
Università degli Studi di Padova

Department of Ingegneria dell’Informazione

Master Thesis in Ingegneria Informatica

On the use of Silhouette for cost based clustering

Supervisor Master Candidate
Dott. Fabio Vandin Marco Sansoni
Università di Padova

ii

Abstract

Clustering plays a fundamental role in Machine Learning. With clustering we refer to the
problem of finding coherent groups in a dataset of elements. There are several algorithms
to perform clustering that have been proposed in the literature, considering different costs
for the optimization problems they consider. In this thesis we study the problem of cluster-
ing when the cost function is the silhouette coefficient, an index traditionally used for the
internal validation of the results oof clustering algorithms. In particular, we propose and
analyze some heuristic algorithms to identify the clustering maximizing the silhouette value,
and compare their results with the results from some widely used clustering algorithms.

v

vi

Contents

Abstract v

List of figures ix

List of tables xi

1 Introduction 1

2 Background 3
2.1 Point and Distances . 3
2.2 Euclidean Distance . 4
2.3 Jaccard Distance . 5
2.4 Edit Distance . 6
2.5 Hamming Distance . 6
2.6 Clustering . 7
2.7 K-Means . 9

2.7.1 K-Means ++ . 11
2.8 K-Medoid . 13
2.9 Clustering Validation . 15

3 Related Work 21
3.1 An Immune Network Algorithm for Optimization 21
3.2 Evolutionary Algorithm for Clustering 22
3.3 Soft-Silhouette . 23

4 Goal 25

5 Algorithm for Clustering using Silhouette as cost 27
5.1 Brute Force Approach . 27

5.1.1 Description of the Approach . 27
5.1.2 Code . 28
5.1.3 Complexity and Correctness . 29

5.2 Extending K-Means . 35
5.2.1 Description of the Approach . 35
5.2.2 Pseudo Code . 35
5.2.3 Choice of Parameter . 40

vii

5.2.4 Complexity and Correctness . 41
5.2.5 Improvement . 45

5.3 PAMSILHOUETTE . 48
5.3.1 Description of the Approach . 48
5.3.2 Initial Seeding Technique for Partitioning Around Medoid Algo-

rithm: BUILD . 49
5.3.3 Pseudo Code . 52
5.3.4 Choice of Parameters . 54
5.3.5 Complexity and Correctness . 55

5.4 ExtendePAM . 58
5.4.1 Description of the Approach . 58
5.4.2 Pseudo Code . 58
5.4.3 Complexity and Correctness . 60

5.5 Improved version of extendePAM, extendePAMv2 63
5.5.1 Complexity and Correctness . 64

6 Experimental evaluation 67
6.1 Dataset . 67
6.2 Implementation . 71
6.3 Comparison of commonly used Clustering Algorithms 72
6.4 Brute Force Approach . 75
6.5 Extende K-Means and Improved version 77

6.5.1 Reduced Dataset . 77
6.5.2 Complete Dataset . 80

6.6 PAMSILHOUETTE . 83
6.6.1 Reduced Dataset . 84
6.6.2 Complete Dataset . 84

6.7 extendePAM . 85
6.7.1 Reduced Dataset . 85
6.7.2 Complete Dataset . 87

7 Conclusion 91

References 94

viii

Listing of figures

2.1 Jaccard Distance is 5/8. Taken from [1]. 5
2.2 Dendogram representing Hierarchical Clustering. Taken from [1]. 9
2.3 Bad initial seeding. Taken from [2]. 11
2.4 K-medoids versus K-means. Taken from [3]. 14
2.5 Elbow Method. Taken from [4]. 17

6.1 Iris Dataset. Each plot shows distribution of the sample filtering for only 2
features. Taken from [5]. 68

6.2 Reduced Iris dataset. 1,2 and 3 is used to labelling three classes of iris 69
6.3 Reduced Breast CancerWisconsinData Set. 2 and 4 is used to labelling two

kinds of cancer, benign or malignant . 70
6.4 Reduced banknote authentication dataset. 0 and 1 is used to labelling two

different classes of banknote . 71
6.5 Histogram of Average Silhouette value on Iris Dataset from most famous

clustering algorithm . 73
6.6 HistogramofmaximumSilhouette value on IrisDataset frommost famous

clustering algorithm . 74
6.7 Histogram of Silhouette value and time required in seconds for execution

of bruteForce on Reduced Iris Dataset 76
6.8 Histogram of Silhouette value and time required in seconds for execution

of bruteForce on Reduced Breast Cancer Dataset 78
6.9 Histogram of Silhouette value and time required in seconds for execution

of bruteForce on Reduced Banknote Dataset 79
6.10 Histogramof incrementof Silhouette valueobtained forextendeKMeans

and extendeKMeansv2 algorithm related to k −Means results. Line
refers to time required in seconds for termination of the algorithm. Algo-
rithms are applied on Iris Dataset . 81

6.11 Histogramof incrementof Silhouette valueobtained forextendeKMeans
and extendeKMeansv2 algorithm related to k −Means results. Line
refers to time required in seconds for termination of the algorithm. Algo-
rithms are applied on Breast Cancer Dataset 82

6.12 Histogramof incrementof Silhouette valueobtained forextendeKMeans
and extendeKMeansv2 algorithm related to k −Means results. Line
refers to time required in seconds for termination of the algorithm. Algo-
rithms are applied on Breast Cancer Dataset 83

ix

7.1 Comparison of the maximum value of Silhouette achieved from all the al-
gorithm involved into this thesis on Iris Dataset 91

7.2 Comparison of the maximum value of Silhouette achieved from all the al-
gorithm involved into this thesis on Breast Cancer Dataset 92

7.3 Comparison of the maximum value of Silhouette achieved from all the al-
gorithm involved into this thesis on Banknote Dataset 93

x

Listing of tables

6.1 Comparison of Average Silhouette value on Iris Dataset frommost famous
clustering algorithm . 73

6.2 Comparison of maximum Silhouette value on Iris Dataset from most fa-
mous clustering algorithm . 74

6.3 Silhouette Results performed from BruteForce algorithm on reduced ver-
sion of Dataset . 76

6.4 Evaluation of time required and number of k-subsets for each number of
cluster performed on Reduced version of Iris Dataset 77

6.5 Evaluationof silhouette valueobtained after executionofextendeKmeans
and its improved version on reduced Iris Dataset 77

6.6 Evaluationof silhouette valueobtained after executionofextendeKmeans
and its improved version on reduced Breast Cancer Dataset 79

6.7 Evaluation of silhouette value obtained after execution of extendeKMeans
and its improved version on reduced Banknote Dataset 80

6.8 Results of silhouette and time required after executionofKMeans, extendeKMeans
and extendeKMeansv2 on Iris Dataset 80

6.9 Results of silhouette and time required after executionofKMeans, extendeKMeans
and extendeKMeansv2 on Breast Cancer Dataset 82

6.10 Results of silhouette and time required after executionofKMeans, extendeKMeans
and extendeKMeansv2 on Banknote Dataset 83

6.11 Silhouette value obtained after application of PAMSILHOUETTE al-
gorithm on reduced version of Dataset 84

6.12 Silhouette value obtained after application of PAMSILHOUETTE al-
gorithm on complete version of Dataset 85

6.13 Time in seconds required for application ofPAMSILHOUETTE algo-
rithm on complete version of Dataset . 85

6.14 Evaluation of Silhouette value obtained after execution of extendePAM
and its improved version on reduced Iris Dataset 86

6.15 Evaluation of Silhouette value obtained after execution of extendePAM
and its improved version on reduced Breast Cancer Dataset 87

6.16 Evaluation of Silhouette value obtained after execution of extendePAM
and its improved version on reduced Banknote Dataset 87

6.17 Results of silhouette and time in seconds required after execution ofPAM ,
extendePAM and extendePAMv2 on Iris Dataset 88

xi

6.18 Results of silhouette and time in seconds required after execution ofPAM ,
extendePAM and extendePAMv2 on Breast Cancer Dataset 88

6.19 Results of silhouette and time in seconds required after execution ofPAM ,
extendePAM and extendePAMv2 on Banknote Dataset 89

xii

1
Introduction

One of the biggest challenges in Machine learning and Data Mining is the detection, classi-
fication and validation of cluster. Although there is no single consensus on the definition
of a cluster, the clustering procedure can be characterised as the organisation of data into a
finite set of categories by abstracting their underlying structure, grouping object in a single
partition to describe data according to a similarities or relationship among its object. Clus-
tering could find an usage for several applications, such as identification of customer profile,
anomaly detection and market segmentation. A difficulty common to many clustering tech-
niques is that they may need to provide a − priori number of k different clusters in the
database. This constraint makes algorithms less powerful and efficient, because they require
a domain knowledge for tuning the parameter that fits the data. The lack of a common def-
inition of cluster makes it a widely studied subject, with the presence in literature of many
different approaches to the clustering problem. Each technique is characterised by a different
metric to allocate the data into relative clusters, each one producing different results. Even
the application of the same method may generate, as output, different clusters for each ex-
ecution of the algorithm. This poses difficulties to users, who not only have to select the
clustering algorithm best suited for a particular task, but also have to properly tune its pa-
rameters. Such choices are related to clustering validation, another widely researched topics
in clustering literature. A common approach to evaluate a quality of a cluster is by the usage
of internal criteria. These measures provide a metric of clustering inspecting only the intrin-
sic information available in the data. Many different criteria have been proposed in literature,

1

however the majority of them are based on the idea of computing the ratio of within-cluster
scattering (compactness) to between cluster separation[6]. In this thesis it will be presented
some new algorithms for the clustering problem. First of all, we provide a brief overview of
the background knowledge required for a later analysis of the content available in the the-
sis. We highlight the main approach used nowadays for clustering, inspecting some critical
aspects for each of them. Furthermore, methods of cluster validation are presented. We refer
to them as a tool to evaluate the goodness of a clustering algorithm. Even if it is possible to
detect many of them employed into a real scenario, we will focus on the details of a specific
statistics, Silhouette. According to its definitionwe propose some implementations of a clus-
tering technique that aims to itsmaximisation. For the developing of this specific taskwewill
present several approaches, described into chapter 5. Each algorithm is evaluated analysing
pro and cons, with an emphasis on the complexity of the algorithm. In chapter 6 we de-
scribe all the experimental results obtained on the application of previous algorithms on 3
dataset, with different number of samples and features. We conclude this thesis with a brief
discussion regarding the effectiveness of the algorithm presented compared with the most
used clustering algorithm.

2

2
Background

In the current section we are going to define the basics of clustering, starting with the def-
inition of distance between points, to conclude with the main approach of clustering and
commonly used measure for validation.

2.1 Point and Distances

Domain of any clustering problem is a set of finite pointsX . Considering the common case
of the Euclidean space we define a point as xi ∈ X . Each one has associated a vector of
real values, which components are commonly called coordinates of the represented points.
Besides the definition of a point it is necessary to provide a definition of distance, in fact it
can be employed to represent a similarity or dissimilarity between points.
Given a set of pointX and x, y ∈ X , a distance measure between them is represented by
d(x, y). It has to produce a number as output and it follows the following axioms:

- d(x, y) > 0: distance cannot be negative.

- d(x, y) = 0 if and only if x = y: distance is zero if and only if we consider distance
from a point to itself.

- d(x, z) > d(x, y) + d(y, z), with z ∈ X : distance measure must follow triangle
inequality.

3

All the following distance measures need to accomplish the previous property. We pro-
vide a short explanation of the main measure distance suitable for an Euclidean Space. It is
also relevant to show some other possible distance measure for non Euclidean Space. The
following sections mention about the most significant and each of them are suitable for a
specific purposes.

2.2 Euclidean Distance

The most known distance measure is the most intuitively and simple approach. We assume
n-dimensional points, represented by a vectorx = [x1, x2, . . . , xn]. Euclideandistance, also
refer as L2-norm, is defined as:

d(x, y) = d([x1, x2, . . . , xn], [y1, y2, . . . , yn]) =

√√√√ n∑
i=1

(xi − yi)2 (2.1)

Euclidean distance is computed summing up the square root of difference in each dimension,
and finally take the positive square root. It is necessary to show that the requirements for a
distance are satisfied. In fact, theL2-norm is always positive, as result of positive square root.
Then, (xi − yi)

2 is positive if we can get an occurrence xi ̸= yi that force the sum to be
strictly positive. On the other hand, only if xi = yi ∀i produces a distance equal to 0.
Last axiom requires to deal with some maths for the proof. However, we can notice that it
is a well-known property of Euclidean space. It reminds that the length of the third side of a
triangle cannot be longer of the sum of the other two sides.
From the definition of the L2-norm, we can define the Lr-norm on Euclidean Space, gener-
alizing (2.1) for any constant r. It is defined by:

d(x, y) = d([x1, x2, . . . , xn], [y1, y2, . . . , yn]) = (
n∑
i=1

|xi − yi|r)1/r (2.2)

The case r = 2 is the usualL2-normmentioned above. Another relevant distancemeasure is
when r = 1, it is calledL1-norm orManhattan Distance. It is a measure of the distance that
we get travelling from a point to another following grid lines, as the streets of Manhattan.
Another important distance is the limit to infinity of 2.2, when r approaches to+∞. It has
been called L∞-norm. Effectively, it can be computed as maximum value of |xi − yi| ∀i.

4

2.3 Jaccard Distance

Jaccard Distance is a measure useful when we have to deal with sets. In fact, given two sets x
and y, it is defined by:

d(x, y) = 1− x ∩ y
x ∪ y

(2.3)

Figure 2.1 shows us a possible instance of the sets, for a better comprehension through visu-
alisation. We must now verify the requirements for each distance function.

Figure 2.1: Jaccard Distance is 5/8. Taken from [1].

1. Distance is non negative since the intersection of two sets cannot be bigger than the
union.

2. d(x, y) = 0 if and only if x = y, because to achieve this result we get an intersection
equal to the union of two sets, available only when x = y. Hence, x ∪ y = x ∩ y =
x = y. On the other hand, if x ̸= y, intersection will always be strictly lower than
union.

3. As in the previous section, related to Euclidean distance, proof of triangle inequality
requires to deal with a lot of maths. In this thesis the verification will be omitted since
it is not relevant for the further developing. In literature there are many proofs of the

5

triangle inequality related to Jaccard Distance. For instance, a concise proof can be
found in [1].

2.4 Edit Distance

This distance is defined for strings. Given two strings x = x1x2 . . . xn and y = y1y2 . . . yn,
an informal definition of this measure is the number of insertions or deletion of single char-
acters that will convert x into y.
For instance, Edit distance between x = abcde and y = acfdeg is 3, since we need to:

1. Delete b.

2. Insert f after c.

3. Insert g after e.

Another way for the computing of this distance is by the usage of Longest Common Sub-
string(LCS) of x and y. Once we perform the LCS we can define the Edit Distance as:

d(x, y) = |x|+ |y| − 2LCS(x, y) (2.4)

Surely no Edit Distance can be negative and only two identical strings can have EditDistance
equal to 0. An idea of the proof of the triangle inequality applied to Edit Distance is to note
that for converting a string s into a string t we need to turn first into u, and then from u to
t. Hence, number of operations done to turn s into t cannot be less than the sum made to
convert s in u and finally u in t.

2.5 Hamming Distance

Given a space of vectors, theHammingDistance between two vectors is the number of com-
ponents in which they differ. It has a wide appliance related to distance between vector of
Boolean, composed only by 1’s and 0’s. For the sake of completeness, an example is provided.
Given v1 = 10001 and v2 = 10111, counting from the right we get that the second and
third occurrence are different. So, the Hamming Distance is 2.
The first two requirements are immediately verified, in fact the distance cannot be negative

6

and it can be equal to 0 only if the vector has the same occurrences, hence the vectors are
identical.
As all the others distance measure, Hamming Distance requires more maths, but it should
be obvious that it satisfies the triangle inequality. If the distance between a vector x and z
are ofm components, and z and y differ in n components, it cannot be that x and y differ
in more thanm+ n components.

2.6 Clustering

Recalling the introductory section, a cluster is an organisation of data into a finite set of cate-
gories. Since the definition has not a clear and unique value, different clustering algorithms
can produce a different division of the points. Hence, we can exploit several approaches of
clustering, and we classify algorithms into two main categories, that follow different strate-
gies.

1. Hierarchical or agglomerative
Algorithms start with each point into a specific cluster. Then, according to the dis-
tancemeasure employed, two cluster ”close” are fused into a new cluster. This process
is iterated over and over until a convergence criteria stops the algorithm.
Criteria that can force the conclusion of the algorithm can be several, for instance if we
achieve a number of cluster selected a priori, or if the distance between nearest cluster
is over a certain threshold. We can also refuse to merge different clusters that lead to
point of a single cluster spread in a large region. Once we define the distance measure
in the space and stopping criteria S, algorithm can be briefly described by Algorithm
2.1.
Into Algorithm 2.1 we describe the common algorithm for all the hierarchical cluster-
ing approaches. It is executed until S forces termination of the algorithm. Examples
of S could be if minimum distance between cluster decreases below a given threshold
or if we reach the desired number of clusters. At each iteration of the while loop, two
clusters are elected to be merged. Decision of which cluster merge is up to specific
linkage criteria of algorithm chosen. Lines 8 and 9mean that the sample belonging to
the cluster tomerge are inserted into a new clusterCl, common for both samples, and
previous clusters are deleted.
Finally, we can describe the process done by the algorithm with the tree in Figure 1.2
showing the complete grouping of points.
For the proper functioning of the algorithm is important to define also linkage func-
tion between two clusters, in order to detect the elected ones to bemerged. According
to the choice, result may vary. Linkage are defined according to proximity measure
among clusters[7]. Principal approaches are:

7

Algorithm 2.1 Hierarchical Clustering
1: Input
2: X dataset
3: S stopping criteria chosen for hierarchical clustering
4: Output
5: C clustering
6: procedure hierarchicalClustering(X , S)
7: while S does not stop the algorithm
8: pick the best two clusterCi, Cj to merge
9: Cl ← Ci ∪ Cj
10: Ci, Cj ← ∅
11: returnC

• Single Linkage
Proximity between two clusters is the proximity between their two closest ob-
jects. Single linkage method controls only nearest neighbours similarity.

• Complete Linkage
Proximity between two clusters is the proximity between their twomost distant
objects.

• Average Linkage
Proximity between two clusters is the arithmetic mean of all the proximities be-
tween the objects of one, on one side, and the objects of the other, on the other
side

• Ward Linkage
In order to define this criteria it is required the definition of within cluster vari-
ance. According with [8], the within cluster varianceW of a clusterCk is:

W (Ck) =
∑
xi∈Ck

d(xi, µk) (2.5)

whereµk is referred to themeanof the clusterCk, also called centroid. Proximity
between two clusters is the within cluster variance of themerged cluster. It aims
to minimizes the variance of the cluster being merged.

