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Introduction

A mathematical billiard is a dynamical system describing the motion of a mass
point (the billiard ball) inside a planar region (the billiard table) with –in general–
piecewise smooth boundary. The ball moves with costant –say, unit– speed and
without friction, following a rectilinear path. Upon the impact with the boundary
of the billiard table, two different situations can occur, according to the nature of
the impact point. If the ball hits the boundary at a point of non-differentiability,
then the motion stops; otherwise, the ball reflects elastically according to the stan-
dard reflection law angle of incidence is equal to the angle of reflection.
More generally, one could consider a Riemannian manifold with piecewise bound-
ary as a billiard table. In that case, the ball moves along a geodesic of the manifold
with constant speed and, at the regular points of the boundary, it reflects elas-
tically in such a way that the tangential component of its velocity remains the
same before and after the impact, while the normal one instantaneously changes
its sign. In this way, mathematical billiards can be defined in higher dimensions
and in geometries other than the Euclidean one. We refer to [31] and [33] for a
more comprehensive introduction to the study of billiards.
The straightforwardness and versatility of this model has made mathematical bil-
liards an object of interest in many different context. Indeed, they show a wide
range of dynamical behaviour, such as integrability, regularity, caoticity, etc.;
therefore they appear as a good mathematical “playground” to test techniques
and solution methods, which can lately be adapted to other dynamical systems.
Moreover, intriguing questions related to mathematical billiards are handled with
several different techniques, from KAM theory to the theory of monotone twist
maps.
We recall in the literature some classes of mathematical billiards, such as Birkhoff
billiards, dual billiards, hyperbolic billiards and chaotic billiards.

In this thesis we focus on two classes of mathematical billiards: Birkhoff billiards
and symplectic billiards.

Birkhoff billiards are a special class of mathematical billiards in which the bil-
liard table is a stictly convex planar domain with smooth boundary. They owe
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2 INTRODUCTION

their name to the american mathematician G. D. Birkhoff, who, in his work “On
the periodic motions of dynamical systems” of 1927 (see [6]), was the first one to
consider these billiards as a paradigmatic example of Hamiltonian systems.
In Figure 1, it is represented the reflection at the boundary, according to the re-
flection law angle of incidence equals angle of reflection.

Figure 1: The Birkhoff billiard map

Birkhoff billiards have many interesting properties. In particular, the law describ-
ing the dynamics (the so-called billiard map) is an exact symplectic map with
minus the Euclidean length as a generating function and, moreover, it is a mono-
tone twist map.
One of the most discussed topics in the class of Birkhoff billiards is the one con-
cerning the concept of caustic, i.e., a curve in the billiard table with the property
that if a trajectory of the billiard map is tangent to it, then it remains tangent
after every each reflection.
Closely related to the topic of caustics is the concept of integrability. Indeed, a
Birkhoff billiard is said to be integrable if its billiard table is foliate by smooth
convex caustics. Examples of integrable billiards are the billiards in the circle and
in the ellipse.
The study of Birkhoff billiards integrability generated one of the most famous open
problem in the field of mathematical billiards, the so-called Birkhoff conjecture,
that states that the only integrable billiards are the circular and the elliptic ones.

Symplectic billiards are much more recent than Birkhoff billiards; they were
introduced for the first time by P. Albers and S. Tabachnikov in their article “In-
troducing symplectic billiards” (see [1]) of 2017.
As in the Birkhoff case, the billiard table is a strictly convex planar domain with
smooth boundary, but the dynamics does not follow the standard reflection law,
but it is described as follows. Let x, y, z be three consecutive impact points on
the boundary; the segment xy reflects to the segment yz if xz is parallel to the
tangent line to the boundary at y, see Figure 2.
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Figure 2: The symplectic billiard map

This new class of billiards has many properties in common with Birkhoff billiards.
In particular, also the symplectic billiard map admits a generating function, which
is essentialy the standard area form. The name “symplectic billiard” is actually
due to this fact, since the standard area form is the symplectic 2-form on the plane.
Moreover, the symplectic billiard map is a monotone twist map.
As in the Birkhoff case, the concepts of caustics and integrability can be introduced.
In particular, both circular and elliptic symplectic billiards are integrable, although
the dynamics of the elliptic billiard is different from the one of the corresponding
Birkhoff billiard.
Finally, a remarkable property of symplectic billiards is that they can be easily
generalized to linear symplectic spaces.

This thesis is organized as follows. Chapter 1 is devoted to the study of Birkhoff bil-
liards. We define the billiard map, proving that it is an exact symplectic map with
minus the Euclidean distance as a genarating function and that it is a monotone
twist map. We introduce the concept of caustic for a Birkhoff billiard, discussing
some results about their existence. We then describe Birkhoff billiards in a circle
and an ellipse, introducing the topic of integrable billiards and Birkhoff conjecture.
In Chapter 2, we introduce symplectic billiards in the plane. We prove that the
symplectic billiard map admits as a generating function the standard area form
and that it is a monotone twist map. Finally, we focus on circular and elliptic
billiards; in both cases, we prove that –as for Birkhoff billiards– the corresponding
discrete dynamical systems are integrable.
Chapter 3 is entirely devoted to two results for caustics of symplectic billiards. The
first one is a non-existence result, which applies when the boundary of the billiard
table has points of zero curvature and whose proof is inspired by a result from
Mather concerning Birkhoff billiards (see [22]). The second one is an existence
result, applying when the boundary of the billiard table has everywhere positive
curvature, and the proof follows the steps –inspired by KAM theory– carried out



4 INTRODUCTION

by Lazutkin in [18].
In Chapter 4 we generalize the definition of symplectic billiards to symplectic vec-
tor spaces.
Finally, in Chapter 5 we study Birkhoff and symplectic billiards in the framework
of Aubry-Mather theory. This theory was developed independently by S. Aubry
and J. Mather in the Eighties, and it is concerned with the study of orbits of a
monotone twist maps minimizing the action functional. In particular, we focus
on the study of the average minimal action (the so-called Mather’s β-function)
and its properties for Birkhoff and symplectic billiards. This chapter constitutes
the original part of the thesis, and it represents a good starting point for future
development.



Introduzione

Un biliardo matematico è un sistema dinamico che descrive il moto di un punto
materiale (la pallina del biliardo) all’interno di una regione del piano (il tavolo da
biliardo) con bordo –in generale– regolare a tratti. La pallina si muove con velocità
costante –che possiamo quindi considerare unitaria– e senza attrito, seguendo una
linea retta. Al momento dell’urto con il bordo del tavolo si verificano due differenti
situazioni, a seconda del punto di contatto. Se l’urto avviene in un punto di non
differenziabilità del bordo, il moto si interrompe; altrimenti, la pallina rimbalza
elasticamente in accordo con la legge di rifrazione, ovvero l’angolo d’incidenza è
uguale all’angolo di riflessione.
Più genericamente, si può considerare come tavolo da biliardo una varietà Rie-
manniana con bordo regolare a tratti. In questo caso, la pallina si muove lungo
una geodetica della varietà con velocità costante e, nei punti regolari del bordo,
rimbalza elasticamente in maniera tale che la componente tangenziale della sua
velocità rimanga la stessa prima e dopo l’urto, mentre la componente normale
cambia istantaneamente verso. Questa generalizzazione permette di definire i bi-
liardi matematici anche in più dimensioni e in geometrie diverse da quella euclidea.
Per una estensiva trattazione sui biliardi matematici ci riferiamo a [31] e [33].
La semplicità e versatilità di questo modello ha reso i biliardi matematici un og-
getto di interesse in diversi contesti. Infatti, mostrano un’ampia varietà di com-
portamenti dinamici, quali integrabilità, regolarità, caoticità, ecc.; si presentano
quindi come un ottimo “terreno di gioco” per testare tecniche e metodi di soluzio-
ne, che vengono poi adattati ad altri sistemi dinamici. Inoltre, intriganti questioni
relative ai biliardi matematici vengono affrontate usando diverse tecniche, dalla
teoria KAM alla teoria delle mappe monotone twist.
Ricordiamo in letteratura alcune classi di biliardi matematici, come i biliardi di
Birkhoff, i biliardi esterni, i biliardi iperbolici e quelli caotici.

In questa tesi ci concentreremo sullo studio di due classi di biliardi matematici: i
biliardi di Birkhoff e i biliardi simplettici.

I biliardi di Birkhoff sono una speciale classe di biliardi matematici in cui il
tavolo da biliardo è un dominio strettamente convesso del piano con bordo rego-
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6 INTRODUZIONE

lare. Devono il loro nome al matematico statunitense G. D. Birkhoff, che nel suo
lavoro “On the periodic motions of dynamical systems” del 1927 ([6]), fu il primo
a considerare questi biliardi come esempio paradigmatico di sistemi Hamiltoniani.
In Figura 3, è rappresentata la riflessione nel bordo, in accordo con la legge di
rifrazione angolo di incidenza uguale angolo di riflessione.

Figura 3: La mappa del biliardo di Birkhoff

I biliardi di Birkhoff presentano numerose interessanti proprietà. In particolare,
la legge che descrive la dinamica (la cosiddetta mappa del biliardo) è una mappa
esattamente simplettica con meno la distanza euclidea come funzione generatrice
e, inoltre, è una mappa monotona twist.
Uno degli argomenti più discussi all’interno della classe dei biliardi di Birkhoff è
quello riguardate il concetto di caustica, ovvero una curva del tavolo da biliardo
con la proprietà che se una traiettoria della mappa del biliardo è tangente ad essa,
allora vi rimane tangente dopo ogni riflessione.
Strettamente legato all’argomento delle caustiche è il concetto di integrabilità.
Infatti, un biliardo di Birkhoff è detto integrabile se il suo tavolo da biliardo è
foliato da caustiche regolari e convesse. Esempi di biliardi integrabili sono i biliardi
nel cerchio e nell’ellisse.
Lo studio dell’integrabilità nei biliardi di Birkhoff ha generato uno dei più famosi
problemi aperti nel campo dei biliardi, la cosiddetta congettura di Birkhoff, che
afferma che gli unici esempi di biliardi integrabili siano quelli circolari ed ellittici.

Molto più recenti rispetto ai biliardi di Birkhoff sono i biliardi simplettici,
introdotti per la prima volta nel 2017 da P. Albers e S. Tabachnikov nel loro
articolo “Introducing symplectic billiards” ([1]).
Come nel caso Birkhoff, il tavolo da biliardo è un dominio del piano strettamente
convesso, ma la dinamica non segue la regola di riflessione standard, ma è descritta
nel seguente modo. Dati x, y, z tre punti sul bordo del dominio, xy riflette su yz se
il segmento xz è parallelo alla retta tangente al bordo nel punto y, vedi Figura 4.
Questa nuova classe di biliardi presenta numerose caratteristiche comuni a quelle
dei biliardi di Birkhoff. In particolare, anche la mappa del biliardo simplettico
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Figura 4: La mappa del biliardo simplettico

ammette una funzione generatrice, che è essenzialmente la forma d’area standard.
Il nome di “biliardo simplettico” è proprio dovuto a questo fatto, dato che la forma
d’area standard è la 2-forma simplettica nel piano. Inoltre, la mappa del biliardo
simplettico è una mappa monotona twist.
Come per i biliardi di Birkhoff, possono essere introdotti i concetti di caustica e
integrabilità. In particolare, sia il biliardo simplettico circolare sia quello ellittico
sono integrabili, anche se nel caso dell’ellise la dinamica è diversa da quella del
corrispettivo biliardo di Birkhoff.
Infine, una proprietà notevole dei biliardi simplettici è quella di poter essere
facilmente generalizzati a spazi lineari simplettici.

Questa tesi è organizzata come segue. Il Capitolo 1 è dedicato allo studio dei
biliardi di Birkhoff. Descriviamo la mappa del biliardo, dimostrando che è una
mappa esattamente simplettica con meno la distanza euclidea come funzione ge-
neratrice e che è una mappa monotona twist. Introduciamo il concetto di caustica
per i biliardi di Birkhoff, discutendo alcuni risultati riguardo la loro esistenza.
Descriviamo poi i biliardi di Birkhoff nel cerchio e nell’ellisse, introducendo l’ar-
gomento dei biliardi integrabili e la congettura di Birkhoff.
Nel Capitolo 2 introduciamo i biliardi simplettici nel piano. Dimostriamo che la
mappa del biliardo simplettico ammette come funzione generatrice la forma d’area
standard e che è una mappa monotona twist. Infine, ci concentriamo sui biliar-
di circolari ed ellittici; in entrambi i casi, dimostriamo che –come per i biliardi
Birkhoff– i corrispondenti sistemi dinamici discreti sono integrabili.
Il Capitolo 3 è interamente dedicato a due risultati per le caustiche dei biliardi
simplettici. Il primo è un risultato di non esistenza, che si applica quando il bordo
del tavolo da biliardo ha punti di curvatura nulla e la cui dimostrazione si ispira ad
un risultato di Mather per i biliardi di Birkhoff (vedi [22]). Il secondo è un risul-
tato di esistenza, che si applica quando il bordo del tavolo da biliardo ha ovunque
curvatura positiva; la dimostrazione segue i passaggi –ispirati dalla teoria KAM–
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svolti da Lazutkin in [18].
Nel Capitolo 4 generalizziamo la definizione di biliardo simplettico a spazi vetto-
riali simplettici.
Infine, nel Capitolo 5 studiamo i biliardi di Birkhoff e quelli simplettici all’interno
della teoria Aubry-Mather. Questa teoria è stata sviluppata indipendentemente
da S. Aubry e J. Mather negli anni Ottanta, e si occupa dello studio delle orbite
di mappe monotone twist che minimizzano l’azione del funzionale. In particola-
re, ci concentriamo sullo studio dell’azione minima media (la cosiddetta Mather’s
β-function) e delle sue proprietà per i biliardi di Birkhoff e simplettici. Questo
capitolo costituisce la parte originale della tesi, e rappresenta un buon punto di
partenza per sviluppi futuri.







Chapter 1

Birkhoff billiards

Abstract. This chapter is devoted to the study of Birkhoff billiards on the plane. We
give the definition and prove that the billiard map is a monotone twist map with the
negative Euclidean distance as the generating function. We introduce the concept of
caustics for Birkhoff billiards, discussing some results about their existence. We describe
circular and elliptic billiards, introducing the topic of integrable billiards and one of the
most famous open problem in the field of mathematical billiards, the so-called Birkhoff
conjecture, which states that billiards in the circle and in the ellipse are the only integrable
billiards.

1.1 Birkhoff billiard: definition
Let D be a strictly convex domain in R2 with Cr boundary ∂D, with r > 3. The
phase space M of the Birkhoff billiard inside D is the space of all unit vectors
(x, v) whose foot points are on ∂D and which have inward directions. The billiard
ball map is

T : M →M (x, v) 7→ (x′, v′),

where x′ is the point in which the trajectory starting at x with velocity v hits
the boundary ∂D again, and v′ is the reflected velocity, according to the standard
reflection law angle of incidence equals angle of reflection, see Figure 1.1.

Remark 1.1.1. More generally, one could consider, as a billiard table, a Rieman-
nian manifold with smooth boundary (M,∂M, g). The billiard ball moves along a
geodesic line inM with unit velocity until it hits the boundary and reflects in such
a way that the tangential component of its velocity remains the same while the
normal component instantaneously changes sign. Observe that in the Euclidean
planar case, this gives exactly the standard reflection law that we have described
above.

11



12 BIRKHOFF BILLIARD: DEFINITION

Remark 1.1.2. Observe that the boundary of the billiard table is required to be
at least C3. Indeed, Halpern in [15] provides an example in which, if this condition
(actually, it is enough C2 plus bounded third derivative) is not satisfied, the billiard
ball trajectory will hit the boundary curve an infinite number of times in a finite
period of time.

Assume that the length l(∂D) of the boundary curve is normalized to 1 and let
γ : S1 → R2 be the arc-length parametrization of the boundary ∂D, denoting by
t the arc-length parameter. Without any loss of generalization, we orientate γ
counterclockwise. Let ϕ be the angle between v and the tangent line to ∂D at x.
Thus, the phase space M is identified with the annulus S1× (0, π) and the billiard
map becomes

T : S1 × (0, π)→ S1 × (0, π) (t, ϕ) 7→ (t′, ϕ′).

We observe that the billiard map T can be continuously extended to the closure
S1 × [0, π] by fixing T (t, 0) = (t, 0) and T (t, π) = (t, π) for all t ∈ S1.

Figure 1.1: The billiard map

Let us denote by
h(t, t′) = −‖γ(t)− γ(t′)‖ (1.1)

the negative Euclidean distance between two points on ∂D.

