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Abstract

This thesis focuses on the study of the localization problem in planar camera networks.
Two distributed models for detecting the orientation of cameras are discussed and
analyzed.
The performance of these models is evaluated with respect to modifications in the
network, such as the use of different communication protocols among agents and the
change in the topology of the network.
The theoretical findings are assessed via numerical simulations based on synthetic and
experimental scenarios.





Chapter 1
Introduction

Nowadays systems involving camera networks are a well-known technology.
Camera networks have a very large spectrum of application fields. They play an
important role in solving several problems such as environmental monitoring [27],[11],
exploration in critical conditions, intrusion detection [8], [23] and surveillance [4] tasks,
management and employment of robots [12] for different purposes and tracking [24] of
objects.

The digital information collected from a camera system, as images and videos, has
to be set in a certain spatial collocation to allow a consistent scene reconstruction
and hence have some significance. This is the context where the localization problem
arises.
From this point of view it is essential that a camera network can be localized in the
space where it operates. This means that each device has to be identified by a unique
orientation and position (pose) with respect to a fixed reference frame.

The simplest possible solution is a manual setting of the poses of the cameras,
though this strategy is not much reliable due to the high probability of errors.
A self-localizing camera network finds all the poses from certain initial noisy measure-
ments exploiting the communication among the agents of the network. Indeed this is
a more common and suitable method since it can be easily adjusted to changes of the
network topology.
This autonomous localization issue can be solved either in a centralized manner or in
a distributed one. In the first strategy the information is gathered by a unique and
powerful control unit which have to process all the data. This approach is certainly
optimal to perform algorithms, still it limits the flexibility and scalability of the
network, moreover it is computationally expensive and communications costs are high.
Conversely these kind of problems do not emerge taking up a distributed paradigm
which is, consequently, preferable in many situations: it exploits the capability of
communication among the cameras and the locality of information such that each
device provides an estimates of its own pose. On the other hand, a distributed solution

1



2 CHAPTER 1. INTRODUCTION

may lead to sub-optimal result and only approximate its centralized counterpart.

1.1 State of the art

Concerning the localization problem of camera networks, literature has ranged in
many different directions depending on the particular assumptions on the framework
and choices about the method to be implemented.

Some works address this issue using traditional localization methods [15] for a
generic standard WSN exploiting the signal power strength, angle of arrival, time of
arrival or time difference of arrival to obtain positions.

Otherwise beacons, which are fixed nodes of known positions, can be deployed
within the network. In this way the positions of the nodes are estimated from the
measurements of distances between these beacons and the nodes themselves.

An interesting distributed algorithm DALT, which stands for Distributed Alternat-
ing Localization-Triangulation, was built by Mantzel et al.[17]: each camera locally
locates itself using some triangulated points and then, communicating with the other
agents nearby, triangulates more common points.

Other researches lay the foundations on computer vision. For example Meingast
et al.[18] proposed a procedure to recover the pose of the cameras from the tracking
of a moving object. The algorithm is developed in two steps: an intra-camera step
provides the track of the moving object on the image plane of a single camera, while
the inter-camera step creates the correspondence between cameras using object images
tracks. Fixing a certain camera coordinate frame as a reference, each absolute camera
pose is achieved from the relative positions and orientations.

Anjum [2] planned an algorithm for camera localization using trajectory estimation
(CLUTE) which is consistent only if the views of the cameras do not overlap. The
trajectories caught by each camera are completely reconstructed with the aid of a
Kalman filter and linear regression for the unobserved areas. These estimations are
then filtered to obtain the relative poses comparing the exit and entry points of an
object in each field of view of a camera.

Considering the problem of localization in a two dimensional space and only about
the rotational part of the pose, conditions under which this work is developed, there
were built different algorithms to solve this task. Borra et al.[5] proposed a method
based on a non-convex optimization problem. In a first step a convex region where
the global minimum should be located is identified through a set of integers. In a
second phase the optimization problem is carried out using classical algorithms.
Another distributed approach in similar conditions is given in Piovan et al.[21]’s paper.
The scenario consists of a ring network made up of sensing nodes capable of detecting
the presence of other agents and to provide relative noisy measurements of the poses.
The worked out algorithm reduces the effect of the noise and then the estimation is
computed through a least square procedure with an exponential rate of convergence.
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1.2 Aim and structure of the thesis

The subject of this thesis is the study of particular features of the localization problem
in a camera network in a specific scenario.
This work is based on the research that has been conducted by A. Cenedese, M.
Michielan and G. Michieletto [6].

The starting point is the Tron-Vidal [26] approach to the localization problem,
which provides the estimates of the poses of cameras in a connected network by the
minimization of a suitable functional cost on SE (3)N taking inspiration from the
consensus procedure among agents in a network. The authors use a computer vision
technique to obtain the relative measurements between pairs of cameras, which are
noisy and inconsistent. Then they improve these measurements deriving a distributed
algorithm and they give a condition for convergence that depends on the step-size of
the consensus procedure and the degree of the network.

In the context of this work each camera is assumed to know nothing about its
physical position in the space, but it can only compute and share its self-estimate
from noisy measurements about the relative poses among neighbouring cameras.
In a real set-up these noisy measures can be obtained through some calibration
techniques such as the eight point algorithm or using the Bouguet camera toolbox
provided by MATLAB®.

The analysis is simplified by the introduction of certain restrictions.
First of all the translational contribution of the functional cost is neglected in order
to focus on the estimate of rotations.
Moreover the 3D space is reduced to a plane where the rotational part of the pose of
a camera can be identified with only one parameter.
Then, according to [6], two distributed methods to obtain the estimates of the angles
are proposed that are different as far as the dynamical convergence properties are
involved but generally converge to the same solution.
These types of procedure allows to understand how the topology of the network has
to be to achieve convergence to the centralized solution and how to improve the
performance analyzing the consensus matrix.
In particular, the contribution of this dissertation consists in studying how these
distributed models behave while changing some aspects of the network, which are
listed below, in the summary of the structure of the thesis.

Following this introductory chapter, some basic mathematical tools regarding the
overall approach used are unveiled in Chapter 2. Chapter 3 presents the localization
problem in a detailed way and leads to the formulation of the distributed models for
solving it. In Chapter 4 communication protocols are discussed: an evaluation in terms
of effectiveness of the proposed methods and speed of convergence is made and possible
problems are tackled. Then a comparison among them is made. Actually a similar
analysis has been carried out by G.Baggio, M. Michielan and S. Patron [3] in SE (3)
referring to the Tron-Vidal algorithm. In Chapter 5 the camera network is modified
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in its topology: the structure of the graph is changed by adding links and analyzing
particular configurations of the network. Then some methods of edge selection are
discussed in order to detect the best set of links that give the best performance. The
last Chapter 6 illustrates an application of the studied strategies on a real physical
scenario.
Each chapter integrates the theoretical notions and argumentations with simulations
and experimental tests to verify the validity of the results and also to observe particular
emergent trend.



Chapter 2
Mathematical background

2.1 Riemannian geometry of SO (3)

The group of rotations in R3 is called special orthogonal group and it is defined as

SO(3) =
{
R ∈ R3×3 : RTR = I, det(R) = +1

}
. (2.1)

The Lie algebra1 associated to this Lie group2 SO (3) is the space of skew-symmetric
matrices

so(3) =
{
v̂ ∈ R3×3 : v̂ = −v̂T

}
(2.2)

where the matrix v̂ generates the cross product by v ∈ R3, i.e. v̂u = v× u,∀u ∈ R3.
Given a rotational matrix R ∈ SO (3) the tangent space at R is defined as

TR (SO (3)) = {Rv̂ : v̂ ∈ so (3)} . (2.3)

At this point a relation between the rotational space and the tangent one can be
found through the concepts of exponential map and logarithm map.
An exponential map at a point R ∈ SO (3) is a diffeomorphism which associates to
each point ∆ in a neighbourhood of the origin of the tangent space TR (SO (3)) a
point S on the (unique) geodesic passing through R in the direction ∆:

expR (∆) : TR (SO (3)) � SO (3) . (2.4)

On the other hand the logarithm map logR (S) : SO (3) � TR (SO (3)) is the inverse
function of the previous one.
These mappings at a generic point of the rotational space can be computed using the
parallel transport method:

expR (∆) = R exp
(
RT∆

)
(2.5)

1A Lie algebra, associated to a Lie group G, is a pair (g, [·, ·]) with g, vector space over G and
[·, ·] : g× g→ g closed under the Lie bracket operation and satisfying the Jacobi identity.

2A Lie group G is a smooth manifold whose group operations are smooth.

5



6 CHAPTER 2. MATHEMATICAL BACKGROUND

logR (S) = R log
(
RTS

)
(2.6)

where exp (·) and log (·) are the exponential and the logarithm of a matrix, respectively.
An intuitive representation of these mappings is illustrated in Figure 2.1.

Figure 2.1: Representation of the exponential and logarithm maps on SO (3).

In order to solve the calibration task it is useful to introduce a definition of distance
in the SO (3) space. There are different types of metrics [13], [19] that can be adopted.
For instance the Riemannian metric is a family of varying inner products on the
tangent space

〈Ri, Rj〉 = tr
(
RT
i Rj

)
, ∀Ri, Rj ∈ TR (SO (3)) (2.7)

and it can be used to measure the length of curves between two given points on the
manifold SO (3). A curve with minimum length is known as geodesic and the length
between the two points takes the name of Riemannian or geodesic distance:

d2
R (Ri, Rj) =

1

2

∥∥log
(
RT
i Rj

)∥∥2

F
, Ri, Rj ∈ SO (3) . (2.8)

Alternatively using the Frobenius metric the Frobenius or chordal distance between
two points on SO (3) is calculated as

d2
F (Ri, Rj) = ‖Ri −Rj‖2

F , Ri, Rj ∈ SO (3) (2.9)

where ‖·‖F is the Frobenius norm.

The group of 2D rotations SO (2) =
{
R ∈ R2×2 : RTR = I, det (R) = +1

}
is iso-

morphic to the circle group S1 = {z ∈ C : |z| = 1}. In this situation the concept of
Riemannian exponential map coincides with the exponential map of the Lie group
and with the general complex exponential: the tangent space to 1 of the unit circle
can be recognized as the imaginary axis jt, with t ∈ R, in the complex plane

jt 7→ exp(jt) = ejt = cos (t) + j sin (t) .

The two distances defined in (2.8) and (2.9) in SO (3), on the 2D space, are
represented in Figure 2.2.
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The Riemannian distance between two points Rβ1 , Rβ2 on SO (2) is the length of the
arc joining the corresponding two points on the unit circle z1 = ejβ1 , z2 = ejβ2 ∈ S1,
on the other hand the Frobenius distance is the segment bounded by the end points
z1, z2, i.e. the chordal distance.

Figure 2.2: Graphical representation of the Riemmanian and Frobenius distances on the
2D space.

Finally, it is worth noting that if Ri ' Rj the two definitions of distance are similar,

for example this happens when Ri is an exact rotational matrix, while Rj = R̂i is an
estimate of it.

2.2 Elements of graph theory

Each device in a camera network can be seen as an element in a communication
graph. A node of a graph has its own state and can update it through the exchange
of information with the other nodes.
As a mathematical tool a graph can be defined as follows:

Definition: A graph G = (V ,E ) is a set of nodes V = (v1, ..., vn) and a set of
edges E = V × V which connect the nodes.

