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Abstract

I study how ten-dimensional Type II Supergravity theories can be reformulated using an
extension of conventional differential geometry known as “Generalised geometry”. I review the
dynamics and symmetries of these theories, define the key elements of generalised geometry,
including the notion of torsion-free generalised connections, and show how this geometry can be
used to give a unified description of the supergravity fields, exhibiting an enlarged local symmetry
group. This part will be end showing that the equations of motion for the NSNS sector of Type
II Supergravity theories in the framework of Generalised geometry can be reformulated in a
similar way of Einstein’s equations of motion for gravity in ordinary geometry. In the second
part I investigate the notion of “Leibniz generalised parallelisations”, the analogue of a local group
manifold structure in generalised geometry, aiming to characterise completely such geometries,
which play a central role in the study of consistent truncations of supergravity. One of the original
results we obtained is the solution of the misterious case of consistent truncation on S7 showing
that in Generalised geometry all spheres Sd are Leibniz generalised parallelisable. I work out also
some explicit examples of manifold that are Leibniz generalised parallelisable (S2×S1, H3, dS3,
AdS3) and in particular connecting this results with the consistent truncations of supergravity.
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Introduction

String theory is 21st century physics which fell accidentally into the 20th century.
- Edward Witten -

In a physical description of nature, around the seventies, physicists attempted to describe
the fundamental interactions of nature using a Quantum Field Theory approach, getting the
notable Standard Model. As far as we know, in nature there are four fundamental forces, which
are the gravitational, electromagnetic, strong nuclear and the weak nuclear. The quantum field
description was a successful approach, but only for the last three interactions, i.e. for the electro-
magnetic, nuclear strong and nuclear weak. In particular what makes this approach successful is
the possibility to renormalise the theory, i.e. the possibility to remove, within a clever procedure,
all the infinite quantities that appear in the computations of the n-point correlation functions
which, according to the LSZ formula, are related to the observable quantities of the system,
among which the cross section [52].

Therefore Physicists tried to find another way to solve the problem. String Theory, which
at the beginning was born in order to give an explanation of the strong nuclear interaction,
now is recognized to be a theory that explain all the four fundamental interactions in a unified
way, which represent the “Einstein’s dream”. Problems about ultraviolet divergences now do not
appear anymore because of three new ingredients inside String Theory: Supersymmetry, Extra
dimensions and the replacement of point particles with extended objects1.

Supersymmetry is an appealing idea that consists in trying to enlarge the symmetries of
spacetime, which are represented by the Poincarè group. This idea consists in introducing a new
set of “fermionic” generators with anticommuting relations between each other, and commuting
relations between them and the “bosonic” generators of the Poincarè group. When a fermionic
generator is applied to a bosonic state, the result is a fermionic state.

Therefore Supersymmetry can also be seen as a symmetry that maps a boson into a fermion
and vice versa. In particular to each particle existing in nature is associated a superpartner with
opposite statistics, e.g. photon/ photino, graviton/gravitino, electron/selectron, lepton/slepton,
quarks/squarks, W/Wino, gluon/gluino, Higgs/Higgsino, and so on. Now, with the introduction
of these new superpartners, naively what happens is that for each bosonic ultraviolet divergent
loop diagram, there is a corresponding fermionic diagram, with the same properties, but with
opposite sign, and so the sum is zero. This is what is called “miraculous cancellation” [41].

Extra dimensions, the other important ingredient inside String Theory, at the beginning
consists in replacing the point particle with a string embedded in a spacetime with arbitrary
dimension. The remarkable result of this procedure regards decay processes of one particle into
two particles. Replacing point particles by closed strings, the above process is described by
a closed string that turns into two closed strings, i.e. by a “pants diagram”, and in this way
short-distance singularities are avoided. Now the world sheet is a smooth manifold and this has
a remarkable consequence: loop amplitudes have no ultraviolet divergences [64].

1Actually extra dimensions are not important for removing UV divergences, just only supersymmetry and
extended object are needed. However extra dimensions are indispensable to assure Weyl anomalies cancellation,
which occurs only for the “critical dimension” d = 26 for bosonic string theory and d = 10 for superstring theories.
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4.1. N = 1 GLOBAL SUPERSYMMETRY 47

The part of the Lagrangian depending on the auxiliary field F takes the simple form:

L(F ) = F F ⇤ +
@W

@'
F +

@W ⇤

@'⇤ F ⇤

Notice that this is quadratic and without any derivatives. This means that the field F does not propagate.

Also, we can easily eliminate F using the field equations

�S(F )

�F
= 0 =) F ⇤ +

@W

@'
= 0

�S(F )

�F ⇤ = 0 =) F +
@W ⇤

@'⇤ = 0

and substitute the result back into the Lagrangian,

L(F ) 7! �
����
@W

@'

����
2

=: �V(F )(') ,

This defines the scalar potential. From its expression we can easily see that it is a positive definite scalar

potential V(F )(').

We finish the section about chiral superfield Lagrangian with two remarks,

• The N = 1 Lagrangian is a particular case of standard N = 0 Lagrangians: the scalar potential is

semipositive (V � 0). Also the mass for scalar field ' (as it can be read from the quadratic term in the

scalar potential) equals the one for the spinor  (as can be read from the term 1
2
@2W
@'2   ). Moreover,

the coe�cient g of Yukawa coupling g('  ) also determines the scalar self coupling, g2|'|4. This is

the source of ”miraculous” cancellations in SUSY perturbation theory. Divergences are removed from

diagrams:

�� �

�

� �

�

�

�
� �

�

Figure 4.1: One loop diagrams which yield a corrections to the scalar mass. SUSY relates the �4 coupling to the Yukawa

couplings �(  ̄) and therefore ensures cancellation of the leading divergence.

• In general, expand K(�i,�j†
) and W (�i) around �i = 'i, in components
✓

@2K

@'i@'j̄⇤

◆
@µ'

i @µ'j̄⇤ = Kij̄ @µ'
i @µ'j̄⇤ .

Kij̄ is a metric in a space with coordinates 'i which is a complex Kähler - manifold:

gij̄ = Kij̄ =
@2K

@'i@'j̄⇤

Figure 1: Miraculous cancellation between loop diagrams of supersymmetric partners. In the picture φ represents
a scalar, ψ a fermion and g is the Yukawa coupling constant. (Courtesy of [55]).

Figure 2: Feynmann diagram of a string interaction vertex.

String Theory at the beginning was born as a bosonic theory in 26 dimensions (d = 26
represents the critical dimension in order to cancel Weyl anomalies). Only after the introduction
of the Supersymmetry we had got what is called “Superstring Theory” which finally lives in 10
dimensions. Superstring Theory is not unique, but it exists in five different versions: Type I,
Type IIA, Type IIB, SO(32) Heterotic, E8 × E8 Heterotic. These five different theories are
regarded as different limits of a single theory, tentatively called M-theory, which lives in 11
dimensions.

Supergravity is a low energy limit of Superstring Theory. Therefore there are five different
types of Supergravity theories (plus another one from a different low energy limit of M-theory,
which is the 11-dimensional SUGRA). Low energy limit means that the energy must be very
less than 1/

√
α′, where α′ is the fundamental scale in String Theory. However our real world is

four-dimensional and superpartners - if they exist - are much heavier then the known observed
particles. In order to obtain a more realist theory, we have to break Supersymmetry to provide
larger masses for the superpartners. On the other side, in order to remove extra dimensions, firstly
we have to perform a compactification. This consist in replacing the 10 dimensional Minkowski
spacetime with the product of a 4 dimensional Minkowski spacetime and a 6 dimensional compact
manifold with characteristic length L.

After a compactification, we have to do a dimensional reduction, which consists in squeezing
to zero the characteristic length L → 0. If we start with a massless particle in the higher
dimensional theory, after compactification we obtain an infinite tower of massive particles in the
lower dimensional theory [25]. One keeps only the lightest states (usually massless). This is
generally not consistent in that these modes will source the heavier modes. However, physically
we do not care because at low energies (i.e. below the mass of the first modes we ignore)
we will not excite these degrees of freedom, and therefore they will not affect the low-energy
(dimensionally reduced) theory.

Otherwise one can take a consistent truncation of the full set of modes which consists in
identify a finite subset of modes where the omitted modes are not sourced by the kept modes.
This means that the two sets of modes, the kept and the neglected, are completely decoupled
between each other - the consistent modes do not have to be the lightest one and the space
does not even have to be compact. The reader may wonder why we are interested in consistent
truncations. The answer is because any solution of the low dimensional theory involving modes
from consistent truncation, when uplift to the high dimensional theory, gives an exact solution.
This is a requirement of consistency that we want about our theory. Consistent truncations will
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be explained in details in chapter 1.
A very important question regards which compact manifolds give consistent truncations. Do

all compact manifolds provide consistent truncations? The answer unfortunately is no. There
is a known result [58], [59] which tells us that consistent truncations appear in manifolds that
are local group manifolds, which means the manifold M can be written as the quotient of a Lie
group G and a discrete group Γ, i.e. M = G/Γ. For instance consistent truncations are provided
by the spheres S1, S3 and by the n-dimensional torus Tn, which correspond respectively to the
groups U(1), SU(2) and [U(1)]n.

The aim of this thesis is to study the “Generalised geometry”, which in one sketch it consists
in replacing the tangent bundle of a manifold with the direct sum of the tangent bundle and the
cotangent bundle. Actually this represents just one way to define generalised geometry, because
it is not unique. Generalised geometry will be defined in chapter 2 and will be applied to Type
II Supergravity theories in chapter 3 and 4. In particular the chapter 4 concerns the study of
consistent truncations and has original components. The questions we would like to answer with
this approach are given by the following motivations

(I) Using the framework of generalised geometry we prove that the equations of motion for
the NSNS sector of Type II supergravity theories can be written in a very similar way of
Einstein’s equations for gravity in ordinary geometry using a metric approach [15]. There
is nothing physical new, at least in this moment, about this result. Needless to say, it
represents a beautiful formal result.

(II) In the study of consistent truncations of supergravity there are some mysterious cases
that are not well understood within the framework of ordinary geometry. What we are
talking about are consistent truncations on S7 [20], on S4 [47], [48] for eleven-dimensional
supergravity and on S5 [18] for Type IIB supergravity, which are not local group manifold.
The remarkable fact is that all spheres Sd can give a consistent truncation because they
are “Leibniz generalised parallelisable”, which in generalised geometry replaced the concept
of local group manifold.

(III) Double Field Theory and Generalised Geometry are two approaches which can be shown
to be locally equivalent to each other. Double Field Theory [1], which was developed
principally by Waren Siegel [62], [63], Chris Hull and Barton Zwiebach [42],[71], consists
in defining a field theory in a double configuration space (x, x̃). In this approach the
tangent bundle is 2d-dimensional because of the “double” coordinates. In the approach
of generalised geometry the target space remains as usual with the normal d coordinates,
but what is double now is the “tangent bundle” (that now is called “generalised tangent
bundle”) which consists in “TM ⊕ T ∗M ”. At the end of the day both approaches have a
tangent bundle which is 2d-dimensional and a natural O(d, d)-structure.

(IV) Generalised geometry is also a proposal to incorporate “T-duality” [26], in a sense we are
going to explain. We mentioned before that generalised geometry has a natural O(d, d)-
structure. If we try to look now at Type IIA and Type IIB Superstring theories compactified
on an n-torus (thus the spacetime is M10−n × Tn) then we know there is a symmetry
between the two theories, called “T-duality”, which is represented by the action of the
O(n, n;Z) group. An heuristic suggestion, perhaps quite speculative, for investigating in
generalised geometry, is that T-duality group O(n, n;Z) is enclosed inside, as a subgroup,
to the structure group O(d, d;R) of the generalised tangent bundle. However, although it is
often said that Double Field Theory (and hence also generalised geometry) incorporates T-
duality or make T-duality manifest, this is not really true. T-duality is a discrete symmetry
O(n, n;Z) of a particular background geometry (tori Tn), while O(d, d) is the continuous
structure group symmetry which is present for all backgrounds. They are not the same.

In this thesis the logic is the following. In the chapter 1 will be presented the basic concepts
of String Theory. We will start writing down the string action and by variational principle we

3



will be able to write the equations of motion for the string coordinates. Then we will expand
the solution and quantised normal modes. From an analysis of the spectrum, which we will not
treat but just show the result, will appear three types of massless fields: a graviton gµν(x), a
2-form antisymmetric tensor gauge field Bµν(x) and a “dilatonic” scalar φ(x). We will show the
effective action and how the critical dimension d = 26 appears in bosonic string theory. We will
also give a connection with superstring theories.

Then we will talk about compactifications and dimensional reductions, explaining the so-
called Kaluza-Klein theory. Here, related to this topic, we will talk about consistent trunca-
tions. Then we will explain T-duality, which is a symmetry of the bosonic string embedded in a
spacetime compactified on a circle and a symmetry between Type IIA and Type IIB superstring
theories compactified on a circle. The chapter will end extending T-duality symmetry to toroidal
compactification, in particular analysing by which group it is represented.

In chapter 2 we will talk about generalised geometry, focusing more on mathematical aspects.
Generalised geometry represents an appealing idea coming from the mathematician Nigel Hitchin
and consists in an “extension” of ordinary geometry. In ordinary geometry, one takes a d-
dimensional manifold M with its associated tangent bundle TM . In generalised geometry what
we do, roughly speaking, is replacing the tangent bundle TM by TM ⊕ T ∗M . Pictorially, in
generalised geometry instead of considering only vector we consider “vector + 1-form”, which are
called “generalised vector”.

Then we will define “patching rules”, which are relations between fibres on the overlap of the
open sets {Ui} which cover the manifold. Patching rules are a fundamental ingredient in the
theory of fibre bundle. The way to define patching rules should reproduce diffeomorphisms and
gauge transformations of Bµν .

We will see in the framework of generalised geometry that the B field plays a central role. It
establishes the isomorphism between the generalised tangent bundle E and TM ⊕ T ∗M by the
Splitting Lemma.

Then we will move to extend in generalised geometry the concept of diffeomorphism. Lie
derivative and Lie bracket will be generalised, respectively, by the so-called Dorfman derivative
and Courant bracket. This argument will lead us to introduce O(d, d)-structure in generalised
geometry.

In chapter 3 we will generalise the fundamental tools of General Relativity, which are metric,
connection, torsion, Riemann curvature tensor, Ricci tensor and scalar of curvature. This chapter
is quite technical. The logic we will follow to perform the generalisation will be close as much as
possible to the logic one use for defining the above objects in ordinary geometry.

At the end of the chapter 3 we will be able to write Type II Supergravity equations of motion
for the bosonic sector as generalised version of Einstein’s equations in vacuum.

In chapter 4, which has original components, we will investigate about consistent truncations
in the framework of the generalised geometry. We will introduce a conjecture which states that
manifolds that are Leibniz generalised parallelisable give consistent truncations.

Then we will show that all round spheres Sd are Leibniz generalised parallelisable, hence by
the conjecture above, they give consistent truncations. This fact gives us an answer about the
mysterious cases of consistent truncations on S4, S5 and S7. The proper generalised geometry to
study the round spheres is not the Hitchin’s one which consists in replacing TM by TM ⊕T ∗M ,
rather it is the one which replaces TM by TM ⊕∧d−2 T ∗M . The case d = 3 is special, because
the generalised geometry for spheres coincides with Hitchin’s generalised geometry.

Then we will study 3-dimensional manifolds, which are described by the same embedding
equation of the sphere, i.e. ηµνXµXν = 1, but with different signature of ηµν , such that they
can be approached with the same generalised geometry of the 3-sphere, which is the Hitchin’s
one. The manifolds which we choose are S3, S2 × S1, H3, dS3, AdS3. We will show explicitly
that all these manifolds are Leibniz generalised parallelisable, and analyse the algebra generated
by the generalised vector frame (called simply frame). The reason why we are interested in the
algebra generated by the frame is due to the consistent truncations. If we perform a dimensional

4



reduction over a manifold whose frame generates the algebra associated to the Lie group G, than
in the dimensional reduced theory the group G plays the role of gauge group.

Related to this argument, we will motivate the conjecture [17] using generalised geometry.
The conjecture states that for a dimensional reduction over a Lie group manifold M = G,
instead of taking the gauge group G provided by the frame, let us pick up G × G. The idea
is that generalised geometry, with its property to be “double”, gives us a frame which encodes
G×G algebra.

5





1
Preliminaries in String Theory and Supergravity

I do feel strongly that string theory is our best hope
for making progress at unifying gravity and quantum mechanics.

- Brian Greene -

String theory is an ambitious project. Even thought string theory is not yet fully formulated,
and we cannot yet give a detailed description of how the standard model of elementary particles
should emerge at low energies, or how the Universe originated, there are some general features
of the theory that have been well understood. The first general feature of string theory, and
perhaps the most important, is that general relativity is naturally incorporated in the theory. At
hight energies/short distances the theory gets modified, but at ordinary energies and distances it
is present in exactly the form as proposed by Einstein. This is a remarkable fact because gravity
is unified with the other forces of Nature inside a single quantum mechanical framework.

The premise of string theory is that, at the fundamental level, matter does not consist of
point-particles but rather of tiny loops of string. It assumes that all particles are different
harmonics of small vibrating strings, much in the way the different harmonics of a guitar string
correspond to different musical notes. From this slightly absurd beginning, the laws of physics
emerge. General relativity, electromagnetism and Yang-Mills gauge theories all appear in a
surprising fashion. However, they come with baggage. String theory gives rise to a host of other
ingredients, most strikingly extra spatial dimensions of the universe beyond the three that we
have observed.

Hence our journey inside string theory will start naturally recalling the physics of particle
moving in spacetime, and then generalising to extended objects, called p-branes.

1.1 Relativistic free point particle

The motion of a relativistic particle of mass m in a curved d dimensional spacetime can be
formulated as a variational problem. In order to reproduce the non-relativistic equations of
motion, the only possible choice for a relativistic action is to be proportional to the length of
world line

S0 = −m
∫

ds , (1.1)
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where the mass m appears because of the dimensionless requirement of the action, and ds is
defined as follow

ds2 = −gµν(X)dXµdXν . (1.2)

Here gµν(X), with µ, ν = 0, ..., d− 1, describes the background geometry, which is chosen to
have Minkowski signature (−+ · · ·+).

The action (1.1) therefore takes the form

S0 = −m
∫ √

−gµν(X)ẊµẊν dτ , where Ẋµ =
dXµ

dτ
. (1.3)

The action S0 has a couple of disadvantages. First if does not work for massless particles
with m = 0. Second S0 contains a square root, so that it is difficult to quantize in a path integral
framework. These problems can be circumvented by introducing an action equivalent to the
previous one at the classical level, which is formulated in terms of an auxiliary field e(τ), called
einbein

S̃0 =
1

2

∫
dτ
(
e−1Ẋ2 −m2e

)
, where Ẋ2 = gµν(X)ẊµẊν . (1.4)

We prove now the equivalence between the two actions S0 and S̃0. The equation of motion of
e(τ), by variational principle, is

δS̃0

δe
= 0 ⇐⇒ m2e2 + Ẋ2 = 0 , (1.5)

Then we can rewrite

Ẋ2 = gµνẊ
µẊν = −

√
−gµνẊµẊν

√
−gµνẊµẊν , (1.6)

and then the solution for e(τ) and its inverse can be written as

e =
1

m

√
−gµνẊµẊν , e−1 =

m√
−gµνẊµẊν

. (1.7)

Substituting (1.7) back into (1.4) we get

S̃0 =
1

2

∫
dτ


− m√

−gµνẊµẊν

√
−gµνẊµẊν

√
−gµνẊµẊν −m2 1

m

√
−gµνẊµẊν




= −m
∫

dτ

√
−gµνẊµẊν = S0 . (1.8)

1.2 Generalisation to the p-brane action

Let us now generalise the action (1.1) to extended object, called p-brane. The 0-brane is repre-
sented by the particle and it sweeps out a world line in spacetime, the 1-brane is the string and
it sweeps out a two-dimensional world sheet in spacetime. In general, the p-brane is an object
which is extended in p spatial dimensions and it sweeps out a (p+ 1)-dimensional world volume
in a d-dimensional spacetime with, of course, p < d. The figure 1.1 represents this concept for
the string.

The generalisation of the action (1.1) to a p-brane naturally takes the form

Sp = −Tp
∫

dµp . (1.9)

8



Here Tp is called the “p-brane tension” and replaces the role which mass plays in (1.1), while dµp
is the (p+ 1)-dimensional volume element and replaces the role which the line element ds plays
in (1.1). The explicit formula for dµp analogous to (1.2) is

dµp =
√
−det (Gab) d

p+1σ , (1.10)

where Gab is the induced metric on world volume, which is the pull-back of the metric gµν

Gab = gµν(X)∂aX
µ∂bX

ν a, b = 0, ..., p . (1.11)

The indices a and b have a precise meaning. The (p + 1)-dimensional world volume can be
parametrised by p+1 parameters, which we call in a compact notation σa = (σ0, σ1, ..., σp). The
parameter σ0 is time-like, so it can be chosen equal to τ , and the parameters σi, with i = 1, ..., p,
are p-space-like coordinates. For us ∂aXµ ≡ ∂Xµ/∂σa.

Since dµp has units of (length)p+1, the dimension of the p-brane tension is

[Tp] = (length)−p−1 =
mass

(length)p
, (1.12)

hence Tp is an energy per unit of (spatial) p-volume.

20 The bosonic string

is time-like, and σi, which are p space-like coordinates. Since dµp has units

of (length)p+1 the dimension of the p-brane tension is

[Tp] = (length)−p−1 =
mass

(length)p , (2.9)

or energy per unit p-volume.

EXERCISES

EXERCISE 2.1

Show that the nonrelativistic limit of the action (2.1) in flat Minkowski

space-time determines the value of the constant α to be the mass of the

point particle.

SOLUTION

In the nonrelativistic limit the action (2.1) becomes

S0 = −α
∫ √

dt2 − dx⃗2 = −α
∫

dt
√

1 − v⃗2 ≈ −α
∫

dt

(
1 − 1

2
v⃗2 + . . .

)
.

Comparing the above expansion with the action of a nonrelativistic point

X

X

X 0

1

2

Fig. 2.2. The classical trajectory of a string minimizes the area of the world sheet.
Figure 1.1: The string moving in a tree-dimensional spacetime. The classical trajectory of a string minimizes
the area of the world sheet. (Courtesy of [3]).

1.3 The string action

In this section we want to study the particular case of string (or one-brane) propagating in d-
dimensional flat Minkowski spacetime (gµν = ηµν). The points on the world sheet, sweeped out
by the string, are parametrised by two coordinates, σ0 = τ which is time-like, and σ1 = σ, which
is space-like. If σ is periodic, e.g. σ ∈ [0, 2π] with X(τ, 0) ∼= X(τ, 2π), we are describing a closed
string (right object in figure 1.2 ). If σ covers a finite interval, but without periodicity condition,
we are describing an open string (left object in figure 1.2).

The action describing a string propagating in a flat background geometry can be obtained as
a special case of (1.9). This action, called the Nambu-Goto action, takes the form

SNG = −T
∫

dσdτ

√
(Ẋ ·X ′)2 − Ẋ2X ′2 , (1.13)

where

Ẋµ =
∂Xµ

∂τ
and X ′µ =

∂Xµ

∂σ
, (1.14)

and the scalar products are defined by the flat metric, i.e. A · B = ηµνA
µBν . Since the string

action has dimension of area, the classical string motion must extremizes the world sheet area,

9
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where

Ẋµ =
∂Xµ

∂τ
and Xµ′ =

∂Xµ

∂σ
, (2.12)

and the scalar products are defined in the case of a flat space-time by A·B =

ηµνA
µBν . The integral appearing in this action describes the area of the

world sheet. As a result, the classical string motion minimizes (or at least

extremizes) the world-sheet area, just as classical particle motion makes the

length of the world line extremal by moving along a geodesic.

X

X

X 0

1

2

Fig. 2.3. The world sheet for the free propagation of an open string is a rectangular
surface, while the free propagation of a closed string sweeps out a cylinder.

Fig. 2.4. The functions Xµ(σ, τ) describe the embedding of the string world sheet
in space-time.

Figure 1.2: Open and closed strings propagating on spacetime. (Courtesy of [3]).

just as classical particle motion makes the length of the world line extremal by moving along a
geodesic.

Even thought Nambu-Goto action has a nice physical interpretation as the area of the string
world sheet, its quantization in a path integral framework is quite tricky due to the presence
of the square root. Also Nambu-Goto action does not work for tensionless strings with T = 0.
An action that is equivalent to the Nambu-Goto action at the classical level1 is the string sigma
model action, called also Polyakov action.

The logic followed here is similar to the one presented for the point particle. The string-sigma
model action is expressed in terms of an auxiliary world sheet metric hab(τ, σ), which plays a role
analogous to the auxiliary field e(τ) introduced for the point particle. The string sigma model
action is

Sσ = −T
2

∫
d2σ
√
−hhab∂aX · ∂bX , (1.15)

where h = det(hab) and hab is the inverse of hab, i.e. hachcb = δa
b, as customary in relativity.

Again hab can be eliminated solving its equations of motion. Also, since the auxiliary field hab
has no kinetic term in the action, its equation of motion implies the vanishing of the world-sheet
energy-momentum tensor Tab, i.e.

δSσ
δhab

= 0 ⇐⇒ Tab = − 2

T

1√
−h

δSσ
δhab

= 0 . (1.16)

Hence Tab = 0 is a constraint which must be imposted together the equations of motion for Xµ,
because it represents the equations of motion for the auxiliary field.

Now we show here the equivalence between the Nambu-Goto action and the Polyakov action.
The variation of the Polyakov action respect the auxiliary field hab reads

δSσ = −T
2

∫
d2σ

(
−1

2

√
−hhcdhab∂aX · ∂bX +

√
−h ∂cX · ∂dX

)
δhcd , (1.17)

where we used the fact

δ
√
−h = −1

2

√
−hhabδhab (1.18)

The equations of motion for hab are

∂cX · ∂dX =
1

2
hcdh

ab∂aX · ∂bX . (1.19)

1Actions equal at the classical level means they give rise to the same equations of motion.
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Let us take the square root of minus the determinant of both sides of the above equation.
In doing that remind for the string the indices a, b, c, d run from 1 to 2. Hence computing the
determinant, the coefficient 1

2h
ab∂aX · ∂bX on the RHS appears two times. Then we have

√
−det (∂cX · ∂d) =

1

2

√
−hhab∂aX · ∂bX . (1.20)

We recognise on the LHS exactly the integrand which appears in the Nambu-Goto action and
on the RHS the integrand of the Polyakov action, hence the equivalence is proved.

1.4 Symmetries of the Polyakov action

The Polyakov action for the bosonic string in Minkowski spacetime has three symmetries under
the following transformations

• Poincaré transformations. These are a global symmetries under which the world sheet
fields transform as

δXµ = ωµ νX
ν + aµ and δhab = 0 , (1.21)

where the constants ωµ ν , with ωµν = −ωνµ, describe infinitesimal Lorentz transformations
and aµ describe spacetime translations.

• Reparametrisation, also known as diffeomorphisms. This is a local symmetry on the world
sheet. The string world sheet is parametrized by two coordinates τ and σ, but a change in
the parametrisation does not change the action. The fields Xµ transform as world sheet
scalars, while hab transforms as a type (0, 2) tensor

σa → σ′a = fa(σ) , =⇒
{
Xµ(σ)→ X ′µ(σ′) = Xµ(σ)

hab(σ)→ h′ab(σ
′) = ∂σc

∂fa
∂σd

∂fb
hcd(σ)

. (1.22)

These local symmetries are called also diffeomorphisms because they correspond to maps
of the world sheet into itself. Of course, mathematically f and its inverse f−1 are class
C∞.

• Weyl transformations. The action is invariant under the rescaling

hab → eφ(τ,σ)hab and δXµ = 0 , (1.23)

since
√
−h → eφ

√
−h and hab → e−φhab give cancelling factors. This local symmetry is

responsible to the fact that the energy-momentum tensor is traceless.

How can we actually think of Weyl invariance? It is not a coordinate change. It represents the
invariance of the theory under local change of scale which preserves the angles between all lines,
before and after the transformation. Hence a Weyl transformation is a conformal transformation.

It is simple to see that the Polyakov action is invariant under this transformation:

the factor of ⌦2 drops out just as the factor of f did in equation (1.25), canceling

between
p�g and the inverse metric g↵�. This is a gauge symmetry of the string,

as seen by the fact that the parameter ⌦ depends on the worldsheet coordinates

�. This means that two metrics which are related by a Weyl transformation (1.26)

are to be considered as the same physical state.

Figure 7: An example of a Weyl transformation

How should we think of Weyl invariance? It is not a coordinate change. Instead it is

the invariance of the theory under a local change of scale which preserves the angles

between all lines. For example the two worldsheet metrics shown in the figure are

viewed by the Polyakov string as equivalent. This is rather surprising! And, as you

might imagine, theories with this property are extremely rare. It should be clear from

the discussion above that the property of Weyl invariance is special to two dimensions,

for only there does the scaling factor coming from the determinant
p�g cancel that

coming from the inverse metric. But even in two dimensions, if we wish to keep Weyl

invariance then we are strictly limited in the kind of interactions that can be added to

the action. For example, we would not be allowed a potential term for the worldsheet

scalars of the form,
Z

d2�
p�g V (X) .

These break Weyl invariance. Nor can we add a worldsheet cosmological constant term,

µ

Z
d2�
p�g .

This too breaks Weyl invariance. We will see later in this course that the requirement

of Weyl invariance becomes even more stringent in the quantum theory. We will also

see what kind of interactions terms can be added to the worldsheet. Indeed, much of

this course can be thought of as the study of theories with Weyl invariance.

– 21 –

Figure 1.3: An example of Weyl transformation acting on the string world sheet. Angles between lines are
preserved (conformal transformation). (Courtesy of [68]).
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The two world sheets metric shown in the figure 1.3 are viewed by the Polyakov string as
equivalent. This is quite surprising, because theories with these property are extremely rare.
Weyl invariance is special to two dimensions, because only in this case the scaling factor coming
from

√
−h cancel that coming from the inverse metric hab. Theories with Weyl symmetry

constrain deeply the kind of interactions that can be added to the action. For example, a
potential term like the following one is forbidden

∫
d2σ
√
−hV (X) . (1.24)

Hence a world sheet cosmological constant term on the form

Λ

∫
d2σ
√
−h , (1.25)

is forbidden.

1.4.1 Gauge fixing

Since the theory possess local symmetries, we can use them to choose a gauge. One possible
choice is the static gauge, which fixes the longitudinal directions X0 = τ , X1 = σ, while leaving
transverse directions Xi, i = 2, ..., d− 1 free functions of τ and σ.