2. The other class of algorithm involves point assignment.
Points are considered in some order, and each one is assigned to a cluster with best
fit. The algorithm is started with the estimation of initial choice of clusters. In this
class of algorithms it is fundamental a domain knowledge of the problem since it is

8

mandatory the definition of k clusters where the points will be classified. Points are
associated to a specific cluster according to an objective function characteristic of the
algorithm. For example, points will be associated to the cluster that minimize the L2-
norm between each point and the centre of the cluster which it is classified, as in the
K-means algorithm.

Figure 2.2: Dendogram representing Hierarchical Clustering. Taken from [1].

2.7 K-Means

In this section we shortly explain one of the most famous algorithms of clustering[9]. We
initially describe the objective function to be minimized, and then we provide an algorithm
that can be really implemented.
They assume Euclidean Space, and the number of cluster k is known in advance.
Given a set of observationx1, x2, . . . , xn, where each observation is a d-dimensional real vec-
tor, k-means clustering aims topartition theobservation intok(<= n) setsS = {S1, S2, . . . , Sk}
in order to minimize the within-cluster sum of squares. The purpose is to find:

argmin
S

k∑
i=1

∑
x∈Si

||x− µi| |2 (2.6)

whereµi is themeanof thepoint inSi. Algorithm2.2 shows an approachof theminproblem
presented into cost function 2.6. Discussion of the algorithm will be made through inspec-
tion of the code shown into Algorithm 2.2
K-means represents just an heuristic solution for the minimization of objective function. In
fact, a rigorous solution is computationally expensive, so we look for an approximation of

9

the optimal result. For a comprehension of the approach we introduce centroid definition.
Given a set of d-dimensional pointsW = {w1, w2, . . . , wn}, centroid is expressed as:

c =
n∑
i=1

wi (2.7)

Centroid is a d-dimension point /∈ W , that represents the average value of the points into
W .

Algorithm 2.2 K-Means Algorithm
1: Input
2: X dataset
3: k number of clusters
4: Output
5: C clustering of dataset into k clusters
6: procedure K-Means(X , k)
7: c← k points that are likely to be in different clusters
8: make these points centroid of clusters, namedC
9: repeat
10: for all xi ∈ X
11: ci ←centroid which xi is closest
12: add xi to clusterCi
13: adjust centroid of clustersCi after addition of xi
14: until there are any variations of centroid
15: return C

Algorithm 2.2 requires as input k, the number of cluster to partition the given dataset.
First line generates c, set of k samples which we assume as cluster center. Selection is a wide
argument that we will discuss later. While we denoted with c the set of centroid, we indi-
cate with C , the clustering of the whole dataset, where ci is the centroid of Ci. Into the
while block, at each iteration we evaluate for each sample xi the centroid closer to it, and we
associate each point to closest cluster. Each iteration of the algorithms also include the re
calculation of the centroid c, as expressed into 2.7. Termination criteria of the while block
is expressed through stability of the centroid. If there are any variations of centroids among
two consecutive iteration, algorithm terminates, otherwise it repeats with a new iteration. A
crucial operations into the algorithm is the detection of the initial cluster center. Different
approaches are presented for the first center selection, a trivial solution is to pick up k points

10

randomly on the dataset, but more accurate strategies are available in order to achieve better
classification. The most used solution for center selection is reported into section 2.7.1.
Key of the algorithm is the repetition of the point assignment. Each point is assigned to the
center which minimize its square distance to the cluster, according to:√√√√ d∑

i=1

d(xi − yi)2 (2.8)

Point assignment strategy for the clustering suffers of the a priori knowledge of the number
of final cluster k. The choice of the best value that fit the point is crucial for a good clustering.
To overcome this problem, in the literature are presentmany approaches of clustering valida-
tion, that will be presented in section 2.9. Furthermore, K-means suffers the initial choice of
the cluster center. For instance, in the situation displayed in Figure 2.3. Here the example (a)

Figure 2.3: Bad initial seeding. Taken from [2].

of a bad initialization that (b) leads to a poor k-Means solution, consisting of clusters with
significantly different variances. Instead, a proper seeding leads to example (c). In order to
avoid the problem, different techniques are used to reduce probability of such situation.
A trivial solution is to execute more times the algorithm, obtaining different results due to
the randomness of the initial choice of the center. Hence, we pick up as the best result the
clustering that mostly shows off.

2.7.1 K-Means ++

As explained before,K −Means algorithm begins with k arbitrary centers, typically cho-
sen uniformly at random from the data point. Each point is then assigned to the nearest

11

center, referring to 2.8. At each iteration each center is recomputed as the centroid of all
points belonging to it. In this scenario, David Arthur and Sergei Vassilvitskii proposedK −
Means + + in 2007[10]. It is focused on the appliance of a − priori algorithm focused
only into center selection, in order to substantially reduce the probability of the situation
occurred in Figure 2.3. It produces centroids used as initial seeding ofK−Means. Given a
setX = {x1, x2, . . . , xn}, wewant to detect k initial centers, namelyC = {c1, c2, . . . , ck}.
In particular, let D(x) denote the shortest distance from a data point to the closest center.
Finally, algorithm is defined into Algorithm 2.3.

Algorithm 2.3 K-Means ++
1: Input
2: X dataset
3: k number of clusters
4: Output
5: c k initial point belonging to dataset used for first center into K-Means
6: procedure K-Means ++(X , k)
7: c1 ←chosen uniformly at random fromX
8: while |c| < k

9: Take new center ci, choosing from x ∈ X − C with probability D(x)2∑
x∈X D(x)2

10: return c

Algorithm2.3 is used to center selection, for this reason thenumber of clusters is a required
parameter. Into the algorithm we indicate with c set of centers. First center c1 is chosen at
random from dataset, all the other ci are chosen according to a probability measure. At the
end of while block, c contains exactly k points, used later for first centers intoK −Means

algorithm.
We can notice thatK −Means + + is a probabilistic algorithm, it means that the output
can differ at each execution. As shown in the Algorithm 2.3, the probability of a point to be
chosen as a center is:

D(x)2∑
x∈X D(x)2

(2.9)

Recalling thatD(x) is the distance between a pointx and its closest center in c, the algorithm
highlights that the farthest point are chosen as centers with more probability. This seeding
method yields considerable improvement in the final error of k −Means. Although the

12

initial selection in the algorithm takes extra time, k−Means converges fasterwith this initial
seeding, lowering the computation time. The k −means + + approach has been applied
since its initial proposal for center selection.

2.8 K-Medoid

K − Medoids clustering is an approach that aims to minimize a given cost function[11].
Rather than using conventional centroid, it uses medoids to represent the clusters.
Given a set of pointsX = {x1, x2, . . . , xn}, a medoids, named xmedoid is:

xmedoid = argmin
yin{x1,x2,...,xm}

n∑
i=1

d(y, xi) (2.10)

Here we represent with d(x, y) the dissimilarity function between points. It usually refers
at the distance L2 among points. Unlike centroids that usually do not belong to dataset, a
medoid is always amember of the data set. It represents themost centrally located itemof the
data set. The purpose is to determine the best clustering C which minimizes cost function
expressed into 2.11. Each clustering Ci contains a point ci ∈ Ci which represents a central
sample of the cluster.

C = argmin
C

k∑
j=1

∑
i∈Cj

d(xi, cj) (2.11)

As for the exact solution of cost function defined into 2.6, even the computation of best
clusteringC minimizing 2.11 is a NP-Hard problem. An heuristic solution is presented into
PartitionaroundMedoids (PAM) algorithm. PAM uses a greedy search which may not
find the optimum solution, but it is faster than exhaustive search. Given in input the set of
points X = {x1, x2, . . . , xn} and the number of cluster k, algorithm can be found into
Algorithm 2.4.

13

Figure 2.4: K-medoids versus K-means. Taken from [3].

Algorithm 2.4 Partition Around Medoid
1: Input
2: X dataset
3: k number of clusters
4: Output
5: C clustering
6: procedure PAM(X ,k)
7: select k of the n data points as the medoidsM
8: associate each data point to the closest medoid
9: while cost of the configuration decreases
10: for allm ∈M
11: for all o /∈M
12: swapm and o
13: associate each data point to the closest medoid
14: recompute the cost
15: if total cost increased in the previous step
16: undo the swap

return clustering

PartitioningaroundMedoid is described into Algorithm 2.4. As k − Means, it re-
quires datasetX , andnumber of clusters as input of the algorithm. Initially it selectsk points
as medoid, each point intoM has to belong to the dataset. All the other samples are associ-
ated to the closest medoid. For each configuration of the setM , cost is the sum of distance
from each sample to the closest medoid. Core of the algorithm is the continue swap among
a pointm ∈M and o /∈M . At each iteration is performed a change amongm and o, defin-
ing a new sets of medoid. If the new cost function associated to the set of medoids increases,
swap is undone. If no swap achieves a reduction of the cost, algorithm concludes reporting

14

final clustering, ones with smallest cost function.

These algorithms suffer of the same issues ofk−Means algorithm, since they are heuristic
solutions, they cannot achieve certainly an exact solution, but an approximate result. There
are several different strategies for picking up the initial medoid during initialization phase of
the algorithm. As for k−Means, a simple solution involves selection of medoid uniformly
at random from the data point. Most sophisticated approaches can be found in literature to
achieve the best solutions at the first executions.
As well as k −Means it requires as input the number of cluster k. Figure 2.4 highlights a
dataset whichPAM algorithm performs better than k−Means, subdividing samples into
the obvious cluster structure of data set. The image 1a-1f presents a typical example of the
k-means convergence to a local minimum. In this example, k-medoids algorithm, showed
into images 2a - 2h, with the same initial seeding of k-means converges to the obvious cluster
structure.
K-medoids method is more robust than k-means in presence of noise and outliers because a
medoids is less influenced by outliers or other extreme values[12].

2.9 Clustering Validation

Since there is not a unique definition of clusters, and some different strategies are proposed,
we need to identify a score to classify the results provided from algorithms. In order to over-
come this issue a lot of strategies have been produced.
Generally, clustering validation statistics can be categorized into 3 classes:

1. Internal Cluster Validation
It uses internal information of the clustering process to evaluate the goodness of a
clustering structure without reference to external information. It can be used for esti-
mating the number of clusters and the appropriate clustering algorithm without any
external data.

2. External Cluster Validation
It consists in comparing the results of a cluster analysis to an externally known result,
such as externally provided class labels. It measures the extent to which cluster labels
match externally supplied class labels. Since we know the “true” cluster number in
advance, this approach is mainly used for selecting the right clustering algorithm for a
specific data set.

15

3. Relative Cluster Validation
It evaluates the clustering structure by varying different parameters for the same al-
gorithm, such as the number of clusters k. It is generally used for determining the
optimal number of clusters.

In this section we will focus on exploiting the intrinsic structure of the data, discussing
about internal cluster validation. Here, we present some metrics available in literature.

Elbow Method

The Elbow Method [13] looks at the percentage of variance explained as a function of the
number of clusters: one should choose a number of clusters so that adding another cluster
does not give much better modelling of the data. More precisely, if one plots the percentage
of variance explained by the clusters against the number of clusters, the first clusters will add
much information (explain a lot of variance), but at some point the marginal gain will drop,
giving an angle in the graph. The number of clusters is chosen at this point, hence the ”elbow
criterion”. This ”elbow” cannot always be unambiguously identified.
In Figure 2.5 we indicate with a red circle the elbow of the plot. According to this method,
the proper number of cluster for such algorithm is 4.
This is one of the most naive approaches. Other similar approaches are available inspecting
the average diameter of the cluster instead of the variance. However, a common aspect is
identifying k according to the ”elbow” of the plot. Themain issue of this approach, as several
other techniques of cluster validation, is the fact that it is mandatory to perform clustering
with all the possible value of k, in order to build the graph.

Dunn Index

Dunn Index is a metrics used to evaluate clustering algorithm. It was introduced by J.C.
Dunn in 1974[14] [15]. The aims are to identify sets of clusters that are compact, with a small
variance between members of the cluster. For a given assignment of cluster, high value of
Dunn index means better clustering of data. One of the drawbacks is the computational
cost required for the computation of the index.
As a requirement for comprehension ofDunn Indexwe provide a digression on the size or di-
ameter of a cluster. There are different approaches, as the mean distance between two point
in a cluster, but for this statistic we consider the farthest two points inside a cluster.
LetCi a cluster of vectors, anddefine adistance functiond. Letx andy be twom-dimensional

16

Figure 2.5: ElbowMethod. Taken from [4].

vector belonging into the same clusterCi. The diameter of the cluster is:

∆i = max
x,y∈Ci

d(x, y) (2.12)

Besides the definition of the diameter of the cluster, we require a measure of inter cluster
distance metric. Hence, we define:

δ(Ci, Cj) = min
x∈Ci,y∈Cj

d(x, y) (2.13)

While distance intra cluster is computed referring to the farthest two points, we consider
nearest points for the inter cluster measure. We can finally provide a definition of the Dunn
statistic. If we get k cluster, Dunn Index for the set is defined as:

DIk =
min1≤i≤j≤k δ(Ci, Cj)

max1≤i≤k∆i

(2.14)

This formulation has a peculiar problem, in that if one of the clusters is badly behaved, where
the others are tightly packed, since the denominator contains a ’max’ term instead of an av-
erage term, the Dunn Index for that set of clusters will be uncharacteristically low.

17

Silhouette Coefficient

Silhouette coefficient has been introduced for the first time by Peter J. Rousseeuw in 1987
[16].
It refers to a method of interpretation and validation of consistency within clusters of data.
The silhouette value is measured of how similar an object is to its own cluster (cohesion)
compared to other clusters (separation). A formal definition of the two previous aspects will
be required for a later analysis.
For cohesion we mean how closely are the points into a given cluster. Optimal cluster will
be characterized from a high value of cohesion. For the Silhouette coefficient we require to
compute, for each point i, the statistics related to the distance from i to all other points in its
own cluster, in order to compute the average distance.

ai =
1

|Ci| − 1

∑
j∈Ci,j ̸=i

d(j, i) (2.15)

where we consider that i ∈ Ci, and |Ci| as the cardinality of the cluster.
Cluster separation is a statistic that evaluate how distinct or well-separated a cluster is from
other clusters. For Silhouette analysis is required to compute the distance between a given
point i and any other cluster, which i is not a member. First, we need to perform the average
dissimilarities between i and the other cluster, computed as the average distance between the
point and all the members of that cluster.

d(i, Cj) =
1

|Cj|
∑
j∈Cj

d(i, j) (2.16)

The equation 2.15 is performed for each cluster Cj ̸= Ci obtained from the clustering algo-
rithm. Once, we highlight a ”neighbouring cluster”, and the statics bi used in silhouette is
the average distance between that specific cluster. Hence, we get:

bi = min
j ̸=i

d(i, Cj) (2.17)

With the previous metrics we can define silhouette index, for a given point i as:

si =
b(i)− a(i)
max {ai, bi}

(2.18)

18

Which can be also written as:

si =


1− ai/bi if ai < bi

0 if ai = bi

bi/ai − 1 if ai > bi

(2.19)

From this definition is clear that−1 ≤ si ≤ 1.
Also, note that score is 0 for clusters with size = 1. This constraint is added to prevent the

number of clusters from increasing significantly.
For si close to 1 we require ai << bi. As ai is a measure of how dissimilar i is to its

own cluster, a small value means it is well matched. Furthermore, a large bi implies that i
is badly matched to its neighbouring cluster. Thus an si close to one means that the data
is appropriately clustered. If si is close to negative one, then by the same logic we see that
i would be more appropriate if it was clustered in its neighbouring cluster. An si near zero
means that the sample is on the border of two natural clusters.
Silhouette index is calculated separately for each point. In order to provide a metric useful
to determine the quality of the clustering it is necessary to combine all the indexes.
The average si over all points of a cluster is a measure of how tightly grouped all the points
in the cluster are. Thus the average si over all data of the entire dataset is a measure of how
appropriately the data have been clustered. It can be used to determine the natural number
of a cluster into a dataset, computing the index for each possible k in order to select the
maximum.
Our thesis will be focused on this particular index, providing a clustering technique aimed
tomaximizing the silhouette, as we reported into chapter 4, explaining the goal of this thesis.

19

20

3
Related Work

One of the main issues into clustering problem is related to the asymptotic complexity. In
fact, finding an optimal solution to the partition ofN object into k cluster is NP-Complete
and, provided that the number of distinct partitions ofN data into k clusters increases ap-
proximately as kN/k!, attempting to find a globally optimal solution is usually not feasible.
This difficulty has stimulated the development of efficient approximated algorithms. Ge-
netic algorithms are widely believed to be effective on NP-complete global optimization
problems and they can provide good sub optimal solutions in reasonable time. Under this
perspective in literature are available different algorithms that are based on genetics. In this
scenario we present two approaches found in literature. Last section discusses about a possi-
ble extension for Silhouette metrics, in order to decrease its asymptotic complexity.

3.1 An Immune Network Algorithm for Optimization

A model based on immune networks, is the aiNet algorithm [17]. This algorithm was suc-
cessfully applied to several problems in data compression and clustering. An optimization
version of the aiNet algorithm, called opt − aiNet, was developed with the ability to per-
form unimodal and multimodal searches [18].
In opt − aiNet each network cell represents a solution to the problem being treated. The
algorithm is used to find solutions to continuous optimization problems, in which each cell
is a real valued vector in an Euclidean space. The opt − aiNet algorithm uses an evalua-

21

tion function to be optimized, which also provides the fitness value of that cell. The fitness
measures the quality of the solution represented by a cell: high fitness values indicate good
solutions, while low fitness values indicate lower quality solutions. There are also the clone
generation and mutation processes: at each generation there is only cell proliferation of a
number of clones defined by the user, and in the mutation there is the variation of these
clones, based on a specific criterion. In optaiNet the mutation rate is proportional to the
fitness: cells with high fitness values suffer low mutation rates, while cells with low fitness
suffer high mutation rates.
In addition to the fitness of a cell, which measures its quality in relation to a cost function
to be optimized, a cell also has an affinity, representing how similar it is to other cells in the
network. The affinity of a cell may lead to a cell cloning or pruning. The affinity of cells is
evaluated based on the Euclidean distance among them. Cells with an affinity greater than a
pre-defined threshold may be pruned. After this suppression process new randomly gener-
ated cells are included in the network.