Some notions and properties concerning a graph are here reported.

� Two nodes of a graph vi and vj ∈ V are adjacent if they are connected by an
edge, i.e.: (vi, vj) ∈ E .

� The neighbourhood of a node vi is the set of its neighbours defined as:

Ni = {vj ∈ V : (vi, vj) ∈ E } .

� The path between vi and vj is an ordered sequence of nodes whose the first one
is vi while the last is vj and they are connected by edges belonging to E .
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� A cycle is a path where the first node is also the last one.

� A graph is said to be connected if for all couples of nodes (vi, vj) it exists a
path which connects them.

� A graph is said to be direct if the edges have a direction associated with them,
contrariwise it is undirect.

� A graph is strongly connected if it exists an oriented path which connects vi
and vj, ∀ i, j.

� A graph is said to be complete if it is simple and undirected and each couple
of vertices (vi, vj), ∀ i, j is connected by an unique edge.

� A regular graph of degree k is a graph where each vertex has the same number
of neighbours k.

� A bipartite graph is a graph which can be partitioned in two disjoint and
independent sets U e V such that every edge connects a vertex in U to one in V .

� A tree is a connected graph without cycles.

An intuitive mathematical way to represent a graph is through matrices.
In particular, in a graph with N nodes, the degree matrix ∆G ∈ RN×N is a diagonal
matrix whose elements are the degrees of each node vi, i.e. the number of edges
outgoing the i-th node:

∆G =

 d (v1)
. . .

d (vn)

 (2.10)

On the other hand the adjacency matrix gives information about the links among
the nodes in the network, in fact AG ∈ RN×N is:

AG (i, j) =

{
1 if (vi, vj) ∈ E

0 otherwise
(2.11)

The presence of the value 1 in the diagonal points out the fact that the nodes have a
self-loop, i.e. the vertex knows its own information.
Moreover, if the matrix A is symmetric, the graph is undirect, otherwise it is direct.
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2.3 Consensus problem

In multiagent system the consensus problem aims to convergence to a same common
value for all the agents. In detail, every agent of the system has a local information
state, that is modified by the communication with the other agents till the reaching of
an agreement, namely the consensus value.

Formally, the consensus problem is described as follows.
The task of a system made up of N agents is the distributed estimate of a certain
quantity, starting from the local measurements qi of each agent i. The communication
network that involves the agents can be represented by a graph G = (V ,E ), where
nodes belonging to V correspond to the agents and the presence of an edge eij indicates
the communication from the i-th node to the j-th. The communication network is
supposed to be fixed in time.
The algorithm of consensus can be modelled with the equation:

xi (t+ 1) =
∑
j∈Ni

Pijxj (t) , xi (0) = qi

where xi (t) is the information carried by the i-th agent at instant t and Ni is the
neighbourhood associated to the same node. P is a suitable time-invariant matrix
such that Pij = 0 if eij does not belong to E , otherwise Pij > 0. Moreover if an
agent is a neighbour of itself, i.e. G contains all the self-loops (i, i), it must hold the
following condition: ∑

j∈Ni

Pij = 1.

This means that P has to be a row stochastic matrix.
The expression of the system using a compact form is

x (t+ 1) = Px (t) , x (0) = q (2.12)

with x, q ∈ RN . In this context the consensus is obtained, starting from the system
(2.12), if ∀x (0) ∈ RN the limit

lim
t→∞

x (t) = α1

exists, where α is the consensus value and 1 = (1, . . . , 1)T .
It remains to demonstrate that lim

t→∞
P tx (0) exists and converge to a finite value.

For this purpose, it can be applied the theorem of Perron-Frobenius, under the
assumption of a primitive P , thanks to which P has an eigenvalue in 1 with single
multiplicity, while all the other eigenvalues have an inferior modulus. Being wT0 the
left eigenvector associated to the eigenvalue 1 it holds P t → 1wT0 , therefore

lim
t→∞

x (t) = 1wT0 x (0) = 1α.
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Moreover, if P is doubly stochastic, the consensus value coincides with the average of
the initial conditions, in formula:

lim
t→∞

x (t) =
1

N
11Tx (0) .

2.4 Camera model

The absolute pose of a camera is completely defined by the pair g = (R, T ), where R
is a rotation matrix and T a translational vector. This pose belongs to the special
Euclidean group

SE (3) =
{
g = (R, T ) : R ∈ SO (3) , T ∈ R3

}
which is the group of rigid body transformations.
As regards the rotational part of the pose, in a camera network the orientation of a
device is represented by a rotational matrix in SO (3). As Figure 2.3 illustrates, if two
cameras are identified with ci and cj , their corresponding absolute rotational matrices
are Ri and Rj, because they are referring to a fixed reference frame taken as world
frame centered in O. With these premises, the relative orientation between these two
cameras is computed as Rij = RT

i Rj.

Figure 2.3: Graphical representation about rotational matrices in a camera system.

Considering also the translational contribution of the pose, the relation of neigh-
bouring cameras ci and cj can be computed from the composition of the associated
absolute poses gi = (Ri, Ti) and gj = (Rj, Tj) as

gi ◦ gj = (RiRj, RiTj + Ti) .
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The relative poses expressions are{
Rij = RT

i Rj

Tij = RT
i (Tj − Ti)

As a typical example of use of a camera network, the problem of perimeter
monitoring is considered. The cameras surround the scene of interest and are connected
via a communication network. In such a case the topology of the network can be
modelled as a circulant graph, whose representation is given in Figure 2.4.

Figure 2.4: Representation of a circulant graph with 6 cameras.

2.5 Pinhole camera view

A camera is commonly represented by a pinhole model (Figure 2.5).
According to this geometric interpretation, the point C is the optical center of the
camera whose corresponding coordinate reference system is individuated by the axis
(x, y, z).
The world coordinate system is the reference system centered in O.
Figure 2.5 also shows the image plane π, plane parallel to the xy axis along the
coordinate z, placed at distance f , named focal length, from the optical center.

� Relation between QC and Q0

A generic point Q in the R3 space is described as Q0 = (X0, Y0, Z0) in the world
coordinate system. This point QC seen from the camera perspective is connected
to Q0 by the expression

QC =

 X
Y
Z

 = R

 X0

Y0

Z0

+ T

where (R, T ), respectively the rotational matrix and the translational vector, are
the euclidean relations between the world coordinate and the camera systems.
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Figure 2.5: Representation of a pinhole camera.

� Relation between Q0 and q

The point QC in R3 has its own projection q onto the image plane π through
the optical center. The coordinates of this two-dimensional point are denoted as
q = (x, y).
Taking advantage of the relations of projective geometry:

x = f
X

Z

y = f
Y

Z

and working with the homogeneous coordinates (operation of embedding, R2 →
R3), up to a scaling factor λ 6= 0, the projection point q can be expressed
referring to QC as x

y
1

 =

 fX
fY
Z

 =

 f 0 0
0 f 0
0 0 1

 X
Y
Z

 =

 f 0 0 0
0 f 0 0
0 0 1 0



X
Y
Z
1

 =

=

 f 0 0
0 f 0
0 0 1


︸ ︷︷ ︸

K

 1 0 0 0
0 1 0 0
0 0 1 0


︸ ︷︷ ︸

Π0


X
Y
Z
1

 = KΠ0QC
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The matrix K, called the calibration matrix, contains the intrinsic parameters of
the camera, while Π0 is the standard projection matrix. Indeed the matrix K is
given by the product

K = KsKf =

 sx sθ ox
0 sy oy
0 0 1

 f 0 0
0 f 0
0 0 1


where are highlighted the five intrinsic parameters:

– sx and sy are scaling factors along the respective directions and represent
the resolution of a pixel on the image plane;

– ox and oy are offsets in the respective directions which would be ideally the
center of the image plane;

– finally sθ is the skew factor, which is an indicator of the shape of a generic
pixel on the plane.

It is immediate to conclude that the relation between q and Q0 is x
y
1

 =

 f 0 0
0 f 0
0 0 1

 1 0 0 0
0 1 0 0
0 0 1 0

[ R T
0 1

]
︸ ︷︷ ︸

P


X0

Y0

Z0

1


calling P := KΠ0g, where g includes the six extrinsic parameters in (R, T ).
Overall, the number of degrees of freedom of a camera is 11, since it is only
defined up to a scaling factor.

2.6 Epipolar geometry

Considering the scenario of a multiview geometry where two cameras i and j are able
to view the same point Q, the projections of this point on the two image planes are
qi and qj. These two planar points are linked by

qjT
⊥
ijRijqi = 0

which is the epipolar constraint between the two cameras [16].
In the image 2.6 some elements of interest are marked to understand the meaning

of the epipolar constraint. The line connecting the centers of the two cameras Ci

and Cj is called baseline. The intersection points between the baseline and the image
planes πi and πj are named epipoles ei, ej. Epipolar lines li and lj are the lines given
by the intersection of the epipolar plane Π, generated from the points Q and the
centers Ci and Cj, and the image planes (these lines depend on the position of Q).
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Figure 2.6: Representation of multiview geometry.

Therefore because of the epipolar constraint the projection qj of a point Q onto the
image plane of the j-th camera must belong to the epipolar line lj.

The matrix E := T⊥R is the essential matrix, whose importance is due to the fact
that it codifies the relative position between the cameras.

2.7 Algorithms for calibration

A calibration algorithm is a computer vision procedure through which the essential
matrix E is acquired from a set of points belonging to the 2D space and then the pose
of the camera in SE (3) can be reconstructed. In this work this kind of algorithm
becomes useful to find the initial data of the localization problem, which are relative
noisy rotations R̃ij between pairs of cameras.

2.7.1 Eight-point algorithm

The eight-point algorithm was created by Christopher Longuet-Higgins in 1981 to
compute the three dimensional structure of a scene. It starts from the correspondence
between image points q to estimate the essential matrix E. The number of points
taken in consideration is at least eight, to which the method owes its name.
The algorithm consists in three phases. Firstly a linear homogeneous problem is built
up which can be solved with the help of SVD, then the solution is an estimated matrix
Ẽ. Ẽ is projected onto the essential matrices space E obtaining E. It is noticeable
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that performing this operation the epipolar constraint on E may be lost. Finally the
correct pose is chosen by inspection, trying a point in the four possible configurations.
The criticality of this approach comes up when the extracted points produce particular
degenerate configurations. In this case the feature points are derived through the
use of chessboards which, being planar surfaces in a 3D environment, fall within the
critical sets just cited above (critical surfaces).

A more suitable technique to overcome the problem of critical surfaces and specifi-
cally designed for working with chessboards images is the Bouguet camera toolbox
provided by MATLAB®.
Briefly, this tool allows the estimation of the intrinsic parameters of each device (cali-
bration matrix ), taking multiple pairs of images of the same chessboard from different
angles by a chosen camera. The pose is identified with respect to the reference frame
of the chessboard. In this way, the initial relative noisy rotations and consequently
the associated angles can be derived as inputs of the localization procedure.





Chapter 3
Localization problem

In this work the localization problem of the network cuts down on finding the orien-
tation of cameras, while the translational part of the pose is assumed to be known
or determined otherwise. This means that it exists a set of relative poses {gij} such
that all the other nodes are univocally determined. In SO (3) this task is translated
in determining three parameters which are sufficient to describe an orientation in the
space.