Proposition 1.1.3. Let ϕ, ϕ′ be the angles that the vector from γ(t) to γ(t′) makes
with the tangent lines to γ respectively at γ(t) and γ(t′). The next equalities hold{

∂h
∂t

(t, t′) = cosϕ
∂h
∂t′

(t, t′) = − cosϕ′.
(1.2)

Proof. The proof easily follows by the computation of the partial derivative of
h with respect to t, and the following definition of scalar product between two
vectors v, w

v · w = ‖v‖‖w‖ cos θ, (1.3)
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where θ is the angle between them.
Let γ(t) = (γ1(t), γ2(t)) and γ(t′) = (γ1(t′), γ2(t′)). Then,

h(t, t′) = −‖γ(t)− γ(t′)‖ = −
√

(γ1(t)− γ1(t′))2 + (γ2(t)− γ2(t′))2

and

∂h

∂t
(t, t′) =

∂

∂t
(−‖γ(t)− γ(t′)‖)

= −
2(γ1(t)− γ1(t′))dγ1

dt
+ 2(γ2(t)− γ2(t))dγ2

dt

2
√

(γ1(t)− γ1(t′))2 + (γ2(t)− γ2(t′))2

= − γ(t)− γ(t′)

‖γ(t)− γ(t′)‖
· dγ
dt

(1.4)

Observe now that u := γ(t)−γ(t′))
‖γ(t)−γ(t′)‖ is the unit vector from γ(t) to γ(t′), dγ

dt
is the

unit tangent vector at γ in γ(t), and the angle between them is clearly the angle
ϕ.
Therefore,

∂h

∂t
(t, t′) = −u · dγ

dt
1.3
= ‖u‖

∥∥∥∥dγdt
∥∥∥∥ cosϕ

= cosϕ.

(1.5)

The other equality is given by a similar computation, differentiating with respect
to t′ instead.

A remarkable property of the billiard map is that it admits an invariant area
form Ω.

Lemma 1.1.4. The billiard map T preserves the area form

Ω := sinϕdϕ ∧ dt.

Proof. First we observe that sinϕ > 0 in M and therefore Ω = sinϕdϕ ∧ dt is an
area form.
Let T (t, ϕ) = (t′, ϕ′). To prove the invariance of Ω, we have to show that

sinϕdϕ ∧ dt = sinϕ′ dϕ′ ∧ dt′.

From (1.2) it follows that

dh =
∂h

∂t
(t, t′) dt+

∂h

∂t′
(t, t′) dt′ = cosϕdt− cosϕ′ dt′. (1.6)
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Taking differentials, we obtain

0 = d2h = − sinϕdϕ ∧ dt+ sinϕ′ dϕ′ ∧ dt′

that gives us the desired result.

Observe that the area form Ω is an exact symplectic form on M , that is

Ω = sinϕdϕ ∧ dt = d(− cosϕdt) = dα,

where α := − cosϕdt is a 1-form on M .
Moreover, if T ∗ denotes the pull-back of T , it follows from formula (1.6) that

T ∗α− α = − cosϕ′ dt′ + cosϕdt = dh,

that is, T ∗α− α is an exact 1-form.
A map T : M → M with these properties (preserving an exact symplectic form
Ω = dα and such that T ∗α − α = dh is an exact 1-form) is said to be exact
symplectic, and the function h is called a generating function of T . Therefore, the
billiard map T is an exact symplectic map with the negative Euclidean distance h
as a generating function.

Remark 1.1.5. Consider three consecutive collision points (t0, ϕ0), (t1, ϕ1) =
T (t0, ϕ0), (t2, ϕ2) = T (t1, ϕ1). It follows from (1.2) that

∂h

∂t1
(t0, t1) = − cosϕ1

∂h

∂t1
(t1, t2) = cosϕ1

and consequently

∂h

∂t1
(t0, t1) +

∂h

∂t1
(t1, t2) = − cosϕ1 + cosϕ1 = 0.

This formula has the following variational interpretation. The points (t0, ϕ0),
(t1, ϕ1) and (t2, ϕ2) are consecutive if and only if (t1, ϕ1) is a critical point of the
functional

t1 7→ h(t0, t1) + h(t1, t2).

Consider now the lift of the billiard map T to the universal cover R× (0, π) of
S1 × (0, π) and introduce new coordinates (x, y) = (t,− cosϕ).

Proposition 1.1.6. In the coordinates (x, y), the billiard map

T : R× (−1, 1)→ R× (−1, 1)

is a monotone twist map with h as a generating function and it preserves the area
form dx ∧ dy.



BIRKHOFF BILLIARD: DEFINITION 15

Proof. Let (x′, y′) = T (x, y). We have to show that it holds the monotone twist
condition

∂x′

∂y
> 0. (1.7)

According to the chain rule,

∂x′

∂y
=
∂ϕ

∂y

∂t′

∂ϕ
=

1

sinϕ

∂t′

∂ϕ
.

Clearly, sinϕ > 0 in M .

Figure 1.2: Twist condition for convex billiards

Fix a vertical line t = const in M . This line corresponds to a fixed position of
the billiard ball on the billiard curve with all possible directions ϕ allowed. The
convexity of the billiard curve implies that, if we increase the angle ϕ, the arc from
the fixed point to the point at which the ball hits the boundary increases as well
(see Figure 1.2) that is

∂t′

∂ϕ
> 0,

Therefore, the twist condition 1.7 is satisfied.

We conclude this section by determining the Ω-area of the phase space. In the
next proposition we do not assume that the length l(∂D) of the boundary curve
is normalized to 1.

Proposition 1.1.7. Let l be the length of the billiard curve ∂D. The area of the
phase space equals 2l.

Proof. The area of M is given by∫ l

0

∫ π

0

sinϕdϕdt =

∫ l

0

(− cosϕ)
∣∣π
0
dt =

∫ l

0

2 dt = 2l.
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1.2 Birkhoff billiards in the space of rays of the
plane

In this section we present a different approach –inspired by geometrical optics– to
the study of Birkhoff billiards, based on the oriented lines (or rays) of the plane.
We refer to [31, Section 1.3] and [33, pp. 34-36] for a more detailed explanation.
Let N be the set of all oriented lines in the plane. Any oriented line can be
characterized by its direction ψ and its signed distance p from the origin of the
plane. Thus, (ψ, p) are coordinates on the space of rays, and N can be identified
with the infinte cylinder S1 × R.
The space of oriented rays in the plane admits a unique –up to a constant factor–
area form invariant under the motions of the plane (see [33, Lemma 3.5]). In our
notation, this area form is given by Λ = dψ ∧ dp.
Consider now the set U ⊂ N of oriented lines that intersect the billiard table D.
U is given by the inequality |p| 6 f(ψ), where f(ψ) depends on the shape of M ,
and therefore it is diffeomorphic to an annulus.
We define the billiard map T ′ in U as follows. The ray that contains a segment of
the trajectory of the billiard ball, oriented by the direction of its motion, is sent
to the ray that contains the next segment of this trajectory after the reflection in
the boundary.
The phase space M of the billiard, introduced in the previous section, is identified
with U by the map

φ : M → U

that associates a point (x, v) ∈ M with an oriented line through x with direction
v. Thus, we can identify U with M , as well as the two billiard map T and T ′.
Moreover, it holds the following

Lemma 1.2.1. The area forms Ω and Λ are equal. That is, φ∗(Λ) = Ω.

Proof. Let (t, ϕ) be coordinates in M , and (ψ, p) the respective coordinates in N .
In order to prove the lemma, we have to show that

dψ ∧ dp = sinϕdϕ ∧ dt.

Denote by ϑ(t) the direction of the positive tangent line to the billiard curve γ at
γ(t), and let γ1(t) and γ2(t) be the two components of γ(t). It follows that

ψ = ϕ+ ϑ(t) (1.8)

and
p = γ1(t) sinψ − γ2(t) cosψ, (1.9)
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see Figure 1.3.
Differentiating equations (1.8) and (1.9), we obtain

dψ = dϕ+ ϑ′(t) dt

and
dp = [γ′1(t) sinψ − γ′2(t) cosψ] dt+ [γ1(t) cosψ + γ2(t) sinψ] dψ

and therefore

dψ ∧ dp = [γ′1(t) sinψ − γ′2(t) cosψ] dϕ ∧ dt
+ ϑ′(t)[γ′1(t) sinψ − γ′2(t) cosψ] dt ∧ dt
+ [γ1(t) cosψ + γ2(t) sinψ] dψ ∧ dψ
= [γ′1(t) sinψ − γ′2(t) cosψ] dϕ ∧ dt.

Finally, observe that (γ′1(t), γ′2(t)) = (cosϑ(t), sinϑ(t)), which implies

[γ′1(t) sinψ − γ′2(t) cosψ] = cosϑ sinψ − sinϑ cosψ = sin(ψ − ϑ) = sinϕ.

Therefore,
dψ ∧ dp = sinϕdϕ ∧ dt,

as claimed.

Figure 1.3: Relating the area forms Ω and Λ

As a consequence, the billiard map T ′ preserves the area form Λ of the space of
rays in the plane.

1.3 Caustics for Birkhoff billiards
In this section we define caustics for Birkhoff billiards and discuss some results
about their existence.

Let D ∈ R2 be a strictly convex domain with smooth boundary. As in Sec-
tion 1.2, we identify the phase space M of the billiard map T with the set of
oriented lines in the plane that intersects D.
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Figure 1.4: Non-convex caustics for a billiard of constant width

Definition 1.3.1. A curve δ ⊂ M is an invariant circle for the billiard map T if
it is T -invariant and isotopic to a boundary component of M .

Observe that both boundary components of M are trivial invariant circles. Since
the billiard map T is a monotone twist map, its invariant circles cannot take any
form, but they are subject to the following Birkhoff’s theorem (see [29, Chapter
1]).

Theorem 1.3.2. Any invariant circle of a monotone twist map is the graph of a
Lipschitz function.

An invariant circle δ of M can be identified with a 1-parameter family of rays
intersecting the billiard table (this identification is due to the projective duality
between the plane and the space of oriented lines in this plane, see [33, pp. 86-87]
for more details).
Denote with Dδ the intersection of the closed left half planes generated by the
family of rays. By definition, Dδ is a convex closed set and it is contained in D.
We say that the invariant circle δ is convex if every ray of the family is a supporting
line of Dδ.

Definition 1.3.3. Given a convex invariant circle δ, a convex caustic is the bound-
ary of the convex set Dδ

Γ = ∂Dδ.

Clearly, Γ is a C1 simple closed convex curve in the interior of D. It follows from
the definition that every time a trajectory is tangent to Γ, it remains tangent after
every each reflection.

Remark 1.3.4. It is possible to consider a more general definition of caustics,
which does not require them to be convex or even close. Given an invariant curve
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δ of the billiard map, we identify it with a 1-parameter family of oriented lines
intersecting the billiard table, and define the caustic corresponding to δ as the
envelope of the rays of the family.
In [14, Section 3], it is provided an example of a billiard table with a non convex
caustic. Consider a curve of constant width; there exists a chord, in any direction,
that is perpendicular to the the curve at both ends. These chords are 2-periodic
billiard trajectories and their envelope is a caustic, which corresponds to the in-
volute of the billiard curve. In general, the involute of such a curve has cusps, see
Figure 1.4.

Constructing a billiard with at least one convex caustic is always possible,
thank to the so-called string construction. Let Γ be a curve and wrap a closed
non-stretchable string around it, pull it tight at a point and move this point around
Γ; the curve that one obtains correspond to a billiard domain that has Γ as a caus-
tic.
Moreover, next theorem, proved by Lazutkin in [18], assures the existence of in-
finitely many convex caustics if the boundary of the billiard curve is sufficiently
regular and has everywhere positive curvature.

Theorem 1.3.5. Let D be a strictly convex planar domain and suppose that the
boundary curve ∂D is C6 and has everywhere positive curvature. Then there exists
a positive measure set of caustics accumulating to the boundary of the billiard table.

The idea of the proof is to introduce the following change of coordinates

x = C−1

∫ t

0

ρ−2/3(τ) dτ y = 4C−1ρ1/3(t) sin
ϕ

2

where ρ denotes the radius of curvature of ∂D and C =
∫
∂D
ρ−2/3(t)dt, under

which the billiard map becomes

T (x, y) = (x+ y +O(y3), y +O(y4)).

Near the boundary {y = 0} this map can be seen as a small perturbation of
the integrable, area-preserving map (x, y) 7→ (x + y, y). Therefore, a version of
KAM theory for twist maps can be applied and the existence of a positve measure
Cantor set of invariant circles near the boundary is assured. This set translates
into a positive measure set of caustics accumulating to the boundary of the billiard
table.
Observe that, to ensure the existence of caustics for a Birkhoff billiard, it is essential
that the billiard curve has everywhere positive curvature. Indeed, a theorem by
Mather [22] shows the non-existence of caustics if the billiard curve has a point of
null curvature.
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Theorem 1.3.6. If the curvature of a C2 smooth convex billiard curve vanishes at
some point, then the billiard transformation has no invariant circles.

In [14], Gutkin and Katok provided an alternative proof of this result. Moreover,
they investigate how the shape of the domain determines the location of caus-
tics, establishing that there exists an open region inside the billiard table “free of
caustics” and estimating from below the area of this region.

The next examples describe Birkhoff billiards respectively in a disk and in an
ellipse.

Example 1.3.7 (Circular billiards). Consider a disc of radius R. The billiard
map T is completely determined by the angle of reflection, which remains constant
at each reflection. Denoting by t ∈ S1 the arc-length parameter and by ϕ ∈ (0, π/2]
the angle of reflection, the billiard map can be written in the simple form (see
Figure 1.5)

T (t, ϕ) = (t+ 2Rϕ,ϕ).

Figure 1.5: The billiard map in the disk

The angle ϕ remains constant along the orbit and therefore it is an integral of
motion for T .
The properties of the orbits are determined by the value of the angle ϕ:

(i) if ϕ = p
q
π, with p

q
∈ (0, 1/2] in lowest terms, the orbit is periodic with

minimal period q and makes p turns about the circle;

(ii) if ϕ is irrational the orbit is not periodic and it hits the boundary on a dense
set of points.

In particular, all orbits determined by the same angle ϕ are tangent to the same
concentric circle of radius R cosϕ. This concentric circle is a caustic for the circular
billiard and it corresponds to an invariant circle for the billiard map on the phase
space, which is topologically a cylinder. The phase space is completely foliated by
these invariant circles and correspondingly the billiard table is completely foliated
by caustics, see Figure 1.6.
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Figure 1.6: Birkhoff billiard in a circle

Example 1.3.8 (Elliptic billiards). Consider an ellipse with foci F1 and F2.
In this case, writing the billiard map explicitly is more complicated than in the
circular case, but using the optical properties of conics –already known in ancient
Greece– it is possible to describe the dynamics of an elliptic billiard table.
Each trajectory that does not pass through a focal point is always tangent to a
fixed confocal conics. More precisely, each trajectory either:

(i) never intersects the segment F1F2 between the two foci and is then always
tangent to a confocal ellipse (see Figure 1.7a);

(ii) always intersects the segment F1F2 between the two foci and is then always
tangent to a confocal hyperbola (see Figure 1.7b);

(iii) always passes through one of the two foci F1, F2 alternately and tends asymp-
totically to the major semiaxis (see Figure 1.7c).

(a) (b) (c)

Figure 1.7: Birkhoff billiard in an ellipse

Observe, in addition, that the major and minor axes of the ellipse are 2-periodic
orbits for the billiard.
Confocal ellipses are examples of caustics and they foliate the billiard table, except
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for the segment between the two foci.
Observe that hyperbolae can also be considered caustics for the elliptic billiard.
However, they do not correspond to invariant circles of the billiard map, but to
contractible invariant curves.

1.4 Integrability in Birkhoff billiards
Integrability in Birkhoff billiards can be defined in different ways:

(i) through the existence of an integral of motion, globally or locally in the phase
space;

(ii) through the existence of a smooth foliation of the phase space (globally or
locally), consisting of invariant curves of the billiard map, which translates
–under suitable conditions– into a foliation of the billiard table (globally or
locally), consisting of smooth convex caustics.

Observe that both circular and elliptic billiard tables are foliate by convex caus-
tics. In the first case, they are concentric circles and the foliation is global (see
Example 1.3.7); in the second, confocal ellipses are the caustics and they foliate
everything but the segment between the two foci (see Example 1.3.8). Thus, cir-
cular and elliptic billiards are integrable.
According to Birkhoff conjecture, these are the only examples of integrable bil-
liards.

Conjecture (Birkhoff). Circular and elliptic billiards are the only examples of
integrable Birkhoff billiards.

Several attempts had been made to prove this conjecture, but so far it remains
open. An attempt in this direction is a theorem by Bialy in [5], asserting the
uniqueness of circular billiards.

Theorem 1.4.1. If the phase space of the billiard ball map is fully foliated by
continuous invariant circles, then it is a circular billiard.

