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Abstract

This thesis’s project studies how black hole evaporation is captured in string theory by so
called Quantum Extremal Islands, extremal surfaces that allows to compute the entangle-
ment entropy of Hawking radiation. This project will focus on specific 10d type IIB string
theory uplifts of the largely studied 5d Karch-Randall models, doubly-holographic models
which allows to study the evaporation of an AdS black hole by coupling it to an external
bath via transparent boundary conditions. The main results of recent works on these uplifts
will be reproduced and the corresponding Hartman-Maldacena surfaces will be constructed
and studied in one of these uplifts, as well as their implications for the Page curve in presence
of a non-vanishing dilaton variation.
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Chapter 1

Introduction

Black holes are fascinating objects and, from the theoretical point of view, provide an intriguing
arena in which to explore the challenges posed by the reconciliation of general relativity and
quantum mechanics.
Beside its defining property of being a region from which no causal observer can escape from, a
black hole also obeys the no-hair theorem, which states that all black holes can be completely
characterized by their mass, charge and angular momentum. This already brings out some
problems, since it implies that the information of whatever falls into the black hole would not
be able to be distinguished from outside the event horizon.
In classical general relativity, it can be shown that black holes obey laws that are analogous
to the law of thermodynamics. Thus if one considers black holes quantum-mechanically, they
behave as thermodynamic objects characterized by a temperature and an entropy. The entropy,
also called Bekenstein-Hawking entropy, is given by the area of the event horizon in units of
Planck length squared.
Stephen Hawking discovered that black holes emit thermal radiation [1]. As a consequence,
emitting Hawking radiation, the black hole’s mass decreases, the black hole gradually evapo-
rates and eventually disappears. This means that either information is truly lost in black holes,
or that information has been preserved by Hawking radiation itself by some mechanism. In
addition to the notion of thermodynamic entropy, there is another definition of entropy which is
the von Neumann entropy: given a density matrix ρ describing the quantum state of the system,
the von Neumann entropy is defined as SvN = −Tr[ρ log ρ]. It quantifies our ignorance about
the precise quantum state of the system, it vanishes for a pure state, it is invariant under time
evolution and it is always less than the thermodynamic entropy.
In terms of this entropy we can make a more accurate statement of the information paradox. If
one computes the von Neumann entropy of the entanglement of Hawking radiation, one finds
that it increases as the number of emitted quanta; but after a black hole evaporates, all that is
left is the radiation which is still entangled and so is in a mixed state, in contrast with the fact
that the black hole could have been formed from a pure state. But according to unitarity, it is
impossible that a pure state evolve into a mixed state, hence the paradox.
The violation of unitarity by the evaporation of the black hole can be explicitly seen by the fact
that as the black hole evaporates, the area of the event horizon decreases and the Bekenstein-
Hawking entropy decreases as well since it’s proportional to the area of the horizon. Due to the
entanglement of the Hawking radiation, the von Neumann entropy of the black hole and the one
of Hawking radiation itself must always be equal but we run into problem when the increasing
von Neumann entropy of Hawking radiation becomes larger than the Bekenstein-Hawking en-
tropy of the black hole (which is always larger than the its von Neumann entropy). Thus, this
means that in order to preserve unitarity, at a certain point, called Page time, the entropy of
the radiation must begin decreasing, following the so called Page curve [2].
Ryu and Takayanagi conjectured a holographic entanglement entropy proposal [3], according
to which the entanglement entropy of a region of a conformal field theory can be calculated as
the area of a codimension two, spacelike extremal surface living in dual AdS theory of gravity.
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2 CHAPTER 1. INTRODUCTION

The proposal has been conjectured firstly in the static case, and then it was derived in time-
dependent geometries as well with contributions by Hubeny [4]. The static formula, and the
time-dependent formula in certain special states, were then derived through the AdS/CFT dic-
tionary by Lewkowycz and Maldacena[5]. Subsequently, it was found a quantum generalization
of the holographic entanglement entropy prescription[6],[7],[8],[9] and this generalization was
crucial for a deeper understanding of the calculation of the entropy of Hawking radiation. In
particular it was identified an additional contribution to the entanglement entropy of Hawking
radiation, namely the islands, regions physically disconnected from the asymptotic radiation
region, which turns out to become dominant at late times, leading to a Page curve and thus
ensuring the unitary evolution of black hole’s evaporation.
Islands have been firstly studied in lower dimensional gravity [10], [11] and then the first
extensions to higher-dimensional setups have appeared in [12],[13],[14],[15]. These higher-
dimensional setups are essentially based on the Karch-Randall models [16],[17],[18], models of
localized gravity which had been firstly constructed and studied between the ’90s and the begin-
ning of the new millennium and that have gained new vigor in the last years because they reveal
of crucial utility in order to reproduce the Page curve using holography ideas. These models
are based on a bulk AdS5 geometry with a 4d end-of-the-world (ETW) brane extending on an
AdS4 slice, cutting off a part of the AdS5 bulk geometry and ending on its conformal boundary.
The importance of these models in the information paradox context is that they are doubly
holographic models: namely they have three different equivalent descriptions which are related
to each other by applying the AdS/CFT correspondence twice; in particular in one of these
descriptions the model can be viewed as a conformal field theory coupled with a 4-dimensional
massive graviton localized on the brane, in turn coupled via transparent boundary conditions
to a second conformal field theory living on the uncut-off part of the AdS5 conformal boundary,
which will be called the bath system. Thus if we imagine that an AdS4 black hole lives on the
brane, it will evaporate since the emitted radiation reaching the AdS4 conformal boundary will
be able to escape on the bath system thanks to the transparent boundary conditions. Otherwise
an isolated black hole in an asymptotically AdS space would not evaporate because the AdS
geometry acts like a box.
The doubly holographic nature of these models ensure also that the quantum extremal surfaces
contributing to the entanglement entropy of radiation region, taken as a subsystem of the ther-
mal bath far from the defect, are completely geometrized. In particular the possible quantum
extremal surfaces living in the bulk AdS5 geometry start from the boundary of radiation region
and either drop into the horizon or end on the end-of-the-world brane. The first kind of quan-
tum extremal surfaces are called Hartman-Maldacena surface [19], and it actually connects the
boundary of the radiation region to the boundary of its copy on the second conformal boundary,
if we consider the full Penrose diagram of the bulk AdS5 Schwarzschild black hole. It connects
them stretching through an Einstein-Rosen bridge and its area grows linearly in time. On the
other side, the second type of extremal surface is the island surface, which stretches outside
the horizon and thus its area is constant in time. The competition between these surfaces was
proved to lead to a Page curve.
The Karch-Randall models can be seen in one of their three descriptions as boundary CFTs.
Holographic string theory configurations realizing interface and defect conformal field theories
have been constructed by D’Hoker et al [20],[21] as type IIB string theory uplifts. These type
IIB string theory solutions based on AdS4 × S2 × S2 ×Σ, with Σ a Riemann surface, turns out
to be completely determined by two harmonic functions on the Riemann surface Σ.
We are going to investigate some examples of these solutions, such as the global AdS5 ×S5, the
supersymmetric Janus solution and the 5-brane doped Janus solution, and most importantly
we are going to show how is possible to obtain the 10d uplifts of Karch-Randall models with a
suitable choice of the pair of harmonic functions. In particular, the Karch-Randall models with
non-gravitating bath, the ones discussed briefly above, can be described by an uplift correspond-
ing to semi-infinite D3-branes terminating on a system of D5- and NS5-branes with suspended
D3-branes among the 5-branes. The Karch-Randall models with gravitating bath [14] can be
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obtained by adding a second end-of-the-world brane intersecting the conformal boundary of the
bulk AdS5 geometry at the same point of the first ETW brane and their corresponding uplift
can be engineered with a system of intersecting D5, NS5 and D3-branes without semi-infinite
D3-branes since with the additional ETW brane the Karch-Randall geometry becomes compact
without any asymptotic AdS5 region.
Uhlemann [22] constructed and studied quantum extremal surfaces on these uplifts, in partic-
ular in the uplifts with non-gravitating bath he found that it exists a 10d counterpart of the
brane angle of 5d Karch-Randall models, which will be the ratio of suspended and semi-infinite
D3-branes, and he numerically found that, as in the Karch-Randall models it exists a critical
angle at zero temperature below which islands cease to contribute, it exists a critical value of the
ratio within which islands are constrained to exist at zero temperature. Furthermore, he was
able to identify 10d versions of the ”left/right entanglement entropy” that was found to exhibit
a Page curve behaviour in 5d Karch-Randall models with gravitating bath.
Alessandra Gnecchi et al studied island surfaces in the same Uhlemann’s uplift with non-
gravitating bath but allowing a non-vanishing dilaton variation [23], discussing their properties
both in relation to the existence of a massive graviton in the same geometric background and
to the varying dilaton itself.
After reproducing the main results of both works, the original part of this thesis’s project is
to construct and study the Hartman-Maldacena surfaces in the same geometric background
considered by Gnecchi et al with non-vanishing dilaton variation, in particular extending the re-
sults obtained by Uhlemann about the area difference between island and Hartman-Maldacena
surfaces. Then we try to study the quantum extremal surfaces in a particular solution with
gravitating bath and with non-vanishing dilaton variation, even if in the case considered the re-
sults will reveal to be trivial and identical to ones of the original solution with vanishing dilaton
variation considered by Uhlemann.
This thesis’s project is structured as follows. In Chapter 2, we are going to briefly introduce
type II superstring theories, focusing at the end on type IIB supergravity since it will be central
for our work. In Chapter 3, we describe the other extended objects which exist in type II super-
string theories, specifically the D-branes and the NS5-brane, which will be the main ingredients
in the brane constructions corresponding to the type IIB geometric backgrounds we are going to
work on. In Chapter 4, we review the AdS/CFT correspondence, in particular the motivation
of the correspondence between N = 4 super Yang-Mills theory in 4 dimensions and type IIB
superstring theory on AdS5 × S5 and the holographic dictionary, finishing the chapter with a
discussion on the entanglement entropy and on Ryu and Takayanagi’s holographic entanglement
entropy proposal. In Chapter 5, we discuss the information paradox and the island prescription,
following a brief review of Karch-Randall models with non-gravitating and gravitating bath.
In Chapter 6, we discuss the type IIB string theory solutions based on AdS4 × S2 × S2 × Σ
background geometry found by D’Hoker et al, in particular we study the explicit local solu-
tion, the global regularity and topology constraints and then many specific examples, like the
supersymmetric Janus solution with and without 5-brane sources, the holographic duals of 3d
N = 4 SCFTs found by Gaiotto and Witten [24],[25] and the uplifts of both Karch-Randall
models with non-gravitating and gravitating bath. In Chapter 7, we discuss massive AdS grav-
ity, its embedding in string theory and its range of validity as an effective field theory, but more
importantly we are going to show how in the discussed type IIB string theory solutions the
lowest-lying spin-2 mode can acquire a tiny mass as a consequence of the no-compactness of
the internal manifold [26]. Finally the Chapter 8 regards all the work mentioned before about
quantum extremal surfaces in the 10d string theory uplifts.



Chapter 2

Superstring theory

The geometric background on which we are going to study the evaporation of black holes and
the entanglement entropy of Hawking radiation will be a particular type IIB superstring theory
solution. For this reason it’s worthwhile to briefly review some basic aspects of superstring
theory[27],[28],[29],[30], focusing then on the type IIB superstring theory and on its low energy
limit, i.e. the type IIB supergravity action, which describes only the massless modes of the
corresponding superstring theory.

The bosonic string theory suffers of two important shortcomings, namely the bosonic string
spectrum contains a tachyonic ground state and it exhibits only bosonic excitations. Thus the
vacuum instability due to the tachyonic ground state and the lack of fermionic excitations makes
the bosonic string quite unrealistic.
Both of these problems are solved in superstring theory. The basic idea is that one adds fermions
on the worldsheet by introducing supersymmetry, and their contribution to the zero-point energy
on the worldsheet will cancel exactly the negative zero-point energy of the bosonic string, which
originally caused the appearance of the tachyonic ground state, solving in this way both the
shortcomings mentioned above. The resulting theory will be a tachyonic-free supersymmetric
theory in d = 10 dimensions consisting of both a bosonic sector, which will be identical to the
worldsheet theory of the bosonic string, and a fermionic one.

There exist two major formulations of a superstring theory. Both of them enjoy super-
symmetry on the world-sheet and in spacetime, but in the Ramond-Neveu-Schwarz (RNS)
formulation supersymmetry is manifest only on the world-sheet and in the Green-Schwarz
(GS) formulation it is manifest only in spacetime. In the following we are going to use the RNS
formalism.
The superstring world-sheet action in flat gauge, i.e. the intrinsic world-sheet metric is set to
be the flat one hαβ = ηαβ , is

S = − 1

4π

∫

M

d2ξ(α′−1∂αX
µ∂αXµ + iψ̄µAγ

α
AB∂αψµB) (2.1)

where Xµ are worldsheet scalars, the first piece is the bosonic string worldsheet action in flat
gauge and ψµA = (ψµ+, ψ

µ
−)

T are 2-dimensional worldsheet spinors. α′ is related to the string
length ls by α

′ = l2s and to the tension of the fundamental string as τF1 = 1/(2πα′). The string
world-sheet is the strip M = {(τ, σ)|0 ≤ σ ≤ π, τ ∈ R} and on the two-dimensional world-sheet
with flat metric ηαβ the Clifford algebra is generated by real two-dimensional γ-matrices with
anti-commutation relations

{γα, γβ}AB = 2ηαβIAB (2.2)

here A,B are spinor indices on the world-sheet and α, β are vector indices on the world-sheet,
α, β = 0, 1.
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We assume the worldsheet spinors ψA to satisfy the Majorana condition ψ∗
A = ψA.

1

In light-cone coordinates ξ± = τ ± σ, (2.1) becomes

S = SB + SF =
1

2π

∫

d2ξ
2

α′
∂+X · ∂−X +

i

2π

∫

d2ξ(ψ+ · ∂−ψ+ + ψ− · ∂+ψ−) (2.4)

and this action is invariant under the following supersymmetry transformations











δXµ = i
√

α′

2 ε̄ψ
µ

δψµ =
√

2
α′

1
2γ

α∂αX
µ · ε

(2.5)

where ε is an infinitesimal constant Majorana spinor.
The equations of motion for Xµ(τ, σ) are given by a relativistic wave equation

(∂2τ − ∂2σ)X
µ = ∂+∂−X

µ = 0 (2.6)

and they must be supplemented by the vanishing of the σ-boundary term2

∂σX
µδXµ

∣

∣

∣

σ=π

σ=0
= 0 (2.7)

Therefore we must impose boundary conditions such that these boundary terms vanish. The
consistent boundary conditions are
• Closed string: the boundary terms at σ = 0 and σ = π must cancel each other, i.e. this is
equivalent to impose periodic boundary conditions defining a closed string

Xµ(τ, σ = 0) = Xµ(τ, σ = π) (2.8)

• Open string: the boundary terms at σ = 0 and σ = π have to vanish separately. Thus for each
Xµ, we must impose either Neumann boundary conditions ∂σX

µ = 0 or Dirichlet boundary
conditions δXµ = 0 on one or both string endpoints. Dirichlet boundary conditions for Xµ

correspond to string endpoint being fixed in the µ-direction. Thus for each direction the
possible combinations of boundary conditions at the endpoints are (NN), (DD), (DN), (ND).

The equation of motion (2.6) can be solved by splitting Xµ(τ, σ) into left- and right-moving
modes depending only on ξ+ and ξ− respectively, i.e. Xµ(τ, σ) = Xµ

L(ξ
+) +Xµ

R(ξ
−), which can

be decomposed into a Fourier series of the form

Xµ
R(τ − σ) =

xµ − x̃µ

2
+ α′p̃µ(τ − σ) + i

√

α′

2

∑

n ̸=0

1

n
α̃µne

−in(τ−σ)

Xµ
L(τ + σ) =

xµ + x̃µ

2
+ α′pµ(τ + σ) + i

√

α′

2

∑

n ̸=0

1

n
αµne

−in(τ+σ)

(2.9)

where pµ and p̃µ are the momenta of the modes and in order to ensure the reality of Xµ the
Fourier modes must satisfy αµ−n = (αµn)∗ and α̃µ−n = (α̃µn)∗.

1Suppose we choose the following basis of two-dimensional γ-matrices satisfying (2.2)

γ0 =

(

0 −1

1 0

)

γ1 =

(

0 1

1 0

)

(2.3)

The Majorana condition is that the spinor ψ is equal to its charge conjugate spinor ψc = Cψ̄T = iCγ0Tψ∗ = ψ∗

since the charge conjugation matrix is C = iγ0 due to the fact that for a Majorana spinor the Dirac conjugate
must satisfy ψ̄ = ψ†iγ0 = ψTC. Thus in this case the Majorana condition is a reality condition because of the
fact that the γ-matrices are real.

2The τ -boundary term vanishes by the assumption δXµ(τ = ±∞) = 0
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In the case of closed strings, the left- and right moving modes satisfy the periodic boundary
conditions if we set pµ = p̃µ. The x̃µ term cancels in the sum Xµ

L(ξ
+) + Xµ

R(ξ
−), while xµ

represents the center of mass position of the string at τ = 0 since

1

π

∫ π

0
dσXµ = xµ + 2α′pµτ (2.10)

while pµ represents the total spacetime momentum of the string

∫ π

0
dσΠµ(τ, σ) = pµ (2.11)

where Πµ(τ, σ) = ∂τX
µ(τ, σ)/(2πα′) is the canonical momentum.

In the case of open strings with Neumann-Neumann (NN) boundary conditions for the target
spacetime coordinate Xµ, the solution reads

Xµ(τ, σ) = xµ + 2α′pµτ + i
√
2α′
∑

n ̸=0

1

n
αµne

−inτ cos (nσ) (2.12)

notice that the boundary conditions relate Xµ
L and Xµ

R in such a way the independence of left-
and right-moving oscillators drops, namely αµn = α̃µn.
In the case of Dirichlet-Dirichlet (DD) boundary conditions onXµ,Xµ(τ, 0) = xµi andX

µ(τ, π) =
xµf , we get

Xµ(τ, σ) = xµi +
1

π
(xµf − xµi )σ +

√
2α′
∑

n ̸=0

1

n
αµne

−inτ sin (nσ) (2.13)

The equation of motion of the world-sheet spinors is the Dirac equation, describing left- and
right-moving waves

∂+ψ
µ
− = ∂−ψ

µ
+ = 0 (2.14)

provided that the boundary terms of the fermionic action vanish

δSF ∼
∫

dτ [ψ+δψ+ − ψ−δψ−]
σ=π
σ=0 (2.15)

and, as in the bosonic case, there are two different types of strings satisfying the boundary
conditions, namely open and closed strings.

Open superstrings

In the case of open strings, the boundary terms at σ = 0 and σ = π must vanish individually
and this implies there are two possible Lorentz invariant boundary conditions on world-sheet
fermions:

R : ψµ+(τ, 0) = ψµ−(τ, 0) ψµ+(τ, π) = ψµ−(τ, π)

NS : ψµ+(τ, 0) = ψµ−(τ, 0) ψµ+(τ, π) = −ψµ−(τ, π)
(2.16)

The Ramond sector (R) corresponds to periodic boundary conditions with integer modes

ψµ±(τ, σ) =
1√
2

∑

n∈Z

dµne
−in(τ±σ) (2.17)

whereas the Neveu-Schwartz sector (NS) corresponds to anti-periodic boundary conditions and
half integer modes

ψµ±(τ, σ) =
1√
2

∑

r∈Z+1/2

bµr e
−ir(τ±σ) (2.18)

where dµn and bµr are Grassmann-valued Fourier modes and the Majorana condition implies that
dµn = (dµ−n)

† and bµr = (bµ−r)
†.
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It can be proved in several ways, for example through the requirement of the absence of negative-
norm states in the Fock space of the quantized theory or the requirement of Lorentz invariance
of theory in the light-cone gauge, that the critical dimension of a superstring is d = 10, unlike
the bosonic string whose critical dimension is d = 26.
In the NS sector the ground state is a spacetime scalar and is tachyon, whereas the first level
excitations form a transverse massless vector 8v of SO(8).
In the R sector the ground state energy always vanishes because the world-sheet bosons and
their superconformal partners have the same moding. The Ramond vacuum is degenerate, since
both the ground state itself |0⟩R and dµ0 |0⟩R result to be annihilated by all positive modes. In
particular, the Ramond zero-modes satisfy the (ambient spacetime) Clifford algebra

{dµ0 , dν0} =
1

2
{Γµ,Γν} = ηµν (2.19)

so the ground state |0⟩R is a Spin(9, 1) spinor. Being a 10-dimensional spinor, it has 2d/2 =
32 complex components, which actually are real as a consequence of the Majorana condition
dµn = (dµ−n)

†. In 10 dimensions Majorana spinors can be decomposed further into Weyl spinors,
corresponding to the splitting

32 = 16⊕ 16′ (2.20)

where the prime denotes negative chirality Weyl spinors.
Imposing that the ground state satisfies the Dirac equation, half of the components of Spin(9, 1)
spinor are eliminated leaving a Spin(8) spinor. The two inequivalent spinor representations of
Spin(8), which describe spinors of opposite chirality with eight real components each, are de-
noted by 8s and 8c.

The spectrum described above has several problems. First of all, in the NS sector the ground
state is a tachyon, a particle with imaginary mass. Secondly, the spectrum is not space-time
supersymmetric, since for example there is no fermion in the spectrum with the same mass as
the tachyon.
It is possible to turn the RNS string theory into a consistent theory by truncating (or projecting)
the spectrum in a such a way it results to be tachyon-free and space-time supersymmetric. This
projection is called GSO projection.
First of all, let us define the G-parity operator. In the NS sector it has the following form

G = (−1)F+1 = (−1)
∑∞

r=1/2 b
i
−rb

i
r+1 (2.21)

where F is world-sheet fermion number. While in the R sector the G-parity operator is defined
as

G = Γ11(−1)
∑∞

n=1 d
i
−rd

i
r (2.22)

where
Γ11 = Γ0Γ1...Γ9 (2.23)

is the chirality operator satisfying

(Γ11)
2 = 1, {Γ11,Γ

µ} = 0, Γ11ψ = ±ψ (2.24)

and spinors satisfying the last equation are said to have positive or negative chirality respectively.
The GSO projection consists of keeping only states with a positive G-parity in the NS-sector,
whereas in the R sector one can project on states with positive or negative G-parity depending
on the chirality of the spinor ground state.
The GSO projection eliminates the open-string tachyon from the spectrum, since it has negative
G-parity. The first excited state in the NS sector has positive G-parity, so the massless vector
boson becomes the ground state of the projected NS sector, matching nicely with the fact that
the ground state in the fermionic sector is a massless spinor. This is a first indication that the
spectrum is space-time supersymmetric after the GSO projection, reinforced by noticing that
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the NS sector transverse massless vector boson has eight physical polarization states whereas
the R ground state is a 8s⊕8c spinor representation with 16 degrees of freedom, but after the
GSO projection only one of the two chiral representation survives with eight spinor degrees of
freedom as well.
The ground state for the open string spectrum is the 16-dimensional multiplet 8v ⊕8c, if the 8s
chiral spinor representation is suppressed in the GSO projection and viceversa.

Closed superstrings

The closed superstring spectrum is the product of two copies of the open superstring spectrum,
with right- and left-moving levels matched.
In the open string spectrum the two choices for the GSO projection were equivalent, but in
closed string there are two inequivalent choices, taking the same or opposite projections on the
two sides. These give rise to two closed oriented superstring theories, respectively type IIB and
type IIA superstring theories.
Thus the massless ground states are given by

IIA : (8v ⊕ 8s)⊗ (8v ⊕ 8c)

IIB : (8v ⊕ 8s)⊗ (8v ⊕ 8s)
(2.25)

Both type II theories have the same field content in the NS-NS sector, namely

8v ⊕ 8v = Φ⊕Bµν ⊕Gµν = 1⊕ 28⊕ 35 (2.26)

which are a scalar field called dilaton, an antisymmetric two-form gauge field called Kalb-
Ramond field and a symmetric traceless rank-two tensor, the graviton.
In the R-R sector, the IIA and IIB spectra are respectively

8s ⊕ 8c = [1] + [3] = 8v ⊕ 56t

8s ⊕ 8s = [0] + [2] + [4]+ = 1⊕ 28⊕ 35+
(2.27)

here [n] denotes a fully antisymmetric n-tensor, i.e. [n] ≡ C(n) with components C
(n)
[µ1···µn]

, with

[4]+ denoting the part of the 4-form field having a self-dual field strength with respect to the
Hodge ∗-duality. The NS-NS and R-R spectra together form the bosonic components of d = 10
type II supergravity theories.
In the NS-R and R-NS sectors the tensor products are

8v ⊕ 8c = 8s ⊕ 56c

8v ⊕ 8s = 8c ⊕ 56s
(2.28)

each sector contains respectively a spin 1/2 dilatino and a spin 3/2 gravitino. In type IIA theory
they have opposite chirality, whereas in type IIB the same.

In the ′80s and ′90s, three further consistent superstring theories, known as type I and
heterotic superstring theories, with gauge groups SO(32) and E8 × E8 have been discovered,
and they turn out to be connected with each other and with type II theories by a web of dualities,
but from now on we will focus only on type II superstring theories.

Type IIB supergravity

Since we are going to study an uplift of an evaporating black hole model in a type IIB string
theory background, let us focus in more detail in this superstring theory and consider in partic-
ular the type IIB supergravity, whose field content is given by the massless spectrum of the type
IIB superstring. As we have just discussed, the fermionic spectrum consists of two left-handed
Majorana-Weyl gravitinos and two right-handed Majorana-Weyl dilatinos, the NS-NS bosons
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are given by the metric, the two-form B2 with field strength H3 and the dilaton Φ, and finally
the R-R bosonic sector consists of the form fields C0, C2 and C4, with the latter must having a
self-dual field strength.
Writing down the action of type IIB supergravity presents an issue due to the fact that the
term3

∫

d10x|F5|2 (2.29)

does not incorporate the self-duality condition, thus it describes twice the actual number of
propagating degrees of freedom. There are several different ways to deal with this issue, for
example one approach consists in not constructing the action but only the field equations and
the supersymmetry transformations, whereas another approach, the Pasti-Sorokin-Tonin one,
consists in building a manifestly covariant action that reproduces the right number of degrees of
freedom by the introduction of an auxiliary scalar field with a compensating gauge symmetry.

