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Abstract

Riemannian manifolds with a Ricci lower bound is an important researched area
of differential geometry, in particular in the context of comparison theorems. One
result is a way to characterize Ricci curvature bounds through a condition of the
Laplacian: the curvature-dimension inequality

Γ2(f) ≥
1

n
(∆f)2 + ρΓ(f)

where n is the dimension of the manifold, Γ2 and Γ two operators based on ∆, the
Laplacian and ρ the bound of the Ricci curvature.
Following this analytic, but equivalent, approach it is possible to őnd a generaliza-
tion, which hing only on differential operator, also for non Riemannian cases where
the Ricci curvature is not completely deőned. In this thesis we study a generaliza-
tion due to Baudoin and Garofalo for the case of sub-Riemannian manifolds with
transverse symmetries.

In Chapter 1 we set down the basic concepts we need throughout the thesis.
Moreover in Chapter 2 we present the Riemannian curvature-dimension inequality
and answer the question: what can be said about manifolds with a Ricci lower
bound?
Chapter 3 is entirely dedicated to introduce notions of sub-Riemannian manifold.
Finally in Chapter 4 and 5 we introduce the work of Baudoin and Garofalo and
apply their theory to two speciőc cases.
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Mathematical notation

• We are not using Einstein convention for the summation. We will however al-
most always write

∑︁
i, this notation means implicitly that the sum goes from

1 to the dimension of the manifold.
In the almost unique cases where one of two edging points is different, it will
be denoted in the sum, like

∑︁
i=2 or

∑︁n−1
i .

• The set of vector őelds of a manifold M in the thesis is denoted as X(M).
Another possible notation is Γ∞(TM), where for Γ∞(V ) is meant a smooth
section of the tensor bundle V .



Chapter 1

Fundamental concepts

Despite we suppose the reader to be familiar with basic elements of differential
geometry, we use this őrst Chapter for recalling the most important for us, in par-
ticular the Ricci curvature and the Laplacian.
The readers, who are not conődent with terms like distribution or Levi-Civita con-
nection, can read for example [9].

1.1 The Ricci curvature

We denote by (M, g) a Riemannian manifold, where M is a differential manifold
and g is a metric tensor.

Throughout the thesis the letter g will almost always be used to indicate the
Riemannian metric. Another notation, which we will sometimes use, are the brackets
as in the following way: for X, Y ∈ X(M)

g(X, Y ) = ⟨X, Y ⟩

We state some symmetry properties of the Riemannian curvature tensor.

Proposition 1.1. Let ∇ be a connection of a Riemannian manifold (M, g) and R

its Riemannian curvature tensor. The following properties hold

g(R(X, Y )Z,K) = −g(R(Y,X)Z,K) (1.1)

Moreover, if the connection is the Levi-Civita one, it holds

g(R(X, Y )Z,K) = −g(R(X, Y )K,Z) (1.2)

and
g(R(X, Y )Z,K) = g(R(Z,K)X, Y ) (1.3)

for X, Y, Z,K ∈ X(M).

Proof. See [9] Proposition 2.5 page 91.

In order to introduce the Ricci curvature we deőne the trace of a tensor.
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8 CHAPTER 1. FUNDAMENTAL CONCEPTS

Deőnition 1.2. Given a (1, 1) tensor őeld T ∈ Γ∞(T ∗M ⊗ TM) we deőne its trace
as

trace(T ) =
∑︂

i

T i
i

where T i
i is the representation of the tensor in any frame, meaning for a frame

{X1, .., Xn} of vector őelds and {α1, .., αn} of covector őelds such that αi(Xj) = δ
j
i

T =
∑︂

i,j

T
j
i α

i ⊗Xj

Remark 1.3. The trace is independent from the choice of the frame because, since T
can be see as a linear map T̃ : Γ∞(TM) → Γ∞(TM) given for Y ∈ X(M) by T̃ (Y ) =∑︁

i,j T
j
i α

i(Y ) ⊗ Xj =
∑︁

i,j T
j
i Y

iXj, then, by linear algebra, an endomorphism has
the trace well deőned and it coincides with the trace of T .

In the Riemannian case, for an orthonormal frame {E1, .., En} it simply becomes

trace(T ) =
∑︂

i

g(T̃ (Ei), Ei)

We are now able to deőne the Ricci curvature.

Deőnition 1.4. Let (M, g,∇) be a Riemannian manifold with a connection and R

be the associated curvature tensor.
Let us deőne for X, Y ∈ X(M) the endomorphism FX,Y : X(M) → X(M) as the map
Z ↦→ R(Z,X)Y .
Then the Ricci curvature tensor is the (0, 2) tensor őeld Ric ∈ Γ∞(T ∗M⊗2) given by

Ric(X, Y ) = trace(FX,Y )

So given an orthonormal frame {E1, .., En}

Ric(X, Y ) =
∑︂

i

g(R(Ei, X)Y,Ei)

Proposition 1.5. The Ricci curvature tensor associated to the Levi-Civita connec-
tion is symmetric, this indicates Ric(X, Y ) = Ric(Y,X)

Proof.

Ric(X, Y ) = trace(FX,Y ) =
∑︂

i

g(FX,Y (Ei), Ei) =
∑︂

i

g(R(Ei, X)Y,Ei)

By the symmetries of the Levi-Civita connection it holds

∑︂

i

g(R(Ei, X)Y,Ei) =
∑︂

i

g(R(Ei, Y )X,Ei) = Ric(Y,X)
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This proposition let us give even a simpler deőnition in the case of the Levi-
Civita connection. In fact, thanks to the polarization identity, the map Ric(X, Y )
is uniquely determined by the value along the pair of same vector őelds Ric(X,X).
Since we will work, from now on, mostly with the Riemannian connection we intro-
duce, with a little abuse of notation, a new map

Ric(X) := Ric(X,X)

which would also be called Ricci curvature. The number of arguments will be the
discriminant between the two different, but intimately related, maps.

But what is actually the Ricci curvature? As often happens in Mathematics the
deőnition is so general that it’s almost impossible to get a clear idea from it. Luckily
there is another characterization for manifold of at least two dimensions that hinges
on the the concept of sectional curvature.

Deőnition 1.6. Let p ∈ M be a point of a Riemannian manifold, and σp ⊂ TpM a
two-dimensional subspace of the tangent space at p.
The real number K(σp) given by

K(σp) = K(X, Y ) =
g(R(Y,X)X, Y )

g(X,X)g(Y, Y )− g(X, Y )2

where X, Y ∈ σp are linear independent, is called sectional curvature.

Proposition 1.7. The sectional curvature is well-deőned, namely it does not depend
on the choice of the vectors X, Y ∈ σp.

Proof. First we notice that K(X, Y ) = K(Y,X) and K(X, Y ) = K(aX, Y ) with
a ∈ R by symmetries and linearity of R and g.
Moreover the denominator is the area of the parallelogram determined by the vec-
tors X, Y , i.e. |X ∧ Y |2

K(X + aY, Y ) =
g(R(Y,X + aY )X + aY, Y )

|X + aY ∧ Y |2

=
g(R(Y,X)X + aY, Y ) + ag(R(Y, Y )X + aY, Y )

|X ∧ Y |2

=
g(R(Y,X)X, Y ) + ag(R(Y,X)Y, Y )

|X ∧ Y |2

=
g(R(Y,X)X, Y )

|X ∧ Y |2
= K(X, Y )

by anti-symmetries 1.1 and 1.2 of the curvature .
Since the sectional curvature in invariant under these transformations and with these
one can write every other base of σp the statement is proved.

The idea of sectional curvature is nothing more than a generalization of the
Gaussian curvature. Roughly speaking it calculates the product of the two princi-
pal curvatures at p of the local surface that has σp as tangent space, which is the
manifold deőned locally as the image via exponential map of this tangent space.
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Remark 1.8. The Ricci curvature Ric|p(X) can be seen, in a certain sense, as the
not normalized average of the sectional curvatures containing the őxed vector X|p.
Because given a orthonormal basis {E1, .., En} it holds at p ∈ M for X =

∑︁
i X

iEi

Ric|p(X) = Ric(X,X) =
∑︂

i

g(R(Ei, X)X,Ei) =
∑︂

i

K(X,Ei)|X ∧ Ei|
2

=
∑︂

i

K(X,Ei)|
∑︂

j

XjEj ∧ Ei|
2 =

∑︂

i

K(X,Ei)
∑︂

j ̸=i

(Xj)2

=
∑︂

i

K(X,Ei)(
∑︂

j

(Xj)2 − (X i)2) = ∥X∥2
∑︂

i

K(X,Ei)−
∑︂

i

K(X,Ei)(X
i)2

Let now Y ∈ X(M) then take E1 = X
∥X∥

and complete it to an orthonormal frame

{E1, .., En}. This means X i = δi1 so

Ric(X) = Ric(∥X∥E1, ∥X∥E1) = ∥X∥2Ric(E1, E1) = ∥X∥2
n∑︂

i=2

K(E1, Ei)

Since by anti-symmetry 1.1 K(E1, E1) = g(R(E1, E1)E1, E1) = −g(R(E1, E1)E1, E1)
so it must be zero.

Deőnition 1.9. We say that a Riemannian manifold M has a b-lower bound, with
notation Ric(M) ≥ b, if

Ric(X) ≥ b∥X∥2

for all X ∈ X(M)

We őnish the part about Ricci curvature with an example.

Example 1.10. In the case of the sphere Sn embedded in R
n+1, it’s well known

that the Gaussian curvature is constant and equal to 1 everywhere.
This means that for any p ∈ M the Ricci curvature of a vector X ∈ TpS

n is given
by

Ric(X) = ∥X∥2
∑︂

i

K(X,Ei)−
∑︂

i

K(X,Ei)(X
i)2

= ∥X∥2
∑︂

i

1−
∑︂

i

(X i)2 = ∥X∥2n− ∥X∥2 = (n− 1)∥X∥2

1.2 The Hessian tensor and the Laplace-Beltrami

operator

We move on to another mathematical object involved in the curvature-dimension
inequality: the Laplace-Beltrami operator: a second order differential operator
which generalized the usual Laplacian of the Euclidean space. Since its deőnition is
based on the Hessian, it is natural to deőne this concept in a Riemannian manifold
őrst.
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Deőnition 1.11. Let (M, g) be a Riemannian manifold with its associated Levi-
Civita connection ∇.
Given a function f ∈ C∞(M) we deőne its Hessian as the tensor Hess(f) ∈
Γ∞(T ∗M⊗2) such that for X, Y ∈ X(M)

Hess(f)(X, Y ) := ⟨∇Xgrad(f), Y ⟩

Where grad(f) is the gradient of f .

Proposition 1.12. The Hessian is a symmetric tensor, namely for X, Y ∈ X(M)

Hess(f)(X, Y ) = Hess(f)(Y,X)

Proof.

Hess(f)(X, Y ) = ⟨∇Xgrad(f), Y ⟩ = ∇X⟨grad(f), Y ⟩ − ⟨grad(f),∇XY ⟩

= XY (f)−∇XY (f)

= [X, Y ](f) + Y X(f)−∇XY (f)

By torsion-freeness of the connection

= Y X(f)−∇YX(f) = Hess(f)(Y,X)

It exists a very useful equivalent representation of the Hessian of a function based
on the covariant derivative of a tensor. Even if it could be at őrst a bit confusing,
it is going to simplify our computation so we present it in the next deőnition.

