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chapter 1

The LHC and the Physics

Beyond Collider Fixed-Target

study

The Conseil Européen pour la Recherche Nucléaire (CERN) was founded in 1954 from a
collaboration of 12 countries, with the aim of providing researchers with state-of-the-
art accelerator facilities to investigate the frontiers of fundamental physics. It presently
includes 23 Member States and many other partner states co-operating at different
levels [1].

The CERN complex (Fig. 1.1) hosts the Large Hadron Collider (LHC), presently
world largest particle accelerator with its 27-km-long circumference. It is built at a
mean depth of 100 m under the French-Swiss border between the Jura mountains and
Lake Geneva. It is active since 2008.

In the LHC two particle beams are accelerated in opposite directions and made to
collide producing the conditions to create new particles, allowing to study in detail
their characteristics and interactions thanks to particle detectors. During the years of
LHC activity, many observations have increased our knowledge of the Standard Model
and the history of the universe, including the discovery of the Higgs boson in 2012 [2,
3].

1.1 The LHC performance

After going through the sequence of linear and circular accelerators composing the
injection chain, two proton beams are injected in the LHC, running in opposite direc-
tions in separated beam lines where an ultra-high vacuum (10−13 atm) is maintained.

1
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Figure 1.1: Layout of the full CERN accelerator complex, with the LHC injection chain. The proton
accelerator chain starts with LINAC2, where protons are taken from hydrogen and accelerated
in a RF quadrupole followed by a tube linear accelerator, until they get a kinetic energy of
50 MeV. The protons are then injected into the Proton Synchrotron Booster—composed of
four superimposed rings—where they reach an energy of 1.4 GeV. In the Proton Synchrotron
(PS) ring they are accelerated to a momentum of 26 GeV/c, and subsequently they pass
through the Super Proton Synchrotron (SPS) where they get accelerated to 450 GeV/c and are
finally ready to be extracted and injected in the LHC. Heavy ions instead are preaccelerated
in the LINAC 3, in the Low Energy Ion Ring (LEIR) they are accelerated up to 72 MeV/u
and collected in bunches and then they passe to the PS and SPS for further acceleration,
bunch adjustment and electron stripping, before being injected in the LHC at an energy of
177 GeV/u. Credits: CERN.

A scheme of the injection chain is given in Fig. 1.1. The beam rotating clockwise is
called Beam 1 (B1) and the one rotating counterclockwise is called Beam 2 (B2)

The beams are further accelerated in the LHC ring thanks to radio-frequency (RF)
cavities, so they can reach and maintain the top energy. Design energy is 7 TeV per
beam—i.e., head-on collisions taking place at 14 TeV centre of mass energy—and the
operational top energy was progressively increased since the LHC start from 3.5-4 TeV
during Run-1 (2009-2013), to 6.5 TeV per beam in Run-2 (2015-2018).

Besides protons, a series of runs has been dedicated to the heavy-ion collision
program since the start of LHC activity. Lead nuclei (but also other ions are possible)
follow a dedicate injection chain before being injected in the LHC, in order to perform
Pb–Pb or p–Pb collisions. This kind of interaction is particularly interesting for
reproducing and studying the quark-gluon plasma that was present at the early stages
of the universe. In the last heavy-ion run of 2018 a beam energy of 2.51 TeV/u was
achieved, with the aim of reaching 2.76 TeV/u in the future.
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Figure 1.2: LHC Interaction Regions (IRs). From [4].

Superconducting magnets are responsible of bending and stabilising the beam
trajectory, while magnetic lenses keep the beam focused in the transverse plane. Colli-
mators are installed along the circumference to remove particles that deviate from the
desired trajectory, preventing their impact on sensitive equipment.

The LHC contains eight arcs and eight straight sections, the so-called insertion
regions (IRs), hosting the injection and extraction systems, the major collimation sec-
tors, RF cavities and the four points where the beams are made to collide—named the
Interaction Points (IPs)—corresponding to detector sites of the four main experiments:
ATLAS, ALICE, CMS and LHCb. A basic scheme of the LHC circumference with its
IRs is shown in Fig. 1.2.

Accelerators are built to investigate events with an occurrence probability that
usually varies with energy, and is often very low. A characterizing parameter for a
particle collider is its ability to collect interesting events in a given amount of time. This
is because they have to be collected in large quantities before claiming a discovery—
conversely, a great number of collisions without the occurrence of the studied event
have to be recorded in order to safely exclude the energy range for that event.

The key quantity expressing this ability is the integrated luminosity. It strongly
depends on the instantaneous luminosity (L), which is defined as the counting rate of
events for a process of unit cross section. The instantaneous luminosity is independent
from the events of interest, but it depends on machine parameters, like the number of
particles in the beam, the frequency of beam revolution around the ring, and the beam
transverse area. The factors that determine luminosity in a collider will be discussed
in details in Section 1.3.2. At the time of writing (i.e., after the end of LHC Run II), the
actual peak luminosity achieved is L ∼ 2.1× 1034 cm−2s−1.
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Figure 1.3: The integrated luminosity delivered to the ATLAS and CMS experiments during different
LHC runs. The 2018 run produced 65 inverse femtobarns of data, which is 16 points more
than in 2017. Credits: CERN.

As the accelerator parameters vary through time and the data acquisition is sub-
dued to the machine program schedule, the most significant quantity expressing the
performance of the accelerator is the luminosity integrated over the lifetime of the
experiment. It depends also on the limits on peak luminosity and on the machine
availability (i.e., how often any faults occur and how long they are). In Fig. 1.3 it is
presented the year-by-year evolution of integrated luminosity as delivered to ATLAS
and CMS experiments (the highest luminosity is demanded and achieved in collision
points IP1 and IP5)1.

1.1.1 The High-Luminosity Upgrade

To extend the LHC discovery potential, a major upgrade will be performed to increase
the accelerator luminosity by a factor 5 beyond its design value—the HL-LHC goal is
5× 1034 cm−2s−1—after 2025 [5].

The luminosity improvement will be achieved thanks to challenging innovative
technologies; among them, the 11–12 T superconducting magnets made of a niobium-
tin alloy (present Nb-Ti magnets “only” provide 8 T), like the large-aperture Nb3Sn
quadrupoles in the triplets. In addition, very compact superconducting RF cavities for
beam rotation with ultra-precise phase control, called crab-cavities, will allow major
overlap of the colliding bunches at the IPs. While new technology for beam collimation,
and long high-power superconducting links with zero energy dissipation will allow to
stand the new machine performance without damages [6].

The Hign Luminosity LHC (HL-LHC) project began in 2011 involving many lab-
oratories from CERN member states and some external countries. The project was
announced as the top priority of the European Strategy for Particle Physics in 2013. In
April 2018, civil-engineering work started.

1Let us recall the handy conversion: 1 b = 10−24 cm2.
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1.2 The Physics Beyond Collider Study Program

While colliding particles at higher and higher energies is considered one of the best
ways to search for new phenomena, there are other ways to investigate fundamental
physics, involving lower energies and different experimental techniques.

That is the reason why in September 2016 the CERN management launched a
study program that has been involving a wide range of physicists from theoretical,
experimental and accelerator fields. The mandate of the Physics Beyond Collider (PBC)
study [7] specifies that the exploratory study is “aimed at exploiting the full scientific
potential of CERN’s accelerator complex and its scientific infrastructure through
projects complementary to the LHC, HL-LHC and other possible future colliders.
These projects would target fundamental physics questions that are similar in spirit
to those addressed by high-energy colliders, but that require different types of beams
and experiments”. Examples of physics goals include searches for rare processes and
very-weakly interacting particles, measurements of electric dipole moments, etc.

During the kick-off meeting held in September 2016 a number of areas of interest
were identified and working groups were set-up, divided in physics-oriented and
accelerator-oriented groups, to pursue studies in these areas. Group meetings take
place regularly, with constant monitoring of the scientific activity, and the proposals
under study were collected in the Summary Report of Physics Beyond Colliders at CERN
by the end of 2018 (see ref. [8]).

Under the Physics domain, two sub-groups are responsible of evaluating the physics
cases in the fields of Physics Beyond Standard Model (BSM) and Quantum Chromody-
namics (QCD).

The expected lifetime of this program reaches 2040, i.e., the entire lifetime of LHC
and its High-Luminosity upgrade.

1.2.1 Fixed-Target Experiment Proposals

Among the several groups formed within the PBC study, a working group started
to work on some specific proposals to perform fixed-target experiments at the LHC
[9]. The proposals foresee scattering experiments on both solid and gaseous targets,
polarised or unpolarised, potentially using bent-crystals to channel part of the beam
halo2 towards an internal target located upstream of a forward detector. A scheme of
three of the possible experimental setups is reported in Fig. 1.4.

The physical interest in performing solid target collisions, with crystal halo splitting
setup, is to measure the electric and magnetic dipole moments of charged baryons [11,
12]. Instead, gas target experiments are oriented towards the study of the nuclear
partonic structure and the quark gluon plasma, together with the production of datasets
for hadronic cross sections useful for cosmic ray physics models [13].

A report on the work of the fixed-target working group was recently published: [14].
The installation of a polarised gas target is not foreseen before Long Shutdown 3 (LS3).
Instead, the installation of a crystal beam-splitting setup could be considered in LS3.

2Particles can be trapped in the potential between crystal planes and follow this potential, even if the
plane is slightly bent. For further details see Ref. [10]
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Figure 1.4: Sketches of three fixed target setups: crystal beam splitting for a double-crystal setup (top)
and unpolarized (middle) and polarized (bottom) gaseous targets. From [9].

Thus, we must assume for the studies that the full HL-LHC upgrades have been
implemented by the time the PBC proposals could be put into effect.

1.2.1.1 Gas target at LHCb

The subject of this thesis is a feasibility study—from the point of view of the machine
safety—of a proposed gas target experiment at the LHCb detector at IP8 (see Fig. 1.5
for a schematic view of the detector) after the HL-LHC upgrade. The LHCb forward
orientation perfectly suits the job of revealing the products of beam collision on a fixed-
target installed upstream the detector itself. Nevertheless, a rich fixed-target physics
program has already been performed at IP8 exploiting a gas injection system, SMOG,
originally conceived to perform luminosity scan of the colliding beams. Examples of
interesting results are found at [15, 16, 17].

Referring to Fig. 1.5, the internal gas target would be installed close to the left edge
of the VErtex Locator (VELO) subdetector. The VELO consists of a series of silicon
modules arranged along the beam direction, which provide precise measurements of
track coordinates close to the interaction region, for the identification of displaced
secondary vertices [18]. The detectors are mounted in a vessel that maintains vacuum
around the sensors and is separated from the machine vacuum by a thin walled
corrugated aluminum sheet called the RF foil. It is installed around the collision point,
with the IP slightly off-centered away from the LHCb detector core.
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Figure 1.5: Schematic view of the LHCb detector. Side view. Credits: LHCb Collaboration.

1.2.1.2 Storage Cell

The performance of gas target experiments is improved implementing a storage cell
(SC), i.e., a cylindrical open-ended tube traversed by the beam inside which the target
gas is injected. Details on the SC technology can be found at [19]. The gas is injected at
the center of the SC via a feed tube and is left to flow towards the two ends of the cell
assuming a triangular-shaped density profile as schematized in Fig. 1.6. After flowing
out from the edges, turbo-molecular pumps maintain a 10−7 mbar vacuum in the beam
pipe.

The improvement brought by the introduction of a storage cell is the possibility of
enhancing the target density up to about θ = 1014 atoms/cm2—two order of magnitude
larger than SMOG—preserving the high-quality vacuum outside. Nevertheless, in the
SC a variety of gas species can be injected: polarised H, D and 3He and unpolarised
H2, D2, He, Ne, Ar, Kr, Xe, N2 and O2. The storage cell technology has been largely
exploited in storage rings within the last decades, for example at DESY and COSY [20,
21]. A storage cell is going to be installed at LHCb during present shutdown (LS2), as
part of SMOG technical upgrade (SMOG2 project). Part of the results of the study here
reported was used in the writing of SMOG2 technical proposal [22].

1.3 Elements of Beam Dynamics

Circular accelerators, like the LHC and its injection chain, are designed to drive and
accelerate charged particles along a desired orbit exploiting the simple and well-known
fact that every charged particle facing electrical (E) and magnetic (B) fields is subject
to the Lorentz Force:

−→
F = q(

−→
E + −→v × −→B ). (1.1)
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Figure 1.6: (a) Schematic view of the target cell. Polarised gas can be injected ballistically - unpolarised
gas via a capillary - into the cell center; (b) Gas density profile, ρ(s) along the beam s axis.
Credits: C. Hadjidakis.

A particle entering the vacuum pipe of a storage ring is carried through a lattice
consisting of accelerating electric fields (in the radio-frequency cavities) together with
bending and focussing magnetic forces. The combination of bending and focussing
magnets defines a magnetic guide field, in which particles at nominal energy E0 would
follow forever an ideal closed orbit, approximately circular.

