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Sommario

Il metodo del Bilanciamento Armonico è una tecnica matematica per risolvere equazioni
differenziali non lineari con soluzioni periodiche.

In questo lavoro viene applicato il metodo del Bilanciamento Armonico (HB) per studiare
problemi sia circuitali sia campistici non lineari.

La prima parte dell’elaborato è dedicata a fornire una formulazione matematica del
metodo, dopodichè questo verrà utilizzato per studiare circuiti elettrici non lineari. Verranno
presentate le varie tecniche e sarà implementato e testato il relativo codice su un esempio
specifico.

La parte pricipale di questa tesi consiste nell’applicazione del metodo del Bilanciamento
Armonico allo studio di campi elettromagnetici non lineari, sarà quindi trattato nel det-
taglio il metodo degli Elementi Finiti con Bilanciamento Armonico (HBFEM). Verrà perciò
derivato il metodo HBFEM per capire come strutturare un codice che implementi tale tec-
nica.

L’originalità di questo lavoro è legata alla scelta di integrare il metodo del Bilancia-
mento Armonico in un solutore commerciale agli elementi finiti, al contrario di quanto già
avvenuto con vari codici di ricerca basati sul metodo FEM. Verrà illustrato come sia possibile
implementare nel software commerciale COMSOL il metodo del Bilanciamento Armonico
tramite MATLAB in modo semplice sfruttando al massimo le routine standard del predetto
solutore FEM. Sarà quindi testato il metodo su alcuni esempi significativi in modo da di-
mostrare l’accuratezza e le performance del codice comparandole con le classiche simulazioni
time-dependent.
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Abstract

The Harmonic Balance (HB) method is a mathematical technique to solve nonlinear
differential equations with periodic solutions.

In this work we apply the HB method both to nonlinear electrical circuit and field
problems.

After a first more theoretical part dedicated to the mathematical formulation of the
method, we will apply the HB analysis for the study of nonlinear circuits. We will present
the various techniques and we will implement and test the relative code in a specific example.

The main part of this thesis consists in the study of the HB method applied to nonlinear
electromagnetic fields, therefore we will treat in detail the so called Harmonic Balance Finite
Element Method (HBFEM). We will derive the HBFEM in order to understand how it is
possible to set up a code which implements this technique.

The originality of this work is related to the choice of integrating the HB analysis in an
existing FEM commercial solver in respect of what has already been done with research codes
based on FEM. We will show how it is possible to implement in the commercial software
COMSOL the HB method via MATLAB in a simple way using as much as possible the
standard routines of the chosen FEM solver. We will test our method on some significant
examples in order to show the accuracy and the performance of the code compared with the
standard time-dependent calculations.
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Chapter 1

The Harmonic Balance Method

The Harmonic Balance (HB) method is a technique to determine the steady-state solution
of nonlinear problems.

It was firstly introduced to study nonlinear differential equation, in this sense the works
for example of Cesari [1] and Urabe [2] show the mathematical derivation of the method
focusing on its convergency properties and presenting it as a Galerkin’s approximation tec-
nique using Fourier basis and Fourier test functions.

Moreover the Harmonic Balance method gained an important role in various fields of
engineering. A relevant application is the simulation RF and microwave circuits which
exhibit strong nonlinear characteristics. In the same way the HB can be used to study
power electronics devices such as rectifiers and switching converters, moreover it has also
gained an important role in the analysis of large scale systems such as HVDC and renewable
energy installations.

The Harmonic Balance was then extended and combined with Finite Element analysis
to study nonlinear electromagnetic fields problems, giving rise to the so called Harmonic
Balance Finite Element method (HBFEM). The articles of Yamada and Bessho [3] are the
first that present this technique.

Speaking generally, the HB method is a (hybrid) frequency-domain method which com-
bines time and frequency representations in such a way to achieve an advantage in com-
parison with the classical time-consuming transient analysis. Infact if only the steady-state
solution is of interest, the HB method can determine it directly while a transient solver has
to explicitly solve several time-stepping computations that could become really expensive in
particular with large time costants.

During the years several slightly different formulations of the HB method have been
developed ([4]-[5]-[6]), mostly to reduce the main drawback of such a method. The main
problem of the HB is the size and the complexity of the system of equation that arises from
its application. This fact is crucial for the HBFEM and a careful implementation has to be
carried out to improve the simulation speed.

In this sense Bìrò and Preis [7] proposed a novel approach wich consists in solving the
system which derives from the application of the HBFEM using a fixed point iteration
technique to decouple each harmonic, hence each harmonic can be solved in parallel.

The key concept of the HB is to find the solution of the problem using a frequency
representation obtained with a truncated Fourier series expansion or other algorithms like
the Fast Fourier Transform. The number of harmonics that has to be taken into account is
not always easy to determine, more harmonics are considered and more accurate will be the
solution but at the same time the computational cost will increase.

The HB method has been applied to several different problems. As mentioned before it
is widely used to analyse nonlinear circuits, the HBFEM instead has been used to solve eddy
current problems and to analyse electrical machines such as transformers, electrical motors
and generators and other electromagnetic devices.
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2 CHAPTER 1. THE HARMONIC BALANCE METHOD

1.1 Mathematical Framework
In order to introduce the HB method let’s consider the first order nonlinear differential

equation:
dx

dt
= ẋ = f(x(t)) (1.1)

where x and f(x, t) are vectors of the same dimension and f(x(t)) is periodic in t of period
2π. Assuming that the solution x(t) admits a Fourier series representation:

x(t) = α0 +

∞∑
n=1

αn sinnt+ βn cosnt (1.2)

the HB provides a strategy to find an approximate solution x̃(t) considering a limited number
of harmonic. The solution can then be expressed as a trigonometric polynomial of order N :

x̃(t) = a0 +

N∑
n=1

an sinnt+ bn cosnt (1.3)

Let’s now introduce the definition of residual:

r(x(t)) = ẋ− f(x(t)) (1.4)

Clearly if ε(x(t)) = 0, ẋ is the exact solution of the problem. Then assuming a periodic
solution x(t) to exists (Eq.1.2), a resonable way of obtaining a good approximation is to
assume a correct functional form for x̃(t) (Eq.1.3):

x̃ = x̃(t, a0, a1, b1, ..., aN , bN ) (1.5)

and then choose the unknown coefficients in Eq.1.5 to minimize the residual. This procedure
is a Galerkin’s approximation technique using trigonometric polynomials for the test and
trial functions. The class of Galerkin’s methods will be analysed in detail in the next
chapters.

The coefficients can be found imposing the ortogonalization of the residuals, so that
defining the scalar product for two generic functions as:

〈u, v〉 =
1

T

∫ T

0

u(t)v(t) dt (1.6)

the resultant system that has to be solved becomes:

〈r(x̃), 1〉 = 0

〈r(x̃), cos(t)〉 = 0

〈r(x̃), sin(t)〉 = 0
...

〈r(x̃), cos(Nt)〉 = 0

〈r(x̃), sin(Nt)〉 = 0

(1.7)

The functions {1, cos(t), sin(t), . . . , cos(Nt), sin(Nt)} are linearly indepent and form a basis
for the test space.

Let’s now recast the residual in such a way to write explicitely system 1.7. From Eq.1.3
we have:

˙̃x(t) =

N∑
n=1

(nan cos(nt)− nbn sin(nt)) (1.8)

For the sake of conciseness the following notation for the Fourier coefficients of f(x̃, t) will
be used:

{f(x̃, t)}nc =
1

π

∫ 2π

0

f(x̃, s) cos(ns) ds (1.9)
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{f(x̃, t)}ns =
1

π

∫ 2π

0

f(x̃, s) sin(ns) ds (1.10)

Note that although x̃ has no harmonics of order greater than N , the function f(x̃, t) in
general possesses harmonics of all order. Therefore f(x̃, t) is written as:

f(x̃, t) =

∞∑
n=0

({f(x̃, t)}nc cos(nt) dt+ {f(x̃, t)}ns sin(nt) dt) (1.11)

Finally the residual can be rewritten:

r = ˙̃x− f(x̃)

=

N∑
n=1

(nan cos(nt)− nbn sin(nt))−
∞∑
n=0

({f(x̃, t)}nc cos(nt) + {f(x̃, t)}ns sin(nt))

=

N∑
n=0

[(nan − {f(x̃, t)}nc) cos(nt) + (−nbn − {f(x̃, t)}ns) sin(nt)]

+

∞∑
n=N+1

({f(x̃, t)}nc cos(nt) + {f(x̃, t)}ns sin(nt))

(1.12)

Then to minimize the residual it’s necessary to determine the unknowns {a0, a1, b1, . . . , aN , bN}
such that: 

{f(x̃, t)}0 = 0

nan − {f(x̃, t)}nc = 0

−nbn − {f(x̃, t)}ns = 0

(1.13)

System 1.13, which is equal to 1.7, is a nonlinear system of (2N + 1) equations in (2N + 1)
unknowns thas has to be solve numerically, its roots are the estimate of the exact Fourier
coefficient of the solution. It’s clear that the computational effort increases rapidly with
increasing the number of harmonics, at the same time to achieve an accurate solutionN must
be sufficiently high. Moreover the term

∑∞
n=N+1({f(x̃, t)}nc cos(nt)+{f(x̃, t)}ns sin(nt)) in

Eq.1.12 vanishes in the theoretical case of considering an infinite number of harmonics for
the approximate solution.

In order to clarify the previous mathematical derivation and make some other consider-
ations we analyze the following example.

Example 1. We want to solve the equation:

mÿ + cẏ + k1y + k3y
3 = A cos(ωt) (1.14)

using the HB method.
This nonlinear differential equation is known as Duffing equation and it is used to model

certain oscillators for example electrical circuits or mechanical pendulums. The coefficients
m, c, k1 and k3 are the parameters of the mass, damping and stiffness of the system respec-
tively, A and ω are the external excitation force amplitude and frequency of the oscillator.

In accordance with the HB method, the solution of a nonlinear system is assumed to be
of the form of a truncated Fourier series:

y(t) = a0 +

N∑
n=1

an cosnωt+ bn sinnωt (1.15)

The Fourier expansions of the first and second derivatives of the solution are:

ẏ(t) =

N∑
n=1

nω(an cosnωt+ bn sinnωt) (1.16)
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ÿ(t) =

N∑
n=1

−n2ω2(an cosnωt+ bn sinnωt) (1.17)

In this particular example even the Fourier expansion of a cubic term is needed, we will
denote it as:

y3(t) = â0 +

N∑
n=1

ân cosnωt+ b̂n sinnωt (1.18)

where:

â0 =
1

T

∫ T

0

(
a0 +

N∑
n=1

an cosnωt+ bn sinnωt

)3

dt (1.19)

ân =
1

T

∫ T

0

(
a0 +

N∑
n=1

an cosnωt+ bn sinnωt

)3

cos(nωt) dt (1.20)

b̂n =
1

T

∫ T

0

(
a0 +

N∑
n=1

an cosnωt+ bn sinnωt

)3

sin(nωt) dt (1.21)

Substituting Eqs.1.15-1.21 into Eq.1.14 and equating coefficients associated with each har-
monic yields: 

k1a0 + k3â0 = 0

−mω2a1 + cωb1 + k1a1 + k3â1 = A

−mω2b1 − cωa1 + k1b1 + k3b̂1 = 0
...

−mN2ω2aN + cNωbN + k1aN + k3âN = 0

−mN2ω2bN − cNωaN + k1bN + k3b̂N = 0

(1.22)

which is a nonlinear system of (2N + 1) equations in (2N + 1) unknowns.
Solving system 1.22 requires the analytical expressions for the nonlinear functions â0,

ân, b̂n in terms of a0, aN and bN . When using only the fundamental harmonic component,
system 1.22 is simplified and leads to:{

−mω2a1 + cωb1 + k1a1 + k3( 3
4a

3
1 + 3

4a1b
2
1) = A

−mω2b1 − cωa1 + k1b1 + k3( 3
4b1a

2
1 + 3

4b
3
1) = 0

(1.23)

which is a nonlinear system of two equations in two unknowns that can be easilly solved
numerically. However, if the nonlinearity of the equation is strong, the high-order harmonic
components may have a considerable effect and can contribute significantly to the whole
solution and consequently, a truncated Fourier series expansion may make the solution less
accurate. On the other hand, if more harmonic components are considered for the analysis,
then system 1.22 can become really complex to solve even with numerical techniques.

At the moment we have applied the HB method without considering the property of the
nonlinear differential equations, now we want to give some conditions in order to garantee
the existance of the periodic solution of a differential equation. Moreover we can make
some considerations regarding the existance of the Galerkin approximation of the solution
and give an estimation of the error we make applying the HB method considering different
numbers of harmonic.

In this sense, let’s consider a given real periodic system of differential equations:

dx

dt
= X(x, t) (1.24)

where x and X(x, t) are vectors of the same dimension, and X(x, t) is periodic in t of period
2π. It can be proved the following theorem:
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Theorem 1. If there is an isolated periodic solution x = x(t) of Eq.1.24 lying inside a closed
bounded region of the x-space D, then there exist Galerkin approximations x = x̄(t) to any
order m ≥ m0, lying in D provided m0 is sufficiently large. Such Galerkin approximations
x = x̄m, (t) converges uniformly as m→∞ to the exact solution x = x̂(t) together with their
first order derivatives.

