized algorithm, using a

more complex data structure, does this search almost immediately.

107

The time required by the distributed algorithm, in any case, does not consider

the communication times. The amount of data to transfer is not very high

considering the fast network connections existing nowadays.

The biggest problem may be in the times required for initializing the

connection. This problem can be partially solved using multicore CPU or

motherboard with two or more multicore CPU installed, so that many nodes

can be executed on the same machine.

A very interesting prospective is to make the distributed algorithm, to execute

on a graphic card that has lot of different cores.

Future steps

Possible optimization or analysis of the solution can be:

- In the volume cost function, give a bigger weight to the voxels closest to the

camera, because the accuracy of their capture depends on how far are they from

the camera.

- In the 3D+3D function, use a more efficient way to merge the two 3D inputs

using a more complex data structure.

- In the 3D+2D function, try to increase the accuracy of the reconstruction of the

3D point when matching them with a 2D point.

- Using real data, create the association tree using the functionals cost.

- Test the accuracy of the reconstruction using partial data in the second-last level

of the tree.

- Try the distributed algorithm on a real distributed system.

108

109

7 Bibliography
[1] Menache, A. (1999) Understanding motion capture for computer animation and

video games, Morgan Kaufmann.

[2] Davison A. J., Deutscher J. and Reid I.D. (2001)Markerless Motion Capture of

Complex Full-Body Movement for Character Animation, Robotics Research

Group, Department of Engineering Science, University of Oxford.

[3] http://www.vicon.com/

[4] http://www.c3d.org/

[5] Report of group 1 and group 2 on

http://automatica.dei.unipd.it/people/schenato/teaching/PSC/PSC_09.html

[6] Hartley, R. and Zisserman A. (2004) Multiple View Geometry in Computer

Vision, Cambridge University Press.

[7] Harker M. and O’Leary P. First Order Geometric Distance (The Myth of

Sampsonus), Institute for Automation, University of Leoben, Austria.