The RF cavities provide the particles with energy needed to reach the top energy
and to compensate any loss (due, for example, to synchrotron radiation). Every proton
traversing a cavity sees a 2 MV voltage oscillating with 400 MHz frequency, per eight
subsequent cavities.The whole ramp from 450 GeV to 6.5 TeV takes about 20 minutes,
with the beam passing through the RF cavities around one million times. Once at
top energy, the protons with zero synchronous phase will see no more acceleration,
while the protons with slightly different energy, arriving earlier or later will be out of
phase with respect to the oscillating voltage. This tends to either disperse or collect the
protons in tightly bunched bunches, depending on their phase shift.

The resulting beam is thus split in a number of evenly-spaced bunches, in which
the protons perform oscillations in both the longitudinal position and the energy. The
focussing property of the guide field allows to maintain the off-energy particles of the
beam along quasi-periodic, stable trajectories close to the ideal design orbit, making
them perform radial and vertical oscillations (betatron oscillations), which are the
main subject of this introductory insight. An illustrative description of the physics of
charged particle storage rings can be found at [23] and [24].

1.3.1 The Betatron Oscillations

In order to proceed in a brief study of the beam dynamics along the accelerator
circumference, we define a handy coordinate system. In the following, the coordinates
(s, x, y) will be conventionally used: s, or the azimuthal coordinate, is the cyclic distance
along the ideal orbit (given the length L of the orbit, the same point can be equally
referred to by s or s+nL, n integer); x and y represent respectively the horizontal (radial)
and vertical distance from the ideal orbit, x positive is taken outward, y positive is
taken upward. The following study of the behavior of a single particle in the magnetic
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guide field discards radiation losses and accelerating fields, as well as all collective
effects and two-beam effects faced by charged particles in real beams.

Let us suppose to have a static guide field, the orbit lying on the horizontal plane,
and the dipole purely vertical magnetic field

−→
B , with strength B0(s) and variation(

∂B
∂x

)
0s

along the nominal orbit at s position.

Recalling Maxwell’s equations, ∂Bx
∂y =

∂By

∂x , the field felt by a proton at a given
position (s,x,y) is given by (in linear approximation):

By(s,x,y) = B0(s) +
(∂B
∂x

)
0s
x

Bx(s,x,y) =
(∂B
∂x

)
0s
y

(1.2)

It is convenient to re-scale the fields with respect to the particle nominal energy
E0, since the fields of a storage ring are set in order to obtain progressively the desired
operation energy, and the two quantities vary proportionally maintaining the same
orbit, which is independent of the operating energy itself. The normalised gradient is
defined as:

K0(s) =
ec
E0

(∂B0

∂x

)
0s
. (1.3)

with e the electronic charge and c the speed of light. It represents the rate of change of
the inverse curvature radius with transverse (radial) displacement.

From a well-defined magnetic guide field it is possible to derive the equation of
motion for a proton moving on a trajectory near the design orbit as a function of s, in
terms of small x, y. Detailed calculations can be found at [24].

In linear approximation, for a particle with the design momentum the equations of
motions are:

x′′ +
(
K0 +

1

ρ20

)
x = 0 (1.4)

y′′ −K0y = 0 (1.5)

with ρ0 the local bending radius (it is nonzero only in the x plane, according to
the assumptions we made). Stability in each plane is achieved if the solutions are
oscillatory.

It is called weak focussing the condition in which stability is achieved in both
horizontal and vertical plane, imposing 0 < −K0 <

1
ρ20
. The oscillatory solution, called

betatron oscillations, has a wavelength larger than the accelerator circumference. This
represents a limit on the size of possible accelerators, since at larger ρ would correspond
larger oscillation amplitudes, requiring larger and larger magnet aperture.

This limit was overcome introducing the so-called strong focussing principle. It
consists in alternating sectors with strong horizontal focussing (K0 >> ρ

2
0) and sectors

with strong horizontal defocussing (K0 << ρ
2
0). This method allows to increase arbitrar-

ily the number of betatron oscillations around a circumference C, which is defined as
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the tune Q= C
λ (being λ the wavelength of the betatron oscillation). As a consequence,

the betatron amplitude is kept small for increasing radii.
In the LHC, bending and focussing forces are provided by dipole and quadrupole

magnets, respectively. A quadrupole magnet provides focussing on one plane and
defocussing on the other one. The combination of two quadrupoles with polarity
rotated by 90° becomes a system focussing in both planes.

Usually, the period of the periodic functions K0(s) and ρ0(s) corresponds to the
length of a unitary "cell", repeated N times around the circumference.

Since the motion takes analogous form in x and y, let us treat the general equation
of motion

u′′ = K(s)u (1.6)

representing both eq. 1.4 and1.5, with adequate redefinition of the magnetic functions.
In each segment in which K(s) assumes a constant value, the motion in u will take the
following forms (a, b are constant in each segment):

u(s) =


acos(

√
Ks+b) for K > 0

as + b for K = 0

acosh(
√
−Ks+b) for K < 0

(1.7)

There are infinite possible trajectories depending on the initial conditions at a refer-
ence point s0. Any solution of a second order equation such as eq. 1.6 can be written as
a linear combination of two independent solutions. Two possible independent solutions
are represented by the quasi-periodic "cosine-like" and the "sine-like" trajectories: C(s,
s0) and S(s, s0). They obey the initial conditions C(s0,s0) = 1, C’(s0,s0) = 0, S(s0,s0) = 0
and S’(s0,s0) = 1. All possible trajectories can then be written as:

u(s) = C(s, s0)u0 +S(s, s0)u
′
0 (1.8)

u’(s) = C’(s, s0)u0 +S’(s, s0)u
′
0 (1.9)

In matrix notation, considering

u(s) =
[
u(s)
u’(s)

]
, (1.10)

we can write
u(s) = M(s, s0)u(s0) (1.11)

with M(s, s0) the transfer matrix to s from s0, defined as:

M(s, s0) =
[
C(s, s0) S(s, s0)
C’(s, s0) S’(s, s0)

]
. (1.12)

The transfer matrix for any span of s can be found multiplying the transfer matrices of
the segments composing that span. Thus, the problem of determining the trajectory
of a particle through a beam line is reduced to the multiplication of transformation
matrices through the elements of the beam line.
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Figure 1.7: Phase plane ellipses for particles with different amplitudes. From [24].

More interesting features of beam trajectories can be derived from a pseudo-
harmonic approach to the problem. The general solution to equation 1.6 is an os-
cillating solution with an s-dependent amplitude, and a non-linear s-dependence of
the phase:

u(s) =
√
a
√
β(s)cos[ψ(s)−ψ0] (1.13)

with a and ψ0 integration constants and ψ(s) defined as

ψ(s) =
∫ s

s0

ds
β(s)

. (1.14)

The functions βx(s) and βy(s), known as the betatron functions, are uniquely determined
by K(s) and they completely describe the lateral focussing properties of the guide field.

Computing the derivative of 1.13 and defining α = −12β
′ and γ = (1 + α2)/β, the

so-called Courant-Snyder invariant is obtained:

γu2 +2αuu’ + βu’2 = a2. (1.15)

This can be recognized as the equation of an ellipse in the u–u’ plane of area πa2,
where a represents a possible set of omotetic amplitude parameters. The physical
meaning of the functions β, α and γ , called the Twiss functions, becomes clear: they
correspond to the parameters of an ellipse described by the traveling in phase space of
a single particle (see figure 1.7). The form of such an ellipse is changing along the ring
circumference, since the parameters are functions of s, but the area remains constant.

It is usually defined the beam emittance ε such that, approximating the beam
distribution to a double-Gaussian, one standard deviation of the beam particles are
enclosed in an ellipse of area πε. The betatron oscillation for a particle on the phase
ellipse is:

u(s) =
√
ε
√
β(s)cos[ψ(s)−ψ0] (1.16)
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Which gives the equation of the envelope surrounding the specified beam fraction (i.e.,
one std):

E(s) =
√
εβ(s) (1.17)

The betatron oscillation of a single particle along the ring is quasi-periodic, with
varying amplitude and frequency. On every machine revolution the particle phase
coordinates will remain on the same ellipse. It will occupy cyclically a finite number of
points if the tune Q is a rational number, otherwise it will span all the ellipse contour.

The emittance ε is a function of particle momentum. In fact, when a beam accel-
erates, the particle transverse angles shrink, resulting in a diminished beam size in
the transverse phase space. As a consequence, it is sometimes useful to talk about
normalised emittance, εn = γrβrε, where the relativistic factors have come to play.
The normalised emittance is a constant parameter that efficiently characterizes an
accelerator.

Normalized coordinates are frequently used to describe particle motion and will
come to play later in this work. They are obtained from the following transformation:

un =
u√
εβ(s)

u’n =
α(s)√
εβ(s)

u +

√
β(s)
ε

u′ (1.18)

The beam envelope describes a unitary radius circumference in the so-normalised
phase spaces un–u’n.

1.3.2 Beam size and Luminosity

The emittance defined in previous section allows to define the beam betatron size σu ,
corresponding to one standard deviation:

σu(s) =
√
εβu(s), (1.19)

and its divergence σ ′u :
σ ′u(s) =

√
εγu(s). (1.20)

Particles within 3σu constitute the beam core, while particles outside are called the
halo. It is now clear the usefulness of normalising the transverse coordinates to the
un–u’n phase space with 1.18: this action corresponds to expressing the transverse
coordinates in units of the beam divergence σu .

In addition to the betatron oscillation, the particles in the beam are subject to
energy oscillations. In general, the energy of a particle in a storage ring will deviate
from the nominal energy and will perform synchrotron oscillation around it. The radial
motion can be separated into two parts: x(s) = xβ +xδ. One part, xβ , is the displacement
due to betatron oscillations (on-momentum motion) as derived in Eq. 1.13, while xδ
is a displaced closed curve representing the equilibrium orbit for an off-momentum
particle. It is defined as:

xδ = Dx(s)
∆p

p0
, (1.21)
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where the dispersion function Dx(s) was introduced.
This effect contributes in enhancing the beam size, the new expression being:

σbeam
u (s) =

√
εβu(s) +

(
Dx(s)σp

)2
, (1.22)

σp the rms momentum spread of the beam particles. The beam profile is quite well
represented by a Gaussian distribution.

In Section 1.1, it was explained how the performance of a particle collider can
be expressed in terms of its luminosity L. The treatment performed so-far allows
us to understand how LHC luminosity is calculated, considering the realistic beam
dimension. Indeed, the luminosity for two beams colliding head-on is given by:

L =
N1N2nbf

Aeff
, (1.23)

where N1(2) is the number of particles per bunch, nb the number of bunches per beam,
f the revolution frequency and Aeff is the effective area of bunch crossing. For two
Gaussian beams this reduces to:

L =
N2
b nbf

4πσxσy
(1.24)

This is of course an approximation. Real-life beams face several effects, either planned
or systematic: crossing angle, collision offset, hour-glass effects, non-Gaussian beam
profiles, non-zero dispersion at collision point. A detailed treatment of all these effects
can be found at [25]. What can be said in general is that bunches with a smaller
transverse size correspond with a larger luminosity. This simple evidence is the reason
why the design optics of particle colliders foresee the installation of low-beta inserts,
where β is dramatically reduced at the collision points. Due to its relevant impact on
experiment performances, the value of the betatron function at the IPs is referred to as
β∗.

To give some numbers, some optic parameters for LHC and HL-LHC version 1.3
are listed in Table 1.1 [26]. One can directly calculate with Eq. 1.24 a rough estimate
of the peak luminosity for head-on collision at the points with minimum β∗ —that is,

at IP1 and IP5: LLHC = N2
b nbcγrβr
4Lπεnβ∗

∼ 1034 cm−2s−1 and LHL-LHC ∼ 1035 cm−2s−1, which
guess the correct order of magnitude. Discrepancies are due to the aforementioned
effects. A more detailed table of parameters is given in Appendix A.

1.4 Collimation

We are treating the problem of collimation from the point of view of the LHC as it has
been operated up to now. The same concepts, with the appropriate modifications due

32748 bunches colliding in IP1/5
4This value refers to the levelled luminosity that would be provided in order to have constant

luminosity over many hours.
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Parameters LHC HL-LHC v1.3

Beam energy in collision [TeV] 7 7

Relativistic γ 7461 7461

Circumference length [m] 26658.8832 26658.8832

Nb 1.15E+11 2.2E+11

nb 2808 2760 3

β∗ at IP1/5 [m] 0.55 0.15

εn [µm rad] 3.75 2.50

Peak luminosity in IP1/5 [cm−2s−1] 1.0E+34 5E+34 4

Table 1.1: Some design parameters for LHC and HL-LHC in standard 25 ns bunch spacing configuration,
version 1.3.

to the foreseen increase in luminosity, apply for the HL-LHC upgrade, which is the
scenario for the development of next chapters.

Recalling Fig. 1.2, the LHC circumference is made of eight arcs where the beam
trajectories are bent and eight straight sectors that host the interaction regions. Each
arc contains 154 bending dipole magnets, giving a total of 1232 main dipoles (MB),
accompanied with 392 main quadrupoles (MQ) and many other correctors.