The above theorem asserts that, if there is an isolated periodic solution lying inside D,
then there always exist Galerkin approximations of all orders sufficiently high with errors
as small as we desire. Now let us suppose we have obtained numerically a Galerkin approx-
imation x̄m(t). We want to verify the existance of an exact periodic solution related to the
Galerkin procedure and estimate the error of the approximated solution. For this purpose
we state the following theorem:

Theorem 2. Assume that Eq.1.24 has a periodic approximate solution x = x̄(t) lying inside
D and consider a continuous periodic matrix A(t) such that the multipliers of the linear
homogeneous system:

dy

dt
= A(t)y (1.25)

are all different from one. Let Φ(t) be the fundamental matrix of Eq.1.25 such that Φ(0) = I
(I is the unit matrix) and H(t, s) = Hkl(t, s) be a piecewise continuous matrix such that:

H(t, s) =

{
Φ(t)[I − Φ(2π)]−1Φ−1(s), 0 6 s 6 t 6 2π

Φ(t)[I − Φ(2π)]−1Φ(2π)Φ−1(s), 0 6 s 6 t 6 2π
(1.26)

Let M be a positive constant such that:(
2π max

0≤t≤2π

∫ 2π

0

∑
k,l

H2
kl(t, s) ds

) 1
2

≤M (1.27)

and r be a nonnegative constant such that:∥∥∥∥dx̄(t)

dt
−X[x̄(t), t]

∥∥∥∥ ≤ r (1.28)

where the symbol || · || denotes the Euclidean norm. Then, if there are a positive constant δ
and a non-negative constant k < 1 such that:

(i) Dδ = {x : ||x− x̄|| 6 δ, t ∈ L} ⊂ D

(ii) ||J(x, t)−A(t)|| ≤ k
M ,∀x : ||x− x̄(t)|| 6 δ, t ∈ L

(iii) Mr
1−k 6 δ

where J(x, t) is the Jacobian matrix of X(x, t) with respect to x, then the given system 1.24
has one and only one exact solution x = x̂(t) in Dδ and this is an isolated periodic solution.
Further, for x = x̂(t), we have:

||x̄(t)− x̂(t)|| ≤ Mr

1− k
(1.29)

In Theorem 2 let us suppose x̄(t) is a certain computed Galerkin approximation of order
m, we denote it as x̄m(t). Let us take J [x̄(t), t] as A(t). Then by numerical integration of
Eq.1.25, we can find the value ofM and by numerical computation of the Fourier coefficients
of dx̄(t)

dt − X[x̄(t), t] we can find the value of r. Then we can easily check the existence of
the constants δ and k satisfying conditions (i)-(ii)-(iii). If there are such constants, then,
by Theorem 2, we can assert the existence of a periodic exact solution, and by Eq.1.29 we
have an error bound of the computed Galerkin approximation. If the constants δ and k
satisfying (i)-(ii)-(iii) do not exist, then the order of the Galerkin approximation has to be
raised. Such a procedure always ends at a certain finite order in case the given system has
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an isolated periodic solution lying inside D. In other words, in such a case there always
exists a Galerkin approximation for which the conditions of Theorem 2 are fulfilled, and
therefore, the existence of an exact isolated periodic solution can be asserted. The formal
demonstration of the previous theorems can be found in [2].

Now we want to apply the obtained results in a numerical example.

Example 2. We want to solve the equation:

ẍ+ x3 = sin(t) (1.30)

In order to obtain an accurate result we adopt an high order approximation considering 15
harmonics. Numerical calculation leads to:

x̄(t) = 1.431189037 sin(t)− 0.126915530 sin(3t)

+ 0.009754734 sin(5t)− 0.000763601 sin(7t)

+ 0.000059845 sin(9t)− 0.000004691 sin(11t)

+ 0.000000368 sin(13t)− 0.000000029 sin(15t)

(1.31)

We note the rapid convergence of the Fourier series. The solution obtained using the HB
method is compared with the one computed using the MATLAB function ode45 which
implements an explicit Runge-Kutta formula, the steady state solutions are depicted in
Fig. 1.1.

0 1 2 3 4 5 6
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

 

 
HB15
Runge−Kutta

Figure 1.1: Steady state solution computed using Runge-Kutta and HB

Then we can compute r and M , they respectively result equal to:

r = 713e−9 (1.32)

M = 11.4107 (1.33)
Now, by means of Theorem 2, let us check the existence of an exact isolated periodic solution
x = x̂(t) and seek the error bound of the Galerkin approximation x = x̄(t) of Eq.1.31.
Eq.1.30 is rewritten in the form of a first order system as follows:{

ẋ = y

ẏ = −x3 + sin(t)
(1.34)
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The Jacobian matrix of the right hand side is:

J(x) =

[
0 1
−3x2 0

]
(1.35)

Let us consider the region:
Dδ = {x : |x− x̄(t)| ≤ δ} (1.36)

Then from Eq.1.35, for any x ∈ Dδ:

||J [x]− J [x̄(t)]|| ≤ 3|x2 − x̄2(t)| ≤ 3δ(δ + 2|x̄(t)|) (1.37)

and consequently, from Eq.1.31, |x− x̄(t)| ≤ δ implies:

||J [x]− J [x̄(t)]|| ≤ 3δ(δ + 3.137375670) (1.38)

Then we have to seek δ and k < 1 such that:

3δ(δ + 3.137375670) ≤ k

11.42
(1.39)

11.42 · 72e−8

1− k
=

822.24e−8

1− k
≤ δ (1.40)

Hence, let us suppose:
δ ≤ 1e−5 (1.41)

Eq.1.40 can be replaced by the stronger inequality:

δ ≤ k

3 · 3.1374 · 11.42
=

k

107.487324
(1.42)

Then from Eq.1.40 and Eq.1.42, we have:

822.24e−8

1− k
≤ δ ≤ k

107.487324
(1.43)

Now let us consider the inequality:

822.24e−8 · 107.487324 = 8.8380377e−4 ≤ k(1− k) (1.44)

This results satisfied for k = 1e−3. Anyway for this value of k we have:

822.24e−8

1− k
= 823.06306e−8 (1.45)

k

107.487324
= 9.303e−6 (1.46)

Consequently, taking Eq.1.41 into consideration, we see that we have only to choose δ so
that:

8.231e−6 ≤ δ ≤ 9.303e−6 (1.47)

This shows that there are indeed positive constants δ and k < 1 satisfying Eq.1.39-1.40.
From this result, by Theorem 2, we see that the given equation 1.30 which is equivalent

to Eq.1.34 has one and only one exact isolated periodic solution x = x̂(t) in the region Dδ.
Furthermore we see that:

|x̄(t)− x̂(t)| ≤ 823.06306e−8 (1.48)

This gives the error bound of the Galerkin approximation x = x̄(t) of Eq.1.31.





Chapter 2

Harmonic Balance Analysis of
Nonlinear Circuits

This chapter deals with the analysis of nonlinear circuit using the Harmonic Balance
method. Harmonic balance analysis is applicable to a wide variety of microwave and RF
problems which exhibit strong nonlinear properties to obtain the steady state solution of
the circuit. Moreover Transient analysis was formulated before harmonic balance methods.
Thus, the existence of harmonic-balance analysis implies that transient methods are not ad-
equate for many kinds of circuits. In fact, the methods are often complementary: harmonic
balance works well where transient analysis does not, and transient analysis usually outper-
forms harmonic balance in the kinds of problems where it is applicable. Clearly nonlinear
circuits which exhibit slow dynamic and therefore long transient regimes suite well for the
application of the Harmonic Balance method.

There are two main formulation of the same method namely the Nodal Harmonic Balance
method and the Piecewise Harmonic Balance method. The first one considers an entire
circuit applying the Kirchhoff’s laws in every node giving rise to a large and in general full
nonlinear system. In this case each variable is represented by a Fourier series expansion
whose coefficients are the unknowns of the problem. It’s a relatively easy approach but due
to the high number of variables is not more widely use.

The Piecewise Harmonic Balance method instead has emerged as the more convenient
approach and will be analysed in detail. Nowadays, due to its diffusion, the Piecewise
Harmonic Balance method is simply identified as Harmonic Balance and so will be done in
this work.

2.1 Formulation of the Method

To introduce the Harmonic Balance method let’s consider only single-tone circuits, ones
having periodic excitations at a single fundamental frequency. This includes sinusoidal
excitations and even periodic nonsinusoidal excitations as long as they can be expressed
by a Fourier series. In later sections, we will show how Harmonic Balance analysis can be
applied to circuits having more complex excitations.

The Piecewise Harmonic Balance method, or simply Harmonic Balance method, consists
in dividing the circuit that has to be analysed in a linear and in a nonlinear subsystem
connected by M ports (Fig. 2.1). The criterium for the subdivision of the circuit is based
on two main concepts. First of all assuming the minimum number of nonlinear ports and
therefore of unknown reduces the numerical complexity of the problem, on the contrary
augmenting the number of them greatly simplifies the description of the nonlinear subsystem.

The idea of harmonic balance is to find a set of port voltage that gives the same currents
in both the linear-network equations and the nonlinear-network equations, these currents
has to satisfy Kirchoff’s current law at each port. When that set is found, it must be the
solution of the circuit.

9
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i1NLi1L

i2NLi2L

iMNLiML

v1

v2

vM

LINEAR
SUBCIRCUIT

NONLINEAR
SUBCIRCUIT

Figure 2.1: General nonlinear circuit partitioned into linear and nonlinear subcircuit

The voltage of the generic port m can be expressed with the Fourier series expansion:

vm = Re

(
NH∑
n=0

V mn · ejnω0t

)
(2.1)

where the phasors V mn are the unknowns of the problem. The unknows can be riarranged
in the vector:

V =
[
V 1

0 V 1
1 . . . V 1

NH
V 2

0 . . . V 2
NH

VM0 . . . VMNH
]T (2.2)

Note that V is a vector of M(NH + 1) componenents. Applying the Kirchhoff’s current law
at each port it must be verified:

imL (t) + imNL(t) = 0 m = 1, ...,M (2.3)

where imL (t) indicates the generic linear current i at port m while imNL(t) represents the
nonlinear current. The same equation has to be true for each harmonic, so that passing in
the frequency domain and then defining the vectors IL and INL similarly to what has been
done with V it’s possible to write:

IL + INL = 0 (2.4)

Since the current and voltage signals are real all the vectors previously defined in frequency
domain present hermitian symmetry, thus the negative frequency components are the com-
plex conjugate of the positive ones. This observation permits to take into account only
positive frequencies plus the DC term, thus the complexity of the problem is greatly re-
duced.

In order to find the solution, the two subcircuits have to be analysed separetely. In
particular the linear subsystem is analysed in the frequency domain using the superposition
principle while the nonlinear one is studied in the time domain. Then the two analysed must
be combined in order to minimize the error due to the balancing of each harmonic.

The linear circuit can be replaced by its Norton equivalent at each port (Fig. 2.2), leading
to the relation:

IL = Y ·V + Ieq (2.5)

where Ieq is the vector of the equivalent currents and Y is the admittance matrix. The
equivalent current vector similarly to what has been done for the voltages is expressed as:

Ieq =
[
I1
eq,0 I1

eq,1 . . . I1
eq,NH

I2
eq,0 . . . I2

eq,NH
IMeq,0 . . . IMeq,NH

]T
(2.6)
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i1NLi1L

i2NLi2L

iMNLiML

v1

v2

vM

LINEAR
SUBCIRCUIT

NONLINEAR
SUBCIRCUIT

i1eq

i2eq

iMeq

Figure 2.2: Norton equivalent of the linear subcircuit

The admittance matrix is a sparse and block matrix, each submatrix is a diagonal whose
elements are the value Y i,j between port i and port j at each harmonic. Therefore defining
Y as:

Y =


Y1,1 Y1,2 . . . Y1,M

Y2,1 Y2,2 . . . Y2,M

...
...

. . .
...

YM,1 YM,2 . . . YM,M

 (2.7)

each submatrix can be expressed:

Yi,j =


Y i,j0 (0) 0 . . . 0

0 Y i,j1 (ω0) . . . 0
...

...
. . .

...
0 0 . . . Y i,jNH (NH · ω0)

 (2.8)

Even the vector Ieq will be sparse with non zero terms only for the fundamental frequency.
The elements of the admittance matrix Y can be evaluated using the definition of self and
mutual admittance:

Yi,i =
ii
vi

∣∣∣∣
vn=0,∀n 6=i

(2.9)

Yi,j =
ij
vi

∣∣∣∣
vn=0,∀n 6=i

(2.10)

The self and mutual admittances at each port have to be calculated for each frequency
solving different circuits, for this purpose methods like Nodal Analysis or Tableau Analysis
can be used.

The calculation of the non linear current follows a different approach. First of all, the
vector of the time-domain voltages at all ports is computed from the voltage phasors by
means of an inverse Fourier transform:

v(t) = F−1(V) (2.11)

Then, knowing the component equations iNL(t) = f(v(t)) at each port, the phasors of the
currents flowing into the nonlinear subcircuit are computed using the Fourier transform:

INL = F(iNL(t)) (2.12)
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Therefore the procedure is:

V
F−1−−−→ v(t)

f(v(t))−−−−→ iNL(t)
F−→ INL (2.13)

We underline that the previous operation has to be done using the Discrete Fourier Trans-
form or the FFT algorithm, therefore the number of samples must satisfy the hypothesis of
the Shannon’s sampling theorem in order to avoid aliasing or any other numerical error. In
particular for the FFT the number of time samples must be twice the number of frequency
components. Moreover when strong nonlinearities are involved oversampling is advisable.

Finally the problem consists in solving the nonlinear system:

F(V) = IL(V) + INL(V) = 0 (2.14)

The unknowns of the system are the voltages, or more exactly the phasors of the trun-
cated Fourier series expansions of the voltages at the ports connecting the linear and the
nonlinear subcircuits. Anyway, once the number of harmonics has been chosen, the number
of unknowns is fixed and doesn’t depend on the number of nonlinear components effectively
present in the circuit.

Eq. 2.14 represents a test to determine whether a trial set of port voltage components is
the correct one; that is, if F(V) = 0, then V is a valid solution.

It also represents an equation that can be solved to obtain the portvoltage vector, V. The
values of the phasors are found by an iterative numerical algorithm, given the nonlinearity
of the equations. F(V) , called the current-error vector, represents the difference between
the current calculated from the linear and nonlinear subcircuits, at each port and at each
harmonic, for a trial-solution vector V.

A generic circuit withM ports and NH+1 harmonics (NH armonics+DC term) gives rise
to a nonlinear system with M(NH + 1) variables; considering the real and imaginary parts
the total number of unknowns grows to 2M(NH + 1). A number of algorithms have been
proposed for solving this problem but the most common choice is to use Newthon-Raphson’s
method, which is described by the following recurrence relation:

V(k+1) = V(k) − (J(k))−1 · F(V(k)) (2.15)

where J is the Jacobian matrix computed as follows:

J =
dF(V)

dV

∣∣∣∣
V=V(k)

(2.16)

The structure of the Jacobian is:

J =



∂F 0
1

∂V 0
1

∂F 0
1

∂V 1
1

. . .
∂F 0

1

∂V NHN
∂F 1

1

∂V 0
1

∂F 1
1

∂V 1
1

. . .
∂F 1

1

∂V NHN
...

...
. . .

...
∂FNHN

∂V 0
1

∂FNHN

∂V 1
1

. . .
∂FNHN

∂V NHN


(2.17)

where the subscripts denote the ports while superscipts the harmonic order. Moreover it
can also be seen that the Jacobian matrix can be calculated as:

J = Y +
dINL
dV

(2.18)

The Jacobian contains the derivatives of all the components of the error vector with respect
to the components of V. Thus, it contains information on the sensitivity of changes in every
component of F resulting from changes in any component of V. The Jacobian matrix can be
computed analytically, if the nonlinear function is known in analytical form, or numerically
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by incremental ratio. The analytical derivation, however, has better numerical properties,
and it is advisable when available.