Deőnition 1.13. Given the Levi-Civita connection ∇, the covariant derivative ∇T

is deőned as the map which takes a vector őeld X and returns

• If T = f is a smooth function ∇f(X) = ∇Xf = X(f) = df(X)

• If T = Y ∈ X(M) is a vector őeld of M , ∇T (X) = ∇XT ∈ X(M)

• If T = df is a covector őeld (∇Xdf)(Y ) = ∇X(df(Y ))− df(∇XY )

• If T is a (s, p) tensor őeld

∇T (Y,X1, ..Xp, α
1, .., αs) := (∇Y T )(X1, ..Xp, α

1, .., αs)

:= Y (T (X1, ..Xp, α
1, .., αs))

−

p∑︂

i

T (X1, ..,∇YXi, ..Xp, α
1, .., αs)

−

s∑︂

j

T (X1, .., Xp, α
1, ..,∇Y α

j, .., αs)

that means for arbitrarily tensor őeld S, P

∇X(S ⊗ P ) = ∇X(S)⊗ P + S ⊗∇X(P )
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Remark 1.14. We want to stress the fact that the gradient and the covariant deriva-
tive of a function look similar, but they are slightly different; they are actually
related by the musical isomorphism. In fact, while ∇f ∈ Γ∞(T ∗M) the gradient
grad(f) ∈ Γ∞(TM) and they are related by, for X ∈ X(M),

g(grad(f), X) = X(f) = ∇Xf = ∇f(X)

Given a frame {X1, .., Xn} and a frame of covectors {α1, .., αn} such that αi(Xj) = δij
the difference is even clearer

grad(f) =
∑︂

i

(︄∑︂

j

Xj(f)g
ij

)︄
Xi ∇f =

∑︂

i

Xi(f)α
i

Given, however, the wide use in the literature of nabla notation for the gradient, we
will write the gradient as ∇f , its i-th component as (∇f)i while ∇if = ∇Xi

f will
only be used for the covariant derivative.
This distinction will be in our thesis, most of the time, not necessary since in an
orthonormal frame it holds (∇f)i = ∇if as we can see from the representation in
coordinates.

The next proposition expresses how the covariant derivative and the Hessian are
related.

Proposition 1.15. We have the following equality

∇2f := ∇ ◦∇f = Hess(f)

Proof. Let X, Y ∈ X(M) then

Hess(f)(X, Y ) = ⟨∇Xgrad(f), Y ⟩ = X(⟨grad(f), Y ⟩)− ⟨grad(f),∇XY ⟩

= X(Y (f))−∇XY (f) = X(Y (f))−∇∇XY f = ∇X∇Y (f) = ∇2(f)(X, Y )

We can now give the deőnition of the Laplacian in the setting of a Riemannian
manifold.

Deőnition 1.16. Given a Riemannian manifold (M, g), we deőne the Laplace-
Beltrami operator ∆: C∞(M) → C∞(M) for f ∈ C∞(M) as

∆f :=
∑︂

i,j

Hess(f)(Xi, Xj) · g
ij

For {X1, .., Xn} a local frame and where gij are the coefficient in position i, j of the
inverse of the metric matrix in the frame, i.e. such that

∑︁
i g

jigik = δ
j
k

Remark 1.17. The Laplace operator can be written in coordinates as

∆f =
1√︁
|g|

∂xi

(︂√︁
|g|gij∂xj

f
)︂

Moreover given the frequency of use we are going to refer at this operator only as
Laplacian, even if it was actually Beltrami, italian mathematician from the 19th
century, the author of this generalization.
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The last notion of this section is the norm of a tensor.

Deőnition 1.18. Given a (0, p) tensor T we deőne its norm by

∥T∥ :=
∑︂

i1,..,ip,j1,..,jp

gi1j1 · · · gipjp · Ti1,..,ip · Tj1,..,jp

1.3 The Divergence operator

Deőnition 1.19. The divergence of a vector őeld X ∈ X(M) with respect to a
smooth volume form ν is deőned by

div(X)ν = LXν = d ◦ ιXν

Where ι is the interior derivative and d is the exterior one. We moreover used in
the last equation the famous Cartan magic formula and the fact that the exterior
derivative of a volume form is zero.

At the end of this introductory Chapter we prove some properties of the diver-
gence which we will use later.

Theorem 1.20. Let X ∈ X(M) be a vector őeld and ν a smooth volume form on
M , a differential manifold without boundary.
Then it holds ∫︂

M

div(X)ν = 0

If either X or ν have compact support.

Proof. It simply follows from Cartan formula and Stokes theorem since

∫︂

M

div(X)ν =

∫︂

M

d ◦ ιXν =

∫︂

∂M

ιXν = 0

Proposition 1.21. For h, f ∈ C∞(M), ν a smooth volume form and X ∈ X(M) it
holds

div(fhX) = fX(h) +X(f)h+ fhdiv(X) (1.4)

Proof.

div(fhX)ν = d ◦ ιX(fhν) = d ◦ fh ιX(ν) = fh d ◦ ιX(ν) + d(fh) ∧ ιX(ν)

If we analyze the second term

d(fh) ∧ ιX(ν) = hd(f) ∧ ιX(ν) + fd(h) ∧ ιX(ν)

We pass in coordinates, i.e. let {y1, .., yn} be coordinates on M such that

ν = dy1 ∧ .. ∧ dyn
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and X i the component of X on the frame given by this coordinates. Then it turns
out

hd(f) ∧ ιX(ν) = hd(f) ∧ (
∑︂

i

(−1)i−1dyi(X)dy1 ∧ .. ∧ ˆ︂dyi ∧ .. ∧ dyn)

where hat means omission. So

= h
∑︂

i

Yi(f)((−1)i−1)2X iν = hX(f)ν

By putting all together we have the result.



Chapter 2

Ricci lower bound on a Riemannian

manifold

In this Chapter we introduce the Riemannian curvature-dimension inequality.
It is a condition which involves the Laplacian and two bilinar forms built from it.
After this we prove an important theorem which states the equivalence between a
lower bound of the Ricci curvature and the inequality.
This would holds only for a complete manifold.
After that we state some properties of manifold with a Ricci lower bound.

2.1 Curvature-dimension inequality

Before we introduce the two forms, we have to specify as the Laplacian works
when it is applied on a product of two functions, its product rule. This will simplify
our calculation.

Lemma 2.1. Let f, h ∈ C∞(M) where (M, g) is a Riemannian manifold then it
holds that

∆(f · h) = f ·∆h+∆f · h+ 2⟨∇f,∇h⟩ (2.1)

Proof. We start by noticing that it holds

∇(f · h) = ∇f · h+ f · ∇h (2.2)

because for any X ∈ X(M)

⟨∇(f · h), X⟩ = X(f · h) = X(f) · h+ f ·X(h) = ⟨∇f,X⟩ · h+ ⟨∇h,X⟩ · f (2.3)

And so, passing to the Laplacian given a frame {X1, .., Xn}

∆(f · h) =
∑︂

i,j

Hess(f · h)(Xi, Xj) · g
ij =

∑︂

i,j

gij⟨∇Xi
(∇(f · h)), Xj⟩

15
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By the compatibility with the metric it follows

=
∑︂

i,j

gij
(︂
Xi(⟨∇(f · h), Xj⟩)− ⟨∇(f · h),∇Xi

Xj⟩
)︂

=
∑︂

i,j

gij
(︂
Xi(⟨∇f · h+ f · ∇h,Xj⟩)− ⟨∇f · h+ f · ∇h,∇Xi

Xj⟩
)︂

=
∑︂

i,j

gij
(︂
Xi(h⟨∇f,Xj⟩) +Xi(f⟨∇h,Xj⟩)− h⟨∇f,∇Xi

Xj⟩ − f⟨∇h,∇Xi
Xj⟩
)︂

By deőnition of vector and backwards passage we get

=
∑︂

i,j

gij
(︂
Xi(f)⟨∇h,Xj⟩+Xi(h)⟨∇f,Xj⟩+h·Hess(f)(Xi, Xj)+f ·Hess(h)(Xi, Xj)

)︂

Now if we focus only on the őrst term we have

∑︂

i,j

gij ·Xi(f)g(∇h,Xj) =
n∑︂

i,j,k=1

gij · g(∇f,Xi)(∇h)kgkj

Then by symmetry of the Riemannian metric

=
∑︂

i,j,k

gijgjk · g(∇f,Xi)(∇h)k =
∑︂

k,i

δik · g(∇f,Xi)(∇h)k

This means
= g(∇f,

∑︂

i

(∇h)iXi) = g(∇f,∇h)

similar for the second term.

We can now state how the two differential forms are deőned and also what they
represent thanks to the lemma

Deőnition 2.2. Let ∆ be the Laplacian of a Riemannian manifold (M, g).
We can deőne two differential bilinear forms Γ,Γ2 : C

∞(M) × C∞(M) → C∞(M)
deőned for f, h ∈ C∞(M) by

Γ(f, h) :=
1

2

(︂
∆(f · h)− f ·∆h−∆f · h

)︂
= ⟨∇f,∇h⟩

and

Γ2(f, h) :=
1

2

(︂
∆Γ(f, h)− Γ(f,∆h)− Γ(∆f, h)

)︂

With a little abuse of notation we will simply write

1. Γ(f) := Γ(f, f) = ∥∇f∥2

2. Γ2(f) := Γ2(f, f) =
1
2
∆(∥∇f∥2)− ⟨∇f,∇(∆f)⟩ = 1

2
∆Γ(f)− Γ(f,∆f)

The Riemannian curvature-dimension inequality can be written down with respect
of this two forms in the following way.
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Deőnition 2.3. We say that a Riemannian manifold (M, g) satisőes the curvature-
dimension inequality CD(ρ, n), for ρ ∈ R and n ∈ N n > 0, if for every f ∈ C∞(M)
it holds

Γ2(f) ≥
1

n
(∆f)2 + ρΓ(f)

Remark 2.4. Some authors call the previous inequality as curvature-dimension con-
dition.

We focus our attention on the equivalence between lower bound of the Ricci
curvature and the inequality.
Its proof is intimately connected with the Bochner’s formula with gives a relation
between the Laplacian, the Hessian and the curvature.