The superconducting niobium-titanium (NbTi) magnets are maintained at a cryo-
genic operating temperature of 1.9 K thanks to a superfluid helium pumping sys-
tem. Even a small temperature increase would cause the material to become normal-
conducting, which is called a quench. Quenches have to be avoided since the magnetic
field cannot be maintained at their occurrence, causing the operation to stop: the beam
has to be dumped and a new beam has to be injected, which takes a few hours–i.e.,
precious time lost for collision.

Superconducting magnets must then be protected from the energy losses coming
from the beam. Let us recall that the total energy stored in a 7 TeV beam of the LHC
reaches 362 MJ. The absorption of a derisory fraction of this energy could cause a
superconducting magnet to quench (see sec. 2.1 for more details on limit losses allowed
to prevent quenching). Beam loss monitors (BLM) are installed to control the beam
induced losses and if necessary they can trigger the beam dump in case of high quench
risk.

Nevertheless, major beam losses risk also to damage sensitive equipment and
accelerator components, which must be protected too.

With a view to performing safe and efficient operations, it is of great importance to
ensure an effective beam cleaning in order to prevent beam induced losses. This task
is performed by the collimation system. Two insertions are dedicate to betatron (IR7)
and momentum (IR3) cleaning, thanks to the installation of several collimators that
catches particles from the beam halo (See useful references: [4, 27, 28]).

Collimators are made by two movable jaws with an active part from 60 cm to 1 m
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long (but some are made by one jaw alone). The jaws are installed parallel to the beam
inside the pipe aperture, and the collimator half-gap is given by the distance from
the beam orbit to the jaws surface. The collimators aperture is normalized in unit of
betatron beam size σ .

Collimators usually follow a hierarchical scheme, as shown in Fig. 1.8: the primary
collimators (TCP) closest to the beam are made with robust material—i.e., carbon
fiber composite (CFC)—in order to intercept the energetic primary beam halo. The
scattered particles form the secondary halo, which must be intercepted downstream by
secondary collimators (TCS) with larger half-gap, made with CFC too. Active absorbers
(TCLA) are present further out. Tertiary collimators (TCTs) made with tungsten (which
has a much higher stopping power but is more fragile) protect the aperture bottleneck
at the experiments. Dump protection (TCSP and TCDQ) is installed in IR6. Warm
normal-conducting magnets (without any risk of quenching) are used in the cleaning
insertions, where losses and secondary showers cause higher energy deposition than in
other parts of the ring.

Figure 1.8: From [28]. Key elements of the LHC multistage collimation system at an IP.

All the cold magnets must have larger aperture than the collimation system. Typ-
ical bottlenecks are the the inner triplet magnets in the final focusing system of the
experimental IRs: decreasing β∗ to gain luminosity causes the β-function to increase in
the triplets, which means that the normalized magnet aperture becomes small. The
TCTs need then to be closed in for safe operation. As an example, in Fig. 1.9 a schematic
view of the magnets and collimators in the ATLAS insertion (IP1) is shown.

Collimation plays a role also in cleaning collision products with installations
downstream the high-luminosity experiments. Moreover, beam tail scraping or local
shielding at the detector locations can reduce spurious signals in detectors optimising
the experimental background.
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Figure 1.9: From [27]. The β-functions around the ATLAS experiment in the LHC for the B1, calculated
with mad-x (see sec. 2.2.1) from the optics of 2012 physics run (β∗ = 60 cm), shown together
with the layout of dipoles (MB), horizontally focusing (QF) and defocusing (QD) quadrupoles,
and tungsten TCTs for protection of the aperture bottleneck. The IP is located at s = 0 and
the beam direction is from left to right, meaning that the incoming beam passes the TCTs
before the inner triplets and the IP. The optics is identical in CMS except that the horizontal
and vertical planes are switched.

1.5 Feasibility Issues

The installation of a gas target at the LHC for parasitic scattering experiments requires
extreme carefulness from the point of view of operational safety and compatibility
with the normal activity schedule of the LHC. Indeed, it is essential to work in the
direction of minimizing the impact on the LHC experiments and on the LHC machine.

To this aim, the PBC-FT group is addressing to some points that need to be carefully
evaluated. Details from the various fields have been collected in the report [14]. The
evaluation of these effects may limit the allowed target thickness, or even jeopardize
the whole feasibility of the implementation.

Among the highlights there are studies on:
i. compatibility with the vacuum system and on dynamic vacuum effects, related

to the performance of the SC mechanism described in Section 1.2.1.2;
ii. impact on beam life time and luminosity reduction in the colliding beam exper-

iments;
iii. impact on machine safety in terms of beam losses induced by beam-target

collision.
iv. wake field and impedance effects (local heating and beam instabilities);
v. aperture limitations for the SC;
vi. predictions on the background induced on the host experiment and other

experiments.
The strong interest in installing a SC at the SMOG upgrade during Long Shutdown

2 has given a push to these studies, consolidating a synergistic work between the
PBC-FT working group and the SMOG collaboration. Let us recall that SMOG2 is
going to operate in Run 3 of the LHC, while the PBC experiments look to the HL-LHC
era. This difference has implications on most of the listed points.

This thesis work addresses point iii. and v. of the list, that will be treated in two
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parts: the first one concerns the impact of losses from beam-gas interactions around
the ring, and the second part describes studies to determine the allowed minimum
aperture of the storage cell.

In Chapter 2 it is reported the study of the impact of beam-gas interaction on the
machine safety and the overall LHC program, with respect to particle losses. Indeed,
the impact of a 7 TeV proton beam on the gas target under study, is expected to release
interaction debris and scattered products that could strongly deviate from the beam
orbit and energy. A detailed study of their behavior is needed to check the impact of
these products on the experimental equipment. The target density could be reduced if
needed. This study is reported in ref. [29, 30]

Finally, as it was explained in Section 1.4, all the elements installed inside the
accelerator pipe must be protected by the collimation system. Indeed, the SC is not
exempted from this safety measure. This puts limits on the minimum acceptable cell
aperture, which are studied in the final part of this work (Chapter 3). This study is
reported in the CERN note [31].





chapter 2

Study of beam-gas

interaction

The purpose of this work is to study in detail with accurate simulations the beam
losses produced by beam-gas interactions in a gas target placed few meters upstream
the LHCb detector at IP8 (with respect to B1 reference system). A prediction of the
magnitude and precise location of the beam losses along the beam line is needed in
order to check if the losses could threaten the sensitive machine equipment, locally or
somewhere in the line.

The interaction of a 7 TeV proton with a target atom is a complex process that can
give rise to a multitude of secondary particles, since different kinds of interactions come
at play. Our studies are based first on realistic simulations of the beam interactions on
the target, followed by the debris tracking along the LHC lattice with losses recorded.

In this work, elastic and inelastic scattering interactions are treated in separate
simulations, and the most important contribution in term of particle deviation and
losses is expected to come from the inelastic case. As it was explained in Section 1.2.1.2,
the target SC is designed to host several gas species, with atomic weights ranging
from molecular hydrogen to xenon. The beam-gas interaction cross section scales with
the gas atomic weight, meaning that we expect a higher interaction rate for heavier
elements. On the other hand the resulting deviations in angle and energy are expected
to be larger for interactions on light elements. Therefore, the simulations are performed
for H and Xe targets as limiting cases with atomic areal density θ = 1014 atoms/cm2,
and the other gas species are expected to lie in-between.

Since the target position was not yet definitely established, simulations of inelastic
interactions were repeated for two cases: the target centre was put at either -1.5 m or
-3.0 m upstream from IP8, in the B1 reference system. In this way, any dependence on
the target position can be evaluated.

19
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The simulations for inelastic interactions, for both target locations, were repeated
also for Beam 2. Actually, the target location falls in the region of merging of the two
beam pipes, so that both the beams are expected to cross it. Indeed, while the scattering
products from B1 are the most relevant from the point of view of the experiment, the
scattered particles from both the beams could represent an issue for the equipment
nearby.

Finally, the energy loads on cold magnets resulting from the simulations need to be
compared with the magnet quench limit that we have already mentioned in Section 1.4.
In the cases where that value was exceeded, the target density could be scaled to assure
safe operations.

2.1 Quench Limit

Let us briefly explain what is the quench limit and how is it determined. Details on
this topic can be found at [32].

The energy of a proton impacting on matter is dissipated either generating hadronic
showers (which ignite electromagnetic showers from the β-decay of pions), or via ion-
ization of the target atoms. In both cases almost all the energy is converted to heat,
because the produced electrons transfer their kinetic energy to the lattice or emits
photons that are reabsorbed by the lattice and transformed into phonons. These possi-
ble interactions have been simulated in order to understand the shower development
through a model of the complex structure of the LHCmagnet superconducting coils. In
this way, the maximum energy density deposition per proton per meter was evaluated.
This gives for protons at top energy (7 TeV): Edep = 4.0 GeVmcm−3 [32].

In the case of a continuous heat deposit on the magnets, which would be the case
for beam particles continuously scattered within the internal gas target during normal
physics operations at top energy, it is needed to have a continuous evacuation of heat
to keep the temperature constant in the cables, and below Tc at which the transition
starts from super- to normal conduction in NbTi alloy. The limit of heat flow is set
by the conduction of heat by the cryogenic helium flow through the insulation of the
coils. The peak power deposition that can be tolerated (with sufficient heat evacuation)
without quench by a dipole is ωq = 5 mWcm−3. The number of protons which can be
lost locally per second in a continuous way must therefore be less than the limit:

ṅq =
ωq
ε

= 7.8× 106pm−1 s−1. (2.1)

This limit was assumed during the LHC design to assure operation safety. Multiplying
the particle rate per unit length by the proton energy, the limiting power loss per unit
length is found, i.e., 8.75 W/m.

It is known today that this quench limit is rather conservative, and quench limits
measured with beam are a factor of a few higher [33]. The quench limits show also
a dependence on the exact impact distribution on the beam screen, which requires
dedicated simulations in several steps and is not realistic to study in detail for the loss
location in this thesis. In order to introduce a safety margin, and to compensate for
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uncertainties in the distribution, we assume conservatively the LHC design quench
limit in this work.

2.2 Simulation Tools

The simulations described hereafter were performed by adopting simulation tools
that are routinely used in the context of the collimation and machine protection
studies. Let us briefly describe the general features of the two main codes involved,
SixTrack and FLUKA, and their coupling. An example will follow of simulation and
measurement of beam loss pattern in regular cleaning conditions at the LHC. Details
on how simulations and measurements of beam loss patterns are performed at the
LHC can be found at [34].

2.2.1 SixTrack

The single particle tracking code SixTrack [35, 36] is one of the most speed optimized
computing codes for tracking particles. It is based on thin-lens element-by-element
tracking in the six-dimensional phase space, using transfer matrices to describe the ef-
fect of each lattice element on the beam. It considers the non-linear magnet component
up to order 20. In this way, particles can be tracked over a large number of turns taking
into account all relevant imperfections, linear and non-linear fields, beam-beam kicks,
and other errors for the accelerator. It was originally conceived to perform dynamic
aperture calculations, and it was extended for the tracking of large ensembles of halo
particles taking into account the interactions with collimators.

The sequence of magnetic elements taken as input by SixTrack can be generated
by MAD-X, a general-purpose tool for charged-particle optics design and studies in
alternating-gradient accelerators and beam lines [37]. A detailed aperture model with
10 cm longitudinal precision is also provided as input to SixTrack.

When a tracked particle is found to hit a collimator, the outcome of the interaction
can be simulated with different codes, either an external instance of FLUKA (see
Sec. 2.2.3) or a built-in Monte Carlo code [38]. Multiple Coulomb scattering, Rutherford
scattering, nuclear elastic and inelastic scattering and single diffractive events are
considered. The energy loss is recorded and if the proton survives the passage through
the collimator material it re-enters the beam vacuum for tracking further. The particles
hitting the aperture are recorded as lost.

SixTrack outputs provides a detailed recording of aperture losses, with the coor-
dinates and energy corresponding to each loss. The plot of the losses as a function of
the longitudinal coordinate s is called a "loss map". The efficiency and versatility of
this code have made it the main tool for simulating the cleaning of the collimation
system in the last decades. It is used for example to study in detail new machine
configurations in order to respond to the most varied LHC schedule necessities.

Usually, to save computing time, it is rarely given a full beam as initial distribution
for the simulation. Typically, each simulation tracks a few 106 halo particles over 200
turns. The halo distribution is obtained sampling the coordinate phase space, and
many possible distributions are available. Typical options are flat distribution in the
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Figure 2.1: From [34]. Beam loss distributions
around the LHC as measured by BLMs
during a qualification loss map on
April 12, 2011 (top) and from a Six-
Track simulation (bottom). Bin width:
1 m. It is assumed a beam energy of
3.5 TeV and β∗ = 1.5 m. They are both
normalized to the highest loss, and the
initial losses occur in the horizontal
plane in B1. The s coordinate plotting
starts from IR6.
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Figure 2.2: From [34]. Zoom of Fig. 2.1 on
IR7: loss locations from measurement
(top) and SixTrack (bottom). The lay-
out of the main magnetic elements
(quadrupoles and dipoles) as well as
the collimators is also shown, together
with the LHC cell numbers at the cold
loss locations.

selected (horizontal or vertical) plane around a normalized amplitude that matches the
TCP half opening: Ax(y) ± δAx(y), while on the other plane one samples either a zero
amplitude or a Gaussian distribution. Other possibilities are flat distributions in both
planes, or custom six-dimensional external distributions, etc.