3.2 Evolutionary Algorithm for Clustering

The evolutionary algorithms have their inspiration in the Darwinian Theory of Evolution.
These algorithms are able to find good solutions to complex problems in reasonable com-
putational time. The EvolutionaryAlgorithmforClustering (EAC) was proposed to
achieve optimal groupings of data [19].
The EAC is started by a population of individuals, randomly generated, which represent
candidate solutions to the data clustering problem. This initial generation is then used to
produce offspring through preselected randomvariations. The resulting candidate solutions
will be evaluated based on their effectiveness in solving the problem.
As the sameway that the environmentmakes a selective pressure on individuals, in the evolu-
tionary algorithm there is also aprocesswhere only themost adapted individuals (best fitness)
are preserved to the next generation, and this process is repeated several times[19]. In each
iteration they also provide an evaluation of the clustering based on the silhouette functions.
The stopping criterion in theEAC is the maximum number of iterations (num_it) that is
parameterized; this criterion is usually present in evolutionary algorithms.
.

22

3.3 Soft-Silhouette

Since it was created, Silhouette has become one of the most popular internal measures for
clustering validity evaluation. In [20, 21] it is compared with a set of other internal measures
and proven to be one of the most effective and generally applicable measures. However,
when Silhouette is applied in the evaluation of k −Means clustering validity, many more
extra calculations are required, and the extra calculations increase following a power law cor-
responding to the size of the dataset, because the calculation of the Silhouette index is based
on the full pairwise distance matrix over all data. This is a challenging disadvantage of Sil-
houette. From this perspective, Silhouette needs to be simplified for k−Means to improve
its efficiency.
Simplified Silhouette was, to our knowledge, first introduced byHruschka in [19], and used
as one of the internalmeasures in his following research. It inheritsmost characteristics from
Silhouette and therefore can be used in the evaluation of the validity of not only a full clus-
tering but also a single cluster or a single data point. On the other hand, the distance of a
data point to a cluster in Simplified Silhouette is represented with the distance to the cluster
centroid instead of the average distance to all (other) data points in the cluster, just as in the
k −Means Cost Function.
Recalling definition for Silhouette statistics, we can define as well simplified Silhouette. In
2.15, given a point i, we define its function ai as the average distance between all the other
points in the same cluster. Similarly, we define a′i as the distance between the selected point
and the centroid of the cluster:

a′i = d(i, Ci) (3.1)

where we assume that i ∈ Ci. We need to provide a new approach also for the function bi,
defined into 2.17, so we get:

b′i = min
i ̸=h

d(i, Ch) (3.2)

Once we provide the below definition, Silhouette is computed as usual as:

ssi =
b′i − a′i

max{a′i, b′i}
(3.3)

Simplified Silhouette index is performed as the average value of 3.3 computed for each point
of the data set. Furthermore, to prove the effectiveness of such value, we provide a short the-
oretical comparison between the original statistics and the simplified one.

23

The overall complexity of the computation of Silhouette is estimated as 0(n2), while that of
Simplified Silhouette is estimated as O(kn). [19]. A detailed discussion of the asymptotic
complexity of Silhouette is provided into section 5.1.3.
When k is much smaller than n, Silhouette is much more computationally expensive than
Simplified Silhouette. In addition, during the process of k−means clustering, the distance
of each data point to its cluster centroid has already been calculated in each iteration, which
greatly reduces the calculation of both the Cost Function and Simplified Silhouette. There-
fore, the Cost Function and Simplified Silhouette are much more efficient in the evaluation
of k −means clustering validity.
Once we have highlighted the benefits gained from the usage of the Simplified Silhouette,
we can achieve in literature some review done with this statistics. In [22] we found a com-
parison between the metrics provided by Silhouette and its Simplified version as a tool for
clustering validation. The article highlights that the result from two metrics are comparable
in different test cases.

24

4
Goal

The objective of this thesis is the development of an algorithm which, given a dataset of
point as input, it produces a clustering as output. We focus on generation of cluster which
maximize the Silhouette index. This metrics is usually used to provide an evaluation related
to thequality of a cluster, as a validation criteria. Into this thesiswe focuson adevelopmentof
a clustering which aims to produce clustering with maximum value of Silhouette, regardless
the number of clusters. Unfortunately, computation of an exact algorithm for pursuit of the
objective requires an exponential time, since it fails within NP-Hard problem. The purpose
of this thesis is achieved with an heuristic solution which aims a best possible approximation
of the real result.
Many famous clustering algorithms provide heuristic solution for cost based clustering. For
instance, cost functions 2.6 and 2.11 are respectively related to k−Means and k−Median

algorithm. We provide here a cost function based on the silhouette index defined in 2.18.
Formally, if a dataset X = {x1, . . . , xn} of n samples is given, the cost function aims to
detect k clustersC = {C1, . . . , Ck}which maximize the following cost function:

argmax
C

n∑
i=1

b(i)− a(i)
max{a(i), b(i)}

(4.1)

In this scenario we need to maximize a cost function, while, the other algorithm aims to
minimize the value. It is due to Silhouette index, which higher valuemeans better clustering.

25

Some proposal will be developed and discussed in terms of time required for the termination
of the algorithm and silhouette performance. Furthermore, for each algorithm we evaluate
its asymptotic complexity.
It is important to highlight that cost function defined in 4.1 does not involve any restriction
on k, the number of clusters required. This constraint is found into algorithms like k −
Means and PartitioningAroundMedoid, even if their cost function does not require
such value. In this thesis, we will provide some implementations which aim to maximize 4.1
without requiring further constraints.

26

5
Algorithm for Clustering using Silhouette

as cost

In the following chapter we are focusing on some possible solutions to the goal described
in the chapter above. We provide here some different ways to achieve the purpose. For each
implementation proposedwe describe the algorithm, through usage of the pseudo code. For
each algorithm we provide all the theoretical knowledge useful to a full understating. Fur-
thermore, it will be crucial also for the asymptotic analysis supplied into each approach. Each
algorithmwill be accompanied with a proof of termination, to highlight the effectiveness of
the proposal.

5.1 Brute Force Approach

5.1.1 Description of the Approach

The first implementation of the problem it is the simplest possible solution, brute force ap-
proach.
In order to discover the best possible clustering solution that maximize silhouette index, we
generate all the possible clustering of the given dataset. For each one we evaluate Silhouette
index in order to store as result clusteringwhichmaximizes Silhouette. The advantage of this
approach is the lack of any constraint related to the number of clusters as output, in fact the
algorithm evaluates all the possible partitions. Furthermore, once the algorithm partitions

27

input data set and test each combination we have the guarantee of finding the best solution
as claimed by the goal section. Moreover termination of brute force is guarantee. This imple-
mentation is provided also as a reference for the further algorithms described in this thesis.
In fact, we retrieve from this implementation the best possible value of the silhouette met-
rics that we can achieve from a given dataset. On the other hand, since this approach has
to generate all the possible subset, cost function of the algorithm is exponential. A detailed
measurement of the asymptotic complexity of the algorithm is provided into section 5.1.3.

5.1.2 Code

The code reported into this section is useful for a better comprehension of the solution and
it is useful also for analysis of complexity.

Algorithm 5.1 Brute Force Algorithm
1: Input
2: X dataset
3: Output
4: Y clustering with best value of silhouette
5: procedure bruteForce(X)
6: s← −1
7: Y ← ∅
8: for k ← 2 to |X|
9: Xa ← ∅
10: Ya ← ∅
11: ak ← algorithm_u(X, k)
12: for all a ∈ ak
13: for ck,a ← 1 to |a|
14: for ek,a,c ← 1 to |ack,a |
15: Xa ← Xa ∪ ek,a,c
16: Ya ← Ya ∪ ck,a
17: sa ← silhouette(Xa, Ya)
18: if sa > s
19: s← sa
20: Y ← Ya

return Y

Algorithm 5.1 reports pseudo code useful to describe the brute force approach. It is re-
quired datasetX as input, without any restrictions on the number of clusters. s is referred

28

to the initial value of Silhouette, stored initially at -1, worst possible condition. Y instead
contains the best possible clustering, initialized with empty set. For each value of k,Xa and
Ya contains the temporary value of dataset and its related clustering. ak stores all the possible
k − subset obtained from the dataset, for the given k. Loop, available from line 12 up to
line 16, stores for each combination of the k − subset sample into Xa and relative cluster
into Ya. Finally, silhouette of the combination is stored into sa, and best silhouette value
and best clustering is updated if sa > s. It returns best clustering achieved after inspection
of all the possible k, from 2 up to n− 1.

5.1.3 Complexity and Correctness

For a better analysis of this implementation we need a digression related on how we can
generate all the possible partitions from a given datasetX . In the algorithm task is performed
from algorithm_u procedure. It generates all the k-subset of givenX .
A k-subset of set X is a partition of all the elements in X into k non-empty subsets. For
instance, given a setX = 1, 2, 3, a 2-subset returns all the possible way to split into 2 subsets
the elements ofX . Therefore we get

1|23 2|13 3|12 (5.1)

which vertical line is used in order to split one subset to the other one. In order to find all the
possible partitions of the setX , we need to perform the algorithm for each value k ← 1, |X|.
With the previous setX , there are in total 5 partitions:

123 1|23 2|13 3|12 1|2|3 (5.2)

In this list the element in each subset can be written in any order, because 13|2, 31|2, 2|13
and 2|31 represent the same partition. We can standardize the representation listing all the
elements of each subset in increasing order, and arranging the subset in increasing order of
their smallest element. In this way, all the partition returned fromX = 1, 2, 3, 4 are:

1234 123|4 124|3 12|34 12|3|4 134|2 13|24
13|2|4 14|23 1|234 14|2|3 1|24|3 1|2|34 1|2|3|4

(5.3)

29

According to [23] one of the most convenient ways to represent a set partition inside a com-
puter is to encode it as a restricted growth string, a string a1a2 . . . an which:

a1 = 0 and aj+1 ≤ 1 +max(a1, . . . , aj) for 1 ≤ j < n (5.4)

The idea is to set aj = ak if and only if j = k, and to choose the smallest available number
for aj whenever j is smallest in its subset. Restricted growth string for 5.3 is:

0000 0001 0010 0011 0012 0100 0101 0102

0110 0111 0112 0120 0121 0122 0123
(5.5)

The algorithm used to generate all the partition in the pseudo code listed above exploits all
the restricted growth string visiting all partitions ofX that satisfies condition 5.4. A detailed
description of the code can be found here [23].
For later analysis it is important to evaluate the number of set partitions. In the previous we
have seen that there are 5 partitions forX = 1, 2, 3 and 15 forX = 1, 2, 3, 4. A quickway to
compute the count was presented here [?], which define the following triangle of numbers.

1

2 1

5 3 2

15 10 7 5

52 37 27 20 15

203 151 114 87 67 52

(5.6)

Here the entries ωn1, ωn2, . . . , ωnn belonging to the n− th row are obtained by:

ωnk = ω(n−1)k + ωn(k+1) if 1 ≤ k < n

ωnn = ω(n−1)1 if n > 1

ωnn = 1 if n = 1

(5.7)

In this triangle, entry on the diagonal and in the first column are the total number of set
partitions, also known as Bell Numbers. We denote that with ωn. The first cases are:

30

n = 0 1 2 3 4 5 6 7 8 9 10

ω = 1 1 2 5 15 52 203 877 4140 21147 115975

The Bell numbers ωn = ωn1 for n ≥ 0must satisfy the recurrence formula:

ωn+1 = ωn +

(
n

1

)
ωn−1 +

(
n

2

)
ωn−2 + · · · =

∑
k

(
n

k

)
ωn−k (5.8)

because each partition of {1, . . . , n+ 1} is obtained choosing k elements from {1, . . . , n}
to store in subset containingn+1 and partitioning the remaining elements inωn−k way, for
some k. We can found here [23] a demonstration of an asymptotic estimates of the number
of total partition of a given set. We report here the final result:

ωn ≈ O(n/logn)n (5.9)

Here, we made an analysis on the number of the partition produced as output from the al-
gorithm. The last step is the evaluation of complexity in time. Inspecting the code, available
here [16], each partition is generated, exploiting restricted growth string, into constant time.
Time complexity differs from the space complexity just for a constant value.

Other fundamental aspects on the algorithm is the computation of the silhouette score for
each sample. Recalling the definition of Silhouette in 2.18, for each sample i ∈ X , we need to
compute the statistics of the dissimilarity ai in a cluster, and also the statistics of dissimilarity
between cluster bi. A simple algorithm to calculate ai is showed into algorithm 5.2.

The code follows the definition provided in 2.15. Moreover, the time complexity of the
algorithm for the sample xi ∈ Ci is O(|Ci|). It depends obviously from the size of the
cluster which points belong. In a worst case scenario, where all samples belong to the same
cluster, we get a complexity ofO(n).
Thepseudo code available intoAlgorithm5.3 canbeused for the computationof the statistics
bi.

In order to evaluate bi for a given point x ∈ Ci, we need to compute all the distances
between x and xj(∈ Cj), where x ̸= xj and Ci ̸= Cj , in order to detect the minimum.
AssumingX partitioned in k clusters, asymptotic time complexity of the algorithm isO(n−

31

Algorithm 5.2 Statistics ai
1: Input
2: x point belonging to dataset to be classified
3: Ci cluster where x ∈ Ci
4: Output
5: a statistics a associated to x
6: procedure A(x,Ci)
7: s← 0
8: for all xj ∈ Ci
9: if x ̸= xj
10: s← s+ d(x, xj)

11: return s
|Ci|−1

Algorithm 5.3 Statistics bi
1: Input
2: x point belonging to dataset to be classified
3: Ci cluster where x ∈ Ci
4: C clustering of the whole dataset
5: Output
6: b statistics b associated to x
7: procedure B(x,Ci,C)
8: for allCj ∈ C
9: if Cj ̸= Ci
10: sj ← 0

11: for all xj ∈ Cj
12: sj ← sj + d(x, xj)

13: returnmini
si
Ci

32

|Ci|)becausen−|Ci| operations are required to compute all pairwise distances. It is possible
to compute minimum value in an efficient way in O(1) by the usage of a variable which
contains the updated minimum.
As the previous statistics, we get worst case if Ci is composed by only the sample x. Hence,
asymptotic time complexity is O(n). Recalling silhouette index defined in 2.18, we need
to perform both indexes to perform metrics of a single sample. Therefore, the asymptotic
complexity of silhouette index for the sample xi ∈ Ci is O(n). Silhouette index for the
whole clustering is expressed with

S =
n∑
i=1

si (5.10)

Asymptotic time complexity for the evaluation of the silhouette index for a given setX and
clusteringCi, C2, . . . , Ck is:

O(n2) (5.11)

Previous section provides us all the tools required for a proper analysis of complexity of
this implementation. We split the cost function of the entire problem into a sum of cost
function of each main operation. Main tasks are the following:

• Generating all the k-subset through algorithm_u(X, k)

Generation phase of all the possible k-subset of a given set is computed into the
algorithm_u procedure. Assuming that each combination is generated in constant
time, we obtain the following cost function:

T1(n, k) = O(ωk) (5.12)

which a proper definition of ωk is available in 5.7 - 5.9.

• Operations done for each partition It can be useful inspecting the cost required for
each partition found, so we need to focus from line 9 up to line 16 of the pseudo code.
We obtain that:

T2(n, k) =
n∑
i=1

α1 + n2 = α1n+ n2 (5.13)

In 5.13 we collect all the operation done with the assignment of a cluster at each point
x. Silhouette function need to be performed at each iteration, and its asymptotic time
complexity is shown in 5.11.

33

Finally we can define a more concise cost function for the whole algorithm. We get:

T (n, k) =
n∑
k=2

T1(n, k) + |ωk|∑
i=1

T2(n, k)


=

n∑
k=2

(
ωk +

ωk∑
i=1

α1n+ n2

)

=
n∑
k=2

(
ωk + (α1n+ n2)ωk

)
=

n∑
k=2

(
ωk(n+ n2 + 1)

)
= (n2 + α1n+ 1)

n∑
k=2

ωk

(5.14)

Through the usage of 5.9, we can define asymptotic complexity of the algorithm:

O(
nn+2

lognn
) (5.15)

Last step of the analysis is related to evaluation of correctness of the algorithm.

Proposition 1. Given a set of pointsX . The algorithmBruteForce, withX as input always
finishes. (1). Furthermore, it provides as output a set Y with |Y |. Here yi = j ∈ Y

means that xi belongs to cluster Cj . Clustering C1, C2, . . . , Ck gained from Y represents
argmaxC1,C2,...,Ck

∑
i∈C1,...,Ck

b(i)−a(i)
max(b(i),a(i)

(2)

Proof. In order to proof point (1), it is necessary to underline how there are any variation on
the variables constituting the loop. At each iteration a new partition is analyzed and nested
loop from line 8 to line 10 iterates over all the cluster into all partitions. Assignment does not
involve any variable, so termination is guarantee. The proof of point (2) is done by contradic-
tion. Initially we assume that it exists a partition aγ which leads to cluster which maximize
our goal, and it is not returned from our algorithm. We know that aγ is composed by k clus-
tersCγ,0, . . . , Cγ,k. Silhouette metrics needs a number of cluster from 2 to |X|, hence k will
be into this bound. Since aγ is the maximum we have that:

sγ =
∑

i∈Cγ,0,...,Cγ,k

b(i)− a(i)
max(b(i), a(i)

> sj =
∑

i∈Cj,0,...,Cj,k

b(i)− a(i)
max(b(i), a(i)

∀j (5.16)

34

which Cj,0, . . . , Cj,k is the partition generated from the j − th partition returned from
algorithm_u procedure. It means that aγ is a partition that it is not generated from the
algorithm_u procedure, but it is contradictory since it returns all the k-partition ofX .

5.2 Extending K-Means

5.2.1 Description of the Approach

According with asymptotic time complexity described into bruteForce algorithm, the main
issue of the previous approach is due to the exact computation of the best result. Recalling
that clustering is a NP-hard problem, the following implementations aims to approximate
the best result through an heuristic solution.
Since the most famous clustering algorithm is k −Means, we develop an extension of it.
The idea is to execute the algorithm, and thenwe slightly adjust clustering in order to increase,
if possible, silhouette value. This approach involves definition of bound acts to detect sam-
ples of dataset which we would like to classify again. It is done through a threshold of the
silhouette values.
An issue to overcome is due to the intrinsic constraint into k−Means clustering where the
number of clusters is defined as an input of the problem, while purpose of the algorithm is
the deletion of this constraint. To overcome this problem algorithm is computed for each k,
until a stopping condition is triggered.
In this implementation, if the silhouette for a given k is below a certain threshold, algorithms
stops, reporting the results. This solution increases enormously the complexity of the algo-
rithm. This approach is also affected fromthe intrinsic problemof thek−Means algorithm,
where more executions of the same algorithm return different results due to the initial seed-
ing.

5.2.2 Pseudo Code

In this section we describe with pseudo code the algorithm proposed. It is composed by a
main program which recall results produced by other procedures.

