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Abstract: This thesis will investigate constraints on the primordial power spectrum coming
from a variety of current and future astrophysical experiments. In particular, we will focus on
the limits that can be obtained on the running parameters of the primordial power spectrum
from 21 cm Intensity Mapping experiments targeted towards the Dark Ages. We will also
investigate the possibility of Primordial Black Holes formation from curvature perturbations in
the early Universe and determine whether Intensity Mapping experiments will be able to detect
the departure from scale invariance that lead to their formation.
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Chapter 1

Introduction

In the last decades we witnessed astounding progress in the field of cosmology. The Planck
mission measurements of the Cosmic Microwave Background (CMB) radiation [1] has given
us incredibly tight constraints on parameters of the ΛCDM cosmological model, while galaxy
surveys are increasing their precision and volume probed, giving us information in the low
redshift range.

On top of that, gravitational wave astronomy opened up a new way to see the cosmos, allowing
us to cross correlate completely different kind of signals.

A large portion of the Universe remains however unexplored, as no observations have been made
between recombination at redshift 1100 and galaxy surveys that probe redshifts of O(1). This
is going to change with the advent of Intensity Mapping (IM) experiments, that will be able to
probe that enormous wealth of information, greatly enriching our understanding in cosmology.

IM is a novel technique aimed at mapping the intensity in emission of the redshifted spectral
lines produced by atomic and molecular species in galaxies and in the intergalactic medium.
With the angular information and the measured redshifted frequency of the spectral line is then
possible to model the 3-dimensional distribution of the source emitting it.

Unlike galaxy surveys, which can target only objects above a certain flux threshold, IM ex-
periments collect the integrated emission of unresolved sources, and is therefore sensitive to all
sources of emission, even the faintest, as shown in fig 1.1.

Perhaps the most intriguing application of IM is the mapping of the 21 cm spectral line emitted in
the hyperfine transition of spectral hydrogen. This atomic element has been present throughout

Figure 1.1: A simulated 2.5 deg2 field with galaxy positions (Left) and the corresponding CO intensity
map (Right). Luminosities were drawn from a Schechter function model (Breysse et al. 2016). Sources
bright enough to detect with 1hr of VLA time are marked in red (see Li et al. 2016). (Figure: Patrick
Breysse). Taken from [2]
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2 CHAPTER 1. INTRODUCTION

most of the history of the Universe and it’s theoretically possible to trace its spectral emission
from z ∼ 200 until z ∼ 6, when virtually all the hydrogen has been reionized by bright sources.

21 cm IM will allow us to peek for the first time at those vast cosmological regions, and to map
the density fluctuations in the hydrogen density field at higher redshift 30 . z . 200, before stars
ionized the neutral hydrogen. This has the potential to enormously increase our cosmological
understanding, providing us information regarding many different observables, such as ΛCDM
parameters [3], primordial non gaussianity [4], statistical isotropy violations [5], dark matter
annihilation [6], the origin of super massive black holes [7] and more.

At smaller redshift, instead, it will be possible to study for the first time the formation of the
first stars and galaxies by measuring the dark patches in the 21 cm emission caused by the
ionization of hydrogen.

We will therefore focus our work in particular on the 21 cm spectral line, but we note that many
other spectral lines are available, albeit they are restricted to smaller z, such as the rotational
CO lines, the Lyman-α, the [CII] fine structure line. For a comprehensive review on those
spectral lines and the experiments in the works in order to map them see for example [2].

In this thesis we will explore how the rapidly growing field of IM will be able to provide con-
straints on cosmological observables, especially with regards to the physics of the primordial
Universe, and which models we will be able to discriminate with the upcoming 21 cm IM ex-
periments, ranging from the soon to be completed SKAO1 to a more futuristic proposed radio
array on the far side of the Moon.

We will first review some introductory cosmological topics in order to set the playing field, and
the physics of the early Universe that produced the promordial perturbations. Then we will
treat the physics of the 21cm hydrogen line, how the primordial perturbations would affect
it and which observables can be studied from it. Finally we will introduce the experimental
apparatus in order to observe those perturbations.

With all this information we will then be able to forecast the ability of future experiments to
constrain early Universe models.

1https://www.skaobservatory.org/

https://www.skaobservatory.org/


Chapter 2

Introductory cosmology topics

In this chapter we will review some basic topics in modern cosmology, introducing the basics
and notation used throughout this work.

2.1 Cosmological principle and background metric

At the basis of cosmology lies the cosmological principle, stating that while on small scale it
exhibit clumpyness, with matter clumped into stars, galaxies and clusters, on large scales1 the
Universe is in first approximation homogeneous and isotropic. This means that it can be treated
like a fluid that evolves according only to the spatially averaged quantities that describe it.

This principle finds its experimental validation in observations such as the Large Scale Structures
(LSS) studies and Cosmic Microwave Background probes, the latter measuring anisotropy in
temperature δT/T only as big as ∼ 10−5.

The geometric properties of the Universe are described in General Relativity by the metric, a
symmetric rank 2 tensor thus having in principle 10 degrees of freedom

ds2 = gµνdx
µdxν . (2.1)

The symmetries enforced by the cosmological principle restrict the degrees of freedom of the
spacetime metric, therefore it can be shown that the most general form it can take is given by
the Friedmann-Robertson-Walker metric:

ds2 = c2dt2 − a(t)2

[
dr2

1− kr2
+ r2dΩ2

]
(2.2)

with a(t), the scale factor, describing the ”size” of the Universe as a function of the cosmological
time and k encoding the spatial curvature of the Universe. While k can in principle take any real
value, with a coordinate rescaling all values of k can be mapped to the set {−1, 0, 1}, meaning
respectively an open, flat, and closed Universe.

It’s important to point out that the spatial coordinates in equation (2.2) are not the physical
coordinates, but are comoving coordinates, meaning that they expand with the Universe. This
means that two points that are a fixed comoving distance will get recede from each other. With
this in mind, recovering the relation between physical and comoving distances is easy

dphys = a(t)dcomoving (2.3)

1that is about hundreds of megaparsecs (Mpcs)

3



4 CHAPTER 2. COSMOLOGY

Another useful way to write equation (2.2) is by introducing the conformal time τ defined as

dτ ≡ dt

a(t)
⇒ ds2 = a(τ)2

[
c2dτ2 −

(
dr2

1− kr2
+ r2dΩ2

)]
this way the the metric factorizes in a Minkowski metric multiplied by the scale factor.

2.2 Friedmann equations

The dynamical evolution of the Universe is determined by applying the least action principle on
the general relativistic Einstein-Hilbert action

S = SHE + Sm =

∫
d4x
√−g

[
R

16πG
+ Lm

]
. (2.4)

Sm denotes the action of the ”matter” content of the Universe. The variational principle demands
δS
δgµν = 0, leading to

δR

δgµν
+

R√−g
δ
√−g
δgµν

= −16πG
1√−g

δ(
√−gLm)

δgµν
(2.5)

By computing the functional derivatives with respect to the inverse metric gµν we obtain the
Einstein field equations

Rµν −
1

2
gµνR = 8πGTµν (2.6)

where G is the gravitational constant, Rµν is the Ricci tensor, a function of the second order
derivatives of the metric representing the curvature of the spacetime manifold, and R its contrac-
tion, the Ricci scalar. The stress energy tensor Tµν instead encodes the matter-energy content
of the Universe and is defined as

Tµν ≡ −
2√−g

δ (
√−gLm)

δgµν
. (2.7)

Now we can find a very simple solution of the field equations, that is, the solution in a maximally
symmetric spacetime characterized by the metric (2.2). By plugging the FRW metric from
equation (2.2) into the field equations and assuming that the matter content of the Universe can
be described as a perfect fluid with stress energy tensor

Tµν = (p+ ρ)uµuν + pgµν , (2.8)

where ρ represents the matter-energy density of the fluit and p its pressure, we obtain the
Friedmann equations

H2 =

(
ȧ

a

)2

=
8

3
πGρ− kc2

a2
(2.9)

ä

a
= −4

3
πG

(
ρ+

3p

c2

)
(2.10)

describing the background dynamics of our Universe encoded in the time evolution of the scale
factor, where we defined the Hubble parameter H ≡ ȧ

a . The Hubble parameter is the measure
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of the expansion rate of the Universe, i.e. how fast the object at a certain distance recede from
us and it’s usually measured in km · s−1 ·Mpc−1. It has physical dimensions of an inverse time
and it is the parameter that sets the scale of the cosmological evolution.

Those equations arise from the ”space” and ”time” components of the Einstein equations, re-
spectively. Note that the off diagonal terms of the Einstein equations do not contribute as the
metric and the stress energy tensor are diagonal.

There is also a third equation, that is functionally dependent on the other two, which we can
obtain from the continuity equation of the stress-energy tensor

DµT
µν = 0⇒ ρ̇ = −3H(ρ+ p) (2.11)

the three Friedmann equations can be solved provided an equation of state that relates ρ with
p. Such equation is usually assumed to be of the form

p = wρ (2.12)

with this we can solve the Friedmann equations and finding the time evolution of the scale factor
in the case of a flat (k = 0) Universe dominated by a single kind of fluid with a specific value of
w. Plugging it in the continuity equation (2.11) we get:

d log ρ

d log a
= −3(1 + w) ⇒ ρ ∝ a−3(1+w) (2.13)

which, combined with the first Friedmann equation (2.9) leads to

a(t) ∝
{
t

2
3(1+w) w 6= −1

eHt w = −1
(2.14)

some notable cases are w = 0, corresponding to an Universe dominated by non relativistic matter,
in which case we get a(t) ∝ t2/3, w = 1/3, corresponding to relativistic particles (radiation),
leading to a(t) ∝ t1/2. A last and less intuitive, but still very relevant, case is w = −1,
corresponding to a fluid exerting negative pressure, which leads to the second solution in equation
(2.14), i.e. an exponential expansion. As we will see this will be the equation of state describing
Dark Energy.

Another important remark about equation (2.13) is the power law scaling of the density:

ρ(a) ∝


a−4 w = 1/3 (radiation)

a−3 w = 0 (matter)

constant w = −1 (dark energy)

(2.15)

Intuitively, the energy density of relativistic particles decreases not only due to the average
number per unit volume dropping as the Universe expands, like non relativistic matter, but
also due to relativistic Doppler shift, which adds one more negative power of the scale factor in
the scaling. Dark energy, instead, has the same energy density at all time. We can guess that
if the Universe is composed by those three kind of fluids, each one has dominated its energy
budget, and thus its evolution, at different times, first radiation, then matter, and eventually
Dark Energy.
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2.3 The matter and energy content of the Universe

Now that we have the Friedmann equations and some basic solutions we can ask ourselves what
are the ingredients that make it. It turns out that the matter that we can ”see”, namely the
baryonic matter that makes up stars, amounts only a small fraction of the total balance that
participate in the evolution of the Universe.

We first define the critical density ρc and the density parameter Ω, in this way.

The critical density is defined as the density required to have a flat Universe. By setting k = 0
in the first equation of (2.9) we obtain

ρc(t) =
3H(t)2

8πG
(2.16)

the Ω parameter is defined as the ratio between the observed density ρ(t) and the critical density

Ω(t) =
ρ(t)

ρc(t)
. (2.17)

We can then rewrite the first Friedmann equation as

Ω(t)− 1 =
k

(a(t)H(t))2
(2.18)

We can thus see that the Ω parameter is related to the spatial curvature of the Universe k.
Not only that, but since k is constant if Ω(t) were to be larger than one at one time it would
imply a positive (negative) curvature i.e. a closed (open) Universe at all times. According
to observations the Universe is composed by dark energy, accelerating the Universe expansion,
dark matter and baryonic matter. Only the last one is directly observed, the other only produce
gravitational effects. We will explore each one of those more in detail in the following sections.

While we treated the simplified case of only one type of fluid characterized by a single w pa-
rameter, there can be may different fluids, each one contributing to the total energy density2

Ωtot = ΩΛ + Ωb + ΩCDM + Ωr. (2.19)

In words, the density parameters represent the budget top the total mass-energy content of the
Universe from each source. Measurements of the density parameters at the current time give

Ω0,Λ + Ω0,b + Ω0,CDM + Ω0,r = 1.00± 0.02 (2.20)

giving a value of the curvature parameter Ωk compatible with 0, which would imply a flat
Universe.

Another useful way to rewrite the Friedmann equation in terms of the present day Hubble
constant H0 and Ω0,i parameters is [8]

H(a) = H0

√
Ω0,ma−3 + Ω0,ra−4 + Ω0,Λ. (2.21)

2Another commonly used parameter in cosmology related to Ωi, where i labels a certain fluid is ωi ≡ Ωih
2,

where h is the reduced Hubble constant h ≡ H0/(100 km s−1 Mpc−1). Not to be mistaken with the proportionality
constant in the equation of state w.
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2.3.1 The cosmological constant

The symmetries in General Relativity strictly constrain the kinds of terms that appear in the
field equations (2.6), but we still omitted one term. A more general version would also include
a term proportional to the metric

Rµν −
1

2
gµνR = 8πGTµν − Λgµν (2.22)

Where the Greek letter Λ denotes the cosmological constant3. Einstein first introduced this term
because it was the only way to obtain a static solution of the Friedmann equations, i.e. ȧ = ä = 0,
but deemed this an error when Hubble showed without doubt that the Universe is expanding.
The discovery that the expansion of the Universe is accelerating from the observation of Type
Ia supernovae led physicists to introduce this term again, despite not with its first intended use
of enforcing a static Universe4, but in order to explain its accelerating expansion.

We can see the effect of the cosmological constant by introducing the Λ-shifted the stress-energy
tensor T̃µν ≡ Tµν − Λ

8πGgµν , so that we re-obtain the Einstein equations (2.6) with T̃µν instead
of Tµν . The ”effective” pressure p̃ and density ρ̃ of the shifted stress-energy tensor are related
to the standard p and ρ by

{
p̃ = p− Λ

8πG

ρ̃ = ρ+ Λ
8πG

(2.23)

We can now solve the equations for the case of an empty and flat Universe, Tµν = 0 and k = 0,
i.e. when the only relevant physical quantity in the evolution of the Universe is the cosmological
constant. In this case

ρ̃ = −p̃ =
Λ

8πG
(2.24)

note that this is exactly the w = −1 condition for the equation of state and indeed this empty
universe with only a cosmological constant leads to an exponential expansion

H2 =
Λ

3
= const⇒ a(t) ∝ exp

(√
Λ

3
t

)
. (2.25)

A period in the Universe evolution where p = −ρ, and consequently equation (2.25) holds, is
called a de Sitter phase.