Another choice of gauge regards the fixing of the auxiliary field components hab. The auxiliary
field has three independent components

hab =

(
h00 h01

h10 h11

)

ab

, (1.26)

where h10 = h01. Reparametrisation invariance gives us the possibility to choose two functions,
f0 and f1, in order to fix two of the components of hab. Again by Weyl invariance we can fix
another component of hab choosing the scaling factor eφ. So in the case of the string there is
sufficient symmetry to gauge fix hab completely. Since the signature of hab is (−+), the auxiliary
field can be chosen to be diagonal

hab = ηab =

(
−1 0
0 1

)

ab

. (1.27)

Actually such a flat world sheet metric is only possible if there is no topological obstruction,
which is the case when the world sheet has vanishing Euler characteristic2 (e.g. cylinder and
torus). When a flat world sheet metric is an allowed gauge choice, the string action takes the
simple form

S = −T
2

∫
d2σ ∂aX · ∂aX =

T

2

∫
d2σ(Ẋ2 −X ′2) , (1.28)

which tells us the coordinates Xµ can be think as a set of d massless scalar fields which live in
the two-dimensional world sheet. In this gauge, which is called conformal gauge, the Polyakov
action in flat spacetime reduces to a free theory.

The fact we can use Weyl invariance to make any two-dimensional metric flat is an important
result. Let us see how this can be done concretely. Consider two metrics related by Weyl
transformation, namely h′ab = e2φhab. One can check that the Ricci scalars of the two metrics
are related by

√
−h′R′ =

√
−h(R− 2∇2φ) . (1.29)

2The Euler charateristic is a topological invariant represented by a number that describe the shape of a
topological space, regardless of the way it is bent. For example the Euler characteristic of a closed orientable
surface can be calculated from its genus g (intuitively, the number of “handles”) as χ = 2 − 2g. For a complete
definition see [46].
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We can pick up a φ such that the new metric has vanishing Ricci scalars, R′ = 0, simply by solving
this differential equation for φ. However, in two dimensions (but not in higher dimensions) a
vanishing Ricci scalar implies a flat metric. In fact, only in two dimensions, symmetry properties
of the Riemann curvature tensor and Bianchi identity means it must take the form (see [46])

Rabcd =
R

2
(hachbd − hadhbc) . (1.30)

Therefore if Ricci scalars vanishes, also Riemann curvature tensors vanishes, which means
the manifold is flat.

1.5 Equations of motion and boundary conditions

The equation of motion of Xµ coming from variation of the action (1.28) is the wave equation

∂a∂
aXµ = 0 or

(
∂2

∂σ2
− ∂2

∂τ2

)
Xµ = 0 . (1.31)

Since the metric on the world sheet has been gauge fixed, the vanishing of the energy-momentum
tensor, i.e. Tab = 0, originating from the equations of motion of the world sheet metric, must
now be imposed as an additional constraint condition. In the gauge hab = ηab, one find the
components of this tensor, which are

T01 = T10 = Ẋ ·X ′ and T00 = T11 =
1

2
(Ẋ2 +X ′2) . (1.32)

Since T00 = T11 we have the vanishing of the trace of the energy-momentum tensor Tr(T ) =
ηabTab = T11 − T00 = 0. This is a consequence of Weyl invariance.

In order to give a fully defined variational problem, boundary conditions need to be specified.
A string can be either closed or open. For convenience, we will choose the coordinate σ to have
the range 0 ≤ σ ≤ 2π. The equations of motion of Xµ are given by the stationary points of the
action, which are determined by demanding invariance of the action under the variation

Xµ → Xµ + δXµ . (1.33)

In addition to the equation of motion (1.31), appears the boundary term

T

∫
dσ
[
ẊµδX

µ|τ=τf − ẊµδX
µ|τ=τi

]
− T

∫
dτ
[
X ′µδX

µ|σ=2π −X ′µδXµ|σ=0

]
, (1.34)

which must be vanish. The first term always appear when using principle of least action. The
equations of motion are derived requiring that δXµ = 0 at τ = τi and τ = τf . However the
second term is novel. There are many ways to make it vanishes, which consist in

• Closed string. The boundary condition consist in the periodicity of Xµ

Xµ(τ, σ) = Xµ(τ, σ + 2π) . (1.35)

• Open string with Neumann boundary conditions. The component of the momentum normal
to the boundary of the world sheet vanishes, i.e.

X ′µ = 0 at σ = 0, 2π . (1.36)

If this choice is made for all µ, Poincaré invariance is not broken. Physically, they mean
that no momentum is flowing through the ends of the string.
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• Open string with Dirichlet boundary conditions. The positions of the two string ends are
fixed so that δXµ = 0, and

Xµ|σ=0 = Xµ
0 and Xµ|σ=2π = Xµ

2π , (1.37)

where Xµ
0 and Xµ

2π are constants and µ = 1, ..., d−p−1 and Neumann boundary conditions
are imposed for the other p+ 1 coordinates. Dirichlet boundary conditions break Poincaré
invariance.

Concretely, Dirichlet boundary conditions mean

X ′a = 0 for a = 0, ..., p

XI = cI for I = p+ 1, ..., d− 1 (1.38)
(1.39)

with cI constant. Therefore the end-points of the string must lie in a (p + 1)-dimensional
hypersurface in spacetime such that the SO(1, d− 1) Lorents group is broken to

SO(1, d− 1)→ SO(1, p)× SO(d− p− 1) . (1.40)

This hypersurface is called a D-brane, or better Dp-brane, where D standes Dirichlet and p is
the number of spatial dimensions of the brane. The modern interpretation of String Theory is
that spacetime is filled of D-branes and strings end on them with Dirichlet boundary conditions.

• Neumann boundary conditions.

@�X
µ = 0 at � = 0, ⇡ (3.1)

Because there is no restriction on �Xµ, this condition allows the end of the string

to move freely. To see the consequences of this, it’s useful to repeat what we

did for the closed string and work in static gauge with X0 ⌘ t = R⌧ , for some

dimensionful constant R. Then, as in equations (1.34), the constraints read

~̇x · ~x 0 = 0 and ~̇x 2 + ~x 0 2 = R2

But at the end points of the string, ~x 0 = 0. So the second equation tells us that

|d~x/dt| = 1. Or, in other words, the end point of the string moves at the speed

of light.

• Dirichlet boundary conditions

�Xµ = 0 at � = 0, ⇡ (3.2)

This means that the end points of the string lie at some constant position, Xµ =

cµ, in space.

At first sight, Dirichlet boundary conditions may

Neumann

Dirichlet

Figure 13:

seem a little odd. Why on earth would the strings

be fixed at some point cµ? What is special about

that point? Historically people were pretty hung

up about this and Dirichlet boundary conditions

were rarely considered until the mid-1990s. Then

everything changed due to an insight of Polchinski...

Let’s consider Dirichlet boundary conditions for some coordinates and Neumann for

the others. This means that at both end points of the string, we have

@�X
a = 0 for a = 0, . . . , p

XI = cI for I = p + 1, . . . , D � 1 (3.3)

This fixes the end-points of the string to lie in a (p + 1)-dimensional hypersurface in

spacetime such that the SO(1, D � 1) Lorentz group is broken to,

SO(1, D � 1)! SO(1, p)⇥ SO(D � p� 1) .

This hypersurface is called a D-brane or, when we want to specify its dimension, a

Dp-brane. Here D stands for Dirichlet, while p is the number of spatial dimensions

of the brane. So, in this language, a D0-brane is a particle; a D1-brane is itself a

string; a D2-brane a membrane and so on. The brane sits at specific positions cI in the

transverse space. But what is the interpretation of this hypersurface?

– 51 –

Figure 1.4: Dirichlet boundary condition. The string end-points can move on the Dp-brane with Neumann
boundary conditions. (Courtesy of [68]).

The Dp-brane always has Neumann boundary conditions in the X0 direction. A natural
question which may arise is what about to have Dirichlet conditions for X0. This requirement
looks quite wired since the object is now localised at a fixed point in time. But there is a
physical interpretation of such an object: it is an instanton. This D-instanton is usually think
as a D(−1)-brane and it is related to tunneling effects in the quantum theory.

Let us solve the equations of motion for the string (1.31). It is convenient to introduce world
sheet light-cone coordinates, defined as

σ± = τ ± σ . (1.41)

In these coordinates the equations of motion becomes

∂+∂−Xµ = 0 . (1.42)

In light-cone coordinates the energy-momentum tensor becomes

T++ = ∂+X
µ∂+Xµ T+− = 0 (1.43)

T−+ = 0 T−− = ∂−Xµ∂−Xµ . (1.44)

The most general solution is

Xµ(τ, σ) = Xµ
L(σ+) +Xµ

R(σ−) , (1.45)
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where Xµ
L and Xµ

R are arbitrary functions which describe left-moving and right-moving waves
respectively. There are two other conditions we must add. One is the reality of Xµ, the other is
the vanishing of energy-momentum tensor, which is

(∂−XR)2 = (∂+XL)2 = 0 . (1.46)

For the closed string, which satisfies periodicity boundary conditions Xµ(τ, σ) = Xµ(τ, σ +
2π), the most general solution can be expanded in Fourier modes

Xµ
R(τ − σ) =

1

2
xµ +

1

2
α′pµ(τ − σ) + i

√
α′

2

∑

n6=0

1

n
αµne

−in(τ−σ) ,

Xµ
L(τ + σ) =

1

2
xµ +

1

2
α′pµ(τ + σ) + i

√
α′

2

∑

n6=0

1

n
α̃µne

−in(τ+σ) , (1.47)

where xµ is a center-of-mass position and pµ is the total string momentum, describing the free
motion of the string center of mass. This can be checked by studying the Nöther currents arising
from spacetime translation symmetry Xµ → Xµ + aµ. The parameter α′, called Regge-slope
parameter, is the fundamental string constant and is related to the string tension T and the
string length scale ls by

T =
1

2πα′
and l2s = α′ . (1.48)

The exponential terms in (1.47) represent the string excitation modes. The requirement that
Xµ
R and Xµ

L are real implies that xµ and pµ are real, while positive and negative modes are
conjugate to each other

αµ−n = (αµn)∗ and α̃µ−n = (α̃µn)∗ . (1.49)

The terms linear in σ cancel from the sum Xµ
R+Xµ

L, therefore closed-string boundary conditions
are satisfied.

In order to quantise the theory, one can introduce the canonical momentum conjugate to Xµ,
given by

Pµ(τ, σ) =
∂L
∂Ẋµ

= TẊµ . (1.50)

The classical Poisson brackets, at equal time, are

{Xµ(τ, σ), Xν(τ, σ′)} = {Pµ(τ, σ), P ν(τ, σ′)} = 0 , (1.51)
{Pµ(τ, σ), Xν(τ, σ′)} = ηµνδ(σ − σ′) . (1.52)

Inserting on (1.51) the mode expansion for Xµ and Ẋµ gives the Poisson brackets satisfied
by the modes

{αµm, ανn} = {α̃µm, α̃νn} = im ηµνδm+n,0 , (1.53)
{αµm, α̃νn} = 0 . (1.54)
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1.6 The quantum string

The world sheet theory developed up to now can be quantised. The canonical quantisation
consists in replacing Poisson brackets by commutators

{·, ·} → i

~
[·, ·] , (1.55)

and in promoting the modes αµn and α̃µn as operator. The commutation relations of αµn and α̃µn
are those of harmonic oscillator creation and annihilation operator. In fact if we define

aµn ≡
αµn√
n
, aµ†n ≡

αµ−n√
n

with n > 0 , (1.56)

and with the same definition for the modes α̃µn, then we have the familiar commutation relations

[aµm, a
ν†
n ] = δmnη

µν [ãµm, ã
ν†
n ] = δmnη

µν [aµm, ã
ν
n] = ... = 0 . (1.57)

Therefore each scalar fieldXµ, for fixed µ, gives rise to two towers of creation and annihilation,
decoupled to each other. There are two towers because we have right-moving modes αµn, and
left-moving modes α̃µn.

After defined commutation relations, one can starts building the Fock space of our theory.
One can introduce vacuum state of the string |0〉, defined as

aµn |0〉 = ãµn |0〉 = 0 , (1.58)

which represent the ground state for the harmonic oscillators. Actually this is not the ground
state for the whole system, because we have to keep in consideration also the operator xµ and pµ,
which they give informations about the motion of the center-of-mass. The true ground state is
|0〉 ⊗Ψ(x), where Ψ(x) is a spatial wavefunction, which carries, if we work in momentum space,
a quantum number given by pµ, which is eigenvalue of the momentum operator p̂µ. Therefore
we can write the vacuum state as |0; p〉, which still obeys (1.58), but now also

p̂µ |0; p〉 = pµ |0; p〉 . (1.59)

A generic state living in the Fock space can be generated acting with any number of creation
operators aµ†n and ãµ†n

(aµ1†
1 )nµ1 (aµ2†

2 )nµ2 · · · (ãν1†
1 )nν1 (ãν2†

2 )nν2 · · · |0; p〉 . (1.60)

Each state in the Fock space represent a different excited state of the string. Since the excited
states of the string have interpretation of different species of particles, and since there are infinite
number of way to excite the string (n ∈ N), the conclusion is that in our particle spectra there
are an infinite number of different species of particles. This is different from the point of view of
the Standard Model, where the number of species of particles is finite.

It should be emphasized that this is first quantisation, and all of these states (including the
ground state) are one-particle states. Second quantisation requires string field theory [61].

Already at this stage emerge some crick of the theory. For example the states build from the
time component operators a0

m and ã0
m have negative norm

a0†
m |0〉 with norm 〈0| a0

ma
0
m |0〉 = −1 , (1.61)

where the ground state is normalised as 〈0 | 0〉 = 1. The reason is due to the minus sign in the
commutation relations which is coming from η00 = −1.

Therefore now we have to go deeper inside the quantisation of the string, removing non-
physical states. There are two ways available, both compatible with the canonical formalism
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shown above. These two choices reflect the fact the string action enjoys a gauge symmetries (i.e.
reparametrisation and Weyl invariance) and whenever we wish to quantise a gauge theory we are
presented with a number of different ways in which we can proceed.

• Covariant quantisation. It consists first in quantising the system (as we did before) and
then subsequently imposing the constraints that arise from gauge fixing, intended as op-
erator equations acting on the physical states of the system and modding out by residual
symmetry. For instance, in QED, this is provided by the Gupta-Bleuler method of quanti-
sation which comes from fixing the Lorentz gauge. In string theory, covariant quatisation
consists of treating all fields Xµ as operators and imposing the constraint of vanishing
energy-momentum tensor Tab = 0 on the states and modding out by residual conformal
symmetry.

• Lightcone quatisation. This alternative method consists first in solving all of the constraints
of the system in order to determine the space of physically distinct classical solutions.
Second, one can quantise these physical solutions. Again, in QED this is the way one
proceed in Coulomb gauge.

At the end of the day the two methods must agree. Each of them presents different challenges
and offers a different viewpoint.

This work is not intended to show in details this part, which can be found in a classical String
Theory’s book [30], [3], [53].

1.6.1 The string spectrum

In this section we present the outcomes from the analysis of the spectrum of a single, free string.
Before do that, let us define what is the mass of a string. From the relativistic mass-shell
condition, mass is defined as

M2 = −pµpµ , (1.62)

where pµ is the total momentum of the string, which is given by

pµ = T

∫ π

0
dσ Ẋµ(σ) . (1.63)

Writing Ẋµ in modes expansion, one have for the closed string the mass formula

M2 =
2

α′

∞∑

n=1

(α−n · αn + α̃−n · α̃n) . (1.64)

The tachyon.
Let us start with the ground state |0; p〉. If one applies the mass operator (1.64) to the ground
state, the result is [3]

M2 = − 1

α′
D − 2

6
. (1.65)

There is an evident problem: this particle has a negative mass-squared. Such particles are called
tachyons. These objects, in the context of special relativity, are interpreted as particles moving
faster then the speed of light. But in the language of quantum field theory there is a better
interpretation. Suppose to have a field in spacetime - let us call it Φ(x) - whose quantisation
will give rise to a tachyonic particle. Suppose V (Φ) is the potential term which enters in the
lagrangian density L. The mass-squared of the particle is simply the quadratic term in the
lagrangian, i.e.
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M2 =
∂2V (Φ)

∂Φ2

∣∣∣∣
Φ=0

. (1.66)

Therefore the negative squared-mass is telling us we are expanding the system around a vacuum
which is situated in a maximum of the potential V (Φ). Since this vacuum is unstable, one
should shift and expand around a minimum of the potential, which is stable. This shift is made
explicit in string field theory. The natural question is whether the potential has a good minimum
elsewhere. Unfortunately, no one know the answer to this.

The tachyon is a problem just for the bosonic string. If we introduce fermions on the world
sheet and study superstring, then tachyons will disappear.

The first excited states.
Once imposed contraint conditions in the quantisation process, one can find the first excited
state. It contains (d− 2)2 particle states, because the constraint conditions restrict the index µ
to runs from 1 to d− 2 (i.e. i = 1, ..., d− 2). Therefore the states are given by3

∣∣Ωij
〉

= ãi†1 a
j†
1 |0; p〉 . (1.67)

The indices i and j of the operators ãi†1 and aj†1 transform in the vector representation of the
group SO(d− 2), or equivalently, in the massless vector representation of the full Lorentz group
SO(1, d− 1). Therefore the state

∣∣Ωij
〉
lies in the tensor product of two massless vectors repre-

sentations.
One can compute the mass of these particle states applying the mass operator (1.64) on

(1.67). The result is

M2 =
4

α′

(
1− d− 2

24

)
, (1.68)

but since the states
∣∣Ωij

〉
must be massless, for consistency reason the spacetime dimension must

be

d = 26 . (1.69)

The dimension d = 26 is also called critical dimension of the bosonic string theory.
Hence the states

∣∣Ωij
〉
must transform in the 24 ⊗ 24 representation of SO(24). Obviously

this representation is reducible because decompose into three irreducible representations

24⊗ 24 = 299⊕ 276⊕ 1 , (1.70)

where 299 is the traceless symmetric second rank tensor, 276 is the antisymmetric second rank
tensor and 1 is the singlet (i.e. trace), and are described by the fields

gµν(X) , Bµν(X) , φ(X) . (1.71)

The quantum of these fields give rise to particles4. The particle in the symmetric tracless rep-
resentation of SO(24) is particularly interesting. It is a massless spin 2 particle. There are
general arguments, due to originally to Feynman and Weinberg, that any theory of interacting
massless spin 2 particles must be equivalent to general relativity. We should therefore identify
the field gµν(X) with the metric of spacetime. The antisymmetric representation correspond to
the so called “Kalb-Ramond field” or, in the language of differential geometry, the “2-form”. The
real scalar field is call the dilaton. The remarkable fact is that these three massless fields are

3In the lightcone quantisation one finds the so called level matching condition which for the first excited state
tells us if we act with a creation operator, then we have to act also with an annihilation operator.

4By Wigner’s theorem, particles are in correspondence 1 to 1 with irreducible representations of the little group
SO(d− 1) in the massive case, and SO(d− 2) in the massless case.
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common to all string theories. The set (gµν(X), Bµν(X), φ(X)) is also called (massless) back-
ground. The flat spacetime we have considered so far is represented by the background (ηµν , 0, 0).

Higher excited states.
Let us treat first the second excited states, then the higher excited states have similar behaviour.
In the right-moving sector, appear two different states ai1a

j
1 |0〉 and ai2 |0〉. The same is true for

the left-moving sector. Therefore the second excited states can be written as5

(ai1a
j
1 ⊕ ai2)⊗ (ãi1ã

j
1 ⊕ ãi2) |0; p〉 . (1.72)

Again, one can compute the mass of these states and finds

M2 =
4

α′
. (1.73)

The general feature is that all these excited states will have mass close to the Planck scale,
so there is a low probability to found them in a particle physics experiment. But they play an
important role when one come to discuss scattering amplitudes. It is thanks to this infinite tower
of states that ultra-violet behaviour of gravity is suppressed.

1.7 Low energy effective action

So far, we have only discussed strings propagating in flat spacetime. In this section we want to
study strings propagating in different backgrounds (gµν(X), Bµν(X), φ(X)).

There is a natural generalisation of the Polyakov action. In order to preserve symmetries and
renormalisability, it is [3]

Sgb = Sg + SB + Sφ , (1.74)

where

Sg = − 1

4πα′

∫
d2σ
√
−hhabgµν(X)∂aX

µ∂bX
ν

SB = − 1

4πα′

∫
d2σ
√
−h εabBµν(X)∂aX

µ∂bX
ν

Sφ = − 1

4πα′

∫
d2σ
√
−hα′R(h)φ(X)

The first term involving gµν is the natural generalisation of the Polyakov action for flat
Minkowski spacetime to curved spacetime. The second term which include Bµν represent how
strings couple with the antisymmetric field Bµν . The tensor εab is the Levi-Civita tensor in
2-dimensions normalized such that

√
−hε12 = +1. The third term represent how strings couple

with the dilaton field φ(X). In this term appears R(h), which is the 2-dimensional Ricci scalar of
the world sheet (in some sense the string contributions enter here). The Regge-slope parameter
α′ appears for dimensional reason.

Let us look the properties which possess the action (1.74)

• Spacetime diffeomorphisms invariant. Since all spacetime indices are contracted together
the action Sgb is invariant under spacetime general coordinate transformations Xµ → X ′µ,
provided gµν and Bµν transform as tensors and φ as scalar, i.e.

g′µν(X ′) =
∂Xα

∂X ′µ
∂Xβ

∂X ′ν
gαβ(X) , B′µν(X ′) =

∂Xα

∂X ′µ
∂Xβ

∂X ′ν
Bαβ(X) , φ′(X ′) = φ(X) .

(1.75)
5Again, by level matching conditions.
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• Gauge invariance. The Bµν(X) field is invariant under gauge transformation

Bµν → Bµν + ∂µΛν − ∂νΛµ . (1.76)

This transformation causes the integrand of Sgn to vary by a total derivative. In electro-
magnetism, one can construct the gauge invariant electric and magnetic fields which are
packaged in the 2-form field strength F = dA. Similarly, for Bµν , the gauge invariant field
strength H = dB is a 3-form

Hµνρ = ∂µBνρ + ∂νBρµ + ∂ρBµν . (1.77)

This 3-form h is sometimes known as torsion, because it plays the same role of torsion in
general relativity, providing the antisymmetric component to the affine connection.

• Reparametrisation invariance. This symmetry enjoyed by the Polyakov action, is still
preserved by Sgb.

• Weyl transformation. Under the rescaling

hab → eφ(τ,σ) hab , (1.78)

the term which contains Bµν is invariant because εab is a tensor, while
√
−hεab ≡ εab

is a density tensor (of weight +1), such that ε12 = +1. Since the density tensor εab is
hab independent, the B-term is Weyl invariant. However the dilaton coupling R(h)φ is not
Weyl invariant. This is intentional: the dilaton coupling is introduced precisely to complete
the cancellation of Weyl-symmetry anomalies in the perturbative α′ expansion.

Let us analyse better what does α′ really mean and what does perturbation expansion mean.

1.7.1 The meaning of α′

Recall that in the conformal gauge, the Polyakov action in flat spacetime reduces to free theory.
This fact was extremely useful because allows us to compute exactly the spectrum of the theory.
But in a curved background, it is no longer the case. Here we want to analyse these solutions.
For convenience we consider as a curved background (gµν , 0, 0), i.e. fixing to zero the 2-form B
and the dilaton φ. In conformal gauge, the action Sgb for the background specified above, is

Sgb =
1

4πα′

∫
d2σgµν(X)∂aX

µ∂aXν . (1.79)

Let us now expand the string coordinate Xµ(τ, σ) around a classical solution achieved in flat
background. We choose to pick up the trivial solution, i.e. the string sitting at the constant
point x̄µ,

Xµ(τ, σ) = x̄µ +
√
α′Y µ(τ, σ) . (1.80)

Here Y µ are the dynamical fluctuations about the point which we assume to be small. The factor√
α′ is there for dimensional reasons. Since [α′] = −2 and [X] = −1, we have [Y ] = 0. Hence Y

is small if Y � 1. Expanding the Lagrangian which gives the action (1.79)

gµν(X)∂Xµ∂Xν = α′
[
gµν(x̄) +

√
α′∂ρgµν(x̄)Y ρ +

α′

2
∂ρ∂σgµν(x̄)Y ρY σ +O(α′3/2)

]
∂Y µ∂Y ν .

(1.81)
What we get is the Lagrangian of d fields interacting between each other. Each of the coefficients
∂∂...gµν in the Taylor expansion are coupling constants for the interactions of the fluctuations
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Y µ. The theory has an infinite number of coupling constants and they are nicely encodes by the
function gµν(X).

Now, a natural question one may ask, is when this field theory is weakly coupled. Obvi-
ously this requires the whole infinite set of coupling constants to be small. Let us proceed now
heuristically. Suppose that the target space has characteristic radius of curvature rc, meaning
that

∂g

∂X
∼ 1

rc
. (1.82)

Since the radius of curvature is a length scale, [rc] = −1, if we look to the expansion of the
Lagrangian ( 1.81), we see that the effective dimensionless coupling is given by

√
α′

rc
. (1.83)

Now we have a physical interpretation when the perturbation theory is valid. One can
approach perturbatively the action (1.79) if and only if the spacetime metric vary only on scales
much greater than

√
α′. If there are regions of spacetime where the radius of curvature becomes

comparable to the string length scale, rc ∼
√
α′, then the fields Y µ are strongly coupled and one

has to develop new methods to solve it.
If one study the Feynman graphs coming from the interacting theory, one can discover that

the parameter α′ plays also the role of the loop-expansion parameter.

1.7.2 Beta function

Classically, the theory defined by (1.79) is conformally invariant. But no one assures us this
is necessarily true in the quantum theory. In fact. in order to regulate divergences which
appears after quantisation, one introduces a UV cut-off and, typically, after renormalisation,
physical quantities depend on the scale of a given process, µ. After this, the theory is no longer
conformally invariant. There are plenty of theories which classically possess scale invariance
which is broken quantum mechanically. The most famous of these is Yang-Mills.

In string theory conformal invariance is a gauge symmetry, which we want to preserve jeal-
ously. The goal now is to understand in which circumstance the action (1.79) retains conformal
invariance at quantum level.

In quantum field theory, the object which describe how coupling depend on a scale µ is called
β-function. Since our couplings involves functions, we should really talk about a β-functional.
Heuristically

βµν(g) ∼ µ∂gµν(X;µ)

∂µ
. (1.84)

The quantum theory will be conformally invariant only if

βµν(g) = 0 , (1.85)

which means that the coupling constants expressed in terms of g do not depend by the energy
scale µ.

Reintroduce now the fields B and φ in the action. Again, one can expand around classical
solution and now we have three types of coupling constants, which are packaged into the functions
gµν(X), Bµν(X) and φ(X). Therefore the beta functions now are

βµν(g) ∼ µ∂gµν(X;µ)

∂µ
, βµν(B) ∼ µ∂Bµν(X;µ)

∂µ
, βµν(φ) ∼ µ∂φµν(X;µ)

∂µ
. (1.86)
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Our goal now is to explain how the classical lack of Weyl invariance in the dilaton coupling
can be compensated by a one-loop contribution arising from the coupling to gµν and Bµν .

To see this explicitly, the best way is to look at the breakdown of Weyl invariance as seen as
traceless condition on energy-momentum tensor Tab. If one compute the beta functions for the
two-dimensional theory (1.74), one can notice that the energy-momentum tensor receives three
different kinds of contribution from the three different spacetime fields. the trace of energy-
momentum tensor is

T a a = − 1

2α′
βµν(g)hab∂aX

µ∂bX
ν +

1

2α′
βµν(B)εab∂aX

µ∂bX
ν − 1

2
β(φ)R(h) . (1.87)

The one-loop beta functions can be computed [13], and the result is

βµν(g) = α′Rµν + 2α′∇µ∇νφ−
α′

4
HµλκHν

λκ

βµν(B) = −α
′

2
∇λHλµν + α′∇λφHλµν

β(φ) = −α
′

2
∇2φ+ α′∇µφ∇µφ−

α′

24
HµνλH

µνλ

A consistent background of string theory must preserve Weyl invariance, which requires

βµν(g) = βµν(B) = β(φ) = 0 . (1.88)

Since βµν(g) is symmetric in (µ, ν) and βµν(B) is antisymmetric in (µ, ν), then the conditions
(1.88) represent d2 equations, which match the d.o.f. coming from the background (gµν , Bµν , φ).
This means if we did not insert the dilaton coupling in the action Sgb, we would not be able to
assure Weyl invariance at one-loop level.

1.7.3 Effective field equations

The equations (1.88) can be viewed as the equations of motion for the background in which the
string propagates. Now we can invert the perspective: we look for a d = 26 dimensional spacetime
action which reproduces these beta functions equations of motion. This is the low-energy effective
action of the bosonic string

Seff =
1

2κ2

∫
d26X

√−g e−2φ

(
R− 1

12
HµνλH

µνλ + 4∂µφ∂
µφ

)
, (1.89)

where κ is the gravitational coupling constant.
Varying the action (1.89) with respect to the three fields, can be shown to yield the beta

functions,

δSeff =
1

2κ2α′

∫
d26X

√−g e−2φ[δgµνβ
µν(g)− δBµνβµν(B)

− (2δφ+
1

2
gµνδgµν)(βλ λ(g)− 4β(φ))] . (1.90)

Action (1.89) governs low-energy dynamic of the spacetime fields. The appellative “low-
energy” refers to the fact that we have truncated the beta functions to one-loop expansion.

Something remarkable has happened here. Remind we started looking how a single string
moves in flat spacetime. Then we introduced a generic background and we tried to figure out
how the string moves in this new spacetime configuration. Now, at the end of this procedure,
we found that the background fields fluctuate. This represents how the tiny string governs the
way the whole universe moves.
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The action (1.89) actually does not looks like the familiar Einstein-Hilbert action, because of
the strange factor e−2φ sitting out front. However it can be eliminated by a field redefinition. In
d dimensions, we define a new metric g̃µν , called Einstein-frame metric, which is related to the
previous string-frame metric gµν by

g̃µν(X) = e−4φ/(d−2)gµν(X) . (1.91)

Note that this is not a changed of metric due to a changed of coordinates. It is merely a
redefinition of the fields, which one can always make in any field theory. At the and of the day,
restricting to d = 26, the action (1.89) becomes

Seff =
1

2κ2

∫
d26X

√
−g̃

(
R̃ − 1

12
HµνλH

µνλ − 1

6
∂µφ∂

µφ

)
. (1.92)

Notice that the kinetic terms for φ are now with the right sign. Also for the dilaton there is no
potential term, which means there is nothing that dynamically sets its expectation value in the
bosonic string. However the backgrounds of superstring develop a potential term for the dilaton,
fixing the string coupling constant.

Now we can recognise that the gravitational part of the action (1.92) takes the standard
Einstein-Hilbert form. Hence now, we can give a meaning to the gravitational coupling, which
must be related to the Newton’s constant G in 26-dimensions, by

κ2 = 8πG . (1.93)

The possibility of defining two metrics really arises because we have a massless scalar field
φ in the game. Whenever such a field exists, we can always measure distances in different ways
by including φ in our ruler. In another perspective, massless scalar fields give rise a long range
attractive forces which can mix with gravitational forces and violate the principle of equivalence.
Therefore, if we want to connect with Nature, we need to find a way to make φ massive. Such a
mechanisms exist in the context of superstring.

1.8 Superstring at a Glance

In this section we will not provide details about superstring, but rather we will enunciate its
general features and what is different from bosonic string theory. Further material can be found
in [53], [30].