35

Algorithm 5.4 Extension of K-Means
1: Input
2: X dataset
3: Output
4: C∗ clustering which maximizes Silhoutte index

5: procedure extendeKMeans(X)
6: C∗ ← ∅
7: S∗, S−1 ← 0

8: k ← 2

9: λt ← 17
20

10: while S−1 ≥ λtS∗ and k < n− 1

11: Ck ← K −means(X, k)
12: ψ0, ψ1 ← min(silhouette(Ck)),max(silhouette(Ck))

13: λc ← 10(ψ1−ψ0)
logK+130

+ ψ0

14: Mk ← generateMPoint(X,Ck, λc)

15: Tk ← closestCenter(Mk, Ck, k)

16: Sk, Ck ← bruteForce(X,Tk, Ck)

17: if Sk > S∗

18: S∗ ← Sk

19: C∗ ← Ck

20: k ← k + 1
returnC∗

Algorithm 5.4 described above is a main function which , during its execution, call several
other procedures. It requires as input the dataset of pointX , in order to produce the best
clustering, reported as outputC∗. First algorithm initializes all the different variables, we get
C∗ which contains the clustering with best value of Silhouette S∗. S−1 contains the initial
value of silhouette, while λt and λc are thresholds defined into section 5.2.3. In order to de-
fine the threshold λc we require the maximum andminimum score of Silhouette computed
on Ck, and they are stored in ψ1 and ψ1 respectively. Algorithm is repeated until the best
Silhouette achieved for the current k, Sk is bigger than a threshold, or we test all the possible
k. At each iteration it executes k−Means algorithmwith current value of k. ClusteringCk
contains the result of k −means, and it is used as input of procedure generateMPoint.
This function returns the set of points M . Tk reports value of the closest two clusters for

36

each point into M , in fact into closestCenter procedure, each point of Mk is associated
with one of the two closest centers. Into bruteForce we test each possible combination of
the sample Tk. It returns as output Sk and Ck, the best silhouette value achieved after all
combination and its relative clustering, respectively. Finally, it updates variable S∗ and C∗,
which contains the best silhouette value among all the possible Sk.

Algorithm 5.5 generateMPoint
1: Input
2: X dataset
3: C current clustering of the dataset
4: λ threshold used to select point to store inM

5: Output
6: M set of points belonging to dataset to be reclassified

7: procedure generateMPoint(X ,C ,λ)
8: M ← ∅
9: S ← silhouette(X,C)

10: for all xi ∈ X
11: if Si < λ

12: M ←M ∪ xi
returnM

Algorithm 5.5 reports a procedure used from extendeKMeans. It executes silhouette
score for each sample inX . SetM contains all the point that its silhouette score is below the
given threshold λ.

37

Algorithm 5.6 closestCenter
1: Input
2: C dataset
3: M set of points belonging to dataset to be reclassified
4: C clustering of the whole dataset

5: Output
6: T array containing for each sample into M lables of two closest clusters

7: procedure closestCenter(M ,C ,k)
8: T ← ∅
9: CC ← center(C) ◃ CCi = center’s coordinates of i-th cluster
10: D1, D2 ←∞
11: C1, C2 ← −1
12: for all xj ∈M
13: for i← 1 to k

14: di,j ← distance(xj, CCi)

15: if di,j < D1

16: C2, D2 ← D1, C1

17: C1, D1 ← i, di,j

18: else di,j < D2 & di,j > D1

19: C2, D2 ← i, di,j

20: Tj ← (C1, C2)

21: return T

closestCenter procedure returns for each point selected inM , index of two closest cen-
ter, stored into T . Selection of the closest center are performed through distance among the
point and the center of the cluster.
First list is initialized empty. CC stores the coordinates of the centroid of each cluster. For
instance,CCi contains coordinates of i− th cluster. For each sample intoM ,D1, D2 store
temporary distance to the closest cluster, and to the second closest cluster. Index of related
clusters are saved into C1 and C2. The core of the algorithm is the loop from line 12 up to
lines 14. At each iteration it inspects distance among xj ∈ M , and all the cluster centers,
available into CC . Then, it stores into C1 and C2, the index of closest cluster and second
closest cluster, respectively. Finally, for each xj it saves into Tj the values C1 and C2. As

38

notation we refer as the j − th point intoM with Tj . Its closest cluster is Tj[0], while the
second closest is Tj[1].

Algorithm 5.7 bruteForce
1: Input
2: C dataset
3: T array containing for each sample into M lables of two closest clusters
4: C clustering of the whole dataset

5: Output
6: S∗ best silhouette obtained
7: C∗ clustering related to best silhouette

8: procedure bruteForce(X ,T ,C)
9: S∗ ← −1
10: C∗ ← ∅
11: max← 2|T |

12: for i← 0 to max

13: b← binaryRepresentation(i)

14: for j ← 0 to |b|
15: C[Tj]← Tj[bj] ◃ C[Tj] is the labels associated to j-th point in T≡M

16: Si ← silhouette(X,C)

17: if Si > S∗

18: S∗ ← Si

19: C∗ ← C

20: return S∗, C∗

Algorithm 5.7 performs the bruteForce analysis of all the combination. Since for each
xi ∈M we get two possible way to classify each point, we exploit binary representation. We
would like to test each possible combination of associating xi the cluster Ti[0] or Ti[1], and
test for all i. For a binary representation, if sampleXi belong with Ti[0], it has associated the
flag 0, otherwise 1. Iterating over all the possible binary numbers from 0 to 2|M | and consider
each digit as a flag for the point, we can generate and test all the possible combinations. For
instance, assuming as input:

M = 1, 2, 3, 4 (5.17)

39

and closest center, stored into T , are:

Ti[0] = 0 Ti[1] = 1 for i = 1, . . . , 4 (5.18)

All the possible combination are obtain through binary representation of the number from
0 to 24 = 16. We have:

0000 0001 . . . 1110 1111 (5.19)

Associating the i − th point into T with the i − th bit of the representation we test all
combinations. For example, with 0001, we have

C[T1] = 1 C[T2] = 0 C[T3] = 0 C[T4] = 0 (5.20)

Finally, for each combination, it is performed Silhouette index, storing the best value. In
this scenario, with the binary combination of 0000, each point intoM is associated with its
closest center. It is the same clustering generated through k −Means. In fact, Algorithm
2.2 highlights that k −Means is stopped when all the xi ∈ X are associated to the closest
center. A detailed discussion of k −Means algorithm is available into section 5.2.4.

5.2.3 Choice of Parameter

The fundamental idea behind this implementation is to detect points which have a low value
of Silhouette and it tries to reclassify into another cluster these samples, in order to increase
Silhouette value of the whole clustering. It is crucial for the effectiveness of the algorithm to
define a thresholdλc where a point xi, with silhouette value below it, needs to be stored into
M , waiting to be reclassified. Small value ofλc involves few points intoM and consequently
slightly change in term of silhouette, or even it leads to any variations from k−Means. On
the other hand, huge value of λc causes a huge number of samples intoM , and an exponen-
tial increase of time required for the termination of the algorithm. Before the definition of
threshold we need to define two variables.

ψ0 = min(silhouette(Ck)) (5.21)

With 5.21 we refer to theminimum score obtained among all the silhouette values computed
on clustering Ck. As highlighted in the pseudo code we refer with Ck as the result of the

40

k −Means algorithm. Analogously we define:

ψ1 = max(silhouette(Ck)) (5.22)

where we refer as the maximum value obtained from silhouette among all the samples inCk.

λc =
10(ψ1 − ψ0)

logK + 130
+ ψ0 (5.23)

Another parameter is required for the proper functioning of the algorithm. In fact,
extendeKMeans iterates over all the possible k values. As an improvement a stoppable
condition is introduced. When the algorithm starts detecting a cluster with a value of Sil-
houette below threshold it returns the best value achieved at that time.

SilhouetteV alue(currentK) < λdmaxV alueSilhouette (5.24)

Even in this case it is crucial the detected value of the bound. In fact, a small value of the
threshold involves repetition of the algorithm for large value of k, when Silhouette is sensi-
bly smaller than the best value achieved. On the other hand, a bigger value risks the algorithm
to stop if we detect for some k a small reduction of Silhouette, but it ignores the possibility
of a subsequently increase of Silhouette, for larger kWe prefer a larger bound than a tighter
one avoiding an undesired termination. The following bound is defined after these consid-
erations and we get:

λt =
17

20
(5.25)

5.2.4 Complexity and Correctness

Since each iterationof extendeKMeansbeginswith executionofk−Means, it is required
a digressionon analysis ofk−Means, for a complete evaluationof the algorithm. Its pseudo
code is available into Algorithm 2.2.
First, we evaluate the cost function required for each iteration. It is based on the number
of samples n and on the number of clusters k. First k points, as explained into the section
2.7.1, can be produced into different ways. In this analysis we assume that they are picked up
randomly, hence time required for generation of the first k center is negligible. Into T1(n, k)

41

we store cost function required for each iteration of the algorithm.

T1(n, k) =

(
n∑
i=1

(
k∑
j=1

α1

)
+ α2

)
+

n∑
i=1

α3

=
n∑
i=1

(α1k + α2) +
n∑
i=1

α3

= n(α1k + α2) + α3n

(5.26)

whichα1, α2, α3 represent constant factors. Total cost functionof thek−Means algorithm
is:

T (n, k, i) = i (n (α1k + α2) + α3n) (5.27)

which we introduce i in order to denote the number of iterations. The last analysis involves
the evaluation of asymptotic complexity of i.
Into a real scenario k −Means performs very well, with a small number of iterations even
for large dataset. It is still required the evaluation of the complexity of the algorithm inworst
case scenario. Recalling the results highlighted found in [24] we have:

i = 2Ω(
√
n) (5.28)

which it highlights an exponential growth of the algorithm. In conclusion, asymptotic time
complexity is:

O(nk2Ω
√
n) (5.29)

Through the usage of 5.29, we compute tha asymptotic complexity of extendeKMeans

algorithm into worst case scenario.
For a proper discussion of the cost function involved in the algorithm, we split it among
procedures recalled into extendeKMeans. At the end we sum up the results in order to
detect the asymptotic complexity. The common input variable of the cost function is the
number of samples n and the number of clusters k.

• generate MPoint
This procedure produces as output the set of point that they will be reclassified later.
Dimension of the output is related of the value of threshold λc. A more appropriate
analysis will be held later, in order to produce an upper bound of the complexity of
the whole algorithm.

42

Cost function for this procedure is noted as T1(n, k).

T1(n, k) = α1n
2 +

n∑
i=1

α2 = α1n
2 + α2n (5.30)

where α1n
2 represents complexity of Silhouette function, as described in 4.11. α2 is a

constant factor linked to comparison and assignment into the loop.

• closest Center
The procedure aims to associate to each point intoM the reference to the closest cen-
ter. We denote the cardinality of the setM with |M |. Computation of the center of
each cluster is performed into α1n. Final cost function of the procedure is the follow-
ing:

T2(n, k) = α1n+

|M |∑
i=1

k∑
j=1

α2

= α1n+ α2k |M |

(5.31)

• bruteForce
Final procedure is executed in order to testing all the possible combinations into T ,
output of the closestCenter procedure. Since |T | ≡ |M |, we represent with |M |
the cardinality of T . Binary representation of a number is assumed completed into
constant time. Cost function is stored into T3(n, k).

T3(n, k) =
2|M|∑
i=0

 |M |∑
i=0

α1 + α2n
2 + α3


=

2|M|∑
i=0

(
|M |α1 + α2n

2 + α3

)
= 2|M | (|M |α1 + α2n

2 + α3

)
(5.32)

which α1 is constant factor related to distance computation, α2n
2 is silhouette index

and α3 is related to final comparison and assignment into the algorithm.

Since all the methods recalled in the main function are exploited, we can analyze the cost
function of the entire algorithm. As k − Means, the core of the algorithm is the repeti-
tion of the analysis for increasing k, until the stopping condition denoted into 5.24 forces
the termination. Even if in the real case scenario the result is better on average, asymptotic

43

complexity discussion is referred to the worst case. In this situation algorithm iterates over
all the possible k, since k = n− 1. For the generation of the threshold λc we need to detect
the minimum and maximum of silhouette score, cost function for this task is:

T4(n, k) = α1n
2 + α2n (5.33)

where we recall cost function of Silhouette as highlighted in 5.11 and searching for the maxi-
mum and minimum value are linear operations executed into an array.
Summing up all the previous result we obtain a cost function T (n, k).

T (n, k) =
n−1∑
i=2

(nk2Ω
√
n + α1n

2 + α2n+ α1n
2 + α2n+ α1n+ α2k |M |+

+ 2|M |(|M |α1 + α2n
2 + α3) + α4)

= (n− 1)(nk2Ω
√
n + α1n

2 + α2n+ α1n
2 + α2n+ α1n+ α2k |M |+

+ 2|M |(|M |α1 + α2n
2 + α3) + α4)

(5.34)

We need to define the value of |M |. Into the worst case scenario the number of points in-
cluded into M are the whole dataset, if the silhouette is below threshold for each point.
Hence in the worst caseM = O(n). Asymptotic complexity of the algorithm is:

O(n32n) (5.35)

The last part of the analysis involves the correctness of the algorithm.

Proposition 2. Given a dataset of n points X = {x1, x2, . . . , xn}, the application of Algo-
rithm 5.4 returns a value of Silhouette S∗, generated from a clustering C∗. S∗ ≥ Sk ∀k =

2, . . . , n− 1. Furthermore, Algorithm 5.2 always finishes.

Proof. First of all we proceedwith the proof that algorithm always finishes. Since it is an iter-
ative procedurewe need to proof that variables that define the loop do not change during the
execution of the inner code, hence the loop reaches its end. It is simple to proof this condi-
tion into the procedure generateMPoint, closestCenter and bruteForce. It requires a
small analysis of the condition into while block inside the extendeKMeans function. The
termination of the loop occurs when the silhouette starts decreasingwith reference to a given
threshold. If this condition never occurs, k < n−1 guarantees termination since k increases

44

at each iteration regardless of the result of clustering. Hence, the algorithm reaches termina-
tion.
For proving S∗ ≥ Sk we need to proof that exists a combination where the algorithm exe-
cutes the same clustering of k −Means, guaranteeing a value of S∗ = Sk.
For each point stored into set M , closestCenter detects the two closest clusters to each
point, respectively C1 and C2. All other points are labelled with the same value returned
from k −Means. First, we prove that exists a condition where each point is labelled with
its closest center. During the execution, bruteForce algorithm tests for each point in M
assigning them to closest or second closest cluster. Each test is related to a binary number.
The binary sequence 00 . . . 0 is referred to the selection for each point of the closest cluster
C1. In bruteForce it is the first sequence analyzed into for loop. extendeKMeans tests
this clustering, storing its silhouette Value. Last step of the demonstration involves the proof
that into k −Means each point is labelled with the closest center.
We proceed through a contradiction. Suppose that it exists xi ∈ Ci, with:

d(xi, Ci) > d(xi, Cj) for a given 0 ≤ j ≤ k. (5.36)

Since k − Means is concluded, in the last iteration, there are no variations of the cluster
center, so all the points were perfectly matched with the proper cluster. In the line 12 of Al-
gorithm 2.2 we perform the cluster selection of all samples, matching each point with closest
cluster. During the execution of the algorithm, in the last iteration, xi should be classified
into Cj since 5.36 occurs. In this case, the centroid would have been different and another
iteration was launched, but it contradicts the hypothesis given. We have proven that it exists
a clustering which associate each point with the closest center, as depicted in k−means. In
conclusion silhouette value returned from Algorithm 5.4 must be:

S∗ ≥ Sk ∀k (5.37)

5.2.5 Improvement

In the following section we proposed an improved version of the algorithm
extendeKMeans discussed above. It is focused on define in a precise way |M |, in order
to lower the asymptotic complexity of the algorithm from exponential to polynomial. All

45

the procedures described in the section above are still valid, hence we only need to redefine
the procedure generateMPoint. In this approachwe drop the use of the bound λc, which
defines a threshold useful to deciding whatever a point belong toM . At each iteration of the
algorithm cardinality of setM is log2n. The newprocedure generateMPointv2 is defined
into Algorithm 5.8.

Algorithm 5.8 generateMPointv2
1: Input
2: X dataset
3: C current clustering of the dataset

4: Output
5: M set of points belonging to dataset to be reclassified

6: procedure generateMPointv2(X ,C)
7: M ← ∅
8: S ← silhouette(X,C)

9: S∗ ← sorted(S)

10: for i← i to log2(n)

11: j ← argminS∗,i

12: M ←M ∪ xj
13: returnM

The algortihm 5.8 executed the procedure generateMPointv2, applied into Algorithm
5.4 instead of the procedure generateMPoint. It returns the set M of points that they
need to be reclassified. It gives up previous approach based on threshold, and it defines a
fixed number of ”worst” value. It stores into S the silhouette score for each sample, then
this list is sorted and stored into S∗. Lines from 11 up to 13, scan the log2n points with the
worst value of Silhouette storing them intoM , the output of the procedure.
There aremany possible alternatives to store the first k samples. If the solutions adopt the us-
age of a sorting algorithm with complexityO(nlogn),it does not affect the asymptotic com-
plexity. The improvement of this solution can be analyzed in terms of asymptotic complex-
ity. In the final cost function in 5.34, we need to replace the value of cost function T1(n, k),

46

with the following:

T11(n, k) = α1n
2 + α2nlogn+

log2n∑
i=1

α3

= α1n
2 + α2nlogn+ α3log2n

(5.38)

In order to define the cost function of the all algorithm we need to substituting T1(n, k)
into 5.34 with T11(n, k), and remove cost required for the definition of the threshold λc.
We obtain:

T (n, k) =
n−1∑
i=2

(nk2Ω
√
n + α1n

2 + α2nlogn+ α3log2n+ α1n+ α2k |M |+

+ 2|M | (|M |α1 + α2n
2 + α3

)
+ α4)

= (n− 1)(nk2Ω
√
n + α1n

2 + α2nlogn+ α3log2n+ α1n+ α2k |M |+
+ 2|M |(|M |α1 + α2n

2 + α3) + α4)

(5.39)

Since before, an improvement is achieved, into the worst case,M could be the whole dataset,
now we certainly assume that |M | = log2n. With this substitution into 5.39 we obtain:

T (n, k) = (n− 1)(nk2Ω
√
n + α1n

2 + α2nlogn+ α3log2n+ α1n+ α2klog2n+

+ n
(
α1log2n+ α2n

2 + α3

)
+ α4)

(5.40)

From 5.40 we can derive the asymptotic complexity of the new algorithm, that is:

O(n22Ω(
√
n)) (5.41)

It is important also to notice that this factor is due to k −Means procedure and its worst
case scenario, that it rarely occurs. The results gained from this algorithm S∗ has the same
property of results obtained into the first implementation, it means S∗ ≥ Sk ∀k since
proof does not involve size of setM . The termination of this new algorithm is simply pro-
vided by analyzing that procedure generateMPointv2 always reaches a termination.
Proof of correctness of this implementation descends immediately from the previous one.