As we said, observations led to estimate a positive value of Λ to explain the accelerating expan-
sion. Not only that, but it turns out that the cosmological constant accounts for the most of
the energetic budget of the Universe with a ΩΛ ' 0.7.

In the modern paradigm the cosmological constant is related with the energy density of the
vacuum due to the quantum fluctuations of the fields that permeate space. It should be noted,
however, that QFT calculations based on the Standard Model of particle physics fail to estimate
the correct value of Λ, with a discrepancy of about 120 orders of magnitude.

3Λ really has to be constant, it cannot depend on any spacetime variable due to the symmetries in the Einstein
equations.

4Besides, the static solution was found to be unstable under small perturbations, thus not physically viable as
the universe is not perfectly uniform.
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2.3.2 Dark matter

Both cosmological and astrophysical observations have provided strong evidence that the lumi-
nous baryonic matter that we are used to, and that we can easily see with our telescopes only
accounts to a fraction of the matter content of the Universe. Indeed, while baryonic matter
amounts to about 5% of the total matter-energy budget, the Universe appears to be composed
of about 26% of a kind of matter that eludes direct detection, but exerts gravitational force on
galactic scales and above.

The evidence of the presence of dark matter is abundant, here we will summarize some of the
observations that led to its introduction:

Galaxy rotation curves: a simple consideration of the Newtonian dynamics of stars orbiting
a galactic center would lead to the scaling law v ∼ R−1/2 at large radii, i.e. ad distances
from the galactic center encompassing most of the matter content of the galaxy itself. The
observed data instead shows, after the expected linear increase, an almost constant profile,
as if there was a halo of invisible matter encompassing the whole galaxy, and extending a
sizeable amount beyond its visible boundaries. Similar considerations hold for the velocity
dispersion of stars in elliptical galaxies, which is different from the one predicted by the
virial theorem.

CMB anisotropies: the power spectrum of the cosmic microwave background (CMB) cannot
be explained with the sole presence of baryonic matter. While dark matter does not
interact nor strongly nor electromagnetically it still affects baryonic matter through its
gravitational potential, leaving an imprint on the perturbations measured by CMB probes
such as Planck5[1]

Structure formation: another evidence comes from the observation of Large Scale Structures.
During the era of radiation domination perturbations should have been washed away by
the radiation pressure, smoothing out inhomogeneities and preventing structure formation.
Instead, dark matter was not affected by this process and remained clumped, seeding the
formation of the Large Scale Structure we observe today.

Galaxy clusters: the presence of a huge amount of non luminous matter in galaxy clusters
can be inferred in three different ways: from the measurement of velocity dispersion of
galaxies, analogously to the observations of stars in elliptical galaxies, from the study of
the X-ray flux emitted by hot gas in the cluster, and by the observation of gravitational
lensing.

this is not an exhaustive list, there are far more astrophysical and cosmological studies that
all lead to estimate the same ΩCDM parameter of about 0.26, compared to a baryon density
parameter Ωb ' 0.05.

In addition to an agreement on the amount of dark matter, we also know some general properties
that it must have:

• it’s collisionless, particles do not interact with each other much, if at all

• it’s non baryonic, i.e. not composed of protons and neutrons

• it’s cold, meaning that it’s kinetic energy is currently much smaller than its mass.

Despite all the evidence of the existence of dark matter its nature is still unknown. Two pop-
ular possibilities that can be fitted in extensions of the Standard Model of particle physics are
Weakly Interacting Massive Particles (WIMPs), for example massive sterile neutrinos, and ax-
ions. However at this time there still has not been any detection of dark matter particles from
a particle physics experiment.

5https://www.cosmos.esa.int/web/planck

https://www.cosmos.esa.int/web/planck
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Another possible dark matter candidate are Primordial Black Holes (PBHs), which are black
holes that could have been produced in the early Universe during radiation domination from
the collapse of density fluctuation produced by inflation. They have been first hypothesized by
Zel’dovich [9] and Hawking [10], and recently came back in the spotlight after LIGO’s6 begun
detecting mergers of black holes [11], some of which having an anomalously large mass that
could be explained by their primordial origin [12]. For reviews about PBHs see for example [13,
14].

2.3.3 The ΛCDM model

All the information we discussed in the previous chapter is summarized in what is called the
”standard model” of cosmology: the ΛCDM model.

The model explains the general properties of the Universe we observe, such as the CMB power
spectrum, the large scale structures, the observed abundances of elements and the accelerating
expansion of the Universe.

It should be noted however that some discrepancies still exist, such as the cosmological lithium
problem and the H0 tension, consisting in the fact that local measurements of the Hubble
constant based on the distance ladder and CMB estimations do not agree [15].

As the name suggests the ΛCDM includes, in addition to ordinary matter, also cold dark matter
and dark energy. It assumes the Universe begun its history in an extremely hot and dens state
and quickly expanded, this process is known as the (hot) Big Bang.

At its core the parameterization of the model requires only six parameters, however there are
many possible extensions.

One possible parameterization of the base ΛCDM model is

Parameter Ωch
2 Ωbh

2 100θMC τ ln(1010As) ns

which is the one used by the Planck collaboration [1]. We already encountered the first two
parameters. θMC is the sound horizon at recombination, τ is the reionization optical depth and
As and ns are parameters describing the primordial Universe, respectively the amplitude of the
primordial power spectrum and its spectral index.

From that parameterization many other quantities can be derived, for example the age of the
Universe can be estimated to be about 13.8 billion years and the current Hubble constant is
found to be about 67 kms−1Mpc−1.

2.4 Distances and horizons in cosmology

In this sections we introduce some useful quantities that are commonly used in cosmology.

As we said the Universe is observed to be expanding, the scale factor a(t) is increasing with
time. This expansion also affects the photons that have been emitted a long time ago far away
and reach us today, which become redshifted. Therefore it is convenient to define a quantity
which describes the distance - and time - of a patch of the Universe we are observing based on
this physical effect. Thus we define the redshift z as

z + 1 ≡ a(t0)

a(t)
(2.26)

where t is the time when the signal was emitted and t0 is today. The scale factor is defined up
to a multiplicative constant, and it’s usually assumed a(t0) = 1, so z + 1 = a(t)−1.

6https://www.ligo.org/

https://www.ligo.org/
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As we know the casual connection of points in spacetime is determined by them being inside or
outside each other’s lightcone. Lightcones are the solutions of the equation

ds2 = 0 (2.27)

with ds2 a suitable metric, in our case the FRW metric (2.2), which can be recast as

ds2 = c2dt2 − a(t)2
[
dχ2 + f(χ)2dΩ2

]
(2.28)

with f(χ) a different function of χ based on the spatial curvature k. The comoving particle
horizon is then, assuming an homogeneous and isotropic Universe and taking dΩ = 0

rp(t) ≡ χ(t) =

∫ t

0

cdt′

a(t′)
= c

∫ a

0
d ln a

(
1

aH

)
= cτ (2.29)

where in the last equality we exploited the relation we found earlier for the conformal time. The
comoving horizon is therefore the logarithmic integral of the comoving Hubble radius c/aH,
which we will define below. The related physical particle horizon is

dp(t) = a(t)rp(t) = a(t)

∫ t

0

cdt′

a(t′)
(2.30)

due to the scale factor in the denominator and the fact that a(t)→ 0 as t goes to 0 the particle
horizon could become infinite, meaning that an observer would be in casual connection with the
whole Universe.

Using (2.14) we can find an approximate expression for dp(t), for w > −1/3, otherwise the
integral would diverge

dp(t) '
3(1 + w)

1 + 3w
ct =

2

1 + 3w

c

H
. (2.31)

Note that w > −1/3 implies ä < 0, a decelerating expansion. Therefore we have a finite particle
horizon only in the case of a primordial universe characterized by a decelerating expansion.

Another useful time and distance scale can be derived from the Hubble constant: the Hubble
time and the physical and comoving Hubble radii

tH =
a

ȧ
=

1

H
RH = ctH rH =

RH
a

=
c

ȧ
=

c

aH
(2.32)

we end this section noting that RH and dp, despite having a different physical meaning, have the
same order of magnitude in matter or radiation dominated Universes. This is however not true
in general. The crucial difference is that, while particles separated by a particle horizon could
have never been in communication, if they are separated by a Hubble radius at a given time t
only means they they cannot communicate at t. In other words, the particle horizon could be
much greater than the Hubble radius if at some point during the evolution of the Universe the
latter shrunk. This is not possible during radiation or matter domination, but as we will see
that is what happens during inflation [16].
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2.5 Perturbations in cosmology

In this section we will review some notions and formalism pertaining the study of perturbations
in cosmology, without delving too much into the physics that imprinted them, that will be the
topic of the next chapter.

Given the cosmological principle we are not interested on the evolution of a specific element of
the Universe, but rather on the statistical properties of the observable that we can measure,
usually represented as a random field.

For example we could be interested in the density fluctuations, for which could be convenient
to define a dimensionless, zero-mean density contrast δ(x)

δ(x) ≡ ρ(x)− ρ
ρ

(2.33)

and study the statistical observable that we can measure. While the field itself is not isotropic
nor homogeneous, we expect the statistical observables that we can extract to respect those
symmetries.

2.5.1 Correlation function and power spectrum

Given a generic random field δ(x, t) we can define the set of n-points correlation functions
ξ(n)(x1, ...,xn)

ξ
(2)
t (x1,x2) ≡ 〈δ(x1, t)δ(x2, t)〉
ξ

(3)
t (x1,x2,x3) ≡ 〈δ(x1, t)δ(x2, t)δ(x3, t)〉

...

ξ
(n)
t (x1, ...,xn) ≡ 〈δ(x1, t), ..., δ(xn, t)〉

(2.34)

with 〈·〉 denoting the ensemble average. If the random field is gaussian then the only meaningful
correlation function is ξ(2), all the others are either 0, in the case of odd n, or can be written in
terms of ξ(2).

The homogeneity condition applied to the 2-points correlation function makes it so it’s only
dependant on the difference of the coordinates, while the isotropy further simplifies it, reducing
the dependence only on the distance between the two points

ξ
(2)
t (x1,x2)

homogeneity−−−−−−−−→ ξ
(2)
t (x1 − x2)

isotropy−−−−−→ ξ
(2)
t (|x1 − x2|) = ξ

(2)
t (r) (2.35)

In order to better exploit the translational invariance it’s useful to switch to Fourier space

δ(x, t) =
1

(2π)3

∫
d3keik·xδ(k, t) (2.36)

the ensemble variance of the Fourier modes of the field is called the power spectrum P (k)

〈
δ(k)δ(k′)

〉
= (2π)3P (k)δ(3)(k − k′) (2.37)

where the Dirac delta function is due to the homogeneity. As with the correlation functions,
one can define also higher order correlators, such as the bispectrum, but if the random field is
gaussian the only meaningful one is the power spectrum. In fact the two quantities are related
by a Fourier transform:
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ξ(r) = 〈δ(x+ r)δ(x)〉 =

〈
1

(2π)3

∫
d3keik·(x+r)δ(k)

1

(2π)3

∫
d3k′eik

′·xδ(k′)

〉
=

1

(2π)3

∫
d3k

∫
d3k′eik·(x+r)eik

′·xδ(3)(k + k′)P (k)

=
1

(2π)3

∫
d3keik·rP (k)

(2.38)

The power spectrum P (k) has the dimension of a length cubed. It is convenient to define the
dimensionless power spectrum P(k)

P(k) ≡ k3

2π2
P (k) (2.39)

that will simplify the notation in certain situations, in particular when dealing with the primor-
dial power spectrum.

2.5.2 Angular power spectrum

In this section we derive the relation between the three dimensional power spectrum of a random
field and its angular power spectrum at a certain distance r, corresponding to an observed
frequency ν = ν0/(1 + z). This will be useful because IM experiments will measure the angular
power spectrum at a certain redshift z at which corresponds a comoving radius r0, but physical
computations are much more convenient in three dimensional coordinates.

We neglect redshift space distortions in this derivation. Their effect would be to shift a patch
of the IGM inside or outside the redshift slice we selected, depending on its peculiar velocity.
Equivalently, we assume the power spectrum to be isotropic [17].

δ(n̂, ν) =

∫
drW (r, r0)δ(n̂, r) (2.40)

where n̂ is the direction of observation, W (r, r0) is a window function centered at r0, corre-
sponding to the observed frequency ν, and has a width in comoving radial coordinates δr.

The field δ(n̂, r) = δ(x) can be expanded in Fourier space

δ(x) =
1

(2π)3

∫
d3kδ(k)eik·x (2.41)

then, by using the spherical wave expansion of a plane wave

eik·x =
∑
`m

4πi`j`(kr)Y
∗
`m(k̂)Y`m(n̂), (2.42)

where j`(kr) are the spherical Bessel functions, we obtain the expression

δ(x) =
1

(2π)3

∫
d3kδ(k)

∑
`m

4πi`j`(kr)Y
∗
`m(k̂)Y`m(n̂). (2.43)

The field δ(n̂, ν) can also be expanded in spherical harmonics

δ(n̂, ν) =

∞∑
`=0

∑̀
m=−`

a`m(ν)Y`m(n̂). (2.44)
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By relating equations (2.43), (2.40) and (2.44) we can obtain an expression for the spherical
harmonics coefficients

a`m(ν) = 4πi`
∫

d3k

(2π)3
T`(k, ν)Y ∗`m(k̂)δ(k, ν) (2.45)

with the functions T`(k, ν) defined as

T`(k, ν) =

∫
drW (r, r0)j`(kr). (2.46)

The angular power spectrum of a field is given by the expectation value of the variance of the
spherical harmonics coefficients a`m

〈a`m(ν1)a∗`′m′(ν2)〉 = δ``′δmm′C`(ν1, ν2). (2.47)

By plugging equation (2.45) into (2.47), and using the relation for the 3D power spectrum (2.37)
we obtain the final result

C` (ν1, ν2) = 4π

∫
d3k

(2π)3
P (k)T` (k, ν1) T` (k, ν2) =

2

π

∫
dkk2P (k)T` (k, ν1) T` (k, ν2) . (2.48)

with νi(z) = ν0/(1+z). We note that in this work we are interested in the case where ν1 = ν2 = ν,
but the cross frequency power spectrum can also be useful, for example it can be utilized for
foreground removal techniques [17].
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Chapter 3

Early Universe

3.1 Inflation

Despite doing a good job explaining the observable Universe, the ΛCDM model still has flaws.
First and foremost, it fails to explain what is the origin of the cosmological constant and of the
dark matter, as well as their makeup, these components are only introduced as free parameters
with no physical interpretation. Additionally, with the increase in precision of cosmological
measurements, some inconsistencies are emerging, such as the already mentioned Hubble tension.