Here for simplicity we decide to write an action that gives the correct equations of motion
once we impose the self-duality constraint, but which does not satisfy supersymmetry for the
reasons we have explained above.
The bosonic part of this action takes the form

S = SNS + SR + SCS (2.30)

with

SNS =
1

2k2

∫

d10x
√−ge−2Φ

(

R+ 4∂µΦ∂
µΦ− 1

2
|H3|2

)

SR = − 1

4k2

∫

d10x
√−g

(

|F1|2 + |F̃3|2 +
1

2
|F̃5|2

)

SCS = − 1

4k2

∫

C4 ∧H3 ∧ F3

(2.31)

where 2k2 = (2π)7l8s , Fn+1 = dCn as usual and

F̃3 = F3 − C0H3

F̃5 = F5 −
1

2
C2 ∧H3 +

1

2
B2 ∧ F3

(2.32)

and self-duality is imposed at the level of equation of motions as

F̃5 = ∗F̃5 (2.33)

3here we use the convention that |Fn|
2 = 1

n!
gµ1ν1gµ2ν2 ...gµnνnFµ1µ2...µn

Fν1ν2...νn



Chapter 3

T-duality, D-branes and the
NS5-brane

String theory is not only a theory of fundamental one-dimensional strings, but there are also a
variety of extended objects, called branes, of different dimensionalities, whose stability depends
on the theory considered and its vacuum configuration. One of these are the D-branes[31],[32],
defined as the objects on which open strings end, and one way to motivate their necessity is
based on T-duality[33], a transformation that relates two different string theories.
Another interesting object is the NS5 brane, which is neither a string or a D-brane, rather it is
a solitonic solution to the type IIB supergravity field equations as we will see. The NS5 brane
is related to the D5-brane through a weak-strong duality and the reason of prefix ”NS” is due
to the fact that it couples magnetically to the NS-NS 2-form Bµν , as opposed to the D-branes
which couple to R-R form fields.

T-duality of closed and open strings

Closed strings

One of the simplest examples to which T-duality applies is the bosonic string in a space-time
geometry R

24,1 × S1, so the string target space is a 26-dimensional Minkowski space with one
spatial dimension compactified on a circle of radius R. Firstly let us consider the case of a closed
bosonic string: we take periodic boundary conditions for the compactified coordinate that we
suppose to be X25

X25(σ + π, τ) = X25(σ, τ) + 2πRW, W ∈ Z (3.1)

where W is the winding number, which indicates the number of times the string winds around
the circle.
The mode expansion of the coordinates Xµ, for µ = 0, ..., 24,

Xµ = xµ + 2α′pµτ ++i

√

α′

2

∑

n ̸=0

1

n
αµne

−in(τ+σ) + i

√

α′

2

∑

n ̸=0

1

n
α̃µne

−in(τ−σ) (3.2)

does not change compared to the mode expansion in a flat 26-dimensional Minkowski space,
whereas the mode expansion of X25 changes to

X25 = x25 + 2α′p25τ + 2RWσ + ... (3.3)

with an additional linear term in σ in order to satisfy the boundary condition (3.1). The
oscillation mode terms remain untouched under the compactification, thus they will be denoted
by dots from now on.
Since X25 is periodic, from quantum mechanics we know that the momentum eigenvalue p25

must be quantized, in particular it is of the form

p25 =
K

R
, K ∈ Z (3.4)

10
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where the integer K is called the Kaluza-Klein excitation number.
Splitting the expansion into left- and right-movers X25(σ, τ) = X25

L (σ + τ) + X25
R (σ − τ), we

obtain

X25
R =

1

2
(x25 − x̃25) +

(

α′K

R
−WR

)

(τ − σ) + ...

X25
L =

1

2
(x25 + x̃25) +

(

α′K

R
+WR

)

(τ + σ) + ...

(3.5)

where x̃25 is a constant that cancels in the sum. The usual level-matching condition NL = NR

and the mass shell relation get modified as follows

NR −NL =WK

α′M2 = α′
[(K

R

)2
+
(WR

α′

)2]

+ 2NL + 2NR − 4
(3.6)

where NL,R are the left- and right-moving excitations number operators.
The above equations are invariant under the interchange W ↔ K, provided that one simulta-
neously sends R −→ R̃ = α′/R. This equivalence is called T-duality. In this case, T-duality
maps two theories of the same type (one compactified on a circle of radius R and one on a circle
of radius R̃ = α′/R) into one another and the interchange W ↔ K means that momentum
excitations in one description correspond to winding-mode excitations in the dual description
and vice versa.
Notice that this transformation can be expressed equivalently as

X25
R −→ −X25

R and X25
L −→ X25

L (3.7)

so the mode expansion of X25(σ, τ) is mapped into

X̃25(σ, τ) = X25
L (σ + τ)−X25

R (σ − τ) = x̃25 + 2α′K

R
σ + 2RWτ + ... (3.8)

here the coordinate x25, which parametrizes the original circle with periodicity 2πR, has been
replaced by the coordinate x̃25, which parametrizes the dual circle with periodicity 2πR̃, as its
conjugate momentum is p̃25 = RW/α′ =W/R̃.

Open strings

Let us consider the case of a T-duality transformation applied to a theory containing open
strings.
The first thing to notice is that open strings can always be contracted to a point, so they can
always be unwound from the periodic dimension and then the winding number is not meaningful
in this case. In order to find the T-dual of an open string with Neumann boundary conditions,
consider first of all the mode expansion for a space-time coordinate with Neumann boundary
conditions

X(τ, σ) = x+ 2α′pτ + i
√
2α′
∑

n ̸=0

1

n
αne

−inτ cos (nσ) (3.9)

with right- and left-movers mode expansion

XR(τ − σ) =
x− x̃

2
+ α′p(τ − σ) + i

√

α′

2

∑

n ̸=0

1

n
αne

−in(τ−σ)

XL(τ + σ) =
x+ x̃

2
+ α′p(τ + σ) + i

√

α′

2

∑

n ̸=0

1

n
αne

−in(τ+σ)

(3.10)

Compactifying the corresponding space-time dimension on a circle of radius R and carrying out
a T-duality transformation along it gives once again

XR −→ −XR and XL −→ XL (3.11)
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and the dual coordinate becomes

X̃(τ, σ) = XL −XR = x̃+ 2α′pσ + i
√
2α′
∑

n ̸=0

1

n
αne

−inτ sin (nσ) (3.12)

from this mode expansion, we can conclude that the dual open string has no momentum in the
circular direction, since there is no linear term in τ in the mode expansion of X̃; moreover at
σ = 0, π the position of the string is fixed, since the oscillator term vanish

X̃(τ, 0) = x̃ and X̃(τ, π) = x̃+
2πKα′

R
= x̃+ 2πKR̃ (3.13)

where it has been used p = K/R and R̃ = α′/R for the dual radius.
Therefore T-duality transforms a bosonic open string with Neumann boundary conditions on
a circle of radius R to a bosonic open string with Dirichlet boundary conditions on a circle of
radius R̃ = α′/R; furthermore the original open string that has momentum and no winding in
the circular direction is T-dualized into an open string which has winding but no momentum in
the dual circular direction.
Notice that in this case the winding mode is topologically stable because the end-points of the
dual open string are fixed by Dirichlet conditions, so the string cannot unwind without breaking.

The hyperplane X̃ = x̃ to which the end points of the dual string are attached is an example
of D-brane (where D stands for Dirichlet and brane is an abbreviation of membrane), which
is defined as a hypersurface on which an open string can end. More specifically one uses the
term Dp-brane, where p denotes the number of spatial dimensions of the brane. In the example
we discussed above, the open string with Dirichlet boundary conditions on the dual circle and
Neumann boundary conditions in all the remaining directions end on a D24-brane. In general it
is possible to compactify n directions on n circles (or on a n-torus) and then perform T-duality
transformations in these directions, obtaining dual strings with Dirichlet conditions in the n
dual directions and ending on a D(25− n)-brane.

Therefore if we consider a set-up of D-branes of various dimensions, in the T-dual formulation
these D-branes are getting replaced by D-branes such that:

• if a D-brane wraps a circle that is T-dualized, then the T-dual D-brane doesn’t wrap the
T-dual circle and vice versa;

• if T-duality transformation is performed on a direction tangent to a Dp-brane, the T-dual
brane is a D(p− 1)-brane, otherwise it is D(p+ 1)-brane if the direction is orthogonal to the
original Dp-brane.

T-duality of type II superstrings

Let us examine in the following T-duality transformations for type II superstring theories.
Suppose that the X9 coordinate of a type II theory is compactified on a circle of radius R and
that a T-duality transformation is carried out for this coordinate. The transformation of bosonic
coordinates is the same as for the bosonic string, namely

X9
L −→ X9

L and X9
R −→ −X9

R (3.14)

which interchanges momentum and winding numbers. In the RNS formalism, world-sheet super-
symmetry (2.5) requires the world-sheet fermion ψ9 to transform in the same way as its bosonic
superpartner X9

ψ9
L −→ ψ9

L and ψ9
R −→ −ψ9

R (3.15)

in particular the zero mode of ψ9
R in the Ramond sector transforms d90 −→ −d90 and, recalling

the relation between R-sector zero modes and 10-dimensional Dirac matrices Γµ =
√
2dµ0 , we

conclude that the chirality operator, under a T-duality transformation, behaves as

Γ11 = Γ0Γ1...Γ9 −→ −Γ11 (3.16)
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since, except Γ9, Dirac matrices stay unchanged under the T-duality transformation.
This implies that after T-duality the chirality of the right-moving Ramond-sector ground state
is reversed. The relative chirality of the left-moving and right-moving ground states is what
distinguishes the type IIA and type IIB theories. Since only one of these is reversed, it follows
that the T-dual of a type IIA theory compactified on a circle of radius R is a type IIB theory
compactified on a circle of radius R̃ = α′/R and vice versa.
If several directions are compactified on circles, it is possible to carry out several T-duality
transformations along each of these circular directions. In this case an even number of transfor-
mations gives back on the dual torus the same type II theory that one started with.
T-duality of type IIA and type IIB superstring theory is a perturbative duality, holding order by
order in string perturbation expansion. To prove this, consider the NS-NS part of the low-energy
effective action of a type IIA theory, which has the form

1

g2s

∫

d10xLNS (3.17)

being the string coupling gs related to the vacuum expectation value of the dilaton, namely
gs = eφ0 .
The NS-NS part of type IIB supergravity action has the same form with type IIB string coupling
g̃s. Compactifying both type IIA and IIB theory on circles of radii respectively R and R̃, keeping
only the zero-mode contributions on the circles, the NS-NS actions become

(IIA)
2πR

g2s

∫

d9xLNS (IIB)
2πR̃

g̃2s

∫

d9xLNS (3.18)

Taking into account that these two theories are related by the T-duality identification RR̃ = α′,
one gets the following mapping between string coupling constants

g̃s =

√
α′

R
gs (3.19)

Since they are proportional to each other, a perturbative expansion in gs in type IIA corresponds
to a perturbative expansion in g̃s in type IIB.

D-branes in type II superstring theories

Let us consider now D-branes in type II superstring theories, whose addition to the vacuum
configuration gives theories with closed strings in the bulk plus open strings that end on the
D-branes themselves.
The presence of the D-branes breaks some of the symmetries of the superstring vacuum. First
of all, adding a flat Dp-brane to the Minkowski space vacuum of a type II superstring the-
ory, neglecting its back-reaction on the geometry, breaks the SO(1, 9) Lorentz symmetry to
SO(1, p) × SO(9 − p). Secondly translational invariance in the transverse directions is spon-
taneously broken giving rise to the 9 − p Goldstone scalar fields of the D-brane world-volume
theory. Thirdly some or all of the supersymmetries are also broken.
Explicitly regarding the last point, type II superstring theories have N = 2 supersymmetry in
the 10-dimensional Minkowski vacuum. Since in ten dimensions each supercharge is a Majorana-
Weyl spinor, with 16 real components, it is said there is a total of 32 conserved supercharges.
However, vacua containing D-branes can preserve at maximum half of them. The reason is that
type II superstring theories have supercharges Qa constructed purely out of left-moving fields
on the worldsheet and Q̄a constructed out of right-moving ones. The vacuum is invariant under
both, but once a D-brane is added to the vacuum, the D-brane imposes boundary conditions
relating left- and right-moving fields at the open strings’ end points. Thus left- and right-moving
fields are no longer independent and as a consequence only a linear combination of the two su-
percharges Qa and Q̄a is a supersymmetry of the full state [31].
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The D-branes preserving half of supersymmetries are called half-BPS D-branes. Being BPS
states, they carry conserved charges that ensure their stability, in particular D-branes couple to
R-R fields and thus carry conserved R-R charges.

To determine the conditions for stable p-branes, it is worthwhile to consider the types of
conserved charges that they can carry.
The world-volume of a p-brane can couple naturally to a (p+ 1)-form potential

µp

∫

Ap+1 = µp
1

(p+ 1)!

∫

Aν1···νp+1

∂xν1

∂σ0
· · · ∂x

νp+1

∂σp
dp+1σ (3.20)

where µp is the p-brane charge and this equation generalizes the coupling of a charged particle
to a 1-form gauge potential, which has p = 0 and µ0 = e

e

∫

A = e

∫

dτAµ
∂xµ

∂τ
(3.21)

This brane is electrically charged as the electric charge can be obtained through the Gauss’s law
µp =

∫

∗Fp+2, where in D dimensions this integral is carried out over a sphere SD−p−2, which
is the dimension required to surround a p-brane.
The charge of the magnetic dual branes can be measured by computing the flux

∫

Sp+2 Fp+2

and in D dimensions an Sp+2 can surround a (D − p − 4)-brane. Thus, in ten dimensions the
magnetic dual of a p-brane is a (6− p)-brane.
The Dirac quantization condition for point-like charges can be generalized to charges carried by
a dual pairs of p-brane and in ten dimensions one has1

µpµ6−p ∈ 2πZ (3.22)

Thus in type II superstring theories a n−form gauge field can couple electrically to a p−brane
with p = n− 1 and magnetically to a p-brane with p = 7− n.
Since the R-R sector of type IIA theory contains gauge fields with n = 1, 3, this theory should
contain stable Dp-brane with p = 0, 2, 4, 6. Whereas the R-R sector of type IIB theory contains
n-form gauge field with n = 0, 2, 4, so this superstring theory admits stable Dp-branes only for
odd values of p. Notice in particular that the 4- form potential C4 couples both electrically and
magnetically to a D3-brane, which is the brane carrying a self-dual charge since the associated
field strength is self-dual F5 = ∗F5.
The result that type IIA/B theories admit only stable Dp-branes with p even/odd is consistent
with the fact that a T-duality transformation maps a type IIA theory with Dp-branes into a
type IIB theory with D(p ± 1)-branes and vice versa. Notice that, since R-R fields couple to
D-branes, the effect of a T-duality transformation, carried out for the coordinate X9, on the
R-R fields is to add or remove a form 9-index

C̃9 = C, C̃µ = Cµ9, C̃µν9 = Cµν , C̃µνλ = Cµνλ9 (3.23)

so odd-form potentials of type IIA theory are mapped to the even-form potentials of the type
IIB theory and vice versa.

D-brane action

Being dynamical objects, it is possible to construct the world-volume action of a D-brane.
The basic idea is that the modes of an open strings which start and end on a given D-brane
can be described by fields restricted to the world-volume of the D-brane. In particular, the
low-energy dynamics of a Dp-brane will be captured by the (p + 1)-dimensional effective field

1In all superstring theory and M-theory examples it turns out that a single p-brane carries the minimum
allowed charge, thus the product of the charges of a single p-brane and its dual (6− p)-brane is exactly 2π.
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theory of only its world-volume massless fields.
Let us focus on a half-BPS Dp-brane, whose world-volume theory has 16 conserved supercharges.
This theory can be constructed in the GS formalism, which maps the Dp-brane world volume
into a superspace using

Xµ(σ) and θAa(σ), A = 1, 2 (3.24)

in particular Xµ(σ) describes the embedding of the Dp-brane in ten-dimensional Minkowski
space-time, whereas the pair of Majorana-Weyl spinors extends the embedding to N = 2 super-
space. The coordinates σα, with α = 0, 1, ...p, parametrize the Dp-brane world-volume.
The Dp-brane world-volume theory contains also a U(1) gauge field Aα(σ) since it is part of the
spectrum of an open string that starts and ends on the D-brane.
The low-energy dynamics of a Dp-brane in a flat spacetime without background fields is captured
by

SDBI = −TDp
∫

dp+1σ
√

−det(Gαβ + 2πα′Fαβ) (3.25)

where TDp is the tension of the Dp-brane. For type II superstrings in Minkowski space-time,
supersymmetry transformations of superspace are given by







δΘAa = εAa

δXµ = ε̄AΓµΘA
(3.26)

and the invariance is ensured by defining

Gαβ = ηµνΠ
µ
αΠ

ν
β , Πµα = ∂αX

µ − Θ̄AΓµ∂αΘ
A (3.27)

The remaining tensor is
Fαβ = Fαβ + bαβ (3.28)

where F = dA is the usual Maxwell field strength and b is Θ-dependent two-form required to
supersymmetrize F . From now on, we will restrict only on the bosonic part of the D-brane
action.
The action (3.31) is called Dirac-Born-Infeld action and can be expanded in powers of the field
strength

SDBI = −TDp
∫

dp+1σ
√
−detG

(

1 +
(2πα′)2

4
FαβFαβ +O(F 4)

)

(3.29)

thus the expansion contains a constant energy density term
∫

dp+1σ
√
−detG resulting to be the

higher-dimensional generalization of the Nambu-Goto action, a quadratic Maxwell-type term
and higher-order corrections.
A convenient gauge choice is the static gauge, in which the diffeomorphism symmetry is used to
set the first p+ 1 components of Xµ equal to the world-volume coordinates σα, while the other
9−p components survive as scalar fields on the world-volume that describe transverse excitations
of the brane and, to remark their physical interpretation, let us relabel them as 2πα′Φi. In the
static gauge, the bosonic part of the DBI action takes the form

SDBI = −TDp
∫

dp+1σ
√

−det(ηαβ + (2πα′)2∂αΦi∂βΦi + 2πα′Fαβ) (3.30)

This action can be generalized for the case of a general background with bosonic massless
supergravity fields.
The background fields in the NS-NS sector are the space-time metric gµν , the two-form Bµν and
the dilaton Φ, which can be pulled back to the world-volume

SDBI = −TDp
∫

dp+1σe−Φ
√

−det(gαβ +Bαβ + (2πα′)2∂αΦi∂βΦi + 2πα′Fαβ) (3.31)

where we have made an abuse of notation

gαβ +Bαβ = P [g +B]αβ = (gµν +Bµν)∂αX
µ∂βX

ν (3.32)
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The R-R background fields do not contribute to the DBI action, but with a Chern-Simons type
action. As already stated, type II superstring theories involve R-R form fields Cn only with
n = 0, 1, 2, 3, 4 (in particular odd-rank for type IIA and even-rank for type IIB); hovever for
a electric-magnetic symmetric treatment, it is convenient to introduce redundant fields Cn for
n = 5, 6, 7, 8 such that field strengths satisfy

∗Fn+1 = F9−n (3.33)

Therefore a Dp-brane action should contain as well a Chern-Simons term which at lowest order
takes the form

µp

∫

Cp+1 (3.34)

where µp denotes the Dp-brane charge as usual, since a Dp-brane couples electrically to the R-R
field Cp+1.
It has been specified that this is the Chern-Simons term at lowest order since, in presence of the
NS-NS background B field and world-volume gauge fields, the D-brane can couple also to R-R
potentials of lower rank. In fact, the complete Chern-Simons term results to be

SCS = µp

∫

(

CeB+2πα′F
)

p+1
with C =

8
∑

n=0

Cn (3.35)

where the subscript p + 1 means we have to extract the (p + 1)-form piece of the integrand
since a p-brane world-volume couples to a (p+ 1)-form potential. Since the fields B and F are
two-forms, it means that a Dp-brane can couple to other R-R fields of lower rank aside from
Cp+1 and subsequently can carry charges associated to D(p− 2n)-branes for n = 0, 1,..., even if
they are generically smeared over the (p+ 1)-dimensional world-volume.

In conclusion, let us determine D-brane tensions using T-duality arguments. T-duality ex-
changes a wrapped Dp-brane in the type IIA theory and an unwrapped D(p − 1)-brane in the
type IIB theory and vice versa. This fact gives

2πRTDp
gs

=
TD(p−1)

g̃s
(3.36)

using now the mapping between string coupling constants (3.19), one gets

TDp =
1

2π
√
α′
TD(p−1) (3.37)

and by iteration

TDp =
1

(2π)p(α′)p/2
TD0 =

1

gs(2π)p(α′)(p+1)/2
(3.38)

where we set TD0 = (gs
√
α′)−1

The tension of a D0-brane can be obtained by exploiting the fact that the M-theory, the 11-
dimensional theory containing no strings obtained in the strong coupling limit of both type
IIA superstring and E8 × E8 heterotic string theories, compactified on a circle of radius R11

corresponds to 10-dimensional type IIA superstring theory with string coupling constant gs =
R11/

√
α′. Then the mass of the supergraviton in 11 dimensions is zero

M2
11 = −pMpM = 0, M = 0, 1, ..., 9, 11 (3.39)

whereas in 10 dimensions

M2
10 = −pµpµ = p211, µ = 0, 1, ..., 9 (3.40)

since the momentum on the circle in the eleventh direction is quantized, p11 = N/R11, the
spectrum of ten-dimensional masses, which represents a tower of Kaluza-Klein excitations, is

M2
N =

( N

R11

)2
, N ∈ Z (3.41)

in particular a type IIA D0-brane can be interpreted, from the point of view of the M-theory,
as the first Kaluza-Klein excitation (N = 1) of the massless supergravity multiple, following the
D0-brane tension formula.
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Black-brane solutions and extremal black D-branes

In string theory and M-theory, it has been shown [34],[35],[36] that there exist higher-dimensional
counterparts of 4-dimensional classical black hole solutions corresponding to p-dimensional ex-
tended objects surrounded by an event horizon, i.e. black p-brane, which can be obtained as
solutions of the equations of motion associated to the low-energy actions.
We are mainly interested in the construction of black Dp-branes, for which the action required
is the type II supergravity action. In this case the NS-NS two form B2 should not be included
since the Dp-brane is not charged under it, thus only the R-R field Cp+1 needs to be considered
in the action, which in the string-frame2 thus reads

Sp =
1

2k2

∫

d10x
√−g

[

e−2Φ(R+ 4(∂Φ)2)− 1

2
|Fp+2|2

]

(3.42)

where, as usual, p is even for a type IIA action and odd for a type IIB one. In the particular case
p = 3, the self-duality condition F5 = ∗F5 needs to be imposed at the level of field equations.
Since the presence of a Dp-brane breaks the SO(1, 9) Lorentz symmetry to SO(1, p)×SO(9−p)
as already underlined before, the most general ansatz that we need to impose to find the black
Dp-brane solution is

{

eΦ = eΦ(r)

ds2 = e2A(r)ηµνdx
µdxν + e2B(r)δijdy

idyj
(3.43)

where xµ with µ = 0, 1, ..., p are the coordinates tangent to the brane, yi with i = 1, ..., 9 − p
are the ones transverse to it and r = yiyjδij . Substituting the ansatz into the field equations
associated to (3.42), we get a system of coupled non-linear differential equations subject to the
following boundary conditions

lim
r→∞

gMN = ηMN , lim
r→∞

eΦ(r) = gs (3.44)

These boundary conditions are chosen such that far away from the brane, i.e. for r −→ ∞,
10-dimensional flat Minkowski spacetime is recovered and the dilaton approaches a constant
value corresponding to the string coupling constant gs. In addition to the ansatz and to these
boundary conditions, we need to impose that the solution must preserve half SUSY, since we
are interested in half-BPS black Dp-branes, and this BPS condition turns out to be the higher-
dimensional correspondent of extremality condition for 4-dimensional Reissner-Nordström black
holes. The BPS requirement leads to the extra constraint

(p+ 1)A(r) + (7− p)B(r) = 0 (3.45)

The solution is characterized by an harmonic function Hp(r) and in the string frame is given by

ds2 = H−1/2
p ηµνdx

µdxν +H1/2
p δijdy

idyj , Hp(r) = 1 +
(rp
r

)7−p

Fp+2 = dH−1
p ∧ dx0 ∧ dx1 ∧ ... ∧ dxp

eΦ = gsH
(3−p)

4
p

(3.46)

An important fact to notice is that for p = 3 the dilaton is everywhere constant, i.e. eΦ = gs.
The Hodge-dual field strength results to be

∗Fp+2 = (p− 7)r7−pp ω8−p (3.47)

where ω8−p is the volume form for a unit (8− p)-sphere. If we integrate ∗Fp+2 over S8−p we get
the charge of the black Dp-brane, and if we recall that if the Dp-branes are BPS, as it is our
case, the charge equals the tension, we can finally find that

(rp
ls

)7−p
= (2

√
π)5−pΓ

(7− p

2

)

gsN (3.48)

2the string-frame metric gMN is related to the Einstein-frame metric gEMN , in terms of which the Ricci scalar
appears in the action without the dilaton factor in front, by gMN = eΦ/2gEMN



18 CHAPTER 3. T-DUALITY, D-BRANES AND THE NS5-BRANE

where we have used (3.38) and N is the number of coincident Dp-branes. The low-energy field
theory is a good and valid description for the solution we have just derived, and subsequently
the geometry is smooth on the string scale, only if gsQ ∝ gsN ≫ 1, which implies that the
characteristic length rp must be much larger than the string scale ls.

Type IIB S-duality and the NS5-brane

Type IIB supergravity (2.31) has a non-compact global symmetry SL(2,R). In particular, under
a transformation

Λ =

(

d c

b a

)

∈ SL(2,R) (3.49)

the two 2-form potentials B2 and C2 transform as a doublet

B⃗2 ≡
(

B2

C2

)

−→ ΛB⃗2 (3.50)

while the complex scalar field τ , defined as

τ = C0 + ie−Φ (3.51)

transforms non-linearly by the following rule

τ −→ aτ + b

cτ + d
(3.52)

The field C0 is usually referred to as an axion, because of the shift symmetry in the supergravity
approximation, and then the complex field τ as an axion-dilaton field.
On the other hand, th SL(2,R) symmetry leaves invariant both the Einstein-frame metric gEµν =

e−Φ/2gµν and the R-R 4-form C4.
The global symmetry SL(2,R) of type IIB supergravity is not shared by the full type IIB
superstring theory since it is broken by a variety of stringy and quantum effects to the infinite
discrete subgroup SL(2,Z). One way to show that the residual symmetry group is SL(2,Z) is
that under the transformation (3.49) the 2-form coupling of the fundamental string becomes

∫

B′
2 =

∫

(dB2 + cC2) (3.53)

so a fundamental string with charge (1, 0)3 transforms into a supersymmetric (d, c)-string. Thus
the restriction to the SL(2,Z) subgroup is essential to ensure that the charges are integers, as
required by the Dirac quantization conditions.
Notice that, if we set the R-R scalar C0 to zero, the transformation (3.49) with a = d = 0 and
c = −b = 1 corresponds to a S-duality transformation, which is a transformation that relates
a string theory with coupling constant gs to a possibly different theory with coupling constant
1/gs; indeed (3.52) becomes τ = −1/τ which implies that Φ′ = −Φ and subsequently g′s = 1/gs.
In this case, the S-duality relates the type IIB superstring theory to itself.
This weak-strong duality takes the F-strings to D-strings into one another since

B′
2 = C2, C ′

2 = −B2 (3.54)

whereas it leaves the potential C4 invariant, so it should take the D3-brane to itself.
The D5-brane is a magnetic source for the R-R 2-form charge, so it should be transformed
through the weak-strong duality into a magnetic source for the NS-NS 2-form field. This object
is neither a string or a D-brane, rather it is a soliton, a localized classical solution to the field

3This notation denotes that the F-string has a charge that couples to the NS-NS 2-form B2 but neither that
couples to the R-R 2-form C2
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equations, and it will be called a NS5-brane.
For NS5-brane, the extremal supersymmetric solution reads

ds2 = e2Φδijdy
idyj + ηµνdx

µdxν

Hmnp = −εlijk∂lΦ

e2Φ = e2Φ(∞) +
Q

2π2r2
, r2 = yiyjδij

(3.55)

where xµ with µ = 0, 1, ..., 5 are the coordinates tangent to the brane, yi with i = 1, ..., 4.
The product TD1TD5 = π/k210 should be equal to TF1TNS5 because of the Dirac quantization
condition (which determines the product of the charges) combined with the BPS condition
(which encodes the equality between the charges and the tensions), so it follows that the tension
of a NS5 brane is

TNS5 =
2π2α′

k210
=

1

(2π)5g2sα
′3

(3.56)

The geometry of the metric contains an infinite throat: the point yi = 0 is at infinite distance,
and as one approaches it the radius of the angular 3-sphere does not shrink to zero but ap-
proaches an asymptotic value (Q/2π2)1/2. The dilaton grows in the throat of the NS5-brane,
diverging at infinite distance. Therefore the geometry of the throat is S3 × R×M6, where M6

is a 6-dimensional Minkowski space.
Moreover, notice that in the Einstein-frame in which gEαβ = e−Φ/2gαβ , we obtain that ds ∝
y−3/4dy, thus the metric is still singular but the singularity is at finite distance.