The algorithm will hopefully converge towards the correct solution, and will be stopped
when the error decreases below a limit value. The error is actually the vector of the error
currents, real and imaginary parts, at each node and for each harmonic frequency; conver-
gence will be assumed to be reached when its norm will be lower than a desired accuracy
level:

‖F(k)‖ < ε (2.19)

Alternatively, the algorithm is stopped when the solution does not vary any more:

‖V(k+1) −V(k)‖ < δ (2.20)

The values of ε and δ rispectively depend on the current and voltage levels in the circuit.
A critical point in the algorithm is the choice of the first guess. A well chosen first

guess will considerably ease the convergence of the algorithm to the correct solution. If the
circuit is mildly nonlinear, the linear solution, obtained for a low-level input, will probably
be a good starting point and it is usally used as a first guess. If the circuit presents strong
nonlinearities, a continuation method will probably be the best choice. With this approach,
the input level is increased stepwise, using the result of the previous step as a first guess.
This method is often called Source Stepping method. In this case the Newton-Raphson
iteration becomes:

V(k+1) = V(k) − h(V(k))(J(k))−1 · F(V(k)) (2.21)

Another issue is related to the number of harmonics (NH) that has to be taken into
account. Selecting NH too small results in poor accuracy, and often poor convergence;
conversely, selecting NH larger increases the accuracy but slows the solution process and
increases the use of computer memory. Therefore the choice of NH is not straightforward
and must be evaluated on case by case basis.

The final algorithm is summarized in the flowchart of Fig. 2.3.
The main computational effort is the construction of the Jacobian and the solution of

the related linear system in each Newton-Raphson iteration. In this sense Quasi-Newton
methods can be used. With these approaches the Jacobian Jk is approximated using the
matrices J1, . . . ,Jk−1, in such a way to make the linearized system easy to be solved. An-
other approach consists in calculating the Jacobian only after a specific number of iterations,
if the error does not decrease or decreases to slowly the exact Jacobian is updated.

The described formulation is based on Kirchhoff’s voltage law where the unknown is the
voltage and the circuit elements are described as admittances. Moreover it can happen in
some cases that certain elements do not have an admittance representation and cannot be
used directly to form the admittance matrix. One common solution is to approximate the
unrealizable element by realizable ones, the way to circumvent the problem is explained in
[8].

Alternatively, Kirchhoff’s current law can be used to formulate the method, with the
current being the unknown, and the circuit elements described as impedances. While no
problem usually arises for the linear elements, it can be seen that the nonlinear elements are
usually voltage-controlled nonlinear conductances or capacitances. However, any alternative
form of Kirchhoff’s equations is allowed as a basis for the harmonic balance algorithm in the
cases in which the nonlinear elements have a different representation.

Finally to conclude, we underline that there are several other methods used for the
analysis of nonlinear circuits which are not discussed in this work, for example the ones
based on the Volterra series expansion. An overview of these other techniques can be found
in [8].
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Start:
V(0)

Update:
V(k)

Compute:
IL = Y ·V + Ieq

Compute:
v(t) = F−1(V)

Compute:
iNL(t) = f(v(t))

Compute:
INL = F(iNL(t))

Solve:
F(V) = 0

Evaluate:
‖F(k)‖

?
< ε

Compute:
V(k+1) = V(k) − (J(k))−1 · F(V(k))

Stop

Yes

No

Figure 2.3: Flowchart of the algorithm
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2.2 Multi-tone Harmonic Balance Analysis
At the moment we have only considered single-tone circuits, ones having periodic ex-

citations at a single fundamental frequency. Now we want to extend the HB analysis to
nonlinear circuits excited by several noncommensurate sources. The concept of harmonic-
balance analysis is illustrated by Fig.2.1, which shows a nonlinear circuit partitioned into
linear and nonlinear subcircuits. In the case of single-tone excitation, the voltages and
currents are periodic, and thus have a fundamental-frequency component and a number of
harmonics. In the case that the frequency components are not harmonically related the cir-
cuit partitioning remains equally valid but requires a slightly different formulation to take
into account noncommensurate frequencies.

We now consider the case where the excitation may have two or more noncommensu-
rate frequencies, and the frequency components of the currents and voltages are no longer
harmonically related. We restrict our discussion to the two-tone case, the extension to
greater numbers of excitations is straightforward, however the computational burden in-
creases quickly, usually limiting the effective analysis capabilities to no more than three
tones.

First of all a more complex Fourier series for the signals is needed, composed of two
tones:

v(t) =

+∞∑
n1=−∞

+∞∑
n2=−∞

Vn1,n2e
(jn1ω1+jn2ω2)t (2.22)

If the two basic frequencies ω1 and ω2 are noncommensurate, the signal is said to be quasi-
periodic. The unknowns of the problem are still the phasors of the voltage, but now they
are not relative to the harmonics of a periodic signal, they rather represent a complex
spectrum. The series in Eq.2.22 must be truncated so that only important terms are retained,
a proper choice increases the accuracy of the analysis while limiting the numerical effort. The
expansion of a single-tone signal is truncated so that the neglected harmonics have negligible
amplitude. The same principle holds for a multi-tone analysis. The frequency spectrum
includes all the frequencies that are a linear combinations of the two basic frequencies:

ωn1,n2
= n1ω1 + n2ω2 (2.23)

where ω1 and ω2 are the frequencies of the two excitations. The sum of the absolute values of
the two indices n = |n1|+ |n2| is the order of the harmonic component. The frequencies that
will be considered in the analysis is made up of the harmonics and of the intermodulation
products of the ecxitations. The choice of the maximum number of harmonics that has to
be considered for each frequency and of the maximum order of intermodulation is a very
complicated subject and is determined considering the nonlinearities of the circuit analyzed
([9]).

The general structure of the harmonic balance algorithm, as described before, still holds,
the main modification is related to the Fourier transform which becomes a multi-dimensional
Fourier transform.

The multi-dimensional Fourier transform for a function v̄(t1, t2) of two variables, each
with its own periodicity, is defined as:

v̄(t1, t2) =

+∞∑
n1=−∞

+∞∑
n2=−∞

V̄n1,n2
e(jn1ω1t1+jn2ω2t2) (2.24)

Each variable is sampled over its own periodicity, in this way, a two dimensional grid of sam-
ples is obtained. If the signal has a limited frequency spectrum, and if the number of samples
satisfies Shannon’s sampling theorem, we can compute the two-dimensional grid of coeffi-
cients in the two-dimensional Fourier series expansion of Eq.2.22, the complete calculation
can be found in [9].

The samples are taken at the sampling time instants:

tk1 =
T1

2N1 + 1
k1, k1 = −N1, . . . , N1 (2.25)
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tk2 =
T2

2N2 + 1
k2, k2 = −N2, . . . , N2 (2.26)

summing up to a number of samples:

Ntot = (2N1 + 1)(2N2 + 1) (2.27)

Once the phasors are computed, the original two-tone voltage is readily obtained as:

v(t) = v̄(t, t) (2.28)

as can be seen from Eq.2.24.
The multi-tone analysis has some important shortcomings. The large number of samples

requires a comparably large and often prohibitive amount of computation time. The large
amount of computation time is not the only problem that this method introduces. The large
number of arithmetic operations necessary to form the Fourier transform reduces numerical
precision, causing the result to be inaccurate. This is especially troublesome when the anal-
ysis includes both large and small frequency components, the usual situation in multitone
analysis.

2.3 A Practical Example

The algorithm presented in the previous section has been implemented and tested in a
simple nonlinear circuit, namely the half-wave rectifier of Fig. 2.4. The main script and
functions implemented are described in Appendix A.

Vs R C

Figure 2.4: Half-wave rectifier

This circuit presents one linear port, the RC load, one nonlinear port, the diode, and a
single sinusoidal excitation. Even if the structure of the circuit is quite simple, the strong
nonlinearity introduced by the diode must be treated carefully in order to ensure the con-
vergence of the algorithm. In this sense a continuation method like the Source Stepping
method turned out to be efficient.

Preliminarly it is necessary to partition the circuit in a linear and nonlinear subcircuits.
In this case the subdivision is straightforward. The necessary partition of the circuit is
represented in Fig.2.5.

Vs

R

C

Excitation Linear subcircuit Nonlinear subcircuit

Figure 2.5: Circuit partition
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Several tests have been carried out, taking into account different numbers of harmonics
to check the accuracy of the algorithm, and considering different values for the RC load,
then the simulations have been validated using the commercial circuit simulator PSpice.

The voltage source is a sinusoidal signal:

vs = Vmax sin(ωt) (2.29)

with Vmax = 1 V and ω = 20 kHz, the period is denoted with T and it results equal to
5× 10−5 s.

The diode is described by:
id = Id(e

( vVt
) − 1) (2.30)

with reverse current Id = 0.1 nA and threshold voltage Vt = 0.025 V. The value of the
resistor is initially set to R = 100 Ω while the capacitance is C = 0.1 mF.

First of all the circuit has been simulated considering different numbers of harmonics
(NH). The Fourier Transform and the Inverse Fourier Transform have been implemented
using the Fast Fourier Transform (FFT) algorithm. This implies that the number of har-
monics that has to be taken into account should be choosen as 2n with n ∈ N to greatly
increase the efficiency of the FFT. Otherwise computing the Discrete Fourier Transform in
matrix notation is equally valid but leads to a less efficient code. The steady state solutions
in one period are represented in Fig. 2.6 - 2.7.

The same implementation is valid even changing the parameters of the load or the fre-
quency and amplitude of the excitation.

Augmenting the number of harmonics the solution computed using the HB tends to be
more accurate. Moreover the solution can be computed in the frequency domain to check
and compare the accuracy of each harmonic computed with the HB and with the circuit
simulator. In this sense the figures 2.8 - 2.9 represent up to 16-th harmonic the spectrum
of the load voltage and current.
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Figure 2.6: Load voltage
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Figure 2.7: Diode current
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Figure 2.8: Harmonic content of the load voltage



2.3. A PRACTICAL EXAMPLE 19

0 2 4 6 8 10 12 14 16
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

−3

Harmonic order

A
m

pl
itu

de

 

 
HB4
HB8
HB16
Time domain

Figure 2.9: Harmonic content of the diode current





Chapter 3

The Harmonic Balance Finite
Element Method

The analysis of electromagnetic problems is typically performed using numerical tech-
niques such as Finite Element Method. The presence of non-linearity also causes the im-
possibility to use time-harmonic solvers, in these cases it is therefore necessary to carry out
time-dependent simulations that can take long calculation times. If only the steady-state
solution is of interest is possible to use the HBFM that allows to solve the problem without
considering the transient regime.

The aim of this chapter is to introduce the HBFEM method considering both a strong-
coupled method and an approach with decoupling of harmonics. The HBFEM will be derived
considering nonlinear eddy currents problems.

3.1 Maxwell’s Equations
In order to introduce eddy currents problem we have to recall briefly the Maxwell’s

equation. In differential form they are expressed as follows:

• Faraday’s law

∇×E = −∂B
∂t

(3.1)

• Ampere-Maxwell’s law

∇×H = J +
∂D

∂t
(3.2)

• Gauss’ law
∇ ·D = ρ (3.3)

• Gauss’ law for magnetism
∇ ·B = 0 (3.4)

We also have to include the charge conservation law:

∇ · J = −∂ρ
∂t

(3.5)

which derives from the previous set of equations. Moreover we can add the constitutive
relations:

B = µH (3.6)

D = εE (3.7)

J = σE (3.8)

21
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In the quasi-static limit Eq.3.2 and Eq.3.5 get simpler neglecting the terms related to the
time derivative, therefore they can respectively be rewritten:

∇×H = J (3.9)

∇ · J = 0 (3.10)

The previous set of equations is the starting point for the next results.

3.2 Eddy Current Problems

We want to derive now the eddy current PDE starting from the previous set of equations.
Introducing the vector potential A defined as:

B = ∇×A (3.11)

Eq.3.1 can be rewritten as:

∇×E = − ∂

∂t
(∇×A) (3.12)

and therefore:

∇×
(
E +

∂A

∂t

)
= 0 (3.13)

From the previous equation, with the appropriate topological hypothesis, is possible to
introduce the electric scalar potential V , and recast Eq.3.13 in such a way to express E as:

E = −∂A
∂t
−∇V (3.14)

so that the current density becomes:

J = σ

(
−∂A
∂t
−∇V

)
(3.15)

Therefore substituting the current density in Eq.3.9 and using Eq.3.11 we arrive at the final
equation that describes eddy current problems:

∇× (ν∇×A) + σ
∂A

∂t
= −σ∇V (3.16)

with:

−∇ ·
(
σ∇V + σ

∂A

∂t

)
= 0 (3.17)

The previous derivation is known as A, V − A formulation. A similar calculation can be
done in term of current vector potential T and magnetic scalar potential Φ, in this case we
talk about T ,Φ− Φ formulation. In 2D problems we have:

A = Az(x, y) (3.18)

therefore Eq.5.14 can be simplified to a scalar equation:

−∇ · ν∇Az + σ
∂Az
∂t

= Jsz (3.19)
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3.3 The Finite Element Method

In order to introduce the HBFEM we have to recall the basis of the Finite Element
Method. We underline that explain formally the entire theory behind the Finite Element
method is not the object of this work, we want only to derive the main aspects which will
be used in the next sections.

Let’s consider the generic domain Ω and the differential problem:

Au(x) = f(x), x ∈ Ω

Gu(x) = 0, x ∈ ∂Ω
(3.20)

where A and G are generic linear differential operator, for example A is the Laplacian
considering the Laplace or the Poisson equation. We denote by S the functional space
which contains all the continuous functions defined in Ω.

The idea is to find an approximated solution ûn of the exact solution ū in a finite
dimension subspace Sn ⊂ S as a linear combination of one of his basis:

ûn =

n∑
j=1

αjϕj(x) (3.21)

therefore we have reduced the problem to the determination of the unknown coefficients
αj , we have passed from a continuous problem to a discrete one. Note that this kind of
approximation garantees the mean convergence of the approximated solution to the exact
one and not necessarily the uniform one. The peculiarity of this approach, with respect
to other method for example the Finite Difference method which discretize the differential
operator, is that the Finite Element method seek directly for an approximated solution of
the problem. To determine these coefficients we make use of the Galerkin Weighted Residual
approach.