First of all, the key difference between the bosonic string and the superstring is the addition
of fermionic modes on its world sheet. Bosonic modes satisfy commutation relations, while
for fermionic modes we have anti-commutation relations. The resulting world sheet theory is
supersymmetric6. In fact the name superstring comes from “supersymmetry” plus “(bosonic)
string”. One can again follow the procedure discussed up to now for the bosonic string. In
particular after quantisation, one find the following features of superstring

• The critical dimension of the superstring is d = 10.

• There is no tachyon in the spectrum.

• Appears again the massless bosonic fields gµν(X), Bµν(X) and φ(X).

These massless bosonic fields are all part of the spectrum of the superstring. In this con-
text, Bµν is also called Neveu-Schwarz 2-form. In superstring appears also massless spacetime
fermions, as well as further massless bosonic fields. The exact form of the extra bosonic fields
depends on which superstring theory we consider.

6At least this happens in the so-called Neveu-Schwarz-Ramond formalism
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While the bosonic string is unique, there a a number of choices that one can make when
adding fermios to the world sheet. This give rise to a different classes of superstring theories.
Later developments reveal that they are actually all part of the same framework, which commonly
goes by the name of M-theory. What makes the types of superstring theories different between
each other is the way one choose to add fermions on the world sheet. We can add fermions in
both left-moving and right-moving sectors of the string, or whether we choose the fermions to
move only in one direction (which usually taken to be right-moving). This procedure gives rise
to two different classes of string theory.

(I) Type II strings have both left and right-moving world sheet fermions. This theory contains
32 supercharges, hence it is maximally supersymmetric. This correspond to a spacetime
theory in d = 10 dimensions, with N = 2 supersymmetry.

(II) Heterotic strings have just right-moving fermions. The resulting spacetime theory has
N = 1 supersymmetry in d = 10, which corresponds to 16 supercharges.

Actually each of these two families divides into other two choices. This leaves us with four
superstring theories7. These four theories are called Type IIA, Type IIB, Heterotic SO(32) and
Heterotic E8 × E8. Each of them contains the fields gµν , Bµν and φ that appear in the bosonic
string, together with a number of extra fields. The dynamics of these fields is described by the
low-energy effective action, which naturally splits up into three pieces

Ssuperstringeff = S1 + S2 + Sfermi . (1.94)

Here Sfermi is the fermionic sector and describes how fermions interact. We will not describe
them. S1 + S2 describes the bosonic sector, and now we will talk briefly about it.

S1 is essentially the same for all the four theories listed above and is given by the action we
found for the bosonic string in the string frame (1.89). S1 represents the Neveu-Schwarz sector,
NSNS. In this part we will use form notation, and denote Hµνρ simply as H3, where the subscript
tells us the degree of the form. Then the action reads

S1 =
1

2κ2

∫
d10X

√−ge−2φ

(
R− 1

2
|H̃3|2 + 4∂µφ∂

µφ

)
, (1.95)

where H̃3 is not quite the same as the original H3, but it depends by which type of theory we
are choosing.

The second part of the bosonic action, which is S2, describes the dynamics of the extra
bosonic fields which are specific to each different theory. For Type II theories, S2 represents the
Ramond sector RR. Now we go through the four different theories and explain the S2 term.

• Type IIA: For this theory H̃3 = H3. The extra bosonic fields are: the 1-form C1 and the
3-form C3. The action for these extra bosonic fields is

S2 = − 1

4κ2

∫
d10X

[√−g
(
|F2|2 + |F̃4|2

)
+B2 ∧ F4 ∧ F4

]
. (1.96)

The field strengths are given by

F2 = dC1 , F4 = dC3 , F̃4 = F4 − C1 ∧H3 . (1.97)

Notice that the final term in the action does not depend by the metric. It is commonly
called Chern-Simons term.

Type IIA is a non-chiral theory because each kind of particle appears within both types
of chirality.

7Actually there is another one which we will describe later. It is the Type I theory.
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• Type IIB: Again, H̃3 = H3. The extra bosonic fields are: a scalar C0, a 2-form C2 and a
4-form C4. The action is given by

S2 = − 1

4κ2

∫
d10X

[√−g
(
|F1|2 + |F̃3|2 +

1

2
|F̃5|2

)
+ C4 ∧H3 ∧ F3

]
. (1.98)

The field strengths are given by

F1 = dC0 , F3 = dC2 , F5 = dC4 , (1.99)

F̃3 = F3 − C0 ∧H3 , F̃5 = F5 −
1

2
C2 ∧H3 +

1

2
B2 ∧ F3 . (1.100)

The low-energy dynamics described by the action (1.98) is not complete. We have to add
the constraint of self-duality of F̃5, i.e.

F̃5 = ?F̃5 . (1.101)

Type IIB is a chiral theory because each kind of particle appears within only one type of
chirality.

• Heterotic SO(32): The heterotic strings do not have Ramond-Ramond fields. Heterotic
strings SO(32) has an non-abelian gauge field strength F2, with gauge group SO(32). The
dynamics of this field is governed simply by the Yang-Mills action in ten dimensions

S2 =
α′

8κ2

∫
d10X

√−g Tr|F2|2 . (1.102)

Here H̃3 is defined as H̃3 = dB2−α′ω3/4, where ω3 is the Chern-Simons 3-forms constructed
from the non-abelian gauge field A1

ω3 = Tr

(
A1 ∧ dA1 +

2

3
A1 ∧A1 ∧A1

)
. (1.103)

This strange looking combination is due to the most intricate aspects of the heterotic string,
known as anomaly cancellation.

• Heterotic E8 × E8: This theory has the same description of the Heterotic SO(32), with
the only difference about the gauge group, which now is E8 × E8.

The actions that we have written down probably look a little arbitrary. But they have very
important properties. In particular the full action Ssuperstringeff for Type II theories is invariant
under N = 2 spacetime supersymmetry, and it is unique! This is the only action (module
equivalent actions) which enjoys this property. This fact motivates the choice done before.

I want to clarify a bit more about chirality: in both Type IIA and Type IIB theories we have
two sets of chiral fermions. But for Type IIA the two sets have different chirality (so overall
the theory is chirality symmetric) while for Type IIB both sets have the same chirality. Of the
bosons, only the self-dual 5-form F̃5 in Type IIB is chiral.

Actually there are five superstring theories in ten dimensions, and not only four. The re-
maining theory is called Type I and includes open strings moving in flat ten dimensional space as
well as closed strings.Type I superstring theory can also be understood as arising from projection
of Type IIB superstring theory. Type IIB superstrings are oriented, and their world sheets are
orientable. The world-sheet parity transformation

Ω : σ → −σ , (1.104)
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reverses the orientation of the world sheet. World-sheet parity exchanges the left- and right-
modes of the world-sheet fields (which are bosons Xµ and also fermions ψµ). This Z2 transfor-
mation is a symmetry of the type IIB theory but not of the type IIA theory, because type IIB
contains both left- and right- moving fermions carry the same chirality. When we gauge this
Z2 symmetry, the Type I theory emerges8. The Type I closed-string spectrum is obtained by
keeping the states that are even under the world-sheet parity transformation, and eliminating
the one that are odd. The states in the NSNS sector of Type IIB are given by the tensor product
of two vectors. Hence only states which are symmetric in the two vectors survive. These are the
dilaton φ and the graviton gµν , while the antisymmetric tensor Bµν is eliminated.

Finally, the low-energy effective action of each superstring theory gives rise to a low-energy
effective theory, which goes under the name of Supergravity theory. Despite Supergravity fails as
a theory of Quantum Gravity, it has retained its importance for investigating superstring theories
at low energies.

1.9 Kaluza-Klein theory

We have seen that for consistency reasons, bosonic string theory lives in d = 26 dimensions,
and superstring theories in d = 10 (or eleven for M-theory). But we do not. Or better, we are
able to observe only three macroscopic large dimensions. Hence we should develop a strategy
which allows us to restore a connection with the d = 4 spacetime, where General Relativity
and Standard Model live. The technique we are going to talk about goes under the name of
Kaluza-Klein theory, and consists in two steps: a compactification followed by a dimensional
reduction.

1.9.1 Compactifications

Since string theory is a theory which includes gravity, and since gravity curves spacetime, there
are no obstructions to stop extra dimensions of the universe from curling up. Therefore the idea
is to make compact extra dimensions, just replacing the d dimensional spacetime R1,d−1 with the
product of four-dimensional spacetime R1,3 and a compact (d − 4)-dimensional manifold Cd−4,
i.e.

R1,d−1 R1,3 × Cd−4 . (1.105)

Consider the compactified spacetime (1.105) and assign coordinates (x, y) to the whole target
space, where x are coordinates in R1,3, and y are coordinates in Cd−4. The d-dimensional metric
can be decomposed according to

ds2(R1,d−1) = gµνdx
µdxν + ds2(Cd−4) , (1.106)

which means the metric is a direct product of metrics on the two subspaces. The form of
ds2(Cd−4) can be constrained. Indeed the properties which Cd−4 must satisfy are imposed by the
dynamics. In fact the spacetime equations of motion coming from the low-energy effective action
are

βµν(g) = βµν(B) = β(φ) = 0 , (1.107)

which have many solutions! This is part of the story of vacuum selection in string theory. In fact
there is an open question which regards what solution, if any, describes the world we see around
us. Does this putative solution have other special properties, or is it a random choice from many

8Gauging a discrete symmetry, such as Z2, could sound heretic, but actually is a well defined operation. The
curios reader can see [50]
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possibility? There is no answer to this question and currently there is no known principle which
uniquely selects a solution which looks like our world.

Here suppose to pick up a simple solution of the low-energy effective action which solves
(1.107). We set Hµνρ = 0 (i.e. set B to a closed 2-form) and the dilaton φ to a constant value.
Then our equations of motion consist simply in searching for a Ricci flat backgrounds obeying
Rµν = 0. Therefore Cd−4 must be a compact (d− 4)-dimensional Ricci-flat manifold.

For example, in bosonic string theory in d = 26 dimensions, the simplest such a manifold is
just C22 = T 22, the torus endowed with a flat metric. But there are also a whole host of other
possibilities [27]. Compact, complex manifolds that admit such Ricci-flat metrics are called
Calabi-Yau manifolds9.

The idea consists in the fact that the compact manifold Cd−4 can be enclosed inside a (d−4)-
dimensional sphere of radius L, which goes under the name of characteristic length scale. If
the characteristic length scale L is small enough then the presence of these extra dimensions
would not have been observed in experiment. The Standard Model has been accurately tested to
energies of a TeV, or so. Hence if we suppose the validity of the Standard Model also on C(d−4),
then, by uncertainty principle of Quantum Mechanics, the characteristic length scale must be

L . (TeV)−1 ∼ 10−16cm . (1.108)

1.9.2 Dimensional reduction

After we have compactified the theory, we have to squeeze to zero the compact manifold Cd−4

by the limit L→ 0. This procedure is called dimensional reduction.

Figure 1.5: Compactification on a circle followed by a dimensional reduction. (Courtesy of Wikipedia).

Compactification of the theory gives rise to a remarkable fact. The fields defined in the
non-compactified theory behave different after a compactification. A massless field defined in
the original theory, after a compactification gives rise to an infinite tower of massive fields [66].
Consider a massless complex scalar field Φ(x) living in a d-dimensional Minkowski spacetime. In
the Kaluza-Klein theory, compactification is performed on a circle of radius L,

Md Md−1 × S1 . (1.109)

Assign coordinates x0, x1, ..., xd−2 on the (d− 1) Minkowski spacetime Md−1, and y on the circle
S1, with range 0 ≤ y ≤ 2πL. The complex scalar field Φ(x) must obey the Klein-Gordon
equation

�d Φ(x0, ..., xd−2, y) = 0 . (1.110)

Expand now the complex scalar field in Fourier transform only for the variable y

Φ(x0, ..., xd−2, y) =

∫ +∞

−∞

dp

2π
Φ̃(x0, ..., xd−2, p) eipy . (1.111)

9Strictly speaking, Calabi-Yau manifolds are complex manifolds with vanishing first Chern class. There is a
theorem, due to Yau, which guaranteed the existence of a unique Ricci-flat metric on these spaces.
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The field Φ(x) must satisfies periodicity condition on the circle

Φ(x0, ..., xd−2, y) = Φ(x0, ..., xd−2, y + 2πL) , (1.112)

and this equation, if insert back into (1.111), gives us the “quantisation” of the momentum along
y direction, which now is not a continue variable anymore, but is discrete and labelled by an
integer k

pn =
k

L
k ∈ Z . (1.113)

Since now the momentum is a discrete variable, the Fourier transform becomes a Fourier expan-
sion replacing the integral by the sum

∫ +∞

−∞

dp

2π
−→

∑

k∈Z
. (1.114)

This gives us the discrete expansion of the field Φ(x)

Φ(x0, ..., xd−2, y) =
∑

k∈Z
Φk(x

0, ..., xd−2) ei
ky
L . (1.115)

Insert now the discrete expansion (1.115) back into (1.110) and we get

∑

k∈Z

[
�d−1 −

(
k

L

)2
]

Φk(x
0, ..., xd−2) = 0 . (1.116)

This equation is satisfies if the spacetime function associated to the k-th Fourier mode, namely
Φk, satisfies

[
�d−1 −

(
k

L

)2
]

Φk(x
0, ..., xd−2) = 0 , (1.117)

which represents the equation of motion of a scalar (complex) field of mass m2
k = (k/L)2.

Therefore the spectrum of the theory, as viewed in d-dimensional Minkowski spacetime, contains
an infinite tower of massive scalars.

A similar procedure can be repeated in the cases of massless spinor field and vector field in
Md. In the case of massless vector field the procedure is almost the same of what we have seen
here for the massless scalar, while in the case of massless spinor filed there is one ingredient
more. The spinor filed Ψ is not observable, rather bilinear quantities, such as the energy density
T 00 = −Ψ̄γ0∂0Ψ are observable, and they must be periodic. This implies that spinor field can
be periodic or anti-periodic. This has a repercussion on the mode number k which is an integer
in the periodic case or half -integer in the anti-periodic case. Therefore at the end of the day we
would observe an infinite tower of massive spinor particles with distinct spectra for the periodic
and anti-periodic cases.

The dimensional reduction contemplates after compactification the limit L → 0 and in this
procedure all masses mk go to infinity. We have to keep in mind that we are getting involve
in a “physical limit” and not in a merely “mathematical limit”. This means the limit L → 0
in Physics does not read simply as sending L to zero, as one do in Mathematics. We have to
ask what actually does it mean send L to zero. One reasonable answer could be “L is almost
zero when we are not able to detect it anymore with an experiment”. An famous physical length
which cannot be detected by an experiment is the Planck length lp

lp =

√
~G
c3
≈ 1.616199(97)× 10−35 m . (1.118)
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Therefore the “mathematical” limit L → 0 can be thought as sending L < lp. This has a
consequence in terms of value of masses mn. All of them, except the zero mode which remains
massless, become of the order of Planck mass mP

mP =

√
~c
G
≈ 1.2209× 1019 GeV/c2 . (1.119)

1.10 Consistent truncations

At the end of the Kaluza-Klein dimensional reduction one keeps only the lightest states, usually
massless, of the entire infinite set of harmonic modes. However this process is not consistent
because in general these modes will source the heavier modes [54]. In order to avoid this incon-
sistency one can rather take a consistent truncation of the full set of modes, which by definition
is

Definition (Consistent truncation). Let be {Φk} the whole set of harmonic modes. Let be A ⊂
{Φk} a subset. Then A is a consistent truncation of the full set if the field equations of the
omitted modes {Φk} \ A are not sourced by the modes that are kept A. Thus setting the omitted
modes to zero is consistent with the field equations.

Explain here with an example what concretely a consistent truncation means. Let be ϕ1 and
ϕ2 real scalar fields. Suppose the dynamic is governed by the Lagrangian

L = −1

2
∂µϕ1∂

µϕ1 −
1

2
m2

1ϕ
2
1 −

1

2
∂µϕ2∂

µϕ2 −
1

2
m2

2ϕ
2
2 + λϕ1ϕ

2
2 , (1.120)

where λϕ1ϕ
2
2 is the interaction term. The equations of motion for the fields φ1 and φ2 are

(
�−m2

1

)
ϕ1 = λϕ2

2 ,(
�−m2

2

)
ϕ2 = 2λϕ1ϕ2 . (1.121)

Instead of considering the whole set of fields (ϕ1, ϕ2), let us consider a subset, which can be
(ϕ1, 0) or (0, ϕ2).

• (ϕ1, 0) is a consistent truncation of (ϕ1, ϕ2). If we set ϕ2 = 0 inside the equations of
motion (1.121) we have that ϕ1 satisfies the Klein-Gordon equation and the field ϕ2 does
not appear anymore as a source.

(
�−m2

1

)
ϕ1 = 0 ϕ2 = 0 , (1.122)

and this solution is consistent with the chosen subset (ϕ1, 0).

• (0, ϕ2) is not a consistent truncation of (ϕ1, ϕ2). In fact if we try to set ϕ1 = 0 in the
second equation of (1.121) we have the Klein-Gordon equation for ϕ2, but the first equation
implies also ϕ2 = 0, therefore the equations of motion for this subset are

ϕ1 = 0 ϕ2 = 0 , (1.123)

and this solution is, of course, not consistent with the chosen subset (0, ϕ2).

A consistent truncation, thanks to its property to decouple from the omitted modes, has a
remarkable consequence, which is notable from the above example. Any solution of the lower
dimensional theory (provided by the limit L→ 0) involving modes which are a consistent trun-
cation, when up-lifts, it represents also an exact solution of the equations of motion in the higher
dimensional theory.
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The intriguing aspect of this topic is that exists a few consistent truncations, and they depend
by which manifold one chooses to compactify the theory and by the number of supersymmetries
which are put inside the theory.

Poincarè invariance and renormalisability constrain the Lagrangian to assume some particular
forms. Supersymmetry invariance imposes more strictly conditions to the form of the Lagrangian.
Therefore if we increase the number of supersymmetries some interaction terms are not allowed
inside the Lagrangian and this assures less coupling between the fields which we are playing with.

About the delicate aspect how the choice of manifold can determine consistent truncations,
there is the entire chapter 4 dedicated to it.

1.11 T-duality

One way of motivating the necessity of D-branes is bases on T-duality, so now in this section
we will explain T-duality of the bosonic string theory. Under T-duality transformations, closed
bosonic strings transform into closed strings of the same type (i.e. with same boundary condi-
tions) in the T-dual geometry. The situation is different for open strings, however. The key is to
focus on the type of boundary conditions imposed at the end of the open strings. Even though
we start with Neumann boundary conditions, that are compatible with Poincaré invariance, after
T-duality transformation we end with Dirichlet boundary conditions and Poincaré invariance is
broken. Open strings with Dirichlet boundary conditions must end in a specified positions, which
means in a specified hypersurfaces, called Dp-branes [14].

Physically, much of the importance of Dp-branes resides in the fact that they provides a
remarkable way of introducing non-abelian gauge symmetries in string theory. Indeed non-abelian
gauge fields naturally appear confined to the world volume of multiple coincident Dp-branes. In
this Dp-branes approach to non-abelian gauge theories in string theory is also possible to define
a Higgs mechanism in order to get symmetry breaking.

Let us start considering bosonic string theory in d = 26 with a background of the form

M25 × S1 . (1.124)

The circle is taken to have radius R, so the coordinate on S1 has periodicity

X25 ∼ X25 + 2πR . (1.125)

This periodicity condition on the spacetime has a consequence on the boundary condition of the
string. Consider the closed string. As we move around the string, we no longer need for the
compact direction X25 the condition X25(τ, σ + 2π) = X25(τ, σ), but can be relaxed to

X25(τ, σ + 2π) = X25(τ, σ) + 2πRW W ∈ Z , (1.126)

where W is called winding number and it indicates the number of times the string winds around
the circle and its sign encodes the direction, as shown in Fig. 1.6.
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incorporate the boundary condition (6.1). The expansion is

X25(σ, τ) = x25 + 2α′p25τ + 2RWσ + . . . , (6.2)

where the coefficient of σ is chosen to satisfy (6.1). The dots refer to the

oscillator terms, which are not modified by the compactification.

0 +1 -1

Fig. 6.1. Strings winding around a compact direction.

Since one dimension is compact, the momentum eigenvalue along that

direction, p25, is quantized. Remember that the quantum mechanical wave

function contains the factor exp(ip25x25). As a result, if x25 is increased

by 2πR, corresponding to going once around the circle, the wave function

should return to its original value. In other words, it should be single-valued

on the circle. This implies that the momentum in the 25 direction is of the

form

p25 =
K

R
, K ∈ . (6.3)

The integer K is called the Kaluza–Klein excitation number. Splitting the

expansion into left- and right-movers,

X25(σ, τ) = X25
L (τ + σ) + X25

R (τ − σ), (6.4)

gives

X25
R (τ − σ) =

1

2
(x25 − x̃25) + (α′ K

R
− WR)(τ − σ) + . . . , (6.5)

X25
L (τ + σ) =

1

2
(x25 + x̃25) + (α′ K

R
+ WR)(τ + σ) + . . . , (6.6)

where x̃25 is a constant that cancels in the sum. In terms of the zero modes

α25
0 and α̃25

0 , defined in Chapter 2, the mode expansion is

X25
R (τ − σ) =

1

2
(x25 − x̃25) +

√
2α′α25

0 (τ − σ) + . . . , (6.7)

X25
L (τ + σ) =

1

2
(x25 + x̃25) +

√
2α′α̃25

0 (τ + σ) + . . . , (6.8)

Figure 1.6: Winding modes with W = −1, 0,+1. (Courtesy of [3]).

Let us now consider the mode expansion for a closed string with winding number W . The
expansion for the coordinates Xµ with µ = 0, ..., 24 remains unchanged from the expansion in
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flat 26-dimensional Minkowski spacetime. What change here is only the expansion of X25(τ, σ)
which must take into account the new boundary condition (1.126). This is given by

X25(τ, σ) = x25 + α′p25τ +WRσ + oscillator modes . (1.127)

Since X25 is a compact dimension, the momentum eigenvalue along this direction, p25

must be quantised. Remember that the quantum mechanical wave function contains the fac-
tor exp(ip25x25). As a result, if x25 is increased by 2πR, corresponding to going once around
the circle, the wave function should return to its original value, or in other words, it should be
single-valued on the circle. This implies that momentum in the 25-th direction is of the form

p25 =
K

R
K ∈ Z , (1.128)

where K is called Kaluza-Klein excitation number. Before splitting X25(τ, σ) into right- and left-
moving parts, it is useful to introduce the quantities

pL =
K

R
+
WR

α′
, pR =

K

R
− WR

α′
. (1.129)

The right- and left- modes appearing in X25(τ, σ) = X25
L (σ+) +X25

R (σ−) read

XR(τ − σ) =
1

2
x25 +

1

2
α′pR(τ − σ) + i

√
α′

2

∑

n6=0

1

n
α25
n e−in(τ−σ) ,

XL(τ + σ) =
1

2
x25 +

1

2
α′pL(τ + σ) + i

√
α′

2

∑

n 6=0

1

n
α̃25
n e−in(τ+σ) . (1.130)

How the spectrum of this theory looks like to an observer living in d = 25 non-compact
directions? Each particle state will be described by a momentum pµ with µ = 0, ..., 24 and by a
Kaluza-Klein excitation (labelled by K). The 25-dimensional mass squared is given by

M2 = −
24∑

µ=0

pµp
µ . (1.131)

Again, the mass of these particles if fixed in terms of oscillator modes. The formula, which we
do not give here a proof, reads

M2 =

(
K

R

)2

+

(
WR

α′

)2

+ 2 (NL +NR − 2) , (1.132)

where NL and NR are the number operators of the left- and right- harmonic modes, often called
levels, defined as

NR =

d−2∑

i=1

∑

n>0

αi−nα
i
n , NL =

d−2∑

i=1

∑

n>0

α̃i−nα̃
i
n . (1.133)

The first and the second terms in the mass formula (1.132) are novel. The first term tells
us that a string with K > 0 units of momentum around the circle gains a contribution to its
mass of K/R. And this result match with what we have discovered in the Kaluza-Klein theory.
The second term tells us that a string which winds W > 0 times around the circle picks up a
contribution 2πWRT to its mass, where T = 1/2πα′ is the tension of the string.

The formula (1.132) suggests a striking symmetry of string theory that is not present for
particle theories. Interchanging W ↔ K and simultaneously inverting the compactification
radius, i.e.
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R R̃ = α′/R , (1.134)

leaves the spectrum invariant. This symmetry of the bosonic string is called T-duality. It suggests
that compactification on a circle of radius R is physically equivalent to compactification on a
circle of radius R̃. This equivalence is a clear indication that ordinary geometric concepts and
intuition can break down in string theory at the string scale. As a symmetry at this level,
T-duality is a Z2 discrete symmetry. It can be enlarged, as we will see later, with toroidal
compactification of the theory.

1.11.1 T-duality for Superstrings

Let us nod another time towards the superstring. It turns out the ten-dimensional superstring
theories are not invariant under T-duality. Instead, they map into each other. More precisely,
Type IIA and IIB transform into each other under T-duality, which means that Type IIA string
theory on a circle of radius R is equivalent to Type IIB string theory on a circle of radius α′/R.

Type IIA

R

T←→
Type IIB

α′/R
.

This joint with the transformation of D-branes, since Type IIA has Dp-branes with p even, while
IIB has p odd. Similarly, the two heterotic strings transform into each other under T-duality,
and Type I into Type I′10.

1.11.2 Toroidal compactification

So far we discussed T-duality symmetry for theories compactified on a circle. However this
argument can be extended to theories compactified on a n-dimensional torus Tn, which adds
additional interesting structure. References are [69], [3], [66].

Let us consider closed bosonic string on a toroidal compactified spacetime. Specifically the
spacetime manifold is described by the metric

ds2 =
d−1∑

µ,ν=0

ηµν dX
µdXν +

n∑

I,J=1

GIJ dY
IdY J , (1.135)

where d + n = 26. Here the first term describes flat d-dimensional Minkowski spacetime
parametrised by the coordinates Xµ and the second term describes the “internal” torus Tn

with dimensionless coordinates Y I , each of which has period 2π. The physical sizes and angles
that characterise the Tn can be encoded into the constant internal metric GIJ . For example, in
the special case of a rectangular torus, the n internal circle are all perpendicular and the internal
metric is diagonal

GIJ = R2
IδIJ , (1.136)

where RI is the radius of the Y I circle. The coordinate Y I have periodicity

Y I ∼ Y I + 2π I = 1, ..., n . (1.137)

With these conditions, the closed string boundary conditions can relax to

10Since Type I theory can be seen as an orientifold projection of the Type IIB theory, by analogy Type I′ theory
is an orientifold projection of the Type IIA theory.
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Xµ(τ, σ + 2π) = Xµ(τ, σ) ,

Y I(τ, σ + 2π) = Y I(τ.σ) + 2πW I with W I ∈ Z . (1.138)

Here W I are the winding number which give the number of times that the string winds around
the Y I cycle.

Analyse now the mode expansion. As before, the expansion for the coordinates Xµ with
µ = 0, ..., d− 1 remains unchanged. For the compact coordinates Y I(τ, σ) we have

Y I(τ, σ) = Y I
L (σ+) + Y I(σ−) ,

Y I
L (τ + σ) =

1

2
yI + pIL(τ + σ) +

i

2

∑

n6=0

1

n
α̃Ine

−in(τ+σ) (1.139)

Y I
R(τ − σ) =

1

2
yI + pIR(τ − σ) +

i

2

∑

n6=0

1

n
αIne

−in(τ−σ) .

Because of the winding modesW I and the Kaluza-Klein excitationsKI coming from the compact
geometry of spacetime, we have

pIL = W I +
1

2
KI , pIR = −W I +

1

2
KI , W I ,KI ∈ Z . (1.140)

All the above results hold for the case of no background B fields and a diagonal internal metric
GIJ . Now consider turning on constant background values for the antisymmetric two-form BIJ
and the internal metric GIJ . One can show that in this case pIL and pIR get an enhancement from
the fields BIJ and GIJ , which is

pIL = W I +GIJ

(
1

2
KJ −BJKWK

)
,

pIR = −W I +GIJ

(
1

2
KJ −BJKWK

)
, (1.141)

where, as usual, GIJ denotes the inverse metric.
Again, one can compute the mass spectrum from the point of view of an observer living in d

non-compact directions. Without prove it, the result is

M2 = M2
0 + (NR +NL − 2) , (1.142)

where the second term is the common one which always appear from harmonic oscillators, while
the first one is

M2
0 =

(
W K

)
G
(
W
K

)
, (1.143)

where

G =

(
G−BG−1B BG−1

−G−1B G−1

)
, (1.144)

or the inverse

G−1 =

(
G−1 −G−1B
BG−1 G−BG−1B

)
. (1.145)

These are 2n× 2n matrices written in terms of n× n blocks.
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We can recognise some remarkable symmetries of the mass formula. The first consist in the
inversion symmetry

W I ←→ KI , G ←→ G−1 , (1.146)

and this discrete symmetry represent the extended version of T-duality symmetry of circle com-
pactification. The check is the follow

M2
0 =

(
W K

)(G−BG−1B BG−1

−G−1B G−1

)(
W
K

)
= W (G−BG−1B)W + 2WBG−1K +KG−1K ,

and after the transformation (1.146), again we have

M
′2
0 =

(
K W

)( G−1 −G−1B
BG−1 G−BG−1B

)(
K
W

)
= W (G−BG−1B)W + 2WBG−1K +KG−1K ,

so, transformation (1.146), which is a “generalised T-duality” transformation, is actually a sym-
metry of the mass formula, since M2

0 = M
′2
0 .

But now, in toroidal compactifications, there are additional discrete shift symmetries given
by

BIJ → BIJ +NIJ and W I →W I , KI → KI +NIJW
J , (1.147)

where NIJ is an antisymmetric matrix of integers. Explicitly, after the transformation (1.147),
we have

M̃2
0 =

(
W K +NW

)(G− (B +N)G−1(B +N) (B +N)G−1

−G−1(B +N) G−1

)(
W

K +NW

)

= W (G−BG−1B)W + 2WBG−1K +KG−1K+

−WBG−1NW +WBG−1NW −WNG−1NW +WNG−1NW+

−KG−1NW +KG−1NW −NWG−1NW +NWG−1NW+

+ (WN +NW )G−1K − (WN +NW )G−1BW

= W (G−BG−1B)W + 2WBG−1K +KG−1K = M2
0 .

the terms in the second and third lines cancel in couples, while the terms in the fourth line
cancels because NIJ is antisymmetric.

We can recast the problem more geometrically reproducing the above symmetries with the
action of a matrix A on G and (W Z) as

G → AGA−1 and
(
W
K

)
→
(
W ′

K ′

)
= A

(
W
K

)
. (1.148)

Then the two symmetries above becomes

• Inversion:

AI =

(
0 1n

1n 0

)
. (1.149)

• Shift :

AS =

(
1n 0
NIJ 1n

)
. (1.150)
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These two matrices are element of the O(n, n;Z) group since they preserve a metric which is
similar to the O(n, n;Z) metric, i.e.