Quantum perturbations in the fields that drove inflation are also responsible of the inhomo-
geneities that we observe today, as summarized in figure 3.1. In the inflationary paradigm those
microscopic perturbations were magnified to cosmological scales, and those fluctuations appear
at every stage of the evolution of the Universe. They are imprinted on the CMB famously cap-
tured by the Planck collaboration, they affect the clumping on matter in the late Universe and
the formation of the cosmic web, observed in galaxy surveys, and last but not least they cause
hydrogen density perturbations in the intermediate redshift range, which Intensity Mapping
experiments can capture.

In the following we will focus on two glaring issues of this model that led cosmologists to
introduce an inflationary phase shortly after the Big Bang: the horizon problem and the flatness
problem.

3.1.1 Motivation: the hot Big Bang problems

The horizon problem

We already computed the particle horizon in the previous section and we found it to be finite
for w > −1/3. However our observations, on which the Cosmological principle is based, clearly
show that even regions that should have not been in casual contact with each other according
to the Big Bang model appear to have the same physical properties.

The most glaring example is the CMB: as shown in figure 3.2 we measure the same temperature
looking everywhere in the sky, with fluctuations on the order of one part per 105, but the horizon
at the time of the emission of the CMB, at tCMB = 300 000 yr, is about 205 Mpc, corresponding
to a subtended angle of about one degree in a CMB sky map. Regions separated by more than
this angle should not have exchanged any information and therefore we wouldn’t expect them to
be in thermal equilibrium. The CMB then consists of approximately 105 casually disconnected
patches that somehow all appear to us at the same temperature.

For simplicity we work with the Hubble radius. From the expression for the comoving Hubble
radius we have

15
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(aH)−1

〈RkRk′〉 super-horzionsub-horizon

Ṙ ≈ 0

transfer
  function

CMB
recombination today

projection∆T C!

horizon exit

time

comoving scales

horizon re-entry

zero-point 
  fluctuations

R̂k

Figure 3.1: Schematic representation of the creation and evolution of perturbation in inflationary cosmol-
ogy. Perturbations are created as quantum fluctuations, as their comoving scale (blue) exits the Hubble
horizon (red) during inflation, they remain frozen until they eventually re-enter the horizon after inflation
ends. They then evolve to become the perturbations we observe today, such as the CMB temperature
fluctuations. Taken from [18].

ṙH = − ä

ȧ2
> 0 for w > −1/3, (3.1)

In order to solve this the horizon problem we can assume that there has been a brief moment of
accelerated expansion in the very early Universe that shrunk the horizon size, ṙH < 0 separating
regions that were previously casually connected at an earlier time, as shown in figure 3.3.

If the horizon size at the moment of the beginning of this accelerated expansion at time tin,
called inflation, was greater than the horizon size today t0 then our observations of an isotropic
CMB make sense.

The quantity of interest to us is then how much the Universe between tin and tfin, setting the
beginning and end of inflation. This is measured in e-foldings, defined as

N = ln

(
a(tfin)

a(tin)

)
. (3.2)

In order to explain the current observations we have Nmin ≈ 60. If we assume an exponential
expansion

a(tfin)

a(tin)
= eH(tfin−tin) (3.3)

then N is also a measure of the time passing in the inflationary phase.

The flatness problem

As we already hinted in section 2.3, current measurements of the density parameter are com-
patible with a flat Universe, Ω0,tot ' 1.

But how does Ω evolves with time? Let’s recall the Friedmann equation

Ω(t)− 1 =
k

H(t)2a(t)2
∝ k

a2−3(1+w)
= ka3w+1 (3.4)
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Past Light-Cone

Recombination

Particle Horizon

Conformal Time

Last-Scattering Surface

Big Bang Singularity

τrec

τ0

τi = 0

Figure 3.2: Conformal diagram of the horizon problem in the case of the CMB. The radiation from the
two circles appears to us at the same temperature, but they were not casually connected at the time of
emission. Taken from [18]

for both radiation (w = 1/3) and matter (w = 0) we get that if Ω − 1 is not exactly 0 at a
certain early time then it will grow as a2 or a4, respectively. But by how much will it grow?
The earliest time we expect the Friedmann equation to hold is the Planck time tP ≈ 10−43 s.
The temperature at that time was TP = mP ≈ 1019 GeV or 1032 K.

Manipulating the previous equation we obtain

Ω−1(tP )− 1 = (Ω−1
0 − 1)

(
T0

TP

)2

= (Ω−1
0 − 1)10−64, (3.5)

where T0 is the CMB temperature today. The Universe in its initial conditions should have to
be amazingly fine tuned to reproduce the flatness we observe today.

As with the horizon problem, the inflationary phase can solve this inconsistency. Let’s recall
the the expression for the comoving Hubble radius rH = c/aH, plug it in equation (3.4):

Ω(t)− 1 = kr2
H (3.6)

then, if the Universe endures a phase where the Hubble radius shrinks this would bring Ω(t)
close to 1. It can be shown that the Universe must expands by 60 e-foldings in order to obtain
the flatness we observe today, as in the case of the horizon problem.

3.1.2 Inflation dynamics

As we anticipated, a phase of accelerated expansion, with ṙH < 0 would potentially solves
the inconsistencies in the Hot Big Bang, additionally it would provide us a way to physically
motivate the fluctuation we observe today.

In order to achieve this accelerating phase an equation of state parameter w < −1/3 is required,
meaning P < −ρ/3. This condition might seem physically unlikely but it’s possible to realize
by simply adding a scalar field φ, called inflaton, with action

Sφ =

∫
d4x
√−gLφ (3.7)
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Past Light-Cone
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Figure 3.3: Conformal diagram of inflationary cosmology, showing the solution to the horizon problem.
Taken from [18].

such that the total action reads as S = SHE +Sφ, with the matter Lagrangian in equation (2.4)
negligible by virtue of the no hair theorem. The scalar field Lagrangian is

Lφ = −1

2
gµν∂µφ∂νφ− V (φ) (3.8)

by applying the least action principle we can obtain the equation of motion for φ, that read

φ̈+ 3Hφ̇− ∇
2φ

a2
= −∂φV. (3.9)

This is the standard equation for a scalar field rolling down a potential, with the additional 3Hφ̇
due to the friction caused by the expansion of the Universe.

The stress-energy tensor T φµν can be derived from (2.7) and reads

T φµν = ∂µφ∂νφ+ gµνLφ (3.10)

from which we can find the energy density ρφ and the pressure Pφ

ρφ =
1

2
φ̇2 + V (φ) +

(∇φ)2

2a2
(3.11)

pφ =
1

2
φ̇2 − V (φ)− (∇φ)2

6a2
(3.12)

To continue the analysis it’s convenient to split the field φ in a homogeneous background term
representing the classical solution, and a spatially dependant term, representing quantum fluc-
tuations
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φ(x, t) ≡ φ(t) + δφ(x, t) (3.13)

where the homogeneous term is the expectation value of the inflaton φ(t) = 〈φ(x, t)〉. We can
do this under the reasonable assumption that the quantum fluctuations are small compared to
the classical term and do not affect its evolution.

The homogeneous term and the fluctuation obey the equations

φ̈+ 3Hφ̇+ ∂φV = 0. (3.14)

δ̈φ+ 3H ˙δφ− ∇
2δφ

a2
= −∂2

φV (φ)δφ (3.15)

Background solution

The background solution is not dependent on spatial coordinates. Then∇φ(t) = 0. The equation
of state parameter wφ for the background field φ(t) is

wφ =
pφ
ρφ

=
1
2 φ̇

2 − V (φ)
1
2 φ̇

2 + V (φ)
. (3.16)

Then, we can have a negative wφ, implying an accelerating expansion and thus the necessary
conditions for solving the horizon problem and the flatness problem if

φ̇2 � V (φ), (3.17)

equation (3.17) is called the slow-roll condition: in words, to have a an inflating Universe it is
required that the potential energy of the field driving inflation is much greater than its kinetic
energy. In order for this to happen, the potential V (φ) must have a sufficiently flat shape at
the value of φ related to the inflationary phase. As a consequence, we can also expect that the
acceleration φ̈ of the background inflaton field is negligible:

|φ̈| � |3Hφ̇|, |∂φV | (3.18)

and the equation of motion simplifies to

3Hφ̇ = −∂φV (3.19)

Assuming (3.17), the first Friedmann equation (2.9) becomes

H2 ' 8πG

3
V (φ) (3.20)

The slow roll conditions can be parameterized by introducing the slow-roll parameters, functions
of the Hubble constant, of the potential and its derivative with respect to φ

ε ≡ − Ḣ

H2
' 1

16πG

(
∂φV

V

)2

η ≡ 1

3

∂2
φV

H2
' 1

8πG

∂2
φV

V
δ ≡ η − ε.

(3.21)
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The ε parameter quantifies the acceleration during inflation. In fact we have

ä

a
= Ḣ +H2 = (1− ε)H2, (3.22)

as a consequence, inflation can happen as long as ε < 1. In general, both ε and η are expected
to be small ε, η � 1 during the inflationary phase, in fact they are related respectively with the
slow roll conditions (3.17) and (3.18).

Let’s show this for η. Deriving the Friedmann equation with respect to t we have

3Hφ̈ ' −∂2
φV φ̇⇒ φ̈ '

∂2
φV φ̇

3H
. (3.23)

Using (3.18) we have

∂2
φV φ̇

3H
� 3Hφ̇⇒ η � 1 (3.24)

3.1.3 Scalar perturbations from inflation

We have characterized the evolution of the uniform background inflaton field that drove inflation.
We are now interested in the dynamics of the perturbation δφ(x, t) which, in the inflationary
paradigm, provides the seeds for the fluctuations observed in the late Universe.

In the inflationary phase the inflaton field dominates the energy budget of the Universe and its
quantum fluctuations δφ are tightly coupled with the metric: perturbations of φ will perturb
the stress energy tensor, affecting the metric through the Einstein equations, while in turn
perturbation of the metric will affect the evolution of the field by perturbing the equation of
motion (3.15)

δφ⇔ δTµν ⇔ δgµν . (3.25)

This issue is connected to to the choice of a gauge. When dealing with a perturbed space-time,
one must pay attention to the fact that a gauge choice, i.e. a particular choice of coordinates,
might introduce unphysical perturbations, or hide real ones. In other words, matter perturba-
tions might be traded for metric perturbations and vice versa. Therefore one to be careful when
performing calculations in a fixed gauge, or use gauge invariant quantities in order to remove
the issue of a gauge choice.

Since we are interested with scalar perturbations, we must introduce gauge invariant quantities
that can be used to describe such fluctuations such the curvature perturbation on uniform-
density hypersurfaces ζ

ζ = Ψ +
H

ρ̇
δρ (3.26)

where Ψ is the Bardeen potential. ζ defined as the curvature perturbation on a spacetime slicing
with δρ = 0.

Another important gauge invariant perturbation is the comoving curvature perturbation R

R = Ψ− H

ρ+ p
δq. (3.27)
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which is the metric perturbation in the comoving spacetime slicing, i.e. as measured by observers
which see the cosmic expansion as isotropic, i.e. for whom the δφ = 0, as the inflaton field sets
the ”clock” for inflation. It can be shown that R and ζ are both gauge invariant, additionally,
they are equal during slow roll inflation

R = ζ ' Ψ +
H

φ̇
δφ

∣∣∣∣
(slow roll)

(3.28)

and conserved on super horizon scales, which allows us to compute them on horizon exit in order
to known their value when they re enter the horizon after inflation has ended.

The recipe is then to find the classical equation of motion for R pr ζ by expanding the action
to the second order in those quantities 1

S(2) =
1

2

∫
d4xa3 φ̇

2

H2

[
Ṙ2 − a−2 (∂iR)2

]
(3.29)

then, defining the Mukhanov variable v ≡ zR, where

z2 ≡ a2 φ̇
2

H2
= 2a2ε (3.30)

we obtain the action

S(2) =
1

2

∫
dτd3x

[(
v′
)2

+ (∂iv)2 +
z′′

z
v2

]
. (3.31)

This is the action of an harmonic oscillator with a time varying frequency, which depends on the
scale factor and its derivatives, as well as on the slow roll parameter ε. Its equation of motion
is the Mukhanov-Sasaki equation

v′′k + ω2
k(τ)vk = 0 with ω2

k(τ) ≡ k2 − z′′

z
. (3.32)

Where we defined the time and mode dependent frequency ω2
k(τ). Equation (3.32) is in general

difficult to solve due to the dependence of z on the background dynamics, and thus on the
particular inflationary model taken into consideration. It can however be solved in particular
cases, as we will see below. For now, we introduce the de Sitter limit ε→ 0 (H = const.) of the
Mukhanov-Sasaki equation

v′′k +

(
k2 − 2

τ2

)
vk = 0. (3.33)

The next step is the quantization of the field v. In order to do that, v is promoted to a quantum
operator, and expressed in terms of creation and annihilation operators

v̂ =

∫
dk3

(2π)3

[
vk(τ)âke

ik·x + v∗k(τ)â†ke
−ik·x

]
(3.34)

satisfying the canonical commutation relations

1See for example [18] for a complete derivation.
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[
âk, â

†
k′

]
= (2π)3δ

(
k− k′

)
. (3.35)

For equation (3.35) to hold it is required that the mode functions vk satisfy the normalization

〈vk, vk〉 ≡
i

~
(
v∗kv
′
k − v∗′k vk

)
= 1, (3.36)

which provides a boundary condition on the mode functions. The problem is then the choice of
the vacuum state. While this isn’t a issue in Minkowsky spacetime and can be done by picking
the state that minimizes the Hamiltonian of the system, there is not a unique way to define a
vacuum state in a time dependant, expanding spacetime. To uniquely define a vacuum state,
one can note that at sufficient early times all comoving scale of interest are inside the Hubble
horizon, k � aH, therefore equation (3.32) reduces to

v′′k + k2vk = 0, (3.37)

the equation for a simple harmonic oscillator, for which a unique solution exists. Therefore we
can impose the initial condition

lim
τ→−∞

vk(τ) =
1√
2k
e−ikτ (3.38)

which defines the Bunch-Davies vacuum.