Figure 3.1: Infinite throat of a NS5-brane [37]



Chapter 4

AdS/CFT correspondence

One of the most exciting discoveries in theoretical physics in the last decades is the AdS/CFT
correspondence[38], [39],[40], a duality, conjectured by Maldacena in 1997, which relates gravity
theories on asymptotically Anti-de Sitter spacetimes to conformal field theories.
The most prominent example, which we are going to discuss, is the correspondence between
N = 4 super Yang-Mills theory in 4 dimensions and type IIB superstring theory on AdS5 × S5.

More specifically, the strongest form of this AdS/CFT correspondence states that N = 4
super Yang-Mills theory with gauge group SU(N) and Yang-Mills coupling constant gYM is
dynamically equivalent to type IIB superstring theory with string length ls =

√
α′ and coupling

constant gs on AdS5 × S5 with curvature radius L and N units of F5 flux on S5. The map
between the two free parameters gYM and N on the field theory side and the free parameters
L/α′ and gs on the gravity side by is given by

g2YM = 2πgs and 2g2YMN =
L4

α′2
(4.1)

Thus if the AdS/CFT correspondence holds, the physics of one theory, including operator ob-
servables, states, correlation functions and full dynamics, can be mapped onto all the physics
of the other. This duality is very peculiar because through it we can map a possible candidate
for a theory of quantum gravity, namely type IIB string theory, to a field theory without any
gravitational degrees of freedom.
In its strongest form, the correspondence holds for all values of N and all regimes of coupling
gYM . However it’s more useful and we can obtain more tractable forms of the AdS/CFT cor-
respondence if we take certain limits on both sides in such a way we can obtain new insights
into the non-perturbative behaviour, i.e. the strong coupling dynamics, of one theory from the
computable weak coupling perturbative behaviour of the other.
For example the t’Hooft limit on the SYM side, in which λ ≡ g2YMN is fixed as N −→ ∞,
corresponds to gs ≪ 1 while keeping L/

√
α′ constant on the AdS side. At leading order in gs,

the AdS side reduces to the classical string theory, since we take into account only tree level
diagrams within string perturbation theory, not the entire string loop expansion. In this way
classical string theory on AdS5 × S5 provides a classical Lagrangian formulation of the large N
dynamics of N = 4 SYM theory. This is known as the strong form of the conjecture.
If we take the additional limit λ −→ ∞, we obtain on one side a strongly coupled super Yang-Mills
theory and on the other side, since

√
α′/L −→ 0, the point-particle limit of type IIB string theory,

which is given by type IIB supergravity on AdS5 ×S5. In this way the correspondence becomes
a strong/weak duality and this is referred to as the weak form of the AdS/CFT correspondence.

Motivation of the correspondence

We are going to motivate the weak form of the AdS5/CFT4 correspondence and describe the
decoupling limit essential for the correspondence itself.
As we have already stressed out many times, superstring theory is not just a theory of closed

20
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strings since it contains also non-perturbative solitonic higher dimensional objects such as the
D-branes. The D-branes can be viewed, as we have already seen in the last section, from two
different perspectives: the open string perspective and the closed string perspective.

In the open string perspective D-branes can be visualised as higher dimensional objects
on which open strings can end. Since we have to treat strings as small perturbations, this
perspective is reliable only when the string coupling constant gs ≪ 1. In the case of N coincident
D-branes, the string coupling becomes gsN , thus the reliability is ensured for gsN ≪ 1.
In the closed string perspective, D-branes may be viewed as solitonic solutions of the low-energy
limit of superstring theory, namely of supergravity. As we have discussed in the last section, the
closed string perspective is reliable only for gsN ≫ 1.

If we apply these two perspectives to a stack of N coincident D3-branes in flat spacetime,
this can allow us to motivate the correspondence which relates four dimensional N = 4 SYM
theory to type IIB superstring theory in AdS5 × S5. First of all, let’s assume that the stack
of N coincident D3-branes extends along the spacetime directions xµ, with µ = 0, 1, 2, 3, and is
transversal to the other six spatial directions xi, with i = 4, ..., 9.

Open string perspective

Consider a type IIB superstring theory in flat 10-dimensional Minkowski spacetime with N
coincident D3-branes. The embedding of this stack of D3-brane breaks half of the supersymmetry
of type IIB superstring theory in flat spacetime.
Perturbative string theory exhibits two kind of strings in this background: open strings starting
and ending on the D3-branes, which can be viewed as excitations of the (3+1)-dimensional brane
world-volume, and closed strings, which can be instead seen as excitations of the 10-dimensional
flat spacetime.
If we consider geometric configuration at energies E ≪ α′−1/2, it’s equivalent to take only
massless excitations into account. In particular, the massless closed string modes can be arranged
into a 10-dimensional N = 1 supergravity multiplet and the massless open string ones into
a 4-dimensional N = 4 supermultiplet which consists of a gauge field Aµ, corresponding to
the bosonic longitudinal excitations, and six real scalar fields ϕi, corresponding to the bosonic
transverse excitations, as well as fermionic superpartners.
The effective action for all massless string modes can be written as

S = Sbulk + Sbrane + Sint (4.2)

where Sbulk describes the closed string modes, Sbrane the open string modes and Sint the inter-
actions between them.
The bulk contribution Sbulk is the action of 10-dimensional supergravity

Sbulk =
1

2k2

∫

d10x
√
−Ge−2φ(R+ 4∂Mϕ∂

Mϕ) + ...

∼ −1

2

∫

d10x∂Mh∂
Mh+O(k)

(4.3)

where dots refer to higher derivative terms and the action of fermionic and R-R form fields. The
second line represents the lowest order contribution in the metric fluctuations h around the flat
metric, obtained by expanding g = η + kh with 2k2 = (2π)7α′4g2s .
On the other side, Sbrane can be derived from the Dirac-Born-Infeld action 3.31 which for a
single D3-brane reads

SDBI = − 1

(2π)3α′2gs

∫

d4xe−Φ
√

−det(P[g]µν + 2πα′Fµν) (4.4)

where we have set the Kalb-Ramond field Bµν to zero for simplicity. Expanding e−φ and
g = η + kh, at leading order in α′ we find

Sbrane =
1

2πgs

∫

d4x
(

−1

4
FµνF

µν − 1

2
ηµν∂µϕ

i∂νϕ
i +O(α′)

)

(4.5)
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whereas the interaction action Sint can be derived from the Wess-Zumino term, which at leading
order in α′ reads

Sint = − k

8πgs

∫

d4xΦFµνF
µν + . . . (4.6)

This holds for a single D3-brane, while for a stack of N coincident D3-branes, the scalars and
gauge fields becomes U(N) valued, ϕi = ϕiaTa and Aµ = AaµTa, we have to trace over the gauge
group to ensure gauge invariance, replace the partial with covariant derivatives and add a scalar
potential of the form

V =
1

2πgs

∑

i,j

Tr[ϕi, ϕj ]2 (4.7)

to the action Sbrane (4.5).
If now one takes the limit α′ −→ 0, Sbrane becomes just the bosonic part of N = 4 SYM action
provided we identify 2πgs = g2YM , Sbulk is just the action of free SUGRA in 10-dimensional
Minkowski spacetime and Sint vanishes.
Thus the vanishing of Sint implies that closed and open strings decouple, with the first which
are effectively described by SUGRA in flat 10-dimensional spacetime and the second by N = 4
super Yang-Mills theory.

Closed string perspective

Let us change point of view and consider N D3-branes in the strongly coupled limit gsN −→ ∞.
In this limit, the D3-branes can be seen as massive charged objects which act as a source of the
several type IIB supergravity fields.
The supergravity solution of N D3-branes, recalling (3.46), is given by

ds2 = H
−1/2
3 dx · dx+H

1/2
3 dy · dy

H3(r) = 1 +
(R

r

)4

eΦ = gs

F5 = dH3(r)
−1 ∧ dx0 ∧ dx1 ∧ dx2 ∧ dx3

(4.8)

where dx · dx is the 4-dimensional Lorentz metric along the brane and dy · dy = dr2 + r2dΩ2
5 is

the Euclidean metric in the 6 perpendicular directions.
Once again, using a result we have already found, namely (3.48), the radius L turns out to be

R4 = 4πgsNα
′2 (4.9)

The geometric background consists of two different regions for small r and large r respectively.
If r ≫ R, then H3(r) ∼ 1 and the metric (4.8) reduces to 10-dimensional flat spacetime; whereas
r ≪ R corresponds to the near-horizon limit region (the horizon is at r = 0) and the metric
reads

ds2 ≃
( r

R

)2
dx · dx+

(R

r

)2
dr2 + L2dΩ2

5 (4.10)

with the change of variable z = R2/r, it takes the form

ds2 ≃ R2dx · dx+ dz2

z2
+R2dΩ2

5 (4.11)

thus the near horizon geometry is AdS5 × S5, with both AdS5 and S5 having radius R.
Since the temporal component of the metric (4.8) g00 = −H3(r)

−1/2 is not constant, the energy
Er of an object measured by an observer at a constant position r and the energy E∞ measured
by an observer at infinity are related by

E∞ =
√−g00Er = H

−1/4
3 Er (4.12)
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this implies that as an object approaches the horizon r = 0, its energy would appear to decrease
for the observer at the infinity.
Therefore if we take the low-energy limit in the background described by (4.8), an observer
at infinity would observe two kind of low-energy excitations: massless particles propagating
in the bulk region with wavelengths becoming very large and any kind of excitation we bring
closer and closer to r = 0. These two kind of excitations decouple with each other for the
following reasons. The bulk massless particles decouple from the near horizon region because
the low-energy absorption cross section goes like σ ∼ ω3R8 [41], with ω the energy, and this
can be interpreted as the fact that the particle’s wavelength becomes much bigger than the
typical gravitational size of the brane, with the latter being of order R. On the other side, the
excitations close to the horizon find more and more difficult to climb the gravitational potential
and escape to the asymptotic region.

In conclusion, the low-energy theory consists of the decoupled pieces, the free bulk super-
gravity and the near horizon region described by fluctuations about the AdS5 × S5 solution of
type IIB supergravity.

Combination of the two perspectives

In both perspectives, the open and the closed string ones, we have found two decoupled effective
theories in the low-energy limit

• Open string perspective: N = 4 SYM theory on flat 4-dimensional spacetime and type IIB
supergravity on R

9,1;
• Closed string perspective: type IIB supergravity on AdS5 × S5 and type IIB supergravity on
R
9,1.

The two perspective should be equivalent descriptions of the same physics. This implies that,
since type IIB supergravity on R

9,1 is present in both perspectives, the other two theories, the
N = 4 SYM theory in four dimensions and type IIB supergravity on AdS5 × S5, should be
identified.
A clarification needs to be made: the N coincident D3-branes give rise to a N = 4 gauge
multiplet in the adjoint representation of U(N) and this seems in contrast with the statement
made at the beginning that the correspondence is between an N = 4 super Yang-Mills theory
with gauge group SU(N) and a type IIB superstring theory on AdS5 × S5.
The fact is that a U(N) gauge theory is essential equivalent to a free U(1) vector multiplet
times an SU(N) gauge theory, and the AdS theory is describing the SU(N) part of this gauge
theory, since in the closed string perspective the U(1) vector multiplet corresponds to zero modes
between the two kinds of low-energy excitations and thus living in the region connecting the
near-horizon region with the bulk one. From the AdS point of view, these zero modes live on
the boundary, and it looks like we might or might not include them in the AdS theory, having
subsequently a correspondence to a U(N) or a SU(N) gauge theory.

An important check of the conjecture is to verify if the two theories have the same symmetries.
The 5-dimensional Anti-de-Sitter space has SO(4, 2) as group of isometries which is the same
as the conformal group in four dimensions. Moreover the SO(6) symmetry which rotates S5

can be identified with the SU(4)R R-symmetry of the conformal field theory. The supergroup
corresponding to the bosonic subgroup SO(4, 2) × SO(6) is the supergroup SU(2, 2|4), and it
can be checked also that the two theories have the same number of supercharges: type IIB
superstring theory has 32 supercharges as we have already discussed in the last section, whereas
4d N = 4 SYM theory has 16 Poincaré supercharges, and being conformal, has 16 additional
superconformal supercharges.
Then, in terms of D-branes’ physics, the Yang-Mills coupling is related to the string coupling
through

τ ≡ 4πi

g2YM
+

θ

2π
=

i

gs
+ C0 (4.13)

where it has been included also the θ angle with is related to the expectation value of the RR
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scalar C0. In particular, both the super Yang-Mills theory and the type IIB string theory have
an SL(2,Z) self-duality symmetry under which

τ −→ aτ + b

cτ + d
(4.14)

In fact, we have already shown that SL(2,Z) is a strong-weak duality symmetry of type IIB
string theory in flat space and it should still be a symmetry also in an AdS5 × S5 background
since all the fields which have been turned on, the metric and the 5-form field strength, are
invariant under this symmetry as discussed in the last section.

Holographic dictionary

To define more properly the correspondence we need a map between the observables in the two
theories and a prescription for comparing physical quantities and amplitudes. A conformal field
theory does not have asymptotic states or a S-matrix, thus the natural objects to consider are
operators.
First of all, let’s choose the following Poincaré patch coordinates (see Appendix A)

ds2 =
R2

z2
(dz2 + dx2) (4.15)

on Euclidean AdSd+1 where xµ are coordinates on R
d and the boundary is at z = 0.

The fundamental statement of AdS/CFT correspondence is that

Zstring

[

ϕ(x, z)
∣

∣

∣

z=0
= ϕ0(x)] = ⟨e

∫
ddxφ0(x)O(x)⟩CFT (4.16)

where the left-hand side is the full partition function of string theory in an asymptotically
AdSd+1 space, function of the boundary condition ϕ0 of the field ϕ on the boundary of AdS,
and the right-hand side is the generating function of correlation functions in the d-dimensional
conformal field theory, where ϕ0 is the source of a conformal operator O. Thus each field
propagating on AdS space is in a one-to-one correspondence with an operator in the field theory
and the boundary value of the bulk field acted as a source for the CFT operator. From this, it
follows that there is a relation between the mass of the field and the scaling dimension of the
operator in the CFT, as we are going to show in a moment.
For simplicity, let’s consider the case in which ϕ is massive scalar field propagating in AdSd+1,
then its action is given by

S ∼
∫

dd+1y
√
g(gMN∂Mϕ∂Nϕ+m

2ϕ2) =

∫

dz ddx
(R

z

)d+1[( z

R

)2
(∂zϕ)

2+
( z

R

)2
(∂µϕ)

2+m2ϕ2
]

(4.17)
and the equation of motion is

∂z

( 1

zd−1
∂zϕ
)

+ ∂µ

( 1

zd−1
∂µϕ

)

=
1

zd+1
m2R2ϕ (4.18)

Going to Fourier space for the momentum on R
d, ηµν∂µ∂ν = −p2, we get

zd+1∂z

( 1

zd−1
∂zϕ
)

− p2z2ϕ−m2R2ϕ = 0 (4.19)

there are two independent solutions that can be written exactly in terms of Bessel functions,
but if we study the asymptotic behavior near the boundary of AdS, i.e. z ∼ 0, the term with
momentum can be neglected and the two independent solutions are power-law

ϕ ∼ ϕ0 z
α− + ϕ1 z

α+ , α± =
d

2
±
√

d2

4
+R2m2 (4.20)
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The solution zα− is the dominant one as z −→ 0, while the other one always decays, and since the
leading contribution approaches a constant only in the case α− = 0, in order to have a consistent
prescription one needs to impose the following boundary condition at z = 0

ϕ(x, z)
∣

∣

∣

z=ε
= εα−ϕren0 (x) (4.21)

where, since in AdS several quantities diverge as z −→ 0, we have introduced a cut-off and
imposed the boundary condition at z = ε, which will be sent to zero at the end of computation,
and ϕren0 is the ”renormalized” boundary condition.
If now we perform a rescaling of the coordinates

xµ −→ λxµ z −→ λz (4.22)

which correspond to an SO(d, 2) isometry in AdSd+1 and a dilation in the boundary CFTd, the
bulk scalar field ϕ remains invariant, thus ϕren0 −→ λα−ϕren0 (λx) and, since we identify the latter
as the source of the corresponding boundary conformal operator O, the operator O must have
dimension

∆ = d− α− = α+ =
d

2
+

√

d2

4
+R2m2 (4.23)

So we associate a bulk scalar field of squared mass m2 to a boundary operator of dimension ∆.
Let’s make some observations about the identification

m2R2 = ∆(∆− d) (4.24)

First of all, m2 ≥ 0 only for ∆ ≥ d, so operators with ∆ ≤ d correspond to fields with negative
squared mass in AdS, but these are not tachyons since their energy is positive as long as the
Breitenlohner-Freedman bound [42] m2R2 ≥ −d2

4 is satisfied. The minimal value m2R2 = −d2

4

corresponds to ∆ = d
2 .

The minimal dimension of a conformal operator is given by the unitary bound ∆ ≥ d−1
2 , so the

remaining case is the one of operators with d−1
2 ≤ ∆ ≤ d

2 . To get this operators, we impose the

boundary conditions on the other mode ϕ ∼ ϕ1z
α+ , so that we get ∆ = α− = d

2 −
√

d2

4 +R2m2

and in this case the conformal dimension of the boundary operator can assume values d−1
2 ≤

∆ ≤ d
2 .

Similar statement apply to all bulk fields, for which the field ↔ operator map can be de-
termined explicitly. For example, the boundary value of the bulk metric gMN is the boundary
metric gµν , which is the source of the boundary CFT stress tensor Tµν , and in this case the
mass/dimension relation results to be the same as the one of the massive scalar field

m2R2 = ∆(∆− d) (4.25)

If our theory of gravity has a gauge field AM , the dual operator must be a vector Jµ, coupled
to the source as

∫

ddxAµJ
µ (4.26)

Since the bulk theory must be invariant under gauge transformations, δAM = DMλ, it follows
that

0 = δ

∫

ddxAµJ
µ = −

∫

ddxλDµJ
µ (4.27)

thus the current Jµ should be a conserved current in the boundary conformal field theory. This
is an example of a general feature of AdS/CFT correspondence:AdS bulk gauge symmetries
correspond to CFT boundary global symmetries.
From the wave equation in AdS, we get that the conformal dimension of the dual operator of a
bulk vector field must satisfy

m2R2 = (∆− 1)(∆− d+ 1) (4.28)
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in particular Jµ has dimension d− 1.
Another important example is provided by the value of the dilaton at infinity, which correspond
to the string coupling gs = g2YM

e−φ∞ =
1

gs
=

2π

g2YM
(4.29)

which acts as the source of the operator Tr(FµνF
µν); indeed on AdS5×S5 the dilaton is massless

and Tr(FµνF
µν) is a marginal operator of dimension 4, consistently with (4.24).

Definition and properties of Entanglement Entropy

One of the main aspects of the study of the evaporation of black holes which will be central in
this thesis project is the time evolution of the entanglement entropy between the evaporating
black hole and the outgoing Hawking radiation. Before going into detail of how entanglement
entropy is encoded and can be computed in holographic systems, let us introduce briefly in the
following some basic definitions and properties of entanglement entropy itself.
First of all, consider a quantum mechanical system with many degrees of freedom and let us
suppose to divide it into two subsystems A and B, so that the Hilbert space of the total system
can be written as Htot = HA ⊗HB. If the density matrix of the total system is ρ, an observer
who is only accessible to the subsystem A will feel as if the total system is described by the
reduced density matrix

ρA = TrBρ (4.30)

Then we can define the entanglement entropy of the subsystem A as the von Neumann entropy
of the reduced density matrix ρA

SA = −TrA[ρA log ρA] (4.31)

This quantity tells us how closely entangled the state of the system ρ is.
This main properties of the entanglement entropy are
• if the density matrix ρ is pure and B is the complement of A, then

SA = SB (4.32)

• for any three subsystems A, B and C that do not intersect each other, the following inequalities,
known as strong subadditivity, hold

SA∪B∪C + SB ≤ SA∪B + SB∪C

SA + SC ≤ SA∪B + SB∪C
(4.33)

in particular the subadditivity condition is obtained from the first equation by setting B empty

SA∪B ≤ SA + SB (4.34)

Entanglement Entropy in QFT

After having studied entanglement entropy from the quantum mechanics point of view, let’s
discuss it briefly in a quantum field theory context.
First of all, consider a QFT on a (d+ 1)-dimensional manifold R×M, where R and M denote
the time direction and a d-dimensional space-like manifold respectively, and we consider a d-
dimensional submanifold A ⊂ M at a fixed time. As before, we call ∂A and B its boundary and
its complement with respect to M respectively.
In this case, with respect to a quantum-mechanical bipartite system, there is an important issue:
in a continuum QFT there are UV modes at arbitrarily small scales across the dividing surface
∂A making impossible to split the full Hilbert space. To deal with this problem, we impose a
UV cutoff by introducing a ”lattice” scale εUV . With a UV cutoff, the Hilbert space of a finite
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region is finite-dimensional and most of the properties seen before apply also in QFT. In the UV,
any finite energy is the same as the vacuum state, thus we can restrict to the vacuum ρ = |0⟩ ⟨0|
of the full system.
The divergent terms of SA depend on both the UV physics and on the shape of the submanifold
A. In particular, since the entanglement between A and B occurs at the boundary ∂A most
strongly, we expect the divergent piece to be a local integral over the entangling surface ∂A

SdivA ∼
∫

∂A
dd−1σ

√
hF [Kab, hab] (4.35)

where Kab and hab are respectively the extrinsic curvature and the induced metric on ∂A and
F is some theory-dependent functional of them.
Now we can expand (4.35) in powers of Kab ∼ 1/LA, where LA quantifies the size of the region
A. Recalling that in a pure state SA = SB, thus also S

div
A = SdivB and taking into account that

the extrinsic curvature of a surface is K ∼ ∇n, with n orthonormal vector to the surface, then
this implies that only even powers of Kab are allowed since going from A to its complement B
it flips sign

SdivA ∼ a1L
d−1
A + a2L

d−3
A + · · · (4.36)

where the coefficients ai depend on the theory but not on LA. Furthermore, if we assume the
theory to be scaling invariant, in its vacuum state the only scale is the UV cutoff εUV , so by
dimensional analysis we would have a1 ∼ ε1−dUV , a2 ∼ ε3−dUV , etc.
From (4.36), we can state that the leading divergent contribution is proportional to the area of
the boundary ∂A of the region A.
However, the area law (4.36) does not always describe the scaling of entanglement entropy.
For example, if we consider a 2-dimensional CFT in the vacuum state of the full system, the
entanglement entropy of a region A with length LA, assuming the full system is infinitely long
and by using the replica trick [43], turns out to scale logarithmically with the length

SA =
c

3
log

LA
εUV

(4.37)

where c is the central charge of the CFT.

Holographic Entanglement Entropy

The entanglement entropy has a gravitational interpretation in CFTs with a semiclassical holo-
graphic dual. This holographic derivation was conjectured by Ryu and Takayanagi in the static
case.
The holographic entanglement entropy SA in a CFT for a subsystem A is given by

SA =
Area(γA)

4GN
(4.38)

where γA is a codimension-2, spacelike extremal surface in the dual AdS geometry, anchored to
the AdS boundary such that

∂γA = ∂A (4.39)

with the important requirement that the extremal surface γA must be homologous, i.e. contin-
uously deformable, to the region A. In the case in which there are multiple extremal surfaces
satisfying the above properties, the prescription is to pick the one with the minimal area.
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As an example, let’s compute the entanglement entropy in AdS3/CFT2. Gravitational
theories on AdS3 space of radius R are dual to two dimensional CFTs with central charge

c = 3R/G
(3)
N .

The metric of AdS3 in the global coordinates (t, ρ, θ) is

ds2 = R2(− cosh2 ρ dt2 + dρ2 + sinh2 ρdθ2) (4.40)

At the conformal boundary ρ = ∞ the metric is divergent, thus we introduce a cutoff ρ0 which
corresponds to the UV cutoff in the dual CFTs. In particular, if L is the total length of the
system and a is the UV cutoff in the CFTs, the relation between ρ0 and a is

eρ0 ∼ L

a
(4.41)

The 2D spacetime for the CFT2 is identified with the cylinder (t, θ) at the boundary ρ = ρ0 and
a subsystem A is identified with a portion of this cylinder given by 0 ≤ θ ≤ 2πl/L. Then the
extremal surface γA is in this case the static geodesic connecting the boundary points θ = 0 and
θ = 2πl/L travelling inside AdS3. The geodesic distance is given by

cosh
(LγA
R

)

= 1 + 2 sinh2 ρ0 sin
2
(πl

L

)

(4.42)

and assuming a large UV cutoff we obtain the following entanglement entropy

SA ≃ R

4G
(3)
N

log
(

e2ρ0 sin2
πl

L

)

=
c

3
log
[

eρ0 sin
(πl

L

)]

(4.43)

which perfectly matches the very well known CFT result. Similarly, if we use Poincaré patch
coordinates for AdS3

ds2 =
R2

z2
(−dt2 + dz2 + dx2) (4.44)

the subsystem A can be identified with the interval −l/2 ≤ x ≤ +l/2 at the boundary z = 0.
The geodesic γA is described by

(x, z) =
l

2
(cosλ, sinλ) with λ ∈

(εUV
l
, π − εUV

l

)

(4.45)

where εUV is the UV cutoff εUV ∼ 2a/l, thus we obtain the entropy

SA =
c

3
log

l

a
(4.46)

which result to be, up to a constant, the small l limit of (4.43), consistent with the CFT result
(4.37).