ATI,S
(

0 1n

1n 0

)
AI,S =

(
0 1n

1n 0

)
. (1.151)

Combinations of AI andAS are still symmetries of the mass formula and they recover the whole
group O(n, n;Z). We prove here this result. A generic element of the group O(n, n;Z) is of the
form

(
A B
C D

)
, (1.152)

with A,B,C,D n× n matrices with integer entries, constraint by
(
AT CT

BT DT

)(
0 1

1 0

)(
A B
C D

)
=

(
0 1

1 0

)
, (1.153)

which reads




ATC = −CTA
ATD + CTB = 1

BTC +DTA = 1

BTD = −DTB

. (1.154)

Then consider the following compositions of the transformations AI andAS(N), where by AS(N)
we intend the shift given by the antisymmetric matrix N ,

AIAS(N) =

(
N 1

1 0

)
, (1.155)

AS(N) (AIAS(M)) =

(
M 1

NM N

)
, (1.156)

[AS(I) (AIAS(L))] [AS(N) (AIAS(M))] =

(
LM +NM L+N
ILM + INM IL+ IN

)
. (1.157)

Since the composed transformation (1.157) satisfies the O(n, n;Z) conditions (1.154) and since it
is a very generalO(n, n;Z) transformation parametrised by the antisymmetric matricesN,M, I, L,
then the group reached by compositions of inversion and shift transformations is the O(n, n;Z)
discrete group.

Then we have found an important result:

“The T-duality symmetry of toroidal compactifications Tn

is represented by the group O(n, n;Z).”

In fact the T-duality symmetry on circle, which means T 1 = S1, is represented by the group
O(1, 1;Z), which is the discrete group Z2.
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2
Generalised Geometry

If you can’t explain it simply, you don’t understand it well enough.
- Albert Einstein -

Einstein’s General Relativity is a theory whose natural formulation is inside the framework of
differential geometry, called “ordinary geometry”. By “natural formulation” I mean that the
proper way to define all the objects inside the theory, and in particular the equations of motion,
makes use of the language of Riemannian Geometry. At least this is the best result that we are
able to achive nowadays. This approach consists in taking a 4-dimensional manifoldM , equipped
with a metric g, and we define a vector field over M as a section of the fibre bundle TM . Point
by point of M a vector is an element of the tangent space TpM , and a covector, that is its
dual, is an element of the cotangent space T ∗pM . Using the technique of tensor product between
vectorial spaces, one defines a generic tensor field of type (q, r) as a section of

⊗q TM
⊗r T ∗M .

The “general covariance principle”, whose statement tells us that the laws of physics must be the
same in every reference frame, has direct realization in the language of tensors. What this tells
us is that if an equation is written covariantly and is true in a certain reference frame, than it is
true for each reference frame. Hence the tangent bundle is a very important key concept if one
wants to define in a covariant way General Relativity.

Generalised Geometry is an appealing idea given by the mathematician Nigel Hitchin [38]
that he had when he was spending great time in Spain, as he tells in many of his talks. The idea
consists in an extension of ordinary geometry, in particular it consists in “replacing” the tangent
bundle TM by TM ⊕T ∗M in a sense. In this fashion one has to provide the generalisation of all
tools of ordinary geometry. What happens in particular is that one has to give a generalisation
of the definition of Lie derivative, connections, torsions and Riemann tensor. The way one
can do this generalisation is not unique. For this reason it does not exist only one type of
generalised geometry. The type of generalised geometry to choose is suggested by the physical
problem one has to describe. The generalised geometry that we mostly study in this work is
the “Hitchin and Gualtieri” generalised geometry, that is the “TM ⊕T ∗M ” generalised geometry
which is equipped “for free” with the O(d, d)-structure group. But in the other side, in order to
investigate some geometrical properties, such as “Leibniz generalised parallelisability” of round
spheres Sd, that is what we are going to do later, the most natural generalised geometry to
choose is “TM ⊕Λd−2T ∗M ”. Another example of generalised geometry that we are not going to
study in this work, is the generalised geometry with Ed(d)×R+-structure group, which is usefull
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to reformulate eleven-dimensional supegravity, as presented in [16]. What we want to do in this
work is “geometrising” the bosonic structure that appears in Type II Supergravity. What will
happen is that the graviton g, the 2-form B and the dilaton φ are enclosed in a new object that
appears in generalised geometry: the generalised metric.

2.1 The beginning of the generalisation

What we want to do now is to provide a generalisation of the whole set of geometric objects
that we can define in ordinary geometry. The hope is that in this framework we would be able
to understand more “physics” than what we can do up to now. In order to get inside that,
the first step consist to define what is the new space where the new objects live. In the old-
fashioned ordinary geometry this space is the tangent bundle (or tensor products of it). Now it is
represented by the generalised tangent bundle (or tensor products of it). Any generalisation we
are going to do should be motivated by analogy with ordinary geometry, which will represent our
guide, and by preservation of symmetries, such as the invariance under gauge transformations of
B-field or the invariance under diffeomorphisms.

2.1.1 The generalised tangent bundle

Suppose to take a d-dimensional manifold M equipped with an atlas A = {Ui, φi}. Point by
point of the manifold remain defined the tangent space TpM and its dual, the cotangent space
T ∗pM . Recall now how the tangent bundle is defined in ordinary geometry. It is a fibre bundle
where the fibre attached at point p is the tangent space in p. This means we are performing a
union point by point of all the tangent space of the manifold, hence the tangent bundle is

TM ≡
⋃

p∈M
TpM . (2.1)

Now let’s try to do a generalisation in the way conjectured by Hitchin. Rather than consid-
ering only the tangent space TpM and making a union of them point by point in order to obtain
the tangent bundle, let’s try to replace TpM by TpM ⊕ T ∗pM . Therefore the generalised tangent
bundle is defined as

E ≡
⋃

p∈M
TpM ⊕ T ∗pM . (2.2)

Seems clear that a generic element of the generalised tangent bundle (that in a mathematical
language is called “section of E”, or in a physical language “generalised vector fields”) is rep-
resented by a “double component vector field”, in particular the first d entries are the “vector
entries” and, point by point, they live in TpM , while the second d entries are the “one-form en-
tries” and they live in T ∗pM . Formally we can recast all these components into a single generalised
vector field V with components

VM =

(
vµ

λµ

)
, (2.3)

where the capital index M runs from 1 to 2d, while the greek index µ runs from 1 to d.
There is an intriguing aspect concerning the fact that E is not writable trivially as TM⊕T ∗M

because the fibres are intertwined together. However the two bundles, E and TM ⊕ T ∗M , are
isomorphic to each other, and what we will see further is that the isomorphism map between the
two spaces is given by the B-field, which has got the important role in generalised geometry to
“untie” the fibres.

There is another way, more mathematical, to define the generalised tangent bundle, and
consists in defining it via “exact sequence”. For more details see appendix B.

At this point we are not done about the definition of the generalised tangent bundle. We
remind that a complementary and indispensable information inside its definition is given by the
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patching rules. Each definition of fibre bundle must keep into account the patching rules, and
the generalised tangent bundle does not give an exception. So what we are going to do now is
defining the “patching rules” for the generalised tangent space1.

2.1.2 Patching rules

Before merely talking about patching rules, that seems a purely mathematical topic, I would like
to provide some physical reasons why patching rules are important, in order to make happy the
physical sense of the reader (and the writer as well).

Let’s consider electromagnetism.. The electromagnetic theory is a gauge theory whose geo-
metrical interpretation is best described by a U(1)-principle bundle (further informations about
principle bundle are available in appendix A). Suppose to take a manifoldM which is equipped of
a maximal atlasA = {Ui, φi} (for concreteness the reader can think to a 4-dimensional Minkowski
space). To each point p in the manifold remains associated a fibre that is an element of U(1)
group. Since U(1) is one-dimensional Lie group, the adjoint representation of U(1) elements is
also one-dimensional. Therefore the fibre at point p is of the form eiα. Let us pick up a generic
point p of the manifold which is covered by two charts Ui and Uj . Let be eiαi and eiαj the two
fibres in p associated to the two charts respectively. The patching rule consist in providing a
mathematical formula that expresses how the fibres “match together” in the overlap of the open
sets Ui and Uj . This rule is local because it has validity only in the neighborhood of the point p
where the overlap of the two charts is not the empty set. Now we have to figure out how to define
this patching rule. We should start by the fact that U(1) is a compact Lie group. Therefore if
we have two generic elements A and B, then exists a third element C such that A = B ◦C. This
is just only by the closure property of groups. Hence we can guess that there is a real function
Λij , that depends by the chosen point p, such that

eiαi = eiΛijeiαj , (2.4)

which means that the two fibres eiαi and eiαj are equal to each other up to a rotation in the
complex plane.

But if we want to make striking the physical meaning of the formula (2.4) we have to look at
the connection on the U(1)-principle bundle, which is represented by the one-form A = Aµ dx

µ.
In physics the U(1)-principle bundle connection is called “electromagnetic gauge vector field ”
and it represents the field associated to the photon. Let be Ai and Aj the connections defined
respectively in the charts Ui and Uj . This two connections are related between each other, and
the way they are related is imposed by the patching rule (2.4). This particular relation, that we
are not going to prove, but that the curious reader can find in [46], is the following

Ai = Aj + dΛij , (2.5)

and in components reads

Aiµ = Ajµ + ∂µΛij . (2.6)

This is nothing else than the well-known gauge transformation rule of the electromagnetic po-
tential Aµ.

The real function Λij , which is manifestly antisymmetric in i and j, must satisfy a cocycle
relation in order to patch correctly in the threefold intersections. In fact, given a point p and
the covering charts Ui ∩ Uj ∩ Uk 6= ∅, by consistency we have

Ai = Aj + dΛij = Ak + dΛij + dΛjk = Ai + dΛij + dΛjk + dΛki , (2.7)

that implies
1The patching information is actually the definition of the extension given in appendix B. They are not distinct.
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d(Λij + Λjk + Λki) = 0 ⇐⇒ Λij + Λjk + Λki = const . (2.8)

The constant can be determined using a physical condition. Let’s consider the wave function
that describes our physical state in a Hilbert space. After a gauge transformation we know that
the two wave functions are related each other by an element of the U(1) gauge group. Suppose
ϕi is the initial wave function and ϕj is the final wave function after a gauge transformation,
then they are related by

ϕi = eiΛijϕj . (2.9)

After three gauge transformations in the triple patching, the wave function must return to its
initial value

ϕi = ei(Λij+Λjk+Λki)ϕi ⇐⇒ ei(Λij+Λjk+Λki) = 1 , (2.10)

whose solution is

Λij + Λjk + Λki = 2πn n ∈ Z . (2.11)

This argument, if extended, leads to the existence of the magnetic monopole, but we won’t to
pursue this topic here.

Now that we are motivated enough by some physical reasons in order to study the patching
rules, let’s start to review how the patching rules are defined for the tangent bundle in ordinary
geometry.

Again, let’s take a manifold M which is equipped of a maximal atlas A = {Ui, φi}, pick up a
generic point p and look at the non trivial overlap of two open sets p ∈ Ui ∩Uj 6= ∅ that contain
the point p. Let’s take coordinates x in Ui and y in Uj . Let be v a generic vector field. Requiring
the coordinate-free property of v one can write

v = vν
∂

∂xν

∣∣∣∣
p

= v′µ
∂

∂yµ

∣∣∣∣
p

, (2.12)

and using the chain rule, one obtain the patching rule between the vector components

v′µ =
∂yµ

∂xν

∣∣∣∣
p

vν . (2.13)

Now we should figure out the patching rules for the generalised tangent bundle starting from
some analogy with the patching rules for the tangent bundle. What we can say is that

(I) when the “form components” of a generalised vector field are switched off, then the gener-
alised vector field must transform as an ordinary vector field.

(II) the “form components” must transform in a way that recover the gauge transformations of
the B-field.

In order to satisfy the previous two conditions, the patching rules for a generalised vector
field must be of the form

v(i) = Aij v(j) , (2.14)

λ(i) = A−Tij λ(j) + iv(j)
dΛij ,

where Aij is an element of GL(d,R) and it represents the jacobian matrix ∂yµ

∂xν that appear in
the patching rules for the tangent bundle. Acting on vectors it is of the form Aij , while acting
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on one-forms, in order to preserve the inner product between vectors and one-forms, it is on the
form A−Tij . Λij is a one-form that provides the gauge transformations of the B-field

B(i) = B(j) − dΛij . (2.15)

I want to make a clarification about the notation used: i(·)(·) is the inner product between
vectors and one-forms using the contraction of the indices, i.e. ivλ = vµλµ. The subscripts i and
j are not indices, but are labels referred to the two open sets Ui and Uj in which the objects are
defined.

In a more familiar notation using indices, the equations (2.14) and (2.15) becomes

v µ(i) = (Aij)
µ
ν v

ν
(j) , (2.16)

λ(i)µ = (Aij)
ν

µ λ(j) ν + v ν(j)∂[νΛ|ij|µ] ,

and
B(i)µν = B(j)µν − ∂[µΛ|ij|ν] . (2.17)

We can see that talking about the patching rules the B-field makes its first appearance in
generalised geometry. In fact the patching rules must taking into account the gauge transforma-
tions of the B-field in the way showed above. But a natural question that should arise at this
point is: “does the B-field play a particular role in generalised geometry?”. The answer is yes, it
does and in the paragraph 2.3.4 we are going to explain its role. But before do that we have to
introduce the O(d, d) structure in generalised geometry.

2.2 The extension of the concept of “diffeomorphism”

The concept of diffeomorphism is very important in physics, especially in General Relativity that
is a (geometrical) theory of the gravitation interaction. In nature there are four fundamental
interactions. They are the gravitational, the electromagnetic, the strong nuclear and the weak
nuclear. What makes each interaction different from the others is the gauge group. When you
define a gauge group, you define an interaction. In a gauge group, that is a Lie group, in order to
choose a particular element, we have to specify the value of a set of parameters that are in number
equal to the dimension of the group. For each parameter remains associated a gauge boson and
its mass determines the range of the interaction. The electromagnetic interaction is governed
by the gauge group U(1) with one massless gauge boson that is called “photon”, therefore it
is a long range interaction. The nuclear strong interaction has the gauge group SU(3) with
eight massless gauge bosons, called “gluons”. Again, it is a long range interaction (with property
of confinement at low energies and asymptotic freedom at hight energies). The nuclear weak
interaction is characterized by the SU(2) gauge group with three massive gauge bosons, called
W+, W− and Z0 bosons. It is a short range interaction. Actually these are not gauge bosons
inside the only SU(2) gauge group, but they are a combination of the four gauge bosons inside
the group SU(2)× U(1) that appears in the electro-weak unification in the Standard Model.

The gauge group for the gravitational interaction is the diffeomorphism group, indicated by
Diff(M)2. The generators of the algebra associated to the diffeomorphism group are the vector
fields defined over the manifold. Each algebra is equipped by a brackets which represent the
“multiplication rule”, and the one associated to the algebra of the diffeomorphism group are the
Lie brackets. Given v = vµ∂µ and w = wµ∂µ vector fields, they are defined as

[v, w] ≡ (vµ∂µv
ν − wµ∂µvν) ∂ν (2.18)

2If the manifold M is simply Rd, then the diffeomorphism group becomes the general linear group GL(d,R),
which consist of all the possible invertible transformation one can think in d dimensions. To be honest, GL(d,R)
is not exactly the diffeomorphism group of Rd, but it is its deformation retract, which means that Diff(Rd) can be
continuously deformed into GL(d,R) in the sense of homotopy. I want to stress the fact the reader should keep
in mind that only on Rd the retract of Diff(Rd) is the group GL(d), but for a general manifold is not.
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Inside the abstract definition of a Lie algebra g on a field F, the bracket [·, ·] : g×g→ g must
satisfies the properties

1. (Bilinear) ∀ X,Y, Z ∈ g and a, b ∈ F

[aX + bY, Z] = a[X,Z] + b[Y, Z] ,

[Z, aX + bY ] = a[Z,X] + b[Z, Y ] ;

2. (Skew-symmetric) ∀ X,Y ∈ g

[X,Y ] = −[Y,X] ;

3. (Leibniz rule) ∀ X,Y, Z ∈ g

[X, [Y, Z]] = [[X,Y ], Z] + [Y, [X,Z]] .

It is quite trivial to show that the Lie bracket defined as in the equation (2.18) satisfies the
above properties of bilinearity, skew-symmetry and the Leibniz rule. In particular, thanks to the
skew-symmetry property, the Leibniz rule can be rewritten as the Jacoby identity :

[X, [Y, Z]] + [Y, [Z,X] + [Z, [X,Y ]] = 0 . (2.19)

The physical interpretation of the Lie bracket is given by the fact that if we move in the direction
of v and then in the direction of w we will not end at the same point that we would be if we
move first in the direction of w and then in the direction of v. But the difference between the
two end points is (a vector) given by the Lie bracket [v, w].

Now consider a flow generated by a vector field v. If we follow point by point the “arrows”
given by the vector field we can draw a trajectory which can be parametrised by a real parameter
τ that can be think to be, for instance, the proper time of the particle. If at the beginning the
particle is at the point x, after the proper time τ it will be at point y that is given by the flow
associated to the vector field v, in formula we write y = φv(τ, x).

The flow φv(τ, x) can be think as a “one-parameter group of diffeomorphism”. For each vector
field v remains defined a one-parameter group of diffeomorphism φv(τ, x), and vice-versa.

Now suppose to take another vector field w, or to be more general, a tensor field with
components Tµ1...µp

ν1...νq . Now we wonder what happens to the tensor component if we perform an
infinitesimal diffeomorphism yµ = xµ + τvµ +O(τ2). The answer is given by the Lie derivative
along the vector field v. In particular the Lie derivative tells us how a generic vector field changes
along the direction of v. In formula

δT
µ1...µp
ν1...νq (x) = T

′µ1...µp
ν1...νq (x)− Tµ1...µp

ν1...νq (x) = LvTµ1...µp
ν1...νq (x) . (2.20)

Therefore the Lie derivative plays an important role in encoding the infinitesimal diffeo-
morphism. Concretely the Lie derivative respect v for a vector field w coincides with the Lie
bracket

Lvw = [v, w] , (2.21)

hence also the Lie derivative satisfies the properties of bilinearity , skew-symmetry and the Jacoby
identity.

Summarizing we understood that there are two important objects to consider when we talk
about the diffeomorphism group, i.e. the gauge group for the gravitational interaction. They
are the Lie brackets and the Lie derivative which a priori they are two different objects, with
different physical meaning. Only at the end one can show that their expressions coincide.

Keeping in our mind this facts of ordinary geometry, let’s generalise Lie derivative and Lie
brackets inside the framework of generalised geometry.
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2.2.1 Dorfman derivative

In trying to generalise the Lie derivative, the best natural way to do that is requiring that the
properties of the Lie derivative in ordinary geometry are preserved. This means that for each
real scalar function α ∈ F(M), generalised vector fields V,W ∈ E and generalised tensor fields
A ∈ E⊗n, B ∈ E⊗m, the Dorfman derivative is a map

L(·)(·) : Γ(E)× Γ(E⊗n)→ Γ(E⊗n) (2.22)

with the properties

(1) LV (α) = π(V )[α] = v[α] ,

(2) LV (αA) = αLVA+ V [α]LVA ,

(3) LV (A⊗B) = (LVA)⊗B +A⊗ (LVB) ,

(4) LV (W [α]) = V [W [α]] = (LVW )[α] +W [V [α]] ,

(5) π(LVW ) = Lπ(V )π(W ) = Lvw .

where π is the projection map π : E → TM defined in the appendix B, i.e. π(V ) = v, where v
is the vector component of V , and V [α] is the action of the generalised vector fields V on the
function α, i.e. V [α] = VM∂Mα, where ∂M can be chosen as discussed in section 2.3.1.

The request (1) to (4) are the natural generalisation of the property of the ordinary Lie
derivative. The really new one is the request (5) which tells us that the projection of the
generalised Lie derivative of a generalised vector (that is a generalised vector) is simply the
ordinary Lie derivative.

Keeping in mind the above properties, a way to define the “generalised Lie derivative”, due
to Irene Dorfmann (1987), is the following

Definition (The Dorfman derivative). Let be V =
(
vµ λµ

)T and W =
(
wµ ζµ

)T generalised
vector fields, then the Dorfman derivative of a vector field is defined as

LVW ≡
(

Lvw
Lvζ − iwdλ

)
. (2.23)

This definition can be extended to a generic generalised tensor field of rank n,

A =

(
aµ1...µn

bµ1...µn

)
∈ Γ(E⊗n) .

but it is more easy to do that using the formalism that we will treat in the paragraph 2.3.
Notice that inside the definition 2.23 appear only Lie derivatives respect the vector field v,

i.e. Lv(·). This is related the fact that the Lie derivative respect a one-form doesn’t exist as a
mathematical object. Another question concern the extra term “−iwdλ”. The reason because
we introduce it is due the fact that the Dorfman derivative must encode the infinitesimal trans-
formations of the whole symmetry group Ω2

cl(M)oDiff(M), which consist in the diffeomorphism
and in the gauge transformations of the B-field. Therefore since the gauge transformation of the
B-field is δB = dλ, the extra term −iwdλ is a consequence of this gauge transformation on the
1-form. The Dorfman derivative enjoys the following results

Proposition 2.1. The Dorfman derivative, defined as in (2.23), satisfies the property of bilin-
earity and the Leibniz rule, but it does not satisfy the property of skew-symmetry.
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These properties are easy to check and in particular it is immediate to see from the definition
(2.23), that Dorfman derivative loses the skew-symmetry property. For this reason Dorfman
derivative does not satisfy the Jacoby identity, because Jacoby identity is a consequence of two
properties: skew-symmetry and Leibniz rule. But if Dorfman derivative was also skew-symmetric,
than it would be bought as “Lie bracket” of an algebra. Actually this is not the case, thus we
have to define the “Courant bracket”.

We will see later in the paragraph 2.3 how one can rewrite the Dorfman derivative in a more
familiar way, which will represent the formal link between Generalised Geometry and Double
Field Theory.

2.2.2 Courant bracket

After have generalised the Lie derivative, one should generalise the Lie bracket as well. Remind
that the Lie bracket must be skew-symmetric because are bracket over a Lie algebra. Therefore
we would like to preserve this property also in generalised geometry. Firs we can not define
the generalised Lie bracket as the same of the Dorfman derivative because, as we noticed in
the previous paragraph, the last one is not skew-symmetric. Therefore one define the Courant
bracket

Definition (Courant bracket). Let be V =
(
vµ λµ

)T and W =
(
wµ ζµ

)T generalised vector
fields, then the Courant bracket is defined as as the antisymmetric part of the Dorfman derivative,
i.e.

JV,W K ≡ 1

2
(LVW − LWV ) , (2.24)

which can be written more explicitly

JV,W K =

(
[v, w]

Lvζ − Lwλ− 1
2d (ivζ − iwλ)

)
. (2.25)

The Courant bracket satisfies the following properties

Proposition 2.2 (Properties of Courant bracket). The Courant bracket J , K satisfies the prop-
erties

(I) skew-symmetry
JV,W K = −JW,V K

(II) Failure of the Jacoby identity

JJV,W K, ZK + JJW,ZK, V K + JJZ, V K,W K =
1

3
d(〈JV,W K, Z〉+ 〈JW,ZK, V 〉+ 〈JZ, V K,W 〉

The property of skew-symmetry is immediate from the definition of Courant bracket, while
the proof of the second property is available in [38].

2.3 The O(d, d) structure

I want to advise the reader that in this paragraph we are going to follow an heuristic procedure.
This procedure will allow us to define “for free” an O(d, d) structure on the generalised tangent
bundle. It is perfectly acceptable the axiomatic approach, followed by [38], with consist to
assume from the beginning the existence of a generalised tangent bundle equipped with an
O(d, d) structure.

Let us consider the Dorfman derivative and the Courant bracket of the generalised vector
fields V =

(
vµ λµ

)T and W =
(
wµ ζµ

)T . From their definitions it is clear the two objects
don’t coincide. Thus let’s try to compute the difference between them.
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JV,W K ≡ 1

2
(LVW − LWV ) =

1

2

(
Lvw − Lwv

Lvµ− iwdλ− Lwλ+ ivdµ

)
(2.26)

=

(
[v, w]

1
2 (Lvµ− iwdλ− Lwλ+ ivdµ)

)
=

(
[v, w]

Lvµ− Lwλ− 1
2d (ivµ− iwλ)

)

=

(
[v, w]

Lvµ− iwdλ

)
−
(

0
1
2d (ivµ+ iwλ)

)
= LVW −

(
0

1
2d (ivµ+ iwλ)

)
,

where we used the Cartan formula for the Lie derivative of a 1-form µ respect the vector field v

Lvµ = ivdµ+ divµ . (2.27)

Hence we have

LVW − JV,W K =

(
0

1
2d(ivζ + iwλ)

)
. (2.28)

The form component of this difference is the differential of a scalar which is bilinear and
symmetric in the V and W components. Therefore the question now is the following, why not
buy this expression as a scalar product between V and W defined by a certain metric? If we are
happy with that, we can figure out the metric that induce the scalar product 〈·, ·〉

〈V,W 〉 =
1

2
(ivζ + iwλ) =

(
v λ

) 1

2

(
Od×d 1d×d
1d×d Od×d

)(
w
λ

)
. (2.29)

The metric which defines the scalar product has eigenvalues

det
[
λ12d×2d −

1

2

(
Od×d 1d×d
1d×d Od×d

)]
= λ2d − 1

4
= 0 =⇒ λ = ±1

2
, (2.30)

and therefore it is similar, up to a constant factor 1/2, to the metric preserved by the elements
of the group3 O(d, d),

ηMN =
1

2

(
Od×d 1d×d
1d×d Od×d

)

MN

' 1

2

(
1d×d Od×d
Od×d −1d×d

)

MN

. (2.31)

Since the two metrics are similar, then the two groups are isomorphic. Hence we are allowed
to consider the group O(d, d) up to an isomorphism.

The idea now consists in promoting O(d, d) group as a structure group on the generalised
tangent bundle. This is what I mean when we say “generalised geometry has an O(d, d) structure
for free”. In fact in ordinary geometry there is not a structure over the tangent bundle, or
alternatively, there is only the trivial structure given by the group GL(d,R). Imposing a G-
structure, geometrically, means that we are allowed to choose on the tangent bundle only the
reference frames related to each other by a transformation induced by an element of the group
G. For instance, an O(d) structure in ordinary geometry restrict the choice to the orthonormal
frames on the tangent bundle.

2.3.1 Connection with Double Field Theory

The Dorfman derivative, defined by the equation (2.23), can be rewritten in a way more close to
the definition of Lie derivative of a generic tensor field.

Recall the definition of Lie derivative of a vector field w in a coordinate basis {∂µ}

Lvwµ = vν∂νw
µ − wν∂νvµ , (2.32)

3I just remind that almost every group of matrices is defined by a quadratic constraint, which usually consists
in preserving a particular type of matrix. The choice of the matrix which is preserved defined the group. For

instance, the group O(p, q) is defined as {M ∈ GL(d,R)|MηMT = η, p+ q = d}, with η =

(
1p×p O

O −1q×q

)
.
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recall also the definition of Lie derivative of a 1-form ζ

Lvζµ = vν∂νζµ + (∂µv
ν)ζν . (2.33)

The most general definition of Lie derivative of a tensor field Tµ1...µp
ν1...νq ∈ Γ(TM⊗p ⊗ T ∗M⊗q) is

LvTµ1...µp
ν1...νq = vµ∂µT

µ1...µp
ν1...νq (2.34)

+ (∂µv
µ1)T

µµ2...µp
ν1...νq + · · ·+ (∂µv

µp)T
µ1...µp−1µ
ν1...νq

− (∂ν1v
µ)T

µ1...µp
µν2...νq − · · · − (∂νqv

µ)T
µ1...µp
ν1...νq−1µ ,

where the terms on the second and third lines can be viewed as the adjoint action of the gl(d,R)
matrix aµ ν = ∂νv

µ on the particular tensor field T . A sketch of proof of the formula (2.34) can
be found in [46].

All the above definitions can be extended also in generalised geometry, taking care to define
opportunely the coordinate basis {∂M}. Let’s try to compute more explicitly the Dorfman
derivative of a generalised vector field W using the index notation

LVW =

(
[vµ∂µw

ν − (∂µv
ν)wµ] ∂µ

[vν∂νζµ + (∂µv
ν)ζν − wν∂νλµ + wν∂µλν ] dxµ

)
(2.35)

=

(
vν∂νw

µ∂µ
vν∂νζµdx

µ

)
+

(
0

[(∂µv
ν)ζν + (∂µλν)wν ] dxµ

)
−
(

(∂νv
µ)wν∂µ

(∂νλµ)wνdxµ

)

First notice that one can embed the action of the partial derivative operator into generalised
geometry using the map4 T ∗M ι−→ E. Now we perform the following choice of ∂, viewed as a
map to a section of E∗

∂M =

{
∂µ for M = µ

0 for M = µ+ d
, (2.36)

and one can rewrite the equation (2.35) in terms of generalised objects

LVW =
[
V N∂NW

M +
(
∂MV N − ∂NVM

)
WN

]
∂M . (2.37)

Raising and lowering indices is done by the O(d, d) metric ηMN . I want to stress a subtle
point, related to the definition (2.36) of the partial derivative operator. This definition is not
covariant and is intended to work when the operator ∂ is applied to a generalised tensor field.
In fact the operator ∂ is a map into section of E∗ and has no sense define it to be zero in the
form components when it is not applied to something. Therefore what we intend here is

∂µ+d[ everything ] = 0 . (2.38)

The formula (2.36) is very important for another reason: it represents the link with the Double
Field Theory! In fact in Double Field Theory one makes double the target space introducing
extra coordinates x̃, defines a generalisation of the objects and at the end of the day one imposes
a constraint in order to get rid of the extra degrees of freedom. One choice of constraint in
Double Field Theory is

(x, x̃+ a) ∼ (x, x̃) ∀ a ∈ Rd . (2.39)

Following the procedure of making double the set of coordinates has a direct consequence
in the tangent bundle, which now it is a 2d dimensional vector space. The new thing which
appears is a structure. In particular one can show (see [1], [42], [71]) that the group structure is
exactly O(d, d), the same which appears in generalised geometry. A brief review about Double

4Further informations about formal aspect of the generalised geometry are available in the appendix B.

46



Field Theory is available in appendix C. The constrain (2.39) actually represent the analogous
of the constraint we use in generalised geometry, given by the equation (2.36). Since the partial
differential operator in Generalised Geometry is locally defined in a chart, and since the constraint
equation for Double Field Theory (2.39) is a local relation valid point by point x on the manifold,
the two approaches match at least locally.

I want to mention that some Physicist use the constraint

x̃ = 0 , (2.40)

instead the less strictly one given by the equation (2.39). The difference between the two choices
is subtle and it manifests in terms of the O(d, d) metric. In fact in the “non covariant” constraint
(2.40) we can require to define the O(d, d) metric η just only on a submanifold of the double
target space, i.e. only on the subspace defined by x̃ = 0. On the other side, the constraint (2.39)
requires the metric η is globally defined in the whole double target space. It is clear that in the
last case the constraint in less strictly but we have require more conditions in terms of the metric
η, while in the first case we have the opposite situation.