There are also other variational methods to evaluate these coefficients for example the
Ritz method, on the other hand the Galerkin approach is more general and can solve any
differential equation while the Ritz method requires the minimization of a functional. Any-
how it can also be demonstrated that if A is self adjoint and positive defined the equations
obtained applied Galerkin or Ritz coincide.

3.3.1 Galerkin Weighted Residual Approach

To explain the Galerkin approach we consider an approximate solution as expressed in
Eq.3.21 and we define the residual:

rn = A(ûn)− f (3.22)

The idea is to impose proper conditions in order to determine the coefficients {αj}nj=1 which
minimize the Eq.3.22 in Sn. The residual will be null only if Sn contains the exact solution
ū of the problem.

Then we define the linearly independent test functions {wi}ni=1 and we impose the or-
thogonality conditions:

〈rn, wi〉 = 0, i = 1, . . . , n (3.23)

therefore we have: ∫
Ω

(A(ûn)− f)wi dΩ = 0, i = 1, . . . , n (3.24)

we have obtained a system with unknowns {αi}ni=1.
The integrals of Eq.3.24 describe the weak form of Eq.3.20. Explicitely we have:∫

Ω

A(ûn)wi dΩ =

∫
Ω

fwi dΩ, i = 1, . . . , n (3.25)
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In conclusion we have obtained the problem of finding ûn ∈ Sn so that:

a(ûn, w) = (f, w), ∀w ∈ Ln (3.26)

a(·, ·) and (·, ·) are bilinear forms while Ln is the functional space with {wi}ni=1 as a basis.
The integrals of Eq.3.24 lead to different method depending on the choice of the test

functions. We adopt Galerkin’s choice and therefore we have:

wi = ϕi, i = 1, . . . , n (3.27)

and therefore Eq.3.24 becomes:∫
Ω

(A(ûn)− f)ϕi dΩ = 0, i = 1, . . . , n (3.28)

which impose that the residual must be orthogonal to the n basis functions.

3.3.2 Choice of the Trial and Test Functions

The FEM is a Galerkin technique for whom we have {ϕi}ni=1 = {wi}ni=1 and therefore
Sn ≡ Ln. The Finite Element method assumes the functions {ϕi}ni=1 equal to piecewise
continuous polynomials with local supports. The definition of the local support of each
function is determined partitionig the domain Ω in polygonal elements, called finite elements,
Ωi so that:

Ω =

m⋃
i=1

Ωi (3.29)

The interpolating polynomials can be determined easily using the Lagrange interpolating
theory, in this work we mostly deal with 2-dimensional problems therefore we recall briefly
the theory related to this particular case.

Let’s then suppose to have a 2D domain and the related finite element mesh of triangular
linear elements.

x

y

i

j

k

e

Figure 3.1: Generic triangular element

In this case the shape functions are:

ϕei (x, y) =
ai + bix+ ciy

2∆

ϕej(x, y) =
aj + bjx+ cjy

2∆

ϕek(x, y) =
ak + bkx+ cky

2∆

(3.30)
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with:

ai(x, y) = xjyk − xkyj
bi(x, y) = yj − ym
ci(x, y) = xk − xj

(3.31)

the other coefficients are obtained immediately with a counterclockwise permutation of the
indeces, ∆ is the cross section of the generic element e. Regarding for example the shape
function ϕei , it is equal to one on node i and is null in j and k.

i

j

k

ϕei

i

j

k

ϕek

i

j

k

ϕej

Figure 3.2: Local basis functions for a linear triangular element

Then the function ϕi will be the union of the local basis functions ϕei (x, y) defined in all
the triangular elements which present the node i as a vertex, the same concept is valid for
ϕej(x, y) and ϕek(x, y).

i

ϕi

Figure 3.3: Basis function of the generic node i

We recall we have considered only triangular linear elements, if it is necessary to increase the
order of the approximation more nodes must be added, anyhow the analysis can be easily
extended to higher order elements or to one or three dimensional problems.

In conclusion we note that the approximated solution is a C0 function even if higher
order interpolations are used.
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3.4 HBFEM: Strong Coupled Approach
The aim of this section is to give a presentation of the HBFEM considering a strong

coupled approach which means that all the harmonics are coupled together giving rise to a
single large nonlinear system that has to be solved to find the final solution, to explain the
method we have to make some preliminary consideration. First of all we are dealing with
nonlinear eddy current problems, in this case the nonlinearity is given by the dependence
of the magnetic permeability on the magnetic field, the constitutive relation expressed by
Eq.3.6 has to be rewritten as:

B = µ(|H|)H (3.32)

H = ν(|B|)B (3.33)

if we are considering respectively the magnetic permeability or the magnetic reluctivity.
Moreover, in order to apply the HB method, we assume a periodical excitation source.

However, due to the nonlinearity, the result will in general not present the same harmonic
content of the excitation, and will be approximated by a Fourier series expansion.

We recall that we are engaged in the solution of the problem:

∇× (ν∇×A) + σ
∂A

∂t
= J (3.34)

with the appropriate boundary and initial conditions. In this section we derive a real equiv-
alent formulation while a slightly different version of the method in the complex domain will
be presented later.

We present now the standard application of the HB method to the partial differential
equation 3.34 discretized using FEM. First of all, we have to apply Galerkin to this equation
making use of a triangulation of linear finite elements but at the moment, we make some
preliminary hypothesis. We consider:

• the field is 2-dimensional

• the problem is quasi-stationary

• the saturated core is isotropic.

• the hysteresis is not considered

Therefore, we have already seen the vector potential A = (0, 0, Az(x, y)) satisfies, in the
region of interest surrounded with some boundary conditions, Eq.3.19. Now we can apply
the Galerkin procedure and the weighting functions are the same as the shape functions
ϕi(x, y). We obtain:

−
∫

Ω

∇ϕi · ∇Az dΩ +

∫
Ω

ϕiσ
∂Az
∂t

dΩ =

∫
Ω

ϕiJ dΩ (3.35)

We are seeking for the steady-state solution, therefore all variables are approximated as a
Fourier series expansion:

Aiz(t) =

∞∑
n=1

Ains sin(nωt) +Ainc cos(nωt) (3.36)

J i(t) =

∞∑
n=1

J ins sin(nωt) + J inc cos(nωt) (3.37)

Bex(t) =

∞∑
n=1

Bexns sin(nωt) +Bexnc cos(nωt) (3.38)

Bey(t) =

∞∑
n=1

Beyns sin(nωt) +Beync cos(nωt) (3.39)
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Similarly, we can express the reluctivity as:

ν(t) =

∞∑
n=0

νins sin(nωt) + νinc cos(nωt) (3.40)

The superscript i and e denotes the generic node and element respectively. Now we sub-
stitute the previous expansions in Eq.3.35 and we apply the Harmonic Balance equating
the coefficients on both side. This calculation leads to the following matrix equation for a
generic element:

1

4∆

(b1b1 + c1c1)R (b1b2 + c1c2)R (b1b3 + c1c3)R
(b2b1 + c2c1)R (b2b2 + c2c2)R (b2b3 + c2c3)R
(b3b1 + c3c1)R (b3b2 + c3c2)R (b3b3 + c3c3)R

A

+
σω∆

12

2D D D
D 2D D
D D 2D

A =
σ∆

3
J

(3.41)

where:
A = [A1

1s, A
1
1c, A

1
2s, A

1
2c, . . . , A

Nn
1s , A

Nn
1c , A

Nn
2s , A

Nn
2c , . . .]

T (3.42)

J = [J1
1s, J

1
1c, J

1
2s, J

1
2c, . . . , J

Nn
1s , J

Nn
1c , J

Nn
2s , J

Nn
2c , . . .]

T (3.43)

with Nn we denote the total number of nodes and ∆ is the cross section of the generic
element e. The value of ai, bi and ci is given by Eq.3.31.

The matrix R is symmetric and presents the following structure:

R =
1

2


2ν0 − ν2c ν2s ν2c − ν4c −ν2s + ν4s . . .

2ν0 + ν2c ν2s + ν4s ν2c + ν4cs . . .
2ν0 − ν6c ν6s . . .

2ν0 + ν6c . . .
. . .

 (3.44)

D is a diagonal block matrix, it results:

D =


0 1
−1 0

0 2
−2 0

. . .

 (3.45)

The system equation for the entire region is obtained by the same procedure as the conven-
tional FEM and is solved by the iteration procedure for a nonlinear static field. The main
feature is that the calculation concerned with time is not included and the procedure of the
calculation is the same as the nonlinear static FEM. The procedure we have just described is
the classical way to apply the Harmonic Balance method to a FEM discretization. The main
disadvantage of this method is the complicated assembly and resolution of a large and dense
system of nonlinear equations, this is mainly due to the fact we have considered explicitely
the Fourier expansion of the reluctivity.

Now we want to derive a different approach which partially cures this drawback. In
order to solve Eq.3.34 numerically, we need a discretization in time and space. In this case,
instead of discretizing the equation in space using FEM and then solving the resulting ODE,
we take advantage of the periodicity of the current source applying the Harmonic Balance
first. For the sake of clarity we assume a pure cosinusoidal excitation in the form:

J(x, t) = J(x) cos(ωt) (3.46)
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note that the method is valid even if the current source presents a multi harmonic content.
Then for the solution we are seeking we make the ansatz:

A(x, t) '
N∑
k=0

[Ac
k(x) cos kωt+ As

k(x) sin kωt] (3.47)

hence, the magnetic field H = H(B) = H(∇×A) is periodic as well and can be rewritten
in the form:

H(∇×A) = H0(∇×A) +

N∑
k=1

[Hc
k(∇×A) cos kωt+ Hs

k(∇×A) sin kωt] (3.48)

3.4.1 Reduction of the Harmonics
In order to semplify the derivation of the method it’s possible to make some preliminary

consideration on the harmonic content of the solution. In order to keep notation simple, we
use A to denote the sequence of Fourier coefficients and A(t) to signify the periodic function
that is determined by these coefficients according to Eq.3.47, and similarly for J .

Since odd modes cos((2k + 1)ωt), sin((2k + 1)ωt) present half-wave symmetry, the con-
dition:

v
(
t+

π

ω

)
= −v(t) (3.49)

for the generic function v = v0 +
∑N
k=1 v

c
k(cos kωt) + vsk(sin kωt) is an equivalent characteri-

zation of the property vc2k = vs2k = 0, the excitation J presents this characteristic. We want
to show that if the previous hypothesis is verified for the excitation, even the solution has
to present only odd harmonics.

For a given right hand side J(·), we get the unique solution A. Shifting the right hand
side to J̃ = J(· + π

ω ) we obtain the solution Ã, but with J̄ = −J we obtain the result
Ā = Ã because J(·+ π

ω ) = −J(·). Moreover A(·+ π
ω ) is a periodic solution of Eq.3.34 with

right hand side J̃ , then we have Ã(·) = A(· + π
ω ). On the other hand −A solves Eq.3.34

with right hand side J̄ and so −A = Ā. To summarize:

A
(
·+ π

ω

)
= Ã(·) = Ā(·) = −A(·) (3.50)

wich means that the solution we are looking for satisfies Eq.3.49 so it’s proved that A can
be expressed as a sum of odd harmonics.

We can also state a similar property for the magnetic field, infact we have:

H
(
t+

π

ω

)
= ν

(∣∣∇×A
(
t+

π

ω

)∣∣)∇×A
(
t+

π

ω

)
= ν

(∣∣−∇×A(t)
∣∣)(−∇×A(t)

)
= −H(t)

(3.51)

3.4.2 Time Discretization using the Harmonic Balance Method
We have already assumed that the solution can be expressed as a finite sum of harmonics

as stated in Eq.3.47, now we have to apply the HB method to find out the nonlinear system
that has to be solve to determine the unknown coefficients.

Substituting Eq.3.47 and Eq.3.48 in Eq.3.34 we obtain:

∇×
N∑
k=0

[Hc
k(∇×A) cos kωt+ Hs

k(∇×A) sin kωt]

+ ωσ

N∑
k=0

k[As
k(∇×A) cos kωt−Ac

k(∇×A) sin kωt]

=

N∑
k=0

[Jck cos kωt+ Jsk sin kωt]

(3.52)
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We test this equation with cos(mωt) and sin(mωt) and integrate by t, taking advantage of
the orthogonality:

ω

π

∫ 2π
ω

0

cos(kωt) cos(mωt) dt = δkm

ω

π

∫ 2π
ω

0

sin(kωt) cos(mωt) dt = 0

ω

π

∫ 2π
ω

0

sin(kωt) sin(mωt) dt = δkm

(3.53)

where δkm is the Kronecker delta. Together with the fact that all even harmonics are zero
and neglecting the zero order harmonic, this calculations lead to the following nonlinear
system of equations:

∇×


Hc

1(∇×A)
Hs

1(∇×A)
...

Hc
N (∇×A)

Hs
N (∇×A)

+ ωσ


0 1
−1 0

. . .
0 N
−N 0




Ac

1

As
1
...

Ac
N

As
N

 =


Jc1
Js1
...

JcN
JsN

 (3.54)

In a more compact way:
∇×H(∇×A) + ωσDA = J (3.55)

where D is the same matrix introduced in Eq.3.45. Note that the time dependance of the
problem has been eliminated and we have obtained a nonlinear system which only presents
space dependents terms. Moreover A is the vector of all the Fourier coefficients, which
means that every harmonic is coupled with the others.

Considering a 2D problem the structure of system 3.54 can be simplified, infact in this
case the eddy current problem is described as:

−∇ · ν(|∇A|)∇A+ σ
∂A

∂t
= J (3.56)

Then the approximate solution turns out to be:

A(x, t) '
N∑
k=0

[Ack(x) cos kωt+Ask(x) sin kωt] (3.57)

In this case the coefficients Ack(x) = Ack(x, y) and Ask(x) = Ask(x, y) become scalar functions.
Then we momentarily introduce the potential:

Ψ[A](x, t) = ν(|∇A|)∇A(x, t) (3.58)

that can also be approximated as:

Ψ[A](x, t) '
N∑
k=0

[Ψc
k[A](x) cos kωt+ Ψs

k[A](x) sin kωt] (3.59)

The system 3.54 can be rewritten:

−∇ ·


Ψc

1[A]
Ψs

1[A]
...