We are now ready to solve the Mukhanov-Sasaki equation. It’s useful to first consider the de
Sitter limit, eq (3.33), which has the exact solution

vk(τ) = α
e−ikτ√

2k

(
1− i

kτ

)
+ β

eikτ√
2k

(
1 +

i

kτ

)
(3.39)

where α and β are free parameters. By imposing equation (3.38) we fix α = 1 and β = 0. The
mode functions are then uniquely determined

vk(τ) =
e−ikτ√

2k

(
1− i

kτ

)
. (3.40)

The power spectrum of v̂ is then given by the zero-point fluctuations of the field

〈v̂kv̂k′〉 = 〈0 |v̂kv̂k′ | 0〉
=
〈
0
∣∣(a−k vk + a+

−kv
∗
k

) (
a−k′vk′ + a+

−k′v
∗
k′
)∣∣ 0〉

= vkv
∗
k′
〈
0
∣∣a−k a+

−k′
∣∣ 0〉

= vkv
∗
k′
〈
0
∣∣[a−k , a+

−k′
]∣∣ 0〉

= |vk|2 δ
(
k + k′

)
≡ Pv(k)δ

(
k + k′

)
(3.41)

On super horizon scales, this gives

Pv(k) =
1

2k3

1

τ2
=

1

2k3
(aH)2 (3.42)

recalling the definition of v = zR, with z2 = 2a2ε we can obtain the power spectrum of ζ (or R)
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Pζ =
1

z2
Pv. (3.43)

The de Sitter limit is however physically inconsistent as inflation never ends in this regime, and
ζ is meaningless. We are instead interested in the quasi de Sitter limit, in which we obtain

Pζ =
1

4k3

H2

ε
=

1

2k3

H4

φ̇2
. (3.44)

Recalling that ζ freezes when outside the horizon we can compute (3.44) at horizon crossing,

i.e. k = aH. The dimensionless power spectrum Pζ ≡ k3

2π2Pζ is then

Pζ(k) =
1

8π2

H2

ε

∣∣∣∣
k=aH

(3.45)

The primordial power spectrum therefore has a scale dependence determined by the fact that
different scales cross the horizon at different times, and that H and the slow roll parameter ε
are a function of time. This deviation is non existing in the exact de Sitter case, as can be seen
by looking at equation (3.42), and small in the quasi de Sitter case, a function of the slow roll
parameter ε.

The scale dependence of the power spectrum can be parameterized my means of a scale depen-
dence of the spectral index ns(k)

Pζ(k) = As

(
k

k0

)ns(k)−1

= As

(
k

k0

)ns−1+ 1
2
αs ln(k/k0)+ 1

3!
βs ln2(k/k0)+ 1

4!
γs ln3(k/k0)+O(ln4(k/k0))

(3.46)

where k0 is a reference scale, called pivot scale, As is the scalar amplitude and the coefficients
ns, αs, βs and γs are the running parameters, not dependent on k, obtained from a logarithmic
Taylor expansion of the spectral index and we truncated the series at the third order in ln(k/k0).

In the slow roll approximation Pζ(k) can be written as a function of the slow roll potential and
its derivatives, and the scalar index and the running parameters can be obtained as a function
of the slow roll parameters [19, 20, 18, 21]

1− ns = 2η − 6ε

αs = −2ξ2 + 16ηε− 24ε2

βs = 2σ3 + 2ξ2(η − 12ε)− 32ε
(
η2 − 6ηε+ 6ε2

)
.

(3.47)

3.2 Primordial Black Holes

Primordial black holes (PBH) are black holes that might have been formed in the early Universe,
typically during the radiation domination era, through physical processes that are different from
the usual astrophysical collapse of a dying star. Those formation mechanisms allow in general
the formation of black holes with a vast range of masses, in principle from the Planck mass to
millions of solar masses. However we note that any PBH with mass MPBH . 1415 g has by now
evaporated due to Hawking radiation.

Many mechanisms that have been proposed for the formation of PBHs, such as collapse of cosmic
strings [22, 23] or domain walls [24], with the mainstream model given by the collapse of large
(in amplitude) overdensities seeded by curvature perturbations during the inflationary phase
when they reenter the horizon. The latter is particularly interesting to us, since the amplitude
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Figure 3.4: Constraints on the primordial curvature power spectrum PR(k). Taken from [26]

of perturbations at a certain comoving scale k is related with the primordial power spectrum
Pζ(k). The PBH produced by this process are also called curvature primordial black holes
(CPBH).

The motivations to be interested in PBHs are manifold: as they are relics of the early Universe,
their characteristics, such as their mass function, spatial distribution and cross-correlation with
other cosmological probes can tell us information about a time in which virtually no direct
probe exist, in fact even their very existence would imply deviations from the standard history
of the early Universe, independently on which is their formation mechanism. As PBHs interact
only gravitationally they are also possible candidates to at least make up a fraction of the dark
matter content of the universe [25]. Lastly, we mention that PBHs with masses & 102 M� could
be the seeds of super massive black holes residing in the center of galaxies is also matter of
investigation [7].

3.2.1 PBH formation and abundance

PBH formation has been extensively studied in recent years, especially after the beginning of
gravitational wave observation era. Dynamics are highly nonlinear and have been expressed in
various formalisms, such as peaks theory [27, 28], Press-Shechter collapse [29] and excursion set
theory [30].

For an accurate study of PBH production and to link it with the primordial power spectrum, one
should first compute in detail the nonlinear physical process that makes a primordial curvature
perturbation collapse and produce a single CPBH, as a function of the shape and the profile of
the perturbation. Then they should study the statistical properties of the cosmological curvature
and density fields in nonlinear regime, to connect the previous result to the statistical observable,
i.e. the power spectrum. This work is however outside the scope of this thesis, we refer to [27]
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for a comprehensive study of CPBHs formation based on peaks theory.

The general rule is that a PBH forms when a perturbation characterized by a scale k and density
contrast δ greater than a certain threshold δth re-enters the horizon.

We remind that, during inflation, quantum perturbations have been stretched to super horizon
scales as the universe expanded by at least 60 e-folds. After inflation ended, the Hubble horizon
started growing again, gradually encompassing larger and larger scales, which begun physically
interacting.

A rough estimate of the relation between the the mass of a PBH and the scale of the perturbation
that formed it can be obtained by relating the mass of the PBH to the horizon mass at the time
of formation, when the scale of the perturbation re-enters the horizon [14].

MPBH = γMH|at formation = γ
4π

3
ρform H−3

form = γ
4π

3

3H2
form

8πG
H−3

form

= γ
1

2G
H−1

form .

(3.48)

where we used the Friedmann equation and the γ parameter is a O(1) correction, related to the
details of the gravitational collapse and can be found to be ' 0.2 during radiation domination
[29].

Then, if we consider the formation of CPBHs, we have that the horizon scale is related with the
scale of the perturbation by

aH|at formation = k (3.49)

which gives

MPBH(k) ' 30M�

( γ

0.2

)(g∗, form

10.75

)−1/6
(

k

2.9× 105Mpc−1

)−2

(3.50)

this crude computation let us relate the PBH mass with the scale of the perturbation that
generated it.

More accurate analytical calculations and physical simulations have confirmed that, when δ is
close, but still greater than δth, δ − δth . 10−2, the PBH formation process obeys the critical
collapse scaling law [31, 32]

MPBH = kMH(δ − δth)γc (3.51)

where k2, δth and γc are constants, depending on the nature of the fluid at horizon crossing,
and γc in particular doesn’t depend on the overdensity profile but only on the equation of state
parameter w. While the exact values of those parameters can depend on the details of the
methodology some common reference values are δth = 0.45, γc = 0.36 and k = 3.3. Equation
(3.51) has the effect of producing a tail in the distribution of MPBH at small masses, even if the
process that produces them is characterized by perturbations sharply peaked at a certain scale
k.

2Not to be mistaken with the comoving scale defined with the sam symbol.
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Collapse fraction

In order characterize the PBH population, an interesting quantity to define is the collapse
fraction β, defined as the fraction of energy density of the Universe that collapses into a PBH
at the time of formation

β ≡ ρPBH

ρtot

∣∣∣∣
at formation

=

(
H0

Hform

)2(aform
a0

)−3

ΩCDMfPBH (3.52)

where we also introduced the density fraction of PBH that make up dark matter fPBH measured
at the present time

fPBH ≡
ΩPBH

ΩCDM
(3.53)

the collapse fraction can be computed as a function of MPBH and reads [33]

β ' 3.7× 10−9
( γ

0.2

)−1/2 (g∗, form

10.75

)1/4
(
MPBH

M�

)1/2

fPBH (3.54)

therefore, we can see that constraints on fPBH translate on constraints on β.

The collapse fraction then can be linked to the statistical properties of the density perturbation,
encoded in the power spectrum. In fact, the power spectrum, as long as the field is gaussian,
uniquely determines the statistical properties of the field, and thus the probability P (δ) that a
perturbation is over the threshold. Then the collapse fraction can be written as

β = γ

∫ 1

δth

P (δ)dδ (3.55)

which becomes, in the Press-Schechter formalism

β (MPBH) ≈ γ√
2πνth

exp

[
−ν

2
th

2

]
, (3.56)

where we defined νth ≡ δth/σMPBH
, as the normalized amplitude of the peak, and the variance

σMPBH
of the power spectrum at the scale R ' 1/aformHform is given by

σ2
MPBH

=

∫
d ln kPδ(k)W 2(kR) =

∫
d ln kW 2(kR)

16

81
(kR)4Pζ(k). (3.57)

We stress that this result is approximate, but even in more refined calculations the final result
is that the variance of the density field at a certain scale is related with the abundance of PBHs
with a mass at roughly the corresponding horizon mass. Therefore, by applying constraints on
fPBH at a given mass scale, we can constrain Pζ(k) at the relevant scale [34, 27]. Vice-versa,
if the power spectrum has a peak of at least O(10−2) at a given scale k, then we expect to
find PBH at roughly the corresponding horizon mass. An example of the constraining power of
PBHs on the power spectrum can be seen in figure 3.4, note the vast range of scales that PBHs
can cover.
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Figure 3.5: Current constraints on the PBH abundance fPBH, assuming a monochromatic mass distribu-
tion. Taken from [35].

3.2.2 PBH detection and constraints

While a detection of PBHs would be a groundbreaking physical discovery, at this time there are
no confirmed observations. Of course, since all black holes differ one from each other only by
their mass and angular momentum, telling apart PBHs and astrophysical black holes cannot in
general be done with certainty. The only exception would be the discovery of sub solar mass
BHs, as there is no viable astrophysical process that could produce them.

Sparked by LIGO detection of mergers of O(10M�) black holes and by the ever increasing
amount of data acquired by gravitational wave astronomy, much effort is being done to statisti-
cally discriminate populations of astrophysical BHs and PBHs from the data acquired from the
mergers, for example by cross correlating them with other tracers [36, 37, 38], by measuring the
eccentricities of the binaries [39], or by studying their mass functions [40].

Another way to operate is instead to constrain the PBH abundance fPBH in a given mass range.
In fact, if PBHs of a given mass would make up a fraction of the dark matter, they would
produce measurable effects depending on the size of the black hole, and the lack of observations
of those effects can be used to put upper bounds on their abundance. Some constraints that are
currently being investigated are [34, 35]:

Gamma ray background (1015 g .MPBH . 1017 g): PBHs in this mass range are expected
to be evaporating due to Hawking radiation, emitting high energy γ rays. The lack of
a detection of this gamma ray background constrain the abundance of small mass black
holes.

Microlensing (1026 g .MPBH . 1034 g): the lack of detection of microlensing by the EROS
and MACHO surveys, designed to test the hypothesis of massive compact objects making
up dark matter, has put an upper bound on the abundance of sub solar mass PBHs.

Lyman-α forest (1036 g .MPBH): a statistical analysis of the Lyman-α forest, with the aid of
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hydrodynamical simulations can put constraints on the abundance of 102 ∼ 103M� PBHs.

a comprehensive visualization of constraints on fPBH is shown in figure 3.5, for a monochromatic
mass distribution, that is, all the PBHs are assumed to have the same mass. It should be noted
that, in general, extended mass distributions suffer tighter constraints [41], because even if the
peak of the distribution is in a constraint-free zone, the tail could touch a region where fPBH is
ruled out.



Chapter 4

Cosmological observables: 21 cm line

The observable on which our work focuses is the redshifted 21 cm signal, specifically its fluctu-
ations encoded in the angular power spectrum C21

` . In order to extract information about the
primordial universe from 21cm Intensity Mapping (IM) experiments we have to link the Primor-
dial Power Spectrum (PPS) to such fluctuations. In this chapter we will review the physics of
the 21 cm line, characterize the relevant quantities and the approximations and notation that
will be used in our analysis.

More precisely, what is observed by 21cm experiments is the intensity of the redshifted 21cm
radiation, either emitted or absorbed by the neutral hydrogen gas undergoing an hyperfine
transition, with respect to the CMB. This quantity is encoded in the brightness temperature
T21, which is itself proportional to the contrast between the CMB temperature Tγ and the spin
temperature Ts, determined from the number density of neutral hydrogen in the ground and
excited state of the 21cm transition. In order to determine T21 and its fluctuations we have to
understand how those quantities vary during the evolution of the Universe, both globally and
locally.

4.1 Basic 21 cm physics

The 21 cm hydrogen line is due to the transition of neutral hydrogen in its ground state (HI) from
triplet (parallel spins) to singlet (antiparallel spins). The transition has a rest frame frequency
ν0 of 1.4204 MHz, corresponding to a wavelenght of 21.106 cm. Since it’s the most common
atom in the universe, hydrogen makes a good tracer for the underline density field, and being
able to map its density fluctuations would provide an enormous wealth of information.