The constraint (2.36) for the generalised geometry is not covariant and it is more similar to
the constraint (2.40) for the Double Field Theory. However there is a covariant form of the same
constraint given by

ηMN∂Mf ∂Ng = 0 ∀ f, g real functions , (2.41)

which has solution for the operator ∂M exactly the equation (2.39). However I want to remark
that the above equation does not add new informations, but it is just only a covariant way to
express the same information.

Come back now to the equation (2.35) of the Dorfman derivative expresses in terms of gener-
alised indices. For the Lie derivative of a tensor field (2.34), we showed that appears the adjoint
action of the gl(d,R) matrix, i.e. an element of the Lie algebra of the trivial structure group
GL(d,R) which appears in ordinary geometry. For the Dorfman derivative happens something
similar. Remember that in generalised geometry there is a non trivial O(d, d) structure group.
In fact what happens is that the second and the third terms which appear in the equation (2.35)
represent the adjoint action of the o(d, d) matrix AMN = ∂MV N − ∂NVM .

After this consideration it is easy to guess the form of the Dorfman derivative for a type (p, q)
generalised tensor field

L(·)(·) : Γ(E)× Γ(E⊗p)⊗ Γ(E∗⊗q)→ Γ(E⊗p)⊗ Γ(E∗⊗q)

LV T
M1...Mp

N1...Nq
= V N∂NT

M1...Mp

N1...Nq
(2.42)

+
(
∂M1V N − ∂NVM1

)
T

M2...Mp

NN1...Nq
+ ...+

(
∂MpV N − ∂NVMp

)
T
M1...Mp−1

N1...Nq N

− (∂MVN1 − ∂N1VM )T
MM1...Mp

N1...Nq
− ...−

(
∂MV Nq − ∂NqVM

)
T
M1...Mp M
N1...Nq−1

In a similar way, one can rewrite also the Courant bracket in the indices notation

JV,W KM = V N∂NW
M −WN∂NV

M − 1

2

(
VN∂

MWN −WN∂
MV N

)
(2.43)

2.3.2 What is a G-structure?

The formal definition in Differential Geometry is the following

Definition (G-structure). Given a d-manifold M , for a given structure group G, a G-structure
is a G-principal subbundle of the tangent frame bundle FM .
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Definition (Tangent frame bundle). The tangent frame bundle of a smooth manifold M is the
frame bundle associated to the tangent bundle of M .

Definition (Frame bundle). The frame bundle is a principal fibre bundle associated to any vector
bundle V . Its fibre over a point p ∈M is the set of all ordered bases, or frames, for V |p.

Definition (Principal fibre bundle). A principal fibre bundle (or simply, principal bundle) is a
special case of fibre bundle where the fibre is a Lie group G.

Definition (Vector bundle). A vector bundle is a fibre bundle whose fibre attached point by point
on the manifold is a vector space.

Concretely, a G-structure represents a way to chose the reference frame in the tangent bundle.
In more details, one chooses a point p ∈ M , take the tangent space TpM . and pick up a basis
for this vector space. For instance, if one wants to choose the coordinate basis, then the basis
for the tangent space is induced by chart chosen.

Suppose to define the group G as the set of matrices which preserve a certain metric tensor
A, which we call OA

OA ≡ {M ∈ GL(d,R)|MAMT = A} , (2.44)

e.g. if A = δ then we have the group O(d), if A = η(p,q) then we have the group O(p, q), if
A = Ω, i.e. the symplectic matrix, then we have the symplectic group5 Sp(d,R).

Imposing a G-structure means that for the basis {êa|p} the scalar products between the
couples of vectors must satisfy the following condition

〈êa, êb〉 = Aab . (2.45)

Any other reference frame {ê′a|p} related to the above by an OA transformation, i.e.

ê′a = Aa
b êb A ∈ OA (2.46)

is still a legitimate reference frame which satisfies the equation (2.45). This is what we mean by
“choosing the reference frames”.

For instance, choosing the O(d)-structure means that we are restricting our attention only
to the orthonormal frames.

2.3.3 Symmetries of E

We showed that generalised geometry is equipped with an O(d, d)-structure. This fact has a
repercussion on the choice of reference frame in the generalised tangent bundle. In particular,
what we mean, is that the choice of reference frames is restricted to a basis of generalised vector
fields {ÊM} which satisfies

〈ÊM , ÊN 〉 =
1

2

(
O 1

1 O

)
(2.47)

The choice of the basis {ÊM} is not unique, but is define up to an O(d, d) transformation.
This arbitrariness on the choice of the basis is what we mean by “symmetries of E”.

In this paragraph we analyse in detail which are the symmetries of E, studying the group
O(d, d). Since O(d, d) is a Lie group, it is more easy to hand out the formulas on its algebra
o(d, d), and then, exponentiating linear combinations of the generators, we will reconstruct the
group O(d, d)6.

5With d an even number.
6Actually what we are able to reconstruct continuously is only the part connected to the identity 1 of the

group O(d, d), which is SO(d, d). But then each element of O(d, d) can be reached from an element of SO(d, d)
by a multiplication of an element of Z2.
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One can start to linearise around the identity an element of O(d, d),

O = 1+ εT +O(ε2) ε� 1 , (2.48)

and impose the constraint

OηOT = η with η =
1

2

(
O 1

1 O

)
. (2.49)

Then we have

[
1+ εT +O(ε2)

]
η
[
1+ εT +O(ε2)

]T
= η , (2.50)

which gives us, neglecting terms O(ε2)

Tη = −(Tη)T . (2.51)

Start from a generic form of T ,

T =

(
A C
B D

)
with A,B,C,D ∈ GL(d,R) , (2.52)

and imposing the constraint (2.51), we obtain the following conditions




A = −DT

B = −BT

C = −CT
. (2.53)

Renaming C = β, we have found by the conditions above, that any generator of the O(d, d)
group, in the representation which acts on sections of E, is fixed by

• endomorphism A : TM → TM ,

• skew-symmetric map B : TM → T ∗M ,

• skew-symmetric map β : T ∗M → TM ,

and at the end we have

T =

(
A β
B −AT

)
. (2.54)

Exponentiating T we reach a generic element SO(d, d). We analize now the three type of
SO(d, d) transformations that we can have. Notice that the exponentiation process is straight-
forward because of

(
0 0
B 0

)2

= 0

(
0 β
0 0

)2

= 0 (2.55)

which is a consequence to be upper/lower triangular matrix.

(I) (B-transformation) Set A = 0, β = 0,

exp

[(
0 0
B 0

)]
=

(
1 0
B 1

)
. (2.56)

It is useful to think of a B-transformation as a shear transformation, which fixes projections
on TM and acts by shearing in the T ∗M direction. For a shorter notation we will adopt
eB instead the above expression.
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(II) (β-transformation) Set A = 0, B = 0,

exp

[(
0 β
0 0

)]
=

(
1 β
0 1

)
. (2.57)

Again, it is useful to think of a β-transformation as a shear transformation, which fixes
projections on T ∗M and acts by shearing in the TM direction.

(III) (GL(d)-transformation) Set β = 0, B = 0,

exp

[(
A 0
0 −AT

)]
=

(
exp(A) 0

0 exp(AT )−1

)
. (2.58)

Since GL(d) ⊂ O(d, d), the above transformation represent a way to embed GL(d) inside
O(d, d).

The B-transformation is more fundamental than the β transformation. A mathematical
reason is due to the fact the (0, 2) tensor fields (B-like tensor fields) can be a connections, while
the (2, 0) tensor fields (β-like tensor fields does not.

The physical motivation is given by the fact the B field is related to the 2-form B, which
represent d(d − 1)/2 d.o.f. inside the NSNS sector in Type II Supergravity theories. Therefore
from here when we will talk about O(d, d) transformations we will always restrict to A and B
transformations.

The B-field must satisfy another property more than skew-symmetry. This requirement is due
to the fact generalised geometry must be “invariant” under O(d, d) transformations. Generalised
geometry actually is defined to be the set (E, 〈 , 〉, J , K, π) which has the property to be an exact
Courant algebroid. Here E is not defined in the heuristic way presented by the formula (2.2),
but is defined by an “exact sequence”. Further details about these topics are available in the
appendix B. What we have to impose is that the O(d, d) transformations let invariant the whole
set (E, 〈 , 〉, J , K, π). We have the following result

Proposition 2.3. The exact Courant algebroid (E, 〈 , 〉, J , K, π) is O(d, d) invariant if and only
if B is closed.

Proof. We have to prove that the scalar product and the Courant bracket and anchor are invari-
ant. The only non trivial part is related to the B transformation. Let be

V =

(
v
λ

)
W =

(
w
ζ

)
, (2.59)

and the transformed by a B-transformation

V ′ = eBV =

(
v

λ+ ivB

)
W ′ = eBW =

(
w

ζ + iwB

)
. (2.60)

• Scalar product

〈V ′,W ′〉 =
1

2
[iv(ζ + iwB) + iw(λ+ ivB)] =

1

2
(ivζ + iwλ) +

1

2
(iviw + iwiv)B = 〈V,W 〉 ,

(2.61)
where in the last step we used the skew-symmetry property of B in order to cancel the
term (iviw + iwiv)B.

Notice that the condition of preserving the scalar product does not impose something new
on B.
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• Courant bracket

From the definition of Courant bracket (2.25), first we expand

JV ′,W ′K = JV,W K +

(
0

LviwB − LwivB − 1
2d (iviwB − iwivB)

)
. (2.62)

The last two terms give d(iviwB) = LviwB− ivd(iwB) by the Cartan formula, and so yield

JeBV, eBW K = JV,W K +

(
0

LviwB − LwivB − d (iviwB)

)
=

= JV,W K +

(
0

LviwB − iwd (ivB)

)
=

= JV,W K +

(
0

i[v,w]B + iwLvB − iwd (ivB)

)
=

= JV,W K +

(
0

i[v,w]B + iwivdB

)
=

= eB (JV, W K) +

(
0

iwivdB

)
.

Therefore we see that eB is an automorphism of the Courant bracket if and only if iviwdB =
0 for all v, w, which happens precisely when dB = 0.

• Anchor

π(V ′) = π

[(
v

λ+ ivB

)]
= v = π(V ) , (2.63)

which is automatically satisfied for every B.

Since the the B field must be a closed 2-form, we decide to choose it as the differential of a
1-form, i.e. B = dΛ. In this way B is also exact. This B field is related to the 2-form B, d.o.f.
inside the NSNS sector. B is defined modulo a gauge transformation

Bj = Bi + dΛij , (2.64)

and the physical connection between generalised geometry and physics is given from the choice
of B exactly to be the gauge transformation dΛij . In this manner B is defined locally on the
intersection of two charts Ui ∩ Uj , therefore it has got two chart indices Bij = dΛij and by
consistency it must satisfy the cocycle condition on threefold intersection

Bij +Bjk +Bki = 0 . (2.65)

Now we are able to motivate explicitly the 1-form transformation of the patching rule (2.14).
In the intersection Ui ∩ Uj for a section of E we have

(
vj
λj

)
=

(
vi

λi − ividΛij

)
. (2.66)

Now we “rotate” the generalised vector
(
vj λj

)T with an element of the structure group
O(d, d) in order to make it equal to

(
vi λi

)T . The transformation that we pick up is exp(Bij) =
exp(Bj − Bi)
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exp(Bij)

(
vj
λj

)
=

(
vj

λj + ivjBij

)
=

(
vi

λi − ividΛij + ivi(Bj − Bi)

)
.
=

(
vi
λi

)
, (2.67)

and imposing the last equality we have exactly the gauge transformation of the B field

Bj = Bi + dΛij . (2.68)

The physical observable is not the B field, which is defined only local in a chart, neither by
the B field, which is defined on the intersection of two charts, but is given by the flux H = dB,
which is globally defined.

2.3.4 The B-field: a way to “untie” the fibres

In the above paragraph we have seen that the B-field is related to the physical d.o.f. in the
NSNS sector. In generalised geometry the B-field plays an important role.

Generalised geometry can be seen formally as an exact Courant algebroid. For further details
the reader can see the appendix B. The generalised tangent bundle is defined by the exact
sequence

0 −→ T ∗M
ι
�
B
E

π
�
B
TM −→ 0 , (2.69)

where we know the map B exists.
For any short exact sequence there is a remarkable theorem which is formulated inside category

theory. The statement of the theorem, which is called “splitting lemma”, is the following7

Theorem 2.1 (Splitting lemma). Given a short sequence with maps f and g

0→ A
f→ B

g→ C → 0 , (2.70)

one writes the additional arrows ψ and ϕ for maps that may not exist

0→ A
f

�
ψ
B

g

�
ϕ
C → 0 . (2.71)

Then the following statements are equivalent

(I) Left split

there exists a map ψ : B → A such that the composition ψ ◦ f is the identity on A,

(II) Right split

there exists a map ϕ : C → B such that the composition g ◦ ϕ is the identity on C,

(III) Direct sum

B is isomorphic to the direct sum of A and C,

B ' A⊕ C , (2.72)

with f corresponding to the natural injection of A and g corresponding to the natural pro-
jection onto C.

7There is a technical requirement in the hypothesis of the splitting lemma, which consists the sets A,B,C
must be elements of an abelian category. We do not prove here that the category of tangent bundle is an abelian
category.
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For the proof of the splitting lemma the reader can see [33].
Since in the case of generalised geometry we have the right and left splits B, then by the

equivalence of the three statements, we have that E is isomorphic to the direct sum of TM and
T ∗M ,

E ' TM ⊕ T ∗M , (2.73)

and ι is the natural injection (inclusion map) of T ∗M and π is the natural projection (anchor)
onto TM . This represent a formal result which prove the isomorphism between E and TM⊕T ∗M
thanks to the B map. For this reason we say the B field has the property to “untie” the fibres
on E. In fat a generic section of TM ⊕ T ∗M is on the form “vector ⊕ 1-form”, i.e.

(
v
λ

)
∈ TM ⊕ T ∗M v ∈ TM , λ ∈ T ∗M , (2.74)

and a generic section of E is given by a B transformation of the (2.74),
(

v
λ+ ivB

)
∈ E . (2.75)

Pictorially we say that the fibres in E are “intertwined” together.

2.3.5 Generalised coordinate basis

A question the reader may ask is “how can we define a coordinate basis for generalised vector?”.
We have seen in the chapter 2.3.1 the definition of the operator ∂M . I want to stress that this
object does not represent a choice of generalised coordinate basis, because inside its definition
the symmetry between vectors and 1-forms is broken. In fact it represents just only an operator
“ ∂ ” useful for rewriting Dorfman derivative in the same formal way of Lie derivative. In a sense,
since ∂µ represents how the exterior derivative operator d acts in components, ∂M represent how
the “generalised exterior derivative” works in components.

The definition of generalised coordinate basis is the following. Given a d-manifold, consider
the coordinate basis {êµ|p} = {∂µ|p} for the tangent space TpM . By duality, we can define
{eµ|p} = {dxµ|p} such that

iêµe
ν |p = δµ

ν , (2.76)

which provides a coordinate basis for the cotangent space T ∗pM .
Then we can define the coordinate basis for the space TM ⊕ T ∗M simply putting in direct

sum the two basis
(
êµ
eµ

)
. (2.77)

Since E ' TM ⊕ T ∗M , by a B field transformation of the (2.77) we get the generalised non
coordinate basis {ÊM}

ÊM =





(
êµ

iêµB

)
M = µ

(
0

êµ

)
M = µ+ d

. (2.78)

Since we have an O(d, d) structure, the above basis must satisfy the condition on the scalar
products
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〈ÊM , ÊN 〉 = ηMN , ηMN =
1

2

(
0 1

1 0

)
, (2.79)

which is satisfied in force to the (2.76). The check is straightforward and it is the following

ÊM =

(
êµ

êµ + iêµB

)
, ÊN =

(
êν

êν + iêνB

)

〈ÊM , ÊN 〉 =
1

2

[
iêµ(êν + iêνB) + iêν (êµ + iµB)

]

=
1

2

[
δµ

ν + δν
µ + (iêµiêν + iêν iêµ)B

]
= ηMN ,

By construction, the generalised tangent bundle is equipped with an O(d, d) structure. There-
fore one can always make a change of basis

VM 7→ V ′M = OM NV
N , ÊM 7→ Ê′M = Ê′N (O−1)N M , (2.80)

where O ∈ O(d, d), and the basis {Ê′M} still satisfies the condition (2.79). Since GL(d) ⊂ O(d, d),
if we choose

O =

(
M 0
0 M−T

)
, (2.81)

whereM ∈ GL(d), then we have a frame rotation due to the trivial structure group GL(d) acting
in ordinary geometry. This argument will lead us to define in the next chapter the generalised
vielbein.
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3
Construction of generalised geometrical objects

Even before string theory, especially as physics developed in the 20th century,
it turned out that the equations that really work in describing nature

with the most generality and the greatest simplicity are very elegant and subtle.
- Edward Witten -

In this chapter we want to reconstruct into the framework of generalised geometry all geometrical
objects that one defines in ordinary geometry. The logic we will follow, at least most of the
time, consists in considering the definition of the particular object that we want to generalise
contextualized in ordinary geometry, and trying to generalised it in the most natural way inside
generalised geometry that we developed in the chapter 2.

The geometrical objects which we are going to generalised are the metric, connection, torsion,
Riemann tensor, Ricci tensor and scalar of curvature. They represent the fundamental tools
which we need in order to construct a geometrical theory of gravity. In fact General Relativity,
without the intention to take off the extremely important physical meaning, can be seen as a
particular application of Differential Geometry, where the tools involved are the one mentioned
above.

Our purpose at the end of this chapter will be to rewrite Type II Supergravity theories as a
theory of gravity but in the framework of generalised geometry, getting the so-called “generalised
gravity”.

3.1 Generalised metric

The beginning of generalisation starts from the construction of a metric, which is known to be
a fundamental object of every geometrical theory of gravity.1

The way we follow for constructing generalised metric use an analogy with ordinary geometry
and regards the splitting of the O(d, d) structure.

1The main failure of Loop Quantum Gravity is given by the fact nowadays it is not understood how to construct
a metric.
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3.1.1 The O(d)×O(d) substructure
We have seen that Ordinary geometry is equipped by the trivial structure, provided by the
GL(d,R) group. Consider now its maximal compact subgroup, which is O(d). If we restrict our
attention only to O(d), then we have an O(d) substructure over the tangent bundle. When we
restrict the structure group from GL(d,R) to O(d) means that we are restricting the choice of
reference frame on the tangent bundle, between the all possible choices of reference frames, only
to the orthonormal frames.

Extend now this idea to generalised geometry. The structure group is O(d, d) and its maximal
compact subgroup is O(d)×O(d). To be general, consider a spacetime of generic signature (p, q),
with p+ q = d. Therefore the maximal compact subgroup becomes O(p, q)×O(q, p).

Geometrically, an O(p, q)× O(q, p) substructure has an important consequence. The gener-
alised tangent bundle E splits into two d-dimensional sub-bundles

E = C+ ⊕ C− , (3.1)

such that the O(d, d) metric defined by the scalar product (2.29) , restricts to a separate metric
of signature (p, q) on C+ and a metric of signature (q, p) on C−. In fact for a space spacetime of
signature (p, q) = (d, 0), the basis for C+ and C− is the basis that diagonalize the metric (2.29)
according to the formula (2.31).

One can define a frame {Ê+
a } ∪ {Ê−ā }, such that {Ê+

a } form an orthonormal basis for C+,
and {Ê−ā } form an orthonormal basis for C−. The indices a and ā runs both from 1 to d. The
above statement means they satisfy

〈Ê+
a , Ê

+
b 〉 = ηab ,

〈Ê−ā , Ê−b̄ 〉 = −ηāb̄ , (3.2)

〈Ê+
a , Ê

−
ā 〉 = 〈Ê−ā , Ê+

a 〉 = 0 ,

where ηab and ηāb̄ are flat metrics with signature (p, q). There is thus a manifest O(p, q)×O(q, p)
symmetry with the first factor O(p, q) acting on Ê+

a and the second factor O(q, p) acting on Ê−ā .
Conceptually this represent an important point. One can think O(p, q)×O(q, p) as a “residual

symmetry” after breaking the O(d, d) symmetry. And in particular, the fascinating thing, is that
in the two sub-bundle C+ and C− we get “ordinary geometry” with structure group O(p, q) and
O(q, p) respectively.

We can recast the two basis {Ê+
a } and {Ê−ā } into a single object

ÊA =

{
Ê+
a for A = a ,

Ê−ā for A = ā+ d ,
(3.3)

which satisfies

〈ÊA, ÊB〉 = ηAB , where ηAB =

(
ηab 0
0 −ηāb̄

)
. (3.4)

We will adopt the convention that we will always raise and lower the C+ indices a, b, c, ... with
ηab, and the C− indices ā, b̄, c̄, ... with ηāb̄, while we continue to raise and lower 2d dimensional
indices A,B,C, ... with the O(d, d) metric ηAB. Thus, for example we have

ÊA =

{
Ê+a for A = a ,

−Ê−ā for A = ā+ d ,
(3.5)

when we raise the A index on the frame.
The two sub-bundle C+ and C− are not equal to TM and T ∗M , but they are isomorphic.

In fact the basis {ÊA} must be a linear combinations of vectors and 1-forms, because the metric
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v + gv

Cg+

v − gv

Cg−

T ∗M

TMv

Figure 3.1: Splitting of E in C+ ⊕ C−. In the picture it is represented, for B = 0, how reach elements of Cg+
and Cg− starting from a vector v ∈ TM .

ηAB is the diagonalized form of the O(d, d) metric ηMN in (2.29), which is defined in the basis
that does not mix vectors with forms. A graphic representation of the splitting is given by the
picture (3.1).

A generic element V+ ∈ C+ can be written as

V+ =

(
v
Mv

)
, (3.6)

where v ∈ TM and, in components, the form part is given by Mµνv
ν , for some general matrix

M .This actually describes an isomorphism between TM and C+. If we write Mµν = Bµν + gµν ,
where g is symmetric and B antisymmetric2, then, by patching conditions (2.14) and fixing to
zero the diffeomorphisms A = 0, one can check that g and B transform on the overlap Ui ∪Uj as

gi = gj , Bi = Bj + dΛ(ij) , (3.7)

and hence B can be interpreted as the B-field in the NSNS sector and g as the metric field for
the graviton.

Orthogonality between C+ and C− implies that a generic element V− ∈ C− can be written
as

V− =

(
v

iv(B − g)

)
. (3.8)

The check is the following

〈V+, V−〉 =
(
v iv(B + g)

) [1

2

(
0 1

1 0

)](
v

iv(B − g)

)
= iviv(B − g) + iviv(B + g) = 2ivivB = 0 .

3.1.2 Generalised metric as a “projector”

In the previous paragraph we have shown the splitting of E into C+ and C− by the formula (3.1).
The idea now is to define projectors Π+ and Π− which project a generalised vector V inside C+

and C− respectively.
2Every tensor field of type (2, 0) or (0, 2) can be decomposed in the symmetric plus the antisymmetric parts.
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Decompose a generalised vector V in the basis {Ê+
a } and {Ê−ā }

V = V a
+ Ê

+
a + V ā

− Ê
−
ā . (3.9)

Define projectors
Π+ : E → C+ , Π− : E → C− , (3.10)

such that

Π+(V ) = V a
+Ê

+
a , Π−(V ) = V ā

−Ê
−
ā . (3.11)

The projectors Π± must satisfy the “equations of projectors”

Π2
± = Π± Π+Π− = Π−Π+ = 0 . (3.12)

Let us parametrized Π± in terms of G in the following way [67]

Π± =
1

2
(1±G) , (3.13)

and find a solution for G. It is easy to check that the equations (3.12) give us the condition
G2 = 1. The other condition we have to impose is

η(GV,GW ) = η(V,W ) , (3.14)

which is equivalent to the three conditions (3.2). Therefore at the end of the day, G must satisfy
the equations

G2 = 1 , GT η G = η . (3.15)

The solution of G in the basis {Ê+
a } and {Ê−ā } is the following

G = ηabÊ+
a ⊗ Ê+

b + ηāb̄Ê−ā ⊗ Ê−ā , (3.16)

and the solution in the coordinate frame {ÊM} has the familiar expression

GMN =
1

2

(
g − Bg−1B Bg−1

−g−1B g−1

)

MN

. (3.17)

The procedure to obtain GMN in (3.17) from GAB in (3.16) is explained in the next paragraph
and make use of the generalised vielbein.

I want to remark why the solution obtained is reasonable. Since a projector is a map from
E to C±, it must get rid of d degrees of freedom. Therefore G must contain inside d degrees
of freedom. These d degrees of freedom are parametrized by a second rank symmetric tensor
gµν , which has d(d + 1)/2 d.o.f., and by a 2-form Bµν , which has d(d− 1)/2 d.o.f.. In total the
solution (g,B) has d2 d.o.f. and it must parametrise the coset

O(d, d)

O(p, q)×O(q, p)
, (3.18)

which represent the “extra d.o.f.” that the projectors take out.
We have seen in the previous section the physical meaning of g and B, which a priori they

represent only a way to parametrize a solution. Since inside G there is the metric of the manifold
g, then G is also called generalised metric. This represent an heuristic way to make appear the
generalised metric. There are other non heuristic way to define generalised metric (see [26]).
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3.1.3 Generalised vielbein

Suppose to define a metric over a manifold M , which represent a smooth assignment of an inner
product map on each TpM ⊗ TpM → R. In coordinates the metric is specified by a covariant
second rank symmetric tensor field gµν(x), and the inner product of two contravariant vectors
V µ(x) and Uµ(x) is gµνV µ(x)Uν(x), which is a scalar field.

There is a particular metric with which the scalar products are easier. We are talking about
the “Minkowski metric” η, which is a diagonal metric and depends only by the signature of the
spacetime, and not by the particular point p ∈M .

The idea of the veilbein is to diagonalize locally, point by point on the manifold, the metric
gµν(x), leading it to the Minkowski metric. This procedure is obtain changing the basis for
TpM point by point. Suppose the metric gµν(x)|p may be diagonalized by the orthogonal matrix
O ∈ O(d), where O(d) represent also the maximal compact

gµν = Oµ
aDabO

b
ν , (3.19)

where D is a diagonal matrix

D = diag(−λ0, λ1, ..., λd−1) with λi > 0 ∀ i = 0, ..., d− 1 . (3.20)

The form of D is determined by the facts that D and g have got the same eigenvalues,
g is non-degenerate, and our convention for the spacetime signature is the most employed in
Supergravity, i.e. (−+ · · ·+).

Define now the new matrix ea µ and its inverse ea µ, which satisfies

ea µea
ν = δµ

ν , ea µeb
µ = δa b , (3.21)

such that

ea µ(x) =
√
λa(x)Oa µ(x) , (3.22)

where in the RHS the index a is not intended to be contracted. In four dimensions this matrix
is commonly called the tetrad or vierbein, while in general dimensions it is called vielbein.

With this formalism the metric can be written as

gµν(x) = ea µ(x) ηab e
b
ν(x) , (3.23)

where η is the Minkowski metric in d dimensions.
The new basis {êa|p} for TpM is related to the old one {êµ|p} by the vielbein transformation

êa|p = ea
µ(x) êµ|p . (3.24)

Often µ is called “curved index” and a “flat index”, for the form which the metric g assumes
in the two basis

g(êµ, êν) = gµν , g(êa, êb) = ηab . (3.25)

A similar construction is also available in generalised geometry. The index M , which is
referred to the O(d, d) frame, is the analogue of the curved index µ in ordinary geometry, while
the index A, which is referred to the O(d)×O(d) frame, is the analogue of the flat index a.

The generalised vielbein is defined as follow

ÊA = EA
M ÊM , (3.26)

and it represents the matrix of change of basis. Again, its inverse is ÊA M such that

EA MEA
N = δM

N , EA MEB
M = δA B . (3.27)

59



The expression of the generalised vielbein is given in terms of g and B and it comes from
considering how the vectors V+ and V− can be written in terms of vector component and 1-form
component.

The solution is the following

EA M =
1√
2

(
e+ e−

e+(g − B) e−(g + B)

)
, (3.28)

where e± are the ordinary vielbeins which satisfies

g = eT+η e+ , =⇒ gµν = ea+µ ηab e
b
+ ν ,

g = eT−η e− , =⇒ gµν = eā−µ ηāb̄ e
b̄
+ ν , (3.29)

and 1/
√

2 is a normalization factor.
Now we can check that starting from generalised vectors in TM and in T ∗M , such as

VM =

(
v
0

)
, WM =

(
0
λ

)
, (3.30)

we can apply on them a vielbein transformation and obtain

V A
+ = EA MV

M =
1√
2

(
e+v

e+(g − B)v

)
, V A

− = EA MW
M =

1√
2

(
e−λ

e−(g + B)λ

)
, (3.31)

which they are the vectors V+ and V− in the desired form. The contractions between “µ type”
indices between vielbein, g,B tensors and v, λ are intended to be done with the ηµν metric of
O(p, q).

With the formalism of vielbain one can rewrite objects written in “curved indices”, like the
O(d, d) metric ηMN and the generalised metric GMN in therms of objects written in “flat indices”.
In fact we have the following result

ηMN = EA M ηAB E
B
N GMN = EA M GAB E

B
N , (3.32)

and in matrix form

η = ET
(
1 0
0 −1

)
E , G = ET

(
1 0
0 1

)
E . (3.33)

This is the procedure we adopted in the above paragraph in order to write down GMN . In fact
the formulæ (3.32) give rise to (2.31) and to (3.17).

3.1.4 The importance of O(p, q)×O(q, p)-substructure
In general, given a G-structure, the substructure generated by the maximal compact subgroup
plays a very important role which is not only related to the definition of generalised metric. In
fact, focusing to the O(p, q)×O(q, p)-substructure of O(d, d)-structure, one can do the following
observations.

In type II String Theory compactified on a 6-dimensional manifold, the sub-bundles C± have
a natural interpretation in terms of the world-sheet theory. They are associated to the fermions
left and right moving and e± are the corresponding vielbeins. The spinor fields associated to
fermions transforms under the double cover of the group O(p, q), which is the group Pin(p, q).
Usually one considers only the connected to the identity component3 of O(p, q), which is SO(p, q),
thus the double cover is Spin(p, q).

3Because it is the only component that can be reached exponentiating the generators of the algebra.
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Let us now assume we have a Spin(p, q) × Spin(q, p)-structure. Then we can define S(C±)
which are the spinor bundles associated to the sub-bundles C±. Then one can define the corre-
sponding gamma matrices γa and γā and spinor fields associated to left/right moving fermions
as sections ε± ∈ Γ(S(C±)). These represent the fundamental ingredients for inserting fermions
inside generalised geometry. Since this is not the aim of this work, we will not talk about spinors
anymore. Further informations about this topic are available in [15].