Wojtkowski provided an alternative proof of this theorem by means of the mirror
equation, see [34].
Another approach to this open problem is represented by the perturbative Birkhoff’s
conjecture, which focus only on a particular class of Birkhoff billiards, whose do-
main can be considered as perturbations of ellipses.

Conjecture (perturbative Birkhoff). A smooth strictly convex domain that is
sufficiently close (with respect to some topology) to an ellipse and whose corre-
sponding billiard map is integrable, is necessarily an ellipse.
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Recently, this conjecture was proved by Avila, De Simoi and Kaloshin in [3] for
domains that are sufficiently close to a circular billiard. The complete proof for
domains sufficiently close to an ellipse of any eccentricity was proved by Kaloshin
and Sorrentino in [17].





Chapter 2

Symplectic billiards

Abstract. In this chapter we introduce symplectic billiards on the plane. We give and
discuss the definition. We establish that the symplectic billiard map admits a generating
function, which is essentially the standard area form. We prove that the symplectic bil-
liard map is a monotone twist map. Finally, we focus on circular and elliptic billiards; in
both cases, we prove that –as for Birkhoff billiards– the corresponding discrete dynamical
systems are integrable.

2.1 The standard area form
Consider two vectors v = (v1, v2) and w = (w1, w2) in R2 anchored at a point
x ∈ R2. We define the standard (oriented) area form ω of v and w as the area –up
to the sign– of the parallelogram spanned by v and w

ω(x; v, w) = det

(
v1 w1

v2 w2

)
= v1w2 − v2w1,

see Figure 2.1.

Figure 2.1: The standard area form

25
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Here some basic properties of the standard area form:

(i) bilinearity
ω(x;αu+ βv, w) = αω(x;u, v) + β ω(x; v, w),

ω(x;u, αv + βw) = αω(x;u, v) + β ω(x; v, w)

for any x, u, v, w ∈ R2 and α, β ∈ R;

(ii) antisymmetry
ω(x; v, w) = −ω(x;w, v)

for any x, v, w ∈ R2;

(iii) ω(x; v, w) = 0 if and only if w = λ v, with λ ∈ R.

In the sequel, if the point x is the origin of R2, we denote the oriented area form
of two vectors v and w in R2 simply as ω(v, w).

Lemma 2.1.1. The next equality holds

ω(τ ; v, w) = ω(v, w) + ω(v − w, τ) (2.1)

for every τ, v, w ∈ R2.

Proof. Using the bilinearity, the antisimmetry of ω and the fact that ω(τ, τ) = 0,
we have

ω(τ ; v, w) = ω(v + τ, w + τ)

= ω(v, w) + ω(v, τ) + ω(τ, w) + ω(τ, τ)

= ω(v, w) + ω(v, τ)− ω(w, τ)

= ω(v, w) + ω(v − w, τ).

2.2 Symplectic billiard: definition
From now on, x ∈ R2 is always the origin of the Cartesian plane.
Let γ be a smooth, strictly convex, closed and positively (that is counterclockwise)
oriented curve. This curve γ is the boundary of the billiard table D, that is
+∂D = γ.
In the sequel, we denote by Txγ the tangent line at γ in the point x. A property
of strictly convex curves is that for every point x ∈ γ there exists a unique point
x∗ ∈ γ such that Txγ = Tx∗γ. These points are called opposite and clearly (x∗)∗ =
x. We refer to Figure 2.2.
We observe that, if νx denotes the outer normal in x ∈ γ, then Txγ = Tyγ if
and only if ω(νx, νy) = 0. Finally, since the curve γ is positively oriented, if we
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Figure 2.2: Opposite points

fix a point x ∈ γ then for all the points y ∈ γ such that x < y < x∗ it holds
ω(νx, νy) > 0.

We first introduce the phase space of the symplectic billiard map.

Definition 2.2.1. The phase space of the symplectic billiard map is

P := {(x, y) ∈ γ × γ | x < y < x∗} = {(x, y) ∈ γ × γ | ω(νx, νy) > 0}.

In order to describe the discrete dynamical system (the so-called “symplectic bil-
liard”) on P , we need the next

Lemma 2.2.2. Let (x, y) ∈ P. Then there exists a unique point z ∈ γ with
z − x ∈ Tyγ. Moreover, (y, z) ∈ P.

Proof. We first prove existence and uniqueness of such a point z ∈ γ. For (x, y) ∈
P , by definition, we have that the tangent spaces Txγ and Tyγ are transversal.
Since γ is convex, there exists a unique point z ∈ γ such that (x+Tyγ)∩γ = {x, z}.
Moreover z 6= x; otherwise, it would be Tyγ = Tzγ = Txγ, which contradicts the
hypothesis (x, y) ∈ P .
In order to conclude the proof, we have to show that (y, z) ∈ P . We easily remark
that if y is close to x then so is z and therefore ω(νx, νy) > 0 implies ω(νy, νz) > 0.
For (x, y) ∈ P suppose –by contradiction– that (y, z) /∈ P , i.e., ω(νy, νz) 6 0. By
continuity and moving y close to x, we can arrange ω(νy, νz) = 0. This means that
Tyγ = Tzγ which is equivalent to x = y. Since we have contradicted the hypothesis
(x, y) ∈ P , we have concluded the proof.

We refer to Figure 2.3.

Definition 2.2.3. The symplectic billiard map is

φ : P → P (x, y) 7→ (y, z)

where z ∈ γ is the unique point satisfying z − x ∈ Tyγ.
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Figure 2.3: The unique point z ∈ γ with z − x ∈ Tyγ

Remark 2.2.4. It is clearly possible to consider the (negative part of the) phase
space, that is

P− := {(x, y) ∈ γ × γ | x∗ < y < x}.

The corresponding symplectic billiard map on P− is the same as in Definition 2.2.3
once the orientation of γ is reversed.

Remark 2.2.5. We observe that the map φ : P → P can be extended by conti-
nuity to the closure

P̄ = {(x, y) ∈ γ × γ : x 6 y 6 x∗}.

In fact,
lim
y→x

φ(x, y) = (x, x)

which means that the map extends to the identity and

lim
y→x∗

φ(x, y) = (x∗, x)

which follows from the fact that, due to the convexity of γ, the function y 7→ z(y)
is monotone and limy→x∗ Tyγ = Tx∗γ.

Lemma 2.2.6. The continuous extension φ(x, x∗) = (x∗, x) is characterized by
the 2-periodicity. This means that φ(x, y) = (y, x) is equivalent to y ∈ {x, x∗}.

Proof. Let (x, y) ∈ P and φ(x, y) = (y, x). Then from Lemma 2.2.2 we have

(x+ Tyγ) ∩ γ = {x, y}

with x 6= y. This is a contraddiction because Tyγ∩γ = y. So, the only possibilities
are (x, y) = (x, x) or (x, y) = (x∗, x).
Suppose now that y ∈ {x, x∗}. It follows from the previuous remark that φ(x, x) =
(x, x) and φ(x, x∗) = (x∗, x).
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The envelope of the 1-parameter family of chords xx∗ is a caustic of the symplectic
billiard. This envelope is the so-called centre symmetry set of a curve γ which –
in case of a strictly convexity– is defined as the envelope of lines joining opposite
points of the curve, see [10, p.92]. Clearly, in the case of centrally symmetric curves
(as the circle and the ellipse) the centre symmetry set is the centre of symmetry.

2.3 Symplectic billiard: generating function
With the next lemma we establish that the symplectic billiard map φ admits a
generating function, which involves the standard area form ω(x, y).

Lemma 2.3.1. The generating function for the symplectic billiard map φ is

S : P → R (x, y) 7→ S(x, y) := ω(x, y).

This means that

φ(x, y) = (y, z) ⇔ d

dy
[S(x, y) + S(y, z)] = 0. (2.2)

Proof. Recall that, given x = (x1, x2) and y = (y1, y2) ∈ R2, we have that

ω(x, y) = x1y2 − x2y1

and so

d

dy
S(x, y) =

∂

∂y1

ω(x, y) dy1 +
∂

∂y2

ω(x, y) dy2 = −x2 dy1 + x1 dy2

and
d

dy
S(y, z) =

∂

∂y1

ω(y, z) dy1 +
∂

∂y2

ω(y, z) dy2 = z2 dy1 − z1 dy2.

It follows
d

dy
[S(x, y) + S(y, z)] = (z2 − x2) dy1 + (x1 − z1) dy2.

Hence, given x, y, z ∈ γ with x 6= z, we have that

d

dy
[S(x, ·) + S(·, z)] = 0⇔ (z2 − x2, x1 − z1) ⊥ Tyγ

⇔ z − x ∈ Tyγ

which corresponds exactly to Definition 2.2.3.
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Remark 2.3.2. The formula
d

dy
[S(x, y) + S(y, z)] = 0

has the the following variational interpretation. Given two points x, z ∈ γ, suppose
that the billiard ball starts at the point x and –after a collision at y ∈ γ– it
arrives at the point z. Then the point y is the critical point of the function
y 7→ S(x, y) + S(y, z).

Let A(x, y, z) be the area of the triangle of vertices x, y, z ∈ γ, see Figure 2.4.
From the next lemma, we conclude that

S(x, y) + S(y, z) = 2A(x, y, z)− ω(z, x) (2.3)

that is, the quantity involved in (2.2) differs from 2A(x, y, z) by the function
ω(z, x), which has no effect on the partial derivative with respect to y.

Figure 2.4: The triangle of vertices x, y, z ∈ γ

Lemma 2.3.3. The area of the triangle xyz is
1

2
[ω(x, y) + ω(y, z) + ω(z, x)]

Proof. If x is the origin of the Cartesian axis, we have

ω(0, y) + ω(y, z) + ω(z, 0) = ω(y, z) = 2A(x, y, z),

see Figure 2.5.
In the general case, it is sufficient to apply Lemma 2.1.1

ω(x, y) = ω(0 + x, (y − x) + x) = ω(x− y, x)

ω(y, z) = ω((y − x) + x, (z − x) + x) = ω(y − x, z − x) + ω(y − z, x)

ω(z, x) = −ω(x, z) = −ω(x− z, x)

and therefore, by a trivial calculation, we obtain

ω(x, y) + ω(y, z) + ω(z, x) = ω(y − x, z − x) = 2A(x, y, z).
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Figure 2.5: The area ω(y, z) = 2A(x, y, z)

From previous lemma, equality 2.3 immediately follows.
The name “symplectic billiard” is due to the fact that the generating function of
the map describing the dynamics involves the standard area form, which is the
symplectic 2-form on the plane. Consequently, as explained in Chapter 4, the
definition of symplectic billiard can be extended to the linear symplectic space
(R2n, ω). Finally, we remind that –in the case of Birkhoff billiards– the gener-
ating function corresponds to the length of the trajectory segment joining two
consecutive collision points.

2.4 Symplectic billiard as a monotone twist map
In this section we prove that the symplectic billiard map (i) admits an invariant
area form Ω (Lemma 2.4.1) and (ii) is a monotone twist map (Proposition 2.4.2).
Moreover –see Theorem 2.4.6– we calculate the Ω-area of the phase space P .

Assume that the length of the symplectic billiard curve γ is normalized to 1 and
parametrize γ by the arc length t ∈ S1. Denote by t∗ ∈ S1 the unique parameter
such that γ(t) and γ(t∗) are opposite points (that is, the tangents at γ(t) and γ(t∗)
are parallel). Hence, a state of the system is now represented by the pair (t1, t2)
where t1 < t2 < t∗1 and the phase space P can be identified with S1×S1. According
to Lemma 2.3.1, the generating function becomes

S(t1, t2) = ω(γ(t1), γ(t2)) (2.4)

In the sequel, we denote by Si := ∂S
∂ti
, Sij := ∂2S

∂ti∂tj
for i, j = 1, 2.

Lemma 2.4.1. The 2-form

Ω := S12(t1, t2)dt1 ∧ dt2

is an area form on P which is φ-invariant, that is φ∗Ω = Ω.



32 SYMPLECTIC BILLIARD AS A MONOTONE TWIST MAP

Proof. Let identify R2 with C and observe that multiplying the coordinates of a
vector by −i equals to clockwise rotating it by an angle of π

2
.

We first prove that the 2-form Ω is an area form, that is S12(t1, t2) > 0. Given
a point γ(t), let indicate by γ′(t) the tangent vector of γ in γ(t). Consequently,
since γ is positively oriented, −iγ′(t) represents the outward normal vector of γ in
γ(t).
Moreover, we recall that, for a given state of the system (t1, t2) ∈ S1× S1, it holds

ω(νγ(t1), νγ(t2)) = ω(−iγ′(t1),−iγ′(t2)) > 0

see Definition 2.2.1.
Hence

S12(t1, t2) = ω(γ′(t1), γ′(t2)) = ω(−iγ′(t1),−iγ′(t2)) > 0 (2.5)

We finally prove that the 2-form Ω is φ-invariant. By equality (1.1),

φ(t1, t2) = (t2, t3)⇔ S2(t1, t2) + S1(t2, t3) = 0.

Consequently, we need to show that

S12(t1, t2) dt1 ∧ dt2 = S12(t2, t3) dt2 ∧ dt3.

We take the exterior derivative of S2(t1, t2) + S1(t2, t3) = 0

d(S2(t1, t2) + S1(t2, t3))

= S21(t1, t2) dt1 + S22(t1, t2) dt2 + S11(t2, t3) dt2 + S12(t2, t3) dt3

= 0

and then we right-wedge-multiply by dt2

S12(t1, t2) dt1 ∧ dt2 + S12(t2, t3) dt3 ∧ dt2
= S12(t1, t2) dt1 ∧ dt2 − S12(t2, t3) dt2 ∧ dt3
= 0

We have obtained the desired equality.

The next proposition is a direct consequence of inequality (2.5).

Proposition 2.4.2. The symplectic billiard map is a (negative) monotone twist
map.

Proof. Let denote
s1 := −S1(t1, t2) s2 := S2(t1, t2)
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First of all we observe that (t1, s1) are global coordinates in P . Indeed, since

∂s1

∂t2
= −S12(t1, t2) < 0,

the Jacobian matrix of the map (t1, t2) 7→ (t1, s1)(
1 0
∂s1
∂t1

∂s1
∂t2

)
is not degenerate. In these coordinates, the dynamics is given by (t1, s1) 7→ (t2, s2)
and the twist condition

∂t2
∂s1

< 0

immediately follows from ∂s1
∂t2

= −S12(t1, t2) < 0.

Remark 2.4.3. As a consequence of previous proposition, symplectic billiards can
be handled also within the rich context of monotone twist maps. We refer to [4]
and [12] for an exhaustive treatment of the matter.

In the sequel, we establish the Ω-area of the phase space P . We premise some
technical facts.
Let D be the billiard table bounded by the curve γ, that is +∂D = γ. Choose an
origin O in the interior of D and parametrize the curve γ by using the direction α
of its tangent line. Let p(α) be the so-called support function of γ, i.e., the distance
between O and the tangent line in γ(α), with direction α− π

2
, see Figure 2.6.

Figure 2.6: The support function p(α) of the curve γ

The curve γ can be seen as the envelope of the family of its tangent lines, whose
equation is

x cos
(
α− π

2

)
+ y sin

(
α− π

2

)
− p = 0,

which is
x sinα− y cosα− p(α) = 0. (2.6)
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The envelope of the family is obtained by 2.6 and the derivative

x cosα + y sinα− p′(α) = 0. (2.7)

Thus the parametric representation of γ is

x(α) = p(α) sinα + p′(α) cosα y(α) = −p(α) cosα + p′(α) sinα (2.8)

where (x(α), y(α)) are the coordinates of the contact point γ(α) between the tan-
gent line and the curve γ.
By formulas (1.6), (1.7) in [27, p.3], the perimeter of γ and the area of D are given,
respectively, by the integrals:

perimeter(γ) =

∫ 2π

0

p(α) dα

and

area(D) =
1

2

∫ 2π

0

[p(α) + p′′(α)]p(α) dα.

We observe that the tangent lines at γ with direction α and α + π are parallel
that is, γ(α) and γ(α + π) are opposite points. Thus, the phase space P consists
of pairs (α1, α2) with α1 < α2 < α1 + π, and the generating function becomes
S(α1, α2) = ω(γ(α1), γ(α2)).
In order to state the result about the Ω-area of the phase space, we need to
recall the definitions of (i) Minkowski sum of two sets and (ii) centrally symmetric
domain of a set.

Definition 2.4.4. The Minkowski sum of two convex sets X, Y is defined as

X +M Y = { x+ y | x ∈ X, y ∈ Y } .

Definition 2.4.5. The centrally symmetric domain Xc of a convex set X is the
reflection of X in the origin O.
Observe that, if p(α) is the support function of X, then p(α + π) is the support
function of Xc.