The diffusion process that brings halo particles up to the amplitudes needed to
hit the TCPs is not simulated. The computing time needed to track the core as well,
including diffusion, would be orders of magnitudes longer. Moreover, although we
know most of the effects responsible for the particle diffusion, there may be others that
are not fully understood and quantified. Instead, it is made an assumption on the TCP
interception of the halo–and therefore on the diffusion speed–which is reflected in the
initial sampling.

To make a practical example, we report the comparison between a measurement
and a simulation loss map as can be found in Ref. [34]. In Fig. 2.1 two example loss
maps are presented. The top one is plotted from the measurements of BLMs, while



2.2. simulation tools 23

the bottom one represents the corresponding SixTrack simulation. In Fig. 2.2 the
corresponding loss maps zoomed in IR7, where the most significant losses are recorded,
which is desirable since in IR7 the betatron cleaning insertion is located. Apparently,
the agreement might look bad, in particular the simulation seems to underestimate the
effective losses. However, it must be taken into account the fact that the simulations
show the impacts of primary protons on the beam screen, while measurements show
the measured secondary showers outside of the beam line elements. Since two different
quantities are compared, we cannot expect a perfect agreement. In fact, BLMs intercept
showers from upstream losses as well, which smear out the measured distributions
in Fig.2.1. To have a full comparison, one has to simulate the showers caused by the
incident protons and the resulting BLM signals.

The simulated loss map in Fig. 2.1 was obtained tracking a so-called annular halo
in the horizontal plane for B1. It is generated at the start of the LHC in IR1 in order to
obtain a matched phase space in the horizontal collimation plane populated uniformly
in a thin hollow ellipse, whose thickness covers the normalized betatron amplitude
corresponding to the TCP half opening.

Notice the loss distribution on the collimators in the betatron cleaning insertion:
the first highest spikes correspond to the horizontal, vertical and skew TCP7s, followed
by the TCS7. Red spikes highlight the presence of the warm magnets. After the last
IR7 collimator, the blue spikes reveal the presence of cold magnets at the beginning
of the arc. These cold losses are clustered in three regions, corresponding to the
maximum values of the dispersion function D(s), which induces the off-momentum
particle oscillatory motion (remind eq. 1.21).

2.2.2 FLUKA

Besides the tracker, the other simulation code that was used for the purpose of this work
is FLUKA [39, 40], a general purpose Monte Carlo code for calculations of particle and
ion interactions with matter and transport. The code covers a variety of applications
and is updated with state-of-the-art physics models. As an example, with regard
to elastic scattering, it exploits tabulated nucleon-nucleus cross sections, while for
simulating hadron-nucleus inelastic nuclear scattering, a mixture of tabulated data
and parameterised fits based on available experimental data is used.

The user can choose from a variety of beams and target materials and set a cus-
tomised initial energy. The tracking of particles is performed through a 3D geometry
with detailed material composition defined by the user. Primary particles are tracked
together with the secondaries created in hadronic and electro-magnetic cascades.

This code is usually used to simulate BLM response to particle showers. In this
work, FLUKA was exploited for simulating the primary beam interaction with the gas
target with a customized source.f routine.

2.2.3 FLUKA-SixTrack coupling

Part of the simulations of this work were performed thanks to a coupling of the codes
previously described. The FLUKA-SixTrack coupling code [41, 42] allows an active
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exchange of tracked particles between the two codes and on-line aperture check:
particles are tracked by SixTrack through the magnetic lattice, and when they hit some
labelled sections like collimators or internal targets, they are transferred to FLUKA.
FLUKA simulates the particle interactions with a 3D model of the machine element
that was hit. Surviving particles are sent back to SixTrack and tracked further.

During the course of the study reported in this work, an extension to the FLUKA-
SixTrack coupling was under development allowing to implement a FLUKA insertion
corresponding to an internal target. This beam-target interaction simulation feature
perfectly suited our needs, and these studies were thus used as a first application of
the new implementation.

2.2.4 A Standard Betatron Cleaning Loss Map

Figure 2.3: Beam loss distribution around the LHC for 7 TeV Beam 1, standard betatron cleaning, 12 min
lifetime, assuming the HL-LHC beam parameters and a horizontal halo. No interaction with
gas targets is included. The maximum cold loss is found to be 20 W/m at s = 23708.2 m. Bin
width set to 10 cm. s coordinate starts at IR1.

Fig. 2.3 shows an example of a standard betatron cleaning loss map for a 12 min
beam lifetime. This corresponds to the most critical scenario of betatron losses that
the collimation system has been designed to handle—that is to say, when the beam
intensity decays as N0 exp(−t/t0), with t0 = 12 min decay constant and all the particles
impacts on the collimators. If the lifetime would be shorter than 12 minutes, there
would be issues with too high heat load on collimators, but also the cold losses leaking
out of them could be too high, requiring a beam dump.

The simulation was performed assuming the HL-LHC 7 TeV beam parameters (as
found in Appendix A). An annular beam halo was made to impact on the primary
collimators in IR7, with an analogous simulation method as the one described in
Section 2.2.1 that was used for obtaining the bottom loss map in Fig. 2.1.
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Please note that in Fig. 2.3 the s coordinate is plotted setting s = 0 at IP1. The beam
travels from left to right. The loss absolute values are given, expressed in W/m. The
losses on collimators, cold and warm magnets are plotted with different colors. One
can see that the highest spike corresponds to the horizontal TCP where all the tracked
particles are made to impact. The surviving particles are mostly absorbed within
the betatron cleaning insertion, while some others are intercepted in the momentum
cleaning insertion. The remaining particles are either intercepted by local protections
at the IPs or lost in the aperture.

2.3 Simulation Setup

Different simulation setups were implemented for simulating elastic or inelastic in-
teractions. We are reporting the two cases separately. The elastic case is not expected
to be limiting, since the elastic scattering cross section is smaller than the inelastic.
Moreover, particles scattered elastically only lose a small fraction of their energy in
the target nucleus recoil, and only receive a small angular kick, so that they could
in principle remain within a stable orbit. Conversely, during an inelastic interaction,
protons may disintegrate producing low-energy secondaries or lose a great fraction of
their energy (diffractive event), which means that more local losses are expected. This
is the reason why the study of the inelastic case is more extended than the elastic one.

2.3.1 Elastic Interaction

As a first step, a 7 TeV proton pencil beam (i.e., a beam distribution in the phase space
with no spread around the nominal values (s, E, x, x’, y, y’) = (0, 7 TeV, 0, 0, 0, 0)) is
forced to elastically interact with a stationary H or Xe target. This is performed thanks
to a customized source.f routine implemented in FLUKA. The interaction cross section
is calculated by the code for a fixed target density. The density assumed by the code
does not matter for the result of FLUKA simulation, since every single particle is forced
to collide.

The energy and direction cosines of the outgoing protons are dumped right after
the interaction. In Fig. 2.4 a plot is shown of the angular and energy distribution
of the scattered protons, normalised to the total number of incident particles. The
angular distribution is found calculating the angle θz with respect to the incident
direction, starting from the direction cosine z’= cosθz and considering that the angles
are small—i.e., cosθz ≈ 1−θ2

z /2:

|θz | =
√
2(1− z′), (2.2)

In Fig. 2.5 the x’ and y’ distributions are shown for elastic interactions on H
and Xe targets, normalised to the total number of incident particles. Obviously, the
distributions are symmetric in x’ and y’: indeed, no magnetic field was accounted for
in the interaction region.

A curious bump structure is observed for the angular distribution of elastic scat-
tering on Xe for small values of x’ and y’, that is, the interference pattern of hadron-
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nucleus nuclear elastic scattering. One does not find this interference in hadron-hadron
scattering, which is obviously the case for proton beam on hydrogen target.

One can notice that the final energy distribution (bottom plot of Fig. 2.4) in the
case of elastic scattering on H is wider than on Xe. This is due to the fact that the target
H nucleus is less heavy than the Xe nucleus, making it easier to recoil.

As a second step, a beam distribution is prepared by random sampling the coor-
dinates in the x–x’ and y–y’ phase space. First of all, a set of (xn, x’n) and (yn, y’n)
coordinates in the normalised phase spaces is sampled for every proton from Gaus-
sian distributions centered in zero with σn = 1. Then, the so-obtained normalised
coordinates are transformed to the non-normalised phase space with the inverse trans-
formation of 1.18:

u = unσu(s) = un
√
εβu(s) u′ =

√
ε/βu(s)(u

′
n −αu(s)un) (u = x, y) (2.3)

The transformation is constrained by the value of the optical functions βx/y(s)
and αx/y(s) at the s-location of the target centre, in order to match the actual beam
distribution. The effect of energy spread is neglected. The target position is set at
1.69 m upstream from the IP8 in the B1 reference system. The optical functions at
that point are calculated with MAD-X for the optics version 1.3 of HL-LHC. The optics
parameters at the target position are listed in Table 2.1.

s from IP8 [m] -3.00 -1.69 -1.50

s from IP1 [m] 23312.3790 23313.6890 23313.8790

βx [m] 5.97 3.93 3.73

βy [m] 6.00 3.95 3.75

αx 9.98E-01 5.60E-01 4.96E-01

αy 9.99E-01 5.62E-01 4.99E-01

Dy [m] 1.19E-02 9.93E-03 9.64E-03

Dx [m] 9.72E-03 3.38E-03 2.46E-03

x [m] 3.45E-04 1.94E-04 1.73E-04

x’ [rad] -1.15E-04 -1.15E-04 -1.15E-04

y [m] -2.00E-03 -2.00E-03 -2.00E-03

y’ [rad] 1.81E-06 1.81E-06 1.81E-06

Table 2.1: Optics parameters as generated by MAD-X at three different target position: -3.00 m, -1.69 m
and -1.50 m from IP8 in B1 reference system. The middle value was considered while sim-
ulating the elastic beam-gas interactions, while the other two were taken into account for
the inelastic case. The value of the optic functions are given, together with the vertical and
horizontal transverse phase space offsets x, x’, y, y’. The offsets represent the closed orbit with
zero betatron amplitude, and their values are non-zero because of bumps for crossing angle
and separation.
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To each sampled proton from the matched beam distribution, we add the offsets in
energy and angle due to the beam-gas scattering from a random sampled final-state
proton from FLUKA. This way, the initial conditions correspond to an initially matched
beam, where every proton has scattered on a gas nucleus.

In Fig. 2.6 and 2.7 the x–x’ phase space density plot is shown for a Gaussian 7 TeV
proton beam after the elastic interaction with a H and a Xe target, respectively. The
distributions in the x–x’ and y–y’ phase spaces are almost equal. This condition is
not true in general: in this particular case, the optical functions are very similar for
both the horizontal and vertical coordinate. Fig. 2.8 and 2.9 show the x’ distribution
normalized over the transverse beam size σx. As is seen, in the interaction with Xe
nuclei the beam protons receive weaker angular kicks.

In order to save computation time, a cut of the core is applied at this point to
the distribution obtained above. The particles coordinates are transformed into the
normalised phase space and only those protons are selected which fall outside 5.5
(units of σ) in either the xn–x’n or the yn–y’n normalised phase space. The resulting
beam halo accounts for the particles that are likely to be lost or intercepted by the
collimators.

As it was expected, the fraction of protons receiving a kick large enough to hit
the collimators or aperture is very small: in the case of H, up to 80.30% of the initial
distribution of the interacting particles had to be cut, while for Xe this percentage rises
to 99.35%. This discrepancy is coherent with the different angular distribution shown
in Fig. 2.4, 2.8 and 2.9. This cut will be taken into account at the time of normalizing
the results.

The x’ distributions normalized over the transverse beam size σx after applying the
core cut are shown in Fig. 2.10 and 2.11 (fro H and Xe target respectively). A curious
triple-peak structure is obtained, which is explained as follows. Since the effect of the
scattering only widens the angular distributions x’ and y’ (and not the position ones),
when the coordinates of the scattered particles are transformed to the normalised
phase space, the populated disk is generally broadened, but it’s mainly deformed along
the x’n (y’n) axes, assuming an elliptic shape. Thus, the condition x2n +x′2n > 30.25 tends
to select those particles populating the regions of the ellipse where |x’| & 5.5, that are
represented by the external peaks in the x’/σx. At the same time, some particles in
the core of the xn–x’n phase space ellipse might nevertheless be selected because they
fulfill the condition on the yn–y’n phase space. And this explain the bump at the center
of the lateral peaks in x’/σx. The same applies for y’/σy.

The beam sampled with FLUKA has to be large enough so as to get an available
halo beam made of 6× 106 protons after all the manipulations an cuts. The halo beam
is given in input as initial custom beam distribution to the SixTrack code implemented
with a collimation routine. SixTrack tracks element-by-element over 200 turns along
the HL-LHC lattice, starting from the target position, after adding the appropriate
nominal orbit offset to the (x, y) coordinates of the initial distribution.