Proposition 2.5 (Bochner’s formula). Let f ∈ C∞(M), then the following equality
holds

∆(∥∇f∥2) = 2∥∇2f∥2 + 2⟨∇f,∇(∆f)⟩+ 2Ric(∇f)

Proof. The idea is to use a local geodesic frame and commute the derivatives.
Let p ∈ M and {E1, .., En} be an orthonormal frame in a neigborhood of p such
that ∇Ei

Ej = 0 for all i, j at the point p.
We start by pointing out that in this setting at p holds ∆f =

∑︁
i EiEif for f ∈

C∞(M) because

∆f =
∑︂

i

∇Ei
∇Ei

f =
∑︂

i

Ei(∇Ei
f)−∇∇Ei

Ei
f =

∑︂

i

EiEif

So by compatibility with the metric and the deőnition of Hessian

1

2
∆∥∇f∥2 =

1

2

∑︂

i

EiEi⟨∇f,∇f⟩ =
∑︂

i

Ei⟨∇Ei
∇f,∇f⟩ =

∑︂

i

EiHess(f)(Ei,∇f)

Since the Hessian is symmetric it holds

=
∑︂

i

EiHess(f)(∇f, Ei) =
∑︂

i

Ei⟨∇∇f∇f, Ei⟩

=
∑︂

i

⟨∇Ei
∇∇f∇f, Ei⟩+ ⟨∇∇f∇f,∇Ei

Ei⟩

By assumption of a geodesic frame the second term vanishes, leaving

=
∑︂

i

⟨∇Ei
∇∇f∇f, Ei⟩

=
∑︂

i

[⟨∇∇f∇Ei
∇f, Ei⟩+ ⟨∇[Ei,∇f ]∇f, Ei⟩+ ⟨R(Ei,∇f)∇f, Ei⟩] (2.4)

where we used the deőnition of Riemannian curvature.
We observe őrst that ∇∇fEi = 0 because

∇∇fEi = ∇∑︁
k(∇f)kEk

Ei =
∑︂

k

(∇f)k∇Ek
Ei = 0
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Examining the terms separately of equation (2.4)
∑︂

i

⟨∇∇f∇Ei
∇f, Ei⟩ =

∑︂

i

(∇f⟨∇Ei
∇f, Ei⟩ − ⟨∇Ei

∇f,∇∇fEi⟩)

= ∇f

(︄∑︂

i

Hess(f)(Ei, Ei)

)︄

= ∇f(∆f) = ⟨∇f,∇(∆f)⟩

∑︂

i

⟨∇[Ei,∇f ]∇f, Ei⟩ =
∑︂

i

Hess(f)([Ei,∇f ], Ei)

=
∑︂

i

Hess(f)(Ei,∇Ei
∇f −∇∇fEi)

=
∑︂

i

Hess(f)(Ei,∇Ei
∇f)

=
∑︂

i

⟨∇Ei
∇f,∇Ei

∇f⟩

Where in the second passage we use the torsion-freeness of the connection.
We recall now that since we have an orthonormal frame it holds ∇Ei

f = (∇f)i.
If we write ∇f in coordinates and we compute ∇Ei

∇f .

∇Ei

∑︂

j

∇Ej
f · Ej =

∑︂

j

∂Ei
(∇Ej

f)Ej +∇Ej
f∇Ei

Ej =
∑︂

j

∇Ei
∇Ej

f · Ej

So ∑︂

i

⟨∇Ei
∇f,∇Ei

∇f⟩ =
∑︂

j,i

∇Ei
∇Ej

f · ∇Ei
∇Ej

f = ∥∇2f∥2

Summing everything together and substituting in equation (2.4) we get

1

2
∆∥∇f∥2 = ⟨∇f,∇(∆f)⟩+ ∥∇2f∥2 +

∑︂

i

⟨R(Ei,∇f)∇f, Ei⟩]

By noticing that the last sum is actually the deőnition of the Ricci curvature, it
follows the thesis.

After recalling what is meant be a complete manifold we give the main theorem
of this Chapter

Deőnition 2.6. We say that a Riemannian manifold (M, g) is complete if every
geodesic γ : I → M can be extend to a maximal geodesic, which has domain the all
R.

Theorem 2.7. On a complete n-dimensional Riemannian manifold (M, g) it holds
the following equivalence:

CD(ρ, n) ⇐⇒ Ric(M) ≥ ρ

for ρ ∈ R
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Proof. ⇐=). Suppose Ric(M) ≥ ρ. We apply the Bochner’s formula.

∆Γ(f) := ∆(∥∇f∥) = 2∥∇2f∥2 + 2⟨∇f,∇(∆f)⟩+ 2Ric(∇f)

= 2∥∇2f∥2 + 2Γ(f,∆f) + 2Ric(∇f)

By combining this formula with the deőnition of Γ2(f) we get

Γ2(f) = ∥∇2f∥2 + Ric(∇f) (2.5)

Then by Cauchy-Schwarz inequality it follows that

∥∇2f∥2 ≥
1

n
(∆f)2 (2.6)

In fact let g̃(A,B) = tr(ATB) be the trace inner product for the n× n matrices
and {E1, .., En} be an orthonormal frame for (M, g) then

n∥∇2f∥2 = n
∑︂

j,k

∇Ek
∇Ej

f · ∇Ek
∇Ej

f

If now we deőne the matrix K such that Kkj := ∇Ek
∇Ej

f we can rewrite it in the
following way

= tr(Id)tr(KT ·K) = tr(IdT · Id)tr(KT ·K)

= g̃(Id, Id)g̃(K,K) ≥ |g̃(Id,K)|2 = |tr(K)|2 = |
∑︂

i

∇Ei
∇Ei

f |2 = (∆f)2

So we get that

Γ2(f) = ∥∇2f∥2 + Ric(∇f) ≥
1

n
(∆f)2 + Ric(∇f,∇f) ≥

1

n
(∆f)2 + ρ∥∇f∥2

Where we used the assumption of a ρ-lower bound for the Ricci curvature.
By using the notation 1. from page 16 we get

=
1

n
(∆f)2 + ρΓ(f)

=⇒). Assume CD(ρ, n) holds. We have to prove the lower bound for the Ricci
curvature.
Given p ∈ M and X ∈ TpM we can őnd a small neighborhood of p, Up ⊂ M and a
function f ∈ C∞(Up) such that

∇f |p = X ∇2f |p = 0

By a suitable modiőcation of f outside the neighborhood we can assume f ∈
C∞(M), from equation (2.5) above, the Bochner’s formula, we get

Ric(X,X) = Ric(∇f |p,∇f |p) = Γ2(f)|p − ∥∇2f |p∥
2

We use the assumption of the curvature-dimension inequality,

≥
1

n
(∆f)2|p + ρΓ(f)|p − ∥∇2f |p∥

2

Since ∇2f |p = 0 impies that also ∆f |p = 0 two terms disappear

≥ ρΓ(f)|p = ρ∥∇f |p∥
2 = ρ∥X∥2

Which is exactly the deőnition of lower bound since the vector X is arbitrary.
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2.2 Consequence of a Ricci lower bound

We saw how the curvature-dimension inequality captures entirely a lower bounds
for the Ricci curvature. We ask ourselves: why is a Ricci lower bound important?
The answer is given by the so called Ricci curvature comparison theorems. They
are a family of theorems that have as assumption that the Ricci curvature has to be
bounded from below.
We are going to present brieŕy two theorems of this type, without proofs, to give
the reader a glimpse of the consequence of such a bound.

Poincarè-Wirtinger inequality The so called Poincarè-Wirtinger inequality is
an important inequality in Mathematics. It is one of the fundamental inequalities in
the calculus of variations (CoV) together with the Poincarè inequality, which states
that in the Sobolev space W

1,p
0 the Sobolev norm and the Lp norm of the gradient

are equivalent.
In the Riemannian setting the equality becomes:

Theorem 2.8. Assume that (M, g), a complete n-dimensional Riemannian mani-
fold, fulőlls for k ≥ −∞, Ric(M) ≥ k then any f ∈ C∞(M, [0,∞]) satiőes

∫︂

B(x,R)

⃓⃓
f −

(︃
1

vol(B(x,R))

∫︂

B(x,R)

f dVg

)︃ ⃓⃓
dVg ≤ C

∫︂

B(x,2R)

|∇f |dVg

for R ≤ D ∈ R
+ C = C(R, n, kD2)

Proof. See [15] page 386 corollary 7.1.11 and [7] page 199 theorem 2.11

Given such theorem it is a straightforward computation to prove another base
fact of calculus of variations: Rellich compactness theorem.
As every person slightly involved in CoV knows, necessary and sufficient conditions
to have a minimum of a functional are two:

1. Lower semi continuity of the functional

2. Coercivity of the functional

The last one is a form of compactness, the Rellich theorem states exact conditions
to őnd a converging subsequence needed in CoV.
Having said that, we can present the theorem in a Riemannian environment.

Theorem 2.9. Assume (M, g) to be a compact n-dimensional Riemannian manifold
such that Ric(M) ≥ (n− 1)k for k ≥ −∞ then the following inclusion is compact

W 1,2(M) ↪→ L2(M)

which means that ∀{xn}n ⊂ W 1,2(M) bounded sequence in M exists a subsequence
converging to an element of L2.

Proof. See [15] page 393 theorem 7.1.18
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Bonnet-Myers The theorem of Bonnet-Myers gives a bound for the diameter
with assumption of a lower bound for the Ricci curvature. Before introducing it we
start by settling the concept of diameter in a Riemannian setting:

Deőnition 2.10. Given a Riemannnian manifold (M, g) and a curve γ : [a, b] → M

we deőne :

• its length as

Lg(γ) =

∫︂ b

a

g(γ̇(t), γ̇(t))
1
2 dt

• given two points p, q ∈ M , a notion of distance as

d(p, q) = inf{Lg(γ)| γ : [a, b] → M such that γ(a) = p γ(b) = q}

• the diameter of a Riemannian manifold M as

diam(M) = sup{d(p, q)| p, q ∈ M}

Remark 2.11. This notion is slightly different from the usual idea of diameter.
We can in fact notice that in the case of a sphere S2 the "normal" idea of diameter
as twice the radius would be 2, but if we think it as embedded in R

3 with the
round metric we see that its diameter is actually π, the length of a geodesic between
antipodal points.

The next theorem was őrst proved by Bonnet assuming an inequality on the
sectional curvatures of M while Myers weakened it for Ricci curvature in the year
1941, resulting in the following proposition:

Theorem 2.12 (Bonnet-Myers). Let M be a complete n-dimensional Riemannian
manifold with Ricci lower bound Ric(M) ≥ n−1

r2
for r ∈ R>0 then M is compact and

with diam(M) ≤ πr

Proof. See [9] page 200 theorem 3.1

As we can notice the diameter bound is not strict, in fact the sphere attains the
maximal value. It becomes natural to ask: what happen to manifolds that have the
maximal diameter?
Shiu-Yuen Cheng, mathematician from Hong Kong, in 1975 answered with the next
theorem, also called maximal diameter rigidity.

Theorem 2.13 (Cheng). If (M, g) is a complete n-dimensional Riemannian mani-
fold with Ricci lower bound Ric(M) ≥ n−1

r2
for r ∈ R>0 and diam(M)=πr then (M,g)

is isometric to r · Sn

Proof. See [15] page 295 theorem 7.2.5
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Chapter 3

Sub-Riemannian geometry

In this Chapter we brieŕy introduce basic notions of sub-Riemannian geometry.
It is a branch of differential geometry that generalized the usual idea of Riemannian
manifold, in fact in sub-Riemannian geometry we can’t measure distance in any
direction but only in the so called horizontal one, i.e. along a subbundle of the
tangent bundle. We will use these new concepts in the next Chapters, when we
shall state the generalized curvature-dimension inequality in this new setting.
Let’s start by the deőnition of a bracket generating distribution, a fundamental
concept for sub-Riemannian geometry.

Deőnition 3.1. Given a family of vector őelds of M , F ⊂ X(M), we deőne Lie(F)
as the smallest subset of X(M) such that:

• F ⊂ Lie (F)

• X, Y ∈ Lie (F) and a, b ∈ R =⇒ [X, Y ], aX + bY ∈ Lie(F)

We say that a distribution H is bracket generating if it holds ∀p ∈ M

{X|p | X ∈ Lie(Γ∞(H))} = TpM

Deőnition 3.2. A Sub-Riemannian manifold is a triple (M,H, g) where:

• M is a differential manifold.

• H is a bracket generating distribution.

• g is a metric on the distribution.