Chapter 5

Information paradox and
Karch-Randall models

Information paradox and Page curve

In 1975, Stephen Hawking discovered that black holes emit thermal radiation [1]. Using quantum
field theory in a classical curved space-time background geometry, he argued that gravitational
fields at the horizon are strong enough for quantum mechanical production in the vicinity of the
horizon to lead to the emission of thermal radiation. Roughly speaking, the Hawking radiation
involves the creation of an entangled pair of particles near the horizon, where one particle falls
into the hole, and the other one is emitted as a physical on-shell particle. As a consequence,
emitting Hawking radiation, the black hole’s mass decreases, the black hole gradually evaporates
and eventually disappears. This means that either information is truly lost in black holes, or
that information has been preserved by Hawking radiation itself by some mechanism.
In terms of the von Neumann entropy we can make a more accurate statement of the information
paradox. If one computes the von Neumann entropy of the emitted Hawking radiation, one finds
that it increases as the number of emitted quanta; but after a black hole evaporates, all that is
left is the radiation which is still entangled and so is in a mixed state, in contrast with the fact
that the black hole could have been formed from a pure state. But according to unitarity, it is
impossible that a pure state evolve into a mixed state, hence the paradox.
The violation of unitarity by the evaporation of the black hole can be explicitly seen by the fact
that as the black hole evaporates, the area of the event horizon decreases and the Bekenstein-
Hawking entropy decreases as well since it’s proportional to the area of the horizon. If we
assume the black hole has formed from the collapse of a pure state, the von Neumann entropy
of the black hole and the one of Hawking radiation itself must always be equal but we run into
problem when the increasing von Neumann entropy of Hawking radiation becomes larger than
the Bekenstein-Hawking entropy of the black hole, since by definition the von Neumann entropy
must be always less than the thermodynamic one. One of the first to propose that unitary must
be preserved was Don Page[2]. Since we assume to start at a pure state for the black hole, we
finally have to arrive at a pure state at the end of the evaporation process to preserve unitarity.
This means that the entropy of Hawking radiation must be zero at the end state, thus according
to Page this means that it must begin decreasing at some time, called Page time, following the so
called Page curve. Arguments for the Page curve rely on fundamental properties of fine-grained
entropy. In particular, it is impossible to fix the problem by adding small corrections to the
Hawking process and this holds for all orders in perturbation theory. Therefore, if there is a
solution for the problem, it should be non-perturbative in gravitational coupling GN . The major
question in the construction of a solution is how to bend the curve down in order to preserve
unitarity, a problem sometimes called ”information puzzle”.

Advances in this direction rely on a deeper understanding of the calculation of the entropy
of Hawking radiation, which has been possible thanks to the identification of a new contribution
to the entanglement entropy[7],[44],[9]: the islands, regions that are physically disconnected

29
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Figure 5.1: Schematic behaviour of the entropy of the outgoing radiation

from the asymptotic radiation region and that dominate the entropy contribution at the Page
time, ensuring a unitary evolution of the system.
The starting point is an extension of Ryu-Takayanagi entanglement entropy proposal to a gen-
eralised entropy which includes the entropy contribution of quantum external fields [4],[6].
Specifically, the gravitational proposal for the von Neumann entropy, i.e. the minimum of the
generalised entropy, is

S = minX

{

extX

[Area(X)

4GN
+ Ssc(ΣX)

]}

(5.1)

where X is a surface of codimension 2, ΣX is the region bounded by X and a cutoff surface, and
Ssc(ΣX) is the von Neumann entropy of quantum fields living on ΣX in the semiclassical descrip-
tion and the quantity inside the square brackets, including an area term and the contribution
of quantum fields, is the generalised entropy which obeys the second law of thermodynamics.
The surface X must be chosen so that it minimizes the entropy in the spatial direction and
maximises it in the time direction. If there are multiple extremal surfaces, we must take the
one corresponding to the global minimum, and this extremal surface will be called the Quantum
Extremal Surface (QES). The idea is to start from a cutoff surface outside the black hole and
to move it past the horizon into the interior of the black hole to find the minimum.

Entropy of an evaporating black hole

Let’s apply the fine-grained entropy formula (5.1) to all stages of the evaporating black hole.
After the black hole forms but before any Hawking radiation has a chance to escape the black
hole region, the extremal surface is vanishing, so the first term in (5.1) vanishes, but also the
second term vanishes because the collapsing matter that formed the black hole is a pure state,
thus at the initial stage of evaporation the entropy vanishes. Once the black hole starts evap-
orating and emitting Hawking radiation, the von Neumann entropy is not longer zero due to
the entanglement with outgoing Hawking radiation and begins increasing due to the pile up of
mixed interior modes, whereas the Bekenstein-Hawking entropy, i.e. the thermodynamic en-
tropy, starts decreasing. At the same time, as the Hawking radiation starts escaping the black
hole region, a non-vanishing extremal surface appears as well and it turns out to lie very close
to the event horizon and the corresponding generalized entropy turns out to be dominated by
the area term, thus it can be approximated by the thermodynamic entropy. In particular, since
the thermodynamic entropy decreases as black evaporates, this extremal non-vanishing surface
yields a decreasing generalized entropy. The final prescription of (5.1) is to take the minimum
of generalized entropy among all possible extremal surfaces. Taking into account the time evo-
lution of generalized entropy of vanishing and non-vanishing extremal surfaces, we get a Page
curve, with an initial grow due to vanishing extremal surface and a final decrease due to the
non-vanishing one.
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Figure 5.2: Page curve for the fine-grained entropy of the black hole

Thus this seems to indicate a unitary black hole evaporation but it does not address directly
the information paradox since the latter concerns the entropy of outgoing Hawking radiation.

Entropy of radiation

So far we have assumed ΣX to be connected, but in order for the entropy of outgoing Hawking
radiation to exhibit a Page curve, we must consider the case in which ΣX is disconnected.
This would increase the area term in (5.1), but in order to ensure the entropy can still be
minimised we must jointly decrease the semiclassical entropy contribution. This can happen if
we have regions that are far away from any entangled matter; this is precisely our case, since
the outgoing radiation is entangled with fields living in the black hole interior. Therefore we can
decrease the semiclassical entropy Ssc by including a region representing the black hole interior.
Disconnected regions like these are called ”islands” and the fine-grained entropy of radiation
with this island prescription reads

Srad = minX

{

extX

[Area(X)

4GN
+ Ssc(Σrad ∪ Σisland)

]}

(5.2)

where the area here refers to the area of the boundary of the island, the min/ext procedure is
with respect to the location and shape of the island itself, Σrad is the region from the cutoff
surface to infinity accounting for all Hawking radiation that has escaped the black hole region
and Σisland refers to any number of islands, disconnected regions contained in the black hole side
of the cutoff surface. The necessity of including the interior when calculating the fine-grained
entropy in the island prescription was justified through the replica wormholes [45],[44].
As before, we can have the case of vanishing island contribution. In this case the entropy is
completely due to the semiclassical entropy contribution of Σrad, which grows with time as the
emitted Hawking radiation quanta. After some time, called scrambling time tscr = rs lnSBH [7],
a non-vanishing island appears: this island is centered around the origin, its boundary is very
near the black hole horizon and moves it up for different times along the cutoff surface. In this
case, the semiclassical entropy accounts for both the radiation and the island regions and thus
is close to zero since the ingoing Hawking radiation, contained entirely or almost in the island,
combines with the outgoing one turning what was before a mixed state into a pure one. This
means that the area term dominates and the generalised entropy decreases with time tracking
the thermodynamic entropy of the black hole.
As before, the fine-grained entropy is given by the minimum of the generalized entropies of
the two cases and this leads to a Page curve, with the rising piece coming from the no-island
contribution and the decreasing one from the island contribution.
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Figure 5.3: Page curve of the fine-grained entropy of emitted radiation

The Page curve of both the evaporating black hole and of the radiation are the same, con-
sistently with the fact that if the black hole has formed from a pure state, the entropies of the
black hole and the emitted radiation must be the same as stressed out many times.

Karch-Randall model with non-gravitating bath

One of the most recent and promising developments in the context of quantum gravity have been
the calculations of the Page curve in some simplified models using holography ideas. In order
to have a theory of gravity under theoretical control, it is convenient to study black holes in
asymptotically AdS space so one has a non-perturbative definition of quantum gravity in terms
of AdS/CFT correspondence. Since AdS space acts effectively like a box, large black holes in
this space do not evaporate.
One way to solve this problem and to have a tractable model of an AdS evaporating black hole
consisting in imposing transparent boundary conditions, allowing the radiation of an AdS black
hole reaching the boundary of AdS to couple to an external flat space heat bath.
AdS with transparent boundary conditions is thus crucial in the holographic calculations of the
Page curves. One of the model that embeds these transparent boundary conditions are is the
Karch-Randall model [16],[17],[18] describing an end-of-the-world brane (with specific features
discussed below) coupled to a non-gravitating bath. Such a system is a doubly-holographic one
because it has three descriptions related to each other by applying the AdS/CFT correspondence
twice:

1. as an Einstein gravity in an asymptotically AdSd+1 space containing a Karch-Randall
brane as an end-of-the-world (ETW) brane ;

2. as CFTd with an intrinsic UV cutoff coupled to d-dimensional graviton on an asymp-
totically AdSd space, whose boundary is connected to another d-dimensional CFT on
half-Minkowski space via transparent boundary conditions;

3. as non-gravitational CFTd on half of a Minkowski space with a (d−1)-dimensional bound-
ary (i.e. a BCFTd).

The second holographic interpretation is the one of interest for the black hole information para-
dox: to pose the paradox, the AdSd slice is replaced by an AdSd black hole, obtaining in this
way a black hole on the ETW brane coupled to the remaining half of the conformal boundary
of the bulk AdSd+1, which serves as a bath.
For simplicity let’s assume d = 4, thus we consider a 4d AdS theory coupled to a CFT4 living
in a flat space bath region, and let’s briefly review the simple Karch-Randall geometry with a
Planck brane ending on the conformal boundary of the bulk AdS5 (denoted as M below).
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Figure 5.4: Embedding of an AdS4 Karch-Randall brane in a bulk AdS5 space

Therefore we are lead to consider the following action1

S =
1

16πG5

∫

M

d5x
√−g

(

R+
12

L2

)

+
1

8πG5

∫

B

d4x
√
−h(K − λ) (5.3)

where B denotes the ETW brane with induced metric hab and should be seen as one of the
boundary component of the bulk AdS5 spacetime, L is the AdS5 radius and λ is a quantity
proportional to the tension of the brane. K = habKab is the trace of the extrinsic curvature
Kab defined by Kab = ∇anb where n is the unit vector normal to the brane B with a projection
of indices onto B from M. Moreover we have to remember that the cosmological constant Λ is
related to the AdSd+1 radius L by Λ = −d(d+ 1)/2L2.
Now let’s compute the variation of the above action with respect to the metric

δS =
1

16πG5

∫

B

√
−h
[

Kabδh
ab − (K − λ)habδh

ab
]

(5.4)

where the terms coming from the variation of the integral on M vanish because of the Einstein
equations on M and the terms involving the derivative of δhab vanish thanks to the boundary
term. Since the boundary component B is a brane, let’s impose Neumann boundary conditions
by setting the coefficients of δhab to zero

Kab −Khab + λhab = 0 (5.5)

Now, let’s write down the AdS5 line element in Poincaré patch coordinates

ds2 =
L2

z2
(−dt2 + dz2 + dy2 + dx21 + dx22) (5.6)

here the y ∈ R is the horizontal direction in figure 5.4, z > 0 is the vertical direction and
x⃗ = (x1, x2) represents 2 real transverse directions which are suppressed in the figure together
with t ∈ R.
The brane is the surface z = −y tan θ, where θ is some angle between 0 and π/2. We can
compute the extrinsic curvature of this surface getting

Kab =
cos θ

L
hab (5.7)

and plugging into the boundary condition 5.5 we obtain a relation between the angle θ and the
parameter λ representing the tension of the brane

λ =
3

L
cos θ (5.8)

where it has been used habhab = 4.
Finally by substituting y = −z cot θ in the AdS5 line element and making the change of variable
z̃ = z/ sin θ, we can see that the induced metric on the brane is effectively AdS4 with radius

l =
L

sin θ
(5.9)

1The Gibbons-Hawking term of the remaining half of the AdS5 conformal boundary has been omitted for
simplicity
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It can be shown that when λ becomes equal or larger than the critical tension λc = 3/L, the
induced metric on the brane becomes Minkowski or de Sitter and the boundary of the brane is
no longer timelike but changes discontinuously to be lightlike or spacelike. From now on, we
focus only on subcritical branes with |λ| < λc, since they are the only ones relevant for our
purposes.
One of the most surprising feature displayed by subcritical Karch-Randall branes is the fact
that the d-dimensional graviton localized on the brane picks up a mass. This has been proved
by studying the spectrum of linearized gravity fluctuations around the AdS4 solution in [18],
thus from bulk considerations related to description 1), but this can be deduced in a simpler
way through description 3) as a direct consequence of the transparent boundary conditions:
any gravitational theory on any AdSd space, not necessarily living in the world-volume of a
subcritical Karch-Randall brane, has a description in terms of a CFTd−1 with a conserved
stress tensor and once we couple this CFTd−1 with transparent boundary conditions to another
system (in our case the CFTd living on half of the AdSd+1 bulk’s conformal boundary) to which
it can transfer energy, the stress tensor exhibits a leakage, is not longer conserved and gets an
anomalous dimension which translates into a massive graviton in the dual theory according to
the AdS/CFT correspondence dictionary.

Moreover, [18] shows that the wavefunction of the lightest but massive graviton is normal-
izable and gives the following relation between the Newton constant on the brane and the brane
angle

G−1 ∼ 1

θd−2
(5.10)

Moreover it turns out that in the θ → 0 limit, together with the vanishing ofG and the divergence
of the curvature radius on the brane l (5.9), the mass of the lightest graviton localized on the
brane goes smoothly to zero, so a massless graviton re-emerges.

Extremal surfaces and Page curve

The second holographic interpretation, among the three discussed previously, is the one of
interest for the black hole information paradox: to pose the paradox [10],[12],[13],[14], the
bulk empty AdSd+1 metric is replaced by an AdSd+1 black string metric, inducing a planar
AdSd-Schwarzschild black hole on the brane; in this way the black hole on the brane will couple
to the CFTd living on remaining half of the conformal boundary of the bulk AdSd+1, which serves
as a bath, and as long as we keep the bath at a finite temperature T matching the Hawking
temperature of the black hole on the brane, they will be in stable equilibrium. Even if this setup
is not suited to calculate the Page curve of an evaporating black hole, it will be very useful to
identify the quantum extremal surfaces contributing to the radiation entanglement entropy, in
particular to establish the existence of islands.
In this Karch-Randall setup with a non-gravitating bath, the outgoing radiation can be captured
by calculating the entanglement entropy of a region R, which it will be called radiation region,
in the ambient space of the BCFT far away from the defect. Naively, R has nothing to do with
the quantum extremal surfaces living on the world-volume of the Karch-Randall brane, but
according to the island prescription (5.2), its entanglement entropy must allow contributions
from islands located elsewhere, in particular near the brane-world black hole

S(R) = minI{ext[Sgen(R∪ I)]} (5.11)

where the island I is a codimension-1 region on the brane disconnected from R, while Sgen
denotes the generalized entropy functional used in the quantum extremal surface prescription
(5.1)

Sgen(R∪ I) = A(∂I)
4GN

+ Smatter(R∪ I) (5.12)

where ∂I is the quantum extremal surface, over which we minimize Sgen to obtain the von
Neumann entropy of radiation region. Since, as proved by Porrati [46],[47], in the context
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of Karch-Randall braneworlds gravity (hence also graviton mass) can be thought as entirely
induced by loops of matter fields on AdSd, the area term can be included in Smatter. Then using
holography, the CFT matter in description 2) can be related to its bulk dual in description 1), so
that the leading semiclassical order of Smatter can be computed using only the geometrical data
in the bulk AdSd+1, i.e. using the standard Ryu-Takayanagi minimal area prescription (4.38).
Let us say we want to calculate the entanglement entropy of a radiation region located at y ≥ y0,
for some fixed y0. As it will be clear in a moment, the full black hole geometry involves a second
boundary, thus a second copy of the CFT behind the horizon implying we must include a copy
of the y > y0 region in the second CFT as part of the radiation region R itself.

There are two kinds of extremal surface appear to contribute to the holographic entanglement
entropy:
• the Hartman-Maldacena surfaces, stretching between the boundary of the radiation region
and the corresponding point in the thermofield double;

• the island minimal surfaces, which start from the bath extending until the gravity system, i.e.
the ETW brane.

The Hartman-Maldacena surfaces [19] are present independently from the ETW brane and they
go straight down through the horizon connecting via an Einstein-Rosen bridge to the second
boundary of the fully extended black hole geometry. One very important aspect of these surfaces
is that their area grows linearly with time together with the length of the Einstein-Rosen bridge.
On the other hand, the presence of the Karch-Randall brane allows the existence of another kind
of RT surface, the island surface[48], which does not stretch across the Einstein-Rosen bridge
and end on the brane outside the black hole horizon; as a consequence, its area stays constant
in time.
By constructing numerically this second kind of extremal surface, [48] found that at t = 0 this
surface has a larger area than the Hartman-Maldacena surface. This means that the entangle-
ment entropy of the radiation region R is initially due to the Hartman-Maldacena contribution
and it grows linearly in time together with the Hartman-Maldacena surface’s area. Then at a
certain time, the so called Page time, the areas of two kind of extremal surfaces will be equal
and after that time the entanglement entropy will be dominated by the island contribution.

A brief digression on Hartman-Maldacena surfaces

It’s worthwhile to go into details about Hartman-Maldacena surfaces, in particular how they
have been found [19] and their physical interpretation.
The metric of an AdSd+1 black string has the form

ds2 =
1

z2

[

−(1− zd)dt2 +
dz2

1− zd
+ dx2d−1

]

(5.13)

and introducing the coordinate ρ, defined as

dρ =
dz

z
√

(1− zd)
(5.14)

can be rewritten as
ds2 = −g2(ρ)dt2 + h2(ρ)dx2d−1 + dρ2 (5.15)

where the functions h and g are

h =
2

d

[

cosh
(d

2
ρ
)]2/d

, g = h tanh
(d

2
ρ
)

(5.16)

This black hole has an horizon at ρ = 0 and temperature T = 1/2π, as can be easily checked.
Since the Hartman-Maldacena surfaces will reveal to be extremal surfaces penetrating the hori-
zon, let’s consider the eternal AdS black hole geometry. An eternal black hole is the black hole
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with the full, two-sided Penrose diagram and in AdS an eternal black hole has two boundaries,
so is dual to two copies of a conformal field theory in a particular pure entangled state.The
interior region corresponds to purely imaginary ρ = ik and t = tI − iπ/2, with tI real and
spacelike in the interior.
In the eternal black hole geometry, temporal symmetry requires that time must run forwards
on one copy and backwards on the other copy of the thermofield double, namely in the two
conformal field theories living on the two boundaries of the eternal black hole. Since we want
to introduce a time dependence in our setup, we choose to make the time run forwards on both
copies and we separate each copy in two halves at some time tb, which will be the same on both
sides.

Figure 5.5: Full-extended Penrose diagram of an AdSd+1 black hole (left) and extremal surface com-
puting the entanglement entropy (right), sitting very close to a special critical spacelike surface in the
interior for tb ≫ 1[19]

At this point, using the Ryu-Takayanagi formula, we want to calculate the entanglement
entropy of the region A, corresponding to the union of the same half of each of the two copies of
the thermofield double. Finding the extremal codimension-2 surface that ends on the boundaries
of region A amounts to find a function t(ρ) describing how the surface moves in the t, ρ direction.
The area, in units of x⃗ volume, needed to be extremized is

A = Vd−2

∫

dt [h(ρ)]d−2
√

−g2(ρ) + ρ̇2 (5.17)

Since the surface is symmetric under the time reflection tI → −tI , we expect that ρ̇ = 0 at tI = 0.
Moreover, since the area integrand L = [h(ρ)]d−2

√

−g2(ρ) + ρ̇2 does not depend explicitly on t,
we obtain a quantity conserved along any solution of the equation of motion

C = ρ̇
∂L

∂ρ̇
− L =

g2hd−2

√

−g2 + ρ̇2
= −ig0hd−2

0 (5.18)

where in the last equality we evaluate g and h at the interior point ρ0 = ik0 at which ρ̇ = 0.
In particular we can obtain

t(ρ) = −iπ
2
−
∫ ρ

ik0

dρ′

g

√

1− g2h2d−4

g20h
2d−4
0

(5.19)

with the integral having a pole at the horizon ρ = 0, for this reason the integral must be taken
along a contour which avoids the pole.
Then the area is simply given by

A = 2Vd−2

∫ ∞

ik0

dρ
hd−2

√

1− g20h
2d−4
0

g2h2d−4

(5.20)
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where the factor 2 comes from the symmetry of the surface.
This integral is finite as long as ρ0 = ik0 is not the point where the function a = (−ig)hd−2 is
extremized, which we will denote with ρmax = ikmax. Indeed this function a vanishes at the
horizon, starts growing in the interior reaching a maximum at ρmax and then it decreases, as
can be checked explicitly

0.2 0.4 0.6 0.8
k

0.02

0.04

0.06

0.08

a(k)

Figure 5.6: Plot of the function a(k) = (−ig(ik))hd−2(ik) with d = 4

For finite values of tb = t(ρ = ∞) we have k0 < kmax, but as tb becomes large we have that
k0 → kmax. For large tb, the minimal extremal surface has two regions: the region where the
surface crosses the horizon and goes near the boundary, which gives a constant to (5.20) for
tb ≫ 1, and the piece of surface in the interior lying at k ∼ kmax for a long range of the spacelike
interior t-direction. The interior piece gives a large contribution linear in tb to the area, which
can be computed by setting ρ̇ = 0 and g → gmax, h→ hmax in (5.17). The entanglement entropy
for large tb thus reads

S =
A

4GN
=
Vd−2

2GN
(amaxtb + const.) (5.21)

If, instead of a full-extended AdSd+1 eternal black hole, we consider an eternal black hole
solution with an end of the world brane that cuts it in an half, the holographic computation
of entanglement entropy is identical to the one we have just carried out, except for the fact
that now the extremal surface ends at the end of the world brane sitting at tI = 0 and the
entanglement entropy is the same up to a factor of two, since the end of the world brane cuts
off one of the two sides of the full-extended geometry.
The linear growth of entanglement entropy in tb is due to the fact that the extremal surface is
growing along the tI direction inside the horizon. Indeed the shape of these extremal surfaces
resembles the shape of the so called ”nice slices” [49], which grow as well since we keep adding
space in the interior, making the range of tI bigger.

Islands and area difference at t = 0, θ = π/2

A possible way to find the island RT surface that will contribute to the entanglement entropy
at late times is to consider the one-parameter family of surfaces ending on the brane and find
among these surfaces the one with minimal area.
An alternative approach is to impose that the island RT surface must end orthogonally on the
brane: indeed the full Karch-Randall geometry includes two identical copies of the geometry
shown in figure 5.4 and to reduce the full Karch-Randall solution to a single-sided copy, we
need to impose an orbifold projection across the brane. Thus to be consistent with this orbifold
projection, the RT surface must be symmetric in the double-sided geometry with respect to the
brane itself.
As an example, we can construct the islands in the simplest Karch-Randall model, the one with
θ = π/2. In this case the background metric is given by an AdS5 planar Schwarzschild black



38 CHAPTER 5. INFORMATION PARADOX AND KARCH-RANDALL MODELS

hole

ds2 =
1

z2

(

−h(z)dt2 + dz2

h(z)
+ dy2 + dx⃗2

)

, h(z) = 1−
( z

zh

)4
(5.22)

We can obtain the island extremal surface with t = 0 and y = y(z) imposing the boundary
conditions y(0) = y0, since the island surface must be anchored at the boundary y = y0 of the
radiation region R located on the conformal boundary z = 0, and

1

y′(z∗)
= 0, with y(z∗) = 0 (5.23)

The latter condition is equivalent to impose that at y = 0 it must be z′(0) = 0, which is the
Neumann boundary condition required for consistency with the orbifold projection y −→ −y as
discussed earlier.
The area per unit volume in x⃗ space reads

A =

∫ z∗

0
dz

1

z3

√

1

h
+ (y′)2 (5.24)

The extremality condition can be easily solved by exploiting the fact that the integrand of the
area functional does not depend on y. Once found yext(z) and fixed its integration constant
imposing (5.23), we plug it into the area function which subsequently results to be

A =

∫ z∗

0
dz

1

z3
√
h
√

1− (z/z∗)6
(5.25)

This area has a divergence near z = 0, which is the characteristic UV divergence of the en-
tanglement entropy. We can regulate this divergence in two ways, imposing a cutoff z = ε or
computing the difference between the area of the island surface and the area of the Hartman-
Maldacena surface, which in this case with θ = π/2 it’s given by y = y0. In the latter case, the
divergence disappear since this is common to both extremal surfaces which are anchored at the
point y = y0 on the AdS5 conformal boundary. The finite area difference is thus given by

∆A =

∫ z∗

0
dz

1

z3
√
h

( 1
√

1− (z/z∗)6 − 1

)

−
∫ zh

z∗

dz
1

z3
√
h

(5.26)

where we have used the fact that for the Hartman-Maldacena surface y = y0 the area functional
reduces to (5.24) with y′ = 0 and this surface extends up to the horizon, thus the integration
from z = 0 to z = zh. In [13], by numerically computing pairs (y0,∆A) for several values of
z∗, setting zh = 1, the authors found that the area difference is monotonically increasing and
becomes positive for large y0 and this is the reason why we must take the radiation region R far
away from the defect in order for it to capture the effects of the escaping Hawking radiation.
A natural question now emerges about what happens to extremal surfaces in the smooth massless
graviton limit θ → 0. The Hartman-Maldacena surface is clearly unaffected by this limit, the
island surface approach now the AdSd+1 conformal boundary on both its endpoints. This means
that the island surface will gain an additional divergent area contribution which cannot be
cancelled anymore by the area of the Hartman-Maldacena surface. This means that the time
t∗ at which the area of Hartman-Maldacena surface exceeds the one of the island surface will
diverge as 1/θd−2, since the divergence can be seen as arising from the vanishing of the Newton’s
constant on the brane G (5.10). The divergence of t∗ implies that the island contribution will
never be important to the entanglement entropy since Hartman-Maldacena surfaces become
always dominant.
Actually it was numerically found in [50] that at zero temperature (i.e. in empty AdSd+1) the
island surface’s endpoint on the brane runs to the AdSd+1 conformal boundary already if the
brane angle drops below a critical angle. At finite temperature, island surfaces still exist below
the critical angle but they are anchored beyond a critical anchor point on the brane. This critical
anchor point turns out to be an asymptotically decreasing function of brane angle, in particular
it decreases from the horizon and it vanishes at the critical angle.
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Karch-Randall models with gravitating bath

A gravitating bath can be realized by introducing a second end of the world brane as a bath.
The geometry we are going to consider is the one in the figure below.