In fact in robotics there are different ways to express a triplet of angles (Euler
angles) which stands for a rotation, such as ZYZ angles or RPY angles.
Alternatively a possible representation of rotations is through quaternions.
According to ZYZ representation, a rotation R is obtained by composition of elementary
rotations with respect to the current frame. In particular, it is computed as the post-
multiplication R = Rz (ϕ)Ry′ (θ)Rz′′ (ψ), where the angles (ϕ, θ, ψ) represent the
rotations performed in the current reference frame about the new axis

(
z, y′, z

′′)
.

If a rotation R is represented by RPY (Roll-Pitch-Yaw) angles, it is computed as
premultiplication of matrices R = Rz (γ)Ry (β)Rx (α), where R is expressed with
respect to a fixed reference frame. In fact each angle of the triplet [α, β, γ] (pitch, yaw,
roll) refers to the amount of rotation that has to be performed in the corresponding
axis of the reference frame to obtain the whole rotation R.

Considering a camera network made up of PTZ cameras, angles [α, β, γ] stand for
tilt, pan and zoom movements respectively.
In the planar framework here considered the degree of freedom required to identify a
rotation is only one angle, i.e the pan angle β.
Under these assumptions cameras lie in a plane at the same height and they can
view the scene in front of them rotating with respect to a perpendicular axis passing
through their center of mass.

The estimates of the rotations are obtained as the solution of a minimization
problem over a functional cost that will be discussed in the following. First of all it
is necessary to have some initial conditions about the poses of the cameras. These

17
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piece of information is derived from the application of a computer vision algorithm
based on the knowledge of the noisy relative measurements R̃ij. Adopting one of
the metrics presented in section 2.1, the functional cost is defined as the sum of the
distance between the true unknown relative poses and the noisy measurements of
communicating nodes:

ϕ∗ (R1, . . . , RN) =
1

2

∑
eij∈E

d2
∗

(
Rij, R̃ij

)
=

1

2

∑
eij∈E

d2
∗

(
RT
i Rj, R̃ij

)
(3.1)

The definition of the functional just exposed yields to the set of estimated rotations
(under the condition that R̂i ∈ SO (3) , ∀i = 1, . . . , N):{

R̂1, . . . , R̂N

}
= argmin

R1,...,RN

ϕ∗ (R1, . . . , RN) = argmin
Ri,Rj

1

2

∑
eij∈E

d2
∗

(
RT
i Rj, R̃ij

)
(3.2)

3.1 Derivation in the 2D space

In a two dimensional space the minimization of the functional cost can be solved
analytically. In this context the rotation of the i-th camera is univocally determined
by its pan angle βi. Then the rotation matrix associated is

Ri =

 cos βi 0 sin βi
0 1 0

− sin βi 0 cos βi

 . (3.3)

Similarly, the relative rotation matrix, which describes the relative orientation between
the i-th and j-th camera, is

Rij =

 cos (βj − βi) 0 sin (βj − βi)
0 1 0

− sin (βj − βi) 0 cos (βj − βi)

 (3.4)

with βij = βj − βi. Since only the pan angle is considered, the calculations can be
simplified restricting the study from SO (3) to the SO (2) group.

In Chapter 2 it has already been highlighted that the group of rotations in SO (2)
is isomorphic to S1, i.e. SO (2) ∼= S1:

S1 3 z = ejβi ←→
[

cos βi sin βi
− sin βi cos βi

]
= Ri ∈ SO (2) , (3.5)

where the angle of rotation βi belongs to the interval [−π, π).



3.1. DERIVATION IN THE 2D SPACE 19

The expression of the functional (3.1), choosing the geodesic distance, becomes
the following:

ϕR (R1, . . . RN) =
1

2

∑
i,j∈E

d2
R

(
Rij, R̃ij

)

=
1

2

∑
ci∈V

∑
cj∈Ni

d2
R

(
RT
i Rj, R̃ij

)

=
1

2

∑
ci∈V

∑
cj∈Ni

1

2

∥∥∥log
(
RT
j Ri

)T
R̃ij

∥∥∥2

F

(3.6)

From the definition of Frobenius norm:∥∥∥log
(
RT
j RiR̃ij

)∥∥∥2

F
= tr

(
log
(
RT
j RiR̃ij

))(
logT

(
RT
j RiR̃

T
ij

))
. (3.7)

Recalling (3.4), the noisy relative rotation is the matrix

RT
j Ri =

[
cos (βi − βj) sin (βi − βj)
− sin (βi − βj) cos (βi − βj)

]
(3.8)

and similarly the product in (3.7) can be written as

RT
j RiR̃ij =

 cos
(
βi − βj + β̃ij

)
sin
(
βi − βj + β̃ij

)
− sin

(
βi − βj + β̃ij

)
cos
(
βi − βj + β̃ij

)  . (3.9)

The principal logarithm [19] of a generic matrix R ∈ SO (2) is given by

log (R) =

0 if θ = 0
θ

2 sin θ

(
R−RT

)
if θ 6= 0

(3.10)

where θ ∈ (−π, π) satisfies tr (R) = 1 + 2 cos θ and in the case of Ri it actually
coincides with the angle rotation θ = βi.
This expression leads to the following calculations matching the product of the rotation
matrices with their respective rotation angles

log
(
RT
j RiR̃ij

)
=

=
βi − βj + β̃ij

2 sin
(
βi − βj + β̃ij

)
 0 2 sin

(
βi − βj + β̃ij

)
−2 sin

(
βi − βj + β̃ij

)
0


=
(
βi − βj + β̃ij

)[ 0 1
−1 0

]
(3.11)
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Thus the Frobenius norm is simply equal to

tr

((
βi − βj + β̃ij

)2
[

1 0
0 1

])
= 2

(
βi − βj + β̃ij

)2

(3.12)

Finally, substituting (3.12) in (3.6) the functional cost reduces to

ϕR (R1, . . . , RN) =
1

2

∑
ci∈V

∑
cj∈Ni

(
βi − βj + β̃ij

)2

. (3.13)

The expressions of the gradient and the Hessian of ϕR are

[∇ϕR]i =
1

2

[
2
∑
j∈Ni

(
βi − βj + β̃ij

)2

− 2
∑
k∈Ni

(
βi − βk + β̃ik

)]

= 2deg (ci) βi − 2
∑
j∈Ni

βj +
∑
j∈Ni

(
β̃ij − β̃ji

) (3.14)

[HϕR]ij =
∂ϕR
∂βi∂βj

=


2deg (ci) if i = j

−2 if i 6= j j ∈ Ni

0 if i 6= j j /∈ Ni

(3.15)

The Hessian matrix (3.15) is also represented by the formula: HϕR = 2LG , where LG

is the Laplacian matrix associated with the graph defined as the difference between
the degree matrix and the adjacency matrix: LG = ∆G − AG .

In [26] the estimation of the rotational part of the pose is derived exploiting
consensus algorithms, but with a Riemannian gradient descent on the space of rotations.
The algorithm proposed by the authors can be divided in two phases.
The functional that has to be minimized is expressed as

ϕR ({Ri}) =
1

2

∑
(i,j)∈E

d2
R

(
RT
i Rj, R̃ij

)
.

At the first step each node k of the network computes the Riemannian gradient of ϕR
as

gradRk
ϕR = −Rk

∑
(k,i)∈E

(
log
(
RT
kRiR̃

T
ki

)
+ log

(
RT
kRiR̃ki

))
.

This quantity can be calculated in a distributed fashion, since the computation of the
gradient ϕR involves a sum over nodes i, neighbours of the k-th node.
Secondly, the estimate Rk (l) at the l-th iteration is updated moving along the geodesic
in the direction −gradRk(l) with a suitable step-size of ε, namely

Rk (l + 1) = expRk(l)

(
−εgradRk(l)ϕR

)
.
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These two steps are repeated until convergence is reached and the number of estimation
has to be fixed at the beginning.
The main problem in this approach is the fact that the functional cost ϕR has multiple
local minima, indeed the initial set of rotations {Ri} has to be close to the optimal
solution in order to perform a correct localization.

3.2 Centralized approach

The minimization of the functional cost (3.13) is now performed to get the estimates
of the pan angles.
Since the functional ϕR is a convex function and its second derivative is positive
semi-definite within the set {βi ∈ [−π, π)}, it is possible to reach the minimum, which
is not only local, but also global.
Hence the solution of the optimization problem is achieved by nullifying the first
derivative ∇ϕR = 0:

2LG

 β1
...
βN


︸ ︷︷ ︸

β

=


∑

j∈N1

(
β̃j1 − β̃1j

)
...∑

j∈NN

(
β̃jN − β̃Nj

)


︸ ︷︷ ︸
∆̃β

(3.16)

In a shorthand notation: ∇ϕR = 2LGβ − ∆̃β = 0.
Now the equation (3.16) can be solved with the standard least squares method,

if ∆̃β /∈ kerLG . Actually there are infinite solutions of the form β = 1
2
L †

G ∆̃β +
1
2

(
I −L †

G LG

)
χ,χ ∈ RN and χ ∈ ker LG . This is due to the fact that matrix LG ,

since the graph is connected, has at least one 0 eigenvalue, hence
(
I −L †

G LG

)
χ

belongs to ker LG , which has unitary dimension. The minimum norm solution is
given by the former contribution of the formula just written:

β∗ =
1

2
L †

G ∆̃β (3.17)

This expression is the centralized solution to the rotation localization problem, where
the matrix L †

G is the pseudo-inverse1 of the Laplacian matrix.
The relation (3.17) points out the fact that the information required to have the
estimates of the pan angles is the knowledge of the topology of the network and the
initial noisy relative measurements that can be derived, for example, by employing
the eight-point algorithm (see 2.7) .

1The pseudo-inverse of a matrix M is computed as M† =
(
MTM

)−1
MT .
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3.3 Distributed approach

Formula (3.14) suggests an iterative distributed technique to solve the same problem
of localization. Indeed a local expression for the estimate for each single pan angle
can be derived from it:

βi =

∑
j∈Ni

βj

deg (ci)
− ∆̃βi

2deg (ci)
(3.18)

The meaning of this expression is that each camera updates its estimate from the data
received by its neighbours and from the relative noisy measurements regarding it.

From (3.18) it is straightforward to draw out a first discrete state-space model in a
vector form

β (k + 1) = Fβ (k) + u (3.19)

where the state matrix F is equal to the adjacency matrix normalized by the degree
matrix and it is given by

F = ∆−1
G AG (3.20)

while the vector u, input of the system, is

u =
1

2
∆−1

G ∆̃β. (3.21)

In this model each camera does not take into account its self-estimate at the k-th
iteration to compute the next estimate, but only the information coming from its
neighborhood Ni.
It can be demonstrated that the solution of this first model converges to the centralized
one (3.17):

β∗ = Fβ∗ + u

= ∆−1Aβ∗ +
1

2
∆−1∆̃β

(∆− A)β∗ =
1

2
∆̃β

β∗ =
1

2
L †

G ∆̃β.