I just want to mention a result about maximal compact subgroup. There is not a unique
way to define generalised geometry, and in each definition the structure group which appears can
be different. Therefore one may ask if in other generalised geometry we lose the possibility to
find a maximal structure group, and hence lose the possibility to define a generalised metric and
construct a theory for fermions. Fortunately this is not the case, because of the following result

Theorem 3.1 (Cartan-Iwasawa-Malcev). Every connected Lie group G admits maximal compact
subgroup K. It is in general not unique, but is unique up to conjugation, meaning that given two
maximal compact subgroup, K and H, there is an element g ∈ G such that

gKg−1 = H . (3.34)

The proof of the theorem can be found in [11] and [34]. Hence this theorem is important
because it assures that in whatever generalised geometry one can always follow the procedure
developed for T ⊕ T ∗ generalised geometry.

3.2 Generalised connection

Let us to remind briefly the key points to keep in mind in order to define a connection in ordinary
geometry. Then by analogy we will move to generalised connection.

3.2.1 Connection in ordinary geometry

A connection (called also covariant derivative) is a map

∇(·)(·) : Γ(TM)× Γ(TM)→ Γ(TM) , (3.35)

which satisfies the following properties

• ∇X(Y + Z) = ∇XY +∇XZ ,

• ∇X+Y Z = ∇XZ +∇Y Z ,

• ∇fXY = f∇XY ,

• ∇X(fY ) = X[f ]Y + f∇XY ,

for each X,Y, Z ∈ Γ(TM) and for each function f from the manifold M to R. In a coordinate
basis {eµ} = {∂/∂xµ}, by definition, the connection acts as

∇eνeµ ≡ ∇νeµ = Γµ
λ
ν eλ . (3.36)

Γµ
λ
ν is called affine connection and represents how we choose to transport vectors around

the manifold M .
So far the affine connection can be arbitrary. If a metric is defined over the manifold M ,

then it is reasonable to put some restriction on Γ demanding that the metric gµν be covariantly
constant, which reads

(∇κg)µν = 0 . (3.37)
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If two vectors X and Y are parallel transported along the curve c(t) which has tangent vector
V = [dxµ(c(t))/dt)] eµ|c(t), i.e.

∇VX = 0 , ∇V Y = 0 , (3.38)

then, using the constraint (3.37) and (3.38), the inner product between X and Y along c(t) is
constant, i.e.

∇V [g(X,Y )] = V µ [(∇µg)(X,Y ) + g(∇µX,Y ) + g(X,∇µY )] = 0 . (3.39)

The connection ∇ which satisfies (3.37) is called metric connection. The condition (3.37)
gives us an expression for Γ (the derivation can be found in [46])

Γµ
λ
ν = Γ̃µ

λ
ν +

1

2

(
Tµ

λ
ν + Tν

λ
µ + T λ µν

)
, (3.40)

where Γ̃µ
λ
ν is the Christoffel symbols, symmetric in µ and ν, defined by

Γ̃µ
λ
ν =

1

2
gλε (∂µgεν + ∂νgµε − ∂λgµν) , (3.41)

and T λ µν is antisymmetric respect to the lower indices µ and ν and is called torsion tensor. We
will define properly this object in the paragraph 3.3 when we will define the “generalised torsion”.

If the torsion tensor vanishes on a manifold M , the metric connection ∇ is called the Levi-
Civita connection, or torsion-free metric connection. Levi-Civita connections are natural gener-
alization of the connection defined in the classical geometry of surfaces and always exists at least
for (pseudo)-Riemannian manifolds. This is guaranteed by the following

Theorem 3.2 (The fundamental theorem of Riemannian geometry). On any Riemannian man-
ifold (or pseudo-Riemannian manifold) (M, g), there is a unique Levi-Civita connection.

In particular the affine connection for a Levi-Civita connection are equal to the Cristoffel
symbols.

Now, instead of considering the coordinate basis {eµ}, we pick up the non coordinate basis
{ea} such that gab = ηab, obtained acting with a vielbein on the coordinate basis. Let be {θa} the
dual non coordinate basis. The action of connection on the non coordinate basis is the following

∇µea = ωµ
b
a eb , (3.42)

where ωµ b a is called spin connection. Therefore when we consider a tensor T which possesses
both types of indices (coordinate and non coordinate type), i.e.

T = Tµa νb ∂µ ⊗ ea ⊗ dxν ⊗ θb , (3.43)

the connection acts on this object as

(∇γT )µa νb = ∂γT
µa

νb + Γγ
µ
ϕT

ϕa
νb + ωγ

a
cT

µc
νb − Γγ

ϕ
νT

µa
ϕb − ωγ c bTµa νc . (3.44)

The metric compatibility condition has an implication on the symmetry of ω. Let us consider
the metric expressed in non coordinate basis g = ηabθ

a ⊗ θb. Then we have

0 = ∇µg = (∂µηab) θ
a ⊗ θb + ηab(∇µθa)⊗ θb + ηab θ

a ⊗ (∇µθb)
= ηab

(
ωµ

a
c θ

c ⊗ θb + θa ⊗ ωµ b c θc
)

= (ωµbc + ωµcb) θ
c ⊗ θb , (3.45)

which implies
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ωµbc = −ωµcb . (3.46)

The equation (3.46) has a geometrical interpretation. When one defines a metric g on a
manifold M in ordinary geometry means we are defining an O(d)-structure. The Lie algebra of
O(d) group is

o(d) = so(d) = {M ∈ GL(d,R)|M = −MT } . (3.47)

Therefore ωµab is an element of the o(d) algebra. This is a general result: affine connections
defined on a G-principle bundle are element of the corresponding g algebra4.

3.2.2 Connection in generalised geometry

In this section we will follow closely the procedure treated in the above paragraph in order to
extend the concept of connection in generalised geometry.

A generalised connection must be a map

D(·)(·) : Γ(E)× Γ(E)→ Γ(E) (3.48)

which satisfies the same properties of the ordinary connection presented before, just only replac-
ing sections of TM with sections of E. The definition of generalised connection in a coordinate
basis {ÊM} is

DM ÊN = ΓM
P
N ÊP , (3.49)

where here ΓM
P
N is called generalised affine connection and it is the generalisation of the affine

connection Γµ
λ
ν . Now we have to take into account the fact in generalised geometry there is an

O(d, d)-structure. Therefore the first constraint to impose in order to determine ΓM
P
N , is the

compatibility with the O(d, d) metric η = ηMN Ê
M ⊗ ÊN .

0 = DP η = (∂P ηMN ) ÊM ⊗ ÊN + ηMN (DP Ê
M )⊗ ÊN + ηMN Ê

M ⊗ (DP Ê
N ) (3.50)

= ηMN

(
ΓP

M
QÊ

Q ⊗ ÊN + ÊM ⊗ ΓP
N
QÊ

Q
)

= (ΓPNQ + ΓPQN ) ÊQ ⊗ ÊN , (3.51)

again, which implies

ΓPNQ = −ΓPQN . (3.52)

Therefore ΓPMN must be an element of o(d, d) = so(d, d) algebra. This symmetry property
does not have analogous in ordinary geometry for Γµ

λ
ν and it is due to the O(d, d)-structure.

Starting from a conventional connection ∇ in ordinary geometry, there is a procedure to
construct the corresponding generalised connection, which is denoted by D∇ for emphasizing
the construction. Let us take a generalised vector V . The idea is to act with connection on the
vector component and 1-form component separately in TM ⊕ T ∗M and then perform a B-shift
in order to come back again in E. In details, let be

VM =

(
vµ

λν

)
∈ Γ(TM ⊕ T ∗M) . (3.53)

The action of ∇M on TM ⊕ T ∗M is
(
∇µv
∇µλ

)
, (3.54)

4Remind that a G-structure can be seen as a G-principal sub-bundle of the tangent frame bundle.
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where by definition

∇M ≡
{
∇µ if M = µ = 1, ..., d

0 if M = µ+ d
. (3.55)

Now performing a B-shift on (3.54) we end on E with the desired expression for generalised
connection

D∇MV =





(
∇µv

∇µλ+ i∇µvB

)
if M = µ = 1, ..., d

0 if M = µ+ d

. (3.56)

Another way to define generalised connection starting from ordinary connection consists to
impose by definition the null action of DM on the B field. In this procedure one starts from
sections of E

V =

(
v

λ+ ivB

)
∈ Γ(E) , (3.57)

and then, by definition

D∇MV =

(
∇Mv

∇Mλ+ i∇MvB

)
(3.58)

where we can see ∇M did not act on i∇MvB. Again, ∇M is defined as in (3.53).
We can also define generalised connection in a non coordinate basis {ÊA} as follow

DM ÊN = ΩM
P
N ÊP , (3.59)

where ΩM
P
N is called generalised spin connection. Again, if we consider a generalised tensor

with both coordinate type and non coordinate type indices, i.e.

T = TMA
NBÊM ⊗ ÊA ⊗ ÊN ⊗ ÊB , (3.60)

then generalised connection acts as

DPT
MA

NB = ∂PT
MA

NB + ΓP
M

QT
MA

NB + ΩP
A
CT

MC
NB

− ΓP
Q
NT

MA
QB − ΩP

C
BT

MA
NC . (3.61)

Suppose now to introduce the generalised metric G on the manifold M . This means we are
restricting on the O(p, q)×O(q, p)-substructure. A generalised connection D is compatible with
the O(p, q) × O(q, p)-substructure if it is compatible with the metric G, which is the analogous
requirement of metric connection in ordinary geometry. Choosing the non coordinate basis the
metric assumes the form G = ηabÊ+

a ⊗ Ê+
b̄

+ ηāb̄Ê−ā ⊗ Ê−b̄ , and we have

0 = DMG = (∂Mη
ab) Ê+

a ⊗ Ê+
b + ηab(DM Ê

+
a )⊗ Ê+

b + ηabÊ+
a ⊗ (DM Ê

+
b )

+ (∂Mη
āb̄) Ê−ā ⊗ Ê−b̄ + ηāb̄(DM Ê

−
ā )⊗ Ê−

b̄
+ ηāb̄Ê−ā ⊗ (DM Ê

−
b̄

)

= ηab
(

ΩM
a
cÊ

+
c ⊗ Ê+

b + Ê+
a ⊗ ΩM

b
cÊ

+
c

)
+ ηāb̄

(
ΩM

ā
c̄Ê
−
c̄ ⊗ Ê−b̄ + Ê−ā ⊗ ΩM

b̄
c̄Ê
−
c̄

)

= (ΩMbc + ΩMcb) Ê
+
c ⊗ Ê+

b + (ΩMb̄c̄ + ΩMc̄b̄) Ê
−
c̄ ⊗ Ê−b̄ . (3.62)

and again we have
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ΩMab = −ΩMba , ΩMāb̄ = −ΩMb̄ā , (3.63)

which means ΩMab ∈ o(p, q) and ΩMāb̄ ∈ o(q, p).
Equivalently a generalised connection D is compatible with the O(p, q)×O(q, p)-substructure

if the derivative acts separately in the two C+ and C− sub-bundle, without mixing the two types
of indices. This is actually what we did in (3.62) because terms like ΩM

c̄
aÊ

c̄ when DM acts on
Ēa do not appear.

Therefore the “generalised metric connection”, for a generalised vector written in the basis
{Ê+

a } ∪ {Ê−ā }

V = V a
+Ê

+
a + V ā

−Ê
−
ā , (3.64)

it acts as

DMV
A =

{
∂MV

a
+ + ΩM

a
bV

b
+ for A = a

∂MV
ā
− + ΩM

ā
b̄V

b̄
− for A = ā

, (3.65)

Now there is a natural choice for the spin connection ΩM
a
b. We mentioned above that if a

Levi-Civita connection ∇ is defined on a (pseudo) Riemannian manifold (M, g), then there is a
natural construction for the generalised connection D∇ associated to ∇. This procedure leads
us to the following fact. Let be v ∈ Γ(TM). In accord to the picture 3.1 we can parametrize v
using the vector components of the basis {Ê+

a } for C+, which is {ê+
a }, or equivalently, using the

vector components of the basis {Ê−ā } for C−, which is {ê−ā }. In each C± sub-bundle there is an
O(d)-structure which constraint the spin connections ω+

µab and ω
−
µāb̄

, by compatibility with O(d)

metric, to be antisymmetric in the two flat indices, i.e.

ω+
µab = −ω+

µba , ω−
µāb̄

= −ω−
µb̄ā

. (3.66)

The two description of v are equivalent. Given v = vaê+
a = vāê−ā , the connection acts on v as

∇µvν =
(
∂µv

a + ω+
µ
a
bv
b
)
ê+
a
ν =

(
∂µv

ā + ω−µ
ā
b̄v
b̄
)
ê−ā

ν (3.67)

The natural choice is to take the generalised spin connections ΩMab and ΩMāb̄ to be equal
the ordinary spin connections in the C± sub-bundles

Ωµab = ω+
µab , Ωµāb̄ = ω−

µāb̄
, (3.68)

and by definition of DM and ∂M , we have

Ωµ+d ab = 0 , Ωµ+d āb̄ = 0 . (3.69)

Therefore at the end of the day, the generalised connection (3.65) acts as follow

D∇MV
a

+ =

{
∇µV a

+ for M = µ

0 for M = µ+ d
, D∇MV

ā
− =

{
∇µV ā

− for M = µ

0 for M = µ+ d
(3.70)

By construction the above generalised connection is compatible with the O(p, q) × O(q, p)-
structure. However it is not torsion-free, which means the generalised torsion tensor, computed
with the generalised connection D∇, is not identically zero. In the next paragraph we will define
generalised torsion and show that

Proposition 3.1. Given an O(p, q) × O(q, p)-structure, there always exists a Levi-Civita con-
nection, i.e. torsion-free and metric compatible connection. However it is not unique.
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3.3 Generalised torsion

In ordinary geometry one introduced torsion tensor as a map

T : Γ(TM)× Γ(TM)→ Γ(TM) , (3.71)

defined by

T (v, w) = ∇vw −∇wv − [v, w] v, w ∈ Γ(TM) . (3.72)

The torsion tensor enjoys a formal remarkable fact which consists in the possibility to be
expressed only in terms of Lie derivatives. Given a coordinates basis {∂µ} and an affine connection
∇, the torsion tensor can be expressed as

T (v, w) = L∇v w − Lvw = vµ∇µw − wµ∇µv − vµ∂µw + wµ∂µv , (3.73)

where the symbol L∇(·)(·) is a notation for the Lie derivative expresses in coordinate basis with ∂
replaced by ∇.

This time, instead of generalising the torsion tensor starting from the definition, we prefer to
perform the generalization of the formal remarkable fact which satisfies and buy it as a definition
of generalised torsion tensor. Therefore we have

Definition (Generalised torsion tensor). Given a generalised connection D, “generalised torsion
tensor” is a map

T : Γ(E)× Γ(E)→ Γ(E) , (3.74)

acting on V,W ∈ Γ(E) as follow

T (V,W ) = LDVW − LVW . (3.75)

where LD(·)(·) is the Dorfman derivative with the operator ∂ replaced by D.

What we are going to do now is provide a sketch of proof of proposition (3.1), giving the
references for long computations we will skip. The generalised torsion tensor computed with the
generalised connection D∇ is not zero, but it is proportional to the flux H = dB,

T (D∇) = −4H . (3.76)

The sketch of proof can be found in [15]. However we can redefine generalised connection
adding a generic generalised tensor Σ, as following

DMW
A = D∇MW

A + ΣM
A
BW

B . (3.77)

The compatibility of D with O(p, q)×O(p, q)-structure give us the following constraint on Σ

ΣMab = ΣMba , ΣMāb̄ = ΣMb̄ā , ΣM
a
b̄ = ΣM

ā
b = 0 . (3.78)

The generalised torsion tensor, computed with the new generalised connection D, in [15] is
shown to be

TABC(D) = −4HABC − 3Σ[ABC] , (3.79)

where the componentsHABC are the components ofH in the frame basis (i.e. with “flat indices”).
The same rule is valid for the other quantities which appears in the equation (3.79).

Now one requires the generalised torsion tensor T (D) vanishes identically. This will give us
the following equation for Σ[ABC]
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3Σ[ABC] = −4HABC . (3.80)

The 3-form H, in coordinate basis is

H =
1

3!
Hµνρ dx

µ ∧ dxν ∧ dxρ , (3.81)

and we have to express it the frame basis. Using the generalised vielbein, one can derive the
expression of dxµ in terms of {ÊA}, which is

dxµ =
1

2

(
e+
a
µÊ+a − e−ā µÊ−ā

)
. (3.82)

The formula (3.82) is an explicit expression for the embedding T ∗M ↪→ E = C+ ⊕ C−.
There is a similar decomposition of H under the embedding

3∧
T ∗M ↪→

3∧
E =

3∧
C+ ⊕ 3

(
2∧
C+ ⊗ C−

)
⊕ 3

(
C+ ⊗

2∧
C−

)
⊕

3∧
C− , (3.83)

where we used the binomial expansion (as for polynomials). In fact this coefficient decomposition
appears in the frame basis expression of H, obtained inserting (3.82) inside (3.81)

H =
1

6
Hµνρ dx

µ ∧ dxν ∧ dxρ =
1

8

(
1

6
HabcÊ+

a ∧ Ê+
b ∧ Ê+

c −
3

6
Habc̄Ê+

a ∧ Ê+
b ∧ Ê−c̄

+
3

6
Hab̄c̄Ê+

a ∧ Ê−b̄ ∧ Ê
−
c̄ −

1

6
H āb̄c̄Ê−ā ∧ Ê−b̄ ∧ Ê

−
c̄

)
, (3.84)

where the factor 1/8 appears from (1/2)3 using (3.82) on dxµ ∧ dxν ∧ dxρ. The equation (3.80)
becomes

Σ[abc] = −1
6Habc , Σābc = −1

2Hābc ,

Σ[āb̄c̄] = +1
6Hāb̄c̄ , Σab̄c̄ = +1

2Hab̄c̄ ,
(3.85)

there is also another condition, which comes considering a theory with dilaton (see [15])

Σa
a
b = 0 , Σā

ā
b̄ = 0 . (3.86)

The equations (3.85) and (3.86) admit solution for Σ, but it is not unique. Thus we can
always find a torsion-free and metric compatible connection D which is not uniquely determined.
Specifically, one finds

DaV
b

+ = ∇aV b
+ −

1

6
Ha

b
cV

c
+ +A+

a
b
cV

c
+ ,

DāV
b

+ = ∇āV b
+ −

1

2
Hā

b
cV

c
+ ,

DaV
b̄
− = ∇aV b̄

− +
1

2
Ha

b̄
c̄V

c̄
− , (3.87)

DāV
b̄
− = ∇āV b̄

− +
1

6
Hā

b̄
c̄V

c̄
− +A−ā

b̄
c̄V

c̄
− ,

where the undetermined tensors A± satisfy

A+
abc = −A+

acb , A+
[abc] = 0 , A+

a
a
b = 0 ,

A−
āb̄c̄

= −A−
āc̄b̄

, A−
[āb̄c̄]

= 0 , A−ā
ā
b̄ = 0 ,

(3.88)

such that the equations (3.85) and (3.86) are still satisfied.
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3.4 Generalised Riemann curvature tensor

Having constructed a generalised connection, in particular a not unique Levi-Civita generalised
connection, it is natural to ask if one can also introduce a notion of generalised Riemann curvature
tensor.

Before do that, let us remind how Riemann curvature tensor is defined in ordinary geometry.
Given a connection ∇, it is a map

R : Γ(TM)× Γ(TM)× Γ(TM)→ Γ(TM) , (3.89)

defined by

R(v, w, z) = ∇v∇wz −∇w∇vz −∇[v,w]z v, w, z ∈ Γ(TM) . (3.90)

By analogy with ordinary geometry, we have

Definition (Generalised Riemann curvature tensor). Given a generalised connection D, “gen-
eralised Riemann curvature tensor” is a map

R : Γ(E)× Γ(E)× Γ(E)→ Γ(E) , (3.91)

acting on U, V,W ∈ Γ(E) as follow

R(U, V,W ) = DUDVW −DVDUW −DJU,V KW . (3.92)

The definition (3.92) is the natural generalisation of the definition (3.90), where connection
∇ is replaced by generalised connection D and Lie bracket [·, ·] is replaced by Courant bracket
J·, ·K. Therefore generalised Riemann curvature R and Riemann curvature in ordinary geometry
R have the same properties of symmetry, i.e.

• R(U, V,W ) = −R(V,U,W ) ,

• 〈R(U, V,W ), Z〉 = −〈R(U, V, Z),W 〉 ,

• R(U, V,W ) +R(V,W,U) +R(W,U, V ) = 0 ,

• 〈R(U, V,W ), Z〉 = −〈R(W,Z,U), V 〉 .

However, the object defined in (3.92) is non-tensorial [32]. In fact it seems to be a differential
operator and, a priori, it is not obvious that it is multilinear object. For example, Riemann
tensor defined in (3.90) still seems to be differential operator, but one can check that it satisfies
multilinearity property, i.e.

R(fv, gw, hz) = fgh R(v, w, z) , ∀ f, g, h : M → R . (3.93)

For generalised Riemann tensor (3.92) one finds

R(fU, gV, hW ) = DfUDgV hW −DgVDfUhW −DJfU,gV KhW

= fgh
(
DUDVW −DVDUW −DJU,V KW

)
− 1

2
h〈U, V 〉D(fdg−gdf)W . (3.94)

The term which breaks multilinearity is −1
2h〈U, V 〉D(fdg−gdf)W . Therefore if we restrict

to evaluate generalised Riemann tensor only over vectors which are orthogonal respect O(d, d)
metric, then the restricted generalised Riemann tensor is a proper tensor, i.e. it satisfies multi-
linearity property. One possible choice of vectors U and V such that 〈U, V 〉 = 0 is

U ∈ C+ , V ∈ C− . (3.95)
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Therefore we can build a tensorial O(p, q)×O(q, p) generalised Riemann curvature, such that
the index structure would be

(
Rab̄

c
d, Rab̄

c̄
d̄

)
and

(
Rāb

c
d, Rāb

c̄
d̄

)
, (3.96)

where the first and second index tells us in which sub-bundle U and V are chosen, while the third
and fourth index are the “representation indices”, which tell us if generalised Riemann curvature
is acting on C+ or in C− sub-bundle. Moreover the representation indices posses a property.
Remind the Cartan’s structure equation in ordinary geometry

dωa b + ωa c ∧ ωc b = Ra b , (3.97)

where the spin connection 1-form is

ωa b ≡ Γa cbθ
c , (3.98)

and the curvature 2-form is

Ra b ≡
1

2
Ra bcdθc ∧ θd . (3.99)

In generalised geometry Cartan’s structure equations are more complicated, but still they put
in relation the generalised spin connection Ω and the generalised Riemann tensor R. Because
of the generalised version of equations (3.97), representation indices of generalised Riemann
curvature has the same behaviour of the spin connection’s one. Since ΩMab ∈ o(p, q) and ΩMāb̄ ∈
o(q, p), then we have also Rab ∈ o(p, q) and Rāb̄ ∈ o(q, p), which means generalised Riemann
curvature is an object acting in the adjoint representation.

The generalised Riemann curvature is not a uniquely determined object, because of the two
possible choices shown in (3.96). But the surprising fact is that generalised Ricci tensor, which
is the object that enter in the Einstein’s equation, is unique!

Definition (Generalised Ricci tensor). The generalised Ricci tensor is the trace of the generalised
Riemann curvature

RAB = RCA
C
B . (3.100)

The two possible generalised Riemann curvature (3.96) give us the following generalised Ricci
tensors

R
(I)
BD =

{
ηacRab̄cd = Rb̄d
ηac̄Rab̄c̄d̄ = 0

, R
(II)
BD =

{
ηācRābcd = 0

ηāc̄Rābc̄d̄ = Rbd̄
. (3.101)

Since generalised Riemann curvature R and Riemann curvature in ordinary geometry R have
the same properties of symmetry, then generalised Ricci tensor is symmetric, i.e. RAB = RBA and
this ensure that the two generalised Ricci tensor computed, Rab̄ and Rāb are the same quantity.
Hence we have a unique generalised Ricci tensor, which comes from a restricted generalised
Riemann tensor. I want to stress that the restriction on the two sub-bundles C+ and C− is
crucial for the uniqueness of generalised Ricci tensor, which would not be guaranteed without
this important condition.

3.5 Type II Supergravity as O(9, 1)×O(1, 9) generalised gravity

The fact generalised Ricci tensor is unique plays a central role in our attempt to “geometrise”
Type II Supergravity theories. Indeed the object Rab̄, which is equal to Rāb, contains d2 d.o.f.,
because a and b̄ run both from 1 to d. The other components of generalised Ricci tensor, like
Rab and Rāb̄ are identically zero, hence they do not contribute to the d.o.f.. This is a good news,
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because our aim is to capture the NSNS bosonic fields of type II theories by packaging them
into a generalised metric G and a conformal factor Φ (see later the paragraph 3.5.1 for dilaton
inclusion in generalised geometry). The NSNS sector contains a metric g of signature (9, 1), a
2-form B and a dilaton φ, which at each point p ∈M they bring the d.o.f shown in table 3.1.

Field d.o.f. per spacetime point
gµν d(d+ 1)/2

Bµν d(d− 1)/2

φ 1

{gµν , Bµν , φ} d2 + 1

Table 3.1: NSNS sector’s d.o.f. per spacetime point

Therefore the d.o.f. of NSNS sector, which in total are d2 + 1, match with the number of
equations for (G,Φ) available, which they comes from generalised Ricci tensorRab̄ and generalised
scalar curvature R. Before moving to explain that, let us briefly review how dilaton can be
“geometrised”.

3.5.1 Dilaton description in generalised geometry

Dilaton cannot be described inside generalised geometry developed in the chapter 2. In order
to include dilaton φ correctly inside generalised geometry, we have to perform a small different
choice of generalised tangent bundle. Doing that, generalised geometry explained before will be
slightly modified. I show here, without details which can be found in [15], the key changing to
do.

The generalised tangent bundle to consider now is Ẽ, which is E “weighted” by detT ∗M so
that

Ẽ ≡ detT ∗M ⊗ E . (3.102)

The basis of Ẽ now must be a conformal basis {ÊM} such that

〈ÊM , ÊN 〉 = Φ2ηMN where η =
1

2

(
0 1

1 0

)
, (3.103)

where Φ ∈ detT ∗M is called conformal factor. This choice of basis define an O(d, d) × R+-
structure.

Dorfman derivative and Courant bracket remain defined as before, where the action of Lie
derivative now is

Lvwµ = vν∂νw
µ − wν∂νvµ + p(∂νv

ν)wµ ,

Lvζµ = vν∂νζµ + (∂µv
ν)ζν + p(∂νv

ν)ζµ ,
(3.104)

where p ∈ R+ is a weight, which tells us in which representation of R+ the tensors v and w are
acting on.

The maximal compact subgroup of O(d, d) × R+ is still O(p, q) × O(q, p). Geometrically,
choosing an O(p, q)×O(q, p)-substructure, now does two things. First it fixes a nowhere vanishing
section Φ ∈ Γ(detT ∗M), and this provides an isomorphism between weighted and un-weighted
generalised tangent space Ẽ and E. Second it defines the familiar splitting of E into C+ and C−
discussed before. Again one can define projectors Π±, but now the d.o.f. it must take out when
one projects a vector of Ẽ into C± are d2 + 1. The one more d.o.f. is captured by the conformal
factor Φ which can be parametrized by the metric g and the dilaton φ as

Φ = e−2φ√−g , where g ≡ det gµν . (3.105)
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Therefore at the end of this procedure, the NSNS sector acts as an element of the coset

{g,B, φ} ∈ O(10, 10)

O(9, 1)×O(1, 9)
× R+ . (3.106)

This briefly explanation does not pretend to be completed, but it give just only the key points
in order to include dilaton in generalised geometry.

3.5.2 Equations of motion

Generalised Ricci tensor Rab̄ can be explicitly worked out. Choosing the two orthonormal frames
to be aligned so e+

a = e−a = ea we get the following result

Rab = Rab −
1

4
HacdHb

cd + 2∇a∇bφ+
1

2
e2φ∇c

(
e−2φHcab

)
, (3.107)

where Rab is the Ricci tensor in ordinary geometry. Generalised scalar of curvature, obtained
contracting generalised Ricci tensor with generalised metric, is

R = R+ 4∇2φ− 4 (∂φ)2 − 1

12
H2 . (3.108)

The NSNS action takes the form

SNS =
1

2κ2

∫
d10X

√−g e−2φ

[
R+ 4 (∂φ)2 − 1

12
H2

]
. (3.109)

where κ is the gravitational coupling constant, related to the Newton’s constant G and string
length ls and string coupling constant gs by

κ2 = 8πG =
1

4π
(2πls)

8g2
s . (3.110)

The following action, which formally seems the Einstein-Hilbert action for General Relativity
written in the language of generalised geometry

SGEH =
1

2κ2

∫
d10X ΦR , (3.111)

is equivalent to the NSNS action (3.109), up to integration by parts of the ∇2φ term.
Varying the action SGEH respect to the generalised metric G, we find the equations of motion

for g and B, which are captured inside the compact equation

Rab̄ = 0 , (3.112)

which looks like Einstein’s equations in vacuum.
Again, varying the action SGHE respect to the conformal factor Φ, we find equations of

motion for φ

R = 0 . (3.113)

What we did here is to rewrite the supergravity equations of motion with local O(9, 1) ×
O(1, 9) covariance. In this description there are two things more one can do. First one should
introduce RR fields, which appear in equation (3.112) as a source term. Also the RR sector
find a geometrisation inside generalised geometry, which we do not want to pursue here. Second
remark concern fermions. The fermionic action in generalised geometry can be written using the
ordinary action just replacing connection by generalised connection. The fermionic equations of
motion are reproduced correctly and the whole set of equations are locally Spin(9, 1)×Spin(1, 9)
covariant.
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4
Generalised parallelisability and consistent

truncations

The scientist does not study nature because it is useful;
he studies it because he delights in it, and he delights in it because it is beautiful.

If nature were not beautiful, it would not be worth knowing,
and if nature were not worth knowing, life would not be worth living.

- Henri Poincaré -

Consistent truncations represent a saddle topic in Physics. Not all compact manifolds provide
them. The classic example of consistent truncation comes from compactification on local group
manifold (LGM), which is shown to work in [58], [59]. However exist some mysterious cases
of consistent truncations which do not happen on local group manifold. They are S7 [20], S4

[47], [48] and S5 [18]. All of them are contemplated in the classical supergravity solutions, which
are: the S3 near-horizon NS-fivebrane background, AdS7×S4 in eleven-dimensional supergravity,
AdS5×S5 in Type IIB, and AdS4×S7 in eleven-dimensional supergravity. In this chapter we will
show how to solve these mysterious cases using the concept of generalised Leibniz parallelisation
(GLP). By the conjecture [45] due to K. Lee, C. Strickland-Constable and D. Waldram, the GLP
condition replaces the LGM condition in the consistent truncations. The important result is that
all round spheres are GLP. In the explanation we will follow the “historical path”, which gives
rise naturally to the concept of GLP.

4.1 Local group manifold and parallelisability

Let us start defining what is a local group manifold

Definition (Local group manifold (LGM)). A local group manifold is a manifold M which can
be written as

M = G/Γ , (4.1)

where G is a Lie group and Γ is a discrete, freely-acting subgroup of G1.