Figure 5.7: Embedding of a Karch-Randall braneworld with two subcritical branes in Anti-de-Sitter
space. R denotes the radiation region, I the island on the brane, the dashed green line is the candidate
RT surface and the dashed black line is the black string horizon [14]

We refer to the left brane at an angle θ1 as the physical brane and the right brane at an angle
θ2 as the bath brane. Both branes, as in the Karch-Randall model with non-gravitating bath, are
taken to be subcritical, so the geometry of both the physical and bath brane is asymptotically
AdSd.
Let’s start by considering the vacuum solution, i.e. the empty AdSd+1 case. There are two
useful coordinate systems we can employ. The Poincaré patch coordinate system on AdSd+1,
assuming it has unitary curvature radius, reads as usual

ds2 =
1

z2
(−dt2 + dz2 + dy2 + dx⃗2) (5.27)

where, as before, y ∈ R is the coordinate in the horizontal direction, z > 0 is the coordinate in
the vertical direction and x⃗ corresponds to the coordinate in the d− 2 real transverse directions
suppressed in the figure. The conformal boundary of AdSd+1 is at z = 0 and the defect,
representing the intersection between the conformal boundary and the two branes is at y = 0.
However there is a more suitable coordinate system for our subcritical branes’ geometry

ds2 =
1

sin2 θ

(−dt2 + du2 + dx⃗2

u2
+ dθ2

)

(5.28)

where u > 0 and θ ∈ (0, π) represents the radial and angular coordinate of the spherical coordi-
nate system centered on the defect. In this coordinate system, the physical and bath branes are
located respectively at θ = θ1 and θ = π− θ2. Notice that the metric in each slice at constant θ
is an AdSd geometry, with u playing the role of the associated radial Poincaré patch coordinate.
The change of coordinates between two system is given by

{

z = u sin θ

y = −u cos θ
(5.29)

In the Poincaré patch coordinate system, the area density per unit x⃗ volume for an embedding
y(z) can be written as

A =

∫

dz

zd−1

√

1 + y′(z)2 (5.30)

whose extremization gives

y′(z) = ± zd−1

√

z
2(d−1)
∗ − z2(d−1)

(5.31)
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where z∗ denotes the depth of the turnaround point of the minimal surface and it separates
two branches of the solution which goes towards smaller values of z. The only solution which
does not have a turnaround point and reaches the Poincaré patch horizon is y′ = 0, the straight
vertical line corresponding to z∗ → ∞, while all the other solution turn around and reach either
one of the two branes giving rise to an island, the one denoted with I in the figure.
Using the other coordinate system, we can show that the minimal area surface must end orthog-
onally to both branes. Indeed, the area functional for the embedding u(θ) becomes

A =

∫ π−θ2

θ1

dθ

(u sin θ)d−1

√

u2 + u′(θ)2 (5.32)

In deriving the equation of motion

0 = δA =
δu

(u sin θ)d−1

u′√
u2 + u′2

∣

∣

∣

π−θ2

θ1
−
∫ π−θ2

θ1

dθ(e.o.m.)δu (5.33)

The first term is the boundary term obtained through the integration by parts, and in order for
it to vanish we need to impose Neumann boundary conditions

u′(θ1) = u′(π − θ2) = 0 (5.34)

from this we get an analytical check of the symmetry arguments based guess of Neumann
boundary condition of the island RT surface on the brane we have made before for the single
brane configuration (θ2 = 0).
For the embedding y(z) this orthogonality condition translates, through the use of the change
of coordinate (5.29), into

y′ = −z
y

(5.35)

consistent once again with (5.23).
If instead of empty bulk AdSd+1 we consider the AdSd+1 black string, the metric in spherical
coordinates (u, θ) reads

ds2 =
1

u2 sin2 θ

[

−h(u)dt2 + du2

h(u)
+ dx⃗2 + u2dθ2

]

, h(u) = 1− ud−1

ud−1
h

(5.36)

The area functional for the embedding function u(θ) results to be

A =

∫ π−θ2

θ1

dθ

(u sin θ)d−1

√

u2 +
u′(θ)2

h(u)
(5.37)

and the boundary conditions at the branes are still Neumann type as for the empty AdSd+1.
While in the Karch-Randall model with non-gravitating bath one requires a Dirichlet boundary
condition on one end of the RT surface, namely we fix y0 as the endpoint on the BCFT living
on the conformal boundary of bulk AdS geometry so that y0 defines the radiation region R
on the bath, in the case of gravitating bath we cannot define a fixed radiation region and we
must minimize over both the endpoints of the RT surface on the branes, in particular we let the
boundary of radiation region ∂R adjust in order to minimize the entropy. This translates into
Neumann boundary conditions on both RT surface’s endpoints as we have seen.
Taking into account what we have just stated, let’s notice that the only island-free RT surface,
i.e. the only surface that does not turn around, is the trivial and Hartman-Maldacena like
surface y′ = 0, but this surface can never be orthogonal to the bath brane if θ2 ̸= 0. Therefore,
we have a unique always dominating RT surface whose area doesn’t grow in time, leading to a
flat entropy curve.
Specifically, if one allows the end points of the minimal surface on both ETW branes to be
chosen dynamically, at zero temperature (empty AdSd+1) the radiation region R on the bath
would reduce to a point and the entanglement entropy would be zero, while at finite temperature
(AdSd+1 black string) the minimal surface would settle on the black string horizon. In neither
case we get a Page curve.
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Left/Right Entanglement Entropy

Although the conventional geometric entanglement entropy of radiation does not lead to a Page
curve in the Karch-Randall model with gravitating bath at both zero and finite temperature,
the time-dependence can be found in some other form of entanglement entropy for finite tem-
perature setups. The crucial point is that the defect is non-gravitating, thus we should split its
degrees of freedom into a ”left” and ”right” part and call the entanglement entropy between
these two parts the left/right entanglement entropy.
In computing the left/right entanglement entropy, we must consider potential RT surfaces that
start from the defect where the two branes meet. There are once again two classes of candi-
date minimal surfaces: the Hartman-Maldacena surface connecting the defect to its thermofield
double and the island surface connecting the defect to either brane. The quantum entangling
surface is chosen as usual picking the minimal area one between the two candidate surfaces.
In this way, choosing to anchor the minimal surface at the remaining point of the conformal
boundary of AdSd+1, i.e. at the defect, it would emerge a Page curve as shown in [14] and the
resulting entanglement entropy can be interpreted as the one between the left and right defect
degrees of freedom.

Figure 5.8: Quantum extremal surfaces contributing to left/right entanglement entropy in Karch-
Randall models with a gravitating bath. Both kind of quantum extremal surfaces starts from the defect
and ends either on one of the two ETW branes or on the horizon [14]

Then the authors of [14] numerically determined the island surfaces, namely the RT surfaces
starting on the defect and ending on one brane with Neumann boundary conditions (5.34) and
they found a peculiar behaviour: surfaces, imposed to end orthogonally on either of the two
brane and to start from the defect, exist only for branes below a special value for the angle,
called the critical angle θc. This critical angle depends only on the dimension of the space and
the anchor point of the RT surface on the brane results to be a monotonically decreasing func-
tion of the brane angle vanishing (i.e. dropping into the defect itself) at the critical angle θc.
Above the critical angle θ > θc, it was found that the left/right entanglement entropy is domi-
nated by the so called tiny island surfaces, infinitesimal surfaces obtained as asymptotic limits
near the defect, whose area difference with the Hartman-Maldacena surface is −∞, and which
are subdominant when the brane is below the critical angle θc.
Finally, they found that for much smaller angles than the critical one, the island surface has
a larger area than t = 0 Hartman-Maldacena surface. This implies as usual that the initial
entangling surface is the Hartman-Maldacena one, whose area growth reflects the initial area
growth of the entanglement entropy which saturates once the island surface becomes the dom-
inant one. However it was found that at an angle, called Page angle θP , which results to be a
bit smaller than the critical one, and in the range of angles θ ∈ (θP , θc), the island surface is
already dominating at t = 0 thus leading to a trivial entropy curve.



Chapter 6

Exact half-BPS Type IIB interface
solutions

D’Hoker, Estes and Gutperle, in a pair of articles [20],[21], have constructed all type IIB
supergravity solutions with 16 supersymmetries, thus half-BPS solutions, on AdS4×S2×S2×Σ
space-time geometry with SO(2, 3)×SO(3)×SO(3) symmetry in terms of two harmonic functions
on a Riemann surface Σ. These solutions are holographically duals to conformal interface theories
with 16 conformal supersymmetries. Indeed the addition of a planar interface to 4-dimensional
N = 4 super Yang-Mills theory reduces the conformal symmetry group SO(2, 4) to SO(2, 3),
which is precisely the isometry group of AdS4, and the 32 superconformal symmetries may
be reduced to either 0, 4, 8 or 16 with maximal internal symmetry groups SO(6), SU(3),
SU(2)× U(1) and SO(3)× SO(3) respectively [51].
These geometries are of very interest for our work since the Karch-Randall models are boundary
conformal field theories BCFT4, in the case in which the black hole is coupled to a non-gravitating
bath, and defect conformal field theories, in the case of gravitating bath. Thus the uplifts in a
10-dimensional string theory background of these defect/interface conformal field theories will be
some of this class of geometries corresponding to a suitable choice of the two harmonic functions
on Σ.
As stressed several times, the bosonic fields of type IIB supergravity are the metric gµν , the
axion-dilaton field τ , the complex 2-form Bc

2 = B2 + iC2 and the real R-R 4-form C4.
In order to obtain field equations in a simpler form, let us introduce the following composite
fields

B =
1 + iτ

1− iτ

f = (1− |B|2)−1

P = f2dB

Q = f2Im(BdB̄)

G = f(F c3 −BF̄ c3 )

F̃5 = dC4 +
i

4
(Bc

2 ∧ F̄ c3 − B̄c
2 ∧ F c3 )

(6.1)

where F c3 = dBc
2 and the field strength F̃5 is required to be self-dual as usual

F̃5 = ∗F̃5 (6.2)

In terms of this set of composite fields, the Bianchi identities are given by

dP − 2iQ ∧ P = 0

dQ+ iP ∧ P̄ = 0

dG− iQ ∧G+ P ∧ Ḡ = 0

dF̃5 −
i

2
G ∧ Ḡ = 0

(6.3)
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while the field equations are given by

∇µPµ − 2iQµPµ +
1

24
GµνρG

µνρ = 0

∇ρGµνρ − iQρGµνρ − P ρḠµνρ +
1

6
i(F̃5)µνρσλG

ρσλ = 0

Rµν − PµP̄ν − P̄µPν −
1

96
(F̃ 2

5 )µν −
1

8
(G ρσ

µ Ḡνρσ + Ḡ ρσ
µ Gνρσ) +

1

48
gµνG

ρσλGρσλ = 0

(6.4)

The fermionic fields are the dilatino λ and the gravitino ψµ, both of which are complex Weyl
spinors with opposite chirality. The supersymmetry variations of the fermions are

δλ = i(Γ · P )C−1ε∗ − i

24
(Γ ·G)ε

δψµ = Dµε+
i

1920
(Γ · F̃5)Γµε−

1

96
(Γµ(Γ ·G) + 2(Γ ·G)Γµ)C−1ε∗

(6.5)

where C is the charge conjugation matrix of the Clifford algebra, which is such that CC∗ = I and
CΓµC−1 = (Γµ)∗. The BPS equations are obtained by setting δλ = δψµ = 0.
The ansatz of type IIB supergravity solution with SO(2, 3)× SO(3)× SO(3) symmetry for the
metric is

ds2 = f24ds
2
AdS4

+ f21ds
2
S2
1
+ f22ds

2
S2
2
+ 4ρ2dzz̄ (6.6)

where f1, f2, f4 are functions on Σ. The factor SO(2, 3) requires the geometry to contain AdS4,
whereas for the symmetry factor SO(3) × SO(3) we could have chosen either S2 × S2 or S3.
But we have to take into account that the Yang-Mills theory with planar interface and maximal
supersymmetry has SO(3)× SO(3) R-symmetry and this reduced R-symmetry split the scalar
multiplet into two triplets ϕi with i = 1, 3, 5 and ϕ̃j with j = 2, 4, 6, which transform as (3,1)
and (1,3) respectively. This implies that the natural choice is S2×S2, while the two remaining
dimensions remain undetermined by the symmetries and the most general space must carry an
orientation and a Riemann metric as well, namely it must be a Riemann surface.
Solutions of the form given by the ansatz (6.6) preserving 16 supersymmetries correspond to
supergravity fields for which the BPS equations δλ = δψµ = 0 have 16 independent solutions ε.
By using the ansatz and symmetry arguments, BPS equations reduce to a integrable system of
first order differential equations for two real scalar fields, the dilaton ϕ and the Σ-metric factor ρ,
as well as two arbitrary holomorphic functions on Σ. If Bianchi identities and field equations are
reduced to AdS4 × S2 × S2 ×Σ ansatz, they automatically hold whenever ϕ and ρ are solutions
to the BPS system of first order equations. By a change of coordinates this integrable system
of first order differential equations can be mapped onto a set of linear equations, which is then
solved in terms of two holomorphic functions A and B, or equivalently, two harmonic functions
h1 and h2.
In writing down the solutions, it is convenient to introduce the dual harmonic functions

h1 = −i(A− Ā) −→ hD1 = A+ Ā
h2 = B + B̄ −→ hD2 = i(B − B̄)

(6.7)

which will be defined up to additive real constants, and the following combinations of h1, h2
and of their first derivatives (here ∂ = ∂/∂z, ∂̄ = ∂/∂z̄) :

W = ∂h1∂̄h2 + ∂̄h1∂h2 = ∂∂̄(h1h2)

N1 = 2h1h2|∂h1|2 − h21W

N2 = 2h1h2|∂h2|2 − h22W

(6.8)

The dilaton solution1 is given by

e4φ =
N2

N1
(6.9)

1in this case we use φ ≡ Φ/2 for the dilaton
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while metric factors, in the case in which W ≤ 0, explicitly read

f84 = 16
N1N2

W 2
ρ8 =

N1N2W
2

h41h
4
2

f81 = 16h81
N2W

2

N3
1

f82 = 16h82
N1W

2

N3
2

(6.10)

Type IIB supergravity is invariant under the strong-weak duality, under which we have the
following transformation rules

h1 ↔ h2, ϕ↔ −ϕ (6.11)

Moreover, let’s underline the following combinations of metric factors, which will result to be
much useful later on

f21 f
2
4 = 4e2φh21

f22 f
2
4 = 4e−2φh22

ρ4f21 f
2
2 = 4W 2

(6.12)

The complex 3-form field strength F c3 = H3 + iF3 decomposes into the real NS-NS form H3

and the real R-R form F3, which in conformal coordinates z on Σ take the form

H3 = ω45 ∧ db1 F3 = ω67 ∧ db2 (6.13)

where ω45 and ω67 are the volume forms of unit-radius spheres S2
1 and S2

2 , and

b1 = 2ih1
h1h2(∂h1∂̄h2 − ∂̄h1∂h2)

N1
+ 2hD2

b2 = 2ih2
h1h2(∂h1∂̄h2 − ∂̄h1∂h2)

N2
− 2hD1

(6.14)

The first contributions to b1 and b2 are well-defined single-valued functions on Σ, since both
h1 and h2 are single-valued, as well as their derivatives, but the dual harmonics hD1,2 are not
single-valued in general. As a consequence, if we consider a 3-cycle M3 decomposed as M3 =
C1×(S2

1)
n1∪C2×(S2

2)
n2 , with C1,2 two closed curves in Σ and n1 and n2 the integers representing

the number of times M3 wraps the spheres S2
1 and S2

2 , the flux through the 3-cycle is given by

∮

M3

F c3 = 8πn1

∮

C1

dhD2 − 8πn2i

∮

C2

dhD1 (6.15)

where the two contour integrals can be solved by applying the residue theorem.
Finally the 5-form reads

F5 = −4f44ω
0123 ∧ F + 4f21 f

2
2ω

45 ∧ ω67 ∧ (∗2F) (6.16)

where ω0123 is the volume form of the unit-radius AdS4, F is a 1-form on Σ with the property
that f44F is closed and ∗2 denotes Poincaré duality with respect to the Σ metric. The explicit
expression for F is given by

f44F = dj1 with j1 = 3C + 3C̄ − 3D + i
h1h2
W

(∂h1∂̄h2 − ∂̄h1∂h2) (6.17)

where C and D are defined respectively as C = A∂B − B∂A and D = ĀB +AB̄.
Once again, in evaluating closed contour integral of dj1, the last term does not contribute being
single-valued

∮

C
dj1 = 3

∮

C
d(C + C̄ − D) (6.18)

The above expressions give the local form of the general solution for the ansatz (6.6).
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Global regularity and topology constraints

Although any pair of harmonic functions gives a local solution of the supergravity field equations,
global consistency requires regularity and topology conditions[20].
First of all, the dilaton and the metric functions must be non-singular in the interior of Σ and
on the boundary ∂Σ, except possibly at isolated points on the latter. For example, as we are
going to see, an asymptotic AdS5 × S5 region, which may be appear in the limit Re(z) −→ ∞, is
an example of isolated point in ∂Σ where f4 diverges, as well as singularities of probe D5 and/or
NS5 branes, for which the metric factors f1, f2 and f4 diverges.
Excluding the isolated points on ∂Σ, the remaining part of the boundary consists of open
segments and we require they correspond to regular interior points, which can be achieved by
demanding that throughout each such segment one of the two S2, but not both, shrink to zero
size, implying that the product f1f2 must vanish along ∂Σ except on the isolated points.
Exploiting this fact, the third combination of metric factors (6.12) and the non-singularity of ρ2

on ∂Σ, it follows the vanishing ofW on ∂Σ. Furthermore, by requiring that ∂Σ has only a single
connected component, it follows that f1f2 and W cannot vanish in the interior of Σ, except at
isolated points, and by continuity their sign must remain constant throughout the interior of Σ.
A final constraint is that the AdS4-radius f4 cannot vanish, since its vanishing would imply the
vanishing of both the metric factors f1 and f2 originating an unphysical singularity in the type
IIB geometry. Combining the non-vanishing of f4 and the fact that ϕ is non-singular (except
possibly on isolated points) with (6.12), we get that f1 = 0 if and only if h1 = 0 and the same
conclusion for f2 and h2. In particular if on an open segment of ∂Σ f1 = h1 = 0, namely
h1 satisfies a vanishing Dirichlet boundary condition, it can be proved that h2 must obey a
Neumann boundary condition on the same segment and vice versa, so

h1 = ∂nh2 = 0 on ∂Σ+ h2 = ∂nh1 = 0 on ∂Σ− (6.19)

where ∂n denotes the derivative normal to the boundary ∂Σ, while ∂Σ+ and ∂Σ− form a partition
of ∂Σ and they are such that their closures intersect at isolated point.
In the explicit examples of solutions we are going to investigate, we assume that the Riemann
surface is given by the infinite strip

Σ =
{

z = x+ iy ∈ Z

∣

∣

∣
0 ≤ y ≤ π

2

}

(6.20)

Global AdS5 × S5 solution

The simplest solution is the global AdS5 × S5 which is obtained by the following choice of the
pair of harmonic functions h1/2

h1 = −iα sinh z + c.c. and h2 = α̂ cosh z + c.c. (6.21)

and they gives using (6.10)

ρ4 = |αα̂| f24 = 4ρ2 cosh2
(z + z̄

2

)

f21 = 4ρ2 sin2
(z − z̄

2i

)

f22 = 4ρ2 cos2
(z − z̄

2i

)
(6.22)

writing z = x+ iy one recognizes immediately the AdS5 × S5 metric

ds2 = L2[dx2 + cosh2(x)ds2AdS4
+ dy2 + sin2 (y)ds2S2

1
+ cos2 (y)ds2S2

2
] (6.23)

with radius L4 = 16|αα̂| and constant dilaton e2φ = |α̂/α|.
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Supersymmetric Janus solution

A one-parameter deformation of AdS5×S5 solution, whose original non-supersymmetric version
was found in [52], is given by the supersymmetric Janus configuration given by the real harmonic
functions

h1 = −iα sinh
(

z − δϕ

2

)

+ c.c. and h2 = α̂ cosh
(

z +
δϕ

2

)

+ c.c. (6.24)

where δϕ is a real parameter, which corresponds to the difference of the values that the dilaton
assumes in the two asymptotic regions, as we are going to show now.
In the asymptotic regions x −→ ±∞ the Janus geometry approaches an AdS5 × S5 one. In
particular, for the case x −→ −∞, by defining µ = ex and by expanding around µ = 0 one can
find

f44 ≈ |αα̂|
cosh (δϕ)

1

µ4
ρ4 ≈ |αα̂| cosh (δϕ)

f21 ≈ 4ρ2 sin2 y f22 ≈ 4ρ2 cos2 y

(6.25)

so the asymptotic metric takes the typical form of an AdS5 ×S5 metric with radius and dilaton

L4
5− = 16|αα̂| cosh (δϕ) e2φ− =

∣

∣

∣

∣

α̂

α

∣

∣

∣

∣

e−δφ (6.26)

A similar result can be found in the limit x −→ +∞, where the radius of the AdS5 × S5 region
is the same and the dilaton is the same up a flip in the sign

L4
5+ = 16|αα̂| cosh (δϕ) e2φ+ =

∣

∣

∣

∣

α̂

α

∣

∣

∣

∣

e+δφ (6.27)

Thus it results clear that the dilaton difference ϕ+ − ϕ− corresponds to the parameter δϕ as
anticipated at the beginning.
After having studied the asymptotic limits of the solution, we want to check its regularity.
The harmonic functions, after some simplification, take the form

h1 = 2α cosh
(

x− δϕ

2

)

sin y

h2 = 2α̂ cosh
(

x+
δϕ

2

)

cos y

(6.28)

and we obtain that
W = −αα̂ cosh δϕ sin 2y

N1 = 2α2α̂ cos y D(x, y)

N2 = 2αα̂2 sin y N(x, y)

(6.29)

where the functions N and D are given by

N(x, y) = cosh
(

x− δϕ

2

)

+ cosh
(

3x+
δϕ

2

)

+ 2
[

cosh
(

x+
3δϕ

2

)

+ cos 2y sinh
(

x+
δϕ

2

)

sinh δϕ
]

D(x, y) =
[

cos 2y + cosh
(

2x− δ
)]

cosh
(

x+
δϕ

2

)

+ 2 cosh
(

x− δϕ

2

)

cosh δϕ sin y2

Thus the dilaton will be given by

e4φ =
1

2

( α̂

α

)2 cosh
(

x+ δφ
2

)

cosh
(

x− δφ
2

)

N(x, y)

D(x, y)
(6.30)

The absence of singularities is ensured by the fact that both N(x, y) and D(x, y) are free of
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Figure 6.1: Three dimensional plot of the dilaton e4φ (left) and of the metric factor f24 (right) for the
supersymmetric Janus solution as a function of x and y, for δϕ = 1

zeros being strictly positive over their entire domain.
Then we can find that the the S2-metric factors f1,2 are never singular as a result of the posi-
tivity of N(x, y) and D(x, y) as well (the same holds for the AdS4 metric factor f4 and for the
Σ metric factor ρ) and they goes like f1 ∼ sin y and f2 ∼ cos y, thus they shrink to zero size
only on the boundaries of Σ, i.e. at y = 0 and y = π/2, and in particular they don’t vanish
simultaneously on ∂Σ, consistently with regularity constraints.

Figure 6.2: Three dimensional plot of the metric factors f21 (left) and f22 (right) for the supersymmetric
Janus solution as a function of x and y, for δϕ = 1

The holographic interpretation of the Janus solution is an interface conformal field theory: the
dual 4-dimensional field theory lives on two 4-dimensional half spaces glued together through a
three-dimensional interface. Let’s see this in more detail.
The boundary of the bulk geometry corresponds to the limit x −→ ±∞ at which the AdS4 metric
blows up as can be seen from (6.25). However there is an additional component of the boundary
of the bulk geometry; indeed, employing the Poincaré patch metric for AdS4

ds2AdS4
=

1

z2
(−dt2 + dw2

1 + dw2
2 + dz2) (6.31)

we don’t have to forget the boundary component at z −→ 0. The 10-dimensional asymptotic
metric, in the limit x −→ ±∞ and z −→ 0, recalling the asymptotic behaviour of the metric
factors (6.25), is given by

ds2 ∼ 1

z2µ2

(

z2dµ2 +
dw2

1 + dw2
2 − dt2 + dz2

4 cosh δϕ
+ z2µ2(dy2 + sin2 yds2S2

1
+ cos2 yds2S2

2
)
)

+O(µ2)
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where µ = e∓x, so that the limit x −→ ±∞ corresponds to the limit µ −→ 0.
Thus the boundary is made of three components, two asymptotic 4-dimensional half spaces
which are glued together at a 3-dimensional interface at z −→ 0. Two 4-dimensional SYM theory
live in the two halves, with different values of the coupling constant gYM : recall that, according
to the AdS/CFT correspondence, the coupling constant of the 4-dimensional N = 4 SYM is
identified with the asymptotic value of the dilaton, in particular in this case we get

x −→ ±∞ :
g2YM
2π

= eφ± (6.32)

Janus solutions doped with 5-branes

Now let us consider the solution corresponding to the following choice of real harmonic functions

h1 =
[

−iα sinh(z − β)− γ ln
(

tanh
( iπ

4
− z − δ

2

))]

+ c.c.

h2 =
[

α̂ cosh
(

z − β̂
)

− γ̂ ln
(

tanh
(z − δ̂

2

))]

+ c.c.