The procedure is managed by the eigenvalues of the matrix of consensus F and,
since F is row stochastic, its N real eigenvalues are distributed in the interval [−1, 1][14].
If the theorem of Perron-Frobenius holds (see 2.3), the dominant eigenvalue, always
present, is λ0 = 1 with single multiplicity. The speed of convergence of the angles
to the centralized solution is thus regulated by the second largest eigenvalue of the
matrix F .

A first observation is that eigenvalue λ = −1 with unitary multiplicity has not to
be part of the set of the eigenvalues of F in fact its presence cause the instability of
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the system and the estimates oscillate around the equilibria without converging. This
algebraic observation reflects on the structure of the network, indeed the presence of
λ = −1 corresponds to the characterization2 of a bipartite graph (see section 2.2)
[14].

The non-convergent behaviour of the system can be solved adopting some strategies,
in particular, changes at different levels of the network are pointed out below and
developed here and in the next chapters.

1. As a first solution, instead of working directly on the structure of the network, a
second state-space model is proposed. By means of this approach the amount of
information increases because of the introduction of self-loops and the dynamics
of the system is controlled in its performance tuning a specific parameter in an
appropriate way.

2. The communication protocol of the network is changed from a synchronous one
to a different method for exchanging data.

3. The topology, i.e. the configuration of the network, is modified by the addition
of a link in order to obtain a non-bipartite graph.

As far as the first point is concerned, a second state-space model [6] is introduced
to change the range of the eigenvalues of the matrix F , in particular to avoid the
presence of the eigenvalue λ = −1 which is the cause of an oscillator behaviour of the
angles. Such a model ...:

β (k + 1) = ηβ (k) + (1− η) (Fβ (k) + u)

= (ηI3 + (1− η)F )︸ ︷︷ ︸
F1

β (k) + (1− η)u
(3.22)

The new matrix F1, this time, considers also the self-estimate of each node being the
identity matrix an additive term of the sum. The parameter η represents the weight
attributed to the previous estimate of the camera updating its state and it permits to
regulate the speed of convergence to the centralized solution.

2A graph is said to be bipartite if it does not contain cycles whose length is odd, i.e. all cycles in
the graph have an even number of nodes.
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The equilibria of this second model are the same as the centralized method:

β∗ = ηβ∗ + (1− η) (Fβ∗ + u)

= ηβ∗ + (1− η) ∆−1Aβ∗ +
1

2
(1− η) ∆−1∆̃β

(∆− A)β∗ =
1

2
∆̃β

β∗ =
1

2
L †

G ∆̃β.

Differently from (3.20), the region where the eigenvalues of the new stochastic
matrix F1 lie is the circle centred in (η, 0) having radius ρ = 1 − η (η ∈ (0, 1) =⇒
ρ ∈ (0, 1)), the domain can also be restricted to the range [−1 + 2η, 1], since the
eigenvalues are real. This leads to the exclusion of the unstable mode caused by the
presence of the eigenvalue λ = −1.
Moreover the control parameter η allows the regulation of the speed of convergence
because its value influences directly the eigenvalues of F1, in particular, the second
largest eigenvalue corresponding to the dominant mode.

The sign of the second largest eigenvalue of the state matrix F1 determines the
behaviour of the response of the system: if it is negative, the convergence is reached
with a transient oscillatory period, while, on the other hand, if this value is positive,
the estimated angles are represented by monotonic and smooth curves all along the
procedure.

In order to give evidence of these observations, a circulant camera network with a
unique cycle, denoted by C1

N , is considered. Generally the eigenvalues of the matrix
F1 for a network of such a type are calculated as the set:

σF =

{
λh = η + (1− η) cos

(
2π

N
h

)
, h = 0, . . . , N − 1

}
Taking for granted that the largest positive eigenvalue is λ0 = 1 and the next largest
positive eigenvalue is λ1, a distinction between the case of a network constituted by
an even or an odd number of cameras has to be made to understand which is the
largest negative eigenvalue. The aim of these analysis is the detection of the sign of
the second largest eigenvalue that rules the convergence of the estimated angles.

If N is even, the largest negative eigenvalue is λN/2 = −1 + 2η. This one leads the
convergence only if the condition

∣∣λN/2∣∣ ≥ |λ1| holds. Solving the inequality

1− 2η ≥ η + (1− η) cos

(
2π

N

)
η

(
3− cos

(
2π

N

))
≤ 1− cos

(
2π

N

)
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η ≤
1− cos

(
2π

N

)
3− cos

(
2π

N

)
and exploiting the trigonometric property cos (2α) = 2 cos2 (α) − 1, the following
threshold is obtained:

η ≤

(
1− cos

( π
N

))(
1 + cos

( π
N

))
1 +

[(
1− cos

( π
N

))(
1 + cos

( π
N

))] = ηcre (3.23)

In the opposite case of an odd number of devices in the network, the largest
negative eigenvalue is λ(N−1)/2 = −

(
η + (1− η) cos

(
2π
N
N−1

2

))
= η − (1− η) cos

(
π
N

)
.

The critical value of the control parameter η is found by imposing
∣∣λ(N−1)/2

∣∣ ≥ |λ1|:

−η + (1− η) cos
( π
N

)
≥ η + (1− η) cos

(
2π

N

)
2η − η

[
cos

(
2π

N

)
− cos

( π
N

)]
≤ −

[
cos

(
2π

N

)
− cos

( π
N

)]

η ≤
−
[
cos

(
2π

N

)
− cos

( π
N

)]
2−

[
cos

(
2π

N

)
− cos

( π
N

)]
Thus leading to the expression:

η ≤

(
1− cos

( π
N

))(1

2
+ cos

( π
N

))
1 +

[(
1− cos

( π
N

))(1

2
+ cos

( π
N

))] = ηcro (3.24)

If η satisfies these inequalities, an approximate value of the centralized solution
can be inferred by averaging, otherwise the iterations may condition the final steady
result, giving an incorrect value.

3.4 Simulations

In this first analysis the simulations are evaluated in a fixed environment made up of
a circulant camera network C1

N where each node can share its information with the
previous and next neighbours.
In these simulations the number of agents N is chosen equals to 6 but the achievements
can be easily extended to networks with a great amount of devices.
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The estimation procedure of the pan angles begins from the initial condition
β (0) = 0 and it is repeated for 40 iterations. To simulate the relative angle measure-
ments between the cameras a noise uniformly distributed in the interval

[
− π

18
, π

18

]
is

added to the difference of the angles.
The evaluation of the performance of the estimation process is made considering the
centralized solution (3.17) as the ground truth. In addition to that, the cost function
ϕR is an index of the goodness of the convergence as well as the mean square error
defined as

Ψ
(
β̂1, . . . , β̂N

)
=

1

N

N∑
i=1

(
β̂i − βi

)2

(3.25)

i.e. the squared error between the estimated angles β̂i and the real values βi.
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Figure 3.1: Comparison between models (3.19) and (3.22): convergence analysis for a
cyclic network C1

6 .
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Figure 3.1 and Figure 3.2 show the result of the estimation process for a network
respectively with an even (N = 6) and an odd (N = 7) number of devices. Focusing
on the first model, in Figure 3.1a the cost function does not reach the 0 value and
also the mean squared error (Figure 3.1b) does not decrease to zero. Some of the
estimated angles of Figure 3.1c oscillate around the centralized solution. As already
observed, this is due to the presence of the eigenvalue λ = −1, which is the cause of
the instability of the system. On the contrary, for C1

7 and applying the model (3.22),
since λ = −1 is not within the spectrum of the matrix F , the stability of the system
and the convergence of the angles to the equilibrium value are assured.
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Figure 3.2: Comparison between models (3.19) and (3.22): convergence analysis for a
cyclic network C1
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The following Figure 3.3 illustrates how the parameter η influences directly the
performance of the convergence towards the equilibrium. It confirms the results
previously obtained from the theory: over the threshold constituted by the critical
values ηcr the estimated angle reaches its true value asymptotically, while if (3.23)
and (3.24) are not verified oscillations arise.
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Figure 3.3: Model (3.22): scaling of the control parameter η with respect to the critical
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6 (left) and C1
7 (right) networks.



Chapter 4
Communication protocols

This chapter deals with the change in the communication among the cameras of the
network.
The localization problem described in the previous chapter is studied with respect to
different communication protocols. The types of protocols analyzed are:

1. Synchronous - in this protocol at the same instant of time t all cameras in the
network send their information to their neighbours and update their state (4.1a).
It has already been discussed in the previous simulations.

2. Broadcast - at the instant t only one node communicates its state to its neighbours
and only these latter update their state. At the same time all the other agents
are turned off (4.1b).

3. Asynchronous symmetric gossip - at the instant t two adjacent nodes exchange
their information and both update their state (4.1c).

4. Asynchronous asymmetric gossip - the exchange of information is unilateral that
is a single camera sends information to the other one, which updates its estimate
(4.1d).

5. Coordinated broadcast - it is a transmission of information where at the instant
t a node of the network receives the data from all its neighbours and then
computes its state on the basis of them (4.1e).

These protocols are better explained by Figure 4.1.

The study of the communication protocols is significant because if the localization
solution is similar to the one achieved with a synchronous protocol, where all the
communication links are active, it might be possible to reduce the consumption of
energy and communications in the network, otherwise a trade off is posed among
complexity, convergence properties, resources needed.

29
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(a) synchronous (b) broadcast

(c) symmetric gossip (d) asymmetric gossip

(e) coordinated broadcast

Figure 4.1: Schematic representation of the protocols for a generic network of 4 devices.
Arrows point the direction in which the communication works. Nodes circled
in red update their state, while the red links are the active edges at a precise
instant.

The main point in changing the protocol with respect to a synchronous one
is the transition from a matrix of consensus P that is time-invariant (see section
2.3) to a matrix P (t) that is dependent on time. At every instant ti a dynamic
graph is associated to the matrix P (ti) which has the same nodes V of the original
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graph but the set of edges Ei is a subset of all the possible links among the agents.
Consequently the convergence is obtained by studying by the product of all the varying
P (ti) , ti = 0, . . . T :

x (T ) = P (T )P (T − 1) . . . P (1)P (0)x (0)

The difficulty of these switching systems is that a general theory for studying the
stability does not exist, but only some propositions under specific assumptions are
valid.

4.1 Convergence analysis

In this section the functioning of the estimation process with the protocols just
mentioned is tested through simulations.
For a generic protocol, at a instant ti an angle estimate relating to an agent is
computed according to the state of the neighbouring nodes and to the relative noisy
measurement and, without deriving again the measurement, the estimate is repeated
for some iterations t. For simplicity it is assumed to take only an iteration per estimate,
i.e. t = 1 and therefore there is a switch in the communication at every iteration.
The number of iterations of the process is increased to 100, since active communication
links are less than in the synchronous case per iteration.
The noise that influences the measurements is always in the interval

[−π
18
, π

18

]
.

The reported simulations refer to a C1
6 camera network. Generally the results obtained

for this structure can be extended to all the other C1
N networks, even if the number

of agents is odd, because communication does not involve all the cameras in a time
instant.
At first the examined protocols are deterministic which means that the communication
takes place in a specific pre-arranged order starting with the estimate of the first node
and keep going clockwise.

In Figure 4.2 the results for the deterministic broadcast protocol are represented.
The state-space model 1 (3.19) (red line) is compared with the second approach (3.22)
for two possible values of the control parameter η (η = 0.1, blue line and η = 0.6,
black line).