Moreover, we recall the following two properties of the support function:

(i) if pX is the support function of a convex set X, then the support function of
λX is pλX = λpX , for any λ ∈ R, λ > 0;

(ii) if pX and pY are the support functions respectively of X and Y , then the
support function of their Minkowski sum X +M Y is pXY = pX + pY .
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Let now D̄ be the so-called symmetrization of the domainD, which is the Minkowski
sum of D with its centrally symmetric domain Dc, scaled by a factor 1/2

D̄ :=
1

2
(D +M Dc).

Then, by the properties (i) and (ii) of the support function, it follows that the
support function of D̄ is

p̄(α) =
1

2
[p(α) + p(α + π)]. (2.9)

We are now ready to prove the next

Theorem 2.4.6. The Ω-area of the phase space P equals four times the area of
the symmetrization D̄.

Proof. We start by recalling that, by Lemma 2.4.1, the area form is

Ω = S12(α1, α2) dα1 ∧ dα2

= ω(γ′(α1), γ′(α2)) dα1 ∧ dα2

= det(γ′(α1), γ′(α2)) dα1 ∧ dα2.

Consequently, the Ω-area of the phase space P is given by∫ 2π

0

∫ α1+π

α1

S12(α1, α2) dα2 dα1.

From formula (2.8) we have

γ′(α) = [p′(α) + p′′(α)](cosα, sinα)

so that

S12(α1, α2) = [p(α1) + p′′(α1)][p(α2) + p′′(α2)](sinα2 cosα1 − sinα1 cosα2)

= [p(α1) + p′′(α1)][p(α2) + p′′(α2)] sin(α2 − α1).

Therefore the Ω-area of the phase space is∫ 2π

0

∫ α1+π

α1

[p(α1) + p′′(α1)][p(α2) + p′′(α2)] sin(α2 − α1) dα2 dα1. (2.10)

We first consider the inner integral∫ α1+π

α1

p(α2) sin(α2 − α1) dα2 +

∫ α1+π

α1

p′′(α2) sin(α2 − α1) dα2 (2.11)
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and we use integration by parts twice on the second summand∫ α1+π

α1

p′′(α2) sin(α2 − α1) dα2

= p′(α2) sin(α2 − α1)
∣∣α1+π

α1
−
∫ α1+π

α1

p′(α2) cos(α2 − α1) dα2

= −
∫ α1+π

α1

p′(α2) cos(α2 − α1) dα2

= −p(α2) cos(α2 − α1)
∣∣α1+π

α1
−
∫ α1+π

α1

p(α2) sin(α2 − α1) dα2

= p(α1) + p(α1 + π)−
∫ α1+π

α1

p(α2) sin(α2 − α1) dα2.

Consequently, the inner integral (2.11) equals to p(α1) +p(α1 +π), and the Ω-area
of the phase space (2.10) corresponds to∫ 2π

0

[p(α) + p′′(α)][p(α) + p(α + π)] dα
(2.9)
= 2

∫ 2π

0

[p(α) + p′′(α)]p̄(α) dα.

We finally recall that – see [27, p.3] – p(α1) + p′′(α1) is the radius of curvature of
γ in γ(α1) and that

p(α1) + p′′(α1) = p(α1 + π) + p′′(α1 + π).

Thus

2

∫ 2π

0

[p(α) + p′′(α)]p̄(α) dα

= 2

∫ 2π

0

[
1

2
(p(α) + p′′(α)) +

1

2
(p(α + π) + p′′(α + π))]p̄(α) dα

(2.9)
= 2

∫ 2π

0

[p̄(α) + p̄′′(α)]p(α) dα = 4 area(D̄).

This is the desired equality.

We remind that –in the case of Birkhoff billiards– the area of the phase space equals
twice the perimeter of the boundary curve (see Chapter 1, Proposition 1.1.7).

2.5 Circular and elliptic billiards
This section is devoted to symplectic billiards in a disc and in an ellipse. We prove
that they are both integrable.
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We first consider the case of a disc of radius R > 0. Referring to Figure 2.7,
consider two pairs (x, y), (y, z) ∈ P such that (y, z) = φ(x, y). Then, by definition,
the tangent to the circle in y is parallel to the chord xz. The radius Oy is perpen-
dicular to the tangent and hence to the chord xz. We call s the intersection point
between Oy and xz.
The triangle xOz is isosceles and the segment Os is the height relative to the basis
xz. In particular, Os is the bisector of the angle xOz, and thus we have that the
angles x̂Oy, ŷOz are equivalent, that is, x̂Oy = ŷOz = α.
This shows that the corresponding dynamics is the rotation of the angle α ∈ [0, π).
As a consequence, the dynamics is the same as the one of Birkhoff billiards in a
disc, see Section 1.3. Therefore the billiard table is completely foliated by caustics,
that is circular symplectic billiards are integrable.

Figure 2.7: The symplectic billiard map in the disk

Moreover, we remark that the standard area form ω(x, y) is constant along orbits
(i.e., it is a global integral of motion) because the triangles xOy and yOz are
congruent and ω(x, y) = 2A(xOy).

The integrability of elliptic symplectic billiards easily follows from the integra-
bility of circular symplectic billiards. The key element to prove the integrability
of elliptic symplectic billiard is the notion of affine transformation of the plane.

Definition 2.5.1. An affine trasformation f : R2 → R2 of the plane is a function
of type

f(x) := Lx+ b

where L ∈ GL(2,R) is an invertible matrix and b ∈ R2 is a translation vector.

Among the several properties of affine transformations, we recall that they map
lines to lines and they preserve the property of parallelism between lines and the
ratio of length of two parallel segments. Consequently, since the definition of the
symplectic billiard map involves parallel lines, it follows that the symplectic billiard
map commutes with affine transformations of the plane.
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Moreover, from the next proposition we deduce that any circle can be mapped into
an ellipse by an affine transformation.

Proposition 2.5.2. Given any ellipse, there exists an affine transformation map-
ping the ellipse to the unit circle x2

1 + x2
2 = 1.

Proof. Consider the ellipse centered at (h, k) and with major and minor axes of
lenght 2a and 2b. We can apply a rotation to align the major and minor axis of the

ellipse with the axis of the Cartesian plane, and a translation of vector b =

(
−h
−k

)
to translate the center of the ellipse to the origin, obtaining an ellipse of equation:

x2
1

a2
+
x2

2

b2
= 1

Applying the affine transformation

f

(
x1

x2

)
=

(
1/a 0
0 1/b

)(
x1

x2

)
=

(
x1/a
x2/b

)
the ellipse is mapped to the unit circle

x2
1 + x2

2 = 1.

By the previous properties, it becomes clear that –from the point of view of sym-
plectic billiard maps– there is no difference between a circle or an ellipse and elliptic
symplectic billiards are integrable as well.
Indeed, consider the affine transformation

f

(
x1

x2

)
=

(
a/R 0

0 b/R

)(
x1

x2

)
=

1

R

(
ax1

bx2

)
that maps the circle of equation x2

1 +x2
2 = R2 to the ellipse of equation x2

1

a2 +
x2

2

b2
= 1.

Figure 2.8: Symplectic billiard in an ellipse
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The caustics of the circular symplectic billiard are all the concentric circles of
equation

x2
1 + x2

2 = r2

with 0 < r < R. The affine transformation f maps these circles to ellipses of
equation

x2
1

ã2
+
x2

2

b̃2
= 1

where
ã =

r

R
a b̃ =

r

R
b.

Since the symplectic billiard map commutes with affine transformations of the
plane, these ellipses are caustics for the elliptic symplectic billiard.
In particular, from 0 < r/R < 1, it follows that 0 < ã < a and 0 < b̃ < b, and
therefore the elliptic symplectic billiard table is completely foliate by caustics, see
Figure 2.8.





Chapter 3

Caustics for symplectic billiards

Abstract. This chapter is devoted to two results for caustics of symplectic billiard.
The first one is a non-existence result, which applies when the boundary of the billiard
table has points of zero curvature, and is the generalization of Mather’s theorem for
Birkhoff billiards. The second one is an existence result, applying when the boundary
of the billiard table has everywhere positive curvature, and the proof follows the steps
–inspired by KAM theory– carried out by Lazutkin.

3.1 Caustics in a symplectic billiard
Let δ be an invariant curve of the symplectic billiard map. This curve can be thought of
as a 1-parameter family of chords of the billiard curve γ (that is, each chord of this family
corresponds to a point of the invariant curve). We define the caustic corresponding to δ
as the envelope of the lines containing the chords of the family.
Therefore, a caustic for the symplectic billiard is a curve with the property that each
trajectory that is tangent to it stays tangent after each reflection. Moreover, caustics lie
inside the billiard table, as we show in the next

Lemma 3.1.1. Let Γ be the caustic corresponding to an invariant curve δ of the sym-
plectic billiard map. Then Γ lies inside the billiard table.

Proof. Let δ be an invariant curve of the symplectic billiard map. According to Birkhoff’s
Theorem 1.3.2, invariant curves of monotone twist maps are graphs of Lipschitz functions.
Therefore, since the symplectic billiard map is monotone twist, δ is a Lipschitz graph.
Consider the 1-parameter family of chords of the symplectic billiard corresponding to δ,
and let x1x2 be one of these chord. Consider a nearby chord x̄1x̄2 of the same family
and suppose that x̄1 has moved along the billiard curve γ in the positive direction from
x1. Because of the graph property, also x̄2 has moved in the positive direction from x2

and, therefore, the chords x1x2 and x̄1x̄2 intersect inside the billiard table.
Since the caustic Γ is the envelope of these chords, it follows that Γ lies inside the billiard
table.

41
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In Chapter 2 we have already encountered caustics for symplectic billiards. For example,
for strictly convex curves of constant width, the envelope of the 1-parameter family of
2-periodic orbits is a caustic and it corresponds to the centre symmetry set of the curve.
Moreover, in Section 2.5, we studied in detail circular and elliptic billiards, showing that
their tables are completely foliated by caustics, concentric circles in the first case, and
confocal ellipses in the second.

3.2 Points of zero curvature
The result on non-existence of caustics proved in the next section involves points of zero
curvature for the curve γ, boundary of the billiard table.

Clearly, if γ is a strictly convex curve –as in Section 2.2– than γ can have only isolated
points of zero curvature. We present here below an example of such a curve with four
isolated points of zero curvature.

Example 3.2.1. Consider the curve γ implicitly define by the equation

x4 + y4 = 1 (3.1)

see Figure 3.1.

Figure 3.1: The curve x4 + y4 = 1 is strictly convex with points of zero curvature

We recall –see [11, pp.636-637]– that the curvature of an implicit curve f(x, y) = 0,
f ∈ C2(R2;R), is given by the formula

k =
|fxx(fy)

2 − 2fxyfxfy + (fx)2fyy|
|(fx)2 + (fy)2|3/2

Thus, the curvature of γ defined in (3.1) is

k =
3x2y6 + 3x6y2

(x6 + y6)
3
2

which is zero at the points of intersection of γ with the axes x = 0 and y = 0.
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Otherwise, if γ is a convex curve (not strictly convex), then γ can have nonzero
measure subsets with zero curvature. We recall that the symplectic billiard map can be
generalized to convex curves. In this case, Definition 2.2.3 is no longer applicable; in fact,
if we consider two consecutive collision points x, y on a nonzero measure subset with zero
curvature, the next collision point z is not uniquely determined because the tangent lines
at x and y are the same. This problem can be solved by simply defining the symplectic
billiard map via its generating function as in formula (2.2).

3.3 Non-existence of caustics
This section is devoted to prove Theorem 3.3.2, which is the generalization to symplectic
billiards of Mather’s theorem for Birkhoff billiards, see Theorem 1.3.6. We will give two
proofs of Theorem 3.3.2. The first is by contradiction, assuming that a caustic exists and
showing that, if the billiard curve has a point of zero curvature, the caustic does not lie
inside the billiard table, contradicting Lemma 3.1.1. The second is based on Mather’s
analytic necessary condition for the existence of invariant curves of monotone twist maps,
see [22, pp. 401-402]. We recall here below this result for reader’s convenience.

Lemma 3.3.1. Let
f : S1 × [a, b]→ S1 × [a, b],

where [a, b] is an interval of R, be a C1 diffeomorphism. Let (t, s) be coordinates on
S1 × [a, b], with dynamics

(tk, sk) := fk(t, s), k ∈ Z

Suppose that f is area preserving and monotone twist, and denote with S : S1 × S1 → R
its generating function. Then invariant curves for f exist only if the next condition holds:

S22(t−1, t) + S11(t, t1) < 0, ∀t ∈ S1 (3.2)

Since caustics correspond to invariant curves of the symplectic billiard map (see Sec-
tion 3.1), showing that Mather’s necessary condition (3.3.1) is violated when the bound-
ary of the billiard table has a point of zero curvature implies the non-existence of caustics.

Theorem 3.3.2. Let γ be a smooth closed convex curve with a point of zero curvature.
Then the symplectic billiard in γ has no caustics.

Proof 1. Assume, by contradiction, that a caustic Γ for the symplectic billiard exists.
Let x1x2 and x2x3 be two consecutive trajectory segments tangent to the caustic Γ and
suppose that the curvature at x2 vanishes.
Consider a chord x̄1x̄2 infinitesimally close to the chord x1x2 and tangent to the same
caustic Γ. Since the curvature at x2 vanishes, in the linear approximation, the tangent
line at x̄2 is the same as the one at x2. Therefore, in the same linear approximation, the
line x̄1x̄3 is parallel to x1x3.
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The caustic Γ is defined as the envelope of the chords tangent to it and must lie inside
the billiard table, see Lemma 3.1.1. Clearly the chords x1x3 and x̄1x̄3 do not intersect
inside the billiard table, and therefore the caustic does not lie inside the billiard table.
We have a contradiction and the result follows.
Proof 2. In the proof, to avoid confusion between vectors and scalars, we will denote the
vectors with an underline bar.
Parametrize the curve γ by the arc length t. The curvature k(t) at a point γ(t) is defined
as the norm of the normal vector at γ(t)

k(t) = ‖γ′′(t)‖

Thus, denoting by n(t) =
γ′′(t)

‖γ′′(t)‖ the inner normal unit vector, we have

γ′′(t) = k(t)n(t) (3.3)

We now identify R2 with C and remind that multiplying the coordinates of a vector by i
equals to counterclockwise rotating it by an angle of π/2. Consequently, since ‖γ′(t)‖ = 1,
the inner normal unit vector is

n(t) =
iγ′(t)

‖γ′(t)‖
= iγ′(t)

and identity (3.3) becomes
γ′′(t) = i k(t) γ′(t)

We recall now that the symplectic billiard map is defined via its generating function
S by formula (2.2). Hence, we need to show that the corresponding Mather’s analytic
necessary condition (3.3.1)

S22(t1, t2) + S11(t2, t3) < 0

does not hold everywhere on S1.
Recalling that S(t1, t2) = ω(γ(t1), γ(t2)), see formula (2.4), we have

S22(t1, t2) = ω(γ(t1), γ′′(t2)) = i k(t2)ω(γ(t1), γ′(t2))

and
S11(t2, t3) = ω(γ′′(t2), γ(t3)) = i k(t2)ω(γ′(t2), γ(t3))

Clearly, if the curvature in t2 is zero, i.e., k(t2) = 0, we get

S22(t1, t2) + S11(t2, t3) = 0

violating Mather’s criterion.
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3.4 Existence of caustics
This section is devoted to an existence result of caustics for the symplectic billiard map.
The proof follows the steps –inspired by KAM theory– carried out by Lazutkin in [18] in
order to prove the existence of caustics for Birkhoff billiards (see Theorem 1.3.5).
Lazutkin’s work is based on Moser’s twist theorem, a version of KAM theorem for area-
preserving twist maps of the annulus (see [25]). Initially, Moser’s twist theorem was
proven for Ck maps, with k 6 333, but later, this number was reduced to 5 by H.
Rüssman, see [26]. For simplicity, we will present here a version of Moser’s twist theorem
for C∞ maps, following [7, pp. 20-21].

Let f0 be a C∞ integrable, area-preserving, twist map of the annulus S1×A, A ⊂ R,
of the form

f0(x, y) = (x+ µ(y), y)

where µ : A→ R is a diffeomorphism. Observe that the curves {y = const} are invariant
for the map f0.
Consider now a small perturbation of f0

fε(x, y) = (x+ µ(y) + εg(x, y), y + εh(x, y))

and observe that this map is still an area-preserving twist map.
Moser’s theorem shows that, for small ε and under a suitable condition, if fε is C∞-near
f0, a large proportion of the invariant curves for f0 survive the perturbation and gets
slightly perturbed, becoming invariant curves of the map fε. The required condition is
the following
Diophantine condition: for given constants τ > 1 and λ > 0

|µ(y)− p

q
| > λ

qτ+1
, ∀ p

q
rationals with q > 0 (3.4)

Let us denote the set of all such µ(y) with Rτ,λ ⊂ R, noting that this set is closed.
Let Λ := µ(A) ⊂ R and define the closed intervals (and therefore compact)

Λλ := {µ(y) ∈ Λ | dist(µ(y), ∂Λ) > λ}

and
Λτ,λ := Λλ ∩ Rτ,λ.