Remark 3.3. The distribution H is also called the set of horizontal directions.

Remark 3.4. As it is easy to see a Riemannian manifold is just a special case of a
sub-Riemannian manifold.

Such structure naturally inherits a distance between points. This is based on
horizontal curves which are the counterpart of integral curves. Instead of being
tangent to a vector őeld, they must be "tangent" to the distribution:

Deőnition 3.5. We say that a curve γ : [a, b] → M is horizontal for the Sub-
Riemannnian manifold (M,H, g) if it is absolutely continuous and γ̇(t) ∈ H|γ(t) for
almost every t ∈ [a, b].

23
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The deőnition of distance follows in the usual way. In this special setting it is
called CarnotśCarathéodory.

Deőnition 3.6. Given a sub-Riemannian manifold (M,H, g) we deőne the Carnot-
Carathéodory distance between two points p, q ∈ M as

dCC(p, q) = inf{Lg(γ) | γ is a horizontal curve from p to q}

We can’t exclude a priori that between two points no horizontal curve exists, so
the distance function would not be well-deőned.
Thanks to the bracket generating property, though, this event never occurs, as the
Chow theorem states.

Theorem 3.7 (Chow). Every two points of a sub-Riemannian manifold can be con-
nected with a curve tangent to H.
Moreover the topology induces by the Carnot-Caratheodory distance coincides with
the topology of the manifold.

In this setting is possible to deőne a gradient. Naturally, since the metric is given
only on H, it will be a vector őeld not on all TM .

Deőnition 3.8. In a sub-Riemannian manifold (M,H, g) we deőne the horizontal
gradient of a function f ∈ C∞(M) as the unique vector őeld on H, ∇f ∈ Γ∞(H)
such that

g(∇f,X) = X(f)

for all X ∈ Γ∞(H)

Remark 3.9. Sometime, to distinguish it from the normal gradient if the setting is
not immediately recognisable, we will write it as ∇Hf

It is possible to state the notion of sub-Laplacian. Even if it is quite different
from the one introduce in Chapter 1, we will see later on that in a Riemannian
manifold the two objects are the same.

Deőnition 3.10. A sub-Laplacian, ∆, is the operator on the smooth functions of
a sub-Riemannian manifold which depends on a smooth volume form ν, H and g,
deőned as

∆(f) = div(∇Hf)

Proposition 3.11. For any sub-Laplacian it holds the following product rule

∆(fh) = f∆h+ h∆f + 2g(∇Hf,∇Hh) (3.1)

for f, h ∈ C∞(M)

Proof. Let f, h ∈ C∞(M) then

∆(fh) = div(∇H(fh)) = div(∇H(f)h+ f∇H(h))

= div(∇H(f)h) + div(f∇H(h))
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Where we use equation (2.2) while the linearity of the divergence comes from the
linearity of the exterior and interior derivatives.
We look at the terms separately: let ν be the volume form associated to the diver-
gence.

div(h∇Hf)ν = Lh∇Hfν = d ◦ ιh∇Hfν = d ◦ h ι∇Hfν = dh ∧ ι∇Hfν + h d ◦ ι∇Hfν

The last term is just the deőnition of h div(∇Hf)ν while the other we know from the
proof of proposition 1.21 that is equal to ∇Hf(h)ν = dh(∇Hf)ν = g(∇Hf,∇Hh)ν
So div(h∇Hf) = hdiv(∇Hf) + g(∇Hf,∇Hh) and putting everything together gives
the claim.

Remark 3.12. We remark that through the previous proof we also őnd out that the
following formula holds true

div(fX) = fdiv(X) + g(X,∇Hf) = fdiv(X) +X(f) (3.2)

For any X vector őeld on H and divergence on a manifold.

We őnish this Chapter with a famous example of sub-Riemannian manifold, the
Heisenberg group.

Example 3.13 (Heisenberg group). Consider the space M = R
3, the distribution

H given as the span of the following two vector őelds

X(x, y, z) := ∂x −
y

2
∂z Y (x, y, z) := ∂y +

x

2
∂z (3.3)

and the metric g on the distribution given by, for v1 = a1X+b1Y and v2 = a2X+b2Y

as
g(v1, v2) = a1 · a2 + b1 · b2

We can prove that the triple (M,H, g) is indeed a sub-Riemannian manifold, in fact
we only have to prove that H is bracket generating.
If we calculate the Lie bracket of X and Y we get

[X, Y ] = ∂x(
x

2
)∂z − ∂y(−

y

2
)∂z = ∂z

And the span of X, Y, [X, Y ] is the all tangent space of M at every point, i.e. all
R

3, as the three vectors őelds are always linearly independent

det

⎛
⎝
⎡
⎣
1 0 −y

2

0 1 +x
2

0 0 +1

⎤
⎦
⎞
⎠ = 1

This property characterizes the Lie algebra of the Heisenberg group, also called
Heisenberg algebra. Actually it deőnes the Heisenberg group itself.

Deőnition 3.14. A 3-dimensional Heisenberg group is the simply connected Lie
group whose Lie algebra is spanned by 3 linearly independent vector őelds X, Y, Z

such that
[X, Y ] = Z [X,Z] = 0 [Y, Z] = 0
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The Heisenberg group in this way is well deőned because we know by the Lie’s
third theorem (see for example [16]) a Lie algebra uniquely, up to isomorphism,
determines a simply connected group. It makes sense to speak about the Heisenberg
group, which is unique up to isomorphism.
For example, two isomorphic groups are

G1 :=

⎧
⎨
⎩

⎡
⎣
1 x z

0 1 y

0 0 1

⎤
⎦ |x, y, z ∈ R

⎫
⎬
⎭

and

G2 :=

{︃
(R3, ·)|(x, y, z) · (x′, y′, z′) = (x+ x′, y + y′, z + z′ +

1

2
(xy′ − yx′))

}︃

We can see that they are both Heisenberg groups by computing their Lie algebra,
we do this only for the the group G2.
We start by determining the left multiplication

L(s,t,u)(x, y, z) = (s, t, u) · (x, y, z) = (x+ s, y + t, z + u+
1

2
(sy − tx))

and its differential

dL(s,t,u) =

⎡
⎣
1 0 0
0 1 0
−t
2

s
2

1

⎤
⎦

We can check that the two vectors X, Y from equation (3.3) and Z := [X, Y ] are
left invariant and ultimately, in the Lie algebra

dL(s,t,u)(X) = ∂x′ − (
t

2
+

y

2
)∂z′ dL(s,t,u)(Y ) = ∂y′ + (

t

2
+

x

2
)∂z′ dL(s,t,u)(Z) = ∂z′

while

X|L(s,t,u)((x,y,z)) = ∂x′ −
y′

2
∂z′ Y |L(s,t,u)((x,y,z)) = ∂y′ +

x′

2
∂z′ Z|L(s,t,u)((x,y,z)) = ∂z′

Since (x′, y′, z′) = L(s,t,u)((x, y, z)) = (x+s, y+ t, u+z+ 1
2
(sy+ tx)), the three vector

őelds are indeed left invariant and they span the Heisenberg algebra.
Naturally this is the group product that gives the Heisenberg group, deőned at the
beginning of this example, its structure.



Chapter 4

Generalized curvature-dimension

inequality

This generalization of the curvature-dimension inequality is introduced for the
őrst time by the authors F. Baudoin and N. Garofalo in this paper [4] from where
the main parts of this Chapter is taken.
The idea of the two mathematicians is to deőne a reasonable extension of the in-
equality to any differential operators even when the premise of a Riemannian setting
is missing or incomplete.
Hence we can not fully rely on the metric tensor but on the underlining differential
manifold. To do this they follow an axiomatic formulation: they request 3 additional
hypotheses on the manifold which must be fulőlled in order to say that the new and
expanded inequality holds.
As we will see the ambient, in which the authors thought the inequality, is mostly
analytic, so the big work we are going to do in the section 4.1 will be to translate
these notions of analysis in our geometrical way of thinking.

The őrst deőnition is the idea of smooth measure in a manifold, that is nothing
else then the measure associated to a smooth volume form.

Deőnition 4.1. Given a manifold M , µ is a smooth measure if it exists a smooth
volume form ν such that

µ(A) =

∫︂

A

ν

for A Borel set of M

With integration with respect to µ we will mean
∫︂

M

f dµ =

∫︂

M

fν

for f ∈ C∞
0 (M)

Remark 4.2. In the deőnition above we have to ask the functions to be compactly
supported, otherwise the integral could not be well-deőned and for some choices of
f it could get the value +∞.
So anytime in the future a integration is involved, the right set of deőnition shall be
C∞

0 (M).

27
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Another notion we must state since is required for the setting of the generalized
curvature-dimension inequality is the idea of locally sub-ellipticity for a differential
operator:

Deőnition 4.3. We say that an operator L is locally subelliptic if for any A ⋐ M

there exist C, ϵ such that the following estimate holds for any f ∈ C∞
0 (A)

∥f∥2H2ϵ ≤ C
[︁
∥Lf∥2L2 + ∥f∥2L2

]︁

where ∥f∥H2ϵ is the Sobolev norm.

We are now able to present the setting for the new inequality with a clear idea
of what everything means.

Let M be a differential manifold endowed with a smooth measure µ and L : C∞(M) →
C∞(M) be a locally sub-elliptic operator such that L1 = 0, where 1 is the constantly
1 function.
Moreover we assume that the operator is symmetric with respect to µ and non
positive, by this is meant

∫︂

M

fL(h) dµ =

∫︂

M

L(f)h dµ

∫︂

M

fL(f) dµ ≤ 0

for all f, h ∈ C∞
0 (M).

A possible form for L in coordinates is

L = −
∑︂

i

X∗
i Xi

where X∗
i is the adjoint of Xi with respect to the L2 scalar product.

In fact if we write ⟨f, h⟩ :=
∫︁
M
fh dµ the inner product, we can see that

∫︂

M

fL(h) dµ = ⟨f, L(h)⟩ = ⟨f,−
∑︂

i

X∗
i Xih⟩

= −
∑︂

i

⟨Xif,Xih⟩ = ⟨−
∑︂

i

X∗
i Xif, h⟩ =

∫︂

M

L(f)h dµ

Moreover
∫︂

M

fL(f) dµ = ⟨f, Lf⟩ = ⟨f,−
∑︂

i

X∗
i Xif⟩ = −

∑︂

i

⟨Xif,Xif⟩ = −
∑︂

i

∥Xif∥
2 ≤ 0

Now the question becomes obviously how the adjoint looks like.
We recall, we proved in the őrst Chapter, that the integral of a divergence associated
to a smooth volume form is zero if something was compactly supported, in particular

∫︂

M

div(Y ) dµ = 0

for any Y vector őeld compactly supported in M .
Using now equation (1.4) also from the őrst Chapter and this property we get

0 =

∫︂

M

div(fhX) dµ =

∫︂

M

fX(h) +X(f)h+ fh div(X) dµ
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for f, h ∈ C∞
0 (M); that we can written as

∫︂

M

X(h)f =

∫︂

M

−X(f)h− div(X)fh dµ

We have shown that the adjoint of Xi with respect to the L2 product is

X∗
i = −Xi − div(Xi)

So if an operator in coordinates is

L =
∑︂

i

XiXi + div(Xi)Xi

then it is suitable for the generalized curvature-dimension inequality.
Now that we discuss how the operator can look like we keep forward with the
preparation for the new curvature-dimension inequality, following the procedure as
in the "old" one we introduce a symmetric form based on the operator L.