(6.33)

where the parameters (α, β, γ, δ) and (α̂, β̂, γ̂, δ̂) are all real and αγ, α̂γ̂ must be non-negative
in order for the solution to be regular inside Σ. Indeed, if αγ or α̂γ̂ were negative, the solution
would exhibit curvature singularities supported on a 1-dimensional curve in the interior of Σ
[20].
This solution describes the near-horizon geometry of stacks of intersecting D3-branes, NS5-
branes and D5-branes and preserves the same super-Poincaré and R-symmetries as the brane
constructions of linear quiver gauge theories discussed in Appendix B.
Notice that, setting γ = γ̂ = 0, we recover the Janus geometry (6.24), and setting furthermore
β = β̂ = 0 the solution reduces to the global AdS5 × S5 (6.21).
The background geometry defined by the harmonic functions (6.33) approaches asymptotically
two AdS5 × S5 regions at x −→ ±∞, with the values of the radius and the dilaton given by

L4
5± = 16|α±α̂±| cosh

(

β± − β̂±
)

and e2φ± =
∣

∣

∣

α̂±

α±

∣

∣

∣
e±(β±−β̂±) (6.34)

where

α± = α

√

1 +
4γ

α
e±(δ−β) and eβ

±

= eβ
(

1 +
4γ

α
e±(δ−β)

)±1/2
(6.35)

with similar expressions holding for α̂±, β̂±.
The other important feature of this solution is the presence of singularities on the boundary of
the strip at z = δ + iπ/2 and z = δ̂, which describe the presence of stacks of respectively D5
and NS5 branes.
One way to see that a stack of NS5 branes is located at z = δ̂ is to zoom in on the singular
region near z = δ̂ by choosing the coordinate z = reiψ + δ̂ and expanding in small r. This gives
at leading order

h1 = 2
γ

cosh (δ − δ̂)
r sinψ h2 = −2γ̂ ln

(r

2

)

(6.36)

For the dilaton we obtain at leading order

e4φ =
( γ̂ cosh (δ − δ̂)

γ

)2

∣

∣

∣
ln
(

r
2

)
∣

∣

∣

r2
(6.37)
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which diverges as r −→ 0. The metric factors at leading order read

f24 = f22 = 4

√

γγ̂

cosh (δ − δ̂)

√
r
∣

∣

∣
ln
(r

2

)
∣

∣

∣

3
4

ρ2 =
√

γγ̂
1

r
3
2

∣

∣

∣
ln
(

r
2

)
∣

∣

∣

3
4

f21 = 4
√

γγ̂
r

1
2

∣

∣

∣
ln
(

r
2

)
∣

∣

∣

1
4

sin2 ψ

(6.38)

Thus in the vicinity of r = 0, we find the metric of the warped space (AdS4 × S2
2)×w S

3

ds2 = f24 (r)
[

ds2AdS4
+ ds2S2

2

]

+ 4r2ρ2(r)
[

dψ2 + sin2 ψds2S2
1
+

1

r2
dr2
]

(6.39)

Together with the behaviour of the dilaton, this suggests a supergravity solution corresponding
to the NS5 brane geometry (3.55), whose world-volume consists of AdS4 × S2 at z = δ̂. The
presence of a D5-brane stack at z = δ + iπ/2 can be showed analogously or more directly by
carring out a S-duality transformation which exchanges the two harmonic functions and flips
the sign of the dilaton, and transforming the complex coordinate z → iπ/2− z.

Another way to show that the singularity z = δ̂ signals the presence of NS5 brane source
consists in identifying first of all a non-contractile 3-circle that can support the NS-NS 3-form
H3 flux. This 3-cycle is given by the fibration of the sphere S2

1 over an open curve I in Σ, which
starts and ends on the lower boundary of the infinite strip enclosing the the point z = δ̂; since
the sphere S2

1 shrinks to zero in the lower boundary, this 3-cycle is topologically a 3-sphere.
Through this cycle there is no RR 3-form flux since the RR 3-form F3 is proportional to the

volume of the sphere S2
2 (6.13). Thus the flux of the NS-NS 3-form H3 through C δ̂3 = S2

1 × I or
equivalently the NS5 charge reads

Qδ̂NS5 =

∫

Cδ̂
3

H3 =

∫

I

db1

∫

S2
1

ω45 = 4π

∫

I

db1 = 4πb1|∂I (6.40)

exploiting the fact that h1 vanishes on the real z-axis and recalling the expressions of b1 (6.14)
and hD2 (6.7), we get

Qδ̂NS5 = 8πhD2 |∂I with hD2 = ζ̂ +
[

iα̂ cosh
(

z − β̂
)

− iγ̂ ln
(

tanh
(z − δ̂

2

))]

+ c.c.

in total accordance to (6.15) with n1 = 1. It results that the 5-brane charge contribution is
completely due to the imaginary part of the logarithmic function, which in turn depends on
the choice of the branch cut. The most natural choice is to put the logarithmic cut outside
the infinite strip Σ; with this choice hD1 has a discontinuity of 2πγ at the singularity on the
upper boundary of the strip and hD2 has a discontinuity of −2πγ̂ at the singularity on the lower
boundary.
Finally we can write

Qδ̂NS5 = −16π2γ̂ (6.41)

and repeating an analogue reasoning for the singularity z = δ + iπ/2, we find a non-vanishing

flux of the R-R 3-form F3 through Cδ+iπ/23 = S2
2 ×I, where now I starts and ends on the upper

boundary of the infinite strip enclosing the the point z = δ+ iπ/2, and the D5 charge results to
be

Q
δ+iπ/2
D5 = 16π2γ (6.42)

These charges are local, gauge invariant and conserved. They can be expressed in terms
of the number 5-branes exploiting the fact that they are quantized in units of 2k2T5, where
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2k2 = (2π)7(α′)4 is the gravitational coupling constant, and T5 is the tension of a D5-brane,
which can be derived from (3.38). The tension of a NS5-brane is equal to the one of a D5-brane
up to a factor 1/gs (3.56), but since we have kept the dilaton arbitrary so far, we can set it so
that gs = 1 and the tension of NS5-branes and D5-branes is thus the same. Then we get

Qδ̂NS5 = −16π2γ̂ = −4π2α′N δ̂
NS5

Q
δ+iπ/2
D5 = 16π2γ = 4π2α′N

δ+iπ/2
D5

(6.43)

The D3-brane charge is more subtle to deal with. Indeed, from the second equation of (2.32),
taking the differential we obtain

dF̃5 = ∗jD3 = dF5 −H3 ∧ F3 (6.44)

and taking the differential once again, taking into account that dH3 = ∗jNS5 and dF3 = ∗jD5,
we get

d(∗jD3) = −(∗jNS5) ∧ F3 +H3 ∧ (∗jD5) (6.45)

then the D3-source current is not conserved, implying the associated charge is neither conserved
nor local.
However, it’s possible to obtain a charge that turns out to be local, conserved and quantized at
cost of gauge invariance, by defining

∗jPageD3 = ∗jD3 + (∗jNS5) ∧ C2 −B2 ∧ (∗jD5) (6.46)

whose associated charge will be called the Page charge.
In fact, previously the non-conservation of the charge was due to the fact that the field strength
F̃5 satisfies an anomalous Bianchi identity, whereas the Page charge definition amounts to rede-
fine the R-R 5-form field strength as

F5 −→ F ′
5 = F5 + C2 ∧H3

F5 −→ F ′′
5 = F5 −B2 ∧ F3

(6.47)

which ensures the non-anomalous Bianchi identity, thus the conservation of the current, but now
the resulting 5-form field strength associated to jPageD3 is no longer gauge invariant.
Which of the two choices (6.47) is the suitable one depends on the case under consideration, in
particular it depends on which of the two form, B2 or C2, can be defined globally on the 5-cycle
over which one wishes to integrate.

For example, if we consider the 5-cycle C δ̂5 = S2
2 ⋉ C δ̂3 , we know that the integral of F3 = dC2 on

C δ̂3 vanishes as said before, thus C2 can be defined globally on C δ̂5 and the D3-brane Page charge
(in the follow whenever we talk about D3-brane charge, we will implicitly refer to the Page one)
will be

Qδ̂D3 =

∫

Cδ̂
5

F5 + C2 ∧H3 = 4πb2|z=δ̂Qδ̂NS5 (6.48)

similarly B2 can be defined globally on Cδ+iπ/25 = S2
1 ⋉ Cδ+iπ/23 and the D3-brane Page charge

reads

Q
δ+iπ/2
D3 =

∫

Cδ̂
5

F5 −B2 ∧ F3 = −4πb1|z=δ+iπ/2Qδ+iπ/2D5 (6.49)

The integrals have been computed assuming to take the cycles to lie very close to the 5-brane
singularities, so that the gauge potentials are constant, implying in particular the vanishing of
F5 on the integration cycles, and taking into account that the integrals over the 3-form fluxes
coincide with the 5-brane charges as computed before (6.41),(6.42).
Computing b1 and b2 with the choice of harmonic functions (6.33) and choosing the ”canonical
gauge” ζ = ζ̂ = 0, we get

Q
δ+iπ/2
D3 = 28π3

(

α̂γ sinh (δ − β̂)− 2γγ̂ arctan (eδ̂−δ)
)

Qδ̂D3 = 28π3
(

αγ̂ sinh (δ̂ − β) + 2γ̂γ arctan (eδ̂−δ)
) (6.50)
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Closing the AdS5 × S5 asymptotic regions

As already pointed out, the limit x −→ ±∞ corresponds to AdS5 × S5 regions with radii (6.34).
An interesting fact emerges in the limit α = α̂ = 0, in which the radii vanish and the asymptotic
AdS5 × S5 are smoothly capped off and get replaced by regions homeomorphic to AdS4 × B6,
where B6 is the 6-dimensional ball.
To prove this, let’s consider the harmonic functions (6.33) with α = α̂ = 0

h1 = −γ ln
(

tanh
( iπ

4
− z − δ

2

))]

+ c.c.

h2 = −γ̂ ln
(

tanh
(z − δ̂

2

))]

+ c.c.

(6.51)

introducing now the coordinate

r2 = 2(e2δ + e2δ̂)e∓2x (6.52)

and proceeding in computing the metric factors in an expansion around r = 0, one can get in
the limit x −→ ±∞:

ds2 ≃ L2
4[ds

2
AdS4

+ dr2 + r2(sin2 (y)ds2S2
1
+ cos2 (y)ds2S2

2
+ dy2)] (6.53)

with

L4
4 =

16γγ̂

cosh (δ − δ̂)
(6.54)

This metric locally describes an AdS4 × R
6 geometry, thus in this case the asymptotic limits

correspond to regular interior regions of the solution.
Thus the metric corresponding to the choice of harmonic functions (6.51) describes a warped
product AdS4 ×wM6, where M6 is a compact 6-dimensional manifold, with singularities at the
location of the 5-branes. In particular, notice that the AdS4 radius is proportional to (γγ̂)1/4,
so the presence of both D5 and NS5 branes is required for the regular solution.
Another interesting fact to underline is that, since the asymptotic AdS5×S5 have been smoothly
closed, there are no semi-infinite D3-branes or D3-branes stretched between the two asymptotic
regions as were present in the 5-branes doped Janus solution, and ,being present only one stack
of D5-branes and one of NS5-branes, we get that the net number of D3-branes ending on the
NS5-brane stack is equal to the net number of D3-branes ending on the D5-brane stack. This
can be checked through (6.50) by setting α = α̂ = 0 and recalling (6.43), from which we get

N
δ+iπ/2
D3 = −N δ̂

D3 = −N δ+iπ/2
D5 N δ̂

NS5

2

π
arctan (eδ̂−δ) (6.55)

The background described above is an example of a gravity dual of the N = 4 SCFTs labeled
by the pair of partitions (ρ, ρ̂). The simplest possible partitions in this example are

ρ = ρ̂ : N = 1 + 1 + ...+ 1 (6.56)

corresponding to having the same number of each kind of brane, which can be obtained in the
special case γ = γ̂ and δ̂ − δ = ln tan π

2N .

Solution for non-gravitating baths

The Karch-Randall models describe an AdS black hole coupled to an external thermal bath that
can be either gravitating or non-gravitating as we have already seen in the last chapter. They
admit three different descriptions and in one of them they can be seen as boundary conformal
field theories (BCFTs) or as 3-dimensional defect conformal field theories, depending on which
the bath is non-gravitating or gravitating respectively.
The uplifts of these models on the type IIB supergravity background studied so far can be
carried out by choosing suitable representative solutions dual to BCFTs and 3d SCFTs.
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The solution for non-gravitating baths can be obtained with the following choice of the harmonic
functions

h1 = −iπα
′

4
Kez − α′

4
N5 ln

[

tanh
( iπ

4
− z

2

)]

+ c.c.

h2 =
πα′

4
K̂ez − α′

4
N5 ln

[

tanh
(z

2

)]

+ c.c.

(6.57)

In this case, the limit x −→ −∞ leads to a regular point in the internal space, whereas an
AdS5 × S5 geometry emerges in the limit x −→ +∞, and from this follows that the solution is
dual to N = 4 SYM on a half space coupled to a 3d T ρρ̂ [SU(N)] theory on the boundary. Setting

r = e−2x and expanding around r = 0, it is possible to find at leading order

f44 ≈ α′2π3(KK̂)2

4(K + K̂)N5

1

r2
ρ4 ≈ πα′2

4
(K + K̂)N5

f21 ≈ 4ρ2 sin2 y f22 ≈ 4ρ2 cos2 y

(6.58)

and the value of the radius of AdS5 and S5 and dilaton are given by

L4
5 = 4πα′2(K + K̂)N5 e2φ =

K̂

K
(6.59)

Notice in particular that we have a vanishing dilaton variation in the AdS5 throat if K = K̂.
As the Janus solution doped with 5-branes, there is a stack of D5-branes at z = iπ/2 and a stack
of NS5-branes at z = 0, which can be verified through a flux calculation perfectly identical to
the doped Janus since it only depends on the logarithmic terms of the harmonic functions that
result to be the same in the two cases. In particular, from (6.43), it results that the parameter
N5 corresponds effectively to the number of 5-branes in each stack.
The D3-branes flux computations give in this case

Q0
D3 = −16π4α′2

[N2
5

2
+N5K

]

Q
iπ/2
D3 = −16π4α′2

[N2
5

2
+N5K̂

]

Qsemi−∞
D3 = 4π3L4

5 = 16π4α′2(K + K̂)N5

(6.60)

where we exploit the results (6.48) and (6.49) taking into account that

b1(0, y) =
1

2
πα′(N5 + 2K̂ sin y) and b2(0, y) =

1

2
πα′(N5 + 2K cos y) (6.61)

while the semi-infinite D3-branes’ charge as been calculated recalling that

Qsemi−∞
D3 =

∫

S5

F5 = 4Vol(S5) = 4π3L4
5 (6.62)

finally, remembering the D3-brane charge is measured in units of 2k2TD3 = 16π4α′2, we get that
the brane configuration consists of (K + K̂)N5 semi-infinite D3-branes ending on the system of
N5 D5-branes and N5 NS5-branes, N5K̂ D3-branes ending on the D5-branes, N5K D3-branes
ending on the NS5-branes and N2

5 /2 D3-branes suspended between the D5- and NS5-branes.
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Figure 6.3: Brane configuration for the representative non-gravitating bath solution with K = K̂ [22]

As we are going to show next, an important feature in this solution is the presence of a
lowest-lying massive graviton as a consequence of the non-compactness of the internal manifold.
A crucial parameter both for graviton’s mass and for the contribution of quantum island surfaces
to radiation’s entanglement entropy at zero temperature will be

α =
N5

K
(6.63)

which is, for K = K̂ or equivalently for δϕ = 0, the ratio of number of suspended D3-branes
between 5-branes and the number of semi-infinite D3-branes; thus it quantifies the number of
”boundary” over ”bulk” degrees of freedom. In the case of non-vanishing dilaton variation the
corresponding quantity is

α =

√

N2
5

KK̂
(6.64)

which can expressed as (6.63) for generic δϕ through the redefinitions K → Keδφ and K̂ →
Ke−δφ.

Solution for gravitating baths

The representative solution for gravitating baths, holographic dual of a 3d T ρρ̂ [SU(N)] SCFT,
corresponds the following choice of the harmonic functions

h1 = −α
′

4

N5

2

[

ln
(

tanh
( iπ

4
− z − δ

2

))

+ ln
(

tanh
( iπ

4
− z + δ

2

))]

+ c.c.

h2 = −α
′

4

N5

2

[

ln
(

tanh
(z − δ

2

))

+ ln
(

tanh
(z + δ

2

))]

+ c.c.

(6.65)

The resulting geometric can be considered an extension of (6.51) to two stacks of D5-branes
and two stacks of NS5-branes. In particular there are two N5/2 D5-brane groups located at
z = ±δ + iπ/2 and two N5/2 NS5-brane groups located at z = ±δ.
In particular, in presence of more than one singularity for each kind of 5-brane, (6.50) with
α = α̂ = 0, since the asymptotic AdS5 × S5 regions are capped off, can be generalized, in term
of the number of D3-branes, as

Na
D3 = −Na

D5

q̂
∑

b=1

N̂ b
NS5

2

π
arctan (eδ̂b−δa)

N̂ b
D3 = −N̂ b

NS5

q
∑

a=1

N b
D5

2

π
arctan (eδ̂b−δa)

(6.66)
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where we assume D5-brane singularities δ1, δ2, ..., δq and NS5-brane singularities δ̂1, δ̂2, ..., δ̂q̂.

In our case, it results to be present
N2

5
4 ∆ suspended D3-branes between both the two stacks of

D5-branes and the two stacks of NS5-branes, with ∆ = 1
2 + 2

π arctan e
2δ, and N2

5 /2 suspended
D3-branes between both the groups of D5-branes and the groups of NS5-branes. Thus the
parameter δ determines how the D3-branes terminate on 5-branes, and if δ = 0 we return to the
case (6.51) in which the number of D3-branes terminating on each group of 5-branes are equal.

Figure 6.4: Brane configuration for the representative gravitating bath solution [22]

Introducing now the coordinate
r2 = 4e2δe2x (6.67)

and proceeding in computing the harmonic functions in an expansion around r = 0, one can get
in the limit x −→ −∞

N1 = N2 =
1

512
(1 + e2δ)4N4

5 cos y sin y r
4 +O(r5) (6.68)

thus e4φ = N2/N1 = 1 and the same result holds also in the limit x −→ +∞, following the
vanishing of the dilaton at infinity. A non-vanishing dilaton can be obtained for example by
changing the number of NS5 branes in each stack to be N̂5/2, i.e. by changing the parameter
of the harmonic function h2 from N5 to N̂5, obtaining in this way at infinity

e2φ =
N̂5

N5
(6.69)



Chapter 7

Massive AdS gravity

Massive gravity have a long story, but the AdS massive gravity is known to be the ”easier
case” with respect to the Minkowski or de Sitter gravity, since the van Dam-Veltman-Zakharov
discontinuity is not present in Anti de Sitter space[53], where the massless graviton limit is
smooth whenever the square of the graviton mass vanishes faster than the cosmological constant.
However questions remain concerning both the consistency of massive AdS classical theories and
the range of validity if viewed as effective field theories around a given classical background. The
answers of these questions are hoped to be found by embedding massive AdS gravity in a UV-
complete theory like string theory.
In the solutions of type IIB string theory derived by D’Hoker et al and discussed so far, the
lowest-lying spin-2 mode can acquire a tiny mass. To show this, first of all let us rewrite (6.6)
in the following form

ds2 = L2
4(y)ḡµνdx

µdxν + gijdy
idyj (7.1)

where the Greek indices run over {0, 1, 2, 3}, ḡµν is the metric of the unit-radius AdS4 and Latin
indices labels the remaining coordinates, yi, of the internal manifold M6, which is the warped
product of the two 2-spheres over the Riemann surface as usual.
In [25] it was derived the equation for the spectrum of the spin-2 Kaluza-Klein excitations
around any solution with maximal symmetry in four dimensions. In particular, restricting to our
supergravity solution with background metric (7.1) and to perturbations of the four-dimensional
metric only

ds2 = L2
4(y)(ḡµν + hµν)dx

µdxν + gijdy
idyj (7.2)

we can look for factorized solutions of the linearized field equations of the following form

hµν(x, y) = h[tt]µν (x|λ)ψ(y|λ) (7.3)

where h
[tt]
µν solves the Pauli-Fierz equations for a massive spin-2 particle in AdS4

(□̄(2)
x − λ)h[tt]µν = 0 and ∇̄µh[tt]µν = ḡµνh[tt]µν = 0 (7.4)

where the four-dimensional Pauli-Fierz mass is related to λ as

λ+ 2 = m2(y)L2
4(y) (7.5)

The two equations (7.4) force h
[tt]
µν to be transverse and traceless. The linearized Einstein equa-

tions with the above ansatz (7.3) reduce to a single-order equation for the internal-space wave-
function ψ(y)

M2ψ := −L
−2
4√
g
(∂iL

4
4

√
ggij∂j)ψ = (λ+ 2)ψ (7.6)

An interesting fact is that the mass operator M2 only depends on the background metric, and
on no other fields: this is consequence of the fact that all other background fields enter the
linearized equations for spin-2 modes via the total energy-momentum tensor, which can be re-
expressed in terms of the background curvature.
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The eigenmode equation must be supplemented with a space of admissable ψ(y), which in turn
requires the introduction of a norm. With canonically-normalized fields in 10 dimensions, the
Kaluza-Klein reduction of the inner product reads

⟨ψ1|ψ2⟩ =
∫

M6

d6y
√
gL2

4ψ
∗
1ψ2 (7.7)

We conclude therefore that the normalizable excitations are those for which their norm is finite.
One immediate corollary is that the mass eigenvalue m2 is non-negative, and this follows from

m2 ∝ ⟨ψ|M2|ψ⟩ = −
∫

d6yψ∗(∂iL
4
4

√
ggij∂j)ψ =

∫

d6y
√
gL4

4|∂ψ|2 ≥ 0 (7.8)

with the mild assumption that, upon integrating by parts, one picks no contributions either
from singularities or from asymptotic regions.
Another simple consequence, with the same mild assumption as above, is that from (7.8) a
massless graviton must necessarily have ψ(y) =constant. Thus, from normalizability condition,
it follows that

the existence of a massless graviton ⇐⇒
∫

d6y
√
gL2

4 <∞ (7.9)

This condition is automatically satisfied for compact internal manifolds with smooth L2
4(y).

Thus the AdS4 vacuum, where the internal manifold M6 is compact, includes a massless low-
lying graviton and a Kaluza-Klein tower of massive modes. Conversely, the background allowing
for a massive graviton must include non-compact internal manifold and in order to examine
quantitatively how it can acquire a small mass, we consider specifically a compact region in the
vicinity of the 5-brane singularities, called bag, attached in a matching region to a semi-infinite
Janus throat. In particular, as we are going to see, the tiny mass can be obtained if the radius
of the Janus throat L5 is much smaller than the AdS4 radius L4, which is tied to the bag-size
Lbag as a consequence of the scale non-separation problem [54],[55].
However, this can be already understood holographically[26]. If one considers a 3d CFT in its
own, dual to the above AdS4 solution, its stress energy tensor is conserved, and as a consequence
it has canonical conformal dimension ∆ = 3, translating, through the AdS/CFT correspondence
holographic dictionary (4.28), in the presence of an AdS4 massless graviton

m2
gL

2
4 = ∆(∆− 3) (7.10)

Once the 3d CFT is coupled to a 4d N = 4 SYM, corresponding holographically to the attach-
ment of a semi-infinite throat to the bag solution, the three-dimensional stress energy tensor
is no longer conserved since it leaks in the extra bulk dimension, thus its canonical dimension
acquires an anomalous dimension ∆ = 3 + ε which corresponds holographically to a correction
to the AdS4 graviton mass m2

gL
2
4 ∼ ε.

Therefore requiring a tiny graviton mass amounts to require a weak stress energy tensor leakage
in the extra bulk dimension, which in turn amounts to require that the number of boundary
degrees of freedom is much greater than the bulk ones or equivalently, in terms of the dual solu-
tions, that the number of semi-infinite D3-branes is much smaller than the number of D3-branes
suspended between the 5-branes in the bag region.

Figure 7.1: The geometric background of interest allowing a small mass low-lying graviton [23]
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We are not interested in solving the entire spectrum problem, but only in finding the smallest
eigenvalue of the mass operator M2

λ0 + 2 = minψ

[

∫

M6

d6y
√
gL4

4(g
ij∂iψ

∗∂jψ)
]

with

∫

M6

d6y
√
gL2

4|ψ|2 = 1 (7.11)

If M6 is reduced to the compact M̄6 by truncating the Janus throat as it has been done in sub-
section 6, the minimum would correspond to the massless graviton with constant wavefunction

ψ0(y) =
(

∫

M̄6

d6y
√
gL2

4

)−1/2
(7.12)

and we identify it with ψbag.
As can be verified starting from the supersymmetric Janus solution,

√
gL2

4 reaches a minimum
value L8

5 inside the semi-infinite throat and then diverges as L8
5 cosh

8 x at infinity where the 10-
dimensional geometry asymptotes to AdS5 × S5. This implies that normalizable wavefunctions
should therefore go to zero inside the semi-infinite throat.
Therefore, at leading order in L5/Lbag, the contribution to the norm comes exclusively from
the bag, while the contribution to the graviton mass comes only from the bottom of the throat
where

√
gL2

4 is minimal. The matching region contributes to neither and can be shrunk to a point
for our purposes. The minimal eigenvalue problem can be reformulated thus as a variational
problem in the Janus geometry:

λ0+2 ≃ minψ

[

∫

throat

√
gL4

4(g
ij∂iψ

∗∂jψ)
]

with ψ −→
{

ψbag in the matching region

0 at ∞
(7.13)

Taking into account that in the Janus geometry

1

4

√
gL4

4ρ
−2 = L4

4f
2
1 f

2
2 = 16h21h

2
2 =

L8
5

16
sin2 (2τ)G(x) (7.14)

where we used the metric factors’ combinations (6.12), the expression of the harmonic functions
of the supersymmetric Janus (6.28) and τ instead of the usual y as imaginary coordinate of the
Riemann surface, and the function G(x) reads

G(x) =
(cosh 2x+ cosh δϕ

cosh δϕ

)2
(7.15)

finally knowing that the lightest spin-2 eigenfunction is only function of x [26], we get

λ0 + 2 = minψ

[π3

4
L8
5

∫ ∞

xc

dxG(x)(∂xψ)2
]

with ψ −→
{

ψbag at x = xc

0 at x = ∞
(7.16)

where we have cutoff the integral at some large negative value xc at the boundary of matching
region, since ψ would have been a non-normalizable mode in the complete Janus geometry.
The solution of the variational problem , defining a = cosh δϕ, gives

λ0 + 2 =
3π3

4
L8
5ψ

2
bagJ(a) (7.17)

where the Janus correction factor J(a) reads

J(a)−1 =
3a3

(a2 − 1)3/2
log
[

a+
√

a2 − 1
]

− 3a2

(a2 − 1)
(7.18)
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As δϕ goes from 0 to ∞, J(a) decreases monotonically from 1 to 0, thus for AdS5×S5 throats
for which the dilaton is constant J(a) is trivially the identity, whereas in general it has the effect
of reducing the graviton mass. Also the vanishing of the graviton mass at large dilaton variation
can be understood holographically: δϕ is the difference between the value of the dilaton at the
entry of the throat and its value at infinity, with the latter determining the coupling constant
gYM of the dual 4d N = 4 super Yang-Mills theory. If one takes gYM to zero, meaning that
the dilaton variation δϕ is taken to diverge, the bulk CFT decouples from the 3d CFT, dual to
the bag solution, restoring the conservation of the stress energy tensor and sending the graviton
mass to zero. However this limit is singular, since reaching this point in the dilaton moduli
space would bring down an infinite tower of modes which invalidate the effective field theory
itself, beside the fact the supergravity approximation would break eventually down in this limit.
Finally let’s express ψbag, defined in (7.12), as

ψ−2
bag =

∫

M̄6

d6y
√
gL2

4 = V6
〈

L2
4

〉

bag
≃ V6L

2
bag (7.19)

where V6 is the volume of the bag, and
〈

L2
4

〉

bag
is the average AdS4 squared radius which is of

the same order as the Kaluza-Klein scale, due once again to the scale non-separation problem.
Therefore the contribution to the graviton mass (7.5) reads

m̄2
g ≡ m2

gL
2
4 =

3π3

4V6

( L5

Lbag

)8
J(cosh δϕ) (7.20)

at the leading order in the radii ratio.
In the case of the solution for non-gravitating bath (6.57), the radii are given by L4

5 ∼ N5K and
L4
bag ∼ N2

5 and the graviton mass thus takes the form

m̄2
g ≡ m2

gL
2
4 =

3π3

4V6

( K

N5

)2
J(cosh δϕ) =

3π3

4V6

1

α2
J(cosh δϕ) (7.21)

thus it is proportional to the inverse of microscopic ratio α (6.63). The dependence of the
graviton mass on the ratio α was expected because of the reasoning we have made before,
namely the stress energy tensor leakage (and subsequently the dual graviton mass) decreases as
the ratio of boundary over bulk degrees of freedom increases.
As we are going to discuss in the last chapter, the ratio α represents the 10d counterpart of
the inverse of the brane angle θ of 5d Karch-Randall models. Thus, as in Karch-Randall setups
islands are not expected to contribute for θ < θcrit at zero temperature, in the 10d string theory
realizations of these models islands are not expected to contribute for α > αcrit. This means
that graviton mass must be large than a critical value in order for islands’ contribution

m̄g > m̄g,crit ∼
1

αcrit
(7.22)
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Furthermore, the graviton mass formula (7.20) holds only if Janus throat radius L5 is much
smaller than the bag size Lbag ∼ L4, equivalently only if N5 ≫ K, meaning that the critical
value αcrit must be sufficiently large to ensure this regime.
Finally let’s make a comment on the breakdown of AdS massive gravity theory in regime of
small graviton masses (m̄g ≪ 1, i.e. K ≪ N5). The effective field theory breaks down at the
scale [56]

Λ∗ =
m

1/3
g M

1/3
P

L
1/3
4

(7.23)

in an AdS background with fixed radius L4, i.e. with fixed number of 5-branes N5. MP is the
4d Planck mass, which we will set to unit, and it is already clear, as it must be, that mg < Λ∗.
The critical value of the graviton mass can be either outside the regime of EFT validity or inside
it but at an energy scale below or above the graviton mass. In order for the critical mass to be
at an energy scale below the EFT breakdown, it turns out that we must require

Kcrit < K1/3N
5/6
5 ≪ N

7/6
5 (7.24)

where we have used the breakdown energy scale formula (7.23), the graviton mass formula (7.20)

and exploited that, due to the no-scale separation problem,
〈

L
1/2
4

〉

bag
∼ L

1/2
bag ∼ N

1/4
5 .