Ψc
N [A]

Ψs
N [A]

+ ωσ


0 1
−1 0

. . .
0 N
−N 0




Ac1
As1
...
AcN
AsN

 =


Jc1
Js1
...
JcN
JsN

 (3.60)

In compact notation:
−∇ ·Ψ[A] + ωσDA = J (3.61)
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3.4.3 Space Discretization using the Finite Element Method
We have derived a nonlinear system of equation with space dependent coefficients, to

solve this system we use the Finite Element Method. For the sake of semplicity we will
analyse the 2D problem, therefore we have to solve Eq.3.61. We suppose to discretize the
domain Ω with a triangulation of linear finite elements, next we want to build up the matrices
and the resulting system of equations, we proceed analysing separately the terms of Eq.3.61.

The variational formulation associated to Eq.3.61, written in weak form, leads to:∫
Ω

Ψ[A] · ∇v + ωσDA · v dΩ =

∫
Ω

J · v dΩ (3.62)

where v is a vector valued test function and the gradient is considered applied entry-wise.
Using the standard nodal basis function, it is easy to treat the term ωσD. It gives rise to
the Mass matrix M defined as:

M =



0 D1

−D1 0
0 D2

−D2 0
. . .

0 DN

−DN 0


(3.63)

with:
Dki,j = kωσ

∫
Ω

ϕi · ϕj dΩ (3.64)

where ϕi and ϕj are the usual linear basis function. Note that considering N harmonics
and a mesh with Nn nodes, the solution is a vector of 2NnN elements:

A = [Ac
1,A

s
1, . . . ,A

c
N ,A

s
N ]T

= [Ac1,1, . . . , A
c
1,Nn , A

s
1,1, . . . , A

s
1,Nn , . . . , A

c
N,1, . . . , A

c
N,Nn , A

s
N,1, . . . , A

s
N,Nn ]T

(3.65)

The term −∇·Ψ[A] is not as easy to treat as the previous one, this is due to the presence
of the nonlinear reluctivity ν(|∇A|) which couples all the unknowns. For the sake of clarity
we will derive the analysis considering an approximation made by only the first harmonic,
then the results obtained can be generalized to a generic number of harmonics. We have to
calculate the integral: ∫

Ω

Ψ[A] · ∇v dΩ =

∫
Ω

ν(|∇A|)∇A · ∇v dΩ (3.66)

Considering only the first harmonic we can approximate:

Ψ[A] ' Ψc
1 cos(ωt) + Ψs

1 sin(ωt) (3.67)

with:

Ψc
1 =

2

T

∫
T

Ψ[A] cos(ωt) dt

=
2

T

∫
T

ν(|∇A|)∇A cos(ωt) dt

=
2

T

∫
T

ν(|∇A|)∇(Ac1 cos(ωt) +As1 sin(ωt)) cos(ωt) dt

=
2

T

∫
T

ν(|∇A|)(∇Ac1 cos(ωt) +∇As1 sin(ωt)) cos(ωt) dt

(3.68)

and similarly:

Ψs
1 =

2

T

∫
T

ν(|∇A|)(∇Ac1 cos(ωt) +∇As1 sin(ωt)) sin(ωt) dt (3.69)
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We define the vectors:
Ψ = [Ψc

1,Ψ
s
1]T (3.70)

v = [vc1, v
s
1]T (3.71)

then we can calculate the integral:∫
Ω

Ψ[A] · ∇v dΩ =

∫
Ω

Ψc
1 · ∇vc1 + Ψs

1 · ∇vs1 dΩ (3.72)

defining:

α =
2

T

∫
T

ν(|∇A|) cos(ωt) cos(ωt) dt

β =
2

T

∫
T

ν(|∇A|) cos(ωt) sin(ωt) dt

γ =
2

T

∫
T

ν(|∇A|) sin(ωt) sin(ωt) dt

(3.73)

If we substitute Eq.3.68 and Eq.3.69 in Eq.3.72, using the definitions 3.73, we obtain:∫
Ω

Ψc
1 · ∇vc1 + Ψs

1 · ∇vs1 dΩ =

∫
Ω

(α∇Ac1 + β∇As1) · ∇vc1 + (β∇Ac1 + γ∇As1) · ∇vs1 dΩ

=

∫
Ω

α∇Ac1 · ∇vc1 dΩ +

∫
Ω

β∇As1 · ∇vc1 dΩ

+

∫
Ω

β∇Ac1 · ∇vs1 dΩ +

∫
Ω

γ∇As1 · ∇vs1 dΩ

(3.74)

Now we can discretize Eq.3.74 using a set of linear basis functions, we denote it as:

{ϕi}Nni=1 = {ϕ1, ϕ2, . . . , ϕNn} (3.75)

then we have:

Ac1 =

Nn∑
j=1

ηjϕj (3.76)

As1 =

Nn∑
j=1

ξjϕj (3.77)

In order to clarify the structure of the Stiffness matrix we proceed to calculate explicitely
the local Stiffness matrix of a generic element e with vertex i, j and k analysing each term
of the sum in Eq.3.74 separetely. In the case we are treating the local Stiffness matrix is
composed of four submatrix itself:

K(e) =

[
K

(e)
(cc) K

(e)
(sc)

K
(e)
(cs) K

(e)
(ss)

]
(3.78)

Considering for example the term K
(e)
(cc), using Galerkin’s approach for the choice of the test

functions we have:

K
(e)
(cc) =

 ∫Ω α∇ϕi · ∇ϕi dΩ
∫

Ω
α∇ϕi · ∇ϕj dΩ

∫
Ω
α∇ϕi · ∇ϕk dΩ∫

Ω
α∇ϕj · ∇ϕi dΩ

∫
Ω
α∇ϕj · ∇ϕj dΩ

∫
Ω
α∇ϕj · ∇ϕk dΩ∫

Ω
α∇ϕk · ∇ϕi dΩ

∫
Ω
α∇ϕk · ∇ϕj dΩ

∫
Ω
α∇ϕk · ∇ϕk dΩ

 (3.79)

The generic term is therefore:

K
(e)
(cc)i,j =

∫
Ω

α∇ϕi · ∇ϕj dΩ (3.80)
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and similarly for the other matrices:

K
(e)
(sc)i,j =

∫
Ω

β∇ϕi · ∇ϕj dΩ (3.81)

K
(e)
(cs)i,j =

∫
Ω

β∇ϕi · ∇ϕj dΩ (3.82)

K
(e)
(ss)i,j =

∫
Ω

γ∇ϕi · ∇ϕj dΩ (3.83)

The local Stiffness matrix is therefore a 6×6 matrix. The global Stiffness matrix is assembled
starting from the local contributions.

Finally the construction of the right hand side consists in the calculation:∫
Ω

J · v dΩ =

∫
Ω

Jc1v
c
1 + Js1v

s
1 dΩ =

∫
Ω

Jc1v
c
1 dΩ +

∫
Ω

Js1v
s
1 dΩ (3.84)

To sum up the final system presents a Stiffness matrix K of 2NnN equations in 2NnN
unknowns. In order to assemble efficiency the Stiffness matrix is necessary to proceed as
in the stadard FEM implementation, therefore it is essential to build up the local Stiffness
matrices element by element and then assemble the global matrix K. Note that the final
system does not present time dependent term, infact even the coefficients α, β and γ have
only space dependency. The evaluation of the integrals in Eq.3.73 has to be performed
numerically, tipically using Gaussian integration. We recall that the previous derivation
has been developed considering only a first harmonic approximation, with some calculation
the analysis can be extended to a generic number of harmonics. Moreover the final system
we have derive still present the nonlinearity due to the terms containing the reluctivity.
This problem is typically solved using Newton-Raphson, in this case the derivation of the
algorithm is not straightforward. Infact to apply Newton-Raphson is necessary to build up
the Jacobian matrix, which presents a complicated structure. Moreover the linearized system
obtained is nonsymmetric and is tipically solved using GMRES with ILUT preconditioning.
Anyway the problem has been treated by different authors, the formal derivation of the
Newton-Raphson method applied to the HBFEM can be found in [4]-[10].

3.4.4 Complex Equivalent Formulation
In the previous section a real equivalent strong coupled approach has been presented,

another way to solve the problem is to derive a complex equivalent formulation. This can
be done similarly to the real equivalent case using a complex Fourier approximation for the
solution:

A(x, t) = Re

(
N∑
k=0

Ake
jkωt

)
(3.85)

then the derivation is similar the one presented in the previous section.
Another way to solve the problem in the complex domain is to recast Eq.5.14 directly

in the frequency domain to eliminate the time dependancy. It can be shown that Eq.5.14
rewritten in the frequency domain leads to:

∇× (ν ?∇×A) + σ ? T (A) = −σ ?∇V (3.86)

where ? denotes convolution, (·) is a frequency domain spectrum and T is the operator
representing the Fourier transform of the time derivative:

T : g(ω)→ jωg(ω) (3.87)

In the previous section it has been shown that the magnetic field and the magnetic flux
density presents only even harmonic, similarly it can be demonstrate that the material
property as the permeability present only odd harmonics. Therefore in this case we have
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to consider explicitely the truncated spectrum of the reluctivity, similarly to what has been
done in the first real formulation we have previously presented. Note that in practice only
few components are considered, both for the permeability and for the magnetic field and
the magnetic flux density, therefore the operator ? in Eq.3.86 as to be seen as a truncated
convolution. This operation can be represented as the multiplication of a matrix with a
vector. Considering the generic field quantities a and b with odd harmonic pattern and a
material function τ with even pattern, we can introduce the Toeplitz notation and therefore
we obtain the following equivalent representation for the truncated convolution:[

τ0 + τ2Cg(·) τ̄2
τ2 τ0

] [
a1

a3

]
=

[
b1
b3

]
(3.88)


τ0 τ2
τ̄2 τ0 τ2

τ̄2 τ0 τ2
τ̄2 τ0




a3

a1

a−1

a−3

 =


b3
b1
b−1

b−3

 (3.89)


τ0 Re τ2 − Im τ2

Re τ2 τ0 + Re τ2 Im τ2 Im τ2
− Im τ2 Im τ2 τ0 − Re τ2 Re τ2

Im τ2 Re τ2 τ0




Re a3

Re a1

Im a1

Im a3

 =


Re b3
Re b1
Im b1
Im b3

 (3.90)

where Cg denotes the complex conjugate and the subscripts denote the harmonic index.
The previous notation is valid considering two harmonics, the same concept can be also
extended to a generic pattern. If we consider a 2D problem and a triangulation of linear
finite element we can again express A as:

A =

Nn∑
j=1

Ajϕj (3.91)

applying Galerkin, the resulting system of equations is:

(K ?+M ? T )x = f (3.92)

with:
kij =

∫
Ω

ν∇ϕi · ∇ϕj dΩ (3.93)

mij =

∫
Ω

σϕiϕj dΩ (3.94)

xj = Aj (3.95)

f
i

=

∫
Ω

σ ?∇V ϕi dΩ (3.96)

We underline that σ and mij are scalars while ν and kij are vectors, explicitely regarding
the term related to the Stiffness matrix we have:

K ? x =

Nn∑
j=0

kij ? xj , i = 1, . . . , Nn (3.97)

which means that each convolution has to be calculated as a matrix-vector multiplication
using Toeplitz notation as stated in Eq.3.88-3.89-3.90. The Mass matrix and the excitation
can be expressed similarly to what has been done for the Stiffness matrix.

In this case the nonlinear system 3.92 is tipically solved using Picard iteratione ([5]-[11]),
inbetween two successive steps k, adaptive underrelaxation is indispensable to ensure global
convergence. The Newton-Raphson method is not used due to the problems that arise in the
construction of the Jacobian. Applying Picard iteration, if x̃ is the solution of the linearized
system:

(K(k) ?+M ? T )x̃ = f (k) (3.98)
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the new solution:
x̃(k+1) = γx̃+ (1− γ)x̃(k) (3.99)

is determined in terms of the relaxation factor γ. The relaxation factor is selected out of the
set 1, 0.625, 0.5, 0.25, 0.125 in order to minimize the nonlinear residual ||f (k+1) − (K(k+1) ?

+M ? T )x(k+1)||. The linear system that arises in each iteration is symmetric and positive
defined thus is tipically solved using Quasi-Minimal Residual (QMR), or Conjugate Gradient
(CG) with Symmetric Successive Overrelaxation (SSOR) preconditioner.

3.5 HBFEM: Decoupling of the Harmonics

In the previous section we have analysed the HBFEM considering a strong-coupled ap-
proach both in real and complex domain. Now we want to formulate the same method
considering each harmonic decoupled from the other in such a way to study each harmonic
independently. It has been widely shown that the nonlinear term containing the permeability
or the reluctivity couple all the unknowns, so that the decoupling is trivial in the theoretical
linear case while for nonlinear problems special techniques are needed. If a decoupling is
performed, we obtain a number of systems of equations that equals the number of harmonics
we are considering, each system with as many unknowns as there are degrees of freedom in
the FEM approximation.

We recall we are engaged with the solution of the equation:

∇× (ν∇×A) + σ
∂A

∂t
= J (3.100)

applying Galerkin we obtain:

K[ν(x(t))]x(t) + M(σ)
dx(t)

dt
= f(t) (3.101)

where the dependance of the Stiffness matrix K on ν and of the Mass matrix M on σ is
explicitely shown. Since the reluctivity depends on the field, ν depends on x and hence on
t as indicated.

In this case in order to apply the HB method, we use a complex Fourier series for the
solution considering N harmonics:

x(t) ' xN (t) = Re

(
N∑
k=1

Xke
jkωt

)
(3.102)

where Xk is the complex Fourier coefficient of the k-th harmonic at the angular frequency
kω. It can be computed as:

Xk = Fk(x) =
1

T

∫
T

x(t)e−jkωt dt (3.103)

If we substitute Eq.3.102 in Eq.3.101 and computing N Fourier coefficients of both sides,
a system of equations with N times as many unknowns is obtained as there are degree of
freedom in x(t):

Fm{K[ν(xN )]xN}+ jmωM(σ)Xm = Fm(f), m = 1, . . . , N (3.104)

In the linear term in Eq.3.104, the Fourier coefficients of the m-th harmonic appear only.
The time derivative in Eq.3.101 corresponds to a multiplication by jmω in the frequency
domain. The right hand side can be computed directly using Eq.3.103. On the other hand,
the nonlinear term containing the permeability or the reluctivity depending on the unknown
solution couple all Fourier coefficients to each other. Therefore, due to the nonlinearity, we
cannot solve each harmonic independently.
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3.5.1 Linear Problems

In the linear case the permeability and the reluctivity does not depend on the solutions,
in this case the decoupling is trivial. Infact, the system of ordinary differential equation
3.101 becomes linear since K does not depend on x(t). Then the Fourier coefficients related
to the Stiffness matrix simply become:

Fm{K(ν)xN} = K(ν)Xm (3.105)

Consequently each harmonic of Eq.3.104 becomes decoupled and can be determined inde-
pendently:

[K(ν) + jmωM(σ)]Xm = Fm(f), m = 1, . . . , N (3.106)

Therefore we have obtained N independent linear systems.