As the light from the CMB passes through neutral hydrogen, its intensity at the frequency of
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Figure 4.2: The expected history of 21cm signal, both fluctuations from a simulation (top) and sky
averaged signal (bottom). Taken from [42]

.

the 21cm transition can get dimmed or enhanced depending on whether the spin temperature
Ts, which is the excitation temperature of the of the gas with respect of the 21cm transition,
is lower or greater than the temperature of the CMB Tγ . What we see then is a trough or a
bump in the CMB blackbody spectrum, at a frequency corresponding to the redshifted 21cm
frequency.

As we will see, the spin temperature is affected by three processes [42, 43]:

• absorption/emission of 21 cm photons from-to a background source, in our case the CMB

• collisions with other hydrogen atoms, with electrons and with protons

• resonant scattering of Ly − α photons that cause a spin flip via an intermediate excited
state (Wouthuysen-Field effect [44, 45]) .

The first process will drive the spin temperature towards the CMB temperature Tγ , while the
second will try to bring it towards the gas temperature Tk.

Therefore, Ts will be bounded between the two temperatures, and it is an essential requirement
for the 21cm signal to be observed at a certain redshift that Tγ and Tk are different. This
requirement sets the maximum redshift observable with 21cm experiments to about z ∼ 200,
before that the numerical density of free electrons in the cosmic medium was high enough to
couple Tk and Tγ .

The cosmological region that can be probed by 21cm IM experiments is divided in qualitatively
different stages depending on which processes come into play, affecting Ts. Here we give a
qualitative summary of the various regimes:

Dark Ages (30 . z . 200) The first window for 21cm observations is the Dark Ages (DA),
which happened between z ∼ 200 and z ∼ 30, when the free electrons in the cosmic
medium ceased to efficiently couple the CMB radiation with the neutral hydrogen gas,
which cooled adiabatically Tk ∝ (1 + z)2, while Tγ ∝ 1 + z. Collisional coupling drove Ts
towards Tk < Tγ , producing an absorption signal. Eventually the gas density dropped and
radiative coupling prevailed over collisional coupling, setting Ts ' Tγ .

Cosmic Dawn (12 . z . 25) as the first stars light up they start emitting Ly-α photons and
X-rays. Initially the emitted Lyman-α photons are not enough to significantly heat the gas
and increase Tk, but are sufficient to couple Ts with Tk again, through the Wouthuysen-
Field effect. Therefore another absorption signal that eventually might become an emission
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signal is expected.

Epoch of Reionization (6 . z . 11) In this era the 21cm transition was again mediated by
the Wouthuysen-Field effect. The radiation from the stars end up heating the gas and
Tk > Tγ , giving an emission signal. Luminous objects eventually ionize the surrounding
hydrogen, creating bubbles of darkness in the 21cm signal. Eventually all the IGM is
ionized, thus marking the end of 21cm emission at z ∼ 6, aside for small collapsed patches
of neutral hydrogen (damped Lyα systems).

An example of the full history of 21cm signal is shown in figure 4.2.

While the Cosmic Dawn and the EoR are more accessible experimentally, their physics are
strongly dependant of many assumptions of how reionization happened and how the first stars
and galaxies evolved, and the dynamics are strongly nonlinear, making it much harder to
model and thus extract cosmological information, since the (g)astrophysical and the cosmo-
logical physics are intertwined. Their treatment thus usually relies on simulations that aim
to reproduce the evolution of the relevant quantities on hundred megaparsec wide comoving
volumes using code such as 21cmFAST1 [46, 47].

In this work we will then mainly focus on what information can be extracted the Dark Ages,
where the dynamics are still well described by the linear approximation and much simpler
physical modeling, not requiring to model the power spectrum induced by the ionized bubbles,
allowing to more readily link the primordial fluctuations to the observed brightness fluctuations.
Additionally, the scales over which 21cm fluctuations in the Dark Ages are damped is given by
the Jeans scale kJ ∼ 300 Mpc−1, three orders of magnitude smaller than the Silk damping scale
of kS ∼ 0.2 Mpc−1 of CMB fluctuations.

4.1.1 Global evolution

Spin temperature

We first define the spin ”temperature” Ts:

n1

n0
= 3 exp

(
−T?
Ts

)
≈ 3

(
1− T?

Ts

)
(4.1)

which is the excitation temperature associated to the spin flip transition, quantifying the fraction
of atoms in the excited (triplet) state and ground (singlet) state, respectively labeled as 1 and
0. The temperature T? = hν0/kB = 0.068K is the transition energy in Kelvins, note that in
all the astrophysical applications we have Ts, Tγ , Tk Tα � T?, and we can take the appropriate
limits.

The relative abundances n0 and n1 are related, at equilibrium, by the equation [48, 49]

n0 (C01 +R01 + L01) = n1 (C10 +R10 + L10) ⇒ 3

(
1− T?

Ts

)
≈ C01 +R01 + L01

C10 +R10 + L10
(4.2)

where Cij , Lij and Rij are, respectively, the collisional transition rates, the Lyman-α transition
rates the radiative transition rates between the states i and j. This equation holds in the steady
state approximation, i.e. when Cij +Rij � H, which is true at all times we are considering.

We then have to find expression for the transition rates, relating them with the thermodynamic
quantities. The radiative transition rates are related by the equation

1https://github.com/21cmfast/21cmFAST

https://github.com/21cmfast/21cmFAST
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R01 = 3 exp

(
−T?
Tγ

)
R10 ≈ 3

(
1− T?

Tγ

)
R10 (4.3)

in which R10 is given by

R10 = A10

(
1 +

1

eT?/Tγ − 1

)
≈ A10

Tγ
T?

(4.4)

with A10 ' 2.85× 10−15s−1 being the spontaneous decay rate of the 21cm transition.

The upward and downward transition rates are related by the equation

C01 = 3 exp

(
−T?
Tk

)
C10 ≈ 3

(
1− T?

Tk

)
C10 (4.5)

an analogous equation holds for the Lyman-α transition, with the ”light temperature” Tα whose
details specified later:

L01 = 3 exp

(
−T?
Tα

)
L10 ≈ 3

(
1− T?

Tα

)
L10. (4.6)

Bringing equations (4.1), (4.2), (4.3), (4.5) and (4.4) together and solving for Ts we get the
expression

Ts =
T? + Tγ(z) + ykTk(z) + yαTα

1 + yk + yα

=
T? + Tγ(z) + ykTk(z)

1 + yk
(before star formation)

(4.7)

where yk and yα are the kinetic and Lyman-α coupling, respectively.

What equation (4.7) is saying is that the spin temperature is a weighted mean of the temperatures
Tγ , Tk and Tα, and its value is determined by which coupling dominates at a given time.

The evolution of Ts during the Dark Ages, without any ionizing sources, obtained as an output
of our code is shown in the top panel of figure 4.3. At higher redshifts the collisional term
dominates and drives the spin temperature towards the gas temperature Tk, but as time passes,
nH decreases and the collisional coupling loses power with respect to the radiative coupling, and
Ts is brought toward Tγ .

Optical depth and observed brightness temperature

The absorption or emission of 21cm photons by the neutral hydrogen clouds appear to us as a
trough or a bump in the low frequency tail of the CMB blackbody spectrum.

We therefore have to quantify the variation in radiation intensity emitted at a certain redshift
z with some quantity we can measure with our radio telescopes on Earth (or on the Moon) at
z = 0.

As light passes through a medium, its intensity at a certain frequency ν along the line of sight
is given by the radiative transfer equation for the specific intensity Iν

dIν
ds

= −ανIν + jν (4.8)

where the coefficients αν and jν represent absorption and emission, respectively.
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Since the 21cm frequency is always much smaller than the peak of the CMB blackbody spectrum
we can safely work in the Rayleigh-Jeans limit and relate such intensity with a characteristic
temperature

Iν = 2kBTν
2/c2 (4.9)

introducing the optical depth τ =
∫
α(s)ds will allow us to rewrite equation (4.8) in a more

convenient way, as the temperature observed after the light of a background source with tem-
perature Tγ passes through a cloud with uniform excitation temperature, in our case Ts [42,
50]

Tb = Ts
(
1− e−τν

)
+ Tγ(ν)e−τν (4.10)

the variable that we will focus on, T21, is conventionally defined as the difference of this quantity
with respect to the source

T21 ≡ Tb − Tγ = (Ts − Tγ)
(
1− e−τν

)
(4.11)

the optical depth at the 21cm transition frequency is

τν =

∫
ds

[
1− exp

(−T?
Ts

)]
σ0φ(ν)n0 (4.12)

where n0 = nH/4, σ0φ(ν) denotes the 21cm cross section with σ0 = 3c2A10/8πν
2 and

∫
φ(ν)dν =

1. This expression can be computed in the Sobolev approximation [51, 42], giving

τν0 =
3c3~A10xHInH

16kBTsν2
0

1

H(z) + (1 + z)∂rvr
(4.13)

where xHI is the neutral fraction of hydrogen, ∂rvr is the comoving peculiar velocity gradient
along the line of sight. While this term is similar to a redshift space distortion (RSD) term, it
has a different origin. RSDs are due to our inability to discriminate between the redshifting of
incoming radiation due to the Hubble flow and the peculiar velocity of the emitting source: since
we compute distances by measuring the redshift of incoming radiation a source with a peculiar
velocity with a longitudinal component toward us would appear to be closer in redshift space
than it is in real space, vice-versa, a source with an outward peculiar velocity would appear to
be farther than it is in real space. In formulas, the redshift space coordinate s and the real space
comoving coordinate r are related by:

s = r +
(1 + zobs)

H (zobs)
v‖(t, r)r̂. (4.14)

This effect, combined with the physics of gravitational collapse, produces distortions in the
shape of the large scale structures, such as the Kaiser effect, a squeezing along the line of sight
at large scales, and the Finger of God, an elongation along the line of sight at smaller scales.
RSDs also affect the 21cm three dimensional power spectrum, which becomes anisotropic, and
can be decomposed in terms depending on powers of µ, the angle between the line of sight and
the Fourier mode k. The µ-dependency of the power spectrum can be used to discriminate the
purely cosmological component of the power spectrum [3, 43].

However, the ∂rvr term in equation (4.13) does not, in principle, require any observer, and would
arise even if RSDs would be taken into account [49, 52]. We will not consider RSDs in this work,
however we will include the velocity gradient term.
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Figure 4.3: Global thermal history of the IGM without star formation. Top panel: evolution of Tγ ,
Tk and Ts. Bottom panel: mean brightness temperature. The grey dashed lines at z = 30 marks the
approximate end of the Dark Ages.

The redshifted 21cm temperature observed at z = 0 is then, in the optically thin limit τ � 1,
which is always the case for 21cm photons [50, 42, 3]

T obs
21 =

T loc
21

1 + z
=
Ts(z)− Tγ(z)

1 + z

(
1− e−τν0

)
≈ Ts(z)− Tγ(z)

1 + z
τν0

=
Ts(z)− Tγ(z)

1 + z

3c3~A10xHInH
16kBTs(z)ν2

0

1

H(z) + (1 + z)∂rvr

=
1

1 + z

(
1− Tγ

Ts

)
3c3~A10xHInH

16kBν2
0

1

H(z) + (1 + z)∂rvr

(4.15)

recalling the expression that we found for Ts, equation (4.7), we get that the brightness temper-
ature depends on the following variables:

• the CMB temperature Tγ

• the gas temperature Tk through the collisional coupling yk

• the hydrogen fraction nH both directly and through the coupling yk

• the neutral hydrogen fraction xHI

• the velocity gradient along the line of sight ∂rvr

while we omitted the spatial and redshift dependence for clarity, each of those variables varies
in space and time and can potentially source fluctuations of T obs

21 . From now on we will drop
the ”obs” superscript and just refer to the brightness temperature observed as z = 0 as T21.

The average brightness temperature T 21(z) is then taken by taking the spatial averages of all
the local quantities

T 21(z) =
3c3~A10xHInH

16kBν2
0

1

H(z)(1 + z)

(
1− T γ(z)

T s(z)

)
(4.16)
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its value four our fiducial model is plotted in the bottom panel of figure 4.3.

We note that the 21cm global signal is also subject of study, and there have been claims of a
detection by the experiment EDGES of an absorption feature at z ∼ 17 [53], despite it being
anomalous in shape and amplitude if compared to the theoretical predictions of the signal at
that redshift. The absorption signal at that redshift is due to the Lyman-α coupling of the spin
temperature with the gas temperature (Wouthuysen-Field effect) mediated by the photons of
the first stars. We however do not treat that process as we focus on the Dark Ages, before star
formation begins.

4.2 Phenomenology of the 21cm signal

A convenient way to write equation (4.15) is [42]

T21 ≈ (27mK) (1 + δb)xHI

(
1− Tγ

Ts

)(
Ωbh

2

0.023

)(
1 + z

10

0.15

Ωmh2

)1/2 1

1 + (1+z)
H(z) ∂rvr

(4.17)

4.2.1 Couplings

In the previous section we saw that the spin temperature is determined by which coupling
dominated over the other during the various stage of the evolution of the IGM.

Collisional Coupling

The collisional coupling yk brings the spin temperature toward the kinetic temperature of the
HI gas. Its expression is

yk =
T?

A10Tk
(CH + Ce + Cp) (4.18)

where the coefficients Ci’s are the de-excitation rates of the triplet state due to collisions with
neutral hydrogen, free electrons and free protons, respectively. In the Dark Ages only relevant
coefficient is CH [54], whose value can be found in [55], as the other are proportional to 1− xH
and thus suppressed by a factor 10−4

CH = 3.1 · nH · 10−11 · T 0.357
k exp

(−32

Tk

)
cm3 s−1 (4.19)

Lyman-α coupling

The coupling with the Lyman-α photons is described by the Wouthusyen-Field effect: this
process entails the transition from one hyperfine state of HI to the other, mediated by the
excitation to a higher energy state, such as the 2p level

the coupling yα is

yα =
16π2T?e

2f12J̃0

27A10Tkmec
(4.20)

depending on the constant f12, the Ly-α oscillator strength, and the Ly-α photon intensity J̃0

J̃0 =
φαc

4πH(z)να
nHxH

∫ ∞
E0

σ(E)N (E)dE (4.21)
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Figure 4.4: Average brightness temperature T 21 and α parameter. The grey dashed line marks the end
of the Dark Ages at z = 30.

as we anticipated this coupling is negligible in the Dark Ages since there isn’t any object capable
of producing energetic photons. However this may not be the case in non standard scenarios,
for example if Primordial Black Holes have formed in the early universe and heated matter in
their accretion disks [7] or in the case of dark matter annihilation [6].