47

5.3 PAMSILHOUETTE

In chapter 5.1 we adopted a naive solution for the definition of the best clusteringwhichmax-
imizes silhouette, with the brute force approach.
Later, into section 5.2 we proposed an algorithm which provides an extension of the most
famous technique used for clustering, k −Means. It runs the algorithm and then it per-
forms an improvement of the Silhouette with slight change to the results produced. Here,
we would like to provide another extension from one of the main famous algorithms, k −
Medoid. Starting from the idea behind that the algorithm we proposed is an improvement
suitable to increase performance for the main task of this thesis.

5.3.1 Description of the Approach

In this implementation we would like to refine the choice of themedoids of the Partitioning
Around Medoid algorithm in order to maximize the silhouette of the clustering. Once we
set the medoid C , each pointXi ∈ X will be classified in the proper cluster Ci according
with:

Ci = argmin
cj∈C1,...,Ck

d(xi, cj) (5.42)

While in the PAM algorithm we would like to minimize 2.10, the distance between points
and closestmedoid, in this implementation target functionwill be the Silhouette index of the
clustering. Given the number of the cluster k, PAM maximizes over all potential medoid
M the function:

f(M) = −
∑
j

d(xj,M) (5.43)

which d(xj,M) represents dissimilarities between point xj andmedoidM . In the compari-
son described above it is associates with the euclidean distance (2.1) betweenxj and its closest
medoid. The proposal of this implementation is the replacement of d(xj,M) in 5.43 with
the silhouette defined in 2.18. This new approach, namedPAMSILHOUETTE aims to
maximize the following function:

f(M) =
∑
j

S(j) (5.44)

S(j) function is the silhouette index of the cluster returned applying 2.1 to each points in or-
der to associate them to the closestmedoid. PAMSILHOUETTE would iterate through

48

the possible combinations of medoids in order to detect which one provides the best result
in term of Silhouette. Furthermore, we use an iterative optimization algorithm to detect the
best solution, instead of trying all the possible combinations.

5.3.2 InitialSeedingTechniqueforPartitioningAroundMedoidAlgorithm:
BUILD

Oneof themain known issue ofPAM technique is the highdifference in the silhouette from
two executions of the algorithm. It is much more sensible than other clustering approaches
to the initial seeding.
In literature, as k −Means + + introduces a technique for choosing the initial center of
the clustering, even PAM has an initialization phase, calledBUILD [25], which an initial
clustering is obtained through the successive selection of representative object until k objects
have been found. Given a set of pointsX = {x1, x2, . . . , xn} and a target number of cluster
k, the purpose of theBUILD algorithm is the selection of k points, named c1, c2, . . . , ck as
representative for clustering named respectivelyC1, C2, . . . , Ck. In the first phase an initial
clustering is obtained through the successive selection of the representative objects until k
points have been found.
The first medoid c1 is the one which minimizes the sum of distances to all other objects:

c1 = argmin
1≤h≤n

n∑
j=1

d(xh, xj) (5.45)

c1 is the most centrally located point intoX . Subsequently, at each step, another object is
selected, decreasing the objective function of k −Medoid (2.11) as much as possible. This
medoid has a minimal distance to all the selected medoids and the distance to this object is
the smallest.

c2 = argmin
1≤h≤n

n∑
j=1

min(d(xj, c1), d(xj, xh)) (5.46)

c3 = argmin
1≤h≤n

n∑
j=1

min(min
1≤l≤2

d(xj, c1), d(xj, xh))) (5.47)

. . .

49

ck = argmin
1≤h≤n

n∑
j=1

min(min
1≤l≤k−1

d(xj, c1), d(xj, xh))) (5.48)

This process is continued until k object has been found [25]. Here is provided the psuedo
code suitable for its implementation. M represents the distance matrix among all objects in
X , while dj represents the distance from xj to the closest medoid.

Algorithm 5.9 BUILD Algorithm
1: Input
2: M matrix of distances
3: Output
4: C initial seeding for Partitioning Around Medoid
5: procedure BUILD(M)
6: for i← 1 to n
7: if

∑n
j=1mij is minimal

8: c1 ← xi
9: D ←distances to the nearest medoid
10: for l← 2 to k
11: for i← 1 to n
12: if

∑n
j=1min(dj,mij) is minimal

13: cl ← xi
14: UpdateD
15: returnC

The algorithm5.9 executes the selectionof the initialmedoid as described into 5.45 - 5.48. The
input of the algorithm is the matrix of distances among all the sampleM . mij is referred to
the distance between xi and xj .The first medoid c1 is selected into the first iteration, from
line 6 up to line 8. It implements 5.45.
Others medoids, from c2 up to ck, are retrieved into the second for loop, they respects 5.46 -
5.48 and they are stored intoC , which it is the output of the procedure.
For a complete treatment of the algorithm we perform the asymptotic complexity in time
of BUILD. It is crucial to evaluate if the amount of time required into BUILD for the
generation of the seeding medoid reflects into a faster execution of PAM .
Here we focus inBUILD algorithm, without consider the time involved for the computa-
tion of the distance matrixM required as input for the procedure. On specifics we compute
the cost function for three categories which we can subdivide the algorithm

50

• Detection of the first medoid c1
Cost function associated is T1(n, k). We obtain the value inspecting first loop into
the pseudo code. We get:

T1(n, k) =
n∑
i=1

n∑
j=1

α1 = α1n
2 (5.49)

which we assume as constant α1 the time spent for detection of the minimal sum of
distances and assignment to c1. Since value ofmij is provided from input, it does not
depend on n.

• Compute distances to the nearest medoid
Line 9 of the algorithm involves computation of the distance from each point x ∈
X − C . It requires to compare all distances among each point x to all the medoids,
so normally it requires T2(n, k) = (n − k) ∗ k. At this stage c1 is the only medoid
discovered, therefore k = 1.

T2(n, k) = n− 1 (5.50)

• Compute c2, . . . , ck
Final loop of the algorithm involves the computation of the medoids up to k. In this
section we need to focus on the nested loop. We get:

T3(n, k) =
k∑
l=2

(
n∑
i=1

n∑
j=1

α1 + (n− l)l

)

=
k∑
l=2

(
α1n

2 + (n− l)l
)

=
k∑
l=2

α1n
2 +

k∑
l=2

nl −
k∑
l=2

l2

= α1n
2(k − 1) + n

(
k∑
l=1

l − 1

)
−

(
k∑
l=1

l2 − 1

)

= α1n
2(k − 1) + n

(
k(k + 1)

2
− 1

)
−
(
k(k + 1)(2k + 1)

6
− 1

)
. . .

= α1n
2(k − 1) + n(

k2

2
+
k

2
− 1)− k(k

2

3
+
k

2
+

1

6
) + 1

(5.51)

51

whichwe denotewithα1 the constant time required for the evaluation of theminimal
distance from dj andmij , and the assignment into cl

Finally, we can evaluate total time spent from the algorithm summing up all the phases.

T (n, k) = T1(n, k) + T2(n, k) + T3(n, k)

= α1n
2 + n− 1 + α1n

2(k − 1) + n(
k2

2
+
k

2
− 1)− k(k

2

3
+
k

2
+

1

6
) + 1

= α1n
2k + n(

k2

2
+
k

2
)− k(k

2

3
+
k

2
+

1

6
)

(5.52)

Through the usage of the asymptotic notation we can classify the algorithm as:

O(n2k + nk2 − k3) (5.53)

5.3.3 Pseudo Code

In this section we present the code used in the implementation of the
PAMSILHOUETTE algorithm.

The algorithm 5.10 represents the pseudocode required for the execution of
PAMSILHOUETTE. It requires only the dataset X as input, in order to produce as
output the c∗, which represents a set of medoids. Associating each sample with the closest
medoid, we obtain as results clustering with maximum value of Silhouette observed during
its execution.
Initially it generates the distancematrix among all objects intoX . It is required forBUILD.
Then it defines some variables used later: S∗ stores the best result of Silhouette obtained
when the combinationofmedoid is c∗ andλt is used as a stopping conditionof the algorithm.
It provides a threshold for the silhouette, in order to stop the execution when the algorithm
produces clusteringwith a poor value of silhouette. It iterates over k, starting from a number
of clusters equal to 2. Sk contains a temporary result of the best Silhouette obtained with k
clusters. The algorithm is repeated for each k, until the stopping condition does not stop the
execution. At each iteration it increases the number of k, it executed theBUILD algorithm
in order to detect the best initial medoid for a given k, and initialize to -1 current value of best
Silhouette Sk.
For each k is executed another loop. Each iteration is determined from the variable t, which

52

Algorithm 5.10 PAMSILHOUETTE Algorithm
1: Input
2: X dataset
3: Output
4: c∗ medoids, with produces clustering with miximum silhouette
5: procedure PAMSILHOUETTE(X)
6: M ← ∅
7: for i← 1 to n
8: for j ← 1 to n
9: Mi,j ← d(xi, xj)

10: λt ← 17
20

11: k ← 1
12: S∗, Sk ← −1
13: c∗
14: while Sk ≥ λtS∗ and k < n− 1
15: k ← k + 1
16: t← 0
17: ct,k ← BUILD(M,k)
18: Sk ← −1
19: repeat
20: t← t+ 1
21: for i← 1 to k
22: for all xj ∈ X − ct−1,k

23: swap xj and ci
24: labels←associate each point to closest medoid
25: if Sk ≥ silhouette(x,labels)
26: SK ← silhouette(X, labels)
27: Ct ← swapped medoids
28: until si > si−1

29: if Sk > S∗
30: S∗ ← Sk
31: c∗ ← ct,k

32: return c∗

53

we increase at each iterations of this inner round. At each step it tests the current medoids:
for eachmedoid ci it swaps with a sample xj , This operation is repeated for each sample into
datasetX and for each medoid into c. At each swap it evaluates the Silhouette score gained
through association of each sample to the closest medoid. If it detects a swap improving the
current value of SilhouetteSk (whenmedoids were ct−1,k), it generates a new set ofmedoids
ct,k with swap applied. This iteration is executed until any swaps perform an improvement
of the Silhouette. In this scenario the algorithm exits from repeat-until block, it updates if
necessary the best value of Silhouette S∗, and relative medoids c∗, and continue with bigger
k.
Given a specific k,at each iteration of the algorithmwewould like to findmedoids ct,k which
increases the value of the silhouette computed when medoids were c0,k. Assuming F as
functions that assign Silhouette value to a given cluster, we obtain a monotonic sequence of
value:

F (c0,k) < F (c1,k) < . . . (5.54)

We need to elaborate a strategy to improve gradually the value of silhouette. In
PAMSILHOUETTE, it is performed from the swapping of a notmedoid point xj with
a medoid sample ct,k. This produces a continued improvement of the goal function defined
as Silhouette index.
Since it requires an a − priori knowledge of the number of clusters required, we perform
the algorithm for all the possible k. As an improvement of this trivial solution we set a
threshold used as a stopping criteria of the algorithm. It is the same idea presented into the
extendeKMeans.

5.3.4 Choice of Parameters

Analyzing the pseudo code available into Algorithm 5.10 we can notice that it is present a pa-
rameter λc useful for the stopping of the algorithm. As we perform into extendeKMeans

we introduce a parameter related to the best Silhouette value. The algorithm is executeduntil
this condition is verified:

currentSilhouette > λc ∗ bestSilhoutte (5.55)

currentSilhouettemeans the highest value we can obtain on Silhouette with a selected k,
while bestSilhouette is the best value of Silhouette among all the possible k. It is necessary

54

to detect the best clustering in terms of Silhouette without requiring any input constraint.
Value ofλc, as explained into extendeKMeans, needs tobe tuned to avoid a search for large
value on k, with cluster with poor silhouette value. On the other hand, an early stopping can
deny the possibility of an increasing Silhouette with large k. For this reason value is set to:

λc =
17

20
(5.56)

5.3.5 Complexity and Correctness

In this last section we need to analyze in details time complexity of the algorithm proposed.
The analysis involved the computation of the cost function for themain structure presented
in the procedure.

• creation of matrix of distances M
The first step of the algorithm is the creation of the matrix of distancesM used later
intoBUILD procedure.

T1(n, k) =
n∑
i=1

n∑
j=1

α1 = α1n
2 (5.57)

which evaluation of the distance between xi and xj is computed into constant time
O(1).

• BUILD
Initial medoid are samples returned fromBUILD procedure, the cost function
T2(n, k) related of this algorithm is highlighted in 5.52.

• Detection of best medoid for a given k (from line 19 to line 28)
Core of thePAMSILHOUETTE algorithm is the swap and the test of each point
intoX and into ct,k. For each iteration it is necessary to compute the swap, in constant
timeO(1), associate each point to the closest label (cost function related is (n− k)k)
and compute Silhouette (cost function related isO(n2)). It is fundamental to detect
the possible number of repetitions into the loop.
In order to repeat the loop we need to detect k medoids ∈ ct,k which improves Sil-
houette value computed with medoids ∈ ct−1,k. In the worst case we get a slight
improvement of each iteration. It is important to notice that it is not possible that we
get at the end of an iteration same medoids of the beginning, because St > St−1. We
create a monotonic sequence:

S(c0) < S(c1) < . . . (5.58)

55

Therefore in worst scenario we found at each step a new combination that increase
Silhouette, and it is necessary to test them all. Possible combinations of k medoids,
given dataset of n points, are: (

n

k

)
(5.59)

Finally we compute the cost function for the whole loop.

T3(n, k) =

(
n

k

) k∑
i=1

n−k∑
j=1

(
α1 + (n− k)k + n2

)
=

(
n

k

) k∑
i=1

((
α1 + (n− k)k + n2

)
(n− k)

)
=

(
n

k

)(((
α1 + (n− k)k + n2

)
(n− k)

)
k
)

. . .

=

(
n

k

)(
n3k + α1nk − 2nk3 + k4 − α1k

2
)

(5.60)

where we denote as α1 the constant time required for the swap.

With the T1(n, k), T2(n, k) and T3(n, k) we obtain all tools required for calculation of
cost function of PAMSILHOUETTE. We need to calculate the number of iterations
of the while loop into line 14 in the worst case scenario. In this situation we have to iterate
through all possible number of clusters, up to n− 1.
We can express the total cost function as:

T (n, k) = T1(n, k) + α1 +
n−1∑
k=2

T2(n, k) + α2T3(n, k)

= α1n
2 + α1 +

n−1∑
k=2

(α1n
2k + n(

k2

2
+
k

2
)− k(k

2

3
+
k

2
+

1

6
)+

+ α2

(
n

k

)(
n3k + α1nk − 2nk3 + k4 − α1k

2
)
)

(5.61)

In 5.61 we noted asα the constant terms. For an asymptotic notation we define some bound

56

for an easier computation of the cost function. Recalling that k < n is always valid and:(
n

k

)
≈ O(nk) (5.62)

we get:

T (n, k) ≤ α1n
2 + α1 +

n−1∑
k=2

(α1n
2k + n(

k2

2
+
k

2
)+

+ α2n
k(n3k + α1nk + k4))

(5.63)

Concludingwedefine the asymptotic complexity fo thePAMSILHOUETTE algorithm.

O(nn) (5.64)

The last analysis involves a discussion on the termination of the algorithm. Since it is not pos-
sible to detect if PAMSILHOUETTE performs better or worse than PAM algorithm,
we perform evaluation on the termination of the algorithm. Even in this case it is an iterative
algorithm, so it is trivial to detect that all the variables constituting the loop do not mutate
during each iteration.
It is important to detect if the repeat until block reaches its conclusion.
For a specific number of cluster k, suppose that it exists at least one set ofmedoids c∗,k which
generates the best possible value of Silhouette S∗. We recall that since we detect k medoids,
there is a unique association through all the sample andmedoids. We start frommedoid c0,k
which generates the value of silhouette S0. At each iteration we obtain a clustering ct,k with
the increasing value of silhouette S1. We create the monotonic sequence:

S(c0,k) < S(c1,k) < · · · < S(c∗,k) (5.65)

The sequence is upper bounded from the best possible clustering. Although it is delimited
we cannot determine if it finishes before reaching it, because the algorithm may lead to stop
with ci,k with no more swap that can improve Silhouette, even if S(ci,k) < S(c∗,k).
Since each iteration is associated with a clustering value, we cannot be stuck into a repeti-
tion of the same clustering more than once. We conclude that it exists a clustering formed
from ci,k which S(ci,k) ≤ S(c∗) and no possible improvement of Silhouette, forcing the
algorithm to finishes.

57

5.4 ExtendePAM

The final algorithmproposed into this thesis is amixture of the idea presented in the previous
algorithms. Except from the first naive approach presented on this thesis, bruteForce, some
features of the extendeKMeans andPAMSILHOUTTE approaches can be mixed to-
gether in order to derive this new algorithm, extendePAM .

5.4.1 Description of the Approach

This algorithm executes mainly the procedure involved and presented into
extendeKMeans, but into extendeKMeans we adopt k −Means algorithm initially
to define the first labels of the samples, as depicted into Algorithm 5.4 on line 11. Here, we
use
PartioningAroundMedoid algorithm for initial clustering.
Once we execute this algorithm we adopt the same technique and strategies used into
extendeKMeans. This approach is presented as a completion of the thesis, in order to
inspect all the possible strategies that we can achieve trying to improve existing algorithm.

5.4.2 Pseudo Code

In the pseudo code presented into this section we report only the different procedure than
extendeKMeans. Even if the algorithm requires external procedures, they are identical to
the one provided into extendeKMeans, which pseudo code is available into Algorithm
5.5, 5.6 and 5.7 As extendeKMeans, it is formed from a main function described into Al-
gorithm 5.11.