In all the three cases the convergence is not obtained exactly due to the presence
of noise. Model 1 is the fastest to settle down to a constant value near the optimal
solution. Concerning the second model, the increase of the parameter η causes the
convergence to be reached, in an approximately way, at a lower speed but with a
smoother behaviour.

Indeed, there is a shift from the pan angles computed with the centralized method
which is caused by the presence of the noise. In the same way oscillations are related
to the noise: if the measurements were not corrupted by it, these fluctuations would
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disappear. Doing manually the computations about the estimation process it results
that the maximum amplitude value for the oscillations amax is the maximum absolute
value of the noise multiplied l times, where l stands for the number of links in the
camera network. In formulas: amax = la, if the noise is model with a uniform
distribution in the interval [−a, a].
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Figure 4.2: Broadcast communication protocol: convergence analysis for a C1
6 network.

The estimated angles have to be normalized with respect to a chosen reference
frame, in this case the one referring to the first camera, consequently with respect to
β1 = β̂1 = 0. Thus, while in a synchronous network the normalization is applied to all
the angles taking part in the communication, in a generic protocol only cameras which
updates their state at an instant have to be normalized. The problem of normalization
becomes a relevant issue, in particular, with the symmetric gossip protocol, as it is
reported in the next paragraph.
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The symmetric gossip protocol does not work properly in the estimation of the
pan angles with model 1. Figure 4.3 illustrates how the functional cost does not
converge to zero and the increase of the error through the process.
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Figure 4.3: Symmetric gossip communication protocol: convergence analysis for a C1
6

network.

This behaviour can be in part justified by the nature of the protocol itself. In
fact if the first couple of cameras exchange their state, at the next step a node of the
successive pair forgets the estimate computed at the preceding instant in favour of the
new acquired state. Because of this and due to the noise there is a growth of the drift
through the process. Even if the initial conditions coincide with the true pan angles,
i.e. β (0) = β, the estimation with this protocol does not give satisfying results (see
Figure 4.4).
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Figure 4.4: Estimated angles β̂i (rad) starting from initial condition β (0) = β: non-
convergence of the estimated pan angles.

A better performance can be achieved using the second distributed model with
η = 0.6, where the information of a camera itself is considered and it has a greater
weight (Figure 4.5). In this way during the process a loss of information does not
occur.
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Figure 4.5: Estimated angles β̂i (rad): Convergence with the symmetric gossip protocol,
model 2 η = 0.1 (blue line) - number of iterations increased to 200, model 2
η = 0.6 (black line).

Normalization is calculated as in the case of the broadcast protocol (1), though the
structure of this communication suggests possible alternative methods to normalize
the estimated angles in order to aim to convergence (subsection 4.1.1).
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Similar considerations to the broadcast can be done for the asymmetric gossip
protocol (Figure 4.6). During an initial phase the angles are underestimated and
the values of the estimated angles settle at a lower rate than the broadcast protocol
because every camera effects its update at an iteration exploiting the data of a single
neighbour.
The idea behind the deterministic structure applied is that of performing a communi-
cation cycle among the cameras and to repeat this scheme through the process.
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Figure 4.6: Asymmetric gossip communication protocol: convergence analysis for a C1
6

network.

Since the communication between every pair of nodes can take place in two
directions, it is interesting that this kind of protocol performs differently according to
the order of the communication (see Figure 4.7). This observation suggests that the
estimation gives results that depends on which link is active and on the particular
order of communication.
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Figure 4.7: Estimated angles β̂i (rad): two possible deterministic versions of the asymmetric
protocol (model 1).

As regards the coordinated broadcast, Figure 4.8 shows the comparison among
the different distributed strategies.

This protocol differs from the other because every camera has information from
all its neighbourhood and the combination of this, even if noisy, permits to reach
the centralized value correctly, to the detriment of a lower speed. For the sake of
completeness, estimation computed with model (3.22) is graphically represented, even
though it is not very efficient.

Ending up this part of analysis of the protocols it is remarkable that the second
distributed model is generally slower in converging than the first one, but it reduces
the presence of oscillations.
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Figure 4.8: Coordinated broadcast communication protocol: convergence analysis for a
C1

6 network.

4.1.1 Methods of normalization

In this section it is considered how the normalization may affect the estimation, in
the case that the initial estimate for all the cameras is the same. In the case of a
symmetric gossip protocol the normalization adopted does not lead to the convergence
to the centralized solution. This fact allows to think about other possible types of
normalization which may resolve the problem.

A simpler configuration of the network, made up of N = 4 devices, is considered
to develop the calculations of normalization (Figure 4.9).

Each communication edge is marked by a weight wi (k) belonging to the set
W = {±a,±b,±c,±d} which represents the components of the input u (k) =
1

2
∆−1

G (k) ∆̃β (k) (3.21).
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Figure 4.9: Cyclic weighted graph with N = 4.

The updating rule of the pan angles for the symmetric deterministic protocol at
each instant is expressed as{

βi (k + 1) = βj(k) + wi(k)

βj (k + 1) = βi(k) + wj(k) ∀i, j = 1, ..., 4.

where j is the next camera with respect to the i-th node and wi(k) = −wj(k).
The algorithm starts from the same random initial conditions, for instance β (0) = 0
and at a certain iteration of the procedure the estimated angles are expected to be
equal to the centralized solution.
This value, according to this specific representation, is

β∗ = [−a− b− c− d − a − a− b − a− b− c]T

where − (a+ b+ c+ d) = 0. Indeed, since the measurements taken are noisy, this last
expression in the simulations becomes

− (a+ b+ c+ d) ' 0 (4.1)

Based on these assumptions, besides of normalizing with respect to the first camera
(1), the normalization can be applied with respect to the neighbouring device (2).
In this way the computed estimates should be consistent with the orientation of the
previous camera.
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it 0 1 2 3 4 5 6

β̂1 0 0 0 0 0 0 0

β̂2 0 −2a b b b −2a− b b+ c

β̂3 0 0 −2 (a+ b) c c c −2a− 3b− c
β̂4 0 0 0 −2 (a+ b+ c) 0 0 0

1 � 2 2 � 3 3 � 4 4 � 1 1 � 2 2 � 3

it 7 8 9 10 11

β̂1 0 0 0 0 0

β̂2 b+ c b+ c −2a− b− c b+ c b+ c

β̂3 c c c −2 (a+ c)− 3b b+ 2c

β̂4 −2a− 3 (b+ c) b+ c b+ c b+ c −2a− 4b− 5c

3 � 4 4 � 1 1 � 2 2 � 3 3 � 4

it 12 . . .

β̂1 0

β̂2 b+ c

β̂3 b+ 2c

β̂4 2b+ 3c

4 � 1 . . .

Table 4.1: Development of the estimation procedure with normalization (2).

In the following normalization (3) the idea is quite similar to (2): a camera is
normalized with respect to the other one in the communicating couple but this time
the normalization about the first angle is not carried out.
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it 0 1 2 3 4 5 6

β̂1 0 a a a −a a+ b a+ b

β̂2 0 −2a b b b −3a− b b+ c

β̂3 0 0 −2 (a+ b) c c c −3 (a+ b)− c
β̂4 0 0 0 −2 (a+ b+ c) a+ d a+ d 0

1 � 2 2 � 3 3 � 4 4 � 1 1 � 2 2 � 3

it 7 8 9 10 11

β̂1 a+ b −2a− b a+ b+ c a+ b+ c a+ b+ c

β̂2 b+ c b+ c −4a− 2b− c 0 0

β̂3 a+ c+ d a+ c+ d a+ c+ d −4a− 3b− c 0

β̂4 −3a− 2 (b+ c) a+ b+ d a+ b+ d a+ b+ d −4a− 3b− 2c

3 � 4 4 � 1 1 � 2 2 � 3 3 � 4

it 12 . . .

β̂1 −3a− 2b− c
β̂2 0

β̂3 0

β̂4 0

4 � 1 . . .

Table 4.2: Development of the estimation procedure with normalization (3).

Both these types of normalization are quite reasonable from a theoretical point of
view yet they do not improve the the performance of the distributed model 1 and the
functional cost diverges (Figure 4.10, 4.11).
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Figure 4.10: N = 4. Normalization strategy (2), zoom on the first 20 iterations.

0 5 10 15 20
0

2

4

6

8

10

12
x 10

5

# iterations

 

 

(a) Cost function ϕR

0 5 10 15 20
−5

0

5

10

15

20

25

# iterations

(b) Estimated angles β̂i (rad)

Figure 4.11: N = 4. Normalization strategy (3), zoom on the first 20 iterations.

Another strategy proposed (4) is a sort of normalization with respect to the
estimation for a node computed at the preceding step of the process. More in detail
when two cameras update their state the first camera of the couple in the order of the
cycle keeps the estimate calculated at the previous step as shown in Table 4.3. Since
effectively only one update of a node is relevant, the nature of the symmetric gossip is
compromised: the protocol has an asymmetric structure. Moreover, since 4.1 holds,
when the first device is involved, it is necessary to apply a further normalization to
maintain its associated angle constantly equals to 0.
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it 0 1 2 3

β̂1 0 a 0 0 0 0 0

β̂2 0 −a −a b −a −a −a
β̂3 0 0 0 −a− b −a− b c −a− b
β̂4 0 0 0 0 0 −a− b− c −a− b− c

1 � 2 2 � 3 3 � 4

it 4 5

β̂1 −a− b− c− d = 0 0 −a+ a = 0 0

β̂2 −a −a −a −a
β̂3 −a− b −a− b −a− b −a− b
β̂4 d −a− b− c −a− b− c −a− b− c

4 � 1 1 � 2

= β∗

Table 4.3: Development of the estimation procedure with normalization (4).
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Figure 4.12: N = 4. Normalization strategy (4), zoom on the first 20 iterations.

To sum up, it is difficult to deal with a symmetric gossip communication protocol
because several problems arise due to the nature of the protocol itself. The owned noisy
measurements are relative and this implies the necessity to fix a reference framework.
Regardless of the type of normalization, the reference frame cannot be determined.
Probably all these matters can be faced off adapting the state-space model (3.19) from
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a synchronous protocol to the symmetric gossip in a different way.

4.2 Comparison among protocols

As a conclusion for this section, a comparison among all the analyzed protocols is
provided with the goal to find the pros and cons of each of them and eventually to
establish a best communication solution for a camera network. The symmetric gossip
protocol is neglected because of the problems described before.
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Figure 4.13: State-space model 1: comparison among protocols for a C1
6 network.

Figure 4.13 highlights some interesting facts. Though broadcast and asymmetric
gossip are relatively fast to achieve a neighbourhood of the centralized value they do
not reach it precisely. Moreover estimated pan angles either oscillates or however have
a significant error from the ground-truth.
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On the other hand the coordinated broadcast protocol requires several iterations to
converge but can do it exactly.
If an estimate of the error measurements can be found and an averaging operation can
be performed then the first two protocols are preferable, while if the accuracy on the
orientation of the cameras is not to be set aside, the coordinated broadcast is the best
solution. This latter one prevails above the others also when a network with a large
number of cameras have to be managed, case where, using the first two protocols, the
estimated pan angles may misunderstand the real rotations of the cameras due to
non-exact convergence.