4.3 Perturbative expansion of T21 fluctuations in the Dark Ages

In this section we will connect the 21cm fluctuations to the physical quantities we want to study
i.e. the Primordial Power Spectrum.

Equation (4.15) shows that the brightness depends of many quantities that could spatially
fluctuate, leading to fluctuations of the observed T21.

The next step in order to perform our analysis is to relate those fluctuations with the matter
power spectrum Pm(k).

We note that while in the later dark ages, z ≤ 50 non-linear corrections in the evolution of the
perturbations become important [54], at all times during this cosmic eras the overdensity field
is well below unity, allowing to compute the T21 power spectrum with a perturbative treatment.

We then can obtain a perturbative expansion of T21 in powers of the fluctuation of the relevant
quantities. In our treatment we do not consider fluctuations of xHI and Tγ , as they are negligible
in the regime of interest to us, as the former therm is 1− xe with xe ' 10−4, while the latter is
of a few µK compared to fluctuations of T21 in the mK range, a thousand times larger.

We then split Tk and nH in a mean term and a spatial dependent fluctuation, as usual

Tk(z,x) ≡ T k(z)(1 + δTk(z,x)) (4.22)

nH(z,x) ≡ nH(z)(1 + δH(z,x)) (4.23)

we also define the dimensionless relative velocity fluctuation term as
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δv(z,x) ≡ −(1 + z)
∂rvr
H(z)

(4.24)

this procedure leads to the second order expansion of T21 in terms of the aforementioned fluc-
tuations

T21 =T 21

(
1 + δv + δ2

v

)
+ (Tbδb + TT δTk) (1 + δv)

+ Tbbδ2
b + TbT δbδTk + TTT δ2

Tk

(4.25)

Where we have omitted the x dependence for clarity. Restricting ourselves only to linear fluc-
tuations we have:

T21 = T 21 (1 + δv) + Tbδb + TT δTk (4.26)

where T 21 and the T coefficient only depend on z and we took the approximation δb = δH , valid
up to negligible corrections.

In order to find the evolution of the gas temperature we apply the first law of thermodynamics.
Neglecting gravitational potentials we obtain

δ̇Tk −
2

3
δ̇b

1 + δTk
1 + δb

= ΓC

[
T cmb − T k

T k

δxe −
(
T cmb

T k

+ δxe

)
δTk

]
(4.27)

where we have defined the rate ΓC

ΓC ≡
8σTarT

4
cmb

3 (1 + xHe + xe)me
x̄e '

8σTarT
4
cmb

3me
x̄e. (4.28)

Equation (4.27) should be coupled with an equation for δxe , but to simplify the system the
fluctuations in the free electron density can be neglected, giving an error of about 10%, as found
in [4].

With those simplifying assumptions the equation for the gas temperature evolution at the linear
order is

δ̇
(1)
Tk

+
T cmb

T k

ΓCδ
(1)
Tk

=
2

3
δ̇

(1)
b . (4.29)

This equation can be solved assuming δ
(1)
b (x, z) ∝ a and with the aid of a recombination code

such as HYREC [56, 57], to find a coefficient C1(z) such that

δTk(x, z) = C1(z)δb(x, z). (4.30)

Plugging this relation back in (4.26) we get the first order expansion of the spatial fluctuations
of T21 during the Dark Ages in terms of δb and δv:

δT21(x) = α(z)δb(x) + T 21(z)δv(x) (4.31)

with α(z) = Tb(z) + C1(z)TT (z) a parameter depending only on z. The average brightness
temperature and the parameter α(z) are shown in figure 4.4.
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Angular power spectrum

When observing the sky at a given redshift z with a telescope we are effectively looking a portion
of a spherical shell of a 3-dimensional volume, projected along the line of sight. That is, while the
information of the fluctuations of a random field describing some physical quantity is encoded
in the n-point correlation functions ξ(n)(x1...xn) or alternatively the related Fourier transforms
i.e. the power spectrum P (k), the bispectrum etc, the data we gather is more conveniently
described by the angular fluctuations of the field.

This is especially the case for the CMB, since recombination happened in a very short time
compared to cosmological scales and the CMB radiation that we see is all emitted at around
z = 1100. However the same formalism can be adapted for the 21cm line. In this case we
are able to probe a much greater volume and divide it in concentric spherical shells, effectively
performing a tomography of the observable region.

We first recall the expression for the spherical harmonics decomposition of a generic field Φ(n̂)
defined on a spherical surface

Φ(n̂) =
∞∑
`=0

∑̀
m=−`

a`mY`m(n̂) (4.32)

where the a`m are the coefficients of the expansion, analogous to the Fourier transform of a
field defined in 3D space, and Y`m are the spherical harmonics, forming an orthonormal basis.
The ` index determines the angular scale θ ∼ `−1, while the m index specifies the directional
dependence.

The angular power spectrum C` is then defined as the variance of the a`m coefficients

〈a`ma∗`′m′〉 = δ``′δmm′C` (4.33)

or, alternatively

C` =
1

2`+ 1

∑̀
m=−`

|a`m|2 (4.34)

In order to compute the angular power spectrum of 21cm fluctuations we switch to Fourier space.
Under the assumption of matter domination and that baryons follow the DM distribution we
have the relation

δv(k, z) = (k̂ · n̂)2δb(k, z) (4.35)

we can therefore define the 21cm transfer function T`(k, ν)

T`(k, ν) =

∫ ∞
0

dxWν(x)
[
α(z)j`(kx) + T 21(z)J`(kx)

]
(4.36)

where j`(kx) are spherical Bessel functions and we defined the term J`(kx) which can be written
as a combination of spherical Bessel functions [58]

J`(kx) ≡ −∂2j`(kx)/(∂kx)2

=

[
−`(`− 1)

4`2 − 1
j`−2(kx) +

2
(
3`2 + 3`− 2

)
4`2 + 4`− 3

j`(kx)− (`+ 2)(`+ 1)

(2l + 1)(2`+ 3)
j`+2(kx)

]
.

(4.37)
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Wν(x) is a window function centered on the comoving distance from which the incoming radiation
is redshifted to the frequency ν, depending on the details of the experiment. It is due to the
finite bandwidth of the experimental apparatus. We give more details about this in chapter 5.

Finally, the angular power spectrum C21
` of 21cm fluctuations in term of the matter power

spectrum can be written as

C21
` (ν) =

2

π

∫ ∞
0

k2dkPm(k, z(ν))T 2
` (k, ν). (4.38)

We stress that the only dependency on the primordial parameters is in the matter power spec-
trum Pm(k), which itself is dependant on the primordial power spectrum Pζ(k).
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Chapter 5

Intensity mapping

We have now characterized the angular power spectrum of the fluctuations of the 21 cm signal
that we expect to measure.

We remind that this radiation is emitted by the IGM as the neutral hydrogen atoms undergo
a spin flip transition. 21 cm radiation from high redshift is therefore a faint and diffuse source
of radio waves, and measuring its distribution in the sky in order to compute the angular
power spectrum is a challenging task task. This is particularly true in the case of the 21cm
radiation emitted in the Dark Ages, as its frequency is such that it’s mostly shielded by the
Earth atmosphere, and in order to detect it it might be necessary to move on the far side of the
Moon.

This is the kind of task that the field of Intensity Mapping (IM) is trying to tackle. IM is a
new and rapidly expanding field that consists in surveying the sky by mapping the integrated
emission of light of a specific spectral line of a certain element from diffuse and unresolved
sources, instead of detecting point-like resolved sources, as in galaxy surveys. While most of
the effort in this field has been directed toward the detection of 21 cm emission from the IGM,
there are also experiments in development that aim to study different spectral lines [2], such as
the CO rotational transitions, the CII fine structure line and the Ly-α line. Effort is also being
made towards the possibility of cross correlating the information from various lines [59], as well
as with different cosmological probes, such as gravitational waves observations [38].

In order to compute the 21 cm power spectrum we need to be able to resolve the scales that
characterize the fluctuations in T21. Due to diffraction, the smallest angular scale than an optical
system can resolve is given by θ ≈ λ/D, where D is the aperture of the system and λ is the
wavelength of the electromagnetic radiation. This gives the requirement of a 42 km aperture for
a resolution of 1 arcsecond with λ = 21 cm, far too big for a single telescope.

However, it is possible to use an array of multiple radio telescopes in order to create an instrument
capable of reaching far smaller angular resolutions: this technique is called radio interferometry.

In this chapter we will introduce the topic of radio interferometry, which is the tool that will
let us perform the tomographic analysis of the 21 cm signal in the future, in order compute its
power spectrum, and we will characterize the specifications of the instruments that are relevant
in order to gauge the detectability of the signal.

5.1 Interferometry basics

A radio interferometer is an array of multiple radio antennas, set to operate as a unique instru-
ment, in order to obtain images of the sky with high angular resolution. It does so by measuring
the interference pattern of the signal emitted by sources far away, which arrives with different
phases to different antennas.

41
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Figure 5.1: Schematic representation of a radio interferometer. Taken from [60].

The antennas can have various design, from dishes as in SKAO-MID to electric dipoles as in
SKAO-LOW, LOFAR and the proposed Fast Fourier Transform Telescope [61].

The vector between a pair of each of the antennas that make up the apparatus is called a baseline
and is indicated with b. In an interferometer, each antenna samples the EM field coming from
the sky from a given direction n̂.

The electric field induces a time varying voltage in the antenna, proportional to field itself. For
each baseline, i.e. each couple of antennas, the signal is then multiplied and time averaged in
a correlator order to extract a response Rc dependent of the signal intensity E2 and the phase
difference ∆φ due to the geometric delay, given by

Rc ≈ E2 cos(∆φ) (5.1)

with

∆φ = 2π
b · n̂
λ

= 2πu · n̂ (5.2)

where we have introduced the vector u = (u, v), which is the baseline in units of the wavelength
of the incoming radiation. This is actually only the even part of the contribution to the fringe
pattern from the sky brightness at a given direction indicated by n̂. The odd, sin-like contribu-
tion can be obtained from the same procedure, but after adding a π/2 phase shift to the waves
of one of the antennas constituting the baseline.

By integrating over the solid angular size spanned by the source we obtain the response of an
interferometric apparatus to the signal coming from the sky, described by the visibility function
V (u), which is related to the sky brightness through the Van Cittert–Zernike theorem

V (u) =

∫
e2iπ(ul+vm)T (l,m)dldm (5.3)

where T (l,m) describes the sky brightness distribution as a function of the coordinates (l,m) of
the plane tangent to the sky, filtered by the antenna primary beam response A(l,m): T (l,m) =
T (l,m)A(l,m). We can see that the visibility function is essentially the 2-dimensional Fourier
transform of the sky brightness, at least for a small field of view where the flat sky approximation
holds, with a single visibility being roughly a given Fourier mode of the sky brightness. In other
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Figure 5.2: Example of the PSF of an interferometric array. Top left: the PSF of a single baseline is a
sinusoidal pattern. Top right: as more baselines are added, the PSF shows a more complex fringe pattern.
Bottom: with all the baselines the PSF acquires a more defined shape, peaked at the center. Taken from
[63].

words, interferometers directly probe the power spectrum (the amplitude of the Fourier modes)
of an astronomical patch they are pointed to.

Since we have only a finite number N of antennas, we can only have a finite number of baselines
N(N − 1)/2, meaning we can only sample V (u) for a finite number of vectors u, resulting in an
incomplete coverage of the sky in Fourier space. In order to increase the coverage in the Fourier
plane the antennas can be moved, and the rotation of the Earth is exploited as well [62].

By combining the measurements of the visibilities obtained from all the antennas constituting
the apparatus and the rotation of the Earth one can then invert the relation (5.3) in order to
obtain the sky brightness

ID(l,m) =

∫
S(u, v)V (u, v)e2πi(ul+vm)dudv (5.4)

where the function S(u, v) describes the incomplete Fourier coverage in the (u, v) plane. The
subscript D in ID indicates that the resulting sky brightness obtained with this procedure is not
a faithful representation of the sky brightness, but it’s a ”dirty image”, i.e. it’s the actual sky
brightness convolved with the Point Spread Function of the instrument, which is the response
of the interferometric array to a point source:

ID(l,m) = S̃V = PSF (l,m) ∗ I(l,m). (5.5)

The PSF is a sinusoidal pattern if only one baseline is present, and it approaches a gaussian shape
as multiple baselines are added, and the Earth rotation is exploited in order to obtain multiple
baselines from the same configuration of the interferometer. An example of the evolution of the
PSF as more baselines are added is shown in figure 5.2.
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The above formalism describes the angular dependence of the sky brightness in a spherical
shell of fixed z, equivalent to observing the 21 cm radiation at a given frequency ν. However,
the strength of 21 cm IM is that it allows to probe the entire three dimensional cosmological
volume in which the 21 cm brightness temperature is different from 0, allowing also to probe
fluctuations along the line of sight by looking at the brightness also as a function of frequency.
Therefore, when characterizing an interferometer, it is useful to consider the characteristic scales
that an interferometer apparatus can resolve, both in the plane perpendicular to the line of sight
and in the direction parallel to it, denoted respectively by the comoving wavenumber k⊥ and
k‖. The wavenumbers are related to the specifications of the instruments and the cosmological
parameters [64]:

k⊥ =
2πν0b

cDc
; k‖ =

2πν21H0E(z)

c(1 + z)2
η (5.6)

where η is the Fourier dual of ν and Dc is the comoving radial distance

Dc ≡
c

H0

∫ z

0

dz′

E (z′)
; E(z) ≡

√
Ωm(1 + z)3 + ΩΛ. (5.7)

Here we summarize some basic specifications of an interferometer:

Angular resolution: it’s the smallest angular scale that can be resolved by the instrument.
It’s given by the maximum baseline of the instrument as

θmin = λ/Dmax = λ0(1 + z)/Dmax (5.8)

with λ being the wavelength of the observed signal and λ0 = 0.21 m in the case of the red-
shifted 21 cm signal. Alternatively, we are interested in the maximum multipole observable
in the spherical harmonics decomposition of the sky, which is `max(λ) = 2πDmax/λ.

Bandwidth ∆ν: the frequency range at which the observation is performed. This corresponds
to observing a spherical shell of the IGM of finite depth.