58

Algorithm 5.11 Extension of Partitioning Around Medoid
1: Input
2: X dataset
3: Output
4: C∗ clustering with better silhouette index

5: procedure extendePAM(X)
6: C∗ ← ∅
7: S∗, S−1 ← 0

8: k ← 2

9: λt ← 17
20

10: while S−1 ≥ λtS∗ and k < n− 1

11: Ck ← PAM(X, k)

12: ψ0, ψ1 ← min(silhouette(Ck)),max(silhouette(Ck))

13: λc ← 10(ψ1−ψ0)
logK+130

+ ψ0

14: Mk ← generateMPoint(X,Ck, λc)

15: Tk ← closestCenter(Mk, Ck, k)

16: Sk, Ck ← bruteForce(X,Tk, Ck)

17: if Sk > S∗

18: S∗ ← Sk

19: C∗ ← Ck

20: k ← k + 1
returnC∗

The main difference from Algorithm 5.4 is the usage of Partitioning Around Medoid al-
gorithm (PAM). For an easier comprehension, we proposed the meaning of the notation
presented. With C∗ we denoted the best clustering, which corresponds with the clustering
that maximizes value of Silhouette. S∗ and S−1 contain the best Silhouette achieved and
the value computed on C∗ and the initial Silhouette, respectively. λc and λt highlights the
threshold required for the algorithm, used for point selection and stopping criteria for the
algorithm.
Core of the algorithm is the loop from line 10 up to line 20. It is executed until the best sil-
houette achieved for the specific k,Sk is bigger than stopping criteria; the condition involves
also the number k of the clusters, since 0 < k < n.
At each iteration k is used to store the current number of clusters. Ck saves the clusters

59

returned from PartitioningAroundMedoid Algorithm. Mk is a set containing all the
samples which they will be reclassified later. For this purpose, it is necessary to define the
threshold λc. Through the usage ofMk we define Tk with closestCenter procedure. Here
for each sample into M we associate labels to the closest two clusters. For a given T and
sample xi ∈M , we get Ti[0] the value of the closest cluster, while Ti[1] contains the second
closest cluster. Finally Sk, Ck are the Silhoutte and cluster obtained from bruteforce pro-
cedure, it tests all the possible combination into Tk to produce the best clustering, one that
maximizes silhouette. Finally, it updates if required the best Silhouette into S∗.

5.4.3 Complexity and Correctness

Nowwe focus on the detection of the asymptotic complexity in time of the algorithm. Since
it executes procedure available from extendeKMeans algorithm, for the computation of
cost function we use some results obtained into section 5.2.4.
It is required an analysis of asymptotic complexity of PartitioningAroundMedoid algo-
rithm, described into Algorithm 2.4. In this pseudo code the initial medoids are chosen uni-
formely at random from the dataset, but into PAMSILHOUETTE we adopt a specific
seeding technique,BUILD. Weperforman analysis of cost function of thePAM obtained
after replacing into line 7 of Algorithm 2.4, the BUILD algorithm, as exploited in line 17
of Algorithm 5.10. We divide evaluation of the cost function of the algorithm into differ-
ent portions of the pseudo code. Later, we combine these results in order to detect the final
asymptotic complexity. Thenput of the cost function are datasetX and number of clusters
k.

• BUILD initial seeding
The evaluationof the cost function returned from theBUILD algorithm is exploited
into 5.52. Here we propose the same approach returning the same cost function.

• Associate each point to the closest medoid
Even if the pseudo code is not specific related to the technique used to compute the
association, we can evaluate the cost function as:

T2(n, k) =
n−k∑
i=1

k∑
j=1

α1 = α1(n− k)k (5.66)

where we denoted with α1 the constant time required for evaluate of distance func-
tion. The formuladerives fromassumption that eachpoint /∈M need tobe compared
with all samples∈M in order to detect closest medoid.

60

• Cost function for each iteration
First, it is useful to detect the cost function associated for each iteration of the while
loop into the pseudo code. We need to define the cost associated to a specific medoids
configuration. Cost depicted into the algorithm refers to the sum of distance from
each samples to the closest pseudocode. For this reason, cost can be computed during
the association to each sample with closest medoid, without affecting T2(n, k).
For each iteration we get:

T3(n, k) =
k∑
i=1

n−k∑
j=1

α1 + α2(n− k)k = α2(n− k)2k2 + α1(n− k)k (5.67)

Into 5.67 we indicates with α1 operation executed into contant time. Moreover we
use 5.66 when we refer to the cost of associating each sample to closest medoid.

To build the whole cost function of Algorithm 5.11, we need to estimate the number of
iterations in worst case scenario. Once we notice that cost of configuration has to increase at
each loop, we easily conclude that set ofmedoid is different at each iteration, and a set cannot
be used twice. The worst case involved a slightly improvement of medoid at each iteration.
Assuming as M∗, the set of medoids which minimizes cost function, in the worst case we
generate a sequence of medoids.

M0 < M1 < · · · < M∗ (5.68)

Since it exists an upper bound from the sequencewederive that the algorithmalways finishes,
and in the worst case we get a new set of medoids at each iteration. Worst case is testing of all
possible k − subset fromX samples, hence:(

n

k

)
(5.69)

We can define the cost function of PartitioningAroundMedoid.

T4(n, k) = T1(n, k) + T2(n, k) +

(
n

k

)
T3(n, k)

= α1n
2(k − 1) + n(

k2

2
+
k

2
− 1)− k(k

2

3
+
k

2
+

1

6
) + 1+

+ α1nk − α1k
2 +

(
n

k

)
(α2(n− k)2k2 + α1(n− k)k)

(5.70)

61

Recalling from 5.52 the cost function T1(n, k) of BUILD algorithm and:(
n

k

)
= O(nk) (5.71)

we get asymptomatic complexity of PAM Algorithm.

O(nk+2) (5.72)

Once we compute the analysis of PAM we can proceed with the evaluation of the
extendePAM algorithm. Since it uses some procedures available into extendeKMeans,
we can recall the cost function of generateMPoint, closestCenter and bruteForce,
where cost function is available into 5.30, 5.31 and 5.32 respectively. With the cost function
discovered into 5.70, we can calculate the function related to the cost of each iteration of
extendePAM . We need to introduce the cost function related to the calculation of the
threshold λc, which we denoted with T5(n, k). Even in this case we need to assume the
number of iterations with reference to worst case scenario. Since the change of initial algo-
rithm fromK −Means to PartitioningAroundMedoid does not affect the number of
iterations involved, we can assume the same scenario of extendeKMeans, hence it needs
to test all the possible k, from 2 up to n− 1. Finally we get:

T (n, k) =
n−1∑
k=1

α1 + T1(n, k) + T2(n, k) + T3(n, k) + T4(n, k) + T5(n, k) (5.73)

where we indicate with α1 the constant time required for assignment. Substituting the dif-
ferent cost function we obtain:

T (n, k) =
n−1∑
j=1

α1 + α1n
2 + α2n+ α1n+ α2k |M |+

+ 2|M |(|M |α1 + α2n
2 + α3)+

+ α1n
2(k − 1) + n(

k2

2
+
k

2
− 1)− k(k

2

3
+
k

2
+

1

6
) + 1+

+ α1nk − α1k
2 +

(
n

k

)
(α2(n− k)2k2 + α1(n− k)k)+

+ α1n
2 + α2n

(5.74)

62

It is trivial to detect that the asymptotic complexity in 5.74 is related to 2|M |. Into the worst
case scenario setM can potentially include all the possible points, defining the asymptotic
complexity of extendePAM in:

O(2nnk+3) (5.75)

Finally we discuss about the correctness of the algorithm.

Proposition 3. Given a dataset of n pointsX = {x1, . . . , xn}, the application of Algorithm
5.11 returns a value of Silhouette S∗ generated from a clustering C∗. We get Sk ≤ S∗ ∀k,
where Sk is the clustering returned from PAM with k initial medoids. Furthermore, Algo-
rithm 5.11 always finishes.

Proof. Proof of the Proposition 3 can be derived from Proposition 2, since results of the
proof does not depends on the labels associated to the initial algorithm applied.

5.5 Improved version of extendePAM, extendePAMv2

The last approachproposed aims to improve theprevious algorithmdiscovered, extendePAM .
As extendeKMeansv2performs an improvement for extendeKMeans, even in this case
we are looking for an improvement in time from the first version of the algorithm. The strate-
gies implemented recall extendeKMeansv2, in fact we change the construction of the set
M . In the basic version of the algorithm, the selection of point intoM is done by a thresh-
old. If a sample has a value below threshold it will be stored intoM and reclassified later into
bruteForce procedure. Here we save the worst log2(M) points. Worst is referred to the
Silhouette Value associated to each sample. It can be described with the application on line
14 ofAlgorithm 5.11 of the procedure generatePointM2, described intoAlgorithm 5.8. We
obtain the best performance in term of asymptotic complexity.

5.5.1 Complexity and Correctness

Since we start from the Algorithm 5.11, we can adopt its cost function, recalling to change
T1(n, k) into 5.73. In fact,T1(n, k) contains cost function associatedwithgenerateMPoint,
while into this algorithmweneed to replace that formulawith the equation in 5.38. It consists

63

of an analysis made on cost on procedure generateMPointv2. Finally we get:

T (n, k) =
n−1∑
j=1

α1 + α1n
2 + α2nlogn+ α3log2n+ α1n+ α2k |M |+

+ 2|M |(|M |α1 + α2n
2 + α3)+

+ α1n
2(k − 1) + n(

k2

2
+
k

2
− 1)− k(k

2

3
+
k

2
+

1

6
) + 1+

+ α1nk − α1k
2 +

(
n

k

)
(α2(n− k)2k2 + α1(n− k)k)+

+ α1n
2 + α2n

(5.76)

In 5.76 we know exactly the cardinality of the setM , hence we can substitute its value into
the equation, obtaining:

T (n, k) =
n−1∑
j=1

α1 + α1n
2 + α2nlogn+ α3log2n+ α1n+ α2k |M |+

α1nlog2n+ α2n
3 + α3n+ α1n

2(k − 1)+

+ n(
k2

2
+
k

2
− 1)− k(k

2

3
+
k

2
+

1

6
) + 1+

+ α1nk − α1k
2 +

(
n

k

)
(α2(n− k)2k2 + α1(n− k)k)+

+ +α1n
2 + α2n

(5.77)

We can conclude finally with the asymptotic complexity of the extendePAMv2 algorithm:

O(nk+3) (5.78)

64

6
Experimental evaluation

Inside this chapter we evaluate and discuss the results achieved implementing the algorithm
described into the previous section. Each result will be compared with other techniques and
with already existing clustering algorithms. Besides the Silhouette value we print also time
required for the completion of the algorithm. Since it is related with the power of machine,
we perform the experiments on the same computer in order to not affect the measures.

6.1 Dataset

For the execution of the algorithm, in order to produce a relevant result to be compared, we
need to identify a common environment that it will be reproduced in each test that we exe-
cute.
The dataset used in this thesis will be the Iris Dataset available into Sckit Learn library of
Python, BreastCancerWisconsinData Set andbanknote authenticationData Set, both avail-
able from UCI Machine Learning Repository [26][27].
The Iris flower data set or Fisher’s Iris data set is a multivariate data set introduced by the
British statistician and biologist Ronald Fisher in his 1936 paper. The data set consists of 50
samples from each of three species of Iris (Iris setosa, Iris virginica and Iris versicolor). Four
features were measured from each sample: the length and the width of the sepals and petals,
in centimetres. A scatter plot of the sample recorded into the dataset is available into Figure
6.1.

65

Figure 6.1: Iris Dataset. Each plot shows distribution of the sample filtering for only 2

features. Taken from [5].

Purpose of the algorithm will be a proper classification of the sample in clustering. It is
worth pointing out that the goal is the detection of the clustering that maximise the Silhou-
ette, regardless if its relatedK will be different from the real value of 3.

Into the Brute Force approach we will force to execute the algorithm on a small subset of
the dataset due to time required to the completion of the algorithm on big dataset. We select
randomly 13 index and they will be used as input of the algorithm. These values will be used
in each implementation in order to provide a comparison between the algorithm proposed
and the brute force approach. A plot of distribution of classes into these samples is available
into Figure 6.2

Breast Cancer Wisconsin (Original) Data Set contains a dataset with samples that arrive
periodically as Dr. William H. Wolberg, which reports his clinical cases. This breast cancer
databasewas obtained from theUniversity ofWisconsinHospitals,Madison. It is composed
of 10 different features for each sample, which it is classified into two classes, value 2 for be-

66

Figure 6.2: Reduced Iris dataset. 1,2 and 3 is used to labelling three classes of iris

nign, 4 for malignant. The attribute informations are the following:

• 1 - Sample Code Number - Domain: id number

• 2 - Clump Thickness - Domain: 1 - 10

• 3 - Uniformity of Cell Size - Domain: 1 - 10

• 4 - Uniformity of Cell Shape - Domain: 1 - 10

• 5 - Marginal Adhesion - Domain: 1 - 10

• 6 - Single Epithelial Cell Size - Domain: 1 - 10

• 7 - Bare Nuclei - Domain: 1 - 10

• 8 - Bland Chromatin - Domain: 1 - 10

• 9 - Normal Nucleoli - Domain: 1 - 10

• 10 - Mitoses - Domain: 1 - 10

Samples arrive periodically at professor Wolberg, which reports, from January 1989 to
November 1991, 699 samples into dataset. In this thesis this dataset is filtered from first fea-
ture related to the code number and from samples with some missing value, labelled in the
datasetwith ’?’ character. Furthermore, it is held only the unique instances, in order to delete
duplicates. Results are a dataset of 449 samples, each one described with 9 features.

67

Into the Brute Force approach we reduce the number of samples from dataset in order to ob-
tain results in reasonable time. As we perform into Iris Dataset, from 449 samples, we select
13 data points, which it is shown into Figure 4.3 the counting of different classes for reduced
dataset.

Figure 6.3: Reduced Breast CancerWisconsin Data Set. 2 and 4 is used to labelling

two kinds of cancer, benign ormalignant

Final dataset used into this thesis is the banknote authentication Data Set. It is the largest
of the 3 datasets proposed into this thesis. It is designed for distinguishing genuine and
forgedbanknotes. Datawere extracted from images thatwere taken fromgenuine and forged
banknote-like specimens. For digitization, an industrial camera usually used for print inspec-
tion was used. The final images have 400x 400 pixels. Due to the object lens and distance to
the investigated object gray-scale pictures with a resolution of about 660 dpi were gained. A
Wavelet Transform tool was used to extract features from these images. It is composed from
1372 sample, with 4 features:

• variance of Wavelet Transformed image - Continuos Value

• skewness of Wavelet Transformed image - Continuos Value

• curtosis of Wavelet Transformed image - Continuos Value

• entropy of image - Continuos Value

68

For the results dataset is filtered from duplicated values, resulting 1348 samples. The real
label associated to the dataset is subdivided into two classes, in order to distinguish if a ban-
knote is authentic or forged. As in the previous datasetwe generate also in this cases a reduced
versionof dataset, composedby 13 samples, which is used first intoBrute Force approach, and
later it is also executed from all other techniques. Data extracted from dataset has real label
distributed as highlighted into Figure 6.4.

Figure 6.4: Reduced banknote authentication dataset. 0 and 1 is used to labelling two

different classes of banknote

6.2 Implementation

Into this chapterwe provide some experimental results obtained after implementation of the
algorithm provided only as pseudocode in the chapter before. Into this thesis we decide to
implement them by the usage of Python as programming language. Most of tools required
are provided natively with the most famous library.
For clustering purpose, Python provides some powerful libraries which they include all the
tools required for algorithm implementation. Main libraries are the following:

• Scikit-learn
It is a free software machine learning library for the Python programming language
[28, 26]. It features various classification, regression and clustering algorithms includ-
ing support vector machines, random forests, gradient boosting, k-means and DB-
SCAN, and is designed to interoperate with the Python numerical and scientific li-
braries NumPy and SciPy. For the specific purpose of the thesis it is used to perform

69

algorithms likeHierachicalClustering andK−Means. Furthermore, it provides
a native procedure for calculation of Silhouette index for each sample.

• pyclustering
It is a Python data mining library (clustering algorithm, oscillatory networks, neural
networks)[29].It supports a wider range of clustering technique, including PAM ,
which it is widely used into this thesis.

• more-itertools
In more-itertools there are additional building blocks, recipes, and routines for work-
ingwith Python iterables. In this casewe have to dealwith a useful library formultiple
purposes. It provides in fact some basic functionalities. In this thesis we can find into
this library procedure algorithmu, which we used into bruteForce algorithm to
perform all the k − subset of a given dataset.

6.3 Comparison of commonly used Clustering Algorithms

The comparison involves the main clustering algorithms described in the chapter 2. The
proposed algorithms are:

• k −Means

• k −Meanswith the application of k −Means++ for initial seeding

• k −Medoid

• Hierarchical Clustering

For the Hierarchical clustering we provide results for all the linkage criteria defined in sec-
tion 2.6. Since each algorithm can produce different results at each iteration, tests are exe-
cuted for t = 100 iterations. Final results have shown the average value returned from the
test and the maximum silhouette achieved. Since the objective of the thesis is the detection
of the best silhouette it is interesting the best silhouette that an algorithm can achieve, even
if some circumstances are required.
Another important objective of the thesis is the detection of the number of cluster k which
clustering provides the best silhouette. Since all the techniques tested here require k as the
input of the problem(or it can be a stopping condition into hierarchical clustering), we per-
form test for k from 2 up to |X|−1. Table 6.1 shows the result for an interesting value ofK ,

70

in this scenario the value starts decreasing after k = 7, so it is useless for the thesis a further k.
All the tests are executed on IrisDataset. We perform the comparisonwith the iris dataset[4].

of Clusters 2 3 4 5 6 7
K-Means++ 0.6810 0.5276 0.4304 0.3905 0.3716 0.3551
K-Medoid 0.6858 0.5400 0.4698 0.4150 0.3603 0.3360
HC - Single 0.6867 0.5121 0.2819 0.2838 0.2214 0.1328
HC - Complete 0.5160 0.5136 0.4998 0.3462 0.3382 0.3298
HC - Average 0.6867 0.5542 0.4720 0.4307 0.3420 0.3707
HC - Ward 0.6867 0.5543 0.4890 0.4844 0.3592 0.3422

Table 6.1: Comparison of Average Silhouette value on Iris Dataset frommost famous clustering algorithm

The table 6.1 shows the average value returned by the algorithm. The Hierarchical Clus-
tering (HC into table 6.1), once the linkage criteria is defined, chose cluster to bemerged into
a deterministic way. The result is the same for all the iteration. For a graphic visualization,
Figure 6.5 provides a simple comparison.

Figure 6.5: Histogram of Average Silhouette value on Iris Dataset frommost famous

clustering algorithm

71

For a better comparison of the algorithm, since the objective of the thesis is the maximiza-
tion of silhouette, regardless if more execution occurs, here we also provide the best Silhou-
ette value. We notice, for the aforementioned cause, that the maximum silhouette of the
Hierarchical Clustering does not differ from the average one.

of Clusters 2 3 4 5 6 7
K-Means 0.6810 0.5528 0.4981 0.4931 0.3687 0.3582
K-Means++ 0.6810 0.5512 0.4973 0.4629 0.3828 0.3675
K-Medoid 0.6858 0.5553 0.4951 0.4933 0.4276 0.4429
HC - Single 0.6867 0.5121 0.2819 0.2838 0.2214 01328
HC - Complete 0.5160 0.5136 0.4998 0.3462 0.3382 0.3298
HC - Average 0.6867 0.5542 0.4720 0.4307 0.3420 0.3707
HC - Ward 0.6867 0.5543 0.4890 0.4844 0.3592 0.3422

Table 6.2: Comparison of maximum Silhouette value on Iris Dataset frommost famous clustering algorithm

Into previous tables we highlight the box containing the best value achieved for each al-
gorithm on the Silhouette value. Figure 6.6 reports histogram for a comparison of the dif-

Figure 6.6: Histogram ofmaximum Silhouette value on Iris Dataset frommost famous

clustering algorithm

ferent silhouette among algorithms. When inspecting the value of the maximum silhouette

72

obtained from the algorithm, we notice thatK −Medoid algorithm is able to perform the
best result also when k starts increasing. For small value of k, Silhouette are almost similar
for each algorithm analyzed. On the other hand, k−Medoid really suffers the initial seeding
of the algorithm. On this comparison the initial medoids are chosen uniformly at random
from the dataset. It is relevant to notice that a proper seeding initialization of k−Medoids

can generate clustering with higher value of Silhouette than k −Means. This is the mo-
tivation that prompted us to extend this technique into one algorithm. Moreover, there is
ahigh variance of the results because the initial seeding is solved with appliance ofBUILD
algorithm.
This analysis is prompt as a report on the best algorithm for Silhouette. The decision made
into chapter 5 are related to the value gained into this comparison. It is also powerful for the
analysis of the final silhouette value achieved from the algorithm presented in this thesis, to
highlight their effectiveness.