3.5.2 Fixed-Point Method for Nonlinear Problems

In nonlinear problems each harmonic is coupled with harmonics due to the presence of
the permeability, to overcome this problem a fixed-point iteration technique is used.

The fixed-point iteration method for the solution of nonlinear equations reduces the
problem to finding the fixed point of a nonlinear function. The fixed point xFP of the
function G(x) is defined as:

xFP = G(xFP ) (3.107)

Then to proceed in the derivation we state the Banach Fixed Point Theorem:

Theorem 3 (Banach). Let D ⊂ Rn closed, and a contraction G : D → Rn. Then there
exists a unique xFP ∈ D with G(xFP ) = xFP and for any x(0) ∈ D the fixed point iterates
given by x(s+1) = G(x(s)) converges to (xFP ) as s→∞.

We recall that a contraction is a function for which exists a contraction number −1 < q < 1
so that for any x and y:

||G(x)−G(y)|| < q||x− y|| (3.108)

where || · || is a suitable norm.
A general nonlinear equation F (x) = 0 can be transformed in a fixed point problem by

selecting a suitable linear operator L and defining G as:

G(x) = x + L−1F (x) (3.109)

the fixed point iteration then becomes:

L(s)x(s+1) = L(s)x(s) + F (x(s)), s = 0, 1, . . . (3.110)

where the superscript s of L(s) indicates that linear operator L can be changed at each
iteration step to accelerate convergence.

In this case the choise of the linear operator is straightforward, the permeability or
reluctivity has to be set to a value independent of the magnetic field. This value, µFP or νFP ,
is not necessarily independent of the space coordinates, hence we can have µFP = µFP (r) or
νFP = νFP (r), therefore the fixed point permeability or reluctivity can vary in the domain
but has to be independent of the field and hence on time. In the same way as the general
linear operator L, µFP or νFP can also change at each iteration step.

Then we define the fixed point reluctivity as:

ν = νFP + (ν − νFP ) (3.111)

so that we substitute Eq.3.111 in Eq.3.100 and we obtain:

∇× (νFP∇×A) + σ
∂A

∂t
= J +∇× ((νFP − ν)∇×A) (3.112)
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Figure 3.4: Converge of the FP method for x = g(x)

Galerkin’s method applied to Eq.3.112 leads to the ordinary differential equation system:

K(νFP )x(t) + M(σ)
dx(t)

dt
= f(t) + K(νFP − ν)x(t) (3.113)

Eq.3.113 implies an iterative method, namely:

K(ν
(s)
FP )x(s+1) + M(σ)

dx(s+1)

dt
= f + K(ν

(s)
FP − ν

(s))x(s) (3.114)

The permeability or reluctivity distributions µ(s) or ν(s) are determined from the solution
x(s)(t) which means that, in contrast to µ(s)

FP or ν(s)
FP , they are time-dependent.

In each iteration step a linear ordinary differential equation system has to be solved,
there are two approach to solve this system.

The first one consists in a time discretization using a backward Euler scheme to obtain:

K[ν(xm)]xm + M(σ)
xm − xm−1

∆t
= fm (3.115)

in this case m denotes time instants. Then one applies the HB method to Eq.3.115 giving
rise to a block-structured system that has to be solve to determine the solution. The formal
derivation of the method can be found in [7].

We focus our attention to a second method which use the HB method directly in the
frequency domain. The basic idea of the harmonic balance method is that if the trigonomet-
ric Fourier coefficients of two functions are equal, then, under appropriate conditions, these
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two functions are equal. Then if we apply the HB to Eq.3.114 equating the coefficients we
obtain:

[K(ν
(s)
FP ) + jmωM(σ)]X(s+1)

m = Fm[K(ν
(s)
FP − ν

(s))x(s)(t) + f(t)], m = 1, . . . , N
(3.116)

The nonlinear iterations for solving Eq.3.116 are terminated when the maximum and the
mean change of µ(s) or ν(s) beetween two iteration become less than a suitable threshold.

Eq.3.116 consists in N decoupled linear system, since these are independent from each
other, they can be solved in parallel with each core responsible for the solution of one
harmonic X(s+1)

m . Once these parallel computations are ready, the right hand side for the
next iteration can be determined by first computing the solution in the time domain using
Eq.3.102 and then carrying out the Fourier decomposition as in Eq.3.116. In this part of the
process the parallelization is not possible, anyway the computational effort necessary for it
is negligible in comparison to the solution of the large linear algebraic systems. The final
algorithm is summarized in the flowchart of Fig.3.5.

Now we want to carry out an analysis of the convergence of the Fixed-Point HBFEM.
Let’s consider a nonlinear magnetic domain, it can be demonstrated that a value for the
fixed-point permeability µFP < 2µmin ensures convergence in the static case. Here µmin is
the minimum slope of the BH-curve, which is equal to the permeability of vacuum. However,
numerical investigations ([12]-[13]) show that higher values for µFP accelerate convergence,
but if µFP exceeds a certain value, the fixed-point method diverges. The aim is to choose a
fixed-point permeability higher than µ0 which leaves the method convergent.

A first approach consists in the calculation of the maximum value of the magnetic flux
density within a period. Therefore considering a generic point P we can calculate:

Bmax = max{B(P, t)}, 0 ≤ t < T (3.117)

The corresponding permeability for the maximum of the magnetic flux density at this point
is given by:

µ(P ) =
|Bmax|
|H(Bmax|)

(3.118)

Therefore this value is choosen to be the fixed point permeability at the point P . For the
iterative algorithm, the fixed point permeability in each integration point is replaced by
Eq.3.118 at each iteration step. It is assumed that this choice will improve the convergence
rate, since the value determined by Eq.3.118 is, in general, higher than µ0.

Another approach relies in the determination of the optimal value for the fixed point
permeability which garantees the acceleration of the convergence of the algorithm. The
analysis of the convergence is carried out using the Banach Fixed Point theorem, in this
case we have the function G(x) defined as:

G(x) = F−1[K(νFP ) + jmωM ]−1Fm[K(νFP − ν)x + f ] (3.119)

Since x depends on time and space we have to use two L2 norms:

||x||L2(Ω) =

√∫
Ω

x2 dΩ (3.120)

||x||L2(0,T ) =

√∫
T

x2 dt (3.121)

In order to get the contraction number it is necessary to compute:

G(x)−G(y) = F−1[K(νFP ) + jmωM ]−1Fm[K(νFP − ν)(x− y) + f ] (3.122)

This calculation ([12]) leads to an estimation for the contraction number:

q ≤ C
∥∥∥∥νFP − ννFP

∥∥∥∥
L2(0,T )

(3.123)
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q ≤ C
∥∥∥∥νFP − ννFP

∥∥∥∥
L∞(0,T )

(3.124)

where C is a constant near to one and independent from νFP . This estimation indicates that
the contraction number strongly depends on the fixed-point reluctivity. The optimal value
can be determined minimizing the right hand side of Eq.3.123-3.124. This minimization
leads to the following values for νFP :

νFP =

∫
T
ν2(t) dt∫

T
ν(t) dt

(3.125)

νFP =
mint∈[0,T ](ν) + maxt∈[0,T ](ν)

2
(3.126)

Once we have estimated the contraction number we can analyse the convergece of the method
taking into account that the change of the reluctivity between two iteration can be expressed
as:

ν(s+1) − ν(s) = (q − 1)(1−B′(H)ν(s))(ν(s) − ν(s−1)) (3.127)

where B′(H) is the derivative of the BH-curve. Eq.3.127 yields a condition for the conver-
gence of the algorithm, the fixed-point reluctivity has to verify the equation:

||ν(1−B′(H)ν)||L∞(0,T ) < νFP (3.128)

Then we can conclude that the best choice for the fixed-point reluctivity is:

νoptFP = max

{∫
T
ν2(t) dt∫

T
ν(t) dt

,
mint∈[0,T ](ν) + maxt∈[0,T ](ν)

2

}
(3.129)

however if this value does not satisfy Eq.3.128, the optimal fixed-point reluctivity must be
changed to:

νoptFP = ||ν(1−B′(H)ν)||L∞(0,T ) (3.130)

Selecting larger values for the optimal fixed-point reluctivity ensure convergence but lead to
a higher number of iteration, on the contrary smaller value for the fixed-point parameter lead
to divergence. The analysis has been carried out considering the fixed-point reluctivity, the
optimal fixed-point permeability can be obtained in a similar way. Therefore to accelerate
the convergence the fixed-point reluctivity can be assigned in each Gaussian integration
point in accord with Eq.3.129-3.130, moreover considering linear elements, the fixed-point
reluctivity is constant in each element of the mesh. In conclusion it can be seen that the
condition given in Eq.3.130 depends on the BH curve, in particular for strongly saturating
curves it can lead to values similar to the ones obtained using the first approach presented
before.





Chapter 4

Implementation of the Harmonic
Balance FEM

In this chapter we want to show how it is possible to implement the HBFEM in a com-
mercial FEM solver. This type of implementation has already been done in various research
codes, now in this work we want to extend this concept to a commercial software. We chose
to implement the HB method in the commercial FEM software COMSOL Multiphysics using
the MATLAB language. We made this choice due to the possibility to interface MATLAB
and COMSOL easily using the LiveLink for MATLAB functionality of COMSOL, in par-
ticular we have used the AC\DC module to treat nonlinear electromagnetic problems. The
aim is to demonstrate the feasibility of this approach and therefore give an alternative to
the standard time-dependent simulations, moreover we want to use as much as possible the
potentialities of COMSOL and it will be shown that embedding the HB method in such a
software is relatively easy.

4.1 Choice of the Method

We have already shown that the HBFEM can be derived using different formulations,
in particular we have analysed a strong coupled method, both in real and complex domain,
and an approach with decoupling of the harmonics. We want to verify which approach leads
to a feasible implementation in COMSOL taking into account the limitations due to the fact
we want to use a commercial FEM solver.

We start our analysis considering the strong coupled approach. In the previous chapter
we have shown that the most difficult part of the method consists in building up the Stiffness
matrix. Infact due to the presence of the nonlinear reluctivity each harmonic is coupled
with the others and a special calculation has to be performed, this means that the Stiffness
matrix that arises from the application of the HBFEM can not be constructed using the
standard functionality of COMSOL. On the contrary the term related to the Mass matrix can
be determined considering each harmonic independently and therefore is easy to compute.
Moreover the size of the Stiffness matrix of the HBFEM is Nn(2N + 1) where Nn is the
number of degree of freedom of the model and N is the number of harmonics we are dealing
with, again we note that to build up the Stiffness matrix it should be necessary to write a
complete new code, in the same way to solve the nonlinear system using Newton-Raphson
requires the implementation of a specific algorithm. This could be done if it is necessary to
write a specfic code that implement the HBFEM starting from scratch but this is not the
object of this work. The previous problems turned out to be difficult to be overcome and
therefore we decided to focus our attention on the decoupled method.

Considering the approach with decoupling of harmonics it is immediate to note that the
problems previously cited are overcome in a simple and natural way. In this case infact both
the Stiffness and Mass matrix can be constructed considering each harmonic indipendently
and therefore standard routines can be used. Moreover it is not necessary to use a method
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such as Newton-Raphson due to the fact that the linearization is carried out using the fixed
point method. It only remains to understand how to use the fixed point reluctivity νFP ,
this will be clarified in the next sections. For this reasons we decided to adopt this second
approach and implement the fixed point HBFEM.

4.2 Implementation of the Fixed Point HBFEM
Once that the choice of the method has been performed, we want to show how to imple-

ment the fixed point HBFEM in COMSOL. In the previous chapter a complete analytical
derivation has been presented, now to understand how to implement the algorithm we focus
our attention on the iterative scheme obtained by the application of the fixed point and HB
method:

[K(ν
(s)
FP )+jmωM(σ)]X(s+1)

m = Fm[K(ν
(s)
FP −ν

(s))x(s)(t)+f(t)], m = 1, . . . , N (4.1)

Eq.4.1 tells us that in order to find the solution we have to solve N decoupled linear system
for each iteration of the algorithm, the crucial part to implement the method is the handle
of the fixed point parameter and consequently the construction of the matrices K(νFP ) and
K(νFP − ν). Now we analyse each passage to solve a complete model. The procedure we
follow is represented in Fig.4.1.

4.2.1 Construction of the Model
This is a preliminary phase, to solve a model it is necessary to build up the geometry, set

the boundary conditions, impose the excitations and construct the mesh. This is tipically
done in any FEM software, in this case this process can be done using the GUI of COMSOL
or directly via MATLAB. Anyway the final result has to be a MATLAB script with the
instructions to construct the model.

4.2.2 Calculation of the Stiffness and Mass Matrix
This is the crucial part of the algorithm and special procedures has to be developed.

Once we have constructed the model we can develop the working process to solve the our
problem using the fixed point HBFEM. We recall the algorithm is described by Eq.4.1, hence
is necessary to determine K(νFP ), M(σ) and K(νFP − ν). Note that the Mass matrix has
to be calculated only in the first iteration given the fact that it does not depend on the
reluctivity.

We start our analysis from the calculation of M(σ). This term is easy to be determined,
it can be calculated using the built-in function mphmatrix, the known excitation f can be
calculated similarly.

The Stiffness matrixK(νFP ) has to be calculated imposing the value of νFP in the model,
we used the fixed point permeability µFP to ease the implementation of the algorithm. If
we assume a constant value for the fixed point permeability, it means that K(νFP ) has
to be calculated only in the first iteration. Therefore once we have set in the model the
choosen value of the fixed point permeability it is sufficient to calculate the Stiffness matrix
using again the function mphmatrix. On the contrary adopting the adaptive method a
different implementation is required. In this second case K(νFP ) has to be calculated on
each iteration, moreover µFP is not constant in the whole domain and assumes different
values in each Gaussian integration points. In our implementation we use linear elements,
in this case µFP is constant in each element of the mesh, so that it is necessary to create
a MATLAB function that sets the optimal value of the permeability in each element of the
mesh, in particular the COMSOL variable meshelement turned out to be useful. Moreover
is higly recommended to vectorize the function avoiding for loops over the elements to speed
up the code.