Spectral resolution: the resolution in frequency of the instrument, determining the smallest
scale that can be resolved along the line of sight.

Sensitivity: the thermal noise experienced by the instrument:

Srms ≈
SEFD√

N(N − 1)tint∆ν
(5.9)

where SEFD is the system equivalent flux density measured in janskys (Jy), proportional
to the system temperature Tsys and inversely proportional to the effective area of the
instrument Aeff , tint is the total integration time.

Field of view: the solid angle of the sky covered by the instrument. It’s given by the size of
the beam of a single antenna.

5.2 21 cm interferometric experiments

Due to the enormous experimental challenges in mapping 21 cm fluctuations, currently no mea-
surement of the 21 cm power spectrum has been made. The main problems are the foregrounds,
which in the case of 21 cm radiation are 5 orders of magnitude or greater [64] compared to
the signal, and the instrumental noise, limiting the sensitivity of the experiments. Addition-
ally, while 21 cm radiation from the Epoch of Reionization can be detected by ground based
experiments, the Earth ionosphere shields low frequency radiation, preventing us from seeing 21
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cm radiation coming from the Dark Ages. A review of the state of the art of 21 cm intensity
mapping experiments and techniques is given in [64].

5.2.1 Foregrounds

Foregrounds are due to the contamination of the 21 cm spectrum by astrophysical sources.
The main source of foregrounds is the galactic synchrotron emission produced by the Milky
Way, emitted by cosmic ray electrons propagating in interstellar magnetic fields. This emission
has a temperature of hundreds of kelvins, and swamps the 21 cm signal we aim to observe.
Additionally, it becomes brighter at lower frequencies, making it increasingly difficult to measure
the 21 cm signal at lower redshifts:

Tsync = 180 K×
( ν

180MHz

)−2.8
(5.10)

There are also other sources of foreground contamination, such as free-free emission, bright radio
point sources, and unresolved point sources. While those sources are dimmer than the galactic
synchrotron emission, they still can dwarf the 21 cm signal and must be dealt with in order to
achieve the observation of the cosmological signal.

One could in principle model the foreground contaminants and subtract them from the measured
signal, but this approach in made prohibitive by the & 5 orders of magnitude difference in
foreground brightness compared to the 21 cm signal: even a small error in foreground estimation
would bias the measured signal. However, unlike global signal measurements, experiments which
measure spatial fluctuations can exploit the different spectral properties of foregrounds and
cosmological signal in order to separate the contaminants and it can also be possible to avoid
them altogether.

Foregrounds are in fact expected to have a relatively smooth spectrum in the frequency domain,
and it can be shown that they lie in a wedge in the (k⊥, k‖), as shown in figure 5.3. Further
effects due to the imperfect experimental setup, such as calibration errors, can induce a leakage
in the foregrounds Fourier modes outside the wedge, and to contrast this the Fourier space
dedicated to the cosmological measurements is further reduced by introducing a buffer region.

Alternatively, one can exploit the fact that changing the observation frequency ν effectively
samples different, uncorrelated volumes of the 21 cm three dimensional field, and exploit the cross
frequency power spectrum to isolate the foreground components which are instead correlated,
as shown in [17].

5.2.2 Instrumental sensitivity

The sensitivity of an interferometer determines its ability to detect the signal over the noise,
mainly due to the thermal fluctuations in the electronics of the apparatus, to which can be
associated an effective temperature, approximately equal to the sky brightness temperature Tsky

in the case of 21 cm interferometry [66]. Mathematically the sensitivity describes the variance
associated to the estimation of the visibilities, an places unavoidable constraints on how accurate
our measurement can be. The 21 cm signal is extremely faint, and thus high sensitivities are
required for an accurate reconstruction of the 21 cm radiation field.

In the following we derive an expression of the angular power spectrum of the noise induced by
the thermal fluctuations in the interferometer, compatible with the C` formalism that we will
employ in our analysis.

The measured flux in a visibility in a 21 cm experiment in the Rayleigh-Jeans limit, is [17]

V (u) =
2kB
λ2

∫
d2nδT21(n̂)A(n̂)e2πiu·n̂ (5.11)
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Figure 5.3: Schematic representation of the (k⊥, k‖) Fourier space covered by an interferometric array,
including the limitations due to the instrument and the foreground wedge, for the HERA interferometer
targeted to the Epoch of Reionization. Taken from [65].

where A(n̂) is a window function describing the primary beam of the interferometer. Introduc-
ing the Fourier transforms of A(n̂) and T21(n̂) we can write the average value of the squared
visibilities in term of the angular power spectrum C`

〈
|V (u)|2

〉
=

(
∂Bν
∂T

)2 ∫
d2u′

∣∣∣Ã (u− u′
)∣∣∣2C`=2πu′

≈ C`=2πu

(
2kB
λ2

)2 ∫
d2u′

∣∣∣Ã (u− u′
)∣∣∣2 (5.12)

Where the C` are defined as

〈
δ̃Tb (u1) δ̃Tb (u2)

〉
= δD (u1 + u2)C`=2πu1 . (5.13)

The relation ` = 2πu links the Fourier space coordinate u with the angular scale `. We then
need to quantify the power spectrum induced by the thermal fluctuations in the instrument. If
a visibility is observed for a time tu the average noise squared is given by [67]

〈
|N(u)|2

〉
=

(
2kBTsys
Ae

)2 1

∆νtu
(5.14)

where Ae is the effective area of a single antenna. Using this relation we can define the angular
power spectrum of the instrumental noise CN` , analogously to the angular power spectrum C`,
such that

〈
|N(u)|2

〉
≡ CN`

∫
d2u′|Ã

(
u− u′

)
|2 (5.15)

which gives:

CN` =

(
λ2Tsys

Ae

)2
1

∆νtν
∫
d2u′|Ã (u− u′) |2

(5.16)

where Tsys is the system temperature, dominated by the galactic synchrotron radiation, given
by eq (5.10) in the regime we work.
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Using the fact that Ã(u) has to integrate to 1 and is different from zero in an area δ2u we can
estimate the beam integral

∫
d2u′|Ã (u− u′) |2 ∼ 1/δ2u ∼ Ae/λ

2. The noise power spectrum
then simplifies to

CN` =
T 2
sys

∆νtνδ2u
(5.17)

The reason of this relation can be understood intuitively considering the fact that the RMS of
the noise for visibility corresponding to a Fourier space pixel after an observation of time tu
is σ2

N = T 2
sys/∆νtu. The noise power spectrum is then given by the variance per Fourier pixel

CN` = σ2
N/δ

2u.

We then need to estimate tu, i.e. the time that each visibility is observed. Given the size
of interferometric arrays, the whole instrument cannot be rotated and each visibility is only
observed for a fraction of the total observation time to. Introducing `max, the maximum ` that
can be observed with a given interferometer, determined by its largest baseline, the total area
in the Fourier plane that will be covered by the observation due to the Earth rotation will be
π2`max. However, at any given instant only an area Npairsδ

2` = Npairs(2π)2δ2u is being observed.
Each visibility is then observed for a time tu

tu ' to
Npairsδ

2`

πl2max

' to
N2

antδ
2`

2π`2max

(5.18)

Where we approximated the number of pairs as N2
ant, valid for large Nant, and assumed a uniform

coverage across the Fourier plane. Plugging this relation in (5.17) we obtain

`2CN`
2π

=
T 2

sys (2π)2

∆νto

(
`2max

Nantδ2`

)2(
`

`max

)2

(5.19)

Introducing the variable fcover, defining the fraction of the total area covered by antennae,

fcover ≡ NantAe/Atotal =
Nantδ

2`

`max
, (5.20)

our final expression for the instrumental noise is then [17]

CN` =
(2π)3T 2

sys(ν)

∆νtof2
cover

(
1

`max(ν)

)2

. (5.21)

The power spectrum induced by thermal noise is thus dependent on the redshift due to the z
dependence of both Tsys and `max.
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Chapter 6

Methodology and data analysis

In the previous chapters we examined how perturbations produced during inflation evolve due to
gravitational interaction and eventually determine the clustering of matter that can be observed
in cosmological probes such as galaxy surveys, IM experiments and lensing surveys. We con-
nected the power spectrum of 21 cm fluctuations with the primordial power spectrum through
the dependence of the former from the matter power spectrum. We also described the instru-
mental apparatus that is used to capture those fluctuations, and characterized it. In this chapter
we will analyze how 21cm IM experiments will be able to constrain the PPS, in particular placing
constraints in the running parameters describing the deviation from scale invariance.

In the first section we will analyze whether it will be possible to measure the running param-
eters produced by SFSR inflation, while in the second section we will consider whether future
experiments will be able to detect running parameters that will imply PBH production on small
scales.

In our analysis we will always assume for simplicity that the already mentioned large astrophys-
ical foregrounds have been already subtracted, and therefore the only signal coming into the
detector will be the 21 cm radiation of cosmological origin. The power spectrum therefore will
have two contributions, from the signal itself and from the noise, which we modeled.

Spec SKAO aSKA LRA1 LRA2 LRA3

Dbase (km) 6 100 30 100 300
fcover 0.02 0.2 0.1 0.5 0.75

tobs (years) 5 10 5 5 5
`max

1+z
31 5790 96515 28954 96515 289547
fsky 0.75 0.75 0.75 0.75 0.75

Bandwidth (MHz) 1 1 1 1 1
Maximum z 30 33 200 200 200

Table 6.1: Instrument specifications for the SKAO, an advanced ground-based SKAO-like experiment
(aSKA), and three realisations of a futuristic lunar radio array (LRA).

6.1 Fisher matrix formalism

Our main objective in this work is to gauge the ability of an intensity mapping experiment to
constrain the primordial power spectrum by measuring the 21 cm angular power spectrum, and
determine if those constraints will be tight enough to check the validity of the single field slow
roll inflationary dynamics.

In order to do this, we employ the Fisher matrix approach [68, 69]. The Fisher matrix is a
statistical tool that let us compute the best estimate of how much information the measurement
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of a random variable that depends on a set of parameters will give us on those parameters.
Therefore, the Fisher matrix lets us forecast the uncertainties on cosmological parameters of an
upcoming cosmological experiment. The Fisher matrix is defined as

Fαβ =

〈
−∂

2 lnL(θ)

∂θα∂θβ

〉
(6.1)

where L is the likelihood, depending on a set of parameters θ, describing the probability of
measuring some data, in our case the data being the C`s, given a set of parameters the data
depends on.

The inverse of the Fisher matrix is related to the covariance matrix by the Kramer-Rao inequal-
ity:

Cov ≥ F−1, (6.2)

where the ”=” holds if the likelihood is gaussian. That is, inverting the Fisher matrix gives the
best possible estimate of the covariance matrix for a certain experiment. It’s important to note
that the uncertainties on each parameter obtained by inverting the Fisher matrix are already
marginalized over the remaining parameters, assuming that all the parameters are estimated
simultaneously from the experimental data.

Additionally, the Fisher matrices of different, independent measurements can be added to provide
the uncertainties of the combined experiments. This also means that one can easily introduce
prior knowledge on parameters of a Fisher forecast from other, already performed experiments.

Assuming the C`s are gaussian distributed, the Fisher matrix can be computed as [70]

F21 cm
αβ =

∑
`

∂C`
∂θα

∂C`
∂θβ

σ−2
C``′

(6.3)

where σC``′ is the variance of the C`s

σC``′ =

√
2
(
C` + CN``′

)2
fsky(2`+ 1)

δK``′ (6.4)

Where fsky is the sky fraction covered by the instrument and CN` is the noise power spectrum
(5.21). This result can be intuitively thought as the following: the more our observable (the C`s)
depend on the parameters, the bigger the derivatives ∂C`/∂θα will be, and thus the relevant
entry of F will be bigger, implying a smaller covariance matrix. Additionally, the greater the
`, the more coefficients can be sampled, reducing the variance. The noise, instead, acts as a
suppression factor, reducing the constraining power of the experiment. A an example, we show
the total power spectrum, the 21 cm power spectrum and the noise power spectrum in figure
6.1.

6.2 21 cm PPS constraints

Currently the simplest model to describe inflation is the Single field Slow Roll (SFSR) model, in
which the running parameters are related to the potential of the inflaton field and its derivatives
through the slow roll parameters. In order for SFSR inflation to happen, those parameters
must be small, and each running is suppressed with respect to the lower order one. However,
each running affects the power spectrum more the more we move away from the pivot scale,
conventionally set at k = 0.05 Mpc−1, where current observations like CMB experiments and
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Figure 6.1: Angular power spectrum of the 21 cm line computed with a bandwidth of 1 MHz. In blue
we show the C` of the signal. The grey line represent the noise, constant in `, and the orange line the
sum of the two. The red line is the maximum `max reachable by the given experimental apparatus at the
given redshift.

clustering surveys tightly constrain the power spectrum. In this picture, 21 cm IM experiments
could theoretically provide stronger constraining power due to their ability to reach much smaller
scales, as well as probing a much greater number of modes than the CMB due to an enormously
larger observable volume.

We include, as well as the primordial parameters in the parameterization of Pζ(k) shown in
equation 3.46, also the parameters ωCDM, ωb and h. Our parameter space is therefore

P = {As, ns, αs, βs, γs, ωCDM, ωb, h} . (6.5)

We also consider a reduced parameter space in which the third running parameter γs is not
included.

We assume the values obtained from Planck 2018 TT,TE,EE+lowE [1] as our fiducial cosmology.

We then compute the numerical derivatives of the C`s with respect to each parameters. In order
to do this we use an internal code, adapted to take as input the matter power spectrum from
CLASS [71] which itself depends on the primordial power spectrum, our target observable. In
order to speed up the code, for ` ≥ 1000 the Limber approximation is used [72].

Figure 6.1 shows an example of the output of our code, showing the maximum ` that can be
measured by the instrument, the power spectrum of the cosmological signal computed with a
1 MHz window function, and the total power spectrum as the sum of the signal and the noise
power spectrum. In figure 6.2 we instead show the numerical derivatives obtained in order
to compute the Fisher matrix. Due to numerical instabilities in the code, we computed the
derivatives for the Ω parameters instead of ω ≡ h2Ω, we then performed a variable change in
the Fisher matrix according to the prescriptions in [73].