Deőnition 4.4. Given the operator L we deőne a symmetric, őrst-order differential
bilinear form, Γ: C∞(M)× C∞(M) → C∞(M)

Γ(f, h) =
1

2
(L(fh)− fL(h)− hL(f))

and, by a little abuse of notation, the so called carré du champ operator

Γ(f) := Γ(f, f) =
1

2

[︁
L(f 2)− 2fL(f)

]︁

Moreover we deőne a bilinear second order form Γ2 on C∞(M) deőned by Γ and L

in the following way

Γ2(f, h) =
1

2
(LΓ(f, h)− Γ(f, Lh)− Γ(Lf, h))

and we will write as before
Γ2(f) = Γ2(f, f)

Until this point we are not too far from what we had written for the curvature-
dimension inequality in the Riemannian case; also there, given the Laplace operator,
we used two billinear forms build on it. The peculiarity of this new inequality is the
object we are going to deőne below

Deőnition 4.5 (Extrinsic carré du champ). Assume on M another symmetric,
őrst-order differential bilinear form ΓZ : C∞(M)× C∞(M) → C∞(M) satisfying

ΓZ(fk, h) = fΓZ(k, h) + kΓZ(f, h)

We assume moreover that if, ΓZ(f) := ΓZ(f, f), it holds

ΓZ(f) ≥ 0
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The extrinsic carré du champ, as we will see in the setting of sub-Riemannian
geometry with transverse symmetries, can be thought as the counterpart of Γ when
the metric is deőned only on a subbundle of the tangent bundle and it will not be
determined by the manifold.

Remark 4.6. By the close relation between ΓZ(f) and ΓZ(f, f), with extrinsic carré
du champ we will denote both operators.

Also in this case we have to deőne another second-order differential form, by
keeping in mind that this operator can be thought as a extrinsic Γ we are not
surprise that the deőnition is identical to the one for Γ2

Deőnition 4.7. Given the operator L and the extrinsic carré du champ ΓZ we
deőne a second order differential form ΓZ

2 as

ΓZ
2 (f, h) =

1

2

(︁
LΓZ(f, h)− ΓZ(f, Lh)− ΓZ(Lf, h)

)︁

We now have all the objects to deőne the generalized curvature-dimension in-
equality. As we had written, the authors follow an axiomatic way, actually there
are three hypotheses, together with the inequality, that must be fulőll so that a
manifold satisőes CD.

Hypothesis 4.8. The semigroup Pt := etL, that are the operators such that Ptf(p) =
u(t, p) solves the system {︄

∂tu = Lu

u(0, p) = f(p)

must be stochastically complete that is, for t ≥ 0 , Pt1 = 1 and for every f ∈ C∞
0 (M)

and T ≥ 0, one has

sup
t∈[0,T ]

∥Γ(Ptf)∥∞ + ∥ΓZ(Ptf)∥∞ < +∞

Hypothesis 4.9. There exists an increasing sequence {hk}k∈N ⊂ C∞
0 (M) such that

hk ↗ 1 on M and

∥Γ(hk)∥∞ + ∥ΓZ(hk)∥∞ → 0 as k → ∞

Hypothesis 4.10. For any f ∈ C∞(M) one has

Γ(f,ΓZ(f)) = ΓZ(f,Γ(f))

This last hypothesis is a relation between the two carré du champ operators, a
sort of commutativity.
We are ready to present the main part of this Chapter and thesis: the inequality.

Deőnition 4.11. We shall say that M satisőes the generalized curvature-dimension
inequality CD(ρ1, ρ2, k, d) with respect to L and ΓZ if the three hypotheses above
are satisőed and there exist constants ρ1 ∈ R , ρ2 > 0 , k ≥ 0 and 0 < d ≤ ∞ such
that

Γ2(f) + rΓZ
2 (f) ≥

1

d
(L(f))2 +

(︃
ρ1 −

k

r

)︃
Γ(f) + ρ2Γ

Z(f) (4.1)

for every f ∈ C∞(M) and every r > 0.
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4.1 Sub-Riemannian manifolds with transverse sym-

metries

In the section above we deőned the new inequality in the general and analytic
way presented by the authors, now we want to restrict our attention to a speciőc
family of manifolds: sub-Riemannian manifolds with transverse symmetries.
We know already what a sub-Riemannian manifold is but we have no clues what are
transverse symmetries, what this means we see in the next lines.

Deőnition 4.12. Given a sub-Riemannian manifold (M,H, g), the Lie algebra of
sub-Riemannian Killing vector őelds V is the Lie algebra of vectors őelds whose
elements are Killing for (M, g), this means that their ŕow is a local isometry with
respect to the sub-Riemannian metric.
More precisely Z ∈ V if it fulőlls these two properties:

• For X, Y ∈ H it holds

LZg(X, Y ) := Z(g(X, Y ))− g([Z,X], Y )− g(X, [Z, Y ]) = 0 (4.2)

• If X ∈ H then [Z,X] ∈ H

Deőnition 4.13. Given a sub-Riemannian manifold (M,H, g) we say that it has
transverse symmetries if it exists a Lie algebra of sub-Riemannian Killing vector
őelds (V, [, ]) such that for all p ∈ M it holds

TpM = H|p ⊕ V |p

Remark 4.14. The subbundle V is called the set of vertical directions in contrapo-
sition to the set of horizontal directions H.
The objects on which all the next theory will be base, are only M,H, V and of course
the metric g that we recall is only deőned on the distribution H.

In this setting as operator L can be chosen the sub-Laplacian.

Claim 4.15. The sub-Laplacian ∆ is a symmetric and non positive operator.

Proof. It is sufficient to show that it is possible to write it in a frame as

L =
∑︂

i

EiEi + div(Ei)Ei

as our theory says.
So let {E1, .., Ed} be an orthonormal frame for the distribution H, then the horizon-
tal gradient can be written as ∇Hf =

∑︁
i Ei(f)Ei since the frame is orthonormal

then (∇Hf)
i = ∇i(f) = Ei(f).

If we apply equation (3.2) we get that the sub-Laplacian is

∆(f) = div(∇Hf) = div(
∑︂

i

(∇Hf)
iEi) =

∑︂

i

div(Ei(f)Ei)

=
∑︂

i

Ei(Ei(f)) + Ei(f)div(Ei)

and it must be symmetric and non positive.
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We would like to see if the sub-Laplacian is also a locally sub-elliptic operator.
This follows from the bracket generating property of H, in fact it holds the following
theorem

Theorem 4.16. Given a bracket generating distribution D = span{X1, .., Xd} and
A ⋐ M there exists ϵ ∈ (0, 1), C > 0 such that for every f ∈ C∞

0 (A) it holds

∥f∥Hϵ ≤ C∥f∥W 1,2
X

Where ∥f∥Hϵ is the Sobolev norm and the second norm is

∥f∥2
W

1,2
X

=
∑︂

i

∥Xif∥
2
L2 + ∥f∥2L2

Proof. See [6] page 6 proposition 1.1 and [11]

Expanding the norm of the derivative one gets the sub-ellipticity estimate, in
fact

∑︂

i

∥Xif∥
2
L2 =

∑︂

i

⟨Xif,Xif⟩ =
∑︂

i

⟨X∗
i Xif, f⟩ = ⟨−∆f, f⟩ ≤ |⟨−∆f, f⟩|

By CauchyśSchwarz inequality and the property ∥−∆f∥L2 = ∥∆f∥L2 .

≤ ∥−∆f∥L2∥f∥L2 = ∥∆f∥L2∥f∥L2

Moreover using the fact 0 ≤ (a− b)2 = a2+ b2− 2ab so 2ab ≤ a2+ b2 with b = ∥f∥L2

and a = ∥∆f∥L2 we get

∑︂

i

∥Xif∥
2
L2 ≤

1

2

(︁
∥∆f∥2L2 + ∥f∥2L2

)︁

then adding to both side ∥f∥2L2 it becomes

∥f∥2
W

1,2
X

≤
3

2

(︁
∥∆f∥2L2 + ∥f∥2L2

)︁

We can combine the theorem and the inequality above to őnd

∥f∥2Hϵ ≤ C̃
(︁
∥∆f∥2L2 + ∥f∥2L2

)︁

that is exactly the deőnition of sub-ellipticity for ∆.
After we proved that ∆ is a suitable operator for the generalized curvature-

dimension inequality we move our attention to the problem of őnding the bilinear
form associated to ∆.
We apply the formula from the previous section: for f, k ∈ C∞(M)

Γ(f, k) =
1

2
(∆(fk)− f∆(k)− k∆(f))

then by proposition 3.1 it gets

Γ(f, k) = g(∇Hk,∇Hf)
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and the carrè du champ operator is simply the squared norm of the horizontal
gradient

Γ(f) = g(∇Hf,∇Hf)

What can a good form for the extrinsic carré du champ operator be?.
We said it is not canonically arising from the manifold but chosen in a way that it
satisőes some assumptions. The main idea however is that it’s the counterpart of Γ.
So it seems reasonable to chose for ΓZ a shape which recalls the original operator.

Deőnition 4.17. Given a sub-Riemannian manifold with transverse symmetries
and a metric gV on V , we call vertical gradient ∇V f of a smooth function f on M
the unique vector őeld on V such that

gV (∇V f,X) = X(f)

for X ∈ Γ∞(V )

We set as extrinsic carré du champ the bilinear form ΓZ given by

ΓZ(f, k) = gV (∇V f,∇V k)

for f, k ∈ C∞(M)

Remark 4.18. Hereafter gV will denote the metric on the vertical direction and gH
the one on the horizontal directions.

We still have to check if the extrinsic carré du champ satisőes the two properties
of its deőnition: to be positive semideőnite and to act like a derivation in its argu-
ments.
It is positive semideőnite since gV is a metric.
The derivation property also comes easily from the deőnition of gradient, in fact
using equation (2.2) we get

ΓZ(hf, k) = gV (∇V hf,∇V k) = gV (f∇V h+ h∇V f,∇V k) = fΓZ(h, k) + hΓZ(f, k)

We proved that ΓZ is indeed a good choice for the extrinsic carré du champ
operator. We state the two bilinear second order forms Γ2 and ΓZ

2 , they are

Γ2(f, k) :=
1

2
(∆(gH(∇Hf,∇Hk))− gH(∇Hf,∇H∆k)− gH(∇H∆f,∇Hk))

With

Γ2(f) = Γ2(f, f) =
1

2
∆(gH(∇Hf,∇Hf))− gH(∇Hf,∇H∆f)

=
1

2
∆(gH(∇Hf,∇Hf))− Γ(f,∆f)

and since ΓZ
2 is deőned in the same way

ΓZ
2 (f, k) :=

1

2
(∆(gV (∇V f,∇V k))− gV (∇V f,∇V∆k)− gV (∇V∆f,∇V k))
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ΓZ
2 (f) =

1

2
∆(gV (∇V f,∇V f))− gV (∇V f,∇V∆f)

=
1

2
∆(gV (∇V f,∇V f))− ΓZ(f,∆f)

The natural continuation of the thesis would be, at this point, to őnd conditions so
that the 3 hypotheses for the generalized curvature-dimension inequality are satisőed
in this setting.
However, since some new concepts are involved in this process, it is reasonable to
introduce them őrst and postpone the hypotheses for later.
We are going to deőne adapted frames for the sub-Riemannian manifold, that will
help us to write the objects in coordinates.
We must take care that an adapted frame can not be a random choice of vector
őelds, but it must respect the nature of the manifold, i.e. it must preserve the
transverse symmetries.
Since there is no hope in őnd a global frame, the deőnition has to be only local.
Let’s őxed the notation for the dimensions of the distribution H and the Lie algebra
V , respectively s and t.