Cantor-Bendixson theorem states that any closed subset of R can be written as the dis-
joint union of a perfect set and a countable set. In particular, Λτ,λ is the union of a Cantor
set and a countable set. Moreover, Λτ,λ is nowhere dense, and hence ‘topologically’ small.
However, the Lebesgue measure of Λτ,λ is large for λ ↓ 0,

meas(Λ r Λτ,λ) 6 constλ
∑
q>1

q−τ = O(γ) asλ ↓ 0.

This estimate implies that the union
⋃
τ,λ Λτ,λ is of full measure in Λ.

Finally, notice that the map β pulls back the set Λτ,λ to a subset Aτ,λ ⊂ A, which is a
Cantor set.
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Theorem 3.4.1. In the notations given above, assume that τ > 1 and λ > 0 is sufficiently
small.
If fε is sufficiently close to f0 in the C∞-topology, there exists a C∞-diffeomorphism
ψε : S1 ×A→ S1 ×A such that:

(i) ψε is C∞-near the identity map and depends C∞-ly on ε;

(ii) the image of the union of f0-invariant circles S1 × Aτ,λ is fε-invariant under ψε,
and the restricted map ψ̂ε := ψε|S1×Aτ,λ conjugates f0 to fε, that is

fε ◦ ψ̂ε = ψ̂ε ◦ f0.

In the proof of Theorem 3.4.2 we will determine an appropriate change of variables
(s, r) ∈ S1 × R+ under which, near the boundary of the phase space {r = 0}, the sym-
plectic billiard map can be seen as a small perturbation of the integrable area-preserving
twist map

(s, r) 7→ (s+ r, r).

Thus, Moser’s twist theorem 3.4.1 assures the existence of a positive measure set of
invariant circles for the symplectic billiard map, which accumulate on {r = 0} and on
which the motion is conjugated to a rigid rotation with Diophantine rotation number.
As Lazutkin shows in his work, this set of invariant circles translates into the existence
of a positive measure set of smooth caustics accumulating to the boundary of the billiard
table.
In order to determine the change of variables (s, r) ∈ S1 ×R+, we introduce the concept
of affine parametrization (see [28]).
Let γ : [0, 1] → R2 be an embedded closed curve, parametrized by p ∈ [0, 1]. Choose a
reparametrization of γ(p) to a new parametr s such that

det (γs, γss) = 1. (3.5)

This relation is invariant under special affine transformations, i.e., affine transformations
that preserves area. The parameter s is called affine arc-length, and, denoting

g(p) = [(γp, γpp)]
1/3 ,

the s is explicitly given by

s(p) :=

∫ p

0
g(ξ)dξ.

We assume that g is non-vanishing, which is satisfied for strictly convex curves.
Differentiating (3.5), we obtain

det (γs, γsss) = 0,

that is, the vectors γs and γsss are linearly independent:

γsss + κ(s)γs = 0. (3.6)
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The term κ(s) is called the affine curvature of γ and is equal to

κ(s) = det(γss, γsss). (3.7)

If the initial parameter p is the Euclidean arc-length parameter t, then the relation
between the affine arc-length parameter s and t is given by

ds = k1/3dt (3.8)

where k is the Euclidean curvature.

Theorem 3.4.2. Suppose that the billiard curve γ is infinitely smooth and has everywhere
positive curvature. Then, there exists a positive measure Cantor set of invariant curves
for the symplectic billiard map accumulating to the boundary of the phase space.

Proof. Let γ(s) be an affine parametrization of the curve γ. A chord γ(s1)γ(s2) is
characterized by s1 and r1 = s2 − s1. Since by the Definition 2.2.1 of the phase space,
s1 6 s2 6 s∗1, r1 is positive and bounded above by some function of s. We notice that
the Jacobian matrix of the map (s1, s2) 7→ (s1, r1 = s2 − s1)(

1 −1
0 1

)
is non degenerate and therefore (s1, r1) are global coordinates on S1 × R+.
The symplectic billiard map in these coordinates becomes

(s, r) 7→ (s+ r, δ(s, r)) (3.9)

where δ(s, r) is a function on the phase space. In the sequel, we prove that

δ(s, r) := r + r3f(s, r)

with f smooth.
Let δ(s, r) = a0 +a1r+a2r

2 +a3r
3 +O(r4), where ai (i = 1, . . . , 4) are smooth functions

of s.
The case r = 0 corresponds to s1 = s2. Thus, δ(s, 0) = a0 must be zero.
In the sequel we will denote the determinant of two vectors by the brackets [·, ·].
Consider three consecutive collision points γ(s − r), γ(s), γ(s + δ), see Figure 3.2. By
definition of symplectic billiard map, the segment γ(s + r) − γ(s − r) is parallel to the
tangent line at γ in γ(s), and this condition can be expressed as

[γ(s+ δ)− γ(s− r), γ′(s)] = 0. (3.10)

Expand γ(s+ δ) and γ(s− r) in Taylor series up to the 4th derivative and substitute in
condition (3.10)[

(δ + r) γ′(s) +

(
δ2 − r2

2

)
γ′′(s) +

(
δ3 + r3

6

)
γ′′′(s) +

(
δ4 − r4

24

)
γ′′′′(s), γ′(s)

]
= 0.

(3.11)
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Figure 3.2: The symplectic billiard map in the new variables (s, r)

The first term (δ + r)[γ′(s), γ′(s)] clearly satisfies (3.11) since [γ′(s), γ′(s)] = 0.
Consider now the second term (

δ2 − r2

2

)
[γ′′(s), γ′(s)].

Recalling that for an affine parametrization [γ′(s), γ′′(s)] = 1, the quadratic term δ2− r2

must be zero. Since δ2 = a2
1r

2 +O(r3), we have that δ2 − r2 = (a2
1 − 1) r2 +O(r3) = 0

if and only if a1 = 1.
Also the third term (

δ3 + ε3

6

)
[γ′′′(s), γ′(s)].

satisfies condition (3.11). In fact, since γ′′′(s) = −κ(s)γ′(s) (see formula (3.6)), it follows

[γ′′′(s), γ′(s)] = −κ(s)[γ′(s), γ′(s)] = 0.

Finally, we consider the fourth term
(
δ4−r4

24

)
[γ′′′′(s), γ′(s)]. We have

γ′′′′(s) =
d

ds
γ′′′(s) =

d

ds
(−κ(s)γ′(s)) = −κ′(s)γ′(s)− κ(s)γ′′(s)

and therefore:

[γ′′′′(s), γ′(s)] = −κ′(s)[γ′(s), γ′(s)]− κ(s)[γ′′(s), γ′(s)] = κ 6= 0.

Then, δ4− r4 is necessarily zero. From δ4 = r4 + 4a2 r
5 +O(r6), it follows that δ4− r4 =

4 a2 r
5 +O(r6) = 0 if and only if a2 = 0.

In conclusion, a0 = 0 = a2 and a1 = 1, so that δ(s, r) = r + r3f(s, r).
As a consequence, the symplectic billiard map (3.9) is given by

(s, r) 7→ (s+ r, r + r3f(s, r))

which is a small perturbation of the integrable area-preserving twist map (s, r) 7→ (s +
r, r).



Chapter 4

Symplectic billiards in a symplectic
space

Abstract. This chapter is devoted to the generalization of symplectic billiards to the
linear symplectic vector space (R2n, ω). We give the definition and prove that the sym-
plectic billiard map admits a generating function, which –as in the planar case– involves
the symplectic form ω. We prove the complete integrability of symplectic billiards in
an ellipsoid and describe the symplectic billiard dynamics in the special case of the unit
sphere.

4.1 Linear symplectic spaces
Let V be a real finite dimensional vector space. A symplectic form on V is a map
ω : V × V → R with the following properties:

(i) bilinearity
ω(αu+ βv,w) = αω(u, v) + β ω(x; v, w),

ω(u, αv + βw) = αω(u, v) + β ω(v, w)

for any u, v, w ∈ V and α, β ∈ R;

(ii) skew-symmetry
ω(v, w) = −ω(w, v)

for any v, w ∈ V ;

(iii) non-degenearcy
ω(v, w) = 0 ∀w ∈ V ⇒ v = 0.

Then, we call (V, ω) a symplectic vector space.
The following are immediate properties of the symplectic structure ω (see [8, Section 1]):

49
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(i) the vector space V is even dimensional, dimV = 2n;

(ii) there always exists a basis {e1, . . . , en, f1, . . . , fn} of V such that

ω(ei, ej) = ω(fi, fj) = 0, ω(ei, fj) = δij i, j = 1, . . . , n

Such a basis is called symplectic basis and the symplectic form is represented by
the block matrix

ω =

(
0 idn
−idn 0

)
.

The prototype of a symplectic vector spaces is (R2n, ω0) with ω0 such that the canonical
basis of R2n

e1 = (1, 0, . . . , 0), . . . , en = (0, . . . , 0, 1︸︷︷︸
n

, 0, . . . , 0)

f1 = (0, . . . , 0, 1︸︷︷︸
n+1

, 0, . . . , 0), . . . , fn = (0, . . . , 0, 1)

is a symplectic basis.
Any symplectic vector space can be endowed with a complex structure compatible

with the symplectic form ω.

Definition 4.1.1. Let V be a real vector space. A complex structure on V is an auto-
morphism

J : V → V

such that J2 = −id.

By identifying the map J with multiplication by i, we endow V with the structure of a
complex vector space. Complex scalar multiplication can be defined by

(a+ ib)v = av + bJv,

where a, b ∈ R and v ∈ V .

Definition 4.1.2. Let (V, ω) be a symplectic vector space. A complex structure J on V
is said to be ω-compatible if

g(v, w) := ω(v, Jw) (4.1)

defines an inner product on V for any v, w ∈ V . That is, J is ω-compatible if and only if

ω(Jv, Jw) = ω(v, w)

ω(v, Jv) > 0 ∀ v 6= 0.
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Consider now the standard symplectic vector space (R2n, ω0) with the canonical sym-
plectic basis {e1, . . . , en, f1, . . . , fn}. Let J0 be the complex structure on R2n defined by
J0ei = fi and J0fi = −ei. The block matrix representing J0 is

J0 =

(
0 −idn
idn 0

)
.

This complex structure is compatible with the standard inner product 〈·, ·〉 of R2n

〈v, w〉 = vtw

where vt denotes the transpose of v.
Indeed, an easy computation shows that

ω0(v, J0w) = vt
(

0 idn
−idn 0

)
J0w

= vt
(

0 idn
−idn 0

)(
0 −idn
idn 0

)
w

= vtw = 〈v, w〉.

In particular, for any v, w ∈ R2n, it holds the following relation

ω0(v, w) = 〈J0 v, w〉. (4.2)

4.2 Symplectic billiard in a symplectic space: def-
inition

Let (R2n, ω) be a linear symplectic space and consider a smooth closed hypersurface
M ⊂ R2n bounding a strictly convex domain.
The definition of a symplectic billiard map –similar to the one of the planar case– in
the higher dimensional setting presents an obviuos difficulty, that is choosing a tangent
direction at every point of M . This is canonically provided by the symplectic structure.
Indeed, since M is odd-dimensional, the restriction of the symplectic form ω to M is not
non degenerate anymore, but it has a one-dimesional kernel on the tangent hyperplane
TxM for every x ∈ M . This kernel is called the characteristic direction of M at x and
we denote it by

R(x) := kerω|TxM×TxM .

We choose this characteristic direction as the tangent line at x ∈M .
Observe that the strict convexity of M gives rise to an involution M 3 x 7→ x∗ ∈M such
that R(x) = R(x∗).
As in the planar case, let νx denote the outer normal in x ∈M . Orientate the hypersur-
face M with respect to the outer normal.
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Lemma 4.2.1. Given two points x, y ∈ M , the relation R(y) ⊂ TxM is equivalent to
ω(νx, νy) = 0. Moreover, this relation is symmetric in x and y, that is

R(y) ⊂ TxM ⇔ R(x) ⊂ TyM.

Proof. Identify R2n with Cn through the standard complex structure J . Observe that
applying J on a vector equals to rotating it by an angle of π/2. Thus, the characteristic
direction at y ∈ M is obtained by applying J to the outer normal νy, that is R(y) =
R · (Jνy).
Therefore,

R(y) ⊂ TxM

is equivalent to say that the vectors Jνy and νx are orthogonal and thus, their inner
product is null

〈Jνy, νx〉 = 0.

But by relation (4.2), it follows that ω(νy, νx) = 〈Jνy, νx〉 = 0, which is the desired result.
The symmetry of the relation follows from the skew-symmetry of ω.

We introduce now the phase space of the symplectic billiard map.

Definition 4.2.2. The phase space of the symplectic billiard map is

P := {(x1, x2) ∈M ×M | ω(νx1 , νx2) > 0}.

Lemma 4.2.3. The phase space P is connected.

Proof. Consider the Gauss map

G : M → S2n−1 x 7→ νx.

that maps the hypersurface M ⊂ R2n to the unit sphere S2n−1 ⊂ R2n, associating any
point ofM to its outer normal vector atM . Observe that, because of the strict convexity
of M , the Gauss map is an homeomorphism. Therefore, the phase space P is mapped to

P0 := {(a, b) ∈ S2n−1 × S2n−1 | ω(a, b) > 0}.

Clearly, b 6= ±a, or otherwise ω(a,±a) = 0. Let

at :=
a+ t(b− a)

‖a+ t(b− a)‖
∈ S2n−1, t ∈ (0, 1].

Using the properties of the symplectic form ω, it follows that

ω(a, at) = ω

(
a,

a+ t(b− a)

‖a+ t(b− a)‖

)
=
ω(a, a) + tω(a, b)− tω(a, a)

‖a+ t(b− a)‖

=
tω(a, b)

‖a+ t(b− a)‖
,
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showing that we can move the second factor close to a. That is, we can move any point
in P0 into a tubular neighborhood of the diagonal, which is therefore connected.
Since the Gauss map is an homeomorphism, its inverse maps connected sets into con-
nected sets. Thus, P = G−1(P0) is connected.

Remark 4.2.4. It is possible to define the negative part of the phase space

P− := {(x, y) ∈M ×M | ω(νx, νy) < 0}.

Arguing as in Lemma 4.2.3, one can show that P− is also connected.

In order to define the symplectic billiard map, we need first the following lemma

Lemma 4.2.5. Let (x, y) ∈ P. Then there exists a unique point z ∈ M such that
(x+R(y)) ∩M = {x, z}. Moreover, (y, z) ∈ P and z − x = tJνy, with t > 0.

Proof. The first statement is a direct consequence of the convexity ofM and the definition
of the phase space P. Indeed, the convexity of M implies that (x+R(y)) ∩M = {x, z}
with possibly x = z. By definition of the phase space, if (x, y) ∈ P, R(y) 6⊂ TxM ,
and therefore x 6= z. Observe that equation (x + R(y)) ∩M = {x, z} is equivalent to
z − x ∈ R(y).

Next, we have to show that (y, z) ∈ P. We easily remark that if y is close to x
then so is z and therefore ω(νx, νy) > 0 implies ω(νy, νz) > 0. For (x, y) ∈ P suppose
–by contradiction– that (y, z) /∈ P, i.e., ω(νy, νz) 6 0. Using the connectedness of
{(x, y) ∈M ×M | ω(νx, νy) < 0}, and moving y close to x, we can arrange ω(νy, νz) = 0.
This means that R(y) ⊂ TzM which contradicts x 6= z.

Finally we have to show that z − x = tJνy with t > 0.
Consider the sets M+

x := {y ∈ M | ω(νx, νy) > 0} and M−x := {y ∈ M | ω(νx, νy) < 0}.
The Gauss map maps these two sets to hemispheres, and thus they are both connected.
The definition of the phase space can be rephrase as

(x, y) ∈ P ⇔ x ∈M−y ⇔ y ∈M+
x ,

and the request that (y, z) ∈ P is equivalent to z ∈M+
y .

By the observation that (x + R(y)) ∩M = {x, z} is equivalent to z − x ∈ R(y), and
recallig from Lemma 4.2.3 that the characteristic direction at y is R(y) = R · Jνy, it
follows that

z − x = t(y)Jνy,

where we think of x as fixed and y as a variable.
First, we observe that the sign of t(y) does not depend on y as long as (x, y) ∈ P, or
equivalently, y ∈ M+

x . Indeed, suppose that t(y) changes sign or vanishes. Since M+
x is

connected, we can always find a point y such that t(y) = 0. But this is equivalent to
z = x, which contradicts the first assertion of the proof.
Hence, the sign of t(y) is fixed, and we compute it at an appropriate point. Choose y
such that νy = aJνx, with a > 0. The existence and the uniqueness of this point is due
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to the Gauss map, which is a diffeomorphism. Recalling the relation (4.2) between the
inner product and the symplectic form and that ‖νx‖ = 1 since νx ∈ S2n−1, it follows
that

ω(νx, νy) = ω(νx, aJνx) = 〈Jνx, aJνx〉 = 〈νx, aνx〉 = a‖νx‖2 = a > 0.