4.3 Deterministic and randomized versions

Up to now the simulations were made taking into consideration the deterministic
version of the protocols. The following study examines the case where communication
among the devices is randomized.
Intuitively, if the exchange of information is not arranged, in order to get close
progressively to the centralized value, it is required that all the communication links
between two nodes of a cyclic network have to be operative at least one time in
the randomized procedure. Then it is straightforward to imagine that the speed
of convergence in the randomized situation may be reduced with respect to the
deterministic case (Figure 4.14 and 4.15). Similarly the mean error should be higher.
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Figure 4.14: Deterministic and randomized versions of the broadcast protocol.
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Figure 4.15: Deterministic and randomized versions of the coordinated broadcast protocol.

For the asymmetric gossip the counter-clockwise deterministic case is considered
as reference.
In Figure 4.16b some pan angles are underrated or overrated because of the lack of
information of some nodes or maybe it can happen that a communication between two
cameras is repeated into subsequent instants adding no new upgrade of the estimate.
Figure 4.16d illustrates a less frequent situation where the randomized version of
the protocol converges more quickly. This can be justified partially by the fact that
in the randomized version a link between two cameras can become active in two
possible directions of communication while in the deterministic case the set up has a
fixed direction. In some sense the randomized process covers a wider communication
network.
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Figure 4.16: Comparison between the deterministic and randomized versions of the asym-
metric gossip protocol.



Chapter 5
Network Topology

This chapter is concerned with the modification of the network topology. The term
topology refers to a schematic representation of network nodes arrangement including
the physical and communication links among them.
Topology variations may entail advantages or difficulties in completing the task of
localization efficiently. For example if the network is fully connected some information
may be redundant especially if the number of devices is high. On the other hand if
the examined topology is that of a tree, loss of information may occur if a node does
not work properly.
For that reason, in following sections the distributed models proposed are tested
adding edges or changing the configuration of the network.

5.1 Addition of an edge

In the previous chapter the camera network had a fixed cyclic configuration. As
already mentioned, this is a common structure for a camera network since each device
communicates with its two nearest neighbours, which possibly share overlapping views
with.
When the synchronous protocol is considered, the application of the first state-space
model to a bipartite graph involves the presence of the eigenvalue λ = −1, which
provokes the oscillations of the estimated angles around the equilibrium. In order to
avoid this undesired behaviour the configuration of the network is now alterated: the
addition of a specific link makes the graph to become non-bipartite thus leading to
convergence. In the following simulations the network C1

6 represented in Figure 2.4 is
taken as reference for the addition of links.

The theoretical findings are demonstrated by simulations in Figure 5.1: adding any
link such that the graph remains bipartite, some of the estimated pan angles oscillate
around the equilibrium state, without converging. On the other hand if the additional
connection between two cameras generates at least one cycle with an odd number of

47
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nodes, i.e. the graph becomes non-bipartite, the convergence is now ensured.
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Figure 5.1: Model (3.19): convergence analysis for a cyclic network C1
6 with an extra link.

Top row: bipartite graph. Bottom row: non-bipartite graph.

Figure 5.1 hints at the fact that the addition to the network of any edge belonging
to the same set E1 or E2, i.e.

E1 = {e14, e25, e36}
E2 = {e13, e24, e35, e46, e51, e62}

may give the same convergence properties in the angle estimation. This latter statement
can be proved checking the eigenvalues of the matrix F .
In particular, being F a consensus matrix, the convergence speed is regulated by the
absolute value of its second largest eigenvalue λd, which stands for the dominant mode
of the system, namely the slowest one. Thus it can be drawn a distinction among the
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added links for which λd results the smallest. Indeed the more λd is close to 0 the
faster the convergence is reached and contrariwise if it tends to 1.
Clearly this kind of reasoning is pointless for the first set of links, as there is not
convergence. Referring to E2, for each edge it holds λd = −0, 8259 (see Figure 5.2).
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m
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λ

d

Figure 5.2: Eigenvalues of F with an extra link belonging to E2. Blue circle delimits the
region where eigenvalues smaller than the second largest one lie.

The difference between those edges which divide the network in a half keeping the
graph bipartite (set E1) and the remaining ones which make the graph non-bipartite
(set E2) comes to light also in the application of the second distributed model (3.22).
The presence of an additional edge in a cyclic graph implies the modification of
the spectrum of the state-space matrix: a closed-form formula is not known. This
assertion means that the control parameter ηcr, which determines the performance of
convergence, cannot be computed directly but it is only possible to approximate it
through experimental trials.
The objective is to find this threshold in order to make the convergence be led by
the second largest eigenvalue which has to be negative, otherwise the estimate may
overestimate or underestimate the asymptotic solution.
Observing values of λd in simulations with different η, ηcr,1 in the case of E1 is found
to be ' 0.2, while for E2, ηcr,2 belongs to the interval (0.126, 0.127).

5.2 Addition of two edges

The following analysis regards the addition of two links to the cyclic graph.
The evaluation of the performance of the two distributed models is made focusing the
second largest eigenvalue of the matrix F and F1.
The table below 5.1 collects the values of λd for the model (3.19) depending on the
particular extra pair of edges.
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Edges (1, 4) (1, 5) (2, 4) (2, 5) (2, 6) (3, 5) (3, 6) (4, 6)

(1, 3) -0,8356 -0,7287 -0,7287 -0,839 -0,7287 -0,7287 -0,8356 -0,6667
(1, 4) -0,8356 -0,8356 x -0,839 -0,839 x -0,8356
(1, 5) -0,6667 -0,8356 -0,7287 -0,7287 -0,839 -0,7287
(2, 4) -0,8356 -0,7287 -0,7287 -0,839 -0,7287
(2, 5) -0,8356 -0,8356 x -0,839
(2, 6) -0,6667 -0,8356 -0,7287
(3, 5) -0,8356 -0,7287
(3, 6) -0,8356

Table 5.1: C1
6 +2 edges: values of the second largest eigenvalue for model (3.19). Underlined

eigenvalues relate to the example reported in Figure 5.3.
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Figure 5.3: Speed of convergence of model 1 with two couples of added links to C1
6 : in this

example the difference is clear, tough it is not appropriate to point out a time
instant of convergence, since there are always deviations from the true value.

Obviously, if the additional couple is made up of two links belonging to the set
E1, the graph remains bipartite and the localization issue cannot be fulfilled. Further
considerations can be drawn from this table but they are postponed to the next
paragraph.

Tables (from 5.3 to 5.7) report data about the second largest eigenvalue when
the model (3.22) is applied, varying the tuning parameter η. Several interesting
observations can be made.

� Couples of two links for which the second largest eigenvalue is the same can
be grouped in sets, as shown in (5.1). Generally a fixed set of ”fastest” links
cannot be established since the modification of η influences the computation of
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the spectrum of F1.

E1 = {(e13, e46) , (e15, e24) , (e26, e35)}
E2 = {(e13, e24) , (e13, e26) , (e15, e26) , (e15, e46) , (e24, e35) , (e35, e46)}
E3 = {(e13, e15) , (e13, e35) , (e15, e35) , (e24, e26) , (e24, e46) , (e26, e46)}
E4 = {(e13, e14) , (e13, e36) , (e14, e15) , (e14, e24) , (e14, e46) , (e15, e25) , (e24, e25) ,

(e25, e26) , (e25, e35) , (e26, e36) , (e35, e36) , (e36, e46)}
E5 = {(e13, e25) , (e14, e26) , (e14, e35) , (e15, e36) , (e24, e36) , (e25, e46)}
E6 = {(e14, e25) , (e14, e36) , (e25, e36)}

(5.1)

� Giving a graphical representation to the partitions Ei with i = 1, . . . , 6 charac-
terising configurations emerge, regardless of the cyclic numeration of cameras in
the network (Figure 5.4).

(a) E1 (b) E2 (c) E3 (d) E4 (e) E5 (f) E6

Figure 5.4: Configurations for the identified sets of two edges.

Thanks to simulations, a range of possible values for ηcr is computed when an
edge belonging to a specific set is added to the network. These intervals are ad
scripted in Table 5.2.

Edge Set ηcr
E1 (0.0425, 0.043)
E2 (0.115, 0.13)
E3 (0.13, 0.14)
E4 (0.14, 0.15)
E5 (0.2, 0.225)
E6 (0.25, 0.26)

Table 5.2: Belonging range of ηcr for each set of edges.

This type of experimental analysis is envisaged about the addition of a k-th set
of edges till the saturation of the graph structure. Furthermore, all these results
may be the starting point for a future analytical analysis.

� The simulations performed changing the value of the control parameter η, besides
finding the belonging range of the critical value for each set of edges, allow to
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identify a common global value of the ηcr. for any added couple of links.
This value is found to be approximately ηcr ' 0.04. Then, if η <= ηcr the
second largest eigenvalue will be negative implying the presence of an oscillatory
transient period towards the equilibrium in the estimation of the angles.
This critical value may be inferred analytically finding a bound on the second
largest positive eigenvalue of the system.

Edges (1, 4) (1, 5) (2, 4) (2, 5) (2, 6) (3, 5) (3, 6) (4, 6)

(1, 3) -0.8173 -0.7114 -0.7114 -0.8206 -0.7114 -0.7114 -0.8173 -0.65
(1, 4) -0.8173 -0.8173 -0.98 -0.8206 -0.8206 -0.98 -0.8173
(1, 5) -0.65 -0.8173 -0.7114 -0.7114 -0.8206 -0.7114
(2, 4) -0.8173 -0.7114 -0.7114 -0.8206 -0.7114
(2, 5) -0.8173 -0.8173 -0.98 -0.8206
(2, 6) -0.65 -0.8173 -0.7114
(3, 5) -0.8173 -0.7114
(3, 6) -0.8173

Table 5.3: C1
6 + 2 links: values of the second largest eigenvalue for η = 0.01.

Edges (1, 4) (1, 5) (2, 4) (2, 5) (2, 6) (3, 5) (3, 6) (4, 6)

(1, 3) -0.7622 -0.6596 -0.6596 -0.7654 -0.6596 -0.6596 -0.7622 -0.6
(1, 4) -0.7622 -0.7622 -0.92 -0.7654 -0.7654 -0.92 -0.7622
(1, 5) -0.6 -0.7622 -0.6596 -0.6596 -0.7654 -0.6596
(2, 4) -0.7622 -0.6596 -0.6596 -0.7654 -0.6596
(2, 5) -0.7622 -0.7622 -0.92 -0.7654
(2, 6) -0.6 -0.7622 -0.6596
(3, 5) -0.7622 -0.6596
(3, 6) -0.7622

Table 5.4: C1
6 + 2 links: values of the second largest eigenvalue for η = 0.04.
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Edges (1, 4) (1, 5) (2, 4) (2, 5) (2, 6) (3, 5) (3, 6) (4, 6)

(1, 3) -0.6521 -0.5558 -0.5558 -0.6551 -0.5558 -0.5558 -0.6521 0.6196
(1, 4) -0.6521 -0.6521 -0.8 -0.6551 -0.6551 -0.8 -0.6521
(1, 5) 0.6196 -0.6521 -0.5558 -0.5558 -0.6551 -0.5558
(2, 4) -0.6521 -0.5558 -0.5558 -0.6551 -0.5558
(2, 5) -0.6521 -0.6521 -0.8 -0.6551
(2, 6) 0.6196 -0.6521 -0.5558
(3, 5) -0.6521 -0.5558
(3, 6) -0.6521

Table 5.5: C1
6 + 2 links: values of the second largest eigenvalue for η = 0.1.