The losses on collimators and aperture are recorded and downloaded, and the
output at this point is ready for the analysis that will be described in sec. 2.4.
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Figure 2.4: Distribution of the scattering angle with respect to the initial direction (top) and of the energy
(bottom) of 7 TeV protons after facing elastic interactions with H (blue) and Xe (red) target,
as simulated with FLUKA. Both histograms are normalised to the total number of incident
protons.
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Figure 2.5: Distributions of cosine directions in vertical and radial plane for a 7 TeV pencil proton beam
after elastic scattering on a H (left) and a Xe (right) target. The histograms are normalised to
the total number of interacting particles.
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Figure 2.6: Beam x–x’ phase space density plot
for a 7 TeV Gaussian proton beam af-
ter undergoing elastic interaction with
H target at -1.69 m from IP8 (B1 r.s.).
σx = 3.63× 10−5 m. The distribution is
normalised to the total.

Figure 2.7: Beam x–x’ phase space density plot
for a 7 TeV Gaussian proton beam af-
ter undergoing elastic interaction with
Xe target at -1.69 m from IP8 (B1 r.s.).
σx = 3.63× 10−5 m. The distribution is
normalised to the total.

Figure 2.8: x’/σx distribution for a 7 TeV Gaussian
proton beam before and after undergo-
ing elastic interaction with H target
at -1.69 m from IP8 (B1 r.s.). σx =
3.63×10−5 m. Normalised to the total.

Figure 2.9: x’/σx distribution for a 7 TeV Gaus-
sian proton beam before and after un-
dergoing elastic interaction with Xe
target at -1.69 m from IP8 (B1 r.s.).
σx = 3.63× 10−5 m. Normalised to the
total.

Figure 2.10: x’/σx distribution for a 7 TeV Gaus-
sian proton beam before and after un-
dergoing elastic interaction with H
target at -1.69 m from IP8 (B1 r.s.),
with cut at 5.5σ in the normalised
phase space. σx = 3.63× 10−5 m. Nor-
malised to the total.

Figure 2.11: x’/σx distribution for a 7 TeV Gaus-
sian proton beam before and after un-
dergoing elastic interaction with Xe
target at -1.69 m from IP8 (B1 r.s.),
with cut at 5.5σ in the normalised
phase space. σx = 3.63× 10−5 m. Nor-
malised to the total.
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2.3.2 Inelastic Interaction

The simulation setup for the inelastic interaction case was made somewhat easier
thanks to the availability of the FLUKA-SixTrack coupling extension for beam-target
interaction described in sec. 2.2.3. This meant the possibility of generating a single
initial beam distribution which is autonomously forced to interact with the target
and then tracked by the coupled codes. The passage of sampling the intermediate
distribution right after the interaction through the target to feed the tracking code is
skipped as it all takes place subsequently in a single routine.

The geometry for the beam-gas interaction region insertion, implemented in
FLUKA, is given by a dummy pipe with longitudinal length larger than a bunch
length and the radius much larger than a bunch radius. It is filled with either H or Xe
and centered at the target position. Let us recall that two cases are studied, the target
being put at -3.0 m and -1.5 m upstream from IP8 in the B1 reference system, in order
to check for any position dependence.

The initial distribution is a Gaussian beam matching the optical functions at the
starting point, according to Eq. 2.3. The values of the optical functions are calculated
with MAD-X and are listed in Tab. 2.1. The tracking is set to start at the entrance of
the target section, the interaction is forced to take place within a 20 cm-long portion of
this pipe only at the first turn of the simulation. The length of the interaction portion
is chosen in order to represent a likely design length for the storage cell.

An energy threshold of 1 TeV was set for the tracking, meaning that the low-energy
secondaries and the particles that lose too much energy are lost. Nevertheless, no
energy or rigidity cuts were imposed for the particle exchange between SixTrack and
FLUKA.

The simulation output report losses on collimators and aperture, which are analysed
following the procedure described in Sec. 2.4. The whole simulation was repeated in
total eight times, including cases with both H and Xe targets, both -1.5 m and -3.0 m
target position from IP8, both B1 and B2.

In Fig. 2.12 and 2.13 the energy and angular distributions are plotted as dumped
right after the interaction for a beam with all initial betatron oscillation amplitudes
subtracted, for comparison with the elastic case.

In Fig. 2.14 and 2.15 instead, the x’ and y’ distributions are plotted, normalised
to the beam size σx and σy respectively, for an initial Gaussian beam. Nominal orbit
offsets are subtracted. The plots are reported only for the target at -3.0 m and the other
case is very similar.

Only the particles surviving the interactions have been taken into account in the
plots described above. Indeed, a large fraction of incident particles are lost within the
target itself: this correspond to 45% of the initial beam for H and 52% for Xe. As can
be seen, both the energy and the angular deviations of final-state protons cover much
wider ranges than in the elastic case. Moreover, differently from what happens in the
elastic case, the scattering with Xe has a larger angular spread than H.
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Figure 2.12: Distribution of the scattering angle with respect to the initial direction (top) and of the
energy (bottom) of 7 TeV protons after facing inelastic interactions with H (blue) and Xe
(red) target, as simulated with FLUKA. The histograms only include the protons that did
not disintegrate in the interaction (55% of the initial beam for H and 48% for Xe) and are
normalised to the total number of incident protons.
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Figure 2.13: Distributions of cosine directions in vertical and radial plane for a 7 TeV pencil proton beam
after inelastic scattering on a H (left) and a Xe (right) target. The histograms are normalised
to the total number of interacting particles.
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Figure 2.14: x’ and y’ distributions for a 7 TeV
Gaussian proton beam after undergo-
ing inelastic interaction with H tar-
get at -3.0 m from IP8 (B1 r.s.). σx =
4.47×10−5 m, σy = 4.48×10−5 m. Nor-
malised to the total.

Figure 2.15: x’ and y’ distribution for a 7 TeV
Gaussian proton beam after under-
going elastic interaction with Xe tar-
get at -3.0 m from IP8 (B1 r.s.). σx =
4.47×10−5 m, σy = 4.48×10−5 m. Nor-
malised to the total.
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2.4 Data Analysis and Loss Maps Production

The output from the simulations are analysed by plotting the beam losses along the
beam line as a function of their s-position. A distinction is made for the losses on cold
magnets, warm magnets and collimators. The losses on collimators were recorded
separately, since in both simulation routines the particles impacting on the jaws are
“extracted” from the tracker for Monte-Carlo simulations. Conversely, the aperture
losses (i.e., warm and cold losses) are separated by comparing their position with the
subdivision of the HL-LHC circumference into cold and warm sectors.

The loss intensity is expressed in W/m. It is necessary to normalise the losses using
the same criteria in order to allow a meaningful comparison. All the loss maps were
normalised with respect to the beam-gas interaction rate for the kind of interaction
under study. The rate R is calculated as follows:

R [s−1] = cross section [cm2]×θgas [cm−2]× Ibeam [A]/q [C], (2.4)

where θgas is the target areal density and Ibeam is the beam current and q is the proton
charge. The beam current is obtained from:

Ibeam [A] =
q [C]×Nb ×nb × vbeam [m s−1]

LHC circumference [m]
, (2.5)

recalling that Nb and nb are the number of protons per bunch and the number of
bunches per beam, respectively, while vbeam ≈ c is the beam speed. The parameters
corresponding to the version 1.3 of the HL-LHC used for the analysis are listed in
Table 2.2.

LHC circumference [m] 26658.8832

primary proton energy [TeV] 7.0

εn [µm] 2.5

Nb 2.2× 1011

nb 2760

Beam current [A] 1.1

Luminosity at IP8 [cm−2s−1] 2× 1033

Cold magnet quench limit [W/m] 8.748

Table 2.2: Parameters assumed for the loss map normalisation. Machine and beam parameters are taken
as for HL-LHC, version 1.3.

The cross sections and the corresponding event rates for the elastic and inelastic
p–H and p–Xe interactions are listed in Table 2.3. The cross sections are calculated by
FLUKA for 7 TeV protons, and the interaction rates are derived by taking into account
the beam current and the target thickness with Eq. 2.4. The Table lists also the values
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p–H p–Xe p–p

θgas [atoms cm−2] 1.0× 1014 1.0× 1014 -

Elastic
Cross Section [mb] 9.0 1000 24
Interaction Rate [MHz] 6.1 683 48

Inelastic
Cross Section [mb] 38 1408 80
Interaction Rate [MHz] 26 962 160

Table 2.3: Assumed elastic and inelastic cross sections and calculated interaction rates for 7 TeV protons
on a H or Xe target at given density. Cross sections and event rates for 7 TeV proton–proton
collisions at IP8 are given for comparison. A proton–proton luminosity of 2× 1033 cm−2s−1 is
assumed.

corresponding to normal p–p events, for comparison. The p–p interaction rate was
calculated taking into account the levelled luminosity at IP8.

The analysis of the simulation results required two slightly different procedures
depending on the simulation setups described in Sec. 2.3.1 for the elastic case and in
Sec. 2.3.2 for the inelastic one.

In the first case, we recall that the initial beam distribution had to be cut in order to
track the beam halo. Moreover, we observe that the protons only lose a small fraction
of their energy after the elastic interaction, causing the target nucleus to recoil. As
a consequence, it is meaningful to count the losses around the beam line in terms
of the number of lost particles. The local number of lost particles is divided by the
total number of interactions that was simulated before applying the core cut. In this
way, one gets the local losses per interaction event, which are multiplied by the elastic
interaction rate, obtaining the local particle loss rates. The local particle loss rate is
then multiplied by the initial proton energy and divided by the bin width, in order to
obtain the power lost per meter, measured in W/m.

On the other hand, when protons interacts inelastically, the energy distribution of
the protons arising afterwards cover a wide range. Thus, in this case it is necessary
to consider the local energy losses, instead of the number of lost particles. The same
distinction is done when simulating loss maps for ion runs instead of protons. Since
the whole beam was tracked with the FLUKA-SixTrack coupling, there are no cuts to
account for, and the protons that were lost within the target during the interaction are
counted for the normalisation. The local energy losses are divided by the total energy
lost along the circumference (comprises the losses within the target), in order to get
the local loss per inelastic interactions. The result is multiplied by the inelastic event
rate and by the initial proton energy, and divided by the bin width. In this way, the
power lost per meter is obtained and it is measured in W/m.

The loss maps in W/m are ready to be compared with the quench limit, which
was explained in Sec. 2.1. In the cases where some loss exceeds this safety limit, a
re-scaling of the target density has to be foreseen in order to grant safe operations to
the experiment. Indeed, the loss intensity is proportional to the interaction rate, which
means linear dependence on the gas thickness, according to Eq. 2.4.
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2.5 Results

The complete set of the resulting loss maps for beam-gas interaction simulations are
reported in this section. The losses on the beam line are plotted from IP1, and the Beam
1 travels from left to right. The plots should be compared with the regular cleaning loss
map in Fig. 2.3. Indeed, the losses due to beam-gas interaction have to be considered
as superimposed to this regular loss map. The results for the elastic and inelastic case
are reported separately, since their contribution is quite different.

2.5.1 Elastic Interaction

Figure 2.16: Beam loss distribution around the LHC, Beam 1 elastic interactions with H (A) and Xe (B)
target at position marked by dashed green line (-1.69 m from IP8). Bin width set to 10 cm.

(a) H target at -1.69 m from IP8. Max cold loss: 2.5×10−4 W/m at s = 23707.6 m.

(b) Xe target at -1.69 m from IP8. Max cold loss: 3.3×10−4 W/m at s = 755.2 m.

Two loss maps were produced for the study of the elastic contribution to the
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beam-gas interaction, corresponding to Fig. 2.16a for H target and Fig. 2.16b for Xe
target.

The losses for the elastic contributions are found negligible with respect to the
regular cleaning scenario. Moreover, all the cold losses that were recorded are safely
below the quench limit. In fact, the highest cold losses reach 2.5× 10−4 W/m in the
H case and 3.3 × 10−4 W/m for the Xe, i.e., five orders of magnitude lower than the
quench limit of 8.748 W/m.

No losses are recorded within the target itself, whose location is marked by a dashed
green line. This is reasonable, since all the protons survive the elastic interaction
without dramatic angular deviation or energy transfer.

Analysing the first impact recorded for every particle lost, it is found that all the
lost protons have impacted first on the primary collimators in IR7. This is the usual
case for regular beam operation. moreover, the pattern of the black spikes, representing
the losses on the collimation system, is very similar to the regular cleaning loss map.

One can conclude that the beam-gas interaction contribution from elastic scattering
has no irregular consequences on the behavior of the beam and, most important, it has
no harmful consequences for the machine.

2.5.2 Inelastic Interaction

The same conclusion cannot be taken for the study of the inelastic contribution to
the beam-gas interaction. The loss maps in Fig. 2.17 correspond to the H target
simulations, for the two position cases, while the loss maps in Fig. 2.18 corresponds to
the Xe simulations. The results for Beam 2 are reported in Fig. 2.19 for H and Fig. 2.20
for Xe.