Finally, we observe that

z − x = t(y)Jνy = at(y)J2νx = −at(y)νx.

Therefore, since νx is the outer normal of M at x, the convexity of M implies t(y) > 0.
This concludes the proof.

Definition 4.2.6. The symplectic billiard map is

φ : P → P, (x, y) 7→ (y, z)

where z ∈M is the unique point such that z − x ∈ R(y).

Remark 4.2.7. The symplectic billiard map φ : P → P can be extend continuously to
the closure

P̄ := {(x, y) ∈M ×M | ω(νx, νy) ≥ 0}

by
φ(x, x) := (x, x)

and
ω(νx, νy) = 0 ⇒ φ(x, y) := (y, x).

As in the planar case, the symplectic billiard map φ admits a generating function, that
involves the symplectic form ω.

Lemma 4.2.8. The generating function for the symplectic billiard map φ is

S : P → R (x, y) 7→ S(x, y) := ω(x, y).

This means that
φ(x, y) = (y, z) ⇔ ∂

∂y
[S(x, y) + S(y, z)] = 0. (4.3)

Proof. Let x = (xα, xβ) ∈ R2n, where xα, xβ ∈ Rn.
Identify R2n with Cn and observe that

Jx =

(
0 −idn
idn 0

)(
xα
xβ

)
=

(
−xβ
xα

)
,

and therefore

ω(x, y) = 〈Jx, y〉 = (Jx)ty = (−xβ, xα)t(yα, yβ) = xαyβ − xβyα.
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Hence, we have that
S(x, y) = ω(x, y) = xαyβ − xβyα

and
S(y, z) = ω(y, z) = yαzβ − yβzα.

Consequently,

∂

∂y
S(x, y) =

∂

∂y
(xαyβ − xβyα) = xαdyβ − xβdyα

∂

∂y
S(y, z) =

∂

∂y
(yαzβ − yβzα) = −zαdyβ + zβdyα

and
∂

∂y
[S(x, y) + S(y, z)] = (xαdyβ − xβdyα) + (−zαdyβ + zβdyα)

= (zβ − xβ)dyα + (xα − zα)dyβ.

Hence, if x 6= z, we have that

∂

∂y
[S(x, ·) + S(·, z)] = 0⇔ (zβ − xβ, xα − zα) ⊥ TyM

⇔ z − x ∈ R(y)

as needed.

We conclude this section by showing that the symplectic billiard map φ admits an
invariant closed 2-form

Ω(x,y) :=
∂2S

∂x∂y
(x, y)dx ∧ dy ∈ Ω2(M ×M).

Lemma 4.2.9. The symplectic billiard map preserves the closed 2-form Ω.

Proof. By equality 4.3,

φ(x, y) = (y, z) ⇔ ∂

∂y
[S(x, y) + S(y, z)] = 0.

Consequently, to prove the φ-invariance of Ω, we need to show that

∂2S

∂x∂y
(x, y)dx ∧ dy =

∂2S

∂y∂z
(y, z)dy ∧ dz.

We take the exterior derivative of ∂
∂y [S(x, y) + S(y, z)] = 0

d

[
∂

∂y
(S(x, y) + S(y, z))

]
=

∂2

∂x∂y
S(x, y)dx+

∂2

∂y2
S(x, y)dy +

∂2

∂y2
S(y, z)dy +

∂2

∂z∂y
S(y, z)dz

= 0
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and then, recalling that the wedge product is antisymmetric and dy ∧ dy = 0, we right-
wedge-multiply by dy

∂2

∂x∂y
S(x, y)dx ∧ dy +

∂2

∂z∂y
S(y, z)dz ∧ dy

=
∂2

∂x∂y
S(x, y)dx ∧ dy − ∂2

∂z∂y
S(y, z)dy ∧ dz

= 0.

4.3 Symplectic billiard in an ellipsoid
This section is devoted to prove the complete integrability of symplectic billiards in an
ellipsoid, using the integrability of Birkhoff billiards in an ellipsoid. The idea of the
proof is, given a trajectory of the symplectic billiard in an ellipsoid, to construct a
polygonal line by connecting every second consecutive impact points (i.e., always skip
one impact point), and then apply a linear transformation –that depends only on the
original ellipsoid– that transforms the polygonal line into a Birkhoff billiard trajectory
on another ellipsoid, that again depends only on the original ellipsoid.

Remark 4.3.1. The complete integrability of the Birkhoff billiard map in an ellipsoid
is a consequence of the complete integrability of the geodesic flow in an ellipsoid.
An ellipsoid E ⊂ Rn+1, given by the equation

n+1∑
i=1

x2
i

a2
i

= 1

can be considered as a degenerate ellipsoid, the limit of the ellipsoids

n+2∑
i=1

x2
i

a2
i

= 1

as an+2 → 0. Thus the billiard map is obtained from the geodesic flow, and the complete
integrability follows (see [31, Section 2.3] and [32] for a detailed explanation).

Consider R2n with linear coordinates {xα,1, . . . , xα,n, xβ,1, . . . , xβ,n} and the symplec-
tic structure ω0 =

∑
dxα,j ∧ dxβ,j .

Let M ∈ R2n be an ellipsoid. Applying a linear symplectic transformation and homoth-
ety, we may assume that the ellipsoid is given by the equation

x2
α,1 + x2

β,1

a1
+
x2
α,2 + x2

β,2

a2
+ · · ·+

x2
α,n + x2

β,n

an
= 1 a1, . . . , an > 0. (4.4)

By applying the diagonal linear transformation

xα,j 7→
√
ajxα,j , xβ,j 7→

√
ajxβ,j , j = 1, . . . , n,
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the ellipsoid M is transformed into the unit sphere S2n−1 of equation

x2
α,1 + x2

β,1 + x2
α,2 + x2

β,2 + · · ·+ x2
α,n + x2

β,n = 1,

while the symplectic form ω0 is mapped into the symplectic form

ω =
∑

ajdxα,j ∧ dxβ,j .

Thus, we consider the symplectic billiard inside S2n−1 defined by the symplectic form ω.
Identify R2n with Cn and let zj = xα,j + ixβ,j , j = 1, . . . , n, be linear coordinates on
Cn. Let z = (z1, . . . , zn) = (xα,1 + ixβ,1, . . . , xα,n + ixβ,n) be a point of S2n−1, and let
R : Cn → Cn be a complex linear operator, represented by the diagonal matrix

R =


i/a1

i/a2

. . .
i/an

 ,

such that the characteristic direction at S2n−1 in z is R ·R(z).
Consider now the complex linear operator R−1 : Cn → Cn, represented by the diagonal
matrix

R =


−ia1

−ia2

. . .
−ian

 ,

and observe that

w := R−1(z) = (−ia1z1, . . . ,−ianzn) = (a1(xβ,1 − ixα,1), . . . , an(xβ,n − ixα,n)).

Let wj = aj(xβ,j − ixα,j), j = 1, . . . , n, be the coordinates of w ∈ Cn. It follows that

‖wj‖2 = ‖aj(xβ,j − ixα,j)‖2 = a2
j (x

2
α,j + x2

β,j).

and thus

x2
α,j + x2

β,j =
‖wj‖2

a2
j

.

Consequently, the linear map R−1 transforms the unit sphere S2n−1 into the ellipsoid E
given by the equation

‖w1‖2

a2
1

+
‖w2‖2

a2
2

+ · · ·+ ‖wn‖
2

a2
n

= 1. (4.5)

Theorem 4.3.2. Let (. . . , Z0, Z1, Z2, . . .) be a trajectory of the symplectic billiard map
in the unit sphere S2n−1 with respect to the symplectic form ω =

∑
ajdxα,j ∧dxβ,j. Then

the sequence (. . . , R−1(Z0), R−1(Z2), R−1(Z4), . . .) is a usual billiard trajectory in E.
Conversely, a usual billiard trajectory (. . . ,W0,W1,W2, . . .) in E corresponds to a unique
symplectic billiard trajectory (. . . , Z0, Z1, Z2, . . .) in S2n−1, with Zj = R(Wj).



58 SYMPLECTIC BILLIARD IN AN ELLIPSOID

Proof. Consider the points Z0, Z2, Z4 ∈ S2n−1 of a symplectic billiard trajectory. Recall-
ing from Lemma 4.2.5 that Z2 − Z0 = tR(Z1), with t > 0, it follows that Z1 is uniquely
determined

R(Z1) = t1(Z2 − Z0), t1 > 0. (4.6)

Appling the linear operator R−1 to both members of equation (4.6), we get

Z1 = t1R
−1(Z2 − Z0).

Normalizing the equation (observe that ‖Z‖ = 1 if Z ∈ S1), we can uniquely determined
t1 > 0

1 = ‖Z1‖2 = t21‖R−1(Z2 − Z0)‖2 ⇒ t1 =
1

‖R−1(Z2 − Z0)‖
,

Hence

Z1 =
R−1(Z2 − Z0)

‖R−1(Z2 − Z0)‖
. (4.7)

In a similar way, we obtain

Z3 =
R−1(Z4 − Z2)

‖R−1(Z4 − Z2)‖
. (4.8)

The symplectic billiard reflection law implies that

R(Z2) = t(Z3 − Z1) = t

(
R−1(Z4 − Z2)

‖R−1(Z4 − Z2)‖
+

R−1(Z0 − Z2)

‖R−1(Z0 − Z2)‖

)
.

Let Wj := R−1(Zj), j = 0, 2, 4, and rewrite the last equation as

R2(W2) = t

(
W4 −W2

‖W4 −W2 ‖
+

W0 −W2

‖W0 −W2 ‖

)
. (4.9)

The vector R2(W2) is normal to the ellipsoid E, and therefore equation (4.9) describes
the billiard reflection in E at point W2 that takes W0W2 to W2W4.

Conversely, given a segment of the billiard trajectory W0,W2,W4 in E, we define
Zj = R(Wj), j = 0, 2, 4. By equations (4.7) and (4.8), it follows that

Z1 =
R−1(Z2 − Z0)

‖R−1(Z2 − Z0)‖
=

R−1(Z2)−R−1(Z0)

‖R−1(Z2)−R−1(Z0)‖
=

W2 −W0

‖W2 −W0‖

and similarly

Z3 =
W4 −W2

‖W4 −W2‖
.

Finally, equation (4.9) becomes

R(Z2) = t(Z3 − Z1),

which describes the symplectic billiard map in S2n−1. Hence, Z0, . . . , Z4 is a segment of
a symplectic billiard trajectory.
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4.4 Symplectic billiard in a sphere
In this section we describe in details the symplectic billiard dynamics in the unit sphere.

Let M be the unit sphere S2n−1 of center O. The symplectic billiard map φ can be
explicitely determined.

Proposition 4.4.1. Let (z0, z1) ∈ P. The symplectic billiard map φ of the sphere is
given by the formula

z2 = z0 + 2ω(z0, z1)Jz1, (4.10)

where J is multiplication by i.

Proof. The normal direction at the sphere in z ∈ S2n−1 is the radial direcion, that is, the
direction of the line joining the center of the sphere O with z. Recall that applying J on z
equals to rotating the vector z of an angle of π/2. It follows then, that the characteristic
direction at S2n−1 in z is the direction of Jz.
Therefore, from Lemma 4.2.5, it holds

z2 = z0 + tJz1 (4.11)

with t > 0. We have to show that t = 2ω(z0, z1).
Normalize equation (4.11), recalling that for any point z ∈ S2n−1 it holds 〈z, z〉 = 1.

1 = 〈z2, z2〉
= 〈z0 + tJz1, z0 + tJz1〉
= 〈z0, z0〉+ t〈z0, Jz1〉+ t〈Jz1, z0〉+ t2〈Jz1, Jz1〉
= 1 + t〈z0, Jz1〉+ t〈z0, Jz1〉+ t2〈z1, z1〉
= 1 + 2t〈z0, Jz1〉+ t2.

Therefore, we have a second order equation

t2 + 2t〈z0, Jz1〉 = 0

with solutions t = 0 –which is not ammissible since we are looking for t > 0– and

t = −2〈z0, Jz1〉 = 2〈Jz0, z1〉 = 2ω(z0, z1),

which is the desired result.

The quantity ω(z0, z1) is an integral for the symplectic billiard map, that is ω(z0, z1) =
ω(z1, z2). Indeed, if we substitute the value of z2 given by formula (4.10) in ω(z0, z1), we
obtain

ω(z1, z2) = ω(z1, z0 + 2ω(z0, z1)Jz1)

= ω(z1, z0) + 2ω(z0, z1)ω(z1, Jz1)

= −ω(z0, z1) + 2ω(z0, z1)〈Jz1, Jz1〉
= −ω(z0, z1) + 2ω(z0, z1)

= ω(z0, z1).
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We will denote this integral symply by ω. Clearly, because of the definition of the phase
space P, ω > 0. Moreover, by the Cauchy-Schwartz inequality

ω(z0, z1) = 〈Jz0, z1〉 6 ‖Jz0‖‖z1‖ = 1.

Thus, 0 6 ω 6 1 and we set ω := sinα with α ∈ [0, π/2].
The dynamics of the symplectic billiard in the sphere in the cases ω = 0 and ω = 1 is
special.
The first case is characterized by the 2-periodicity, since for ω = 0 we have that φ(z0, z1) =
(z1, z0).
In the second case, the φ-orbit is 4-periodic. Indeed, if ω(z0, z1) = 〈Jz0, z1〉 = 1, it
follows that z1 = Jz0. Hence, we obtain the sequence of points

z0 7→ z1 = Jz0 7→ z2 = −z0 7→ z3 = −Jz0 7→ z4 = z0 7→ . . .

In the genaral case, the dynamics of the symplectic billiard in the sphere is described
in Proposition 4.4.3. The main idea of the proof is to regard equation 4.10 as a second
order linear recurrence with constant coefficients. Then the sequence of impact points
z0, z1, z2, . . . can be determined by the next

Theorem 4.4.2. Suppose a sequence z0, z1, z2, . . . satisfies a second order linear recur-
rence relation

zk = Azk−1 +Bzk−2

for all k ∈ Z, k > 2 and with B 6= 0. If its associated characteristic equation

λ2 −Aλ−B = 0

has distint roots λ1, λ2, then the sequence z0, z1, z2, . . . is given by the explicit formula

zn = Cλn1 +Dλn2 (4.12)

where C and D are determined by the initial values z0, z1 by{
z0 = C +D

z1 = Cλ1 +Dλ2.

Proposition 4.4.3. Let ω = sinα < 1, α ∈ [0, π/2), and define λ1 := eiα, λ2 := −e−iα.
One has

zn =
λn−1

1 − λn−1
2

λ1 − λ2
z0 +

λn1 − λn2
λ1 − λ2

z1. (4.13)

The φ-orbit of a point lies on the union of two circles. The orbit is periodic if α is
π-rational and dense on the two circles otherwise. If α = 2π(p/q), where p/q is in the
lowest terms, then the period equals q for even q, and 2q for odd q.
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Proof. Identify R2n with Cn and rewrite equation (4.10) as

z2 = z0 + 2iωz1. (4.14)

This equation is a second order linear recurrence with constant coefficients A = 2iω and
B = 1, and it generates the sequence z0, z1, z2, . . . .
The characterist equation associated to (4.14) is

λ2 − 2iωλ− 1 = 0, (4.15)

and its roots are
λ1,2 := iω ±

√
1− ω2.

Since ω = sinα, we have that

λ1 = iω +
√

1− ω2 = i sinα+
√

1− sin2 α = i sinα+ cosα = eiα

and
λ2 = iω −

√
1− ω2 = i sinα

√
1− sin2 α = i sinα− cosα = −e−iα.

Finally, we determine constants C,D by solving the system{
z0 = C +D

z1 = Cλ1 +Dλ2.

By the first equation, we have C = z0 −D, and substituting into the second we obtain

z1 = (z0 −D)λ1 +Dλ2 = z0λ1 +D(λ2 − λ1).

Hence,

D =
λ1z0 − z1

λ1 − λ2
C =

z1 − λ2z0

λ1 − λ2
.