We also have to determine the matrix K(νFP − ν(s)(t)). In an iteration this calculation
has to be performed for each time instant in wich we sample µ(s)(t). The value of µ(s)(ti)



4.2. IMPLEMENTATION OF THE FIXED POINT HBFEM 43

Start:
X(0), ν(0)

FP , ν
(0)

Extract
K(ν

(s)
FP − ν(s))
and

K(ν
(s)
FP )

Update the right hand side of Eq.4.1

Solve Eq.4.1

Compute x(s+1)(t)Set x(s+1)(t)

Extract ν(s+1)

Change of νmean
and νmax

small enough?

Stop

x(s)(t) = x(s+1)(t)

Yes

No

aaa COMSOL

aaa MATLAB

Figure 4.1: Flowchart of the algorithm



44 CHAPTER 4. IMPLEMENTATION OF THE HARMONIC BALANCE FEM

is calculated from the solution x(s)(ti), to do that we set the time domain solution in the
model using the function setU and then we extract the permeability, which is constant in
each element, using for example mphinterp. This process has to be done for each time instant
in which we have previously calculated the solution. We resume the previous procedure in
the following pseudocode:

Algorithm 1
1: Nts=Number of time instants
2: for i← 1, Nts do
3: Set x(ti)
4: Extract µ(ti)
5: Set (µFP − µ(ti))
6: Compute K(νFP − ν(ti))
7: end for

Once we have done this process we can update the right hand side as:

Fm[K(ν
(s)
FP − ν

(s))x(s)(t) + f(t)] = Fm[K(ν
(s)
FP − ν

(s))x(s)(t)] + Fm[f(t)] (4.2)

In order to perform this calculation we used the FFT algorithm of MATLAB.

4.2.3 Solution of the Linear Systems

At this point it only remains to solve the linear systems that arise from the previous
calculation. We can distinguish two cases.

The first one is the eddy current free problem, in this case Eq.4.1 simpifies to:

K(ν
(s)
FP )X(s+1)

m = Fm[K(ν
(s)
FP − ν

(s))x(s)(t) + f(t)], m = 1, . . . , N (4.3)

Therefore it appears that K(ν
(s)
FP ) does not change considering different harmonics, it means

that we have obtained a linear system with multiple right hand side. In this case we solve
Eq.4.3 adopting a factorizarion of the Stiffness matrix. Using for example an LU factoriza-
tion we obtain the well known form:{

Lym = bm
m = 1, . . . , N

Uxm = ym
(4.4)

The first system is solved using forward substitutions while the second one is solved by
backward substitutions. The main advantage of this approach relies in the fact that the
factorization of the matrix has to be done only once. Infact the same triangular factor L
and U are used to solve the m linear systems. We underline that this procedure is internally
carried out using the MATLAB function mldivide, which automatically adopts the most
efficient algorithm for the factorization of the given matrix.

Considering eddy current the previous considerations are not valid, in this case we have
to solve Eq.4.1. This is the part that should be solved in parallel in order to increase the
efficiency of the code. However, in this work we have limited our analysis to 2D problems
using linear finite elements. In this case the matrices that arise from a FEM discretization
are relatively small, therefore good speed is achieved even without parallelization. It is clear
that to tackle 3D problem or use higher order elements the complexity dramatically grows
and parallelization is required. Moreover we note that the adoption of direct method as the
LU factorization is tipically a good choice for relatively small matrices as the one we treat in
this work. When the dimension of the linear system increase, for example in 3D problems,
is usually required to use iterative method in order to reduce the computational time and
effort.
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4.2.4 Termination Criterion
The iterations has to be performed until a suitable criterion is satisfied.
A first approach is to stop the algorithm once the variation of magnetic vector potential

in each node of the finite element between two consecutive iterations is below of an imposed
threshold.

The criterion we use in this work is the one proposed in [7], it consists in imposing a
condition on the permeability. In particular when the maximum and the mean relative
variation of the permeability between two consecutive iterarion is below of an imposed
threshold we stop the iterative process. This means that the solution is not varying anymore
and we have reached convergence. For most of the problems a good choice is to impose a
threshold equal to 0.1% for the mean relative variation and 1% for the maximum relative
variation of the permeability in the integration points. These conditions are easily checked
in MATLAB during each iteration of the algorithm.

4.2.5 Post-processing
An important detail is the post-processing phase and consequently the visualization of

the results.
Due to the fact we are working with MATLAB we have the possibility to visualize and

elaborate the obtained results in the MATLAB Command Window or in COMSOL. To
facilitate the post-processing of the results the code devoleped automatically sets the results
in COMSOL, in this way we can work on the solved model directly through the GUI of this
software without the necessity to develope other code. We can also run several simulations
using different number of harmonics and load easily the computed solutions in COMSOL
(Fig.4.2).

Solutions: HBFEM and Time dependent

Figure 4.2: Screenshot of the Model Builder with the solutions of the HBFEM

Setting the solutions through MATLAB is easily performed using the function setU, we
underline that the determined values has to be imposed for each time instant in which we
have computed the solutions. Once the solution is set is sufficient to create the solution and
load the corresponding model.
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We note that the application of the HB requires the calculation of the solution both in
time domain and in frequency domain, therefore it is possible to see the computed magnetic
vector potential harmonic by harmonic. Even in this case is easy to set the solution in each
node of the mesh and load the corresponding model in COMSOL similarly to what can be
done with the steady state solution in time domain.

4.3 Working Process
To conclude this chapter we resume the working process we have developed in the pre-

vious section, for this purpose we refer to Fig.4.3.

Construction of the model

Run HB code

Set the computed result

Post processing

aaa COMSOL

aaa MATLAB

Figure 4.3: Working process to solve a model

As can be seen from the previous figure the working process is linear and quite simple and
does not require complicated manipulations. The code which implement the HB method has
to be slightly changed and adapted according to the specific model we have to analyse, for
example if we consider a problem with eddy currents or not. The main script and functions
implemented are described in Appendix B. The application of the method developed is the
objective of the next chapter.

After the model has been created in COMSOL, the obtained script is processed via
MATLAB applying the code developed which implements the HB method. Once the solution
has been calculated, the obtained values of the magnetic vector potential are set in the
corresponding model. At this point the model can be loaded and the post processing phase
can be done directly through the GUI of COMSOL.

The principles we have followed to propose this process are mainly the simplicity of the
working flow and its applicability to a wide range of different models. In the next chapter
we will follow the procedure developed and we will test the code proposed in some practical
examples.

We note that a lot of parts of the procedure are tipically done to solve any kind of model,
for example the creation of the geometry and the set up of the boundary conditions, infact
the core of the working flow is the code which implements the HB method and it is also
the process which takes the most of the computational time. Moreover the time required
to solve the corresponding model depends on the model itself. The computational time is
crucial for a feasible and wide utilisation of our code. At the moment we have seen through
numerical investigations that the time required to reach the steady state solution using a
time dependent simulations is less than the one required to our code. The code developed
can be further ammeliorated but there are some serious limitations due to the fact we are
dealing with a commercial solver. Infact the use of some built-in COMSOL functions requires
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a relative long amount of time, for example the repeated use of the function mphmatrix used
to construct the Stiffness matrix in each time sample turned out to be particularly inefficient.
It should be essential to understand if these problems can be overcome in order to make
more attractive the implementation we have proposed.





Chapter 5

HBFEM: Application of the
Method

In this chapter we want to apply the method proposed studying some significative 2D
models. In order to validate the code we confront the solution obtained using the HBFEM
with one steady state solution obtained using a standard time-dependent simulation, the
results must present similar behaviour. We will analyse three different models that permit
to make some useful considerations.

5.1 Ferromagnetic Yoke

The first example to test the code consists in a nonlinear ferromagnetic core and a current
driven coil surrounded by air. The geometry of the model is represented in Fig.5.1.

Air

Coil

Ferromagnetic material

Figure 5.1: Nonlinear ferromagnetic yoke

In this first example we consider an eddy current free problem, infact the conductivity
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of the magnetic material is set to zero. Moreover we assume to have a uniform distribution
of the current density in the coil, to have this it is sufficient to impose a null conductivity
and impose the desidered current density excitation. In order to achieve a strong saturation
condition we impose a sinusoidal current density with peak value equal to 1× 106 A/m2, the
frequency is set to 50Hz. For the magnetic yoke we used a COMSOL built-in silicon steel
whose BH curve is depicted in Fig.5.2.
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Figure 5.2: BH curve of the magnetic material

We recall we use a linear finite element discretization. Then we have run different simu-
lations using the HBFEM considering different number of harmonics and we have compared
the obtained results with a standard time dependent simulation. The solution is obtained
in term of magnetic vector potential Az. In particular we can evaluate the solution in the
nodes represented in Fig.5.3.

P2

P1

P3

P4

Figure 5.3: Nodes P1, P2, P3 and P4
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(a) AzP1
(b) AzP2

(c) AzP3
(d) AzP4

Figure 5.4: Magnetic vector potential in points P1, P2, P3 and P4

The obtained solutions are depicted in Fig.5.4, moreover having imposed a pure sinu-
soidal excitation the solution presents only even harmonics. The results calculated using the
HBFEM are closed to the ones obtained via time dependent simulation, increasing the num-
ber of harmonics the solution tends to be more accurate. In particulare in point P4, where
the saturation is very low, the solution is well approximated even using a small number of
harmonic components. Moreover the fundamental quantity is the magnetic flux density, in
this sense we can proceed similarly to what has been done for the magnetic vector potential.
Using linear finite elements we ensure that the magnetic flux density is constant within each
element. Therefore we can compare the magnetic flux density in some specific elements
obtained using the HBFEM and the time dependent simulation. We choose three elements
with different levels of saturation, we identify them by the coordinate of their barycenter
(Fig.5.5). Even in this case the magnetic flux density tends to the time dependent solution
increasing the number of harmonics, in particulare for point E1 where the saturation is
strong a relatively high number of components is needed in order to achieve an accurate
result (Fig.5.6).

We have already discussed about the importance of a proper choice for the fixed point
permeability, now we want to use this example to clarify some aspects. A correct choice of



52 CHAPTER 5. HBFEM: APPLICATION OF THE METHOD

E1

E2

E3

Figure 5.5: Elements E1, E2, E3

the fixed point permeability is essential to guarantee the convergence of the algorithm and
the speed of convergence. The higher the value of µFP is, the faster the convergence. On
the other hand if the value of the fixed point permeability is too high the algorithm does not
converge. Moreover it’s not possible to know a priori which is the maximum admissible value
for µFP . In this sense an adaptive approach is useful. Using an adptive method infact the
algorithm converges whatever it is the initial value of the fixed point permeability and the
number of iterations to reach convergence is greatly reduced. There are several approaches
to solve this problem, we have choosen the first one presented in Chapter 3 and formally
derived in [13]. It’s easy to implement and leads to a strong reduction of the iteration
needed to reach convergence. In this example, due to the strong nonlinearity intentionally
introduced, we have calculated the value of µFP using the adaptive method and then we
have slightly decreased its values in order to ensure the convergence of the algorithm.

In Fig.5.7-5.8 it is shown the rate of convergence of the HBFEM considering different
value for the fixed point permeability.

The stopping criterion is choosen to be on the maximum and on the mean variation
variation of the permeability between two consecutive iterations. If the value of the fixed
point permeability is taken higher than 50H/m the algorithm does not converge, on the
contrary using the adaptive method the initial value of µFP can be choosen arbitrarily.
Moreover the speed of convergence of the adaptive approach is in any case higher.
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(a) ||B|| in E1 (b) ||B|| in E2

(c) ||B|| in E3

Figure 5.6: Norm of the magnetic flux density in points E1, E2, E3
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Figure 5.7: Maximum variation of the permeability
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Figure 5.8: Mean variation of the permeability
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5.2 Single-phase Transformer

The HBFEM is widely adopted in the analysis of electrical machine which tipically
present relatively slow dynamic, we refer both to rotating and static machines. In this second
example we apply our code to a realistic problems namely the single-phase transformer
represented in Fig.5.9, the extension to three-phase transformers or reactances is effortless.

Air gap

Primary winding

Secondary winding

Ferromagnetic material

Figure 5.9: Single-phase trasformer

Due to the simmetry, we have analysed only one half of the trasformer. In this case we
have used a different nonlinear ferromagnetic material, its BH curve is depicted in Fig.5.10.
Even in this example the conductivity of the ferromagnetic material is set to zero.

Regarding the excitation we used a voltage driven multi-turn coil. The extension to
this kind of source does not imply any significant changes in the code developed. It’s only
necessary to remember that in this case the total current of the coil has to be considered
as an unknown of the problem, anyway the structure of the code remains the same infact
the Stiffness matrix and the known excitation vector are coherently built up in COMSOL.
The imposed voltage is sinusoidal with a peak amplitude equal to 125V and frequency set
to 50Hz.

As we have done in the previous example we check the accuracy of the solution obtained
using our code compared to the one obtained via time dependent simulation. Therefore
we identify some elements with different level of saturation (Fig.5.11) and we calculate the
norm of the magnetic flux density in a period (Fig.5.12).

Even in this example the magnetic flux density obtained using the HB method tends
to be closer to the steady state solution of the time dependent calculation if a reasonable
number of harmonics is taken into account. The same considerations hold for the magnetic
vector potential in each node of the mesh.

Moreover with our code we can easily extend the analysis to our important concepts.
Applying the HBFEM infact we deal both with the time dependent solution and with the
frequency domain solution considering each harmonic decoupled, this means we can derive
important results harmonic by harmonic. In particular we have the real distribution of
each harmonic of the magnetic flux density in the nonlinear ferromagnetic core (Fig.5.13),
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Figure 5.10: BH curve of the magnetic material

E1

E2

E3

Figure 5.11: Elements E1, E2, E3
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(a) ||B|| in E1 (b) ||B|| in E2

(c) ||B|| in E3

Figure 5.12: Norm of the magnetic flux density in points E1, E2, E3
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therefore it’s possible to check harmonic by harmonic how the transformer is magnetically
loaded. The amplitudes and the phases are directly calculated usign the HBFEM.

(a) 1st harmonic (b) 3rd harmonic

(c) 5th harmonic (d) 7th harmonic

Figure 5.13: Flux lines of the harmonics of B

We underline this is the correct frequency domain solution for each harmonic and it’s totally
different from carrying out the corresponding time-harmonic simulations which formally does
not make sense for the nonlinear problems we are treating.
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5.3 Coil Over a Nonlinear Ferromagnetic Plate
The third example we analyse consists in an eddy current problem, the geometry of the

model is depicted in Fig.5.14-5.15.

Air

Coil

Ferromagnetic material

Figure 5.14: Geometry of the model

Figure 5.15: Slice 3D view of the model

We use the same steel of the second example whose BH curve is represente din Fig.5.10,
in this case the conductivity is equal to 8.41MS/m. The current driven coil is fed by a
sinusoidal current density with peak value equal to 2.5× 107 A/m2, the frequency is set to
50Hz.