The full loss maps come with complementary loss maps zooming into the beam
line region going from just before the target to few hundred meters downstream, with
respect to the beam under simulation. This region is where most of the losses are
clustered. A scheme of the lattice is plotted on top of the zoomed loss maps, showing
the main machine elements. Blue rectangles correspond to bending magnets, red
to quadrupoles, yellow to sextupoles, light grey to multipoles, purple and pink to
horizontal and vertical orbit correctors, and the black lines mark the collimators.

Let us remark the main differences with respect to both the elastic interaction loss
maps and the regular betatron cleaning one. First of all, one can notice the presence of
a high magenta spike in every loss map, located at the target position. It corresponds
to the losses happening within the target itself. As it was explained, indeed, most of
the incident protons are lost during the interaction, and many particles have an energy
below the tracking threshold, and are thus lost.

Secondly, a higher loss activity is recorded at the momentum cleaning insertion in
IR3: the losses recorded there are almost as large as, or even larger than, in IR7. This
is due to the presence of strongly off-momentum particles that are intercepted and
removed from the beam in IR3.

The losses recorded for the H case are more than a factor 10 lower than in the Xe
case, reflecting the different inelastic cross sections. In all the loss maps for B1, the
highest loss is found at s = 23553.4 m, on the horizontal orbit corrector MCBCH.6R8.B1
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in cell 6 to the right of IP8. In the case of H, the losses are still safely below the quench
limit, but the Xe instead causes the limit to be exceeded.

The Xe target thickness should be decreased in order to maintain all the losses below
the safety limit. The maximum Xe thickness was calculated to be θmax = 1.21× 1013 ≈
1013 atoms cm−2. This limit is probably pessimistic. In fact, the quench limit for the
orbit corrector magnets is not well known, but it is expected to be less restrictive than
for the dipoles. Nevertheless, also the quadrupoles just downstream the target face
strong losses, but the quench limit for such magnets is known to be about a factor 2
larger than for the dipoles [33]. The separation dipole D1 (the first dipole following
the target) receives almost as high losses as the orbit corrector, and its quench limit is
also not well known.

The estimate for the maximum safe target density could be improved by dedicated
energy deposition studies for the regions involved, as well as quench limit calculations
for the different magnet types. Similar studies were carried on for the High Luminosity
proton-proton collision program at LHCb, as reported in Ref. [43]. It was found that
thanks to the new TAS and TAN absorbers to be installed for the HL-upgrade, the
triplet will withstand a p–p luminosity up to 1034 cm−2 s−1, which corresponds to an
event rate just below the one for p–Xe interaction with a θgas = 1014 atoms cm−2 gas
target. It is hoped that this protection could help also in coping with the beam-gas
debris.

We do not find significant differences in losses for different target positions. The
loss pattern is almost unchanged, with difference of a few percent on the main losses.
Thus, it is concluded that the losses do not depend strongly on the target position
within the range under study.

Similar results are found for the B2 simulations. In the loss maps in Fig. 2.19
and 2.20 the beam runs from right to left, meaning that it encounters the target
downstream with respect to the LHCb detector. The losses are thus clustered on the
region symmetrically opposite from the target with respect to B1 case. The lattice of
the region around IP8 is quite symmetric and this reflects almost symmetrically in the
loss pattern in the zoomed plots. The highest cold losses are recorded on a quadrupole.

All the maximum cold losses for the inelastic interaction simulations are listed in
the summary Table 2.4.

Beam 1 Beam 2
Target position from IP8 [m]: -1.5 -3.0 -1.5 -3.0

H target, max cold loss [W/m]: 4.1 4.1 2.6 2.6

Xe target, max cold loss [W/m]: 72 72 70 72

Table 2.4: Maximum cold losses recorded for simulations of inelastic interaction of a 7 TeV proton beam
on the gas target.
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Figure 2.17: Beam loss distribution around the LHC, Beam 1 inelastic interactions with H target. Bottom
plots show details of IR8. Bin width set to 10 cm.
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(a) H target at -1.5 m from IP8. Max cold loss: 4.1 W/m at s = 23553.4 m.
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(b) H target at -3.0 m from IP8. Max cold loss: 4.1 W/m at s = 23553.4 m.
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Figure 2.18: Beam loss distribution around the LHC, Beam 1 inelastic interactions with Xe target. Bottom
plots show details of IR8. Bin width set to 10 cm.
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(a) Xe target at -1.5 m from IP8. Max cold loss: 72 W/m at s = 23553.4 m.
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(b) Xe target at -3.0 m from IP8. Max cold loss: 72 W/m at s = 23553.4 m.
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Figure 2.19: Beam loss distribution around the LHC, Beam 2 inelastic interactions with H target. Bottom
plots show details of IR8. Bin width set to 10 cm.
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(a) H target at -1.5 m from IP8. Max cold loss: 2.6 W/m at s = 23150.0 m.
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(b) H target at -3.0 m from IP8. Max cold loss: 2.6 W/m at s = 23150.0 m.
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Figure 2.20: Beam loss distribution around the LHC, Beam 2 inelastic interactions with Xe target. Bottom
plots show details of IR8. Bin width set to 10 cm.
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(a) Xe target at -1.5 m from IP8. Max cold loss: 70 W/m at s = 23150.0 m.
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(b) Xe target at -3.0 m from IP8. Max cold loss: 72 W/m at s = 23150.0 m.





chapter 3

Aperture Calculation for a

Storage Cell

The second part of this work focuses on the study of the aperture limitation for the
SC to be installed at LHCb for containing polarised or unpolarised gas targets. The
necessity of this study lies in the fact that when an element is installed inside the
LHC pipe, its protection must be ensured by the collimation system in order to grant
safe operation. This translates into a minimum acceptable aperture which has to
be respected in the design of every element to be installed in the LHC, and the SC
implementation for gaseous fixed-target experiment proposal within the PBC study
program is not exempt from this constraint. The results of this study are reported in
Ref. [31].

First of all, a short recap of the regular machine cycle of a LHC fill is done, followed
by considerations on the setup of the LHCb insertion and the luminosity levelling
mechanisms. The minimum safe aperture calculation follows, explained in details.

3.1 Operating Cycle and Setup at LHCb

Let us recall that the LHC proton beam is injected at an energy of 450 GeV, with a
beam emittance and intensity that show a linear relation depending on the injection
system. The beam geometric emittance is larger at lower energy, resulting in a larger
beam size. The bunches are injected according to a precise filling scheme, and the
usual bunch separation is 25 ns. This phase of the cycle is called the beam Injection.

After all the bunches are injected in both rings, the beam energy is progressively
increased by the RF cavities through the Ramp beam mode, and the current in the
superconducting magnets slowly rises such that the beams are always kept on the
ideal trajectory. The ramp ends once the protons reach the top energy, and the Flattop

47
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Figure 3.1: A representative machine cycle for a LHC fill occurred in August, 28th 2016 with 6.5 TeV
proton beams. On the left plot the time variation is recorded of the beam energy (black) and
the intensity for B1 (blue) and B2 (red). On the right the time variation is plotted for the
instant luminosity at the ATLAS, ALICE, CMS and LHCb IPs.

beam mode is declared. The Squeeze of the betatron functions at the collision points
is performed either after flattop or along with the ramp, in which case the beam goes
through a single phase of combined Ramp&Squeeze.

During the Adjust mode the beams are brought in collision and then the Stable
Beams mode begins, where the actual data taking for physics takes place. The duration
of the Stable Beams depends on the beam lifetime, which is constraint by the collision
rate. When the luminosity falls too much, the BeamDump is set, the beams are extracted
from the rings, and the magnet current is progressively restored during the Ramp Down
mode and the machine is prepared for another cycle.

A scheme of the energy and beam intensity variation during a full fill cycle is shown
in Fig. 3.1, together with the correspondent luminosity as recorded at the IPs. One
can see that the energy ramp starts just after the full beam intensity has been injected.
Moreover, as soon as the beams are colliding at top energy, the beam intensity and
luminosity decrease slowly for about 15 hours, after which the beam is dumped and
the energy is put to zero again with a ramp down. However, it should be noted that
often the fills are interrupted prematurely by beam dumps triggered by the Machine
Protection System (MPS) due to equipment faults or other anomalies. In the particular
case that is reported, a couple of hours was necessary as turnaround time before
establishing a new Stable Beam after the Beam Dump.

It can be noticed that the LHCb detector (represented in Fig. 1.5) works at a
lower luminosity with respect to ATLAS and CMS: the luminosity is levelled to 2 ×
1032 cm−2 s−1. The LHCb is undergoing a major upgrade during LS2 aimed to operating
the detector at a constant luminosity (i.e., levelled through every fill) of LLHCb =
2×1033 cm−2 s−1 with a 40 MHz readout architecture [44]. This will be the operational
luminosity also for the High-Luminosity upgrade [26].

The luminosity levelling is generally achieved at the experiment thanks to a dy-
namically varying parallel beam separation offset at the IP. These configurations affect
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the calculation of the minimum allowed aperture of any element to be installed in
proximity to the IP8.

An example of aperture limitation is given by the calculation of the allowed aperture
for the LS2 upgrade of the LHCb VErtex Locator (VELO) [45]. This subdetector was
introduced in Sec. 1.2.1.1. The VELO is retractable and is only inserted close to the
beam during Stable Beams, since the radial distance of the sensors from the beam is
smaller than the aperture required by the LHC during injection.

Analogously to the VELO, also the SC that is under study is assumed to be re-
tractable, so that it would be placed at a transverse position centered around the actual
beam position only once the Stable Beam is reached. Otherwise, the aperture constraint
would be dominated by the beam size at the injection. Nevertheless, several scenarios
with colliding beams are taken into account for the calculations, as will be explained
in Sec. 3.2.4

The VELO’s extent is asymmetric on the two sides of the IP: the downstream
edge (according to B1 reference system) extends further from the IP with respect to
the upstream one. Thus, any object to be installed upstream IP8 within the mirror
projection of VELO’s downstream edge, can be considered safe, as long as its aperture
is larger than the VELO’s, including all tolerances.

3.1.1 Luminosity levelling

Before going on with the description of the aperture calculation, an explanation is
given of how the geometrical setup of the IP affects the collision luminosity.

Figure 3.2: From [25]. Head-on collision of two bunches.

Figure 3.3: From [25]. Collision of two bunches with a horizontal crossing angle Φ.

We said that the luminosity levelling at IP8 is performed by regulating the parallel
beam separation. The expression for head-on collision luminosity is given by Eq. 1.24:
it refers to collision with no crossing angle and no beam displacement as depicted
in Fig. 3.2. When a crossing angle is introduced, the particles from one bunch cross
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Figure 3.4: From [25]. Schematic view of two bunches colliding at a finite crossing angle φ and a parallel
displacement offset λ = d1 −d2 between the two beams.

transversely the other bunch and the extension of the overlap between the crossing
bunches is reduced, as shown in Fig. 3.3: this translates into a lower luminosity. The
presence of a parallel beam separation offset further decreases the overlap between the
beams and thus the probability of having two protons interacting.

From a mathematical point of view, the exact luminosity calculation is obtained
from the overlap integral of the two-dimensional density distribution of the colliding
bunches in the x and y coordinates. In order to account for the presence of both
a crossing angle and an offset displacement, a proper coordinate transformation is
needed, as shown in Fig. 3.4.

The coordinate transformation leads to a new solution to the overlap integral for
the case of two beams colliding with a parallel separation offset λ and a crossing angle
Φ:

L =
N2
b nbf

4πσxσy
exp

(
− λ

2

4σ2
x

)
1√

1+
(
σs
σ tan Φ

2

)2 e B2A , (3.1)

Where σs = 9.0× 10−2 m is the bunch length, A = sin2(φ/2)
σ2
x

+ cos2(φ/2)
σ2
s

and B = λsin(φ/2)
2σ2

x
,

and e
B2
A ≈ 1 for small angles. The head-on luminosity is thus multiplied by three

reduction factors, one depending on the crossing angle, one on the parallel separation
and the third on the combination of the two.

We recall that the luminosity is strongly affected by the value of β∗, since it deter-
mines the transverse beam size at the IP. Thus, the luminosity calculation is sensitive
to any effects on the betatron function, such as beta-beating and the shift of the beta
function minimum with respect to IP8, which will be described in Sec. 3.2.3.
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3.2 Minimum Radius Calculation

The minimum safe aperture for the SC is calculated as a function of the maximum
longitudinal distance reached by the cell with respect to IP8. To this purpose, the
transverse plane is considered at an arbitrary s-position upstream of IP8 (according to
B1 reference system), and the maximum extent of the beam envelope at this location is
calculated as shown in Fig. 3.5. This calculation sets an inner limit to the radius of the
SC.