Consequently, the sequence z0, z1, z2, . . . is given by

zn = Cλn1 +Dλn2

=
z1 − λ2z0

λ1 − λ2
λn1 +

λ1z0 − z1

λ1 − λ2
λn2

=
λn−1

1 − λn−1
2

λ1 − λ2
z0 +

λn1 − λn2
λ1 − λ2

z1,

which is the desired result.
The symplectic billiard map φ : (z0, z1) 7→ (z1, z2) is a complex self-linear map of

C2n, and it is represented by the block matrix(
0 1
1 2iω1

)
,
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where each entry is an n × n block. The eigenvalues of φ are the roots λ1, λ2 of the
characteristic equation (4.15), each with multiplicity n.
Let (u, v) be a vector of C2n, with u, v ∈ Cn. The vector (u, v) is an eignevector of φ
associated to the eigenvalue λi, i = 1, 2, if it holds

φ

(
u
v

)
= λi

(
u
v

)
⇔
(

v
u+ 2iωv

)
=

(
λiu
λiv

)
.

Thus, the eigenvectors associated to λi are given by the system{
v = λiu

u+ 2iωv = λiv
⇒

{
v = λu

(λ2
i − 2iωλi − 1)u = 0.

Clearly, λ2
i − 2iωλi− 1 = 0, and therefore the second equation of the system equals 0 for

any u ∈ Cn.
Consequently, the eigenvectors associated to the eigenvalue λi are all the vectors(

ξ
λiξ

)
, ξ ∈ Cn.

Finally, the eigenspace associated to the eigenvalue λi is the vector space

Vλi :=

{(
ξ
λiξ

)
| ξ ∈ Cn

}
' Cn, i = 1, 2.

Let (a, b) be a vector of C2n, with a, b ∈ Cn, and let (u1, v1) ∈ Vλ1 , (u2, v2) ∈ Vλ2 . Then
(a, b) can be decompose into the sum of eigenvectors(

a
b

)
=

(
u1

v1

)
+

(
u2

v2

)
.

Then, 
a = u1 + u2

b = v1 + v2

v1 = λ1u1

v2 = λ2u2

⇔


a = u1 + u2

b = λ1u1 + λ2u2

v1 = λ1u1

v2 = λ2u2.

Observing that λ1 · λ2 = −1, we obtain{
u1 = b−λ2a

λ1−λ2

v1 = λ1b+a
λ1−λ2

{
u2 = b−λ1a

λ2−λ1

v2 = λ2b+a
λ1−λ2

.

Thus, (
a
b

)
=

1

λ1 − λ2

(
b− λ2a
λ1b+ a

)
+

1

λ2 − λ1

(
b− λ1a
λ2b+ a

)
.
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Now, writing a vector accordingly as (u, v) with u ∈ Vλ1 and v ∈ Vλ2 , and recalling
that λ1 = eiα and λ2 = −e−iα, one has

φ

(
u
v

)
=

(
eiαu
−e−iαv

)
. (4.16)

The orbit of (u, v) lies on the union of two circles (eitu, e−itv) and (eitu,−e−itv), where
t ∈ R. The orbit is finite if α is π-rational, and dense on the two circles otherwise. Let

α = 2π
p

q

where p and q are coprime, and assume that v 6= 0. If q is even, the orbit closes up after
q iterations, but if q is odd, one needs twice as many, due to the alternating sign of the
second component in 4.16.





Chapter 5

The minimal action in Birkhoff and
symplectic billiards

Abstract. In this chapter we study Birkhoff and symplectic billiards in the framework
of Aubry-Mather theory. This theory is concerned with the study of orbits of a monotone
twist map minimizing the action functional. In particular, we focus on the study of the
average minimal action (the so-called Mather’s β-function) and its properties for Birkhoff
and symplectic billiards.

5.1 Aubry-Mather theory
Aubry-Mather theory, developed independently by Serge Aubry and John Mather in the
Eighties, is concerned with the study of orbits of a monotone twist map minimizing the
action functional. We refer to [29, Chapter 1] for a detailed explanation on this topic.

Definition 5.1.1. Let a, b ∈ R ∪ {±∞}, a < b. A C1 diffeomorphism f : S1 × (a, b) →
S1 × (a, b) is a monotone twist map if its lift to the universal cover

f̃ : R× (a, b)→ R× (a, b)

(x0, y0) 7→ (x1, y1)

satisfies the following properties:

(i) f̃(x0 + 1, y0) = f̃(x0, y0) + (1, 0);

(ii) f̃ preserves orientation and the boundaries of R×(a, b), in the sense that y1(x0, y0)→
a, b as y0 → a, b;

(iii) if a or b are finite, then f̃ extends continuously to the boundary R × [a, b] by a
rotation: f̃(x, a) = (x+ ρ−, a) and f̃(x, b) = (x+ ρ+, b);

65



66 AUBRY-MATHER THEORY

(iv) f̃ satisfies a monotone twist condition

∂x1

∂y0
> 0; (5.1)

(v) f̃ is exact symplectic; there is a C2 1-periodic function h, called a generating
function for f̃ , such that

y1dx1 − y0dx0 = dh(x0, x1). (5.2)

The interval (ρ−, ρ+) is called the twist interval of f .

In particular, from (5.2) we have that{
y1 = ∂h

∂x1
(x0, x1)

y0 = − ∂h
∂x0

(x0, x1).
(5.3)

Denoting by ∂i the partial derivative of a function with respect to the i–th variable, it
follows that an orbit ((xi, yi))i∈Z of a monotone twist map is completely determined by
the sequence (xi)i∈Z via the relations

yi = ∂ih(xi−1, xi) = −∂ih(xi, xi + 1).

Similarly, an arbitrary sequence (xi)i∈Z corresponds to an orbit of a monotone twist map
f̃ if and only if

∂ih(xi−1, xi) + ∂ih(xi, xi+1) = 0.

Thus, orbits of a monotone twist map correspond to ‘critical points’ of the discrete action
functional

(xi)i∈Z 7→
∑
i∈Z

h(xi, xi+1) (5.4)

on RZ.
Aubry-Mather theory is concerned with the study of orbits that minimize this action
functional.

Definition 5.1.2. A sequence (xi)i∈Z is called minimal if every finite segment minimizes
the action with fixed end points, i.e, if

l−1∑
i=k

h(xi, xi+1) 6
l−1∑
i=k

h(ξi, ξi+1)

for all finite segments (ξk, . . . , ξl) ∈ Rl−k+1 with ξk = xk and ξl = xl.
In particular, each minimal sequence (xi)i∈Z corresponds to an orbit ((xi, yi))i∈Z of f ;
these are called minimal orbits of f .

We can associate to an orbit a rotation number defined as follows
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Definition 5.1.3. The rotation number of an orbit ((xi, yi))i∈Z is given by

πρ = lim
i→±∞

xi
i

if this limit exists.

The rotation number always exists for periodic orbits, i.e., orbits ((xi, yi))i∈Z with

xi+q = xi + p

for all i ∈ Z, where p, q are integers with q > 0. In order to have q as the minimal period
one assumes that p and q are relatively prime. Then the rotation number is given by

ρ =
p

q

Moreover, Birkoff proved that monotone twist maps possess periodic orbits for each
rational rotation number in their twist interval.

Theorem 5.1.4. Let f be a monotone twist map with twist interval (ρ−, ρ+). For any
rational number p/q ∈ (ρ−, ρ+) in lowest terms, f possesses at least two geometrically
distinct periodic orbits with rotation number p/q.

The main result of Aubry-Mather theory is the generalization of this result to orbits of
any given rotation number in the twist interval.

Theorem 5.1.5. A monotone twist maps possesses minimal orbits for every rotation
number in its twist interval (ρ−, ρ+). For rational numbers there are always at least two
periodic minimal orbits. Moreover, every minimal orbit lies on a Lipschitz graph over
the x-axis.

We now introduce the minimal average action (or Mather’s β function), which will
play a central role in our discussion.

Definition 5.1.6. The minimal action of a monotone twist map f with generating
function h is defined as the map β : (ρ−, ρ+)→ R such that

β(ρ) := lim
N→∞

1

2N

N−1∑
i=−N

h(xi, xi+1).

The minimimal average action contains information about the dynamics of the monotone
twist maps.
Here we list some properties:

(i) β is strictly convex and, hence, continuous (see[9]);

(ii) β is differentiable at all irrationals numbers (see [21]);
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(iii) β is differentiable at a rational p/q if and only if there exists an invariant circle
consisting of periodical minimal orbits of rotation number p/q (see [21]).

It follows from the convexity of β that the minimal average action possesses a convex
conjugate

α(c) := β∗(c) = sup
ρ∈(ρ−,ρ+)

(ρc− β(ρ)).

Since β is strictly convex, the supremum is actually a maximum, and the function α –
generally called Mather’s α-function– is a convex, real-valued function with α′(β′(ρ)) = ρ,
whenever β′(ρ) exists.

5.2 The minimal action in Birkhoff billiards
This section is concerned with the study of Mather’s β-function for Birkhoff billiards.
This function corresponds to the minimal average action of orbits with a given rotation
number and, at least for rational rotation number, it can be related to the maximal length
of periodic orbits with a given rotation number (the so-called marked length spectrum).
We study its main properties and provide explicit expressions of the coefficients of its
(formal) Taylor expansion at zero, only in terms of the curvature of the boundary.

Let D be a strictly convex planar domain with smooth boundary ∂D. An orbit
{xi}i∈Z of the Birkhoff billiard map T corresponds to a critical configuration of the
length functional

{xi}i∈Z 7→
∑
i∈Z

h(xi, xi+1)

where the generating function h is minus the Euclidean distance (see 1.1.5). Therefore,
the action of the orbit corresponds –up to a sign– to the length of the trajectory traced
by the ball on the billiard table D. Consequently, action minimization can be rephrased
in terms of length maximization.
An n-periodic orbit of the Birkhoff billiard map T is an n-gon P = (x1, . . . , xn) of
extremal length inscribed in the billiard curve.
Any periodic orbit admits a rotation number defined as follows

Definition 5.2.1. The rotation number of a billiard periodic orbit is the rational number

m

n
=

winding number
number of reflections

∈ (0,
1

2
]

where the winding number m is defined as follows. Fix the positive orientation of ∂D
and pick any reflection point of the periodic orbit on ∂D; then follow the trajectory and
measure how many times it goes around ∂D in the positive direction until it comes back
to the starting point.

Remark 5.2.2. Notice that, inverting the direction of motion, any periodic billiard
trajectory with rotation number m/n ∈ (0, 1/2] can be seen as one with rotation number
(n−m)/n ∈ [1/2, 1).
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Applied to Birkhoff billiards, Theorem 5.1.4 shows that for every m/n in lowest terms
there are at least two periodic orbits of rotation number m/n; one of them is an inscribed
n–gon with winding number m maximizing the total length amongst all such n–gons,
the other is obtained by min-max methods (see [6]).

Example 5.2.3. The ellipse is an example of Birkhoff billiard with exactly two 2-periodic
orbits (that is, with rotation numeber 1/2), which correspond to the two semi-axes of
the ellipse (see Example 1.3.8).
There are also cases of billiards with more than two periodic orbits for any given rotation
number. For example, in a circular billiard, due to the existence of a 1-dimensional
group of symmetries (rotations), there exists a 1-parameter family of periodic orbits for
any given rotation number m/n; for example, all diameters are 2-periodic orbits (see
Example 1.3.7).

Given these examples, a natural question that one could ask is whether the domain of a
Birkhoff billiard can be recover from the knowledge of periodic orbits and their length.
To get closer to the comprehension of this problem, we first define the length spectrum
and the marked length spectrum associated to a domain D.

Definition 5.2.4. The length spectrum of D is the set of multiples of the lengths of all
periodic orbits and multiples of the perimeter l(∂D) of the domain D

LD := N{lengths of periodic orbits in D} ∪ N l(∂D). (5.5)

Remark 5.2.5. The length spectrum LD of a strictly convex domain D is closely related
to the spectrum of the Laplace operator with Dirichlet boundary conditions{

∆u = λ2u inD
u|∂D = 0.

(5.6)

From the physical point of view, the eigenvalues λ are the eigenfrequencies of the mem-
brane D with a fixed boundary.
Let Spec∆(D) := {0 < λ1 6 λ2 6 . . . } be the Laplace spectrum of eigenvalues solving
this problem. The following theorem by K. Andersson and R. Melrose (see [2]) provides
the relation between length and Laplace spectra and it implies that, at least for generic
domains, one can recover the length spectrum from the Laplace one.

Theorem 5.2.6. Let D ∈ R2 be a strictly convex compact domain with smooth boundary
and let LD denote its length spectrum. Then, the wave trace

w(t) := Re
( ∑
λn∈Spec∆(D)

eiλnt
)

is well-defined as a distribution and smooth away from the length spectrum, that is

sing.supp.(w(t)) ⊆ ±LD ∪ {0}.
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So if l > 0 belongs to the singular support of this distribution, then there exists either a
closed billiard trajectory of length l, or a closed geodesic of length l in the boundary of
the billiard table.
The relation between periodic orbits and spectral properties of the domain immediately
recalls the famous question of Kak “Can you hear the shape of a drum? ” (see [16]).
More precisely, is it possible to recover information about the shape of a drumhead (i.e.,
a domain) from the sound it makes (i.e., the list of basic harmonics/ eigenvalues of
the Laplace operator with Dirichlet or Neumann boundary conditions)? In general, the
answer to this question is negative, but it is still an open and interesting problem if one
restricts the shape of the domain.

Definition 5.2.7. The marked length spectrum of D is the map

MLD : Q ∩ (0,
1

2
]→ R+ (5.7)

that associates to any rotation number m/n the maximal lenghts of periodic orbits with
rotation number m/n.

Due to the relation between action minimization and length maximization that we de-
scribed at the beginning of the section, periodic orbits of maximal length correspond to
minimal orbits of the length functional, and for any m/n ∈ (0, 1/2], the marked length
spectrum is essentialy Mather’s β-function

β(
m

n
) = − 1

n
MLD(

m

n
).

In [29, Chapter 3], the properties of Mather’s β-function and its conjugate Mather’s α-
function for Birkhoff billiards have been studied in depth. Here we recall some of the
most important, pointing out how some geometric properties of the domain D can be
express in terms of the β and α functions.

(i) β is strictly convex in [0, 1] and symmetric with respect to the point 1/2;

(ii) β is differentiable at m/n if and only if there exists a caustic of rotation number
m/n;

(iii) if Γρ is a caustic with rotation number ρ ∈ (0, 1/2], then β is differentiable at ρ
and β′(ρ) = −length(Γρ) =: −|Γρ|. In particular, β is always differentiable at 0
and β′(0) = −l(∂D);

(iv) given a caustic Γρ of rotation number ρ ∈ (0, 1/2], the Lazutkin parameter of Γρ
is defined as

Q(Γρ) := |A− P |+ |P −B| − |AB|
where P is any point on ∂D, A,B ∈ Γρ are the points of tangency of Γρ seen from
P and |AB| denotes the length of the arc on the caustic joining A to B.
This quantity is connected to the value of the α-function

Q(Γρ) = α(β′(ρ)) = α(−|Γρ|).
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Next theorem provides explcit expressions for the Taylor expansions of Mather’s β and α
functions, respectively at ρ = 0 and c = −l0, where l0 denotes the length of the boundary
∂D (see [30, Theorem 1.3]). In particular, the coefficients of these expressions are only
in terms of the curvature of the boundary.

Theorem 5.2.8. Let D be a strictly convex domain in R2 with smooth boundary. Denote
by k(t) the curvature of ∂D with arc-length parametrization t. Let l0 := |∂D| be the length
of the boundary and denote

I1 :=

∫ l0

0
dt = l0

I3 :=

∫ l0

0
k2/3dt

I5 :=

∫ l0

0

(
9 k4/3 +

8 k̇2

k8/3

)
dt

I7 :=

∫ l0

0

(
9 k2 +

24 k̇2

k2
+

24 k̈2

k4
− 144 k̇2 k̈

k5
+

176 k̇4

k6

)
dt

I9 :=

∫ l0

0

(
281

44800
k8/3 +

281 k̇2

8400 k4/3
+

167 k̈2

4200 k10/3
− 167 k̇2 k̈

700 k13/3
+

...
k

2

42 k16/3
+

559 k̇4

2100 k16/3

− 473 k̈3

4725 k19/3
− 10

...
k k̈ k̇

21 k19/3
+

5
...
k k̇3

7 k22/3
+

13142 k̇2 k̈2

4725 k22/3
− 10777 k̇4 k̈

1575 k25/3
+

521897 k̇6

127575 k28/3

)
dt

Then

• the formal Taylor expansion of β at ω = 0, β(ω) ∼
∑∞

k=0 βk
ωk

k! , has coefficients:

β2k = 0 for all k
β1 = −I1

β3 =
1

4
I3

3

β5 = − 1

144
I4

3 I5

β7 =
1

320
I5

3

(
14

81
I2

5 − I3 I7

)
β9 = −7 I6

3

(
I2

3 I9 −
1

5600
I3 I5 I7 +

7

583200
I3

5

)
;

• the (formal) Taylor expansion of (c+l0)−3/2α(c) at c = −l0 (note that α has in fact
a square-root type singularity at the boundary), (c+ l0)−3/2α(c) ∼

∑∞
k=0 αk

(c+l0)k

k! ,
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has coefficients:

α0 =
4
√

2

3
I−3/2

3

α1 =

√
2

135
I−7/2

3 I5

α2 =
1

56700
√

2

(
72 I3 I7 + 7 I2

5

I11/2
3

)
α3 =

1

826686000
√

2

(
261273600 I2

3 I9 + 21384 I3 I5 I7 + 1001 I3
5

I15/2
3

)
.