6.4 Brute Force Approach

The first algorithm implemented was bruteForce. As highlighted from its asymptotic com-
plexity it suffers on big dataset and for this reason the algorithm is performed only on few
selected indexes from both datasets. All the other techniques will be also tested with these
reduced versions of dataset, in order to highlights if they can achieve best result.
The brute Force algorithm produces as output only the best clustering with its silhouette
value. By exploiting the k − subset we can perform the best clustering for each different
value of k. We print all the different Silhouette values computed on the reduced version of
the dataset presented in sections 6.3.

We highlight the results of the best Silhouette returned by the algorithm for each dataset.
As we consider the same number of samples from each dataset, the analysis in time loses the
effectiveness repeated for all the dataset. We report into Table 6.4 the results obtained for the
Reduced Iris Dataset, in order to provide an idea of the time elapsed for a dataset of only 13
samples.

Finally we display into Figure 6.7,6.8 and 6.9 an histograms where we highlight the differ-
ent silhouette value achieved according to the number of clusters. Into each figure it is also
reported the time required for the completion of algorithm for the given k. As described
above we notice that the curve of time is always the same. We can notice that k ranges from
the minimum value of 2 until the maximum value of |X| − 1. It is important to highlight

73

of Clusters Iris* Breast Cancer* Banknote*
2 0.6791 0.7396 0.7388
3 0.5562 0.7844 0.6038
4 0.5041 0.7163 0.6321
5 0.4742 0.7170 0.5897
6 0.4731 0.6852 0.5723
7 0.4072 0.6231 0.5277
8 0.3608 0.5656 0.4767
9 0.2922 0.4701 0.4130
10 0.2115 0.3733 0.3450
11 0.1149 0.2605 0.2080
12 0.0685 0.1331 0.1366

Table 6.3: Silhouette Results performed fromBruteForce algorithm on reduced version of Dataset

the time required just for the execution of the algorithmwith 13 samples. We got in total, an
execution time of more than five hours. It provides once again a proof of unserviceability
into the real life.

Figure 6.7: Histogram of Silhouette value and time required in seconds for execution

of bruteForce on Reduced Iris Dataset

74

of Clusters Time # of k-subset
2 1.8622 4092
3 120.9080 261625
4 190.0248 2532530
5 3263.8143 7508501
6 4310.8248 9321312
7 3149.9193 5715424
8 1760.8264 1899612
9 1173.1307 359502
10 1055.9288 39325
11 1039.3648 2431
12 1061.0524 78

Table 6.4: Evaluation of time required and number of k-subsets for each number of cluster performed on Reduced

version of Iris Dataset

6.5 Extende K-Means and Improved version

6.5.1 Reduced Dataset

We analyze the performance provided by the first heuristic algorithm proposed,
extendeKMeans and its improved version. First we plot the results achieved by executing
the algorithm on a reduced version of dataset. The number of K shown in the following
results are due to the threshold set that provides a stopping condition on the algorithm. Here
we analyze a value returned on Silhouette after the appliance of the reduced version of the
dataset. These values can be compared with results obtained into the previous section, in
order to evaluate effectiveness of this approach.

of initial
clusters

k-Means extende
KMeans

of final
clusters

extende
KMeansv2

of final
clusters

2 0.6607 0.6607 2 0.6607 2
3 0.5520 0.5520 3 0.5520 3
4 0.5041 0.5041 4 0.5040 4

Table 6.5: Evaluation of silhouette value obtained after execution of extendeKmeans and its improved version on

reduced Iris Dataset

The table highlights the results of the algorithm shown at the end of its execution, in

75

Figure 6.8: Histogram of Silhouette value and time required in seconds for execution

of bruteForce on Reduced Breast Cancer Dataset

fact normally all the intermediate steps are not provided as output. We insert into the table
6.5, 6.6 and 6.7 column related to the number of clusters obtained into the best result of the
extendeKMeans and extendeKMeansv2. Due to the intrinsic composition of the algo-
rithm, some cases may lead to a reduced number of clusters into output. This circumstance
is invokedwhen all the points of a clusters are stored intoM . During the testing of the possi-
ble combination into bruteForce, they can be all assigned to another cluster, reducing the
number of clusters into the final results.

In this case we notice, that even if dataset is quite small we obtain a lower value compared
to the bruteForce approach for the number of clusters 3 and 4. We are still able to detect
the clustering which provides the best Silhouette in absolute term. It is due to k −Means

algorithm, in fact during the execution, extendeKMeans and its improved version are not
able to detect an improvement from the initial score of Silhouette.

While in this case we obtain the same number of clusters into the final clustering, we ob-
tain a reduced number analyzing Table 6.6. It shows the results after the appliance of the
algorithms on Breast Cancer Dataset.

Into this dataset we notice a reduction of the number of clusters into both algorithms
when k is set to 4. This is due to M that contains an entire cluster. While the Silhouette
achieved on reduced Iris is not the best, here we get the maximum result of Silhouette.
For the analysis of these reduced datasetswe introduce a slightly different stopping condition,

76

Figure 6.9: Histogram of Silhouette value and time required in seconds for execution

of bruteForce on Reduced Banknote Dataset

of initial
clusters

k-Means extende
KMeans

of final
clusters

extende
KMeansv2

of final
clusters

2 0.7396 0.7396 2 0.7396 2
3 0.7844 0.7844 3 0.7844 3
4 0.7163 0.7844 3 0.7844 3

Table 6.6: Evaluation of silhouette value obtained after execution of extendeKmeans and its improved version on

reduced Breast Cancer Dataset

replacing 5.4. In fact we consider:

SilhouetteV alue(currentK) < λtmaxV alueSilhouette and

currentNumberOfCluster = initialNumberOfClusters
(6.1)

This variation is not relevant when we analyze the entire versions of the dataset because it
is a very rare case the deletion of a cluster, instead a reduction of k is often performed into a
small dataset.
For this reason the algorithm executed into Table 6.6 stops after the fourth iteration.

We report intoTable 6.7 the results on the Silhouette obtained into the reduced version of
the Banknote dataset. Even in this case we obtain the best possible Silhouette value, but we
lose effectiveness in terms of Silhouette when the number of clusters start increasing. With
k = 3 the result is lower than bruteForce algorithm. All of the results do not show an im-
provement of the original value of k −Means, they are conditioned for the execution on

77

of initial
clusters

k-Means extende
KMeans

of final
clusters

extende
KMeansv2

of final
clusters

2 0.7388 0.7388 2 0.7388 2
3 0.5180 0.5180 3 0.5180 3

Table 6.7: Evaluation of silhouette value obtained after execution of extendeKMeans and its improved version on

reduced Banknote Dataset

the first algorithm, that it generatesCk. Into this analysis we do not include results on time,
due to the size of dataset.

6.5.2 Complete Dataset

We focus here on the experimental results obtained from the execution of extendeKmeans
andextendeKMeansv2on the entire versionof theDataset. Table 6.8 refers to IrisDataset.

of Clusters 2 3 4
K-Means 0.6810 0.5528 0.4981

Time K-Means 0.0120 0.0200 0.0230
extendeKMeans 0.6858 0.5543 0.4981
Time extende. 0.0260 0.0399 0.0330

extendeKMeansv2 0.6867 0.5553 0.4981
Time extendeV2 0.2757 0.3037 0.3067

Table 6.8: Results of silhouette and time required after execution ofKMeans, extendeKMeans and
extendeKMeansv2 on Iris Dataset

Analysis made on the entire version of the dataset showing that best result of Silhouette
is obtained with k = 2. Into the Iris dataset, we retrieve the optimum result after the appli-
ance of extendeKMeansv2 algorithm, while the original k−Means and the first version
extendeKMeans are not able to detect such a good result. Also, for the other value of kwe
obtain the best results during the execution of extendeKMeansv2. It is due to the thresh-
old used to the selection ofM . It generates the setM with |M | < log2(n).
The algorithms provided in the chapter 5 provide as results only the best value achieved for
each algorithm. All tables available into this section are obtained by exploiting the results of
the algorithm after each iteration.
Into the reduced version of the Dataset we notice that it is possible to obtain a reduced num-
ber of clusters as final results of algorithm. Inside a smaller dataset it is possible due to the

78

size; here, the number of clusters are not reported since the execution do not reduce the num-
ber of k.

For a highlight of the improvement in term of the Silhouette gained through the appli-
ance of the algorithm, we reported in Figure 6.10 an histogram of the increase of Silhouette
from the value returned after k −Means. It is also present a bar chart which denotes the
time required for both the computation of extendeKMeans and its improved version. In
the table we highlights in green the results returned from the algorithm during a normal
execution, without exploiting every k.

Figure 6.10: Histogram of increment of Silhouette value obtained for

extendeKMeans and extendeKMeansv2 algorithm related to k −Means
results. Line refers to time required in seconds for termination of the algorithm.

Algorithms are applied on Iris Dataset

Table 6.9 reports the results obtained after the execution of the algorithms on Breast Can-
cer Dataset. The results retrieved are very similar to the Iris Dataset. In fact we obtain the
best silhouete value with k = 2. While in the previous dataset, we get best Silhouette only
into extendeKmeansv2, here we detect same Silhouette metric in each algorithm, due to
the value reported after k −Means, which no technique was able to increase.
Focusing on the bigger value ofK we notice a tendency of better value of the Silhouette for
extendeKMeansv2 algorithm, as we notice into Iris Dataset. Even if the time required
for the execution of the Iris Dataset was just of a few milliseconds, here extendeKMeans

reports a long value for the termination. For instance its execution on k = 3 requires more
than 15 minutes for the completion.

We report into Figure 6.11 an increment in terms of the Silhouette from the common base

79

of clusters 2 3 4 5 6 7
K-Means 0.4650 0.3850 0.3951 0.3745 0.3809 0.3093

Time K-Means 0.0160 0.0270 0.300 0.0400 0.0380 0.0410
extendeKMeans 0.4650 0.3886 0.3952 0.3750 0.3830 0.3120
Time extende. 0.1469 1010.7223 0.05194 0.0630 31.2905 0.0649

extendeKMeansv2 0.4650 0.3862 0.3954 0.3761 0.3824 0.3230
Time extendeV2 2.0281 2.0111 1.9648 2.0562 2.0757 2.0022

Table 6.9: Results of silhouette and time required after execution ofKMeans, extendeKMeans and
extendeKMeansv2 on Breast Cancer Dataset

of the Silhouette achieved into k −Means algorithm. Time is dominated from the long
execution required for extendeKMeanswith 3 clusters.

Figure 6.11: Histogram of increment of Silhouette value obtained for

extendeKMeans and extendeKMeansv2 algorithm related to k −Means
results. Line refers to time required in seconds for termination of the algorithm.

Algorithms are applied on Breast Cancer Dataset

In Table 6.10 we summarize the results obtained of the appliance of the algorithms on the
Banknote Dataset, the biggest dataset with more than 1000 samples.
It is the only case in which we obtain better results on extendeKmeans compared with
extnedeKMeansv2. In this scenario the number of samples stored into M are sensibly
bigger into extendeKMeans as reported from the time required for the computation on
extendeKmeans. In fact, with k = 3 it requires more than 30 hours for the termination
while it demands less than 1 minute into extendeKMeansv2. The Silhouette retrieved is
the same of extendeKMeans. It means that even if we compared and tested more combi-
nations, we still would not be able to detect an improvement.

80

of clusters 2 3 4
K-Means 0.4336 0.3730 0.3115

Time K-Means 0.0300 0.0410 0.0631
extendeKMeans 0.4355 0.3731 0.3142
Time extende. 30182.3853 116711.7857 3538.8048

extendeKMeansv2 0.4342 0.3731 0.3142
Time extendeV2 57.4705 55.5922 57.8121

Table 6.10: Results of silhouette and time required after execution ofKMeans, extendeKMeans and
extendeKMeansv2 on Banknote Dataset

Finally we report the improvement of the Silhouette of extnedeKMeans and
extendeKMeansv2 compared with k −Means algorithm. We notice that time is domi-
nated from extendeKMeans.

Figure 6.12: Histogram of increment of Silhouette value obtained for

extendeKMeans and extendeKMeansv2 algorithm related to k −Means
results. Line refers to time required in seconds for termination of the algorithm.

Algorithms are applied on Breast Cancer Dataset

6.6 PAMSILHOUETTE

Here we focus on the results obtained after the execution of PAMSILHOUETTE Al-
gorithm on the Dataset proposed. First we execute the algorithm with a reduced version of
the dataset, in order to measure the effectiveness of PAMSILHOUETTE, comparing
results with bruteForce algorithm.

81

6.6.1 Reduced Dataset

PAMSILHOUETTE is executed on all of the three reduced versions of the dataset. The
results are shown into Table 6.12.

of Clusters Iris* Breast Cancer* Banknote*
2 0.6791 0.7397 0.7388
3 0.5562 0.7844 0.6038
4 0.7163
5 0.7170
6 0.6852
7 0.6231

Table 6.11: Silhouette value obtained after application ofPAMSILHOUETTE algorithm on reduced version

of Dataset

This algorithm returns into normal circumstances only on the value highlighted into the
table. In order to print all the results it prints, on each execution, the different Silhouette
obtained on the specific number of clusters. The dataset proposed different terminations,
in fact on the Iris* and Banknote* dataset, we stop the execution after 2 iterations due to the
activation of the stopping condition since we detect a fast decrease of the best value of the
Silhouette. The breast Cancer* dataset presents instead a more stable value of silhouette, for
this reason the algorithm is executed until k = 7.
PAMSILHOUTTE returns for each k and the dataset analyzes the best result in term of
Silhouette, as proved comparing Table 6.11 with Table 6.3, showing a great effectiveness of
the given algorithm.
In this scenario we can define the result for the specific number of clusters, without the prob-
lems found into extendeKMeans of reduction of k. Time results are not proposed due to
the lower size of the reduced version of the dataset.

6.6.2 Complete Dataset

In this section we discuss about the results obtained from PAMSILHOUETTE on the
whole dataset.
First we highlight the value returned of Silhouette of each number of clusters. In Table 6.12
is highlighted the best value for each dataset. They would be the results of the algorithm.

82

It is important to notice the sensible improvement on the Silhouette from this approach
compared with extendeKMeans. For instance, into Banknote dataset, we achieve an in-
crease of Silhouette from 0.3 to over 0.5. All the complete results are available in Table 6.12
On the other hand it is highlighted inTable 6.13 the time for the completion of the algorithm,

of Clusters Iris Breast Cancer Banknote
2 0.6867 0.4649 0.5185
3 0.5553 0.4221 0.5136
4 0.4009 0.3663
5 0.3987
6 0.3980
7 0.3845

Table 6.12: Silhouette value obtained after application ofPAMSILHOUETTE algorithm on complete version

of Dataset

in average bigger than the previous approach.

of Clusters Iris Breast Cancer Banknote
2 0.9811 27.5618 416.7992
3 4.8610 99.9507 1194.1723
4 198.6331 2132.3103
5 301.1513
6 506.1462
7 1116.0927

Table 6.13: Time in seconds required for application ofPAMSILHOUETTE algorithm on complete version of

Dataset

We notice that into the Iris Dataset and Banknote dataset, the execution is stopped just
after a few iterations for a rapid degradation of the value of Silhouette. Since this decrease is
lower into the Breast Cancer dataset, the algorithm is executed for more iterations.

6.7 extendePAM

6.7.1 Reduced Dataset

In conclusion we analyze the experimental results of the Silhouette value and time required
from extendePAM algortihm and its improved version. The algorithm is very similar to
the extendeKMeans, so it suffers on the same issue.

83

The number of k shown in the following results are due to the threshold set that provides
a stopping condition on the algorithm. As we can notice from Table 6.17 - 6.18 - 6.19, we
introduce a column related to the number of clusters into the final results returned from
the algorithm. This is due to re computation of the clusters into setM . As it happens into
extendeKMeans, if all the samples into a cluster are stored intoM , it is possible that all
the points are reassigned to a different cluster, reducing the number of final k. This event oc-
curs rarely into the large dataset, but here we discuss the results achieved with just 13 samples.
For this reason, only for the reduced dataset, we introduce the modified stopping condition,
reported in the equation 6.1.
Here we analyze the value returned on the Silhouette after the appliance of the reduced ver-
sion of the dataset. These values can be compared bruteForce algorithm, in order to evalu-
ate the effectiveness of this approach.

of initial
clusters

PAM extende
PAM

of final
clusters

extende
PAMv2

of final
clusters

2 0.6791 0.6791 2 0.6791 2
3 0.5520 0.5520 3 0.5520 3

Table 6.14: Evaluation of Silhouette value obtained after execution of extendePAM and its improved version on

reduced Iris Dataset

The table 6.14 reports results obtained after the application of the algorithms on reduced
Iris Dataset, comparing this results with Table 6.3 we can notice that the best value of the
Silhouette is achieved with k = 2. Results are reported up to k = 3 due to the stopping con-
dition presented into the algorithm, but we can notice that with a bigger k the algorithm is
not able to gain the full results reported from bruteForce.
Amain issue of this technique is related to the improvement from thePAM Algorithm. In
fact, extendePAM and extendePAMv2, aim to increase the silhouette value obtained af-
ter the application ofPAM algorithm, but they fail their purpose since they do not provide
any improvement after the testing of all the combinations into setM .