We remark that example concerns an eddy current problem, the code developed is equally
valid for this kind of study. It is sufficient to consider also the imaginary part of the linear
systems that arises from the application of our code. Moreover the model is studied using a
2D axisymmetric domain. This means the spatial variable (x, y) must be changed to (r, z)
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in order to avoid error when using the HBFEM. No other modifications are needed. Even
for this example the steady state solution of the time dependent simulation are compaed
with the one obtained using the HBFEM.

E1

E2

E3

E4

Figure 5.16: Elements E1, E2, E3 and E4

Again we identify some element (Fig.5.16) and we compare the norm of the magnetic flux
density. The obtained results are depicted in Fig.5.17. As in the previous examples the solu-
tion computed using the HBFEM tends to the one calculated via time dependent simulation
when the number of harmonics taken into account increases.

For this model we can check other quantities related to the eddy current induced in the
ferromagnetic plate. For example we can compute the current density in the barycenter
of the elements E1, E2, E3 and E4, to achieve accurate results we have considered an
approximation made by nine harmonics (Fig.5.18). Another important quantity is the one
related to the Joule losses (Fig.5.19). Even in this case there is a good agreement in the
computed solution.
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(a) ||B|| in E1 (b) ||B|| in E2

(c) ||B|| in E3 (d) ||B|| in E4

Figure 5.17: Norm of the magnetic flux density in elements E1, E2, E3 and E4
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(a) ||J || in E1 (b) ||J || in E2

(c) ||J || in E3 (d) ||J || in E4

Figure 5.18: Norm of the current density in points E1, E2, E3 and E4
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Figure 5.19: Joule losses





Chapter 6

Conclusions

In this work we have treated the Harmonic Balance analysis applied both to electrical
circuit and field problems.

The first step consisted in giving a mathematical formulation of the method, presenting
its properties and peculiarities, in order to have a theoretical base to develop our work.

Then we have applied the method analysing nonlinear electrical circuits. We have shown
how the HB analysis applied to nonlinear circuits works and how to implement a code to
solve this kind of problems. Then the algorithm developed has been tested in an example
and observations about the solutions obtained have been presented.

The main part of this thesis consisted in the study of the HB method applied to field
problems, therefore we have treated in detail the so called Harmonic Balance Finite Element
Method. We have derived this method presenting various formulations and we have pre-
sented its pros and cons in the determination of the steady-state solution of time-dependent
nonlinear problems with respect to standard time-stepping calculations. Then we have
shown the working process to develop a code based on the HBFEM. The originality of this
work is related to the choice of integrating the HB analysis in an existing FEM commercial
software in respect of what has already been done with research codes based on FEM. We
have implemented our code and we have tested it in some significative problems comparing
the solutions obtained with the ones calculate using standard time-dependent simulations in
order to show the accuracy of our method. In this way we have demonstrated the correct-
ness of the method showing how the determined solutions tends to be really accurate when
a suitable number of harmonics is taken into account for the approximation.

During this thesis some problems have emerged, moreover due to the complexity and
vastness of the subject there are several possible future developments of this work.

For example we have limited our method considering only 2D problems and discretiza-
tions made by linear finite elements. It could be interesting to extend the analysis considering
higher order elements and to investigate the possibility to treat 3D problems which are the
real candidates for whom HBFEM becomes really attractive.

Further analysis could include the application of the HB method to coupled nonlinear
circuit and field equations and the study of devices with moving parts, for example rotating
electrical machines.

Nevertheless, the main development has to be the improvement of the code in order to
make it more efficient. Infact at the moment, the code implemented is still not competive
with the standard time-dependent simulations. The calculation times can be reduced but
there are some serious limitations due to the fact we are dealing with a commercial solver.
It should be essential to understand if these problems can be overcome in order to make
more attractive the implementation we have proposed.
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Appendix A

HB Code for Nonlinear Circuits

In this appendix is presented the MATLAB code which implements the HB analysis
applied to the nonlinear circuit represented in Chapter 2. The main script and the principal
functions are presented below.

A.1 Main Script
%HB analysis half−wave rectifier
clear all
close all
clc

%Read the netlist
fid=fopen('RC1.txt');
F=textscan(fid,'%f %f %s %f %s');
fclose(fid);

%Input
%Number of harmonics
h=16;
%Omega
w_o=20*10^3*2*pi;
%Excitation
Vs=F {4}(1,1);
V_s=sparse(h+1,1);
V_s(2,1)=Vs;
%Diode
Id=100*10^−12;
vt=0.025;
gmin=10^−12;

%Admittance matrices
Ys=buildYs(F,w_o,h,Vs);
Y12=buildY12(F,w_o,h);

%Solve HB
v_t=ones(2*h,1);
v_f=1/h.*fft(v_t);
it_max=1000;
lambda=0.001;
d_lambda=lambda;
i_diodo=zeros(2*h,1);
H=zeros(2*h,2*h);
norma=1;
it=1;
while norma>10^−12 && it<it_max

%Time domain
v_f=v_f(1:h+1,1);
i_diode=Id.*(exp(v_t./vt)−1)+v_t.*gmin;
di_diode=Id/vt.*(exp(v_t/vt))+gmin;
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i_t=i_diode;

%Frequency domain
i_f=1/h.*fft(i_t);
i_f=i_f(1:h+1,1);
f=lambda.*Ys*V_s+Y12*v_f+i_f ;
norma=norm(f);

%Jacobian matrix
H=h.*ifft(1/h.*fft(diag(di_diode)).').';
H=H(1:h+1,1:h+1);
J=Ys+H;

%Update v_f and v_t
v_f=v_f−(J)\f;
v_fc=flipud(conj(v_f(2:h,1)));
v_f=[v_f ;v_fc];
v_t=h.*ifft(v_f);
V(:,it)=v_t;

lambda=lambda+d_lambda;
it=it+1;

end

A.2 Admittance Matrix
function [Y12] = buildY12( F,w,h )
%Builds up the admittance matrix between nonlinear ports performing Tableau
%analysis

%Incidence matrix
[x,y]=size(F);
N=[F{1,1},F{1,2}];
[l,p]=size(N);
n=max(max(N));
A_c=zeros(n,l);
cols=[1:l]';
Ap=sparse(N(:,1),cols,ones(l,1),n,l) ;
An=sparse(N(:,2),cols,−ones(l,1),n,l);
A_c=Ap+An;
A=A_c(1:n−1,1:l);
s=zeros(l,1);

%Shortcircuit excitation
Cr1=char(F{y−2});
for i=1:l

if Cr1(i,1)=='V'
F{y−1}(i,1)=0;
F{y−2}(i,1)={'R'};

end
end

%Shortcircuit nonlinearities
Cr=char(F{y});
k=1;
for i=1:l

if Cr(i,1)=='N'
F{y−1}(i,1)=0;
F{y−2}(i,1)={'V'};
num_NL(k,1)=i;
k=1+k;
NL=k−1;

end
end

%Solve for each harmonic
Cr1=char(F{y−2});
R=sparse(l,l);
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G=sparse(l,l);
C=sparse(l,l);
L=sparse(l,l);

for r=1:NL

F{y−1}(num_NL(r,1),1)=1;

for k=0:h;
for i=1:l

if Cr1(i,1)=='R';
R(i,i)=(F{y−1}(i,1));
G(i,i)=−1;

elseif Cr1(i,1)=='V'
G(i,i)=1;
s(i,1)=(F{y−1}(i,1));

elseif Cr1(i,1)=='L'
G(i,i)=1;
L(i,i)=−(F{y−1}(i,1));

elseif Cr1(i,1)=='C'
R(i,i)=1;
C(i,i)=−(F{y−1}(i,1));

end
end

M1=[A zeros(n−1,l) zeros(n−1,n−1);
zeros(l,l) −eye(l) A';
R G zeros(l,n−1)];

M2=[zeros(n−1,l) zeros(n−1,l) zeros(n−1,n−1);
zeros(l,l) zeros(l,l) zeros(l,n−1);
L C zeros(l,n−1)];

tn=[zeros(n−1,1); zeros(l,1); s];
M12=(M1+j*k*w*M2);
x=M12\tn;
I=x(1:l,1);
V=x(l+1:l+l,1);

T((k+1),:)=I(num_NL);

end

T1(:,r)=reshape(T,NL*(h+1),1);

F{y−1}(num_NL(r,1),1)=0;

end

%Build the admittance matrix
for g=1:NL;

for m=1:NL
for n=1:h+1

Y12(n+(m−1)*(h+1),n+(g−1)*(h+1))=−T1(n+(g−1)*(h+1),m);
end

end
end

end





Appendix B

HBFEM Code

We report now the HB code that has been implemented and integrated with COMSOL.
The script are presented in the following sections for both eddy current free problems and
eddy current problems.

B.1 Eddy Current Free Problem
clc
close all
clear all

mu_fp=10;
save('mu_fp','mu_fp')
[model1] = modello1;
model1.sol('sol1').runAll;
[U] = mphgetu(model1);
M1= mphmatrix(model1 ,'sol1','Out', {'K','L'});
[meshstats,meshdata] = mphmeshstats(model1);
info = mphxmeshinfo(model1,'soltag','sol1');
elem_idx = find(meshdata.elementity{1}==1 | meshdata.elementity{1}==2 | ...

meshdata.elementity{1}==3 | meshdata.elementity{1}==22)';
bound = [];
for i = 1:length(elem_idx)
bound = [bound;info.elements.edg.dofs(:,elem_idx(i))];
end
bound=unique(bound)+1;
M1.K(bound,:)=0;
for rr=1:numel(bound);

M1.K(bound(rr,1),bound(rr,1))=1;
end
zn_idx=2;
[coord,el]=coord_bar(meshdata,zn_idx);
Nh=5;
Nts=2*Nh+1;
sol_f=zeros(numel(U),Nh+1);
sol_f(:,2)=U/2;
sol_f=[sol_f,fliplr(conj(sol_f(:,1:2*Nh+1)))];
sol_t=Nts*ifft(sol_f,[],2);
[model2]=modello2;
perm_vect=ones(numel(meshdata.elementity{1,2}),1);
save('C:\Program Files\COMSOL\COMSOL50\Multiphysics\yoke\perm_vect','perm_vect');
[model3] = modello3;

it=2;
perm_matrix_old=zeros(numel(el),Nts);
perm_matrix=zeros(numel(el),Nts);
perm_tot=zeros(size(meshdata.elem{1,2},2),Nts);
rhs_t=zeros(numel(U),Nts);

it_max=1000;
t=[0:20e−3/Nts:20e−3−20e−3/Nts];
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while (mean_var>0.001 || max_var>0.01) && (it<it_max)

%Set solution, extract permeability
for m=1:Nts

model2.sol('sol1').setU(sol_t(:,m)) ;
model2.sol('sol1').createSolution ;
perm_matrix(:,m)=mphinterp(model2,'(mf.normB)/((mf.normH)*4*pi*10^−7)','coord',coord);
for n=1:numel(el)

perm_tot(el(n,1),m)=perm_matrix(n,m);
end

end

%Max and mean percentage variation
max_var=100*max(max(abs(perm_matrix−perm_matrix_old)))/max(max(perm_matrix_old));
mean_var=100*((sum(sum(abs(perm_matrix−perm_matrix_old))))/(numel(perm_matrix)))/...
(((sum(sum(abs(perm_matrix_old))))/(numel(perm_matrix))));

%Adaptive mu_fp
perm_matrix_old=perm_matrix;
perm_min=min(perm_tot,[],2);

for r=1:size(meshdata.elem{2},2)
mu_fp(r,1)=perm_min(r,1);

end
mu_fp=mu_fp./5;
save('C:\Program Files\COMSOL\COMSOL50\Multiphysics\yoke\mu_fp','mu_fp');

%K(mu_fp)
M1= mphmatrix(model1 ,'sol1','Out', {'K'});
M1.K(bound,:)=0;

for r=1:numel(bound);
M1.K(bound(r,1),bound(r,1))=1;

end

%K(mu_fp−mu)
for m=1:Nts

perm_vect=perm_tot(:,m);
save('C:\Program ...

Files\COMSOL\COMSOL50\Multiphysics\yoke\perm_vect','perm_vect');
M3 =mphmatrix(model3 ,'sol1','Out', {'K'});
matrix=real(M3.K);
matrix(bound,:)=0;
for r=1:numel(bound);

matrix(bound(r,1),bound(r,1))=1;
end
%Time domain rhs
rhs_t(:,m)=matrix*sol_t(:,m);

end

%Frequency domain rhs
rhs_f=1/Nts*fft(rhs_t,[],2);
rhs_f(:,2)=(rhs_f(:,2)+M1.L/2);
rhs_f(:,Nts)=(rhs_f(:,Nts)−M1.L/2);
rhs_f=2*rhs_f;
rhs_f=rhs_f(:,1:Nh+1);

%Frequency domain solution
sol_f=M1.K\rhs_f;
sol_f=[sol_f,fliplr(conj(sol_f))];
sol_f=sol_f(:,1:2*Nh+1);
sol_f=sol_f/2;

%Time domain solution
sol_t=Nts*ifft(sol_f,[],2);

it=it+1;

end
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B.2 Eddy Current Problem
The code for eddy current problems is equal to the one presented in the previous section.

The only difference consists in the solution of the linear systems, in this case even the
imaginary part must be taken into account. The lines that has to be changed are presented
below.

%Frequency domain solution
sol_f(:,1)=zeros(size(meshdata.vertex,2),1);
sol_f(:,2)=M1.K\rhs_f(:,2);
for r=4:2:(Nh+1);

sol_f(:,r)=(real(M1.K)+1j*(r−1)*imag(M1.K))\(rhs_f(:,r));
sol_f(:,r−1)=zeros(size(meshdata.vertex,2),1);

end
sol_f=[sol_f,fliplr(conj(sol_f))];
sol_f=sol_f(:,1:2*Nh+1);
sol_f=sol_f/2;

B.3 Set the Elementwise Permeability
In each iteration the permeability of each element must be updated. This is done with

the function set_permeability.

function [permeability] = set_permeability(x,y,meshelement)

load('C:\Program Files\COMSOL\COMSOL50\Multiphysics\eddy current\perm_vect')
load('C:\Program Files\COMSOL\COMSOL50\Multiphysics\eddy current\mu_fp')

mu=(1./mu_fp−1./perm_vect).^−1;
permeability=mu(meshelement);

end
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