A direct consequence of this theorem is the following

Corollary 5.2.9. Let D be a strictly convex domain in R2 with smooth boundary. Then

β3 + π2β1 6 0

and equality holds if and only if D is a disc.

Proof. The proof follows from the expressions of β1 and β3 found in Theorem 5.2.8

β1 = −I1 β3 =
1

4
I3

3 .

Indeed, it follows that
β3 + π2β1 6 0 ⇒ I3

3 − 4π2I1 6 0.

Using Hölder inequality (with p = 3
2 and q = 3)

I3 =

∫ l0

0
k2/3ds

6

(∫ l0

0
(k2/3)3/2ds

)2/3(∫ l0

0
13ds

)1/3

= (2π)2/3l
1/3
0

= (4π2I1)1/3.

Moreover, equality holds if and only if it holds in Hölder inequality. This means that k
must be constant (and strictly positive) and therefore, the curve must be a circle.

It is clear from the corollary above, that the Mather’s β-function univocally determines
discs amongst all possible Birkhoff billiards.
A similar result for elliptic billiards has not been discovered yet. However, Mather’s
β-function determines univocally a given ellipse in the family of all ellipses (see [30,
Proposition 1]).
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Proposition 5.2.10. If E1 and E2 are two ellipses such that βE1 ≡ βE2, then E1 and
E2 are the same ellipse. More generally, if the Taylor coefficients βE1,1,≡ βE2,1 and
βE1,3,≡ βE2,3, then the same conclusion remains true.

In the next example we determine Mather’s β-function for circular billiards.

Example 5.2.11. Let D be a disc of radius R. As we have seen in Example 1.3.7, the
angle of reflection ϕ ∈ (0, π/2] remains constant along an orbit. In particular, if the orbit
has rotation number ρ ∈ (0, 1

2 ], then ϕ = πρ.
Therefore, the segment joining two consecutive collision points has always length 2R sin(πρ),
and from the Deefinition 5.1.6 of β, it follows that

β(ρ) = − lim
N→∞

1

2N

N−1∑
i=−N

2R sin(πρ) = −2R sin(πρ).

Its Taylor expansion is

β(ρ) = −2R sin(πρ)

= −2Rπρ+
1

3!
(2Rπ3)ρ3 − 1

5!
(2Rπ5)ρ5 +

1

7!
(2Rπ7)ρ7 − 1

9!
(2Rπ9)ρ9 +O(ρ11)

Recalling that the curvature is k ≡ 1
R and the length of the billiard curve is l0 = 2πR,

the invariants of Theorem 5.2.8 are

I1 = 2πR

I3 = 2πR1/3

I5 = 18πR−1/3

I7 = 18πR−1

I9 =
281

22400
πR−5/3.

Substituting these values in the expressions of Taylor expansion’s coefficients of Mather’s
β-function, one can check that they match with (5.2.11).

Mather’s β-function plays a crucial role in the comprehension of different rigidity
phenomena that appear in the study of convex billiards. Moreover, some open questions
and conjectures can be rephrased in terms of this function.
For example, because of the relation between the differentiability properties of Mather’s
β-function at rational rotation numbers and the existence of invariant circles consisting
of periodic points, Birkhoff conjecture 1.4 can be rephrased as

Conjecture (Birkhoff revisited). Let D be a strictly convex planar domain with
smooth boundary and assume that βD is differentiable in [0, 1/2). Is it true that D
is an ellipse?
More generally, if βD is differentiable in [0, ε) for some small 0 < ε < 1/2, is it true that
D is an ellipse?
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Observe that if βD is C∞([0, ε)), then the billiard map is locally integrable near the
boundary. Indeed, βD will be differentiable at all rationals in (0, ε) and therefore there
will be caustics corresponding to these rotation number. By semi-continuity arguments,
one obtains caustics corresponding to irrational rotation number and hence a family of
caustics that foliate a neighbourhood of the boundary.
Another open question that one can reformulate in terms of Mather’s β-function is the
one concerning the spectral rigidity of the domain (see [13] for more details)

Question (Marked length spectrum rigidity). Let D1 and D2 be two strictly con-
vex planar domains with smooth boundaries and assume that they are isospectral, i.e.,
MLD1 ≡MLD2. Is it true that D1 and D2 are isometric?
More generally, ifMLD1(ρ) ≡MLD2(ρ) for all m/n ∈ Q ∩ [0, ε) for some 0 < ε 6 1/2,
is it true that D1 and D2 are isometric?

In terms of Mather’s β-function, this question can be rewritten as

Question (Marked length spectrum rigidity revisted). Let D1 and D2 be two
strictly convex planar domains with smooth boundaries and assume that βD1 ≡ βD2. Is
it true that D1 and D2 are isometric?
More generally, if βD1(ρ) ≡ βD2(ρ) for all ρ ∈ (0, ε) for some small ε > 0, is it true that
D1 and D2 are isometric?

5.3 The minimal action in symplectic billiards
In this section we address the topic of minimal action in symplectic billiards. Similarly
to the Birkhoff case, Mather’s β-function, at least for rational rotation number, can be
related to the maximal area of periodic orbits with a given rotation number (the so-
called marked area spectrum). In particular, we give explicit expressions of the Taylor
expansion at 0 of Mather’s β-function for symplectic billiards in the circle and the ellipse.

Let γ be a smooth, strictly convex, closed curve in R2. The generating function S
of the symplectic billiard map φ is the standard area form ω. With such a generating
function, the symplectic billiard map φ turns out to be a negative monotone twist map
(see Proposition 2.4.2).
If we consider as a generating function minus the standard area form ω, that is

S(x, y) = −ω(x, y)

for any (x, y) ∈ P, the results from Chapter 2 remain essentialy the same, but the sym-
plectic billiard map becomes a positive monotone twist map.
In the sequel, to stay in the assumptions of Aubry-Mather theory (so, with a positive
monotone twist map, see Definition 5.1.1), we will work with minus the standard area
form as the generating function.
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A periodic orbit {xi}ni=1 of the symplectic billiard map φ corresponds to a critical con-
figuration of the area functional

{xi}ni=1 7→ −
n−1∑
i=1

ω(xi, xi+1).

Observe that ω(xi, xi+1) > 0 in the phase space P. Thus, the action of the orbit coincides
–up to a factor −2– with the area enclosed by the trajectory traced by the ball on the
billiard table.
Consequently, an n-periodic orbit {xi}ni=1 corresponds to an n-gon P = (x1, . . . , xn) of
extremal area inscribed in the billiard curve.
In particular, given this relation between action and area, minimizing the action func-
tional is equivalent to maximizing the area enclosed by the orbit.
Note that the role played by the Euclidean length h in Birkhoff billiards is here played
by the standard area form ω. This induces us to define the area spectrum and marked
area spectrum associated to a symplectic billiard in a similar way to how we defined
length spectrum and marked length spectrum for Birkhoff billiards (see Definitions 5.2.4
and 5.2.7).
The rotation number associated to a symplectic periodic orbit is defined in the same
way as the rotation number for Birkhoff periodic orbit (see Definition 5.2.1), i.e., as the
rational number

m

n
=

winding number
number of reflections

∈ (0,
1

2
],

where, once fixed the positive orientation of the symplectic billiard curve γ, the winding
number m is the number of times the trajectory goes around γ in the positive direction
until it comes back to the starting point.

Remark 5.3.1. If x is the starting point of a φ-periodic orbit, due to the definition of
the phase space P, the next reflection point y must be between x and its opposite point
x∗. Then, the maximal number of rotation is 1/2, which corresponds to the case y = x∗.
Unlike Birkhoff billiards, where, inverting the direction of motion, for any periodic orbit
of rotation number m/n ∈ (0, 1/2] we obtain an equivalent orbit of rotation number
(n−m)/n ∈ [1/2, 1), in the symplectic case inverting the direction of motion we obtain
an orbit for the negative phase space P−.

We define the area spectrum and the marked area spectrum associated to the symplectic
billiard in γ. Let D be the billiard table enclosed by γ.

Definition 5.3.2. The area spectrum of D is the set of multiples of the areas of all
periodic orbits and multiples of the area A(∂D) of the domain D

AD := N{area of periodic orbits in D} ∪ NA(∂D). (5.8)

Definition 5.3.3. The marked area spectrum of D is the map

MAD : Q ∩ (0,
1

2
]→ R+ (5.9)
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that associates to any rotation number m/n the maximal area of the periodic orbits with
rotation number m/n.

As we have pointed out at the beginning of the section, periodic orbits of maximal area
correspond to minimal orbits of the action functional. Therefore, for any m/n ∈ (0, 1/2],
the marked area spectrum corresponds to the Mather’s β-function for symplectic billiards

β(
m

n
) = − 2

n
MAD(

m

n
). (5.10)

Let now An := MAD(m/n) be the maximal area of the periodic orbits with rotation
numberm/n. The following theorem provides an asymptotic expansion for An as n→∞.

Theorem 5.3.4. Let γ be a smooth, strictly convex, closed curve in R2, parametrized
by affine arc-length s. Denote by L =

∫
γ ds the total affine length and by κ(s) the affine

curvature.
Let An be the maximal area of the periodic orbits of the symplectic billiard map φ with
rotation number m/n.
The asymptotic expansion of An for n→∞ is given by

An ∼ a0 +
a1

n2
+
a2

n4
+
a3

n6
+ . . . (5.11)

where

(i) a0 is the area of the billiard table enclosed by γ,

(ii) a1 = L3

12 ,

(iii) a2 = − L4

240

∫ L
0 κ(s)ds

The asymptotic expansion of An is due to the theory of interpolating Hamiltonians.
Applied to symplectic billiards, this theory implies that the symplectic billiard map φ
equals an integrable symplectic map, the time-one map of a Hamiltonian vector field,
composed with a smooth symplectic map that fixes the boundary of the phase space
point-wise to all orders, see [[20], [24]]. The coefficients a1, a2 were respectively found
in [[23], [19]].

Remark 5.3.5. The length spectrum of the billiard problem is closely related to the
spectrum of the Laplace operator with Dirichlet or Neumann boundary conditions on
the billiard curve (see Remark 5.2.5).
An interesting open question is whether the area spectrum od symplectic billiards is
related to the spectrum of some differential operator. Notice that such an operator, if it
exists, must be invariant under area-preserving affine transformations

Next corollary is an immediate consequence of the affine isoperimetric inequality (see [28,
Section 4]), that we recall here below for reader’s convenience.
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Lemma 5.3.6. Given a strictly convex close curve parametrized by affine arc-length s,
let L be its total affine length and A the area enclosed by the curve. The next inequality
holds

L3 6 8π2A (5.12)

with equivalence only for ellipses.

Corollary 5.3.7. Let D be a strictly convex planar domain with smooth boundary. Then

3a1 6 2π2a0

and equality holds if and only if D is an ellipse.

Proof. The expressions of the coefficients a0, a1 imply that

a0 = A L3 = 12a1.

Substituting into the affine isoperimetric inequality 5.12, we obtain the desired result.

The next examples provide explicit expressions of the Taylor expansion at ρ = 0 of
Mather’s β-function for symplectic billiards in the circle and the ellipse.

Example 5.3.8. Let D be a disc of radius R. As we have seen in Section 2.5, the
dynamics of the symplectic billiard in D is the same as the one of the Birkhoff billiard
in the disc, that is, the rotation of angle α ∈ (0, π].
Therefore, for an orbit of rotation number ρ ∈ (0, 1/2], it follows that α = 2πρ. Moreover,
the standard area form is constant along the orbit and, if x, y are two consecutive collision
points, it equals twice the area of the triangle xOy

ω(x, y) = 2A(xOy).

Figure 5.1: The area A(xOy)
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The area of the triangle xOy is given by (see Figure 5.1)

A(xOy) =
1

2
(2R sin

α

2
)(R cos

α

2
)

=
R2

2
(2 sin

α

2
cos

α

2
)

=
R2

2
sinα

=
R2

2
sin(2πρ).

Thus,
ω(x, y) = 2A(xOy) = R2 sin(2πρ).

From the Definition 5.1.6 of Mather’s β-function, it follows

β(ρ) = − lim
N→∞

1

2N

N−1∑
i=−N

R2 sin(2πρ) = −R2 sin(2πρ).

and therefore, its Taylor expansion at ρ = 0 is

β(ρ) = −R2 sin(2πρ)

= −2R2πρ+
1

3!
(8R2π3)ρ3 − 1

5!
(32R2π5)ρ5 +O(ρ7).

(5.13)

The coefficients a0, a1, a2 of the asymptotic expansion (5.11) of An in the case of the
circle correspond, up to a factor, to the first three coefficients β0, β1, β2 of the Taylor
expansion of Mather’s β-function.
Indeed, by the affine isoperimetric inequality (5.12), it follows that

L3 = 8π2A = 8π2(πR2) = 8π3R2 ⇒ L = 2πR2/3.

Moreover, the affine curvature of the circle is κ = R−4/3 (see [28, p. 89]), and therefore∫ L

0
κ(s)ds =

∫ 2πR2/3

0
R−4/3ds = R−4/3

∫ 2πR2/3

0
ds = 2πR−2/3.

Therefore, the coefficients a0, a1, a2 are given by

a0 = πR2 = −1

2
β0

a1 =
L3

12
=

8

12
π3R2 =

2

3
π3R2 =

1

2
β1

a2 = − L4

240

∫ L

0
κ(s)ds = − 1

240
(2πR2/3)4(2πR−2/3) = − 2

15
π5R2 =

1

2
β2.
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Example 5.3.9. Mather’s β-function for symplectic billiard in the ellipse follows easily
from the one for the symplectic billiard in the circle.
Consider the affine transformation(

x̃1

x̃2

)
= f

(
x1

x2

)
=

(
a/R 0

0 b/R

)(
x1

x2

)
=

1

R

(
ax1

bx2

)
that maps the circle of equation x2

1 +x2
2 = R2 to the ellipse of equation x̃2

1
a2 +

x̃2
2
b2

= 1. Let
L be the matrix representing such affine transformation.
The standard area form between two collision points in the circle, ω(x, y) = R2 sin(2πρ),
is mapped by this affine transformation to

ω̃(x̃, ỹ) = ω̃(Lx,Ly)

= det(L)ω(x, y)

=
ab

R2
R2 sin(2πρ)

= ab sin(2πρ).

Therefore, the Mather’s β-function for the ellipse is given by

βellipse(ρ) = det(L)βdisk(ρ) = −ab sin(2πρ).

Its Taylor expansion at ρ = 0 is

β(ρ) = −ab sin(2πρ)

= −2abπρ+
1

3!
(8abπ3)ρ3 − 1

5!
(32abπ5)ρ5 +O(ρ7).

(5.14)

The coefficients a0, a1, a2 of the asymptotic expansion of An for the ellipse can be compute
in a similar way to the ones of the circle. The only differences are that the area A of the
ellipse is πab and the affine curvature is κ = (ab)−2/3. Therefore,

a0 = πab = −1

2
β0

a1 =
L3

12
=

2

3
π3ab =

1

2
β1

a2 = − L4

240

∫ L

0
κ(s)ds =

2

15
π5ab =

1

2
β2

and they correspond, up to a factor, to the first three coefficients β0, β1, β2 of the Taylor
expansion of Mather’s β-function.

Remark 5.3.10. The fact that the first coefficients of the Taylor expansions of Mather’s
β-function for the circular and elliptic symplectic billiards are essentialy the same as
the coefficients of the asymptotic expansion of An is clearly due to the relation (5.10)
between the marked area spectrum and the β-function. Thus, this correspondence hold
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for a generic β-function.
In particular, we observe that these coefficients depend only on the area of the billiard
table and the affine total length and affine curvature of the symplectic billiard curve,
which are invariant for affine special transformation. This reminds us of the affine plane
curve evolution, see [28]. According to this evolution, a closed convex curve evolves
converging to an ellipse. Moreover, the evolution equation of area, total affine length
and affine curvature were found in [28, Section 6].
Since the only integrable symplectic billiards known are the circle and the ellipse, an idea
could be to study integrability in relation to the affine evolution of the Taylor expansion’s
coefficients of Mather’s β-function.
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