Deőnition 4.19. For p ∈ M a sub-Riemannian manifold with transverse symme-
tries, we call a set of vector őelds {X1, .., Xs, Z1, .., Zt}, deőned in a sufficiently small
neighborhood of p, an adapted frame if

1. Z1, .., Zt ∈ V

2. {X1|p, .., Xs|p} is an gH-orthonormal base for H|p

3. {Z1|p, .., Zt|p} is an gV -orthonormal base for V |p

4. the following relations hold

[Xi, Xj] =
s∑︂

n

ωn
ijXn +

t∑︂

m

γm
ijZm

[Xi, Zj] =
s∑︂

n

δnijXn

where ωn
ij, γ

m
ij are smooth functions antisymmetric with respect to the lower indeces

by the antisymmetry of the Lie bracket, i.e. for r = 1, .., s l = 1, .., t

ωr
ij = −ωr

ji γl
ij = −γl

ji

Moreover δnij must be smooth functions such that Zk are Killing vector őelds, hence
they must satisfy property (4.2). To őnd out what this is we start with the deőnition

Zk(gH(Xi, Xj)) = gH([Zk, Xi], Xj) + gH(Xi, [Zk, Xj])

=
s∑︂

n

δnikgH(Xn, Xj) +
s∑︂

p

δ
p
jkgH(Xi, Xp)
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then by gH-orthonormality of {X1, .., Xd}

0 = δ
j
ik + δijk

So the functions must be such that

δ
j
ik = −δijk

We want now to deőne a privileged connection on the manifold. Given the
geometry of the sub-Riemannian manifold it is not possible to deőne the Levi-
Civita connection; the metric is deőned only on a part of the tangent bundle and
the uniqueness based on the compatibility with the metric would be missed.
We can’t either use the Levi-Civita connection of (M, g = gh ⊕ gV ) since it would
depend on the choice of gV while the objects arising from the manifold, we said,
must depend only on (M,H, gH , V ).
Therefore the right connection that preserves the geometry, must be the following:

Proposition 4.20. There exists a unique affine connection ∇ on (M,H, gH) with
the following properties:

1. ∇gH = 0

2. If X and Y are horizontal vector őelds then ∇XY remains horizontal

3. If Z is vertical then ∇Z = 0

4. If X and Y are horizontal vector őelds and Z is vertical, then the torsion
vector őeld T (X, Y ) is vertical while T (X,Z) = 0

Proof. Before starting with the proof we recall brieŕy what is meant by torsion:

Deőnition 4.21. Given a connection ∇ on M , its torsion is the tensor őeld T : X(M)×
X(M) → X(M) deőned by

T (X, Y ) = ∇XY −∇YX − [X, Y ]

Let g̃V be any metric on the vertical set. We set gR(X, Y ) = gH(X1, Y1) +
g̃V (X2, Y2) where X, Y ∈ X(M) and X1, Y1 are their horizontal parts and X1, Y1 are
their vertical parts.
We turn M into a Riemannian manifold (M, gR), which has unique Levi-Civita
connection ∇R.
We can deőne now the connection ∇ on M that acts in the following way

• If X, Y are horizontal vector őelds ∇XY = πH(∇
R
XY ) where πH : Γ∞(TM) →

Γ∞(H) is the projection

• If X is horizontal and Z is vertical ∇ZX = [Z,X]

• If Z is vertical vector őeld ∇Z = 0
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We just have to check if the last prescription of the proposition is fulőlled.
Let X, Y, Z as point 4. of the above proposition.

T (X, Y ) = ∇XY −∇YX − [X, Y ] = πH(∇
R
XY )− πH(∇

R
YX)− [X, Y ]

then by linearity of the projection and torsion-freeness of the Levi-Civita connection

= πH(∇
R
XY −∇R

YX)− [X, Y ] = πH([X, Y ])− [X, Y ] = −πV ([X, Y ])

and
T (X,Z) = ∇XZ −∇ZX − [X,Z] = 0− [Z,X]− [X,Z] = 0

Uniqueness follows by noticing that the connection is deőned on every possible
direction in a őxed way, then if 2 such connections existed their difference would be
zero everywhere.
Furthermore we also notice that since gR makes the decomposition between H and
V orthogonal, the horizontal part of the Levi-Civita connection does not depend on
the choice of gV , namely ∇ for horizontal vector őelds is the unique torsionfree and
compatible with gH connection on (H, gH).

The connection we just introduced will be the privileged connection of this set-
ting. It can be thought as the reciprocal of the Levi-Civita in the Riemannian case,
in fact that ambient can be seen as a degenerate case of a sub-Riemannian manifold
where the distribution H is the all tangent space.
In particular the connection above in that case would be the Levi-Civita, since the
projection πH is the identity if the distribution is the all TM .

Remark 4.22. From now on with the notation ∇ we will indicate the connection
from proposition 4.20.

We can őnally have a closer look on the 3 hypotheses of the inequality. It
turns out that in this setting they are implied by 2 geometrical assumptions on the
manifold: completeness and the manifold of Yang-Mills type.
The proof of the fact that this two properties are enough for the fulőllment of the
3 hypotheses required long computation, which we will not display. We will just
brieŕy give an hint in the next paragraphs.

Hypothesis 4.8 Hypothesis 4.8 is the stochastic completeness of the semigroup
of ∆; as it seems, it is a purely analytic request.
Another possible geometrical assumption one can state is to ask that the manifold
is of Yang-Mills type.

Deőnition 4.23. A sub-Riemannian manifold of transverse symmetries is said to
be of Yang-Mills type if for every horizontal vector őeld Y , it holds

∑︂

i

(∇Xi
T )(Xi, Y ) = 0

where T is the torsion tensor with respect to ∇ and {X1, .., Xs, Z1, .., Zt} is an
adapted frame.
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Proposition 4.24. Let M be a sub-Riemannian manifold with transverse symme-
tries of Yang-Mills type.
Suppose in addition that (M, dCC) is a complete metric space, where dCC is the
CarnotśCarathéodory distance, then if the sub-Laplacian satisfy equation (4.1) then
hypothesis 4.8 is fulőlled.

Proof. See [4] page 194 theorem 4.3

Hypothesis 4.9 We want to show that the following theorem implies that Hy-
pothesis 4.9 in our setting is fulőlled.

Theorem 4.25. Let M be a complete Riemannian manifold. Then it exits {hk}k∈N ⊂
C∞

0 (M) such that hk ↗ 1 on M and

∥∇hk∥∞ → 0

Proof. See [2] page 230 Lemma 10.7 and [10]

First of all we recall that by theorem of Hopf-Rinow completeness of a Rieman-
nian manifold from deőnition 2.6 is equivalent to the completeness for the metric
space whose distance comes from the Riemannian metric.
Secondly we remember that we can turn the sub-Riemannian manifold in a Rie-
mannian one with help of the vertical metric as we did in the proposition of the
connection.
So let (M, g) be the Riemannian manifold, where g = gH ⊕ gV and we denote d the
distance function from the Riemannian metric while dCC the Carnot Carathéodory
distance.

Proposition 4.26. With the assumptions above it exist s ∈ N and C ∈ R such that
for closed enough pair of points p, q ∈ M

d(p, q) ≤ dCC(p, q) ≤ Cd(p, q)s

Proof. We only prove the őrst inequality, for the second one can see for example:
[5] page 118 section 1.2

d(p, q) = inf{Lg(γ)| γ is a curve from p to q}

≤ inf{Lg(γ)| γ is a H-horizontal curve from p to q} = dCC(p, q)

So if we suppose (M, dCC) to be a complete metric space then (M, d) is complete
as well.
Then by theorem above {hk}k∈N ⊂ C∞

0 (M) such that hk ↗ 1 on M and

∥∇hk∥∞ → 0

Claim 4.27.

∥∇hk∥∞ → 0 =⇒ ∥Γ(hk)∥∞ → 0
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Proof. Let {X1, .., Xs, Z1, .., Zt} be an adapted frame. Then by deőnition of the
metric

∇hk = ∇Hhk +∇V hk

so

∥∇hk∥∞ → 0 =⇒ ∥∇Hhk∥∞ → 0

and in particular ∀p ∈ M

gH(∇Hhk,∇Hhk)|p =
∑︂

i

(gH)i,j(p)(∇Hhk)
i(p)(∇Hhk)

j(p) ≤ C̃(p)∥∇Hhk∥
2
∞ → 0

Since the metric is a tensor őeld , the map p ↦→ gH(∇Hhk,∇Hhk)|p is smooth and
at every points it goes to zero hence its supremum norm also goes to zero.
The carrè du champ operator becomes

∥Γ(hk)∥∞ = ∥gH(∇Hhk,∇Hhk)∥∞ → 0 as k → ∞

We sum everything together with the next proposition

Proposition 4.28. If (M, dCC) is a complete metric space then hypothesis 4.9 holds
for the sub-Laplacian.

Hypothesis 4.10 In a sub-Riemannian manifold with transverse symmetries with
our choice for ∆ and ΓZ hypothesis 4.10 is satisőed. In order to prove this we use
an adapted frame and we write both objects in coordinates

Proposition 4.29. In the setting of a sub-Riemannian manifold with transverse
symmetries with L = ∆ and ΓZ as before, hypothesis 4.10 is fulőlled

Proof.

ΓZ(f,Γ(f)) = gV (∇V f,∇V Γ(f)) = gV (∇V f,∇V gH(∇Hf,∇Hf))

Since in an adopted frame ∇Hf =
∑︁

i Xi(f)Xi and ∇V (f) =
∑︁

j Zj(f)Zj we get

= gV (∇V f,∇V

∑︂

j

Xj(f)
2)

=
∑︂

j

gV (
∑︂

i

Zi(f)Zi,
∑︂

k

Zk((Xj(f))
2)Zk)

=
∑︂

j

gV (
∑︂

i

Zi(f)Zi, 2
∑︂

k

Zk(Xj(f))Xj(f)Zk)

= 2
∑︂

j

∑︂

k

Zk(f)Xj(f)ZkXj(f)

(4.3)
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= 2
∑︂

j

∑︂

k

Zk(f)Xj(f) ([Zk, Xj] +XjZk) (f)

= 2
∑︂

j

∑︂

k

Zk(f)Xj(f) (XjZk − [Xj, Zk]) (f)

= 2
∑︂

k

Zk(f)Xj(f)

(︄∑︂

j

XjZk −
∑︂

j

∑︂

m

δmjkXm

)︄
(f)

= 2
∑︂

k

∑︂

j

Zk(f)Xj(f)XjZk(f)

where the delta functions vanish by their antisymmetry property.
We obverse that if we calculate Γ(f,ΓZ(f)) we just do the same passages as (4.3)
but getting XjZk instead of ZkXj. So we proved

ΓZ(f,Γ(f)) = Γ(f,ΓZ(f))

that was the claim.