In our analysis we consider five experimental setups: the SKAO interferometric array currently
in construction, another ground based larger interferometric experiment dubbed ”aSKAO” and
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Figure 6.2: Logarithmic derivatives of the angular power spectrum with respect to the parameters we
considered in our analysis.
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three different versions of lunar interferometers. The relevant specifications of the experiments
are listed in table 6.1. For all the experiments we consider a sky fraction fsky = 0.75 and a
bandwidth ∆ν = 1 MHz. The lunar based experiments can reach up to redshift 200, while
SKAO will only be able to observe the very last moments of the Dark Ages at z = 30. For
the futuristic aSKAO we instead consider a slightly increased redshift range, up to z = 33,
theoretically still reachable within the Earth atmosphere.

In order to better exploit the large volume of space available for 21 cm intensity mapping we
consider a tomographic analysis. That is, instead of measuring the C`s in only one redshift
slice as in the CMB, the volume can be divided in concentric slice, each providing data for the
experiment. This is possible as long as the redshift slices are uncorrelated. In [21] it was found
that redshift slices can be safely considered uncorrelated if separated by more than 1 MHz in
frequency space, which is also our choice for the bandwidth of the experiment, therefore we
divide our redshift range from z = 30 to z = 200 in up to 39 redshift slices, and add the Fisher
matrices for each slice together.

Our final choice of redshift bins in order to maintain a separation of 1 MHz in frequency is then:

zbins = {30.5, 31.3, 32., 32.8, 33.6, 34.5, 35.4, 36.3, 37.3, 38.4, 39.5, 40.7, 42.,

43.3, 44.7, 46.3, 47.9, 49.6, 51.5, 53.5, 55.7, 58., 60.6, 63.4, 66.5, 69.8, 73.5,

77.6, 82.3, 87.4, 93.3, 100., 107.7, 116.7, 127.4, 140.1, 155.7, 175.1, 200.}
(6.6)

The total Fisher matrix is then the sum of the Fisher matrices for every uncorrelated slice:

F21 cm
αβ = fsky

∑
z

`max∑
`

2`+ 1

2(C` + CN` )2

∂C`
∂θα

∂C`
∂θβ

. (6.7)

6.2.1 Results

We therefore provide the forecasts of the constraining power of the previously discussed 21 cm IM
experiments on the primordial parameters. Table 6.2 lists the constraints from IM experiments
without assuming any prior knowledge on the cosmological parameters we included in our model,
compared with Planck 2018 results. Instead, table 6.3 and table 6.4 also include priors on ωCDM,
ωb, h, As from the Planck collaboration [1].

The first thing to be noticed is the poor constraining power of both SKAO and LRA1, both
being unable to provide any meaningful constraint on the parameters of interest, even with the
priors from Planck 2018 on the nuisance parameters and despite the increased redshift range
of the latter. This is mainly due to the low baseline of the instruments, that doesn’t allow to
reach high enough `’s where the effect of the running parameters on the C`s is bigger (see figure
6.3), as well as increasing the noise through the dependence CN` ∝ `−2

max. It should be noted
that SKAO is not designed to observe the Dark Ages, so its poor performance in this regime is
to be expected. In the rest of the analysis we will focus on the remaining three experiments:
aSKAO, LRA2 and LRA3, whose forecasted confidence ellipses for the primordial parameters
are shown in figure 6.6 and 6.7, respectively without and with the Planck 2018 priors included
in the analysis. As expected, instruments with larger baselines and increased survey volume
perform better and are also less affected by the inclusion of Planck priors due to they already
extremely good accuracy in parameter estimation.

Comparing table 6.3 and 6.4 we can also appreciate the effect of adding the third running param-
eter in our model. Unsurprisingly, the uncertainties become overall worse if the parameter space
is augmented, as the primordial parameters are correlated. The parameter whose uncertainties
are most affected by the addition of the third running γs in the model is the second running βs,
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which is due to the correlation between the two parameters, as can be seen for example in figure
6.4, comparing the confidence ellipses forecasted for aSKAO for the 2- and 3-runnings models.

The effect of introducing Planck 2018 priors for ωCDM, ωb, h, As is shown in figure 6.5 for the
aSKAO experiment. The primordial parameters more greatly affected by introducing Planck
priors are As and ns, while the running parameters don’t show an appreciable improvement in
the error bars.

It’s also worth to point out the decrease of uncertainties of higher order runnings compared to
the lower order ones in certain regimes, for example the uncertainty in γs for LRA3 is half the
uncertainty in βs and αs, which are about the same. As this effect is more noticeable with the
increase in baseline, we attribute this to the experiment being able to probe higher `’s, and
thus regimes in which the power spectrum is more sensitive to higher order runnings, as shown
in figure 6.3. As ` increases, the logarithmic derivatives of higher order runnings grow more
than lower order, eventually overtaking them. Additionally, higher ` weigh more in the Fisher
information matrix due to each ` contributing 2`+ 1 components and thus being multiplied by
the factor 2`+ 1 in the Fisher matrix (6.7).

Lastly, we discuss the possibility of the experiments detecting the running parameters predicted
by the SFSR model. Those parameters are expected to be of order [21]

αs ' O[(ns − 1)2] ' 10−3 βs ' O[(ns − 1)3] ' 10−5 γs ' O[(ns − 1)4] ' 10−6. (6.8)

We note that no experiment is sensitive enough to detect either βs or γs, as they are respectively
one and two orders of magnitude too small even for the best performing experiment. LRA2 and
LRA3 instead could be able to detect αs, while for aSKAO the possibility of a detection is less
certain.

Experiment σ(109As) σ(ns) σ(αs) σ(βs) σ(γs)

SKAO 3.1e+03 2.1e+02 1.5e+02 1.3e+02 4.2e+02
aSKAO 0.12 0.01 0.0046 0.0078 0.0081
LRA1 3.1 0.23 0.13 0.12 0.26
LRA2 0.03 0.0035 0.0016 0.0027 0.0025
LRA3 0.0074 0.0015 0.00085 0.00089 0.00049

Planck 2018 0.030 0.0042 0.010 0.013 N/A

Table 6.2: Marginalized uncertainties on PPS parameters without Planck priors, compared with Planck
2018 uncertainties.

6.3 PBH formation from curvature perturbations

PBH are black holes that are supposed to have formed in the early Universe due to the collapse of
large (in amplitude) perturbations in the density field. There are many possible mechanisms that

Experiment σ(109As) σ(ns) σ(αs) σ(βs) σ(γs)

SKAO 0.034 4.5e+01 8.6e+01 1.3e+02 3.5e+02
aSKAO 0.028 0.005 0.0034 0.0077 0.0081
LRA1 0.032 0.047 0.087 0.12 0.24
LRA2 0.017 0.0028 0.0014 0.0027 0.0025
LRA3 0.0064 0.0014 0.00082 0.00088 0.00049

Table 6.3: Marginalized uncertainties on PPS with Planck priors on ωCDM, ωb, h, As.
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Experiment σ(109As) σ(ns) σ(αs) σ(βs)

SKAO 0.034 4.3e+01 3.7e+01 1.2e+02
aSKAO 0.028 0.0046 0.0034 0.0035
LRA1 0.031 0.045 0.046 0.10
LRA2 0.017 0.0027 0.0014 0.0011
LRA3 0.0064 0.0014 0.00065 0.00024

Table 6.4: Marginalized uncertainties on PPS with Planck priors on ωCDM, ωb, h, As, parameterization
with 2 runnings.
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Figure 6.4: 68% CL ellipses for PPS parameters with aSKAO obtained by modeling the PPS with 2 and 3
spectral runnings. The γs parameter is set to 0 in the ”2 runnings” case, therefore the related confidence
ellipses are shown as lines.
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allow the production of such overdensities, we are particularly interested in the PBH produced by
the collapse of curvature perturbations generated during inflation (CPBH). The standard SFSR
inflation is expected to not generate any CPBH as it doesn’t produce curvature perturbations
large enough due to being characterized by almost scale invariant primordial power spectrum,
measured to be O(10−9) at CMB scales. However, other inflationary models, such as models
including multiple fields or ultra slow roll phases, can instead produce sizable departures from a
scale invariant PPS, which could reach sufficient amplitudes at small scales so that CPBH can
form.

We previously examined the constraining power of 21 cm experiments on the running parameters
given a baseline model with α = β = γ = 0, i.e. an almost scale invariant PPS, as predicted by
the SFSR model, in order to test whether upcoming 21cm IM experiments targeted at the Dark
Ages will be able to effectively tell departures from it. In the following, we will consider only a
2-running parameter space, i.e. we will fix γs = 0, in order to simplify the analysis.

Now we ask whether 21 cm experiments will be able to tell us something about PBH formation
mechanisms. As we saw, IM experiments will place constraint in the (αs, βs) parameter space,
therefore even if we can’t directly probe the power spectrum at the scale of PBH formation, we
can detect the departure from scale invariance as the PPS starts to grow in order to reach the
required amplitude.

In our model we assume that the parameterization in equation (3.46) is valid up to the scale
of PBH formation. We also take into account the findings in [74], where it was found that in
single field inflation the power spectrum can’t grow faster than k4. In order to be consistent,
we consider two scenarios: a ”no runnings” scenario in which αs = βs = 0 in which we do
not expect to observe PBHs, and a scenario in which PBH form, where we assume a fiducial
model as in the previous section, but set βs = 0.01, a value consistent with the Planck 2018
TT,TE,EE+lowE+lensing analysis [75]1. Note that in general. in order to avoid overproduction
of PBH, higher order negative runnings are required, but for simplicity we ignore this aspect
and just consider the parameter space that lets the PPS reach the required threshold.

Let’s assume that PBH of a certain mass MPBH are observed. If the PBH are formed from
curvature perturbations, and our model is right, then we expect the runnings to be somewhere
in the corresponding parameter region. The power of 21 cm experiment then comes to placing
constraints in the same parameter space in the form of confidence ellipses, restricting the value
that αs and βs can take with a certain confidence level, and allowing us to differentiate whether
out PBH formation model is right (αs and βs are in the PBH region) or the model is wrong and
PBH originated in a different way i.e. αs and βs are not in the PBH formation region.

In our analysis, in light of the constraints illustrated in figure 3.5, we consider the formation of
PBH of O(10−10)M� and O(101)M�, corresponding respectively to a formation scale kPBH of
1012 Mpc−1 and 106 Mpc−1. Motivated by the uncertainties in the physical modeling of PBH
formation we also consider, for each kPBH, two different formation thresholds: whether the PBH
form when the PPS reaches values δ2

c of 1 and 10−2.

6.3.1 Results

The results are illustrated in figures 6.8 and 6.10. The solid lines represent the threshold value
of (αs, βs) that allow the PPS to reach the amplitude allowing PBH production. Since smaller
PBH form from perturbations characterized by higher wavenumbers, the PPS has more room to
grow and requires smaller running parameters in order to reach the required amplitude, therefore
they are produced in a bigger region of the parameter space. Instead, bigger PBH would require
a much stronger deviation from the scale invariant PPS in order to form, and it would be much
easier for an interferometric experiment to measure the (lack of) running parameters producing

1While the Planck collaboration found a second running βs=0.01, its value is still compatible with 0 at 68%
confidence level, and it decreased since the previous analyses of Planck satellite data.
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Figure 6.8: Constraints on running parameters and PBH formation thresholds, (αs, βs)fid = (0, 0). The
solid lines denote the threshold in the (αs, βs) parameter space above which the PPS acquires enough
power at the relevant scales to form PBHs, as indicated in the legend. The confidence ellipses show the
1− σ confidence regions for aSKAO, LRA2 and LRA3.
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Figure 6.10: Constraints on running parameters and PBH formation thresholds, (αs, βs)fid = (0, 0.01).
The solid lines denote the threshold in the (αs, βs) parameter space above which the PPS acquires enough
power at the relevant scales to form PBHs, as indicated in the legend. The confidence ellipses show the
1− σ confidence regions for aSKAO, LRA2 and LRA3.
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such a stark blue tilt in the primordial power spectrum. This is evidenced in figure 6.8 by the
fact that the confidence ellipses centered in (0, 0) do not intersect the region in which PBH with
MPBH = O(10)M� form.

Instead, lowering the threshold of the PPS amplitude for PBH formation by as much as two
orders of magnitude does not affect much the constraints on the (αs, βs) parameter space, due
to the exponential growth in equation (3.46).

In the case where the Planck value of βs = 0.01 is confirmed, all three interferometric experiments
considered allow to exclude the (αs, βs) = (0, 0) value, i.e. the flat PPS, at σ confidence level,
as well as rule out the parameter space implying the formation of O(10)M� PBHs.



Chapter 7

Conclusions

With the development of 21 cm intensity mapping techniques and new interferometric exper-
iments being constructed and proposed, the possibility of exploiting the enormous wealth of
information given by the mapping the density field of neutral hydrogen throughout the Universe
in order to increase our understanding in cosmology becomes every day more realistic.

In this work we examined in particular the possibility of using those observations focused in the
Dark Ages to constrain the parameter space characterizing the primordial perturbations that
imprinted the fluctuations seeding the formation of the structures characterizing our Universe.

We started from reviewing the physics of the early Universe introducing the physics of inflation,
which is thought to produce the primordial fluctuations. We also considered the possibility of
primordial black holes to form in the early Universe due to the collapse of large overdensities.
We then introduced the physics of the 21 cm emission from neutral hydrogen at high redshifts,
quantifying the global sky averaged signal and the power spectrum. Lastly, we reviewed the
experimental apparatus by which intensity mapping will be made possible, radio interferometers,
in particular quantifying the experimental noise affecting the observations.

Bringing this information together we employed a code in order to model the angular power
spectrum of the 21 cm radiation in the Dark Ages, as observed by an interferometric array. This
allowed us to perform a Fisher analysis in order to estimate the confidence regions in which the
primordial parameters from which the 21 cm power spectrum depends are expected to be.

We found out that a large, futuristic Earth based array could already give us precious information
pertaining the formation of Primordial Black Holes, allowing us to test models of PBH formation,
while in order to measure the expected parameters predicted by SFSR inflation we will need a
large, Moon based array.

As future improvements of this work we can list the inclusion of baryon-dark matter relative
velocities, found to be important in the Dark Ages in [49] and a more accurate modeling of
interferometric arrays.

This work can be employed in conjunction with more concrete models of the early Universe,
such as multi field inflation models, in order to gauge whether future interfermoetric arrays will
be able to apply constraints on them.

65
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