Edges (1, 4) (1, 5) (2, 4) (2, 5) (2, 6) (3, 5) (3, 6) (4, 6)

(1, 3) 0.5901 0.5266 0.5602 -0.4712 0.5602 0.5266 0.5901 0.6619
(1, 4) 0.5901 0.5901 -0.6 -0.4712 -0.4712 -0.6 0.5901
(1, 5) 0.6619 0.5901 0.5602 0.5266 -0.4712 0.5602
(2, 4) 0.5901 0.5266 0.5602 -0.4712 0.5266
(2, 5) 0.5901 0.5901 -0.6 -0.4712
(2, 6) 0.6619 0.5901 0.5266
(3, 5) 0.5901 0.5602
(3, 6) 0.5901

Table 5.6: C1
6 + 2 links: values of the second largest eigenvalue for η = 0.2.

Edges (1, 4) (1, 5) (2, 4) (2, 5) (2, 6) (3, 5) (3, 6) (4, 6)

(1, 3) 0.795 0.7633 0.7801 0.7097 0.7801 0.7633 0.795 0.8309
(1, 4) 0.795 0.795 0.7333 0.7097 0.7097 0.7333 0.795
(1, 5) 0.8309 0.795 0.7801 0.7633 0.7097 0.7801
(2, 4) 0.795 0.7633 0.7801 0.7097 0.7633
(2, 5) 0.795 0.795 0.7333 0.7097
(2, 6) 0.8309 0.795 0.7633
(3, 5) 0.795 0.7801
(3, 6) 0.795

Table 5.7: C1
6 + 2 links: values of the second largest eigenvalue for η = 0.6.
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5.3 Regular graphs

This section is devoted to the evaluation of some regular graphs (defined in section
2.2).
The goal is to understand if the addition of several edges to the network can imply
a deterioration of the estimates: additional links correspond to an increment of
information within the estimation procedure, but also enhance noisy measurements.

A cyclic graph of N = 12 devices is considered. From this configuration, the
topology is progressively enriched adding to each node communication links with the
next two nearest neighbours. In this way the degree of each agent increases of 2 for
every graph generated till the completion of the network, where each camera shares
information with all the remaining ones.
These graphs are called circulant graphs: they are undirected graphs which have a
cyclic group of symmetries that includes a symmetry taking any vertex to any other
vertex. Equivalently a graph is said to be circulant if it is described by a circulant
matrix.
A useful writing to identify a circulant graph is Cs1,...,sk

N with hops s1, . . . , sk (i.e. the
distance between a node and a neighbour), where N is the cardinality of the graph
and each node i is adjacent to 2k vertices; in other words neighbours of i belong to
the set {i± s1, . . . , i± sk mod N}.
Figure 5.5 describes the k regular graphs just mentioned.

(a) C1
12 (b) C1,2

12 (c) C1,2,3
12

(d) C1,2,3,4
12 (e) C1,2,3,4,5

12 (f) C1,2,3,4,5,6
12

Figure 5.5: Graphical representation of the k regular graphs under consideration.



5.3. REGULAR GRAPHS 55

To check the potential degradation of the pan angles β̂i an indicative measure is
the mean square error (3.25) computed at the end of the process. In this case the
number of iterations is set to it = 1000 (Table 6.1).

C1
12 C1,2

12 C1,2,3
12 C1,2,3,4

12 C1,2,3,4,5
12 C1,2,3,4,5,6

12

Ψ1 (it) 439.4565 1.5788 0.8248 0.305 0.2186 0.1969

Ψ2 (it) 494.7419 0.8194 0.6853 0.2763 0.2704 0.5519

Ψ3 (it) 354.9625 7.0564 2.5715 0.2848 0.2426 0.3104

Ψ4 (it) 419.9193 2.8131 0.8558 0.9264 0.75 1.2884

Ψ5 (it) 444.2805 3.5327 1.6325 0.3675 0.524 0.3691

Table 5.8: Values of Ψ (it) for five simulations with different initial noisy measurements.

In these simulations the noise is limited to the interval [−5, 5] degrees. Naturally,
the first column contains high values because there is not convergence.
From the above Table 6.1 it can be deduced that expanding the communication range
among nodes, estimations generally improve their accuracy with respect to the real
pan angles. An evidence of improvement of the estimate is shown in Figure 5.6. In
some cases the addition of edges can lead up to a greater error than the one relating
to a network with a smaller number of links, as it was supposed. The non-monotonic
behaviour of the error, as in Ψ4 (it), is due to the randomic distribution of the noise
on the measurements.
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Figure 5.6: Estimated angles β̂i (rad) for the circulant graphs analyzed.
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5.4 Large scale networks

In this section a large scale network made up of many devices is considered. The
results provided are tested and validated in a synthetic framework.

The main issue emerging is related to the use of the state-space model (3.22):
indeed since N is big, the critical value ηcre becomes close to 0. This means that the
state-space model (3.22) reduces itself to an approximation of the model (3.19) (see
Figure 5.7).
Figure 5.8 report the domain of the eigenvalues and the spectre of F1 with N = 50
varying the tuning parameter η. As η is increased, the domain shrinks and when
η = ηcre = 0.004, the second largest eigenvalue is positive (Figure 5.8b). In this
situation eigenvalues are near to the point -1, which causes instability of the system.
From this point of view, the critical value becomes less significant as an index of the
performance of the convergence (Figure 5.9) because damped oscillations linger for
several iterations of the process before reaching the steady value. Indeed, applying
the second distributed model with η ≤ ηcr is not convenient, then, in this case, it is
preferable to choose for example η = 0.1, which is a little more higher than ηcr, to
avoid oscillations.
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Figure 5.7: Comparison between models (3.19) and (3.22) with η = ηcr: convergence
analysis for a cyclic network C1

50.
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Figure 5.8: N=50: Eigenvalues on the imaginary plane with respect to the variation of
the control parameter η.
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Figure 5.9: Model (3.22): scaling of the control parameter η with respect to the critical
value in the C1

50 network (estimated angle β̂50).

5.5 Edge Selection

Taking inspiration from the analysis about the addition of links to the camera network
C1
N , the next step is the selection of a subset of k additional edges which allow the

estimation system to perform in the best possible way. The choice of these links
depends on the part of the estimation that has to be improved: for instance the speed
of convergence, the reduction of oscillatory phenomena or the robustness to the noise.
Then a challenging question would be the choice of a set of optimal links without the
basis of the cyclic network, only starting from the number of available nodes, i.e. the
construction of an ad hoc network for solving the localization issue.

In literature the generic problem of choosing edges to add to a graph in order to
optimize some property of a network is known as edge selection and can be applied
in various contexts.
From this perspective, recent studies have focused on the application of edge selection
in the consensus procedure for multi-agent systems. Indeed, the topology of a commu-
nication graph is strictly related to the agreement process among nodes. Moreover the
structure of a graph plays a key role also in the problem of network synchronization.
Main researches tackle with the problem of edge selection in order to make the network
more reliable with respect to white noise or external disturbances. For that purpose
network coherence is the introduced quantity to measure robustness, defined in terms
of the H2 norm of the system. A sort of selection strategy is proposed in [20] where
the objective is to find a group of leader nodes that maximize the network coherence.
The authors suggest two algorithms to solve the related optimization problem and
compare them. This is the topic also of the study conducted by Lin et al.[9]. Fitch
and Leonard [10] devote their work in seeking systematic solutions to this subject
proved by theoretical means.
Alternatively to network coherence, effective graph resistance is a graph measure
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which can be an index of robustness in a network [7]. In this cited paper, the question
of adding an edge to optimize the effective graph resistance is a still open question.
Keeping in mind the target of optimization, the problem of edge selection can be
interpreted as the more generic issue of partitioning a graph. An interesting criterion
is the normalized cut [22], which gives information about the degree of similarity and
dissimilarity among nodes. This technique requires a pre-discrimination among links,
that is an assignment of weights, which, in the localization task, is not a priori feasible.

Goal of this section is the attempt to apply the algorithm planned in [25] to the
localization system. Firstly an overview of the functioning of the method for selecting
edges is described, endowed with the mathematical tools needed for it. Then it is
tested and some important facts are highlighted.

5.5.1 Greedy algorithm

The design of topology for optimizing network coherence is based on the definition of
network coherence itself.
A weighted graph G = (V , E , w) is identified by the set of nodes, the set of edges and
the corresponding non-negative weights associated (which, in this case, have the same
value). The consensus dynamics of the network is modelled by the equation

dx (t) = −Lx (t) dt+ dW

where x(t) is a scalar state variable relating to a node, L the Laplacian matrix and
dW is a vector representing the noise of the system.

Formally, network coherence is defined as the steady-state deviation from the
average value:

C = lim
t→∞

n∑
t=1

E

(xi (t)− 1

n

n∑
j=1

xj

)2


The expression is linked with the H2 norm and to the eigenvalues λi, i = 1, . . . , n of
the Laplacian matrix

C =
1

2
trace

(
L†
)

=
1

2

n∑
i=2

1

λi (L)

Then, paper [25] formulates the problem from the perspective of a set function
optimization and solves it taking advantage of the definition of submodularity.
Indeed, for a set V = {1, . . .M}, a set function f : 2V → R matches a real number to
each subset of V . The optimization is made by choosing from all the possible subsets
of k elements of V , the one that maximizes the function f , in formula:

maximize
S⊆V,|S|=k

f (S) .
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The property of submodularity of a set function f is that for all A ⊆ B ⊆ V and
all elements s /∈ B it holds

f (A ∪ {s})− f (A) ≥ f (B ∪ {s})− f (B) .

In addition, a function f is said to be monotone increasing if, for all A,B ⊆ V , it
holds the relation

A ⊆ B ⇒ f (A) ≤ f (B) ,

conversely f is called monotone decreasing if

A ⊆ B ⇒ f (A) ≥ f (B) .

A characterization of submodular functions is given by the following theorem:
Theorem: the function f : 2V → R is submodular if and only if the derived set
functions
fa : 2V \{a} → R

fa (X) = f (X ∪ {a})− f (X)

are monotone decreasing ∀a ∈ V .
This theorem is crucial in assuring that function

f (E) = −trace
(
L†E

)
,

where LE is the Laplacian associated to the initial edge set joined with the additional
edges, is submodular (for a complete proof see [25]).
Then the problem is reduced to

minimize
E⊂V×V \E

trace
(
L†E

)
.

Maximization of a submodular function is generally a NP-hard problem, but
it can be found an approximated solution with a greedy heuristic. The steps of
implementation of the algorithm are reported in the pseudo-code above:

1 S0 ← Ø
2 � S0: initial set of added edges
3 for i← 1 to k
4 � k: number of added edges
5 do ∀a ∈ V \ Si
6 ∆ (a|Si) = f (Si ∪ {a})− f (Si)
7 � ∆ (a|Si): gain computed for every possible extra edge

8 Si+1 ← Si ∪
{

argmax
a

∆ (a|Si) |a ∈ V \ Si
}

9 � addition to Si+1 of any element with the highest gain
10 � Sk: final set of added edges
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5.5.2 Test of the algorithm

The proposed technique is validated on the standard set-up of a C1
6 network. Returned

edges are represented in Figure 5.10.