So in a complete sub-Riemannian manifold with transverse symmetries of Yang-
Mills type the 3 hypotheses are naturally satisőed and we can care only about the
inequality with respect to ∆ and ΓZ .
Actually thanks to this special setting, we can do more; since we have a privileged
connection that preserved the geometry of the manifold we are able to construct the
Ricci curvature and the Riemann curvature tensor.
It is moreover possible to imitate what we did in Chapter 2: őnd Bochner’s formulas
for the vertical and the horizontal directions.
Ultimately we can őnd an equivalence between bounds of objects related to the Ricci
and torsion tensor and the curvature-dimension inequality.
We state here only the last part, starting from introducing two operator, for an
in-depth study one can see [4].

Remark 4.30. From now on µ will not be any measure but the one associated with
the Riemannian volume of (M, g = gH ⊕ gV ).

Deőnition 4.31. Let ∇ be the connection and Ric its associated Ricci curvature
tensor.
Let moreover T be the torsion tensor with respect to ∇, then for f ∈ C∞(M) we
deőne

R(f) = Ric(∇Hf,∇Hf) +
∑︂

lk

(︃
−(∇Xl

T )(Xl, Xk))f)(Xkf) +
1

4
(T (Xl, Xk)f)

2

)︃

T (f) =
∑︂

i

gV (T (Xi,∇Hf), T (Xi,∇Hf)) =
∑︂

i

∥T (Xi,∇Hf)∥
2
V

where {X1, .., Xs, Z1, .., Zt} is an adapted frame for M .

We őnish this Chapter with the equivalence theorem for a sub-Riemannian man-
ifold with transverse symmetries.
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Theorem 4.32 (Equivalence theorem). For a sub-Riemannian manifold (M,H, gH)
with transverse symmetries complete and of Yang-Mills type, it holds the following
equivalence:

CD(ρ1, ρ2, k, s) ⇐⇒

{︄
R(f) ≥ ρ1Γ(f) + ρ2Γ

Z(f)

T (f) ≤ kΓ(f)
∀f ∈ C∞(M)

for s the dimension of H and constants ρ1 ∈ R, ρ2 > 0 and k ≥ 0.

Sketch of the proof. The idea as we said is to follow the procedure of the ordinary
curvature-dimension inequality. We introduce the two Bochner’s formulas, one for
the vertical direction and one for the horizontal.

Proposition 4.33. For every f ∈ C∞(M) it holds

Γ2(f) = ∥∇2
Hf∥

2 +R(f) + S(f) Horizontal Bochner’s formula

ΓZ
2 (f) = ∥∇H∇V f∥

2 Vertical Bochner’s formula

where for {X1, .., Xs, Z1, .., Zt} adapted frame

S(f) = −2
∑︂

i

g(∇Xi
∇V f, T (Xi,∇Hf))

The proof of this two equalities is based on writing the two bilinear forms in an
adapted frame of the manifold and after many computations recognizing that the
two sides are equal.
With this proposition is possible to prove the equivalence theorem: let’s start with
the direction ⇐=.
With an adapted frame thanks to the Cauchy-Schwarz inequality is possible to prove

1

s
(∆f)2 ≤ ∥∇2

Hf∥
2

Appling now the horizontal Bochner formula and the assumption one get

1

s
(∆f)2 ≤ Γ2(f)− ρ1Γ(f)− ρ2Γ

Z(f) + S(f)

Writing the objects in the frame is possible to őnd a relation between S and T that
turns the expression above in

1

s
(∆f)2 ≤ Γ2(f) + νΓZ

2 (f) +
1

ν
T (f)− ρ1Γ(f)− ρ2Γ

Z(f)

Then we can use the second bound of the assumption, getting the curvature-dimension
inequality.
=⇒). Given p ∈ M , U ∈ H|p and K ∈ V |p, in an adapted frame {X1, .., Xs, Z1, , ., Zt}
it is possible to őnd f ∈ C∞(M) such that

• ∇Hf |p = U
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• ∇V f |p = K

• ∇2
Hf |p = 0

• XjZmf |p =
1
ν

∑︁
i γ

m
ijK

i

for ν > 0 and [Xi, Xj] =
∑︁s

n ω
n
ijXn +

∑︁t

m γm
ijZm.

Using this special function in the curvature-dimension inequality gives

Γ2(f)|p + νΓZ
2 (f)|p ≥

(︃
ρ1 −

k

ν

)︃
gH(U,U) + ρ2gV (K,K)

Moreover from the horizontal Bochner’s formula, by the properties of the function
we get

Γ2(f)|p = R(f)|p + S(f)|p

and the relation between S and T of this special function is

S(f)|p = −
2

ν
T (f)|p

The vertical Bochner’s formula of the function f is

ΓZ
2 (f)|p = ∥∇H∇V f |p∥

2 =
1

ν
T (f)|p

Hence the inequality becomes

R(f)|p −
1

ν
T (f)|p ≥

(︃
ρ1 −

k

ν

)︃
gH(U,U) + ρ2gV (K,K)

It can be proved by using the adapted frame that the left-hand side only depends
on U and K, the horizontal and vertical gradient of f , R(f)|p =: R(U,K) and
T (f)|p =: T (U).
It is just proved that ∀p ∈ M , U ∈ H|p and K ∈ V |p for ν > 0

R(U,K)−
1

ν
T (U) ≥

(︃
ρ1 −

k

ν

)︃
gH(U,U) + ρ2gV (K,K)

So for all h ∈ C∞(M) taking for p ∈ M ∇Hh|p = U and ∇V h|p = K holds

R(h)−
1

ν
T (h) ≥

(︃
ρ1 −

k

ν

)︃
Γ(h) + ρ2Γ

Z(h) (4.4)

By letting ν → ∞ őrst we get

R(h) ≥ ρ1Γ(h) + ρ2Γ
Z(h) (4.5)

then subtracting (4.5) to (4.4) we have the condition:

−
1

ν
T (h) ≥ −

k

ν
Γ(h)

by multiplying for −ν both sides we get the conclusion.
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Chapter 5

Riemannian cases: with and without

magnetic őeld

In this Chapter we are going to apply the theory of the generalized curvature-
dimension inequality in two sub-Riemannian manifolds with transverse symmetries:
a Riemannian manifold and a sub-Riemannian manifold from a magnetic őeld.
The purposes are to őnd how all the objects look like and how the equivalence
theorem 4.32 is reformulated in these two different settings.

5.1 Riemannian case

We want to see how the generalized curvature-dimension inequality becomes on
a Riemannian manifold. This will also give us the chance to check if it is indeed a
generalization, namely we should őnd the same result of Chapter 2, for at least some
choices of the values involved: the inequality should look like deőnition 2.3 and the
equivalence theorem 4.32 as 2.7

Let (M, g) be a Riemannian manifold. We can easily see it as a sub-Riemannian
one (M,H, gH) where for all p ∈ M it holds

TpM = H|p

and the metric gH = g.
We assume the same hypotheses of Chapter 2: let dVg be the Riemmanian volume
form as the one associated to our measure and ∆ as the operator.
Given the geometry of the distribution, the vertical direction set can only be empty
so the request of being Killing vector őelds is trivially satisőed.
We are so in a degenerate case of sub-Riemannian manifold with transverse symme-
tries.
Hence to use the theory we developed in second part of Chapter 4 we must just
check that the two deőnitions of Laplacian, one based on the Hessian and one on
the divergence, coincide.

Proposition 5.1. In a Riemannian manifold, the Laplacian deőned as deőnition
1.16 and as the sub-Laplacian for H = TM are the same.

43
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Proof. Let p ∈ M and X ∈ TpM . We can always choose an orthonormal frame
{E1, .., En} such that in the point p ∈ M it holds ∇Ei

Ej|p = 0 for all i, j .
Moreover let {α1, .., αn} covectors which are the dual frame of {E1, .., En} i.e.

αi(Ej) = δij

Then dVg, the Riemannian volume, is written as

dVg = α1 ∧ ... ∧ αn

Moreover we know, since the frame is orthonormal, it must hold the formula

αi(X) = ⟨X,Ei⟩

In order to compute the Lie derivative of dVg, we start by computing the interior
derivative

ιX(dVg) = ιX(α
1 ∧ ..,∧αn) =

∑︂

i

(−1)i−1α1 ∧ .. ∧ ιX(α
i) ∧ .. ∧ αn

=
∑︂

i

(−1)i−1αi(X)α1 ∧ .. ∧ ˆ︁αi ∧ .. ∧ αn

where the hat means that that term is omitted.
Now we pass to the exterior derivative

d(ιX(dVg)) =
∑︂

j

∑︂

i

(−1)i−1Ej(α
i(X))αj ∧ α1 ∧ .. ∧ ˆ︁αi ∧ .. ∧ αn

=
∑︂

i

Ei(α
i(X))α1 ∧ .. ∧ αi ∧ .. ∧ αn =

∑︂

i

Ei(α
i(X))dVg

then
div(X) =

∑︂

i

Ei(α
i(X))

We recall that ∇ is Levi-Civita and we have an orthonormal frame of geodesics

=
∑︂

i

Ei(α
i(X)) =

∑︂

i

Ei⟨X,Ei⟩ =
∑︂

i

⟨∇Ei
X,Ei⟩+ ⟨X,∇Ei

Ei⟩ =
∑︂

i

⟨∇Ei
X,Ei⟩

By choosing X = ∇f we get

div(∇f) =
∑︂

i

⟨∇Ei
∇f, Ei⟩ =

∑︂

i

Hess(f)(Ei, Ei)

It follows that ∆ is a locally sub-elliptic operator and since we don’t have vertical
directions, the carré du champ operator and Γ2 coincide, by deőnition, with the one
of Chapter 2 while the extrinsic and ΓZ

2 are always zero.
An adapted frame is any orthonormal frame of (M, g) and the connection of deő-
nition 4.20, as we observed before, is the Levi-Civita. This means that its torsion
tensor always vanishes and the Ricci curvature is the usual one on M .
By torsion-freeness of the connection the manifold is of Yang-Mills type thus all 3
hypotheses are satisőed once we assume M to be a complete manifold.



5.2. SUB-RIEMANNIAN MANIFOLD FROM A MAGNETIC FIELD 45

Remark 5.2. This is the őrst and, as we will see, the only difference from theory
of Chapter 2. While there the assumption of completeness was necessary only for
theorem 2.7, here it is requested also for the inequality. Naturally this comes from
the variety of settings for the new CD and from the assiomatic approach which the
authors used.

After the assumption made above we can state that on M holds the generalized
curvature-dimension inequality CD(ρ1, ρ2, k, n) if there exist constant ρ1 ∈ R , ρ2 >
0 , k ≥ 0 and 0 < n ≤ ∞ such that

Γ2(f) ≥
1

n
∆(f)2 +

(︃
ρ1 −

k

l

)︃
Γ(f)

for all f ∈ C∞(M) and l > 0.
So to have the same CD of Chapter 2 we just set k = 0, CD(ρ1, ρ2, 0, n) for an
arbitrarily ρ2.

Remark 5.3. The constant ρ2 > 0 does not appear in the inequality so the curvature-
dimension condition depends only on n and ρ1 CD(ρ1, ρ2, 0, n) = CD(ρ1, n) as
Chapter 2.