1The action of a group H on a set X can be transitive, free or effective. Free means that the action of each
element h ∈ H on a point x ∈ X has no fixed points, i.e. h(x) 6= x ∀h ∈ H,x ∈ H.
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The fact to be LGM can be read mathematically in terms of the vectors fields defined over
the manifold M . First of all we can do the following considerations

• If Γ is not a normal subgroup of G, which means

gΓg−1 = Γ , ∀ g ∈ G , (4.2)

then G/Γ is not a group, but simply a manifold. If we are in this particular case, has
not sense talk about Lie algebra associated to G/Γ, since it is not a Lie group. However
remains defined the definition of tangent space T1M , where 1 is the identity element in G,
which is represented by a point p in M .

• The set of tangent vectors {êµ|p}, which generates the whole tangent space TpM , satisfies
always the Lie bracket relation

[êµ, êν ]|p = fµν
ρ(p) êρ|p , (4.3)

where fµν ρ are functions which depend by the point p ∈M chosen.

• If the manifold M is also a group, let us say M = G, Γ = {1}, then exists two special
classes of vector fields characterised by an invariance under group action, which are the
left-invariant vector fields and the right-invariant vector fields. They are defined in the
appendix A. The choice of one type rather then the other is just a convention, since the
two families give rise to equivalent theories. Suppose to pick up the left choice. Then we
have the remarkable theorem

Theorem 4.1 (Lie’s theorem). Let be {êa|g} the set of left-invariant vector fields evaluated
at the element g ∈ G. Then holds the following Lie bracket relation

[êa, êb]|g = fab
c êc|g , ∀ g ∈ G , (4.4)

where fab c are constant, i.e. they do not depend by the element g ∈ G chosen.

fab
c are called structure constants of the Lie group G. The proof of the theorem can be

found in the appendix A.

Keeping in mind these facts, come back to the case of local group manifold M = G/Γ. Since
Γ is discrete, at linearised level T1M looks like T1G. Therefore if the discrete group Γ acts on
the left, then the left-invariant vector fields {êa} defined for the group G still continue to satisfy
the relation (4.4)2.

Summarizing, a local group manifold is characterised by the following mathematical condition
on the left-invariant vector fields {êa}

[êa, êb] = Lêa êb = fab
c êc , (4.5)

where the coefficients fab c are constant (and are called structure constant in the case ΓCG).
It is well known from [58] and [59] that local group manifolds gives consistent truncations3.

But is this request too much strong? First we can notice one remarkable fact about local group
manifold: they are also parallelisable. Let us define what parallelisability means

2An explicit example is provided by the two groups SO(3) ' SU(2)/Z2, which have same algebras so(3) '
su(2).

3Actually in these papers is shown that one should require in addition the “unimodular” condition fab b = 0.
The condition of unimodularity is automatically satisfied for compact Lie groups, which in practice is where our
interest lies.

74



Definition (Parallelisable manifold). A differentiable manifold M of dimension d is called “par-
allelisable” if there exist d smooth vector fields globally defined

{v1, ..., vd} , (4.6)

on the manifold, such that at any point p ∈M the tangent vectors

{v1(p), ..., vd(p)} , (4.7)

are linearly independent and nowhere vanishing, i.e. they form a basis of the tangent space at p.

The particular choice of vector fields {v1, ..., vd} which satisfies the definition above is called
parallelisation, or an absolute parallelism, of M . Then we have the result

Theorem 4.2. A manifold M is parallelisable if, and only if, the tangent bundle TM is trivial,
i.e. TM 'M × Rd.

We have also other necessary conditions for the parallelisability.

Proposition 4.1. If a manifold M is parallelisable, then

• it must have Euler characteristic χ = 0.

• there is always a flat connection, i.e. with zero curvature.

The fact a parallelisable manifold has a flat connection is a consequence of the theorem on
the triviality of tangent bundle. In general TM looks trivial only locally, i.e. if U is open subset
of M , then there is a diffeomorphism from TU to U × Rd. But if TM looks trivial globally,
this means all tangent spaces of the manifold are isomorphic. This isomorphism establishes
that two tangent vectors of the spaces TpM and TqM having the same coordinates with respect
to the frame {e|p} and {e|q} are identified. But, by definition, this assigns to the manifold a
connection ∇ of zero curvature. However, in general, this flat connection has torsion, see for
example SU(3) = S3.

Come back now to the main logic we were following. For a manifoldM which is LGM, the set
of left-invariant vector fields provides a parallelisation of M , because point by point p ∈M they
provide a basis for TpM . Hence a LGM is also parallelisable. The parallelisability condition is
weaker than LGM condition. Hence if we buy the parallelisability condition as a new condition
to give rise consistent truncations, it seems to be a way out for the mysterious case of consistent
truncation on S7 in eleven-dimensional supergravity.

In fact in ordinary geometry, the only parallelisable spheres are (S0), S1, S3 and S7 and this
is related to the fact the only normed division algebras over the real4 (up to isomorphism) are:
the real number R, the complex numbers C, the quaternions H and the octonions O. Other
spheres Sd with d 6= 0, 1, 3, 7 are not parallelisable5.

However there are also other cases of consistent truncations on spheres which are even not
parallelisable. We are talking about S4 and S5. Hence this argument push us to search another
condition that guarantees consistent truncations, which must be weaker than the parallelisability.

4.2 Generalised Leibniz parallelisability

First ideas began to appear in [26] moving in generalised geometry. The idea is to generalise the
concept of LGM (4.5) in generalised geometry. This gives rise to the new concept of generalised
Leibniz parallelisability

4Roughly speaking, they are algebras over the real field where is defined a norm and division operation is
possible.

5For example, the Hairy ball theorem states the 2-dimensional sphere is not parallelisable. The theorem can
be generalised to S2n, with n ≥ 1.
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Definition (Generalised Leibniz parallelisability (GLP)). A differentiable manifold M , equipped
with a global frame {ÊA} on E, is “generalised Leibniz parallelisable” if

LÊAÊB = FAB
CÊC , (4.8)

where L(·)(·) is the Dorfman derivative and FAB C are constant.

By definition, a GLP manifold is also parallelisable in the appropriated notion of generalised
geometry, which is

Definition (Generalised parallelisable manifold). A differentiable manifold M of dimension d is
called “generalised parallelisable” if there exist 2d smooth generalised vector fields globally defined

{V1, ..., V2d} , (4.9)

on the manifold, such that at any point p ∈M the generalised tangent vectors

{V1(p), ..., V2d(p)} , (4.10)

are linearly independent and nowhere vanishing, i.e. they form a basis of the generalised tangent
space at p.

By analogy with ordinary geometry, the particular choice of generalised vector fields {V1, ..., V2d}
which satisfies the definition above is called generalised parallelisation, or an absolute generalised
parallelism, of M . In the definition of GLP, the “global frame” is intended to be a generalised
parallelisation.

Again, we have the result

Theorem 4.3. A manifold M is generalised parallelisable if, and only if, the generalised tangent
bundle E is trivial.

Triviality of the generalised tangent bundle, in the Hitchin’s generalised geometry, means
E ' M × R2d, but in general it depends case by case how one defines the generalised tangent
bundle.

At this point, one is led to the conjecture [45]

Conjecture 4.1. A manifold M which is GLP gives consistent truncations.

This conjecture has a remarkable consequence. In the next section we will consider spheres,
and we will show that all round spheres Sd are GLP. Therefore by the conjecture stated before,
all round spheres give consistent truncations and this fact sheds light in the last two mysterious
cases of consistent truncations on S4 in eleven-dimensional supergravity and S5 in Type IIB
supergravity.

Just notice that the GLP condition is weaker than the (ordinary) parallelisability, and gen-
eralised parallelisability is weaker than GLP condition. The strength of the four concepts we
introduced is shown on the Table6 4.1.

If a manifoldM is parallelisable in ordinary sense, then it is also generalised parallelisable. In
fact, let {ea} be a parallelisation of M . Let {θa} be its dual. Then a generalised parallelisation
of M is given reminding the formula (2.78) which now reads

ÊA =





(
ea

ieaB

)
for A = a

(
0

θa

)
for A = a+ d

. (4.11)

6The table shows just only the strength of the definitions. Which means the class of GLP manifolds is broader
than the class of parallelisable manifolds, but it is not true all parallelisable manifolds are also GLP manifolds.
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Local group manifold (LGM)
↓

Parallelisable manifold
↓

Generalised Leibniz parallelisability (GLP)
↓

Generalised parallelisable manifold

Table 4.1: Condition’s strength. It decrease from top to down.

It is easy to check that the generalised vectors in (4.11), because of the properties of the (ordinary)
parallelisation, they are globally defined, linearly independent and nowhere vanishes, hence they
provide a generalised parallelisation.

The careful reader will have noticed that we did not define the concept of GLP manifold as
a generalisation of the merely definition of LGM (4.1). Conversely we prefer to generalise the
equation (4.5) which is a mathematical condition to be LGM. Furthermore the generalisation
regarded only the Lie derivative, which was replaced by the Dorfman derivative, but we said
anything about Lie bracket, which it should be replaced by Courant bracket. Moreover, despite
ordinary geometry, Courant bracket and Dorfman derivative do not coincide. Hence seems we
are struck in an inconsistency. Fortunately this is not the case thanks to the following fact

Lemma 4.1. Let {ÊA} a generalised parallelisation of M , O(d, d)-compatible. Then we have

LÊAÊB = JÊA, ÊBK . (4.12)

Proof. Recall the relation between Courant bracket and Dorfman derivative acting on {ÊA}

JÊA, ÊBK = LÊAÊB + d 〈ÊA, ÊB〉 . (4.13)

The generalised parallelisation is O(d, d)-compatible, which means

〈ÊA, ÊB〉 = ηAB . (4.14)

Therefore we have

JÊA, ÊBK = LÊAÊB + d (ηAB) = LÊAÊB . (4.15)

Now we close the circle about GLP, showing a result which tells us how the GLP manifold
looks like.

Theorem 4.4. A manifold M which is GLP is also a homogeneous space, i.e.

M = G/H , (4.16)

where G ⊂ O(d, d) is a 2d-dimensional Lie group and H is a d-dimensional Lie subgroup of G.

Proof. Let us pick a generalised parallelisation {ÊA} O(d, d)-compatible, which satisfies

JÊA, ÊBK = FAB
CÊC , (4.17)

where FAB C are constant. The Courant bracket on {ÊA} satisfies the Jacoby identity and hence
defines a Lie algebra g whose structure constants are FAB C . Given Proposition 3.18 of [31], we
also have
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ηCDF
D
AB + ηBDF

D
AC = 0 . (4.18)

This implies that the adjoint representation of the algebra g, where the generators are given by
(TA)B

C = FAB
C , acts as a sub-algebra g ⊂ o(d, d).

Recall now that the Courant bracket, under the projection π : E → TM , reduces to the Lie
bracket for ordinary vectors

π
(
JÊA, ÊBK

)
= [vA, vB] = FAB

CvC , (4.19)

where vA ≡ π(ÊA), and they are 2d vector fields on M . Since the set {ÊA} provide a basis for
E, the set {vA} must provide a basis for TM . Therefore some of vA can be vanishes at some
points p ∈ M , or cannot be linearly independent, but surely there must be at least d of them
non-vanishing at each point p ∈M and linearly independent. Let us fix some point p ∈M . We
can identify vectors X = XAÊA, with constant XA, as elements of the lie algebra g. Now we
look at the set of vectors X with vanishing π(X) at a given point p ∈M

h = {X ∈ g|π(X) = 0} . (4.20)

This must be at least d-dimensional subset of g because it must span T ∗M . But also its comple-
mentary set g \ h must be at least d-dimensional in order to span TM . Hence h must be exactly
a d-dimensional subset of g. Since the Lie bracket of two vector fields that vanish at p ∈M must
itself vanish at p ∈ M , we have that h must form a closed sub-algebra. Hence, exponentiating
the algebra, the manifold M must be a coset space

M = G/H (4.21)

with G ⊂ O(d, d) a 2d-dimensional Lie group and H ⊂ G a d-dimensional Lie subgroup.

4.2.1 Gauge group on the reduced theory

There are many methods to do a dimensional reduction, as one can see in the literature. The most
ancient was the Kaluza-Klein compactification performed over a circle S1. The first generalisation
was considered by Pauli in 1953. He starting point was the six-dimensional spacetime M4 × S2.
The extra dimensions form a 2-sphere S2, and with an appropriate Ansatz he constructed a
non-abelian theory with gauge group SU(2).

In the years after that, further generalisations were proposed. They can be classified into
three (plus one) families [17]. The ingredients are the choice of compact manifold Cd and the
gauge group for the ending theory.

(I) Toroidal reduction Cd = T d. This represents a d-dimensional torus reduction and is
a generalisation of the Kaluza-Klein circle reduction. The reduced theory gets the gauge
group [U(1)]d.

(II) DeWitt reduction Cd = G. This is a reduction on a group manifold, where G is a
compact Lie group. The group G becomes also the gauge group for the reduced theory.

(III) Pauli reduction Cd = G/H. Coset space reduction, where H is the maximal compact
subgroup of G. The most common examples are sphere-reductions Sd = SO(d+1)/SO(d).
The gauge group appearing in the reduced theory consists in the isometry group of Cd,
which is G.

(IV) Inhomogeneous spaces or spaces without any isometries.
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In most cases coset reductions are preferred above group manifold reductions, since less extra
dimensions are needed to obtain a certain gauge group. For example, if we want the gauge group
SO(8) we could use the SO(8) group manifold or the coset SO(8)/SO(7), which corresponds to
the 7-sphere. In the first case we have dimSO(8) = 28, while in the second case dimS7 = 7.

In the article [17], the authors M. Cvetic, G.W. Gibbons, H. Lü and C.N. Pope have presented
a conjecture for Pauli reduction on group manifold Cd = G. This conjecture leads to a gauge group
G × G on the reduced theory instead the only gauge group G appearing in DeWitt reduction.
The conjecture refers only to reductions of string theory (i.e. we must have a metric, B-field
and dilaton), not of arbitrary theories. The truncation on this group manifold with G×G gauge
group on the reduced theory is consistent [23]. As the authors wrote in the article, “there is no
obvious group-theoretical explanation why this truncation can be performed consistently”.

Using the framework of generalised geometry we are able to give a theoretical motivation
of this conjecture (section 4.6). In generalised geometry the gauge group which appears in the
reduced theory is generated by the algebra defined by the generalised parallelisation of Cd, which
must satisfy the GLP condition. We will show that the generalised parallelisation of G, which
satisfy the GLP condition, generates the g⊕ g algebra, hence exponentiating the G×G group.

4.3 Spheres as generalised parallelisable spaces

In this section we reproduce just only the fundamental steps about the result that all round
spheres are GLP. The complete explanation can be found in [45].

The d-dimensional sphere can emerge dynamically as solution of equations of motion. Let
us consider a theory in d dimensions with metric g and d-form filed strength F = dA, satisfying
the equations of motion

Rµν =
1

d− 1
F 2gµν , F =

d− 1

R
volg , (4.22)

where Rµν is the Ricci tensor, R = gµνRµν is the scalar of curvature, F 2 = 1
d!F

µ1...µdFµ1...µd and
volg is the volume form computed with the metric g. The indices µ and ν run from 1 to d. The
equations of motion (4.22) admits a solution with a round sphere Sd metric of radius R.

Since the sphere background has a d-form field strength F , it is natural to consider a gener-
alised geometry where the generalised tangent bundle is 1

2d(d+ 1)-dimensional defined as7

E ≡
⋃

p∈M
TpM ⊕

d−2∧
T ∗pM ' TM ⊕

d−2∧
T ∗M . (4.23)

We notice immediately that in the case d = 3 we get the Hitchin’s generalised geometry E '
TM ⊕ T ∗M and the 3-form F becomes the flux 3-form H = dB. Generalised vectors V now are

VM =

(
vµ

λµ1...µd−2

)
, (4.24)

and also here one can define patching rules, Dorfman derivative, Courant bracket and so on, in
the same way we did for TM ⊕ T ∗M generalised geometry.

The structure group which appears here is not O(d, d) anymore, but the positive determinant
general group GL+(d+1,R). The maximal subgroup of GL+(d+1,R) is the Lie group O(d+1),
and the degrees of freedom encoded by the generalised metric G on the d-sphere are given by
the coset

G ∈ GL(d+ 1)

O(d+ 1)
. (4.25)

7Actually E is defined as a short exact sequence, in the same way of the Hitchin’s generalised geometry, getting
at the end an exact Courant algebroid.
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Consider now the sphere Sd resulting as solution of equations of motion (4.22). The sphere
Sd can be embedded into Rd+1 with embedding equation

δijy
iyj = 1 , (4.26)

where yi are constrained dimensionless coordinates with i = 1, ..., d+ 1. The metric is

ds2 = R2δijdy
idyj . (4.27)

The generalised tangent bundle is 1
2d(d + 1)-dimensional, therefore a generalised parallelisation

must contains 1
2d(d + 1) generalised vectors. Since the sphere Sd is a maximally symmetric

manifold, it admits 1
2d(d + 1) Killing vector and we can use them in order to construct the

generalised parallelisation. From the point of view of the embedding space Rd+1, the sphere is
invariant under rotational SO(d+ 1) Killing vectors vij ,

vij = R−1

(
yi

∂

∂yj
− yj ∂

∂yi

)
, (4.28)

which they gives the so(d+ 1) algebra under Lie bracket

[vij , vkl] = R−1 (δikvlj − δilvkj − δjkvli + δjlvki) . (4.29)

The Ansatz for the global frame Êij is

Êij =

(
vij

σij + ivijA

)
, (4.30)

where the term ivijA represent the action of the isomorphism E ' TM ⊕∧d−2 T ∗pM , and σij is
defined as

σij = ?d(R
2dyi ∧ dyj) =

Rd−2

(d− 2)!
εijk1...kd−1

yk1dyk2 ∧ · · · ∧ dykd−1 , (4.31)

where the Hodge star is computed in d dimensions, see the appendix A for details.
We have to check that the vector fields (4.30) are nowhere vanishing. Analysing separately

when vanishes the vector components and the form components, we have

vector components vij = 0 when yi = yj = 0

form components dyi ∧ dyj = 0 when y2
i + y2

j = 1

The Killing vectors vanishes in the poles of the sphere, while dyi ∧ dyj vanishes in the equator,
i.e. when yi and yj are one functions of the other and the external product vanishes. Since this
two conditions can never be satisfied together, the set of vector fields (4.11) gives us a generalised
parallelisation of Sd.

One can check also the generalised parallelisation (4.11) is orthogonal respect to the gener-
alised metric on the round sphere, hence Dorfman derivative coincides with the Courant bracket
on the generalised parallelisation. The explicit computation give us

LÊij Êkl = JÊij .ÊklK = R−1
(
δikÊlj − δilÊkj − δjkÊli + δjlÊki

)
. (4.32)

We recognise that the Lie algebra generated by the generalised parallelisation is so(d+ 1). This
is in accord to the fact the Pauli reductions over S2, S7 give rise respectively to the gauge groups
SO(3) and SO(8). Also the formula (4.32) shows that all round spheres Sd are GLP. Hence all
of them, by the conjecture 4.1, provide consistent truncations.
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4.3.1 The three-dimensional case

The case d = 3 is a particular one because it gives rise a connection with the Hitchin’s generalised
geometry. The indices i and j runs form 1 to 4 and we can defined self-dual and antiself-dual
generalised vectors

Ê±ij = Êij ∓
1

2
εijklÊkl . (4.33)

We have six generalised vectors Ê+
ij which only three are linearly independent. The same argu-

ment works for Ê−ij . Therefore we can choose

Ê+
a ≡ Ê+

4a , a = 1, 2, 3 , (4.34)

Ê−ā ≡ Ê−4ā , ā = 1, 2, 3 . (4.35)

and Ê+
a , Ê

−
ā represent two SO(3) triplets which give rise to the algebra

LÊ+
a
Ê+
b = JÊ+

a , Ê
+
b K = R−1εabcÊ

+
c ,

LÊ−ā
Ê−
b̄

= JÊ−ā , Ê
−
b̄

K = R−1εāb̄c̄Ê
−
c̄ , (4.36)

LÊ+
a
Ê−
b̄

= JÊ+
a , Ê

−
b̄

K = 0 .

Hence the self-dual and antiself-dual frames give us two copies of the su(2) = so(3) algebra.
When the complete frame is exponentiated we get the Lie group SO(3) × SO(3), which is the
maximal compact subgroup of SO(3, 3). But SO(3)×SO(3) is also isomorphic to the Lie group
SO(4), which is the maximal compact subgroup of the Lie group SL(4,R), and SO(3, 3) is also
isomorphic to SL(4,R). Hence we have closed the circle proving the theory developed for the
spheres leads back in the case d = 3 to the Hitchin’s geometry, in particular showing explicitly
the splitting E ' C+ ⊕ C− provided by self-dual and antiself-dual frames.

SO(3, 3) ⊃ SO(3)× SO(3) Hitchin’s generalised geometry
o o

SL(4,R) ⊃ SO(4) Sphere’s generalised geometry

4.4 Homogeneous spaces: S3, H3, dS3 and AdS3

In this section we keep on the case d = 3. We analyse maximally symmetric spaces which have
the same embedding equation of the 3-sphere embedded in R4, but with different metric signature
with n number of plus and m number of minus, i.e.

η
(n,m)
ij yiyj = 1 . (4.37)

We consider the following spaces

Sphere S3 = SO(4)
SO(3) '

SO(3)×SO(3)
SO(3) y2

1 + y2
2 + y2

3 + y2
4 = 1

de Sitter dS3 = SO(3,1)
SO(2,1) y2

1 + y2
2 + y2

3 − y2
4 = 1

Anti-de Sitter AdS3 = SO(2,2)
SO(2,1) '

SO(2,1)×SO(1,2)
SO(2,1) −y2

1 − y2
2 + y2

3 + y2
4 = 1

Hyperbolic space H3 = SO(3,1)
SO(3) −y2

1 − y2
2 − y2

3 + y2
4 = 1
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All these spaces arise as solution of the equations of motion (4.22) considering different signatures
of the metric g in d = 3. Hence the description of all these spaces is captured by the sphere’s
generalised geometry defined in (4.23), which in our case leads back to Hitchin’s generalised
geometry. Hence at the end of the day we would expect to find the splitting given by the
O(p, q)×O(q, p) structure. Actually we will discover that this procedure can be done canonically
for the sphere and Anti-de Sitter spaces, but not for the de Sitter and hyperbolic spaces.

The generalised parallelisation for all these spaces is given by

LÊij Êkl = JÊij .ÊklK = R−1
(
η

(n,m)
ik Êlj − η(n,m)

il Êkj − η(n,m)
jk Êli + η

(n,m)
jl Êki

)
. (4.38)

Let us take self-dual and antiself-dual generalised vectors defined by (4.33). Then the linearly
independent Ê+

a and Ê−ā represent two triplets under the groups SO(3) for the sphere, and
SO(2, 1) for the Anti-de Sitter space. These two sets of Ê+

a and Ê−ā give rise to two copies of
so(3) algebra for the sphere, and so(2, 1) algebra for the Anti-de Sitter space. Hence also for
the Anti-de Sitter space we have the splitting of the generalised tangent bundle E ' C+ ⊕ C−
provided by the choice of the SO(2, 1) × SO(1, 2)-substructure. An important fact to notice is
that the group definition in terms of coset of these two spaces admit naturally a “splitting” given
by the isomorphisms between SO(4) ' SO(3)×SO(3) and SO(2, 2) ' SO(2, 1)×SO(1, 2). This
is not true for the de Sitter and hyperbolic spaces.

In fact, if the frame {Ê+
a , Ê

−
ā } gives rise to a splitting for the sphere and the Anti-de Sitter

space, from the other side, it do not for the de Sitter and hyperbolic spaces. The reason is due
to the fact for the sphere and Anti-de Sitter space there are an even number of minus signs in
η(n,m), while for the de Sitter and hyperbolic spaces an odd number.

However we can “reabsorb” the extra minus sign considering the complexification of the
self-dual and antiself-dual basis

Ê±ij = Êij ±
i

2
εijklÊkl . (4.39)

Again, the linearly independent {E+
a , E−ā } fulfil

LÊ+
a
Ê+
b = JÊ+

a , Ê+
b K = R−1εabcÊ+

c ,

LÊ−ā Ê
−
b̄

= JÊ−ā , Ê−b̄ K = R−1εāb̄c̄Ê−c̄ , (4.40)

LÊ+
a
Ê−
b̄

= JÊ+
a , Ê−b̄ K = 0 .

This show the isomorphism between the complexified algebras

so(3, 1)C ' su(2)C ⊕ su(2)C ' sl(2,C)⊕ sl(2,C) . (4.41)

Therefore we get the splitting also for the group SO(3, 1), which leads to a definition of
generalised metric. But now we have to remind that the splitting is available only on the
complexified basis. Hence we are not using generalised geometry anymore, but Generalised
Complex Geometry. The generalised metricG in generalised geometry must satisfies the condition

G2 = 1 . (4.42)

In generalised complex geometry the generalised metric J must fulfils

J2 = −1 , (4.43)

but the degrees of freedom encoded by the two generalised metric are the same, g and B.
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4.5 A non-trivial case: S2 × S1

The manifold S2 × S1 is not a coset space, hence one should be tempted to think it is not GLP,
since it represents a necessary condition from the theorem (4.4). In ordinary geometry there is
a theorem which states “product of parallelisable manifolds is parallelisable”. Hence one would
like to check if it is also true “product of GLP manifolds is GLP”. We do not prove here this
statement, but we show that is it true in the case S2×S1. The fact S2×S1 is GLP tells us this
space is also an homogeneous space. Since the case S2 × S1 is original, all the computations are
given in detailed in the appendix D.1 and here we just follow the main logic.

Let us take yi constrained coordinates, with i = 1, 2, 3, which described S2 embedded in R3

by the equation δijyiyj = 1. For the circle S1 we do not choose constrained coordinates, but just
the free angle parameter ψ ∈ [0, 2π[.

The generalised frame can be constructed as8

Êij =

(
vij

−ivijB + ?2(dyi ∧ dyj) ∧ dψ

)
, Ê′i =

(
yi∂ψ

−iyi∂ψB + εijk y
jdyk

)
, (4.44)

where {Êi} is the generalised parallelisation on S2 and {Ê′i} are generalised vectors for the circle
reproduced in each direction y1, y2, y3 of the embedded space R3. We need them in order to
have a set of six generalised vector fields, which corresponds to the dimension of the generalised
tangent bundle E.

These generalised vector fields are nowhere vanishing. The set {Êij} was already discussed
in the section 4.3, while for {Ê′i} we can see that9

vector components yi∂ψ = 0 when yi = 0

form components εijk y
jdyk = 0 when yi = ±1

Instead of considering the two-indices generalised vectors Êij , let us consider their Hodge
dual one-index generalised vectors

Êi = εijkÊjk . (4.45)

The frame {Êi, Êj} is orthogonal respect the O(d, d) metric and fulfils the algebra

LÊiÊj = JÊi, ÊjK = −εijkÊk ,
LÊiÊ

′
j = JÊi, Ê′jK = −εijkÊ′k , (4.46)

LÊ′i
Ê′j = JÊ′i, Ê

′
jK = 0 .

From these relations we recognise the algebra recovered here is nothing more than the algebra
of the Euclidean group in 3 dimensions, E(3) ' ISO(3) ' SO(3) nR3.

The frame (4.44) is not the only possible generalised parallelisation of S2 × S1. Another
choice, which is still nowhere vanishes, is given by

Êij =

(
vij

−ivijB + ?2(dyi ∧ dyj) ∧ dψ

)
, Ê ′i =

(
yi∂ψ

−iyi∂ψB + dyi

)
. (4.47)

Despite this frame gives a generalised parallelisation of S2 × S1, it is not orthogonal respect
the O(d, d) metric. Hence it is not a good candidate in order to provide an algebra.

8Here we choose A = −B.
9It may be useful draw a 2-sphere and see that the form component vanishes only in the intersection of two

circles orthogonal to the yj and yk directions.
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4.6 The conjecture G×G
Consider a group manifold M = G equipped with left and right invariant vector fields, Let lā
and ra, with a, ā = 1, ..., d, be a basis for the left and right invariant vector fields respectively.
They must fulfil the following Lie bracket relations

[ra, rb] = fab
c rc ,

[lā, lb̄] = fāb̄
c̄ lc̄ , (4.48)

[ra, lb̄] = 0 .

The dual basis ρa and lā with respect to ra and lā are defined as

iraρ
b = δa

b, ilāλ
b̄ = δā

b̄, (4.49)

Raising and lowering indices is made by the Cartan-Killing form which remains associated
to the Lie algebra g, i.e.

g = gab ρ
a ⊗ ρb = gāb̄ λ

ā ⊗ λb̄. (4.50)

Remember that left and right invariant vector fields give rise to two copies of the same theory.
Let us pick up the set of generalised vector fields {E+

a } and {E−ā } defined as

Ê+
a =

(
ra

ρa − iraB

)
, Ê−ā =

(
lā

−λā − ilāB

)
. (4.51)

The frame (4.51) is globally defined, nowhere vanishes and all vector fields are linearly inde-
pendent. Hence it provides a generalised parallelisation of G. We search a generalised paralleli-
sation which is orthogonal with respect to the O(d, d) metric, i.e.

〈Ê+
a , Ê

−
b 〉 = ηab , (4.52)

〈Ê+
ā , Ē

−
b̄
〉 = ηāb̄ , (4.53)

〈Ê+
a , Ê

−
b̄
〉 = 0 . (4.54)

The orthogonality conditions (4.52) and (4.53) are automatically satisfied. While the conditions
(4.54) is satisfied if and only if holds the following relation

iraλā = ilāρa . (4.55)

The generalised parallelisation (4.51) satisfies the GLP condition, and thanks to the (4.55), we
have the algebra

LÊ+
a
Ê+
b = JÊ+

a , Ê
+
a K = f c

ab Ê
+
c ,

LÊ−ā
Ê−
b̄

= JÊ−ā , Ê
−
b̄

K = f c̄
āb̄ Ê

−
c̄ , (4.56)

LÊ+
a
Ê−
b̄

= JÊ+
a , Ê

−
b̄

K = 0 .

The algebra (4.56) reproduced here by (4.51) consists in two copies of the Lie algebra g associated
to the Lie groupG. Hence for a group manifoldM = G, in the framework of generalised geometry,
it is always possible to find a generalised parallelisation of G which gives rise to the algebra g⊕g,
and therefore, if M = G is used for dimensional reductions, to a gauge group G × G in the
reduced theory.
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Conclusions

Generalised geometry is a modern topic in between mathematics and physics, which is still
nowadays developing and is giving great results, as we have seen in this thesis. Hence I strongly
believe that this approach should be pursued further inside Supergravity and M-theory in order
to give a better explanation of some mysterious fact, for example about U-duality and the
Mirror Symmetry, already approached by the double field theory formalism [10]. Some ideas in
exceptional generalised geometry about U-duality have also arisen in [7].