More stringent is thus the requirement that the graviton mass is above the critical mass value
which yields

Kcrit < K (7.25)



Chapter 8

Islands and Page curve in type IIB
string theory

In the following we are going to construct and study the quantum extremal surfaces in the
type IIB string theory uplifts of the Karch-Randall models. In particular we briefly motivate
how the type IIB solutions corresponding to the choices of harmonic functions (6.57) and (6.65)
represents the 10d uplift of 5d Karch-Randall models with respectively non-gravitating and
gravitating bath. Then we will find the extremality conditions determining the island and
Hartman-Maldacena surfaces, we will describe the numerical relaxation method to solve them
and to construct the extremal surfaces themselves. We proceed to study and analyse these
surfaces, in particular we are going to reproduce the main results of Uhlemann [22] in the case of
vanishing dilaton variation both for the uplifts of non-gravitating and gravitating bath solutions
and the results regarding island surfaces for solutions with non-gravitating bath in presence of
non-vanishing dilaton variation found in [23]. The original work will consist in constructing
the Hartman-Maldacena surfaces for solutions with non-gravitating bath in presence of non-
vanishing dilaton variation and extending the results found by Uhlemann regarding the area
difference between the extremal surfaces at t = 0 for non-vanishing dilaton variation. The
target of extending the results of extremal surfaces for a particular solution with gravitating
bath with non vanishing dilaton variation reveals however trivial results with respect to the
vanishing dilaton variation case.

Construction of quantum extremal surfaces in type IIB string
theory uplifts

Karch-Randall models can be uplift in type IIB string theory background and 4d black holes
coupled to non-gravitating and gravitating baths are realized through 10d black hole solutions
based on the AdS4 × S2 × S2 × Σ type IIB solutions discussed extensively in section 6.
In particular the type IIB string theory realization of the Karch-Randall model with a non-
gravitating bath, as previously anticipated in 6, can be obtained with the choice of the harmonic
functions h1, h2 (6.57), which we recall here (setting for simplicity α′ = 1 from now on)

h1 = −iπ
4
Kez − N5

4
ln
[

tanh
(

i
π

4
− z

2

)]

+ c.c. =
π

2
Kex sin y − N5

4
ln
(coshx− sin y

coshx+ sin y

)

h2 =
π

4
K̂ez − N5

4
ln
[

tanh
(z

2

)]

+ c.c. =
π

2
K̂ex cos y − N5

4
ln
(coshx− cos y

coshx+ cos y

)

the reason of the uplift is that the asymptotic region AdS5 ×S5 at x→ +∞ corresponds to the
AdS5 part of the 5d Karch-Randall model, whereas the region with the 5-brane sources is the
string theory version of the end-of-the-world brane itself. Moreover, we recall that the dilaton
variation in the asymptotic throat amounts to

e2δφ =
K̂

K
(8.1)
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The solution for the Karch-Randall models with gravitating bath can be obtained instead with
the choice of harmonic functions (6.65)

h1 = −N5

8

[

ln
(cosh (x− δ)− sin y

cosh (x− δ) + sin y

)

+ ln
(cosh (x+ δ)− sin y

cosh (x+ δ) + sin y

)]

h2 = −N5

8

[

ln
(cosh (x− δ)− cos y

cosh (x− δ) + cos y

)

+ ln
(cosh (x+ δ)− cos y

cosh (x+ δ) + cos y

)]

(8.2)

which, as discussed in 6, describes a 5-branes doped Janus solution in which the asymptotic
AdS5 × S5 regions are closed off. The capping off of the asymptotic region at x → +∞ cor-
responds to the introduction of the second end-of-the-world brane in the Karch-Randall model
with gravitating bath. The entire 10d solution corresponds to the remaining wedge of AdS5.

To introduce the temperature, we need to replace the AdS4 by a finite temperature AdS4
black hole and in doing this replacement we still obtain a solution to the type IIB SUGRA field
equations. The corresponding metric is

ds24 =
dr2

b(r)
+ e2r(−b(r)dt2 + ds2

R2), b(r) = 1− e3(rh−r) (8.3)

where r = rh is the horizon radius, as can be verified by imposing b(r) = 0, and the conformal
boundary is at r −→ ∞.
The horizon temperature of an AdS planar black hole can be derived by expanding the associated
Euclidean metric in the near horizon limit

ds2 ≃ 3e2rh(r − rh)dτ
2 +

1

r − rh
dr2 + e2rhds2

R2
(8.4)

where τ = −it is the Euclidean imaginary time. Defining R2 := 4(r − rh)/3 and neglecting the
angular part of the metric, the near horizon metric takes the form of a Rindler one

ds2 ≃ 9e2rh

4
R2dτ2 + dR2 (8.5)

Finally imposing the periodicity of the Euclidean time τ ∼ τ + β so to avoid conical singularity,
one finds that the horizon temperature is given by

T =
1

β
=

3erh

4π
(8.6)

Notice that the temperature of the AdS planar black hole (8.3) vanishes in the limit rh −→ −∞,
or equivalently if b(r) = 1.
In certain cases, it is useful to use a tortoise radial coordinate

du =
dr

√

b(r)
⇒ u =

2

3
cosh−1 (e

3
2
(r−rh)) (8.7)

using this radial coordinate, the exterior region of the black hole is described by u > 0, the
horizon is at u = 0 and the metric becomes

ds24 = du2 + e2rh cosh4/3
(3u

2

)[

− tanh2
(3u

2

)

dt2 + ds2
R2

]

(8.8)

Islands surfaces

The extremal surfaces are 8-dimensional surfaces in the 10d geometry wrapping both S2 and
partially the Riemann surface Σ and the AdS4 black hole geometry. Thus their embeddings can
be described in terms of the AdS4 radial coordinate r(x, y) for any given point of Σ and the
induced metric reads

ds2γ = e2rf24ds
2
R2 + f21ds

2
S2
1
+ f22ds

2
S2
2
+ 4ρ2(dx2 + dy2) +

f24
b(r)

(dx∂xr + dy∂yr)
2 (8.9)
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where the metric (8.3) has been used for the AdS4 black hole geometry.
From the induced metric, the area of the surface in units of the volume of R2 × S2

1 × S2
2 results

to be given by

A = 32

∫

dxdy e2rf
√

1 + g(∇r)2 (8.10)

where we exploited the combination of metric factors (6.12) and defined the functions f(x, y)
and g(x, y) as

f = |h1h2W |, g =
1

2b(r)

∣

∣

∣

h1h2
W

∣

∣

∣
(8.11)

and ∇ is the covariant derivative with respect to the metric on Σ.
The extremality condition is found by solving the Euler-Lagrange equation of the integrand L
of the area functional

0 =
1

L
(δL
δr

−∇ δL
δ(∇r)

)

=
1

1 + g(∇r)2
[

2−∇(g∇r) + 1

2
g∇r · ∇ ln

(1 + g(∇r)2
b(r)f2

)]

(8.12)

Let’s discuss now the boundary conditions we need to impose to surfaces extending along Σ.
The induced metric near the lower component of the strip y = 0, recalling that f1 ∼ 4y2ρ2

(6.38), reads

ds2γ ≃ e2rf24ds
2
R2 + f22ds

2
S2
2
+ 4ρ2(dx2 + dy2 + y2ds2S2

1
) +

f24
b(r)

(dx∂xr + dy∂yr)
2 (8.13)

the contribution (∂yr)
2dy2 may introduce a conical singularity in the (y, S2

1) part of the induced
metric on the surface. To obtain a smooth metric, we must impose a Neumann boundary
condition of the embedding function r(x, y) on the lower boundary of the strip, and analogously
it can be checked that the same must hold on the upper boundary

∂yr(x, y)|y=0,π
2
= 0 (8.14)

At x→ −∞, the background geometry closes off smoothly, whereas for the surface to be smooth
the limit limx→−∞ r(x, y) should be independent of y. Recalling the asymptotic behaviour of
metric factor at x→ −∞ (6.54), the induced metric on the minimal surface in this limit becomes

ds2γ ≃ L2
4

[

e2rds2
R2 + dv2 + v2

(

dy2 + sin2 yds2S2
1
+ cos2 yds2S2

2

)

+ (dx∂xr)
2dv

2

v2

]

(8.15)

where in this case we have used as expansion coordinate v = 2ex. The metric in the round bracket
is the line element of S5 and a smooth R

8 with no conical singularity is obtained imposing

lim
x→−∞

e−x∂xr(x, y) = 0 (8.16)

which together with (8.14) forms the 10-dimensional analog of the Neumann boundary conditions
imposed at the ETW brane in the 5d Karch-Randall models.
The boundary condition at x → +∞ is different depending on which we are studying the
solution with a non-gravitating or a gravitating bath. In the former case at x→ +∞ there is an
AdS5 × S5 region and a Dirichlet boundary condition anchoring the surface is imposed, while
for the latter case the limits x → ±∞ both lead to regular boundary points and the boundary
condition at x→ +∞ is identical as the one at x→ −∞ with x→ −x. Thus in summary

lim
x→+∞

r(x, y) = rR(y) = rR for non-gravitating bath

lim
x→+∞

e+x∂xr(x, y) = 0 for gravitating bath
(8.17)

the reason the Dirichlet boundary condition at x → +∞ for the non-gravitating bath solution
is independent of y lies on the fact that the form of rR(y) can be determined considering the
global AdS5 × S5 solution (6.21) for which |h1h2/W | ∝ 2 cosh2 x, which is independent of y.
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To solve the partial differential equation (8.12) numerically, we introduce an auxiliary external
time parameter τ in such a way the embedding is described by a τ -dependent function r(x, y, τ)
and its τ -evolution is given by

∂τr(x, y, τ) = − 1

1 + g(∇r)2
[

2−∇(g∇r) + 1

2
g∇r · ∇ ln

(1 + g(∇r)2
b(r)f2

)]

(8.18)

For a generic τ we get a trial surface satisfying the boundary conditions, and by waiting for a
sufficiently long relaxation time τmax ≫ 1 in order for the extremality condition to stabilise, the
trial surface will dynamically settle on the minimal area configuration.
To numerically implement the relaxation, first of all we perform the change of variable ξ = tanhx
in order to get a finite domain, then this domain is discretized into a rectangular lattice with
equidistant points, the derivatives are discretized using second-order finite differences and the
boundary conditions are implemented such that they are compatible with the second-order
accuracy of the finite differences. In this way, the partial differential equation turns into a set
of coupled algebraic equations and then these equations are then solved with the relaxation
method (8.18), through which they are replaced by a set of first order differential equations.
The resulting extremality condition after the coordinate transformation ξ = tanhx can be
obtained by performing the change of variable either directly in the extremality condition (8.12)
or from the beginning in the area functional (8.10); in both cases now the extremality condition
reads

0 =
1

1 + g(∇̃r)2
{

2−
[

∂yg∂yr + (−1 + ξ2)2∂ξg∂ξr + g
(

∂2yr + (−1 + ξ2)(2ξ∂ξr + (−1 + ξ2)2∂2ξ r)
)]}

+
1
2g

1 + g(∇̃r)2
{

−2
[∂yf

f
∂yr + (−1 + ξ2)2

∂xf

f
∂xr
]

+
1

1 + g(∇̃r)2
[(

∂yg∂yr + (−1 + ξ2)2∂ξg∂ξr
)

(∇̃r)2 + 4g(−1 + ξ2)2∂yr∂ξr∂
2
ξyr+

4gξ(−1 + ξ2)3(∂ξr)
3 + 2g(−1 + ξ2)4(∂ξr)

2∂2ξ r + 2g(∂yr)
2∂2yr

]

− 3
e3(rh−r)(∇̃r)2
1− e3(rh−r)

}

where r, g, f are now functions of (ξ, y) and (∇̃r)2 = (J∇r)2 = (∂yr)
2 + (−1 + ξ2)2(∂ξr)

2, with
J the Jacobian of the coordinate transformation.
We typically use a 30× 30 grid and the residuals have been decreased to O(10−12) or less.

Hartman-Maldacena surfaces for non-gravitating bath solutions

For the non-gravitating bath solutions, let’s use the tortoise radial coordinate u and parametrize
the embedding of t = 0 Hartman-Maldacena surfaces using x(u, y) instead of r(x, y), for reasons
of convenience which will be clear in a moment.
These extremal surfaces extends from uR = u(rR), imposed by the Dirichlet boundary condition
(8.17), through the horizon u = 0 into the thermofield double; in particular we are going to
consider surfaces anchor at the same point rR in the thermofield double, thus symmetric with
respect to reflection across u = 0 at t = 0.
Exploiting the reflection symmetry, we can restrict to u ≥ 0 and subsequently find the curve
xh(y) along which the extremal surfaces end on the horizon.
The induced metric on the surface results to be

ds2 = e2rh cosh4/3
(3u

2

)

f24ds
2
R2 + f21ds

2
S2
1
+ f22ds

2
S2
2
+

+[f24 + 4ρ2(∂ux)
2]du2 + 4ρ2[dy2(1 + (∂yx)

2) + 2(∂ux)(∂yx)dudy]
(8.19)

and the area in units of S2
1 × S2

2 × R
2 volume is

A = 32

∫

dudy e2rh cosh4/3
(3u

2

)

f

√

g
(

(1 + (∂yx)2
)

+ (∂ux)2 (8.20)
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where here the functions f and g are now defined as

f = |h1h2W |, g =
1

2

∣

∣

∣

h1h2
W

∣

∣

∣
(8.21)

The extremality condition is given by

0 =
1

g(1 + (∂yx)2) + (∂ux)2

{∂xf

f
[g(1 + (∂yx)

2) + (∂ux)
2] +

1

2
∂xg(1 + (∂yx)

2)− 2 tanh
(3

2
u
)

∂ux

−∂yf
f
g∂yx− ∂uf

f
∂ux−

2g2∂2yx+ 2g(∂ux)
2(∂2yx) + 2∂yg(∂yx)(∂ux)

2

2[g(1 + (∂yx)2) + (∂ux)2]
+

−
(∂yg∂yx+ 2∂2ux)g(1 + (∂yx)

2)− 4g∂ux∂yx∂
2
uyx

2[g(1 + (∂yx)2) + (∂ux)2]

}

(8.22)
with boundary conditions

∂yx(u, y)|y=0,π
2
= 0, lim

u→u(rR)
x(u, y) = +∞ (8.23)

the Neumann boundary conditions on the upper and lower boundary of the strip can be found
by analogous arguments to the ones which leads to (8.14) and the Dirichlet boundary condition
is the corresponding of (8.17) in the x(u, y) parametrization.
In the one-sided perspective, as said previously, the surface should end at the horizon and
the symmetry under reflection across u = 0 translates into the following Neumann boundary
condition

∂ux(u, y)|u=0 = 0 (8.24)

which ensures the vanishing of the boundary terms coming out of the variation of the area
functional.
In this case the domain of the embedding function x(u, y) is already finite, but we perform
the change of variable ξ = tanhx anyway since it helps to implement numerically the Dirichlet
boundary conditions at u→ u(rR) as

lim
u→u(rR)

ξ(u, y) = 1 (8.25)

while the partial derivative equation (8.22) with this change of variable reads

0 =
(1− ξ2)∂ξf

f
+

[(−1 + ξ2)2 + (∂yξ)
2](1− ξ2)∂ξg

2g[(−1 + ξ2)2 + (∂yξ)2] + 2(∂uξ)2
+
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+

+
1− ξ2
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2]
(1

2
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1
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)

+

+(∂uξ)
2g(−2ξ + 2ξ3 − ∂2yξ)− g2(−1 + ξ2)[(−1 + ξ2)∂2yξ − 2ξ(∂yξ)

2] + 2g∂uξ∂yξ∂
2
uyξ
}

as for the island surfaces, we typically use a 30× 30 grid and the residuals have been decreased
to O(10−12) or less.

Analysis of extremal surfaces for vanishing dilaton variation

First of all, let’s construct and analyse extremal surfaces in 10d solutions with non-gravitating
bath and vanishing dilaton variation in the asymptotic throat, i.e. with K = K̂.

The parameters that control the solution and subsequently the shape of the extremal sur-
faces are the anchor point rR = limξ−→1 r(ξ, y) in the asymptotic AdS5 × S5 region, the horizon
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radius rh and N5/K, namely the ratio of the number of suspended D3-branes between the 5-
branes and the number of semi-infinite D3-branes. For simplicity in the following we set rh = 0,
except when we will consider surfaces at zero temperature which are obtained with b(r) = 1 or
equivalently rh −→ −∞.
Examples of island surfaces obtained with fixed α = N5/K = 2.5 and varying anchor points are

Figure 8.1: Island surfaces obtained with α = 2.5, rh = 0 and with the anchor point rR = {0.5; 2; 3.5}
from top left to bottom

As the anchor point rR is decreased towards the horizon, the entire surface moves towards it.
Then notice that due to the symmetry of D5/NS5 branes in the supergravity solution (8) under
S-duality combined with z −→ iπ/2−z, the Einstein-frame metric is invariant under y −→ π/2−y
and, since their boundary conditions respect this symmetry, the same holds for the minimal
surfaces.

In the following we report examples of island surfaces with fixed anchor point rR = 1.5 and
varying α = N5/K
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Figure 8.2: Island surfaces obtained with rR = 1.5, rh = 0 and with ratio α = {0.2; 1; 2.5} from top left
to bottom

We can notice that as α decreases at fixed rR, the effect of the poles in correspondence of
the 5-brane sources is more pronounced. This is due to the fact that, as we are going to see
later, increasing α the point rL where the island surfaces close off at x → −∞ moves towards
the Poincaré horizon, thus for small α the effect of 5-brane singularities at which the surface
must drop logarithmically into the Poincaré horizon itself [22] is more accentuated.

Some examples of t = 0 Hartman-Maldacena surfaces are displayed below.

Figure 8.3: Hartman-Maldacena surfaces with N5/K = 2 and rR = {1, 2} from left to right

These surfaces drop into the horizon along a curve ξh(y) which is located before the 5-branes
at ξ = 0. More precisely, as one gradually increases the anchor point rR, the surfaces reach
smaller values of x and the corresponding curve ξh(y) starts to shift towards negative values
in the interior of Σ, whereas its boundary points ξh(0) and ξh(π/2) remain at positive values
without reaching the position of the 5-branes at ξ = 0.

Once we have solved the PDEs numerically and we have constructed the extremal surfaces, we
can compare the areas of the island and t = 0 Hartman-Maldacena surfaces in order to study the
evolution of the entanglement entropy. Their areas are divergent as any entanglement entropy
in four dimensions, but instead of regulating the two areas separately, we directly compute the
area difference between the two kinds of surfaces, anchored at the same point rR, which turns
out to be finite as usual.
For numerical stability, we take the difference between the areas at the level of the integrands, at
least in the region of large x (in our computations we have performed the integral of the difference
from ξ = 0.95). Since the Hartman-Maldacena surfaces have been obtained with a different
parametrization with respect the island surfaces, specifically their embedding is described by
ξ(r, y), the interpolation function ξHM (r, y) obtained from the numerical solution has been
inverted with respect to the first argument and the derivatives of rHM (ξ, y) can be easily obtained
in terms of the derivatives of ξHM (r, y); then rHM (ξ, y) and its derivatives have been used in the
area functional (8.10). The area difference has been computed as the integral of the difference
between the integrands in the range {(ξ, y)|ξ ∈ [0.95, 0.999], y ∈ [0, π/2]}, then this has been
summed up with the island area computed in the range {(ξ, y)|ξ ∈ [−1, 0.95], y ∈ [0, π/2]} and
finally it has been subtracted the Hartman-Maldacena area computed in the range {(ξ, y)|ξ ∈
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[ξmin, 0.95], y ∈ [0, π/2]}, where ξmin is the minimum of the curve ξh(y). The integration of the
three contributions has been carried out numerically as well and the dependence on the choice
of the cut-off ξmax = 0.999 has been verified to be very mild.

This area difference has been studied as a function of the anchor point rR in the asymptotic
AdS5 × S5 region with different choice of the ratio N5/K and the results are shown in the
following.
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Figure 8.4: Area difference ∆A = Aisland − AHM curves as a function of the anchor point rR, from
bottom to top, for N5/K = {1.2; 1.6; 2} with K = 1

We can see that for each value of α = N5/K, the area of t = 0 Hartman-Maldacena surface
is smaller than the area of the island surface if the anchor point rR is not too far from the
horizon rh = 0. In these cases, in other words for radiation regions far in the bath system,
the Hartman-Maldacena surface initially dominates over the island surface, contributing to the
entropy of radiation region. The former will increase in time until the island surface will become
the minimal surface, consequently bounding the entropy and leading to a Page curve.
Each curve in fig. 8.4 shows a transition point rtransR at with the area of the two surfaces are
equal at t = 0, suggesting constant entropies for rR > rtransR . Moreover, beyond values r∗R near
the end point of each curve, the relaxation extends the Hartman-Maldacena trial surface all the
way to ξ −→ −1 and a equilibrium configuration is not reached. Since our numerical relaxation
method does not capture extremal surfaces for which the area functional does not take a local
minimum, for these anchor point values the Hartman-Maldacena surface can become a saddle
point implying the relaxation’s transition towards the island surface. Another possibility is that
these surfaces extending over negative ξ values also on the boundary of Σ may become relevant
for some reason. The value of r∗R starts small for small α, increases with α diverging towards
the critical value αcrit ≈ 4 (it will be clear later why we call it ”critical”) and for larger α
Hartman-Maldacena surfaces can be found without any bound on rR.
Finally another important thing to notice is that the area difference ∆A = Aisland − AHM is
larger for larger α. In terms of the 5d Karch-Randall models this can be interpreted in the
following point of view: larger N5/K corresponds to a boundary conformal field theory (third
doubly holographic description at the beginning of section 5) with more 3d defect degrees of
freedom than 4d bulk degrees of freedom, which amounts to a larger tension of the ETW brane;
a larger tension implies a smaller angle θ between the brane and the bulk AdS5 conformal
boundary (5.8). Thus we expect the island surface to have larger area with respect to t = 0
Hartman-Maldacena surface for smaller θ, which is reasonable since the ETW brane is further
from the bath.
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Analysis of extremal surfaces for non-vanishing dilaton variation

In the case of non-vanishing dilaton variation in the AdS5 × S5 throat, the parameters that
control the shape of the extremal surfaces are once again the anchor point rR = limξ−→1 r(ξ, y)
in the asymptotic AdS5 × S5 region, the horizon radius rh and the ratio α which now is given
by

α =

√

N2
5

KK̂
(8.26)

As before, in the following we set rh = 0, except when we will consider surfaces at zero tem-
perature which are obtained with b(r) = 1 or equivalently rh −→ −∞. The first thing to notice
is that while in the δϕ = 0 case the extremal surfaces are symmetric under y −→ π

2 − y and in
particular the boundary points of the Hartman-Maldacena surface’s horizon curve ξh(y), namely
ξh(0) and ξh(π/2), are equal due to the latter symmetry, in the δϕ ̸= 0 case the y −→ π

2 − y

symmetry is spoiled by the fact that K ̸= K̂ and this implies that the boundary points of the
Hartman-Maldacena surface’s horizon curve are different, in particular from numerical solutions
ξh(0) < ξh(π/2).
Then if we fix α and the anchor point rR, as δϕ increases it has been found that the curve ξh(y)
moves towards larger positive values as can be observed in the plots below.

Figure 8.5: Hartman-Maldacena surfaces with fixed α = 2 and rR = 2.3, and with δϕ = {1.2; 2; 5} from
top left to bottom

Actually increasing δϕ, the entire surface asymptotes ξ = 1 and for high enough δϕ we do not
find an extremal Hartman-Maldacena-like surface. The reason is that tuning δϕ to high values,
we get in a regime of small graviton masses (7.20) and the background becomes closer to the one
with a gravitating bath, for which the graviton mass vanishes because of the compactness of the
internal geometry. In particular, we have seen that in a Karch-Randall model with gravitating
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bath the Hartman-Maldacena surface is not a quantum extremal surface, i.e. does not contribute
the the conventional geometric entanglement entropy of outgoing radiation. Thus this behavior
is well captured by the 10d uplift under consideration.
Next we can repeat the same analysis concerning the area difference we have previously done
for the case of vanishing dilaton and study how an area difference ∆A = Aisland −AHM curve
at fixed α modifies as δϕ changes.
As an example, we consider the cases α = 1.2 and α = 2 and we study the behaviour of the area
difference curve for δϕ = {0.8; 1.2; 1.6} and δϕ = {0.8; 1.2} respectively.
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Figure 8.6: Area difference ∆A = Aisland − AHM curves as a function of the anchor point rR with
α = 1.2 (left) and α = 2 (right), with δϕ = {0; 0.8; 1.2; 1.6} from bottom to top

As we can see from the above figure, the non-vanishing dilaton variation produces several effects
on the area difference curve.
First of all, the values of the curve become larger as δϕ increases. A second important behaviour,
which is related to the first, is that in general there is not a transition point rtransR at which
the two quantum extremal surfaces’ areas are equal at t = 0. As in the δϕ = 0 case, the
area difference curves have an end point, since increasing gradually the anchor point rR the
two boundary points of the Hartman-Maldacena surface’s horizon curve ξh(y) shifts gradually
towards ξ = 0, and once the point ξh(0) goes over the NS5-branes singularity, the trial Hartman-
Maldacena surface does not settle anymore on equilibrium.