As can be seen in the picture, the centre of the beam is first displaced from the centre
of the beam pipe by the total offset RH/V caused by the foreseen crossing and separation
bumps (green dot). Around this point, a random orbit drift due to imperfections is
considered (purple circle). The new beam center could be anywhere around the purple
circle, and we set it to the most external point (purple dot) in order to consider the
largest offset sum. Centred around the new beam centre, the full beam envelope out to
n standard deviations (σ) is drawn (blue circle). The three contributions are described
in details in the following.
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(a) Horizontal crossing configuration: horizontal external
angle and vertical parallel separation, summed to the
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(b) Vertical crossing configuration: vertical external angle
and horizontal parallel separation, summed to the in-
ternal horizontal spectrometer angle.

Figure 3.5: Transverse plane view of the maximum extent of the beam envelope, as constructed for
the calculation of the minimum allowed aperture for a SC installed in proximity of IP8.
Two crossing configurations are considered. The envelope extent is built by the linear sum
of three contributions: the green dots mark the geometric contribution RH/V given by the
beam separation according to the crossing configuration, the purple circles delimit the offset
accounting for the orbit drift, and the blue circles delimit the safe admitted margin nσ around
the beam envelope.

3.2.1 Beam Separation and Crossing Configurations

The standard crossing configuration assumed at IP8 is given by a horizontal external
crossing angle φH summed to the horizontal spectrometer angle φspec, which can be set
to have either positive or negative polarity (plus or minus sign respectively). In such a
configuration, the total crossing angle is fixed and the luminosity must be levelled by
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tuning the parallel beam separation λ, given the value of β∗. This setup corresponds to
Fig. 3.5a.

Another possible crossing configuration foresees a rotation of the crossing plane
to be performed at every fill during the Ramp&Squeeze sequence, in order to have a
vertical external crossing angle φV and an horizontal parallel beam separation λ. Since
the spectrometer field remains constant, the internal angle contribution φspec is to be
added to the horizontal separation, as shown in Fig. 3.5b.

A first contribution to the calculation of the minimum aperture is obtained from
the geometric construction of the B1 and B2 relative displacement from the central
plane at the crossing region, in the two depicted cases (green dot in Fig. 3.5). In a drift
(i.e., a region without magnetic fields), the beams just continue straight with the same
angle as at the IP. This means that at an s-position, the transverse offset of a beam
(corresponding to half of the total beam-beam separation) is given by:
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s2 tan2
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2
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2
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√[
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(φspec

2
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λ
2

]2
+ s2 tan2

(φV

2

) (3.2)

in the horizontal and vertical crossing setup respectively. Since the total beam sepa-
ration increases as one goes further from the crossing point, s is considered to be the
position of the one edge of the SC that is further from the IP, i.e., the bottleneck.

3.2.2 Orbit Drift Offset

It must be taken into account the fact that the actual orbit is naturally expected to
slowly drift with respect to the nominal position. This is due to the influence of ground
motion, tides and geological effects on the circumference and on the triplet positions,
magnetic imperfections not completely subtracted by the orbit correctors, plus other
uncorrected effects.

The impact of the orbit drift on the aperture requirement for the SC translates into
a safety offset to be added to the beam separation of Eq. 3.2, and it depends on whether
the cell is designed to be aligned to the actual orbit at every fill or not. In the former
case, the static and long-term orbit drifts would be canceled with careful alignment at
the beginning of each fill, and the SC radius should be designed with enough margins
to accept the drift expected to take place within a single fill. In the latter case the
radius of the cell should be large enough to account for the total orbit drift.

Since it is not clear yet what case would be the choice for the cell alignment, the
two situations have been studied separately. In the case of fill-by-fill cell alignment a
single-fill orbit drift of 100 µm is considered, while in the case of a non-aligned cell, a
pessimistic 2 mm offset is considered, as for the aperture calculations in any HL-LHC
element at top energy [46]. In Fig. 3.5 the offset is represented by the purple circle.
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3.2.3 Beam Size and Betatron Effects

As a third contribution it must be taken into account the beam size along the SC. The
cell will be located in the drift region upstream the IP, where the β-function is squeezed
down to β∗. Then, the maximum beam size is the one seen by the furthest SC edge,
which is again the bottleneck for the minimum radius calculation. In fact, handling the
transfer matrix calculation in Eq. 1.11 one derives the following s-evolution in a drift:

β(s) = β∗ +
s2

β∗
, (3.3)

which is symmetric in either side of the waist. As a convention we will refer to s as the
distance from IP8.

Some effects on the optics function must be taken into account before calculating
the beam size at the s-position of the furthest edge. First of all, for any aperture
calculation in the LHC, it is assumed that the β-function can be up to 20% larger than
its nominal value [46]. Since this situation is limiting, the most pessimistic value is
assumed for the purpose of our study. The effective β-function used for the calculation
is

β̃(s) = 1.2× β(s). (3.4)

This correction might seem overly pessimistic since the optics corrections achieved
so far have improved significantly, and in particular at the collision point. Nevertheless
it was chosen in order to cover other effects that could alter the effective β-function: the
longitudinal shift of the β minimum and the so-called β-beating. The first phenomenon
is due to the fact that the minimum value of β(s) that should ideally occur at the IP,
can be subject to a longitudinal shift from −30 cm to +30 cm. The second situation
arises from the presence of lattice imperfections and beam-beam magnetic effects that
modify the β(s) that is seen by a beam circulating in the LHC, leading to a beating that
can change the β∗ value at the IPs up to a few percent.

The combination of these effects was studied by comparing the effective β̃(s) of
Eq. 3.4 with the most pessimistic β(s) calculated with a 5% reduction of β∗ combined
with a waist displacement form IP8 of 30 cm opposite to the SC location. The compari-
son is shown in Fig. 3.6 for three scenarios of β∗. It is found that β̃ is well conservative
for β∗ = 3.0 m (Fig. 3.6a), while for β∗ = 1.5 m (Fig. 3.6b) the two functions are very
similar. The worst case happens for the pushed optics β∗ = 0.5 m (Fig. 3.6c): β(s) ex-
ceeds our assumption within a limited s-range by a variable factor, with the maximum
being β(s)/β̃(s) = 1.53 at ∼ 40 cm from the IP, where the aperture is anyway very large.
For s > 2 m the functions differ by less than 15%, and for s > 4.2 m we get β̃(s) > β(s).
The waist shift contribution dominates only for the most pushed optics scenario and
only close to the IP.

The effective β-function allows to calculate the size of the beam as a function of
the distance s from the IP. Reminding Eq. 1.19 we find the maximum beam size σ(s) as
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(a) (b) (c)

Figure 3.6: Comparison between the effective β-function of Eq. 3.4 with the pessimistic combination of
beta-beating reducing β∗ by a factor 5% and a waist shift of 30 cm from IP8 opposite to the SC
location. Convention: s is positive in the upstream direction from IP8 (B1 reference system).
In top plots the two functions are plotted, while on bottom plots it is given the ratio of the
two. Three β∗ cases are considered: 3.0 m (a), 1.5 m (b) and 0.5 m (c).

follows:

σx,y(s) =
√
εβ̃x,y(s) =

√
1.2× ε

(
β∗x,y +

s2

β∗x,y

)
,

σ(s) =

σx(s) when σx ≥ σy ,
σy(s) when σx < σy .

(3.5)

It is required that the elements installed inside the LHC aperture at positions
without local protection have a minimum safe aperture of 19.4σ , assuming the HL-
LHC reference emittance of 2.5 µm, as explained in Ref. [47]. We thus demand that
the radius of the SC should stay outside this envelope when added to the central orbit
value.

In the case the SC would not involve re-aligning at every fill, one should take into
account the contribution to the beam size coming from dispersion, and the parasitic
dispersion from the arc [46]. Let us recall the off-momentum component to the beam
size, as in Eq. 1.22. In particular, the effective dispersion function D̃(s) that multiplies
the momentum deviation is given by:

D̃(s) = kβ

|D(s)|+Darcfarc

√
β(s)
βarc

 , (3.6)

where D(s) is the nominal dispersion function (calculated from D∗ = −4.79× 10−3 m
andD′ ∗ = −4.95), kβ = 1.2 is the beam size variation due to beta-beating, Darc = 2.086 m
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is the peak dispersion in the arc, farc = 0.1 is the fractional parasitic dispersion, and
βarc = 170 m the optical β-function in a focusing arc quadrupole. A 2.0×10−4 fractional
momentum spread is assumed. The contribution from dispersion is anyway negli-
gible with respect to the 2 mm offset that dominates the aperture restriction in this case.

Given the contributions to the aperture limitations, the minimum allowed radius
for the SC is obtained from their sum, taking as limiting case the crossing configuration
that maximises the constraint:

RH,V
tot = RH,V +offset + 19.4σ

Rmin =max{RH
tot, R

V
tot}

(3.7)

3.2.4 Considered Scenarios

The minimum aperture study was performed for several operation scenarios, with
different configuration assumptions. Every scenario is characterised by the optics setup
(i.e., the value of β∗), the external half crossing angle φH(V)/2 (either horizontal or
vertical), the internal half spectrometer angle φspec/2 (which can have both positive
and negative polarity) and the half parallel separation λ/2.

In most cases, β∗ and the crossing angles are fixed by the scenario configuration,
and the maximum parallel beam separation is calculated accordingly in order to obtain
the levelled luminosity LLHCb = 2.0× 1033 cm−2 s−1. The maximum λ is needed at the
beginning of the fill, when the beams have their maximum intensity, and this value
can be used for the calculation of the minimum aperture. The calculation of λ starts
from Eq. 3.1, but we only consider the luminosity reduction due the crossing angle in
the crossing plane, discarding any contribution of angles in the separation plane. This
is a pessimistic assumption, since any further angle would decrease the luminosity,
requiring less parallel separation for the levelling. A 20% beta-beating is considered,
which can be either increasing or decreasing—but the 20% increasing case is found to
require the largest parallel separation, thus it is taken as the most pessimistic case.

The external crossing angle must be negative in order to avoid parasitic collisions.
The largest total crossing angle is achieved when the spectrometer has negative polarity,
so that the internal and external angles have the same (negative) sign. Since the largest
total angle determine the most pessimistic aperture scenario, the spectrometer will be
always considered to have negative polarity in the following.

In Table 3.1 a summary is reported of all the scenarios under study with the
respective configuration parameters. The following particular features were assumed
for different settings:

i. Baseline runswhere all parameters were set to the nominal ones listed in Ref. [26]
for stable beam in HL-LHC;

ii. H (V) pushed scenario presents nominal values for horizontal (vertical) crossing
angle and lower values for β∗ = 1.5 m;
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Parameters Scenarios

Baseline H
pushed

H very
pushed

V
pushed

V very
pushed

β∗x [m] 3.0 1.5 1.0 1.5 0.5

β∗y [m] 3.0 1.5 1.0 1.5 1.0

half ext. φH /2 [µrad] -250.0 -250.0 -320.0

half ext. φV /2 [µrad] -200.0 -250.0

half int. φspec/2 (H) [µrad] -135.0 -135.0 -135.0 -135.0 -135.0

half total H angle [µrad] -385.0 -385.0 -455.0 -135.0 -135.0

half parallel separation
λ/2 [mm]

0.038 0.032 0.027 0.035 0.022

ion
runs

Van der
Meer

H β∗-
leveling

V β∗-
leveling

β∗x [m] 0.5 30.0 12.5 13.5

β∗y [m] 0.5 30.0 12.5 13.5

half ext. φH /2 [µrad] -250.0 -300.0 -250.0

half ext. φV /2 [µrad] -200.0

half int. φspec/2 (H) [µrad] -135.0 -135.0 -135.0 -135.0

half total H angle [µrad] -385.0 -435.0 -385.0 -135.0

half parallel separation
λ/2 [mm]

0.042 0.72 0.0 0.0

Table 3.1: Configuration parameters assumed for the scenarios considered in the calculation of the
minimum safe aperture for a SC to be installed upstream IP8 (in B1 r.s.), according to the
HL-LHC operational scenarios for proton operation of Ref. [26]. The parameters for ion runs
are chosen according to Ref. [48], adapting the optics to match the baseline scenario for ion
runs from Ref. [48].

iii. H (V) very pushed scenario considers more pushed optics with β∗ = 1.0 m for
horizontal crossing (β∗ = 0.5− 1.0 m for the vertical case) and larger external
crossing angles;

iv. Ion runs are considered assuming a very pushed β∗ = 0.5 m (this value is chosen
pessimistically as a modification of the baseline scenario for ion runs from
Ref. [48] with the luminosity requirement at LHCb reported in Ref. [49]);

v. Van Der Meer scan is a technique for luminosity determination in which the
size and shape of the interaction region is measured by recording the relative
interaction rates as a function of the transverse beam separation through a
progressive transverse scan of one beam through the other. They are assumed to
be performed with up to β∗ = 30.0 m, half external crossing angle of −300.0 µrad
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and half parallel separation up to 6.6σ ;
vi. β∗-leveling runs consist in performing the luminosity leveling by regulating β∗,

while nominal external crossing angle (either horizontal or vertical) and no
parallel separation are set. The value of β∗ was calculated to this purpose from
Eq. 3.1.

It should be noted that the very pushed scenarios, as well as the ion runs, may not
be realistic given the known constraints of the optics design and aperture at the time
of writing. However, these scenarios are studied anyway as limiting cases, in order to
stay on the pessimistic side and take into account any possible future improvements.