Despite generalised geometry is growing fast, there are many questions which still remain
unanswered. One of the most important concern how supersymmetry can enter in generalised
geometry. In [15] the authors shown how to incorporate all the fermions inside generalised
geometry, but still supersymmetry remains left outside. Instead asking how supersymmetry can
enter in generalised geometry, the question should be more a conceptual one: why is generalised
geometry the appropriate formalism to describe supergravity theories? Surely the fact that the
metric and the B field can be enclosed inside a generalised metric and Type II Supergravity
equations of motion can be written as O(9, 1)×O(1, 9) covariant Einstein’s equations in vacuum
gives us a good clue, but this is not enough. One might also ask whether the structure group
O(d, d) could be extended to include fermionic symmetries. However at the moment we do not
know if it is possible to introduce a superspace inside generalised geometry framework, or even
if generalised geometry does not need a superspace in order to encode supersymmetry.

About the topic of consistent truncations of supergravity in generalised geometry framework,
there are still open questions. The main question probably regards if the conjecture 4.1 is true
or not. If we assume it is true, then we do not know if GLP is the weakest requirement for
a manifold in order to have a consistent truncation in the reduced theory. If we suppose GLP
represents the weakest requirement, then we do not know which topological properties a manifold
must hold. Putting in another way, we do not know the sufficient conditions which a manifold
must have in order to be GLP. When we discover these informations, then we will be able to
catalogue which manifolds can give consistent truncations and which not.

Since this way is quite hard to figure out immediately, the tactics consist in pick up other
manifolds, which are not discovered to give consistent truncations and try to see if they are GLP.
This approach gives a broad vision about properties which GLP manifolds must fulfil.
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A
Differential Geometry

A.1 Some concepts about manifolds

In this section we talk about some concepts quite formal about manifolds, which sometimes are
not in the daily language, but that we used in this thesis. The topics we cover here are induced
maps, flows and Lie derivative, left and right invariant vector fields and embedded manifolds. We
assume known the general knowledge about manifolds.

A.1.1 Induced maps: pullback and pushforward

Let us consider the smooth map f : M → N from an m-dimensional manifold M to an n-
dimensional manifold N . Smooth means if we take a chart (U, φ) on M and (V, φ) on N , where
p ∈ U and f(p) ∈ V , then the “coordinate presentation” of f , i.e.

ψ ◦ f ◦ φ−1 : Rm → Rn , (A.1)

is C∞. The smooth map f induces naturally a map f∗, called pushforward, such as

f∗ : TpM → Tf(p)N . (A.2)

Let us pick up a point p ∈M and let be x = φ(p) and y = ψ(f(p)). Let be V = V µ∂/∂xµ ∈ TpM
and f∗V = Wα∂/∂yα ∈ Tf(p)N . Then, in a chart, the pushforward components are defined as

Wα = V µ∂y
α(x)

∂xµ
. (A.3)

Note that the matrix (∂yα/∂xµ) is nothing but the Jacobian of the map f : M → N .
There smooth map f induces also another map f∗, calles pullback, such as

f∗ : T ∗f(p)M → T ∗pM . (A.4)

Again, in the same notation as before, consider the covector ω = ωαdy
α ∈ T ∗f(p)N and f∗ω =

λµdx
µ ∈ T ∗pM . The pullback components are defined as

λµ = ωα
∂yα(x)

∂xµ
. (A.5)

Note that f∗ works between tangent bundles and goes in the same direction as f , while f∗

works between cotangent bundles and goes backward, hence the names pushforward and pullback.
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A.1.2 Flows and Lie derivative

Let X be a vector field in M . An integral curve C(t) of X is a curve

C : R→M , (A.6)

whose tangent vector at C(t) is X|C(t). Given a chart (U, φ), such that x(t) = φ(C(t)), than this
read

dxµ

dt
= Xµ(x(t)) . (A.7)

The problem of finding integral curves is equivalent to solving the autonomous system of ordinary
differential equations (ODEs) given by (A.7). The initial condition xµ0 = xµ(0) must be specified
in order to have a well defined Chauchy problem. The existence and uniqueness theorem of
ODEs guarantees there is a unique solution of (A.7). Therefore we have a family of integral
curves, labelled by the initial data xµ0 , and it is called flow. Formally a flow is a map

σ : R×M →M , (A.8)

such that in a chart

d

dt
σµ(t, x0) = Xµ(σ(t, x0)) , σµ(0, x0) = xµ0 . (A.9)

The flow σ(t, x) represent a one-parameter group of diffeomorphisms from M to M because
for fixed t ∈ R the map σt : M →M is a diffeomorphism, and it satisfies the “group properties”

• σt ◦ σs(x) = σt+s(x) ∀ t, s ∈ R,

• σ0 = 1,

• σ−t = (σt)
−1.

Since σt ◦ σs(x) = σs ◦ σt(x), it is also a commutative group.
Consider now the two flows σ(t, x) and τ(t, x) generated by the vector fields X and Y ,

dσµ(t, x)

dt
= Xµ(σ(t, x)) (A.10)

dτµ(t, x)

dt
= Y µ(τ(t, x)) . (A.11)

The Lie derivative of Y along the flow σ of X evaluates how the vector fields Y changes along
the vector fields X. To do this we have to compare the vector Y at a point x with the nearby
point x′ = σε(x), with ε � 1. However we cannot take simply the difference between the
components of Y at the two points since they belong to difference tangent spaces TpM and
Tσε(x)M . However we can “pull back” the vector Y |σε(x) ∈ Tσε(x)M to TxM using the pushforward
map (σ−ε)∗ : Tσε(x)M → TxM . Hence the Lie derivative is defined as

LXY ≡ lim
ε→0

1

ε

[
(σ−ε)∗Y |σε(x) − Y |x

]
. (A.12)

In a chart (U, φ) with coordinates x, X = Xµ∂/∂xµ and Y = Y µ∂/∂xµ, one can show the Lie
derivatives has the expression

LXY = (Xµ∂µY
ν − Y ν∂µX

µ) ∂ν . (A.13)

The above expression holds also in a non coordinate basis {êa}, just replacing ∂µ by êa.
One can define Lie bracket [X,Y ] as the commutator of the two vector fields, i.e.
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[X,Y ]f = X[Y [f ]]− Y [X[f ]] , (A.14)

where f ∈ F(M). Accidentally, Lie derivative and Lie bracket coincide. Lie derivative can be
extended to tensor fields.

The properties of Lie derivative are

• Linearity

LX(T1 + T2) = LXT1 + LXT2 , (A.15)

with T1 and T2 generic tensor fields.

• Leibniz rule

LX(Y ⊗ ω) = Y ⊗ (LXω) + (LXY )⊗ ω , (A.16)

where Y ∈ Γ(TM) and ω ∈ Γ(T ∗M).

• Given T a generic tensor.

L[X,Y ]T = LXLY T − LY LXT . (A.17)

• Cartan’s formula

LXω = diXω + iXdω , (A.18)

where ω ∈ Γ(T ∗M).

A.1.3 Left and right invariant vector fields

Let a and g be element of a Lie group G. The right-translation R − a : G → G and the
lleft-translation La : G→ G of g by a are defined by

Ra g = g a , (A.19)
La g = a g . (A.20)

Since the group composition in a Lie group is a smooth map by definition, Ra and La are
smooth maps. Then remains defined the induced maps

Ra∗ : TgG→ TgaG , La∗ : TgG→ TagG . (A.21)

Let X be a vector field on a Lie group G. X is said to be left-invariant vector fields if

La∗X|g = X|ag . (A.22)

The same definition holds for right-invariant vector fields, just replacing La∗ by Ra∗. In compo-
nents, the relation (A.22) reads

La∗X|g = Xµ(g)
∂xν(ag)

∂xµ(g)

∂

∂xν

∣∣∣∣
ag

= Xν(ag)
∂

∂xν

∣∣∣∣
ag

, (A.23)

where xµ(g) and xµ(ag) are coordinates of g and ag, respectively.
Left and right invariant vector fields are very useful for proving the following fact, which goes

under the name of Lie’s theorem
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[Xa, Xb]|g = fab
cXc|g , ∀ g ∈ G , (A.24)

where {Xa} is a set of left or right invariant vector fields, and fab c are constants which do not
depend by g. Let us prove this fact. Consider the algebra T1G = g generated by the left invariant
vector fields {Xa|1}. They must satisfy the algebra relation

[Xa, Xb]|1 = fab
cXc|1 , (A.25)

where fab c are the structure constants of the algebra g. The idea now is that we want to “move”
the algebra in another point g ∈ G different from 1. If we apply Lg∗ to both members of (A.25),
and reminding the definition of left invariant vector fields, for the LHS we have

Lg∗[Xa, Xb]|1 = [Lg∗Xa|1, Lg∗Xb|1] = [Xa, Xb]|g , (A.26)

for the RHS we have

Lg∗fab
cXc|1 = fab

cXc|g . (A.27)

Therefore fab c do not change. Since this holds for each g ∈ G, we have the thesis (A.24).

A.1.4 Embedded manifolds

LetM be a d-dimensional manifold embedded in Rd+n. Our aim now is provide a way to compute
the volume form and the Hodge dual in M using constrained coordinates xµ ∈ Rd+n. First we
have to define the concept of normal bundle.

Fix a point p ∈M and let NpM be the vector space which is normal to TpM in Rd+n, which
means δµνUµV ν = 0 where U ∈ NpM , V ∈ TpM , µ, ν = 1, ..., d+n and δ is the Euclidean metric
in Rd+n. The vector space NpM is isomorphic to Rn. The normal bundle is defined as

NM ≡
⋃

p∈M
NpM . (A.28)

Recall the volume form on Rd+n

volRd+n = dx1 ∧ · · · ∧ dxd+n =
1

(d+ n)!
εµ1...µd+ndx

µ1 ∧ · · · ∧ dxµd+n . (A.29)

Let V1, ..., Vn a set of n normal vector fields in NM . Then the volume form on M is given by

volM = iV1 · · · iVnvolRd+n . (A.30)

Given a p-form ω, with p ≤ d, i.e.

ω =
1

p!
ωµ1...µpdx

µ1 ∧ · · · dxµp , (A.31)

the Hodge dual of ω in Rd+n is defined as

?d+n ω ≡
1

p!(d+ n− p)! ων1...νpε
ν1...νp

µ1...µd+n−pdx
µ1 ∧ · · · ∧ dxµd+n−p . (A.32)

The Hodge dual of ω in M is given by

?d ω = iV1 · · · iVn ?d+n ω . (A.33)

Let us particularise these formulæin the caseM = Sd and n = 1. Let us take polar coordinates
on Sd. Then the normal vector V ∈ NSd lies along the radial direction r. Using the chain rule
we have the expression
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V = ∂r =
xµ

r
∂µ . (A.34)

If we insert (A.34) inside (A.30) and (A.33) then we get the expressions used in the chapter 4.

A.2 Fibre bundle

Fibre bundle represents a technique in order to put over a manifold a second topological space.
This approach is very useful in physics. In fact many theories, such as general relativity and
gauge theories, are described naturally in terms of fibre bundles. Heuristically, a fibre bundle
consists in taking a manifold and associating to each point an element of a topological space
which is called fibre. Let us give here the formal definition

Definition (Fibre bundle). A (differentiable) fibre bundle is a set of elements (E, π,M,F,G)
which consists in

• a d-dimensional differentiable manifold M , called base space,

• a d-dimensional differential manifold F , called fibre,

• a 2d-dimensional differentiable manifold E, called total space,

• a surjection π : E →M , called projection,

• a Lie group G, called structure group, which acts on F on the left,

• a local trivialization. Given a set of open covering {Ui} of M , they are maps φi : Ui×F →
π−1(Ui) such that π ◦ φi(p, f) = p. The inverse φ−1

i maps π−1(Ui) onto the direct product
Ui × F , this is the reason of the name “local trivialization”.

• on the intersection Ui ∩ Uj 6= ∅, we require that the transition functions tij ≡ φ−1
i ◦ φj are

elements of G.

If the transition functions are trivial everywhere, than we have the so-called trivial bundle.
The tangent bundle is just a particular case of fibre bundle, where the fibre F at each point
p is the tangent space TpM . In this case the structure group G is the general linear transfor-
mation GL(d,R), which represents the diffeomorphism group. In generalised geometry G is the
O(d, d) group, which is larger than the GL(d,R) group, and it encodes inside also the gauge
transformations of the B field.
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B
Formal aspects of Generalised Geometry

The way we presented the definition of the generalised tangent bundle in the chapter 2 actually
does not represent the canonical construction one should do. But in that moment we preferred
to give to the reader a more “friendly” definition, in order to make the exposure less heavy.

Here I want to give the more precise definition of generalised tangent bundle, which make
use of some mathematical tools, such as the exact sequence.

Definition (Exact sequence). An exact sequence is a sequence, either finite or infinite, of objects
{Gi}i=0,...,n and morphisms {ϕi}i=1,...,n between them, such that the image of one morphism
equals the kernel of the next.

G0
ϕ1−→ G1

ϕ2−→ G2
ϕ3−→ · · · ϕn−→ Gn , (B.1)

and
Im(ϕi) = ker(ϕi+1) ∀i = 1, ..., n− 1 . (B.2)

In the above definition, by sequence we mean an ordered list. For a sequence, unlike set,
order matters, and the same elements can appear multiple times at different positions in the
sequence. The objects mentioned above can be generic sets, vectorial spaces, topological spaces,
groups, etc ... Depending on the chosen objects, the morphisms can be respectively functions,
linear transformations, continuous functions, group homomorphisms, etc ...

The exact sequence is called “short exact sequence” when the sequence is finite.

Definition (Generalised Tangent Bundle). The generalised tangent bundle E is defined by the
short exact sequence

0 −→ T ∗M ι−→ E
π−→ TM −→ 0 , (B.3)

where

• ι is the inclusion map, which maps elements of T ∗M in itself inside E

ι(λ) =

(
0
λ

)
,

• π is called “anchor”, which is a projection function, i.e. a map that takes the TM part of
a sections of E.

π

[(
v
λ

)]
= v .
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B.1 The exact Courant algebroid

In the chapter 2 we defined the Courant bracket J , K, which maps sections of E in sections of
E, and we showed, in an heuristic way, that the generalised geometry has an O(d, d) structure
induced by the scalar product 〈 , 〉.

In a mathematical point of view, we have that

“Generalised geometry is an exact Courant algebroid ”

Definition (Courant algebroid). The set (E, 〈 , 〉, J , K, π) is called Courant algebroid, where

• E is a real vector bundle;

• π : E → TM is an anchor;

• 〈 , 〉 : E × E → R is a non degenerate symmetric bilinear form (scalar product);

• J , K : Γ(E)× Γ(E)→ Γ(E) Courant bracket such that

– Jπ(A), π(B)K = π(JA,BK)

– JJA,BK, CK + JJB,CK, AK + JJC,AK, BK = 0 (Jacoby identity)

– JA, fBK = fJA,BK + π(A)[f ]B

– π(A〈B,C〉) = 〈JA,BK, C〉+ 〈B, JA,CK〉
– JA,AK = ι(d〈A,A〉)

∀ A,B,C ∈ Γ(E).

This structure of generalised geometry is not only a beautiful mathematical formalism, but
it gives us some important results. For instance, in the B-transformation, the fact that B must
be closed comes from the preservation of the exact Courant algebroid by the O(d, d) action.
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C
Double Field Theory

Double Field Theory is an attempt on making T-duality explicit in field theory Lagrangians.
Heuristically we can make the following argument. Consider a string living in a D = (d +
n)-dimensional spacetime with n compactified coordinates on a n-dimensional torus, thus the
spacetime looks like Md × Tn. As we have seen in the section 1.11.2, upon quantisation there
will be momentum modes and winding modes for each compact direction. Let us denote the
non-compact coordinates by xα and the compact coordinates by xµ, in total xi = (xµ, xα).
The compact coordinates xα give rise to string momentum excitations Kα, but since strings are
extended objects, there are also winding quantum number W a. For these last novel quantum
numbers there are not any coordinates associated with them. Hence it is reasonable to introduce
some new coordinates x̃α which take into account the winding numbers.

If one attempts to write down the complete field theory of closed strings in coordinate space
it must include the xα as well as the x̃α. Thus the argument of all fields in such a theory must
be doubled and for this reason this theory is called Double Field Theory. The doubled fields
φ(xα, x̃α, x

µ) are said to be functions of momentum and winding. The action must include a
suitable integration over the additional coordinates, i.e. must be in the form

S =

∫
dxαdx̃αdx

µL(xα, x̃α, x
µ) . (C.1)

Actually we will see that for covariance reasons we have to doubled all the coordinates (xi, x̃i).
Let us write down the sigma-model action for string propagating in a background

S = − 1

4π

∫ 2π

0
dσ

∫ +∞

−∞
dτ
(
ηab∂ax

i∂bx
jgij + εab∂ax

i∂bx
jBij

)
, (C.2)

where we choose the background

gij =

(
gαβ 0
0 ηµν

)
, Bij =

(
Bαβ 0

0 0

)
. (C.3)

The Hamiltonian H, given as integration of the Hamiltonian density, is given by

H =
1

2
ZTH(g,B)Z +NL +NR + ... , (C.4)

where the dots indicate terms irrelevant to the discussion and

ZM =

(
W i

Ki

)
, M = 1, ..., 2D , (C.5)
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where

W i =

(
Wα

0

)
, Ki =

(
Kα

0

)
, (C.6)

where winding and momentum modes along non-compact xµ coordinates are null. H(g,B) is
called generalised metric and is defined as

H(g,B) =

(
g −Bg−1B Bg−1

−g−1B g−1

)
. (C.7)

There is a constraint in closed string theory which matches the level of the right and left
moving excitations in any physical state. This condition reads

NL −NR = WαKα ≡
1

2
ZT ηZ , (C.8)

where η is defined as

ηMN =

(
0 1D
1D 0

)

MN

, (C.9)

which is similar to the O(D,D) metric. Therefore under O(D,D) transformations of the type

Z ′ = hZ , hT ηh = η , (C.10)

the physics should not change. This lead us to introduce extra coordinates associated to h
transformations,

X ′M = hM NX
N , X ≡

(
x̃
x

)
. (C.11)

The physical constraint of level matching has a differential expression which reads

NL −NR = ∂ · ∂̃ =
1

2
∂M∂M ≡ ∆ . (C.12)

On massless fields holds NL = NR = 1. Therefore ∆ operator must annihilate on them, i.e.

1

2
∂M∂Mφ = 0 . (C.13)

This is called strong constraint and tells us ∂̃iφ = 0, i.e. φ does not depend by extra coordinates.
If two fields φi and φj are annihilated separately by ∆, it is not true the product φiφj is

annihilated again by ∆, because

∂ · ∂̃(φ1φ2) = (∂ · ∂̃φ1)φ2 + (∂̃φ1) · (∂φ2) + (∂φ1) · (∂̃φ2) + φ1(∂ · ∂̃φ2) . (C.14)

Hence there is another constraint, called strong constraint, which requires

ηMN∂Mφi ∂Nφj = 0 , ∀ i, j . (C.15)

The strong constraint (C.15) looks very similar to the constraint (2.41) in generalised geometry,
just replacing the fields φi and φj with functions f and g. At the end we have the following
result

Proposition C.1. For a set of fields φi(x, x̃) that satisfies (C.15) there is a duality frame (x̃′i, x
′i)

in which the fields do not depend on x̃′i.
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D
Computations on GLP manifolds

In this appendix we show the computations about the original part of the thesis, i.e. the S2×S1

case and the conjecture G×G. During the thesis we used a notation which was clear about the
vector components and the form components of generalised vectors. However that notation is
quite painful when one get inside computations. Hence, for this reason, here we adopt another
notation, mostly used in literature, which consist in writing generalised vectors as a “sum” of
vectors and forms, i.e.

V =

(
v
λ

)
−→ V = v + λ . (D.1)

D.1 Computations on S2 × S1

The Ansatz for the generalised parallelisation is

Êi = vi − iviB + a yi dψ ,

Ê′i = b(yi∂ψ − iyi∂ψB) + c εijk y
jdyk , (D.2)

where a, b, c are coefficients to determine by GLP and O(3, 3) orthogonality conditions and
here, instead considering Êij on S2 embedded on R3, we consider their dual Êi ≡ εijkÊjk.
Remind that vi are rotational SO(3) Killing vectors, vi = εijkvjk = εijk yj∂k. We impose now
O(3, 3) orthogonality condition on the frame (D.2). We can neglect in this computation the term
proportional to B since the scalar product 〈·, ·〉 is invariant under B-shift.

〈Êi, Êj〉 =
1

2
[ivi(a yjdψ) + ivj (a yidψ)] = 0 (identically) ,

〈Ê′i, Ê′j〉 =
1

2
[ib yi∂ψ(c εjkly

kdyl) + ib yj∂ψ(c εikly
kdyl)] = 0 (identically) ,

〈Êi, Ê′j〉 =
1

2
[ivi(c εjkly

kdyl) + ib yj∂ψ(a yidψ)]

=
1

2
(c εjkly

kividy
l + abyjyii∂ψdψ)

=
1

2
(c εljky

kεlisy
s + abyjyi)

=
1

2
(c (δjiδks − δjsδki)ykys + abyjyi)

=
1

2
(c δijy

sys − c yiyj + abyjyi) =
1

2
cδji (ab = c) ,
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where in the last step we used that yiyi = 1. Hence, imposing the condition ab = c we find that
this frame is indeed an O(d, d) frame.

〈Êi, Êj〉 = 0 , 〈Ê′i, Ê′j〉 = 0 , 〈Êi, Ê′j〉 =
1

2
δij . (D.3)

Next we impose, by equations of motion, the flux formH to be proportional to the wedge product
of the volume forms of S2 and S1

H = h′ volS2 ∧ volS1 .

To construct it first we need to calculate these volume forms using the technique shown in A.1.4.
Suppose the two spheres S1 and S2 have radius respectively R1 and R2.

volS1 = i∂rvolR2

∣∣
r=R1

=
yk

r
i∂k

(
r2

2!
εijdy

i ∧ dyj
) ∣∣∣∣

r=R1

=
r

2
εij(y

i dyj − yj dyi)
∣∣
r=R1

= rεijy
i dyj

∣∣
r=R1

= R1dψ

volS2 = i∂rvolR3

∣∣
r=R2

=
yl

r
i∂l

(
r3

3!
εijkdy

i ∧ dyj ∧ dyk
) ∣∣∣∣

r=R2

=
r2

3!
εijk(y

i dyj ∧ dyk − yj dyi ∧ dyk + yk dyi ∧ dyj)
∣∣
r=R2

=
3r2

3!
εijky

i dyj ∧ dyk
∣∣
r=R2

=
R2

2

2
εijky

i dyj ∧ dyk.

Putting all together and redefining the proportionality constant we find

H = h′
R1R

2
2

2
εijky

i dyj ∧ dyk ∧ dψ =
h

2
εijky

i dyj ∧ dyk ∧ dψ. (D.4)

Now we want to compute the Dorfman derivatives. Let us start to compute term by term which
is inside it, using the Cartan’s formula (A.18)

[vi, vj ] = −εijkvk
ividyj = dyj(εiklyk∂l) = εiklykδjl = −εijkyk
Lviyj = ividyj = −εijkyk
Lvidyj = d(ividyj) = d(−εijlyl) = −εijldyl
Lviyj∂ψ = [vi, yj∂ψ] = (Lviyj)∂ψ = −εijkyk∂ψ

Lviεjklykdyl = εjkl[(Lviyk)dyl + (Lvidyl)yk] = εjkl(−εikryrdyl − εilrykdyr)
= −(εjklεikr + εjrkεikl)y

rdyl = −εijkεkrlyrdyl.

Note that in the last calculation we used the fact that the ε symbols are also the structure
constants of so(3), thus they must satisfy the Jacobi identity

εjlkεkir + εkjrεlik + εijkεklr = 0.

We need to calculate the inner products between the flux form H and the vector components of
the frame, since these terms also appear in the Dorfman derivative

ibyi∂ψH =
bh

2
yiεlmny

li∂ψ(dyn ∧ dym ∧ dψ)

=
bh

2
yiεlmny

ldyn ∧ dym

=
bh

2
εimnyly

ldyn ∧ dym

=
bh

2
εlmndy

n ∧ dym.
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iviH =
h

2
εlnmy

livi(dy
n ∧ dym ∧ dψ)

=
h

2
εlnmy

l(dyn(vi)dy
m − dym(vi)dy

n) ∧ dψ

=
h

2
εlnmy

l(−εinjyjdym + εimjy
jdyn) ∧ dψ

=
h

2
εlmny

l(2εinjy
jdym) ∧ dψ

= hεnlmεnjiy
lyjdym ∧ dψ

= h(δljδmi − δliδmj)ylyjdym ∧ dψ
= h(yjyjdyi − yiyjdyj) ∧ dψ
= hdyi ∧ dψ

Where in the first product we used that y[iεlmn] = 1
4!(yiεlmn − ylεmni + ymεnli − ynεlm) = 0 and

in both the fact that yiyi = 1, which implies dyiyi = 0. Finally, we calculate the algebra using
all this results

LÊiÊj = [vi, vj ]− i[vi,vj ]B + Lviayjdψ + ivj (iviH + d(ayidψ))

= −εijkvk − i−εijkvkB + a(Lviyj)dψ + ivj (hdy
i ∧ dψ + adyi ∧ dψ)

= −εijk(vk − ivkB + aεijkykdψ) + (a+ h)ivjdyi ∧ dψ
= −εijkÊk + (a+ h)εijkykdψ

= −εijkÊk
LÊ′i

Ê′j = [byi∂ψ, byj∂ψ]− i[byi∂ψ ,byj∂ψ ]B + Lbyi∂ψ(cεjkly
kdyl) + ibyj∂ψ(ibyi∂ψH + d(cεikly

kdyl))

= 0− i0B + bcεjklLyj∂ψ(ykdyl) + ibyj∂ψ(
bh

2
εikldy

k ∧ dyl + cεikldy
k ∧ dyl)

= (
bh

2
+ c)εiklbyji∂ψ(dyk ∧ dyl) = 0

LÊiÊ
′
j = [vi, byj∂ψ]− i[vi,byj∂ψ ]B + Lvi(cεjlmyldym) + ibyj∂ψ(iviH + d(ayidψ))

= −bεijkyk∂ψ − i−bεijkyk∂ψB − cεijkεklm(yldym) + (a+ h)ibyj∂ψdyi ∧ dψ
= −εijkÊ′k − b(a+ h)yjdyi = −εijkÊ′k

So imposing the condition a = −h we find

LÊiÊj = JÊi, ÊjK = −εijkÊk , (D.5)

LÊiÊ
′
j = JÊi, Ê′jK = −εijkÊ′k , (D.6)

LÊ′i
Ê′j = JÊ′i, Ê

′
jK = 0 . (D.7)

As a last step, we fix the remaining normalisation constants as a = b = c = −h = 1, so that the
frame becomes

Êi = vi − iviB + yi dψ

Ê′i = yi∂ψ − iyi∂ψB + εijky
j dyk (D.8)

and the flux three-form

H = −1

2
εijky

i dyj ∧ dyk ∧ dψ. (D.9)
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D.2 Computations on the conjecture G×G
The Ansatz for the generalised parallelisation is

Ê+
a = ra + ρa − iraB ,

Ê−ā = lā − λā − ilāB . (D.10)

Since we are using a frame for the splitting bundle E ' C+ ⊕ C−, we require the O(d) × O(d)
orthogonality of the frame (D.10). This condition reads

〈Ê+
a , Ê

+
b 〉 =

1

2
(iraρb + irbρa) = δab ,

〈Ê−ā , Ê−b̄ 〉 =
1

2
(ilāλb̄ + ilb̄λā) = δāb̄ ,

〈Ê+
a , Ê

−
b̄
〉 =

1

2
(iraλb̄ + ilb̄ρa) .

Hence if holds the condition
iraλā = ilāρa , (D.11)

then the frame is O(d)×O(d) orthogonal, i.e.

〈Ê+
a , Ê

+
b 〉 = ηab , 〈Ê−ā , Ê−b̄ 〉 = δāb̄ , 〈Ê+

a , Ê
−
b̄
〉 = 0 . (D.12)

In a group manifold M = G there are no conditions on the flux 3-from H.
Let us compute the terms involved in the Dorfman derivative. For the right-invariant sector

dρa = −fa bcρb ∧ ρc ,
Lrarb = f c

ab rc , (algebra transformation)

Lraρb = fabcρ
c , (adjoint transformation)

and the same for the left-invariant sector

dλā = −f ā b̄c̄λb̄ ∧ λc̄ ,
Llā lb̄ = fāb̄

c̄lc̄ , (algebra transformation)

Llāλb̄ = fāb̄c̄λ
c̄ . (adjoint transformation)

The first equality comes from the general formula

dω (X,Y ) = X [ω (Y )]− Y [ω (X)]− ω
(
[X,Y ]

)
, (D.13)

which holds for a 1-form ω and two vector fields X,Y . If we particularise the expression for the
basis ω = ρa, X = rb and Y = rc, then we have

dρa (rb, rc) = rb [δac]− rc [δab]− ρa
(
[rb, rc]

)
= −fa bc , (D.14)

hence
dρa = −fa bcρb ∧ ρc . (D.15)

The same procedure holds for proving dλā = −f ā b̄c̄λb̄ ∧ λc̄.
The Dorfman derivative becomes

LÊ+
a
Ê+
b = [ra, rb] + Lra(ρb − irbB)− irbd(ρa − iraB)

= fab
crc + Lraρb − i[ra,rb]B − irbiradB − irbd(iraB)− irbdρa + irbd(iraB)

= fab
crc + fab

cρc − fab circB = fab
cÊ+

c
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LÊ−ā
Ê−
b̄

= [lā, lb̄] + Llā(−λb̄ − ilb̄B)− ilb̄d(−λā − ilāB)

= fāb̄
c̄lc̄ − Llāλb̄ − i[lā,lb̄B − ilb̄ilādB − ilb̄d(ilāB)− ilb̄dλā + ilb̄d(ilāB)

= fāb̄
c̄lc̄ − fāb̄ c̄λc̄ − fāb̄ c̄ilc̄B = fāb̄

c̄Ê−c̄

LÊ+
a
Ê−
b̄

= [ra, lb̄] + Lra(−λb̄ − ilb̄B)− ilb̄d(ρa − iraB)

= −Lraλb̄ − i[ra,lb̄]B − ilb̄iradB − ilb̄d(iraB) + ilb̄dρa + ilb̄d(iraB) = 0 .

Therefore the following algebra is fulfilled

LÊ+
a
Ê+
b = JÊ+

a , Ê
+
b K = fab

cÊ+
c , (D.16)

LÊ−ā
Ê−
b̄

= JÊ−ā , Ê
−
b̄

K = fāb̄
c̄Ê−c̄ , (D.17)

LÊ+
a
Ê−
b̄

= JÊ+
a , Ê

−
b̄

K = 0 , (D.18)

if and only if

iraH = −dρa = fabcρb ∧ ρc , ilāH = dλā = −f āb̄c̄λb̄ ∧ λc̄ . (D.19)

These two conditions give us a form for the flux 3-form H, which is

H =
1

3!
fabc ρ

a ∧ ρb ∧ ρc = − 1

3!
fāb̄c̄ λ

ā ∧ λb̄ ∧ λc̄. (D.20)
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