The reducedBreastCancerDataset suffers of the problemdepicted at the beginning of this
section, the reduction of the number of clusters into the results reported from the algorithm.
In fact we notice that with k=5, we obtain into extendePAMv2 a clustering with only 4
clusters.
The results printed from Table 6.18 highlight an effectiveness of the algorithm for a smaller

84

of initial
clusters

PAM extende
PAM

of final
clusters

extende
PAMv2

of final
clusters

2 0.7397 0.7397 2 0.7397 2
3 0.7844 0.7844 3 0.7844 3
4 0.7163 0.7163 4 0.7163 4
5 0.5233 0.5233 5 0.7163 4

Table 6.15: Evaluation of Silhouette value obtained after execution of extendePAM and its improved version on

reduced Breast Cancer Dataset

value of k. The Silhouette value reported from 2 up to 4 numbers of clusters shows that it
performs the optimum clustering, while extendePAM and extendePAMv2 fail into k =
5.
As we can evaluate on Table 6.18, a common problem of this technique is related to the real
improvement fromPAM algorithm. In fact in all the cases testedwe are not able to improve
the original value, showing for each dataset same results returned from PAM .

of initial
clusters

PAM extende
PAM

of final
clusters

extende
PAMv2

of final
clusters

2 0.7388 0.7388 2 0.7388 2
3 0.5180 0.5180 3 0.5180 3

Table 6.16: Evaluation of Silhouette value obtained after execution of extendePAM and its improved version on

reduced Banknote Dataset

The last dataset analyzed is the Banknote dataset. As the previous cases, here we got the
best Silhouetted when k = 2, but it performs poorly than bruteForce on k = 3. The ta-
ble shows only the first two results due to the fast decrease of the metrics, forcing stopping
condition to the termination of the algorithm after the second iteration.

6.7.2 Complete Dataset

We focus here on the experimental results obtained from the execution of extendePAM
and extendePAMv2 on the entire version of the Dataset. The table 6.17 refers to Iris
Dataset.

The analysis made on the entire version of the dataset highlights that best result of the
Silhouette is obtained with k = 2. As into extendeKMeans sections we obtain the best

85

of Clusters 2 3
PAM 0.6858 0.5412

Time PAM 0.2617 0.2198
extendePAM 0.6858 0.5412
Time extende. 0.2697 0.2328
extendePAMv2 0.6868 0.5412
Time extendeV2 0.5065 0.4785

Table 6.17: Results of silhouette and time in seconds required after execution ofPAM , extendePAM and

extendePAMv2 on Iris Dataset

result on the appliance of the improved algorithm. While extendePAMv2 gains an im-
provement of the original value reported after appliance of PAM Algorithm for k = 2, we
obtain a flatting of the Silhouette index for k = 3, highlighting the lack of effectiveness of the
algorithm, failing its purpose of the improving original Silhouette value. Due to the small
size of the dataset, the time required for the termination of the algorithm is negligible.

of Clusters 2 3
PAM 0.4645 0.3028

Time PAM 3.4065 2.8791
extendePAM 0.4645 0.3028
Time extende. 3.4475 5.4464
extendePAMv2 0.4645 0.3028
Time extendeV2 2.9200 4.8391

Table 6.18: Results of silhouette and time in seconds required after execution ofPAM , extendePAM and

extendePAMv2 on Breast Cancer Dataset

Table 6.18 shows the results obtain on the Breast Cancer Dataset. In this scenario we ob-
tain that the algorithm it is not able to detect the best Silhouette for k = 2, while it produces
clustering with smaller Silhouette than extendeKMeans and PAMSILHOUETTE.
This behaviour happens for each k tested.
As denoted into the IrisDataset and in all the reduced datasets, we obtain for extendePAM
and extendePAMv2 the same value of Silhouette returned from PAM algorithm. Same
behaviour occurs inTable 6.19 of BankNoteDataset. It is a crucial problems the effectiveness
of such algorithm.

In Table 6.19 we summarize the results obtained on the appliance of the algorithms with
the Banknote Dataset. It is the biggest dataset, with more than 1000 samples. It shows the
best result in terms of Silhouette for k = 2, obtaining a similar result of extendeKmeans.

86

of Clusters 2 3
PAM 0.4367 0.3680

Time PAM 18.8457 18.3293
extendePAM 0.4367 0.3680
Time extende. 48.2436 938.2057
extendePAMv2 0.4367 0.3680
Time extendeV2 77.1900 75.5238

Table 6.19: Results of silhouette and time in seconds required after execution ofPAM , extendePAM and

extendePAMv2 on Banknote Dataset

The value obtained after the appliance of PAMSILHOUETTE sets an upper bound to
the maximum Silhouette index gained from this dataset, in fact it reports a result sensibly
greater than extendePAM algorithm. Even for a smaller k we obtain clustering with a re-
duced value of the Silhouette index than the previous algorithms. As described above, it suf-
fers of the lack of improvement from PAM algorithm. Furthermore, the time required for
the termination of the algorithm starts increasing significantly. For instance, the appliance
of extendePAM with k = 3 requires more than 15 minutes.

87

88

7
Conclusion

Figure 7.1: Comparison of themaximum value of Silhouette achieved from all the

algorithm involved into this thesis on Iris Dataset

Silhouette is a metrics and it was crucial for the path followed into this thesis, it is posed
as a cost function to be maximized, and for this reason each result was evaluated referring to
the Silhouette. Since we perform the evaluation of each single algorithm, here we provide a

89

general point of view of the different algorithms, in order to highlight the algorithms with
best execute the goal of this thesis, which can be found at chapter 4. We report here the his-
tograms comparing all the techniques exploited into this treatment and the main clustering
algorithm. Figure 7.1, 7.2 and 7.3 would like to be a summary of all the results obtained into
this thesis. Here we can notice how thePAMSILHOUTTE algorithm performs a boost,
increasing a lot the maximum value obtained compared with all the other strategies. We can
also notice how the stopping condition forces a termination of the algorithm after a few iter-
ations, but it does not influence the best results, achieved in all the cases with k is equal to 2.
The most relevant results are obtained into the Banknote dataset, since it constitutes the
biggest dataset proposed, with more than 1000 instances. The results are conditioned from
the asymptotic complexity of the algorithm, analyzed individually for each algorithm. The
main issue is related to the time elapsed for the analysis. While all the main famous algo-
rithms require just a few seconds, even into the Banknote dataset, the algorithms presented
into chapter 5 require hours for the termination, providing the results with a very small in-
crease of the Silhouette index.

Figure 7.2: Comparison of themaximum value of Silhouette achieved from all the

algorithm involved into this thesis on Breast Cancer Dataset

This results, produced here, are unbalanced compared to the amount of time required
and the improvement of the silhouette; nevertheless, they are focused on detecting the best

90

cluster.

Figure 7.3: Comparison of themaximum value of Silhouette achieved from all the

algorithm involved into this thesis on Banknote Dataset

The final algorithm, extendePAM and its improvement are presented in order to mix-
ing the strategies extendeKMeans and PAMSILHOUETTE.
It starts fromPAMalgorithm, and tries to improve the clustering forcing the re assignment
of the points with lower silhouette. Even if this approach shows some relent results into
exntedeKMeans, it loses all the effectiveness on the extendePAM , showing almost the
same results gained after the execution of PAM algorithm. The first two techniques can
be considered as an improvement in the Silhouette, and in particular the extendeKMeasn

can be considered a valid trade-off among time and Silhouette.
As future work, it could be performed a redefinition of the threshold λc, in order to contain
a reasonable amount of points into setM , presented into extendeKMeans and
extendePAM . Another future improvement can be related to the number of clusters, in
fact into this thesis we adopt a naive technique to decide the stopping condition of the algo-
rithm. The idea suffers of the possible improvement of silhouette, after an initial decrease.
The goal of the thesis is partially achieved, since some heuristic tools obtained produce an
increment of the Silhouette from the traditional algorithm.

91

92

References

[1] A. Rajaraman and J. D. Ullman, Mining of massive datasets. Cam-
bridge: Cambridge University Press, 2012. [Online]. Avail-
able: http://www.amazon.de/Mining-Massive-Datasets-Anand-Rajaraman/dp/
1107015359/ref=sr_1_1?ie=UTF8&qid=1350890245&sr=8-1

[2] J. A. Hartigan and M. A. Wong, “A k-means clustering algorithm,” JSTOR: Applied
Statistics, vol. 28, no. 1, pp. 100–108, 1979.

[3] Wikipedia contributors, “K-medoids — Wikipedia, the free encyclopedia,” 2019,
[Online; accessed 31-August-2019]. [Online]. Available: https://en.wikipedia.org/
w/index.php?title=K-medoids&oldid=909957705

[4] ——, “Elbow method (clustering) — Wikipedia, the free encyclopedia,” 2019.
[Online]. Available: https://en.wikipedia.org/w/index.php?title=Elbow_method_
(clustering)&oldid=898053415

[5] ——, “Iris flower data set — Wikipedia, the free encyclopedia,” 2019. [On-
line]. Available: https://en.wikipedia.org/w/index.php?title=Iris_flower_data_
set&oldid=906180779

[6] D. Moulavi, P. A. Jaskowiak, R. J. G. B. Campello, A. Zimek, and J. Sander,
“Density-based clustering validation.” in SDM, M. J. Zaki, Z. Obradovic, P.-N.
Tan, A. Banerjee, C. Kamath, and S. Parthasarathy, Eds. SIAM, 2014, pp. 839–
847. [Online]. Available: http://dblp.uni-trier.de/db/conf/sdm/sdm2014.html#
MoulaviJCZS14

[7] F. Murtagh and P. Legendre, “Ward’s hierarchical agglomerative clustering method:
Which algorithms implement ward’s criterion?” J. Classif., vol. 31, no. 3, pp. 274–295,
Oct. 2014. [Online]. Available: http://dx.doi.org/10.1007/s00357-014-9161-z

93

http://www.amazon.de/Mining-Massive-Datasets-Anand-Rajaraman/dp/1107015359/ref=sr_1_1?ie=UTF8&qid=1350890245&sr=8-1
http://www.amazon.de/Mining-Massive-Datasets-Anand-Rajaraman/dp/1107015359/ref=sr_1_1?ie=UTF8&qid=1350890245&sr=8-1
https://en.wikipedia.org/w/index.php?title=K-medoids&oldid=909957705
https://en.wikipedia.org/w/index.php?title=K-medoids&oldid=909957705
https://en.wikipedia.org/w/index.php?title=Elbow_method_(clustering)&oldid=898053415
https://en.wikipedia.org/w/index.php?title=Elbow_method_(clustering)&oldid=898053415
https://en.wikipedia.org/w/index.php?title=Iris_flower_data_set&oldid=906180779
https://en.wikipedia.org/w/index.php?title=Iris_flower_data_set&oldid=906180779
http://dblp.uni-trier.de/db/conf/sdm/sdm2014.html#MoulaviJCZS14
http://dblp.uni-trier.de/db/conf/sdm/sdm2014.html#MoulaviJCZS14
http://dx.doi.org/10.1007/s00357-014-9161-z

[8] M.Halkidi, Y. Batistakis, andM.Vazirgiannis, “On clustering validation techniques,”
J. Intell. Inf. Syst., vol. 17, no. 2-3, pp. 107–145, Dec. 2001. [Online]. Available:
https://doi.org/10.1023/A:1012801612483

[9] S. P. Lloyd, “Least squares quantization in pcm,” IEEE Transactions on Information
Theory, vol. 28, pp. 129–137, 1982.

[10] D. Arthur and S. Vassilvitskii, “K-means++: The advantages of careful seed-
ing,” in Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Dis-
crete Algorithms, ser. SODA ’07. Philadelphia, PA, USA: Society for In-
dustrial and Applied Mathematics, 2007, pp. 1027–1035. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1283383.1283494

[11] L. Kaufman and P. J. Rousseeuw, “Clustering by means of medoids,” p. 405–416,
1987.

[12] ——, Partitioning Around Medoids (Program PAM). John Wiley & Sons, Inc.,
2008, pp. 68–125. [Online].Available: http://dx.doi.org/10.1002/9780470316801.ch2

[13] S.Hess andW.Duivesteijn, “k is themagic number – inferring the number of clusters
through nonparametric concentration inequalities,” 2019, cite arxiv:1907.02343.
[Online]. Available: http://arxiv.org/abs/1907.02343

[14] J. C. Dunn, “A fuzzy relative of the isodata process and its use in detecting compact
well-separated clusters,” Journal of Cybernetics, vol. 3, no. 3, pp. 32–57, 1973. [Online].
Available: https://doi.org/10.1080/01969727308546046

[15] J. C. Dunn†, “Well-separated clusters and optimal fuzzy partitions,” Journal
of Cybernetics, vol. 4, no. 1, pp. 95–104, 1974. [Online]. Available: https:
//doi.org/10.1080/01969727408546059

[16] P. Rousseeuw, “Silhouettes: A graphical aid to the interpretation and validation
of cluster analysis,” J. Comput. Appl. Math., vol. 20, no. 1, pp. 53–65, Nov. 1987.
[Online]. Available: http://dx.doi.org/10.1016/0377-0427(87)90125-7

[17] H. Bersini and J. Carneiro,Artificial Immune Systems: 5th International Conference,
ICARIS 2006, Oeiras, Portugal, September 4-6, 2006, Proceedings, ser. Lecture Notes
in Computer Science. Springer Berlin Heidelberg, 2006. [Online]. Available:
https://books.google.it/books?id=Gp9qCQAAQBAJ

94

https://doi.org/10.1023/A:1012801612483
http://dl.acm.org/citation.cfm?id=1283383.1283494
http://dx.doi.org/10.1002/9780470316801.ch2
http://arxiv.org/abs/1907.02343
https://doi.org/10.1080/01969727308546046
https://doi.org/10.1080/01969727408546059
https://doi.org/10.1080/01969727408546059
http://dx.doi.org/10.1016/0377-0427(87)90125-7
https://books.google.it/books?id=Gp9qCQAAQBAJ

[18] L. Castro, L. de Castro, and J. Timmis, Artificial Immune Systems: A New
Computational Intelligence Approach. Springer, 2002. [Online]. Available: https:
//books.google.it/books?id=aMFP7p8DtaQC

[19] E. R. Hruschka, L. N. de Castro, and R. J. G. B. Campello, “Evolutionary algorithms
for clustering gene-expression data,” in Fourth IEEE International Conference on
Data Mining (ICDM’04), Nov 2004, pp. 403–406.

[20] D. Moulavi, P. A. Jaskowiak, R. J. G. B. Campello, A. Zimek, and J. Sander,
“Density-based clustering validation.” in SDM, M. J. Zaki, Z. Obradovic, P.-N.
Tan, A. Banerjee, C. Kamath, and S. Parthasarathy, Eds. SIAM, 2014, pp. 839–
847. [Online]. Available: http://dblp.uni-trier.de/db/conf/sdm/sdm2014.html#
MoulaviJCZS14

[21] C. Tomasini, L. Emmendorfer, E. N. Borges, and K. Machado, “A methodology
for selecting the most suitable cluster validation internal indices,” in Proceedings of
the 31st Annual ACM Symposium on Applied Computing, ser. SAC ’16. New York,
NY, USA: ACM, 2016, pp. 901–903. [Online]. Available: http://doi.acm.org/10.
1145/2851613.2851885

[22] F. Wang, H.-H. Franco-Penya, J. D. Kelleher, J. Pugh, and R. J. Ross, “An analysis of
the application of simplified silhouette to the evaluation of k-means clustering valid-
ity,” inMLDM, 2017.

[23] D. E. Knuth, The Art of Computer Programming, Volume 4, Fascicle 3: Generating
All Combinations and Partitions. Addison-Wesley Professional, 2005.

[24] D. Arthur and S. Vassilvitskii, “How slow is the k-means method?” in Proceedings
of the Twenty-second Annual Symposium on Computational Geometry, ser. SCG
’06. New York, NY, USA: ACM, 2006, pp. 144–153. [Online]. Available:
http://doi.acm.org/10.1145/1137856.1137880

[25] T. V. Rechkalov, “Partition around medoids clustering on the intel xeon phi many-
core coprocessor,” pp. 29–41. [Online]. Available: http://ceur-ws.org/Vol-1513/
#paper-04

95

https://books.google.it/books?id=aMFP7p8DtaQC
https://books.google.it/books?id=aMFP7p8DtaQC
http://dblp.uni-trier.de/db/conf/sdm/sdm2014.html#MoulaviJCZS14
http://dblp.uni-trier.de/db/conf/sdm/sdm2014.html#MoulaviJCZS14
http://doi.acm.org/10.1145/2851613.2851885
http://doi.acm.org/10.1145/2851613.2851885
http://doi.acm.org/10.1145/1137856.1137880
http://ceur-ws.org/Vol-1513/#paper-04
http://ceur-ws.org/Vol-1513/#paper-04

[26] F. Pedregosa, G. Varoquaux, A. Gramfort, V.Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Courna-
peau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine learning in
Python,” Journal of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

[27] D. Dua and C. Graff, “UCI machine learning repository,” 2017. [Online]. Available:
http://archive.ics.uci.edu/ml

[28] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine
learning in python,” J. Mach. Learn. Res., vol. 12, pp. 2825–2830, Nov. 2011. [Online].
Available: http://dl.acm.org/citation.cfm?id=1953048.2078195

[29] A. Novikov, “PyClustering: Data mining library,” Journal of Open Source Software,
vol. 4, no. 36, p. 1230, apr 2019. [Online]. Available: https://doi.org/10.21105/joss.
01230

96

http://archive.ics.uci.edu/ml
http://dl.acm.org/citation.cfm?id=1953048.2078195
https://doi.org/10.21105/joss.01230
https://doi.org/10.21105/joss.01230

	Abstract
	List of figures
	List of tables
	Introduction
	Background
	Point and Distances
	Euclidean Distance
	Jaccard Distance
	Edit Distance
	Hamming Distance
	Clustering
	K-Means
	K-Means ++

	K-Medoid
	Clustering Validation

	Related Work
	An Immune Network Algorithm for Optimization
	Evolutionary Algorithm for Clustering
	Soft-Silhouette

	Goal
	Algorithm for Clustering using Silhouette as cost
	Brute Force Approach
	Description of the Approach
	Code
	Complexity and Correctness

	Extending K-Means
	Description of the Approach
	Pseudo Code
	Choice of Parameter
	Complexity and Correctness
	Improvement

	PAMSILHOUETTE
	Description of the Approach
	Initial Seeding Technique for Partitioning Around Medoid Algorithm: BUILD
	Pseudo Code
	Choice of Parameters
	Complexity and Correctness

	ExtendePAM
	Description of the Approach
	Pseudo Code
	Complexity and Correctness

	Improved version of extendePAM, extendePAMv2
	Complexity and Correctness

	Experimental evaluation
	Dataset
	Implementation
	Comparison of commonly used Clustering Algorithms
	Brute Force Approach
	Extende K-Means and Improved version
	Reduced Dataset
	Complete Dataset

	PAMSILHOUETTE
	Reduced Dataset
	Complete Dataset

	extendePAM
	Reduced Dataset
	Complete Dataset

	Conclusion
	References