Island surfaces at zero temperature and critical brane setups

In the Karch-Randall model it has been showed the existence of a critical angle θc defined as the
angle at which at zero temperature the end-point on the ETW brane of a surface anchored at
a fixed point in the bath system diverges towards the Poincaré horizon and below which island
surfaces disappear. It exists a 10d counterpart of this critical angle in the type IIB string theory
uplift under consideration as we are going to prove now.
Let’s suppose to work with vanishing dilaton variation firstly. If we fix the anchor point rR =
limx→+∞ r(x, y) of zero temperature island surface in the asymptotic AdS5 × S5, the other
anchor point rL = limx→−∞ r(x, y) at which the surface closes off at x → −∞ moves towards
the Poincaré horizon as α = N5/K increases, in particular the difference rR − rL increases
linearly for small α and then it diverges in correspondence of a critical value αcrit ≈ 4.
The critical value αcrit has been found by gradually increasing α and verifying if the difference
∆r = rR−rL changes as the relaxation time increases and jointly if residuals decrease or remain
finite. Once we reaches a value of α for which the residuals are irreducible keeping driving the
anchor points further apart with increasing relaxation time, it means we have found the critical
value αcrit.
Taking into account the role of θc in the Karch-Randall model with non-gravitating bath at zero
temperature and the behaviour of island surfaces for brane angles close to it, these results are
consistent with the identification we have discussed before between N5/K and the inverse of the
brane angle 1/θ of 5d Karch-Randall models. For black hole solutions with finite temperature,
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Figure 8.7: ∆r = rR − rL as a function of α = N5/K for δϕ = 0

this behavior is regulated and island surfaces can be found also beyond the critical ratio since
numerically the endpoint rL appears stuck below a critical value, similarly to what happens in
the 5d Karch-Randall model with non-gravitating bath at finite temperature.
For δϕ ̸= 0, it still exists a critical value αcrit, which is pushed to higher values for increasing
δϕ as can be seen below.
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Figure 8.8: Monotonic increase of αcrit with dilaton variation δϕ across the geometry

For values δϕ > 3, divergences at small α appear as well, even though island surfaces can
be found for larger α, and these signals code’s loss of predictivity; thus we present numerical
results only for δϕ ≤ 3.
Recalling the fact that the graviton mass is proportional to the ratio of bulk over boundary
degrees of freedom, namely mgL4 ∝ α−1, in the case δϕ = 0 the critical value αcrit ≈ 4 turns out
to be not large enough to put the islands in the regime of validity of AdS massive gravity, which
in string theory is under theoretical control only for small graviton mass m2

gL
2
4 ≪ 1. Thus the

crucial important consequence of non-vanishing dilaton variation is to increase the value of the
critical ratio αcrit so that it is big enough to ensure the possibility to find at zero temperature
islands in the regime of small graviton masses.

Extremal surfaces in a gravitating bath

As in the Karch-Randall models with gravitating bath, if we consider their 10d string theory
realizations corresponding to the type IIB string theory solution (6.65), there is no an asymptotic
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AdS5 × S5 region, which was the natural place to geometrically define the radiation region at
x = +∞ and to anchor minimal surfaces in the 10d solutions with non-gravitating bath. As a
consequence, minimal surfaces extending from x = −∞ to x = +∞ satisfy Neumann boundary
conditions on both ends and are found to settle onto the horizon leading to flat entropy curve,
similarly to what happens in the corresponding 5d Karch-Randall model.
A Page curve can arise considering surfaces that divide the internal space and which we expect
to compute non-geometric entanglement entropies, in perfect analogy to the surfaces starting
from the defect in the 5d KR models with gravitating bath. In particular, due to the reflection
symmetry of the solution (6.65) under x→ −x, the natural 10d analog of the defect is the locus
x(y) = 0, which will serve as an anchor point for the 8d minimal surfaces wrapping the spatial
part of AdS4, both the two 2-spheres S2 and a curve in Σ depending on the tortoise radial
coordinate u.
The Hartman-Maldacena surface at t = 0 can be found by imposing the trial surface to be
anchored at the locus x(y) = 0 both for u → ∞ and in the thermofield double and letting the
relaxation method to settle on a equilibrium configuration. This procedure selects x(u, y) = 0
as the Hartman-Maldacena surface at t = 0.
For the island surfaces, we must impose they are anchored as well along x(y) = 0 for u −→ ∞
and their embedding u(x, y) must satisfy Neumann boundary conditions both at x −→ ±∞.
Exploiting the invariance of the supergravity solution under x −→ −x, we can construct the
island surfaces extending from x = 0 to x −→ −∞.
Since in this case we want the embedding function to be u(x, y), we start by rewriting the
induced metric (8.9) using the tortoise radial coordinate u

ds2γ = e2rh cosh4/3
3u

2
f24ds

2
R2 + f21ds

2
S2
1
+ f22ds

2
S2
2
+ 4ρ2(dx2 + dy2) + f24 (dx∂xu+ dy∂yu)

2 (8.27)

then the area density functional reads
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∫
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where ∇ is the covariant derivative with respect to the metric on Σ and here the functions f
and g are defined as
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We set as usual rh = 0 and we can notice that the area functional written in the tortoise radial
coordinate u is very similar formally to the one written in the radial coordinate r, since the
difference is only the non-derivative factor in the area integrand L and a factor 1/b(r) in the
definition of g(x, y).
The extremality condition is found by solving the Euler-Lagrange equation of the integrand L
of the area functional

0 =
1

L
(δL
δu

−∇ δL
δ(∇u)
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=
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[

2 tanh
(3u
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(1 + g(∇u)2
f2

)]

with Neumann boundary conditions on both upper and lower boundary of the strip Σ, and at
x→ −∞ (8.16)

∂yu(x, y)|y=0,π
2
= 0, lim

x→−∞
e−x∂xu(x, y) = 0 (8.30)

whereas at x→ 0 we must impose that the embedding function u(x, y) diverges

lim
x→0

u(x, y) = +∞ (8.31)

Then we perform the change of coordinates ξ = tanhx and ζ(ξ, y) = tanh [u(ξ, y)] respectively
in order to make the domain of the embedding function finite and to implement numerically the
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Dirichlet boundary condition at ξ → 0. The resulting extremality condition in these coordinates
becomes
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(8.32)
where the function h(ξ, y) is defined as

h(ξ, y) = 1 +
g(ξ, y)[(∂yζ)

2 + (−1 + ξ2)2(∂ξζ)
2]

(−1 + ζ2)2
(8.33)

Examples of island surfaces for different values of the 5-brane source location δ on Σ are shown
below.

Figure 8.9: Island surfaces in gravitating bath solutions with δ = {0.5; 0.4; 0.3} from top left to bottom

As we can see from the plots above and quantitatively from the figure below, the cap-off
point tanhuL exponentially falls off tanhuL = 1.17e−4.28δ towards the black hole horizon u = 0
as δ increases, however towards small values of δ the cap-off point grows rapidly diverging for a
critical value δc ≈ 2.8. Below this critical value, the relaxation method does not settle the trial
island surface on an equilibrium configuration. Notice moreover how the island surfaces seem
to bulge towards the horizon in correspondence of the location of the 5-branes, even if this local
behaviour is not well captured by our numerical solution method.
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Figure 8.10: Cap-off point tanhuL as a function of 5-branes location δ

Uhlemann [22] has also calculated the area difference between the island and t = 0 Hartman-
Maldacena surfaces and he found out that for larger δ the area of t = 0 Hartman-Maldacena
surface is smaller than the one of island surface, ensuring a Page curve as time grows. In
particular the area difference at t = 0 displays a value of δ, called the Page value δP , such that
the area difference vanishes and from numerical data it results to be δP ≈ 0.29, thus close but
slightly larger than δc. In particular for δc < δ < δP , the island surface is already dominant with
respect to t = 0 Hartman-Maldacena surface.
Furthermore, in the range δ < δc we have found numerically trial island surfaces approaching the
AdS4 conformal boundary almost everywhere on Σ, except near the 5-branes locations where
they reach the horizon. These can be interpreted as the 10d version of tiny island surfaces,
giving a dominant contribution in 5d Karch-Randall models with gravitating bath in the regime
above the critical ETW brane angle.
Thus these 10d results are perfectly consistent with the results found out with the 5d Karch-
Randall model with gravitating bath if we identify the inverse of the brane angle of the 5d KR
description with the brane stack position δ of the 10d string theory uplift.

As anticipated in 6, a 10d uplift of the Karch-Randall model with gravitating bath and with
non-vanishing dilaton can be obtained with the following choice of the harmonic functions

h1 = −N5

8

[

ln
(cosh (x− δ)− sin y

cosh (x− δ) + sin y

)

+ ln
(cosh (x+ δ)− sin y

cosh (x+ δ) + sin y

)]

h2 = −N̂5

8

[

ln
(cosh (x− δ)− cos y

cosh (x− δ) + cos y

)

+ ln
(cosh (x+ δ)− cos y

cosh (x+ δ) + cos y

)]

(8.34)

for which the dilaton variation reads

e2δφ =
N̂5

N5
(8.35)

unfortunately with this choice of the harmonic functions, the function g results the same as the
one with the previous choice, since in the ratio h1h2/W the factors in front of h1 and h2 drops
out, whereas the factor in front of f = |h1h2W | changes but it drops out in the extremality
condition since the function f always appears through the ratio (∂f/f) as can be seen from
(8.32).
Another possibility to obtain a non-vanishing dilaton variation could be with the choice

h1 = −N5

8
ln
(cosh (x− δ)− sin y

cosh (x− δ) + sin y

)

− N̂5

8
ln
(cosh (x+ δ)− sin y

cosh (x+ δ) + sin y

)

h2 = −N̂5

8
ln
(cosh (x− δ)− cos y

cosh (x− δ) + cos y

)

− N5

8
ln
(cosh (x+ δ)− cos y

cosh (x+ δ) + cos y

)

(8.36)

but this choice cannot yield a valid type IIB solution since the harmonic functions do not satisfy
the required S-duality transformation.



Chapter 9

Conclusions

We have presented UV-complete string theory settings exhibiting the emergence of entanglement
islands and Page curves for black holes in 4d theories of gravity. These gravity theories certainly
differ from the one we experience in nature but they have dynamical gravitons, whose mass can
be controlled, and they show versions of information paradox whose resolution can be analyzed
by applying AdS/CFT dualities.
In particular, starting from the bottom-up 5d Karch-Randall models, we have studied specific
examples of d’Hoker’s type IIB string theory solutions based on AdS4×S2×S2×Σ background
geometry, checking their consistency with global constraints, studying the asymptotic regions
and the possibly presence of 5-brane singularities, together with the fluxes and the brane con-
figuration. Among these examples, a supersymmetric 5-branes doped Janus solution with one
asymptotic AdS5 × S5 region closed off has been identified as the 10d string theory realization
of Karch-Randall model with non-gravitating bath and similarly a solution, resulting to be an
holographic dual of 3d SCFTs, has been selected as a representative 10d uplift of Karch-Randall
model with gravitating bath. On this 10d uplifts, following Uhlemann’s and Gnecchi et al works
[22],[23], we have constructed numerically the quantum extremal surfaces, i.e. the island and
Hartman-Maldacena surfaces, contributing to the entanglement entropy of outgoing radiation
and whose competition leads to a Page curve. Most of the work has been focused on the uplifts
with non-gravitating bath, on which we have reproduced the Uhlemann’s results in the case of
constant dilaton field, more specifically we have reproduced the t = 0 area difference curves
as a function of the surfaces’ anchor point in the asymptotic AdS5 × S5, studying how they
behave as the microscopic parameter α changes and noticing it always exist an anchor point
value at which the area difference vanishes, which suggests to take the radiation region far in
the bath system if one wants to obtain a Page curve, in line with what has been found in the
Karch-Randall models [13], [12]. Then always about Uhlemann’s results, we have verified the
presence of a critical value of the microscopic parameter α above which at zero temperature
the islands cease to contribute to the entanglement entropy, similarly to what happens in the
Karch-Randall models, and we have verified, in line with Gnecchi et al work, how island surfaces
change in the same geometric background allowing a non-vanishing dilaton variation, and how
αcrit gets modified as δϕ varies. In particular αcrit increases as δϕ increases and this ensures we
can tune dilaton variation in such a way to obtain a critical value of α big enough to the island
surfaces to contribute in the regime of validity of massive AdS gravity as effective field theory,
namely of small graviton masses.
In this thesis’s project we have constructed and studied the Hartman-Maldacena surfaces in the
uplifts with non-gravitating bath and in presence of a varying dilaton field. In particular we
studied the area difference curves with fixed α and varying the dilaton variation δϕ finding that
the area difference increases as δϕ increases and noticing there is no more an anchor point value
in the asymptotic AdS5 × S5 such that the area difference vanishes. It follows that for all the
anchor point values for which the area difference curve is defined, i.e. for all the values for which
we can numerically find an Hartman-Maldacena surface settling on an equilibrium configuration,
it is possible to get a Page curve for the time evolution of radiation entanglement entropy.
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Concerning the 10d realizations of Karch-Randall models with gravitating bath, we have checked
the existence of a critical value of 5-brane location δ, which in this solution plays the role of the
brane angle θ of the Karch-Randall model, below which island surfaces cease to exist. The brane
configuration has been slightly modified in order to allow a non-vanishing dilaton variation but
unfortunately the extremality condition determining the island surfaces remain unaltered.
It would be interesting to study more complex brane configurations corresponding to more gen-
eral 10d solutions for both non-gravitating and gravitating bath, in which it may be expected a
more complicated phase structure. Furthermore it would be desirable to investigate how the crit-
ical parameters in supergravity solutions translate on the CFT side and study their implications,
for example through CFT correlation functions.



Appendix A

Anti de Sitter space

Anti de Sitter space is a maximally symmetric Lorentzian space with constant negative curvature
and it is a solution of Einstein equations with negative cosmological constant.
The geometrical properties of a d-dimensional Anti de Sitter spacetime can be derived by looking
at this space as an hypersurface embedded in a spacetime with d+1 dimensions. The embedding
equations can be written as

X2
0 +X2

d −
d−1
∑

i=1

X2
i = l2 (A.1)

in a flat (d+ 1)-dimensional space with signature

ds2 = −dX2
0 − dX2

d +

d−1
∑

i=1

dX2
i (A.2)

where l is a constant of dimension of a length that parametrizes the radius of curvature of the
AdS hypersurface. By construction, this space has the isometry SO(2, d− 1).

The d-dimensional metric can be obtained by choosing a proper parametrization of the d+1
embedding coordinates.
A global parametrization is constructed as follows. Given the form of the embedding equation
(A.1) we consider two spheres X2

0 +X2
d = r21,

∑d−1
i=1 X

2
i = r22 of radii r1, r2, such that

r21 − r22 = l2 (A.3)

This equation is solved by setting r1 = l cosh ρ, r2 = l sinh ρ where ρ ∈ R
+. Taking the

parametrization in spherical coordinates and replacing in the line element (A.2) one gets

ds2 = −(dr21 + r21dψ
2) + dr22 + r22dΩ

2
d−2

= l2(− cosh2 ρ dψ2 + dρ2 + sinh2 ρ dΩ2
d−2)

(A.4)

This is the global parametrization of AdS since all points of hyperboloid are taken into account
exactly once.
Notice that the time-like coordinate ψ is an angular coordinate ψ ∈ [−π, π[ and, as a conse-
quence, this global parametrization of AdS gives closed time-like curves. This can be avoided if
one passes over the universal covering surface1 by taking a new time-like coordinate t ∈ R.
The change of coordinate tan θ = sinh ρ gives the metric

ds2 =
l2

cos θ2
(−dt2 + dθ2 + sin θ2dΩ2

d−2) (A.5)

where 0 ≤ θ < π/2 for any d > 2.
If d = 2, the coordinate ρ ∈ R since r2 can assume any real value due to the degeneracy of d− 2

1this procedure of unwrapping the circle of time coordinate is legitimate because the space is not simply
connected, so the time circle cannot be topologically reduced to a point
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sphere, thus the range of the coordinate θ is −π/2 ≤ θ ≤ π/2. This implies that the Penrose
diagram of the global AdS2, obtained from (A.5) by dropping the overall conformal factor, is
an infinite strip between θ = −π/2 and θ = +π/2, whereas the Penrose diagram of AdSd is the
ball Bd−1 × R (actually it is one of the hemisphere times R since 0 ≤ θ < π/2). Moreover, it
follows that the boundary of conformally compactified AdSd is R× Sd−2, which is equal to the
conformal compactification of the flat Minkowski space R

d−2,1.

Another useful parametrization is provided by Poincaré coordinate system (t, r, xi) defined
by the following relations

X0 =
1

2r
(1 + r2(l2 + x⃗2 − t2))

Xi = lrxi, (i = 1, ..., d− 2)

Xd−1 =
1

2r
(1− r2(l2 − x⃗2 + t2))

Xd = lrt

(A.6)

Inserting into (A.2) we get the desired line element

ds2 = l2
(dr2

r2
+ r2(−dt2 + dx⃗2)

)

(A.7)

where t, xi ∈ R. Notice from (A.6) that

r =
X0 −Xd−1

l2
(A.8)

we conclude we have two different Poincaré charts. The first chart is the region r > 0, that
means X0 > Xd−1 and corresponds to one half of the hyperboloid; the other half X0 < Xd−1

corresponds to the second Poincaré chart, i.e. the region r < 0. The Poincaré AdSd space is
the portion of AdSd corresponding to one of these two charts (the r > 0 is usually chosen).
Due to the fact that we cannot cover the entire AdSd with an unique Poincaré patch, we have
a degenerate Killing horizon at r = 0. The conformal boundary is attained at r −→ ∞ and the
line element becomes:

ds2 = l2r2(−dt2 + dx⃗2) (A.9)

so the Poincaré AdSd space conformal boundary is topologically a (d−1)-dimensional Minkowski
space. In terms of the coordinate z = 1/r the line element (A.7) becomes

ds2 =
l2

z2
(−dt2 + dz2 + dx⃗2) (A.10)

up to a conformal factor, this is just like the d-dimensional Minkowski space, thus its Penrose
diagram is the same. The latter is a triangular region, thus it does not cover the whole spacetime
region of the Penrose diagram of the global AdSd space as expected. Let us briefly construct
the Penrose diagram of a Minkowski space

ds2 = −dt2 + dz2 + dx⃗2 (A.11)

then we introduce the light-cone coordinates

u± = t± z ⇒ ds2 = −du+du− + dx⃗2 (A.12)

notice that z = (u+−u−)
2 ≥ 0 implies u+ ≥ u−, so these are infinite range coordinates. Let us

proceed defining new finite range coordinates

u± = tan ũ± (A.13)

such that ũ+, ũ− ∈ (−π/2,+π/2) and ũ+ ≥ ũ−. Finally defining

ũ± = τ ± θ (A.14)
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the metric, by dropping an overall conformal factor and reducing to two dimension in the
coordinate (τ, θ), becomes

ds2 = −dτ2 + dθ2 (A.15)

which describes a flat compact two dimensional space since |ũ±| ≤ 0, thus |τ ± θ| ≤ π/2, and
θ ≥ 0, so the Carter-Penrose diagram is a triangular region as claimed.



Appendix B

D = 3, N = 4 SCFTs

The theories T ρρ̂ (SU(N)), introduced by Gaiotto and Witten in [24] and argued to flow in the
IR to 3d N = 4 SCFTs under certain constraints we are going to discuss, are labeled by a pair of
partitions ρ and ρ̂ of N , which uniquely determine a three dimensional N = 4 supersymmetric
gauge theory in the UV limit.
The gauge group of T ρρ̂ (SU(N)) is

G = U(N1)× U(N2)× ...× U(Nk̂−1) (B.1)

then the theory has one hypermultiplet in the bifundamental representation of each pair of
neighboring factors U(Ni)× U(Ni+1), as well as Mi hypermultiplets in the fundamental repre-
sentation of each U(Ni) factor of the gauge group.
This SUSY gauge theory is summarized by the linear quiver diagram shown in the following[25],

where the circles denote the gauge group factors and the squares and blue lines stand for
fundamental and bi-fundamental hypermultiplets respectively.
Any two partitions ρ and ρ̂ of N determine completely the gauge theory data {Nj ,Mj}. Two
useful parametrizations of each of the two partitions are given by

ρ : N = l1 + ...+ lk =
∑

l

lMl

ρ̂ : N = l̂1 + ...+ l̂k̂ =
∑

l̂

l̂M̂l̂

(B.2)

where the li are positive non increasing integers, l1 ≥ l2 ≥ ... ≥ lk > 0, while Ml is the number
of times the integer l occurs in the partition, and the same hold for the parametrization of ρ̂.
One can associate to ρ and ρ̂ a Young tableau whose rows have length respectively l1,...,lk and
l̂1,...,l̂k̂. With this choice of parametrizations, Mj is precisely the number of hypermultiplets in
the fundamental representation of U(Nj) gauge group factor, with

N1 = k − l̂1, Nj = Nj−1 +mj − l̂j , j = 2, ..., k̂ − 1 (B.3)

whereml = ml−1−Ml counts the number of terms that are equal or bigger than l in the partition
ρ. The set ml is a non-increasing sequence of positive integers defining the partition ρT , whose
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Young tableau is the transpose of the one associated to partition ρ.
The condition ρT > ρ̂, implying k̂ > l1 and thus Ni ∈ N, Ml = 0 for l ≥ k̂, is necessary in order
for the linear quiver associated to the triplet (ρ, ρ̂, N) to make sense. The conjecture of Gaiotto
and Witten [24] is that all these quiver gauge theories T ρρ̂ (SU(N)) flow to a non trivial infrared

fixed point. Since ρT > ρ̂ implies ρ̂T > ρ, also T ρ̂ρ (SU(N)) is expected to flow to an infrared
superconformal field theory and it’s believed to coincide with the one of T ρρ̂ (SU(N)).

The linear quiver gauge theories T ρρ̂ (SU(N)) can be realized as low-energy limits of certain type
IIB brane configurations, as we are going to see in the follow.

The basic brane configuration consist of:
• a set of k D5-branes spanning the dimensions (012456);
• a set of k̂ NS5-branes spanning the dimensions (012789);
• a set of D3-branes stretched among the five-branes along (0123).

0 1 2 3 4 5 6 7 8 9

D5 X X X X X X

NS5 X X X X X X

D3 X X X X

Such a configuration preserve 1/4 of the supersymmetries of type IIB string theory, namely
8, which correspond to the three dimensional N = 4 Poincaré supersymmetries of T ρρ̂ (SU(N))1.

The R-symmetry of T ρρ̂ (SU(N)), which coincides with the R-symmetry of the infrared SCFT, is
the SO(4) ≃ SU(2)1 × SU(2)2 rotation symmetry which is manifest in the brane configuration
in the (456)× (789) dimensions.
The vector multiplets live on the D3-branes, and since these branes have finite extension along
the x3 direction, the corresponding four-dimensional world-volume theory at large distances
becomes a three-dimensional gauge theory. On the other hand, hypermultiplets arise from
open strings stretching between the D3-branes and the D5-branes, or between two stacks of
D3-branes ending on the same NS5-brane from the left and right. The only relevant data of
this brane configuration in the infrared limit are the total numbers k and k̂ of D5- and NS5-
branes respectively (but not their ordering along the x3 segment, since rearrangements of the
five-branes change the phase of the gauge theory but not its superconformal limit) and their
linking numbers defined as

li = −ni +RNS5i i = 1, ..., k

l̂j = n̂j + LD5
j j = 1, ..., k̂

(B.4)

where ni is the number of D3-branes ending on the ith D5-brane from right minus the of the
number of D3-branes ending on it from the left, n̂j is the same difference referred to the j th
NS5-brane, RNS5i is the number of NS5-branes lying to the right of the ith D5-brane and LD5

j

is the number of D5-branes lying to the left of the j th NS5-brane. The linking numbers are
invariant under five-brane movements because when a D5 brane moves past a NS5 brane in the
direction from left to right, a D3-brane stretching between the two is created.

A brane configuration realizing a linear quiver gauge theory T ρρ̂ (SU(N)) can be depicted as
N D3-branes in the middle ending on the left on a collection of NS5-branes and on the right on
a collection of D5-branes. Then, from (B.4), it follows that the net number of D3-branes that
terminate on each five-brane is precisely its linking number and in addition

N = l1 + ...+ lk = l̂1 + ...+ l̂k̂ (B.5)

These are the two partitions ρ and ρ̂ of N that label the theory T ρρ̂ (SU(N)): the partition ρ̂
encodes the linking numbers of NS5-branes, while ρ encodes the linking numbers of D5-branes.

1The Poincaré superalgebra supercharges are Weyl spinors with 2(D−1)/2 = 2 real components each, for a
total of 8 SUSY d.o.f.
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Since the relative order of five-brane of the same kind is irrelevant in the infrared, it is possible
to arrange them so that l1 ≥ l2 ≥ ... ≥ lk and l̂1 ≥ l2 ≥ ... ≥ l̂k, where i = 1 and j = 1 are the
innermost five-branes, while i = k and j = k̂ are the outermost ones. Notice that S-duality of
type IIB string theory exchanges the two type of five-branes, and thus two partitions realizing
the mirror gauge theory T ρ̂ρ (SU(N)).
The condition ρT > ρ̂ , discussed earlier as necessary for the linear quiver associated to the gauge
theory T ρρ̂ (SU(N)) to make sense, can be recovered in the brane configuration in the weaker

form ρT ≥ ρ̂ as a requirement for unbroken supersymmetry; however, when the inequality is
saturated it can be shown that the corresponding quiver gauge theory breaks down to pieces
that flow to non-interacting SCFTs in the infrared.
When the strong form of the constraint is satisfied, the brane configuration, consists of a con-
nected linear chain of k̂ NS5-branes, attached in pairs by Nj D3-branes. The D5-branes intersect
the D3-branes being detached from them at the same time. The gauge theory data that can be
derived from this configuration agrees precisely with the gauge content of T ρρ̂ (SU(N)): there is
one U(Nj) gauge group factor for every set of Nj stretched D3-branes, one hypermultiplet in
the bifundamental representation for each adjacent pair of NS5-branes and one hypermultiplet
in the fundamental representation of the corresponding gauge group for each D5-brane.
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