Figure 5.10: Subset of k = 3 added edges to the C1
6 network.

It is noticeable that the added links are really the ones for which the graph remains
bipartite. In fact this response makes sense since these are long distance links which
intuitively reflect the idea of robustness. For a large network the application of the
algorithm gives the results shown in Figure 5.11.

(a) k = 3 (b) k = 20

Figure 5.11: Added edges to the C1
50 network with different cardinality of the subset k.
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5.5.3 Observations on the algorithm

Actually, the analyzed distributed model (3.19) certainly implies a consensus dynamic,
but it has been drastically adapted for the specific task of localization. Even tough
the consensus is regulated by the matrix F which is connected, in some way, to the
Laplacian L, here the noise is composed by the noisy measurements, which are directly
linked to the state of the system. From this point of view one could imagine to
separate the real noise from the state and to build a modified system.

From (3.18), the estimate of measurements is added and subtracted to both the
parts, neglecting the dependence on time k:

β̂i =

∑
j∈Ni

β̂j

deg (ci)
+

∑
j∈Ni

(
β̃ji − β̃ij

)
2deg (ci)

+

∑
j∈Ni

(
β̂ji − β̂ij

)
2deg (ci)

−

∑
j∈Ni

(
β̂ji − β̂ij

)
2deg (ci)

(5.2)

Remembering that
β̃ji = β̂ji + ŵji = β̂i − β̂j + ŵji

the equation 5.2 becomes

β̂i =

∑
j∈Ni

β̂j

deg (ci)
+

∑
j∈Ni

(
β̂ji − β̂ij

)
2deg (ci)︸ ︷︷ ︸

F ′β̂

+

∑
j∈Ni

(
β̃ji − β̃ij

)
2deg (ci)

−

∑
j∈Ni

(
β̂ji − β̂ij

)
2deg (ci)︸ ︷︷ ︸

ŵ

(5.3)

leading to the system
→ β̂ (k + 1) = F ′β̂ (k) + ŵ. (5.4)

With some algebraic manipulations, the state is expressed as

β̂i =

∑
j∈Ni

β̂j +
(
β̂i − β̂j

)
deg (ci)

+ ŵi =

∑
j∈Ni

β̂i

deg (ci)
+ ŵi = β̂i + ŵi −→ F ′ = I. (5.5)

Being the state-space matrix of the modified model (5.4) the identical matrix, the
application of the greedy algorithm has no significance.

For a cyclic network C1
N the connection between the eigenvalues of L and of F can

be calculated analytically since eigenvalues of F are known:

Λ (L) = Λ (∆− A) = 2− 2 cos

(
2π

N
h

)
h = 0, . . . , N − 1.

The Fiedler eigenvalue λ2, which is the smallest eigenvalue of L excluding 0, is an
index of the speed of convergence of the system, in particular more it is high, more
the system is faster. This value is generally related to the second largest eigenvalue of
F . For this reason, at the beginning, it was presumed that the greedy algorithm could
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have worked properly, because the set function f is defined in terms of the eigenvalues
of the Laplacian matrix.

Probably, extracting a subset of links to optimize the speed of convergence is only
a matter within the structure of the matrix of consensus F and strictly related to the
computation of the eigenvalues. Regarding the localization task, edge selection is an
unresolved problem.





Chapter 6
Experiments with a laboratory setup

In this chapter the models proposed for the localization of planar camera networks
are tested on an experimental setup installed in the NAVLAB laboratory at DEI.
The environment is represented in Figure 6.1. This type of configuration portrays a
possible real scenario, in fact it may reproduce a situation where a task of perimeter
video-surveillance is required. The camera network has the structure of a circulant
graph, as already implemented in the previous simulations, and it is heterogeneous,
since it consists of both PTZ devices and webcams.
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Figure 6.1: Plan of the experimental setup.

Concerning the implementation of the distributed models, the initial noisy measure-
ments are introduced starting from pan-tilt relative rotations collected experimentally:
the variance of the noise is estimated according to the different types of cameras
considered in the rotations. In other words, if the noisy relative pan angle concerns
PTZ cameras, a first variance is estimated, similarly other variances are evaluated for
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webcams, and pairs of PTZ and fixed cameras. This noise is then used to produce a
synthetic setup. This choice is made because the intention is to make the analysis uni-
form and consistent also if an additional edge is added, having available experimental
data only relating to the initial camera network.

6.1 Application of distributed models

Considering a synchronous protocol communication among agents, the first distributed
strategy (3.19) is applied to find the orientations of the cameras. Estimated angles are
normalized with respect to the first camera C1, whose coordinate frame is taken as the
reference, at the end of the process. It is supposed that the translational part of the
pose is known. Figure 6.2 shows the results, where outlined rotations are computed
on the basis of the last executed estimation.
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Figure 6.2: Test of the first distributed model on the scenario.

A substantial difference between this simulation and the one performed in Chapter
3 is that oscillations relating to some of the estimated angles are not perceived so
clearly (Figure 6.3). Instead, even though convergence is not assured, in this case
these estimates can be evaluated as a decent approximation of the real orientations.
However, this does not depend on the particular distribution of the error on the
measurements, as it could be thought, but, rather, on the combination of the initial
noisy measurements β̃ij that compose the input of the system u.
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Figure 6.3: Estimated angles β̂i (degrees).

The second model (3.22) is applied with the tuning parameter fixed to η = 0.1 and
η = 0.6 respectively (Figure 6.4 and 6.5). As it is expected, in both cases at the final
instant of the process convergence to the centralized solution is nearly reached, since
rotations coincide (see Figure 6.6). An evidence of this observation is also given by
values of the mean squared error (Table 6.1).
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Figure 6.4: Test of the second distributed model (η = 0.1) on the scenario.
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Figure 6.5: Test of the second distributed model (η = 0.6) on the scenario.
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(a) Model 2, η = 0.1
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Figure 6.6: Estimated angles β̂i (degrees).

In Table 6.1 the mean squared error is reported comparing the values found with
these experimental tests, that are based on measurements collected in laboratory, and
by simulations, where data are purely synthetic. Regarding the first model, as already
observed, the estimation becomes closer to the asymptotic solution. The difference
between values of experimental and simulated test is due to the distribution of the
noise, which in the experimental setup is characterized by higher variances.
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Ψ (100) [°] Experimental Simulated

Centralized 11.1737 4.5695

Model 1 39.334 1881.9

Model 2, η = 0.1 11.1737 4.5695

Model 2, η = 0.6 11.1737 4.5695

Table 6.1: Values of mean squared error at the end of convergence process (100-th iteration)
in the tests carried out.

6.2 Addition of a link

In this section the aim is to check the performance of model 1 (3.19) if an extra
communication link is added to the camera network. In particular, it is supposed that
it is possible to create an open path in the compact structure in order to make the
views of the considered cameras overlap. On a real environment this might correspond
to the presence of a passage or a decrease in the height of the building so that the
devices can communicate and share the view of the scene without occlusions.

In Figure 6.7 is reported the camera network where cameras C1 and C4 are
neighbours.
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Figure 6.7: Test of the first distributed model with the communication between cameras
C1 and C4.
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Figure 6.8: Test of the first distributed model with the communication between cameras
C2 and C4.
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Figure 6.9: Estimated angles β̂i (degrees).

The presence of this further edge, which maintains the layout of the graph bi-
partite, causes the incorrect estimation of rotations of cameras C2, C4 and C6. The
amplitude of oscillations of the pan angles is due to the specific combination of the
noisy measurements which compose the input of the system.
Conversely, adding the edge which connects C2 and C4 (Figure 6.8), the graph associ-
ated to the camera network becomes non-bipartite. Consistent with this observation,
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estimated rotations are close to their true value and the mean squared error is lower
than the one of C1

6 network (see Table 6.2). Figure 6.9 reports the trend of the
estimated angles with the addition of the specified links.

Ψ (100) [°] E E ∪ {e14} E ∪ {e24}
Model 1 39.334 1116.4 5.1147

Table 6.2: Values of mean squared error at the end of convergence process (100-th iteration)
with an additional link.

6.3 Enlargement of the circulant network

In this section a new synthetic setup is presented. With reference to the standard
experimental configuration the camera network is expanded including new cameras,
creating the network N12. These are placed in an intermediate position with respect to
a pair of devices already arranged, to ensure the covering of some common fields and
therefore to allow the communication. In this way each new node has two neighbours
and the remaining nodes gain two additional neighbours. Added cameras are both
PTZ and webcams.
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Figure 6.10: Test on the enlargement of the network: additional cameras are coloured in
green, while, as before, the others are light blue. Similarly, green lines point
out the additional communications, whereas the light blue links belong to
the primal layout.
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Figure 6.11: Estimated angles β̂i (degrees).

Ψ (100) [°] C1
12 C1

12 ∪ {e24} N12

Model 1 191.6509 22.5987 7.276

Table 6.3: Values of mean squared error at the end of convergence process (100-th iteration)
for the cyclic network and its enlargement.

A graphical representation of the network and of the estimation outcomes is
provided in Figure 6.10.
A comparison between the performance of the model 1 on the cyclic network C1

12 and
on the network N12 is made, also by means of the data gathered in Table 6.3 and
observing the estimated angles in Figure 6.11. Analyzing the mean squared error,
the configuration N12 gives the closest approximation to the true poses and it can be
inferred that generally the addition of links allows an improvement of the estimates,
as it was mentioned in section 5.3.



Chapter 7
Conclusions

The subject discussed in this thesis is the problem of localization in a camera system.
In detail, only the rotational part of the pose is considered and the case study is
restricted to a planar setup, where a rotation can be identified with a single angle.
An analytical solution is derived by minimizing a suitable functional cost. Alongside
to a centralized approach to the problem, two distributed strategies are presented and
examined.
These models are evaluated changing the communication protocol and varying the
network topology.

Since the performance of the second distributed system can be regulated tuning
the parameter η, a challenge is to overcome the non-convergent trend of the first
model in a network represented by a bipartite graph. There are several possibilities
to deal with that. Apart from the addition of an edge which makes the network
non-bipartite, a protocol different from the synchronous one can be adopted. While
the symmetric gossip entails some intrinsic problems, probably the best protocol to
be used is the coordinated broadcast which assures convergence to the asymptotic
value. The distinction between a small or a large scale network has to be taken into
consideration to establish the preferable solution.

Concerning the second distributed approach, features about the behaviour to reach
the centralized value, relating to the network topology, are studied. For instance,
it emerges that groups of additional edges can be partitioned in sets corresponding
to determined network configurations according to the speed of convergence of the
estimation process.
Other significant points of the analysis are that the increase of information within the
camera network, in the majority of the cases, does not deteriorate the estimates and
that the localization process is heavily influenced by the distribution of the error on
the measurements.

On the basis of this work, future projects can be developed.
First of all, bounds on the eigenvalues can be derived in order to find the critical value
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of η for networks where a closed formula for the eigenvalues of the state-space matrix
is not known. Secondly, a further study can be conducted to look for an algorithm for
edge selection.

A research on the extension of the analytical rotation estimation from the SO (2)
to the SO (3) space can be done. In parallel with this, an analytical formulation for
the translational part of the pose can be worked out in the same planar scenario.
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