3.3 Results

In Fig. 3.7 an example of the aperture calculation results is plotted. It corresponds to
the configuration of horizontal crossing in the pushed optics scenario (β∗ = 1.5 m), in
the hypothesis of fill-by-fill alignment of the SC. The three contributions described
in Sec. 3.2 are plotted separately (dashed lines), together with their sum, which corre-
spond to the minimum radius (solid line). The different contributions are plotted as a
function of the distance from IP8, which means that increasing abscissa corresponds
to going further upstream from the IP in the B1 reference system. A distance range
from 0 to 5 m is considered—the upper limit was chosen because it is close to the first
spectrometer bump compensator and the installation of the SC at such s-positions
without interference with existing elements would not be possible.

At 0.8790 m from the IP a solid black vertical line marks the VELO edge located
upstream the IP in the B1 reference system, and it extends to the nominal VELO
aperture of 3.5 mm. The dashed black line at 0.9435 m corresponds to the projection
of the downstream edge, delimiting the zone within which the cell would be safe with
an aperture larger than the VELO aperture.

The 19.4σ envelope gives the largest contribution up to 2 m from the IP, where it is
overcome by the constraints imposed by the beam crossing configuration. The orbit
drift offset is of course constant, and it gives a lower contribution to the sum. A very
different situation is represented in Fig. 3.8 for a cell which would not be aligned at
every fill. In this case the constant 2.0 mm offset dominates the sum for all the distance
range analysed.

In Fig. 3.9 and 3.10 all the scenarios considered for the calculation are summarised,
in the case of a cell aligned fill-by-fill or not, respectively. In these figures, only
the minimum aperture given by the sum of all contributions is shown. The Van der
Meer scan evidently dominates up to c.a. 4.5 m far from the IP, where it’s overcome
by the constraint aperture for the ion runs. These two limits impose a final safe
radius of Rmin = 3.0 − 4.8 mm depending on s-position, in the case of fill-by-fill
alignment. If Van der Meer scans and ion runs are discarded, then the minimum
safe radius has a stronger dependence on the position and varies within the interval
Rmin = 1.5−4.4 mm. Regarding the case of non re-alignment with the pessimistic 2 mm
offset, the final calculation would impose a minimum radius of Rmin = 5.0− 6.7 mm, or
Rmin = 3.5− 6.3 mm if Van der Meer scans and ion runs are discarded.
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Let us highlight the fact that the results obtained from the presented calculation
does not include any tolerance on the SC itself: they give the minimum acceptable
radius that the SC can have after all the tolerances have been subtracted, such as
manufacturing and alignment tolerances. The design aperture of a storage cell should
thus be correspondingly larger than the given minimum acceptable radius.

Figure 3.7: Minimum SC aperture for horizontal crossing, pushed scenario (β∗ = 1.5 m). The dashed lines
correspond to the three contributions explained in Sec. 3.2, the solid red line is their sum.
The solid black vertical line highlights the VELO edge position, while the dashed one marks
the mirror projection of the opposite edge with respect to the IP. A 0.1 mm offset due to orbit
drifts is assumed (SC aligned at every fill).

Figure 3.8: Minimum SC aperture for horizontal crossing, pushed scenario (β∗ = 1.5 m). The dashed lines
correspond to the three contributions explained in Sec. 3.2, the solid red line is their sum.
The solid black vertical line highlights VELO edge position, the dashed one marks the mirror
projection of the opposite edge with respect to the IP. A 2.0 mm offset due to orbit drifts is
assumed (SC not aligned at every fill).
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Figure 3.9: Minimum storage cell aperture for all scenarios as characterized in Tab. 3.1. A 0.1 mm offset
due to orbit drifts is assumed (SC aligned at every fill).

Figure 3.10: Minimum storage cell aperture for all scenarios as characterized in Tab. 3.1. A 2.0 mm offset
due to orbit drifts is assumed (SC not aligned at every fill).
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3.3.1 Aperture Calculation with MAD-X

In Ref. [31] a crosscheck of the calculation is reported: the aperture module in MAD-X
(see Sec. 2.2.1) was used in order to determine the material free aperture (technically
known as the beam-stay-clear) within the position range under study. This was per-
formed by setting the nominal HL-LHC optics with β∗ = 3.0 m in IP8 at 7 TeV and the
parameters of the baseline scenario as listed in Table 3.1.

The SC pipe was modeled installing markers at every meter from 0 to 5 m upstream
IP8. A circular aperture of 3.3 mm was assigned to the cell, corresponding to the
minimum safe radius calculated for the baseline scenario in the case of fill-by-fill
alignment—See Fig. 3.9. A 2.5 µm normalised emittance and a 20% β-beat were used,
together with a 2× 104 fractional momentum offset and a relative parasitic dispersion
of 0.1.

In Fig. 3.11 the resulting aperture is shown. As can be seen, the beam-stay-clear is
large at the IP8 and it drops down to 19.2σ at s = −5 m. This result can be compared to
the analytic calculations in Fig. 3.9 in which the aperture at −5 m is found considering
the safe 19.4σ . We can say that the two calculations are consistent within 0.2σ , and the
small difference is likely due to the different treatment of the dispersive contribution.
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Figure 3.11: From [31]. The available aperture upstream of IP8 as calculated with MAD-X for HL-LHC
v1.3, assuming a normalized emittance of 2.5 µm, β∗ = 3 m, a horizontal half external
crossing angle of −250 µrad, a −135 µrad horizontal spectrometer bump and a vertical
parallel separation of 38 µm.

3.3.2 Outlooks and Applications: the SMOG2 Upgrade

We recall that the calculation just described was performed within the framework of
the study for the PBC Fixed-Target program. However, in Sec. 1.5 we addressed the
technical upgrade of SMOG during LS2 as a push for the study of the SC technology
for gas target experiments at LHCb [22].

The results for the minimum aperture calculation are thus being used by the SMOG
collaboration for the design and realisation of the SMOG2 storage cell which is going
to be installed soon at the location of the present gas injection system in IR8. At the
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time of writing, the SMOG2 cell has been successfully pre-installed and laser-aligned
to the VELO RF foil, as reported by the picture in Fig. 3.12, and it is waiting to be
placed at its final destination down in the LHCb cavern.

Figure 3.12: SMOG2, internal side view of half storage cell (black), its Wake Field Suppressor and the
VELO RF foil (grey). Photograph: Di Nezza, Pasquale. Cerdits: CERN.

The implementation of SMOG2 upgrade will allow to increase by up to two orders
of magnitudes the target areal density, significantly increasing the fixed-target collision
luminosity. Moreover, the SC will delimit a well defined interaction region, displaced
with respect to the IP, possibly allowing to run fix-target experiment in parallel with
the collider mode.

SMOG2 is going to be the pilot experiment for the possible implementation of
fixed-target experiments in HL-LHC.
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Conclusions

In this thesis we reported a contribution to the feasibility study for the installation of
fixed-target experiments at the LHC in the framework of the Physics Beyond Collider
(PBC) study program. In particular, we studied the possibility of performing collisions
between the LHC beam and a fixed gaseous target in front of the LHCb detector. The
proposal is to inject the target gas inside a storage cell (SC), which would allow reaching
a high target areal density (up to θgas = 1014 atoms cm−2) and to inject a variety of gas
species, both polarised and unpolarised, with atomic weights ranging from H to Xe.

In Chapter 2 we presented the study of the impact on the machine of beam losses
outside of the LHCb experiment, caused by the collision of the 7 TeV proton beam
with the gas targets upstream of IP8 in Beam 1 reference system. Simulations were
performed of the scattered proton losses on the LHC magnets and collimators. The
simulation results were compared to an 8.75 W/m limit (at 7 TeV) on the continuous
power loss per unit length that the superconducting magnets can withstand before
quenching.

Elastic and inelastic beam-gas interactions were studied separately, as explained in
Sec. 2.3.1 and 2.3.2 respectively. Both H and Xe targets were studied as limiting cases.
The dependence of the losses on the longitudinal target position was studied for the
inelastic case, by performing the simulations with the target located at -1.5 m and -3.0
m from the IP. The dependence is found to be very small.

For both gas species, the losses resulting from elastic interactions are found pre-
dominantly on the betatron cleaning insertion, and the local depositions recorded on
the cold magnets are orders of magnitude below the quench limit. For the inelastic
interactions, most of the protons interacting with the gas are lost within the target, and
the surviving ones show a wider energy range and a stronger angular deviation with
respect to the elastic case, which translates into more and higher losses recorded in
the target region and the momentum cleaning region. The impact of a 7 TeV proton
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beam on a 1014 atoms cm−2-thick H target can be considered safe since all the losses
are still below the quench limit. Conversely, the interaction with a Xe target with the
same density causes cold losses exceeding the quench limit. The highest losses on cold
magnets were recorded for the case of B1 hitting the target at -1.5 m from IP8—the
loss was calculated to be 72 W/m at s = 23553.4 m, where a horizontal orbit corrector
(MCBCH.6R8.B1) is located.

The maximum Xe density that maintains all the losses below the LHC design
quench limit is calculated to be θmax ≈ 1013 atoms cm−2. This estimate is probably
pessimistic and could be refined by performing dedicated energy deposition and
quench limit studies for the involved magnets, accounting for the full shower and
the local geometry. Moreover, such studies should be performed also on the elements
closest to the LHCb experiment. The additional protection that will be installed in the
Ligh-Luminosity LHC upgrade for coping with the collision debris from the IP could
hopefully be effective also in intercepting the local beam-gas debris. More studies
should be done in the future also to evaluate potential radiation damage at the most
impacted elements, as well as effects on emittance blowup and luminosity lifetime.

In Chapter 3 an analytic calculation of the minimum safe aperture for the SC has
been presented. The minimum radius was calculated as a function of the distance of the
furthest cell edge from the IP. Details were given for the contributions to the total radius,
arising from the geometrical configuration of the beam crossing, the possible orbit
drift and the safe beam envelope that must be considered when designing elements to
be installed inside the beam pipe.

A variety of operational scenarios were considered, characterised by different
crossing setups, parameters and optics. A minimum SC radius was found between
3.0 mm and 4.8 mm assuming that the cell is realigned to the beam centre at every fill,
so that the orbit will not drift by more than 100 µm. The dominating limitation is given
by the conditions during Van der Meer scans and the vertical crossing configuration
with very pushed β∗ values. The result gives the minimum acceptable radius that the SC
can have after all the tolerances have been subtracted, meaning that the design radius
must be correspondingly larger (adding tolerances for manufacturing, misalignments,
etc).

It must be remarked that the results presented in this thesis have a direct impact
on the progress of the PBC Fixed-Target studies. The limitations found will be used
for the design of the SC and for determining the experiment configuration in terms of
target density.

The results of this work can also be directly applied to the upgrade of the present
LHCb gas injection system, SMOG, to a new system called SMOG2. The upgrade
involves the installation of a SC for enhancing the thickness of the injected gas. The
SMOG2 installation is ongoing at the time of writing, i.e., during the Long Shutdown 2
of the LHC, and it will be operational in Run 3. The results for the minimum aperture
calculation have been considered for the SMOG2 cell design.



appendix A

HL-LHC Parameters

Table A.1: Parameters in collision adopted from the LHC design report [50] and parameters foreseen for
the HL-LHC upgrade version 1.3 [5].

Parameter Nominal LHC
(design report)

HL-LHC 25ns
(standard)

Beam energy in collision [TeV] 7 7

Nb 1.15E+11 2.2E+11

nb 2808 2760

Number of collisions in IP1 and IP5 2808 2748

Ntot 3.229E+14 6.1E+14

Beam current [A] 0.58 1.1

Half Crossing angle [rad] 142.5 250

Norm. long range beam-beam separation at mini-
mum β∗

9.4 10.5

Minimum β∗ [m] 0.55 0.15

εn [µm] 3.75 2.50

εL [eVs] 2.5 3.03

R.M.S. energy spread (q-Gaussian distribution) - 0.00011

R.M.S. energy spread (FWHM equiv. Gaussian) 1.13E-04 1.29E-04

R.M.S. bunch length [m] (q-Gaussian distribution) - 7.61E-02
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R.M.S.bunch length [m] (FWHM equiv. Gaussian) 7.55E-02 0.09

Peak Luminosity without crab-cavities [cm−2s−1]
(Virtual peak for HL-LHC)

1E+34 8.11E+34

Virtual Peak Luminosity with crab-cavities:
Lpeak*R1/R0 [cm−2s−1]

- 1.7E+35

Events / crossing without levelling andwithout crab-
cavity

27 212

Levelled Luminosity [cm−2s−1] - 5.0E+34

Events / crossing (with levelling and crab-cavities
for HL-LHC)

27 131

Peak line density of pile up event [event/mm] (max
over stable beams)

0.21 1.28

Leveling time [h] (assuming no emittance growth) - 7.3

Number of collisions in IP2/IP8 2808 2494/2572

Nb at LHC injection 1.2E+11 2.3E+11

nb / injection 288 288

Ntot / injection 3.46E+13 6.62E+13

εn at SPS extraction [µm] 3.4 2.1
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