It remains to rephrase theorem 4.32 in this setting. For this aim we see what
become the two operator R and T :

R(f) = Ric(∇f,∇f) + 0

T (f) = 0

both by the torsion-freeness of the connection.
Hence the equivalence theorem becomes

Theorem 5.4. Suppose (M, g) to be a complete n-dimensional Riemannian manifold
and ρ1 ∈ R.
Then it holds the following equivalence:

CD(ρ1, n) ⇐⇒ Ric(∇f) ≥ ρ1g(∇f,∇f) ∀f ∈ C∞(M)

This is exactly theorem 2.7. The right-hand side is indeed a ρ1-lower bound since
the Ricci curvature Ric(X) at p ∈ M depends only on X|p and, following the idea
of the proof of theorem 2.7, locally it is always possible to őnd f ∈ C∞ such that

∇f |p = X|p

5.2 Sub-Riemannian manifold from a magnetic őeld

Let (M̃, g̃) be a n-dimensional Riemannian manifold and A be a differential
1-form. Consider the following constrained problem:
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Problem For c ∈ R and p, q ∈ M̃ őxed, őnd

min

{︃
L(γ) | γ is a curve from p to q and

∫︂

γ

A = c

}︃

What we have in mind is to rephrase the above problem into a sub-Riemannian
manifold where the horizontal curves σ will be in a 1:1 correspondence with the
curves γ in M̃ which satisfy the constrain: this means that the constrain must be
incorporated in the new curve.

We want to construct the relation γ
Φ
↦→ σ. Since we have an integral constrain and

the only way to relate it with a curve is
∫︁
γ
A, we will always have two informations

(γ,
∫︁
γ
A). So it makes sense to enlarge the manifold

M = M̃ × R

where the last coordinate is the integral.
Let’s see what happen once we have a parametrization of the original curve γ : [a, b] →
M̃ .
The integral becomes ∫︂

γ

A =

∫︂ b

a

A(γ̇(t)) dt

thus the new curve σ : [a, b] → M σ(t) = Φ(γ(t)) must be

t ↦→

(︃
γ(t),

∫︂ t

a

A(γ̇(t))

)︃
dt

As we said σ is set to be horizontal, so we have to compute the distribution H such
that

σ̇(t) = (γ̇(t), A(γ̇(t))) ∈ H|γ(t)

To do so we introduce a frame in M {X1, ..., Xn, Z} such that the őrst n vector
őelds are a frame for M̃ , then γ̇(t) can be decompose as

γ̇(t) =
∑︂

i

αi(t)Xi|γ(t)

for αi smooth functions and

A(γ̇(t)) =
∑︂

i

αi(t)A(Xi)|γ(t)

Hence

σ̇(t) =
∑︂

i

αi(t)Xi|γ(t) + αi(t)A(Xi)|γ(t)Z|γ(t) =
∑︂

i

αi(t)
(︁
Xi|γ(t) + A(Xi)|γ(t)Z|γ(t)

)︁

So we found that the curve is always tangent to H, the span of the n vector őelds
{Yi} deőned by

Yi := Xi + A(Xi)Z (5.1)
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Remark 5.5. Since in the frame the őrst n components are related to M̃ it follows
that Z must be a multiple of the vector őeld associated to the last coordinate, so
we can always take Z = ∂z where z for a curve σ(t) = (γ(t), z(γ(t))) in M is

z(γ(t)) =

∫︂

γ

A(γ̇(t))dt

and by differentiating

ż(γ(t))γ̇(t) = A(γ̇(t))

that can be written independently from γ as

dz = A

That is why, from now on, we will always choose canonically Z = ∂z.
Moreover, since the last component was add artiőcially, the vector őelds Xi, so also
Yi, will only depend on the coordinates of M̃ , hence not on z .

To give a possible sub-Riemannian structure to (M,H) we introduce a metric
gH on the distribution H deőned for v, w ∈ H as

g(v, w) = g̃(πM̃(v), πM̃(w))

where πM̃ is the projection onto M̃ .
Of course the distribution will not always be bracket generating, it will depend on
the form of A. We can though calculate under which conditions of the őrst order of
Lie bracket, the manifold (M,H, gH) is sub-Riemannian.

[Yi, Yj] = [Xi + A(Xi)∂z, Xj + A(Xj)∂z]

= [Xi, Xj] + [A(Xi)∂z, Xj]− [A(Xj)∂z, Xi] + [A(Xi)∂z, A(Xj)∂z]

= [Xi, Xj] + [A(Xi)∂z, Xj]− [A(Xj)∂z, Xi]

because from the remark the functions A(Xi) never depend on z.
Focusing only on the last two terms

[A(Xj)∂z, Xi] = A(Xj)∂zXi −XiA(Xj)∂z = −XiA(Xj)∂z

So it becomes

[Yi, Yj] = [Xi, Xj] +Xi(A(Xj))∂z −Xj(A(Xi))∂z

By applying the famous formula for the exterior derivative of a 1-form ω, i.e dω(K,L) =
K(ω(L))− L(ω(K))− ω([K,L]) everything becomes

[Yi, Yj] = [Xi, Xj] + dA(Xi, Xj)∂z + A([Xi, Xj])∂z

If we suppose that [Xi, Xj] =
∑︁

k c
k
ijXk for ckij smooth functions then

=
∑︂

k

ckijXk +
∑︂

k

ckijA(Xk)∂z + dA(Xi, Xj)∂z
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=
∑︂

k

ckijYk + dA(Xi, Xj)∂z

Given the relevance we call B = dA and we see that {Yl, [Yi, Yj]} for i, j őxed and
l ∈ {1, .., n} generate the all tangent space, using {Y1, .., Yn, ∂z} as frame since ∂z is
independent from {Yi} , if

det

⎛
⎜⎜⎝

⎡
⎢⎢⎣

1 0 ... 0
0 1 ... 0

.......

c1ij c2ij ... Bij

⎤
⎥⎥⎦

⎞
⎟⎟⎠ ̸= 0

The distribution is therefore surely bracket generating if for some indeces i, j it holds
for all p ∈ M

Bij(p) ̸= 0

But this is not the only condition, for example if the function for j őxed
∑︂

i

|Bij|

never vanishes or even conditions involving the second-order Lie brackets.
For a sub-Riemannian manifold from a magnetic vector őeld we will means the triple
(M,H, gH) when the distribution H is bracket generating.

Remark 5.6. B is called magnetic őeld. This comes from the case where M̃ = R
3

and we are in presence of a magnetic vector őeld B̃. Given the particularity of the
setting, it is possible to relate a vector őeld with a differential 2-form, exactly B.
Moreover it’s possible to relate the magnetic potential Ã also with a 1-form, exactly
A.
So if the curve γ : [a, b] → R

3 is a closed loop we can give a meaning to the value
z(γ(b)). We can thing it is as the magnet ŕux through any surfaces S which have
gamma as boundary.
The solution of the problem above instead can be physically interpreted as the
trajectory of a particle going from p to q subject to a constained by c magnetic őeld
B̃ which has Ã as potential. For a deep explanation of this fact one can see for
example [14]

Example 5.7 (Heisenberg group). Let M = R
3 with the usual Euclidean metric gE

and B12 = 1 constant. Naturally if {xi} are the canonical coordinates it holds

[∂xi
, ∂xj

] = 0 ∀i, j

which means that all the functions ckij vanish.
So the Lie brackets of {Y1, Y2, ∂z} are

[Y1, Y2] = ∂z [Y1, ∂z] = 0 = [Y2, ∂z]

We immediately recognize the Heisenberg algebra.
So the sub-Riemannian manifold from a magnetic őeld (R3, H, gH) with H=span{Y1, Y2}
could be the Heisenberg group from Chapter 2. We only have to check if gH deőned
as before and ˆ︁g as Chapter 2 coincide.
Let v = a1Y1 + a2Y2 and u = b1Y1 + b2Y2 then

gH(v, u) = gE(a1∂x1 + a2∂x2 , b1∂x1 + b2∂x2) = a1b1 + a2b2 = ˆ︁g(v, u)
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Now that we illustrated our setting we can pass to study what happen to the
generalized curvature-dimension inequality.

Let’s suppose from now on that the distribution is bracket generating. We want
to check if (M,H, gH) is a sub-Riemannian manifold with transverse symmetries: to
the set of horizontal direction H we oppose V =span{∂z}.
Since ∂z is not linearly dependent from {Yi} and the distribution has one dimension
less that the manifold, V hast to be the Lie algebra of vertical directions.
Moreover Z = a∂z ∈ V , for a ∈ R, are Killing vector since we observed that Yi do
not depend on z, so

ZgH(Yi, Yj) = a∂z(g̃ij) = 0

and for the same reason
[Z, Yi] = 0

therefore both properties are naturally fulőlled and V is a Lie algebra of Killing
vector őeld.
As before the sub-Laplacian ∆ will be our operator and we őx the measure µ already:
it is the one associated to the Riemannian volume form of (M, g = gH ⊕ gV ) for an
arbitrary choice of gV , metric on V .
We look for an adapted frame to be able to write everything in coordinates and őnd
the connection:
When are {Yi} orthonormal vector with respect to the metric gH?

gH(Yi, Yj) = gH(Xi + A(Xi)∂z, Xj + A(Xj)∂z) = g̃(Xi, Xj)

So {Yi} are gH-orthonormal if and only if {Xi} are g̃-orthonormal, hence we assume
so.
By the arbitrariness of gV , vertical metric, an orthonormal frame on V just translates
into a choice of Z ∈ V . The set {Yi, Z} is an adapted frame with

ωk
ij = ckij γij = Bij δkij = 0

since we already calculated the Lie brackets before.
In this frame the sub-Laplacian ∆ is naturally sub-elliptic and the two őrst order
bilinear forms Γ, ΓZ are

Γ(f, k) = gH(∇Hf,∇Hk)

ΓZ(f, k) = gV (∇V f,∇V k)

for f, k ∈ C∞(M). In the adapted frame the two gradients are written as

∇Hf =
∑︂

i

Yi(f)Yi ∇V f = Z(f)Z

Hence the two carré du champ operators in the frame become

Γ(f) =
∑︂

i

(Yi(f))
2

ΓZ(f) = (Z(f))2

So we can try to write down also the Laplacian:
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Proposition 5.8. With the assumptions above is holds

∆f =
∑︂

i

YiYif

Proof. By formula (3.2)

∆f = div(∇Hf) = div(
∑︂

i

Yi(f)Yi) =
∑︂

i

YiYif + div(Yi)Yi(f)

then let dYi, dZ be the the coverctors such that

dYi(Yj) = δ
j
i dZ(Z) = 1 dZ(Yj) = 0 ∀j

Then a volume form ν̃ can be written as

ν̃ = νdY1 ∧ .. ∧ dYn ∧ dZ

for ν ∈ C∞(M). We start by the deőnition of divergence:

div(Yi)ν̃ = d ◦ ιYi
ν̃ =

∑︂

i

(−1)i−1dν ∧ dY1 ∧ .. ∧ ˆ︂dY i ∧ .. ∧ dZ

where the hat means omission.

=
∑︂

i

Yi(ν)dY1 ∧ .. ∧ dYn ∧ dZ =
∑︂

i

Yi(ν)

ν
ν̃

But the volume form ν̃ is exactly the Riemannian volume of gH ⊕ gV then ν = 1
and the claim is proved.

In order to affirm if the sub-Riemannian manifold satisőes the generalized curvature-
dimension inequality, in addition to assume (M, dCC) complete, we suppose that the
manifold is of Yang-Mills type.
The CD inequality is fulőlled if there exist constants ρ1 ∈ R , ρ2 > 0 , k ≥ 0 and
0 < n ≤ ∞ such that

Γ2(f) + νΓZ
2 (f) ≥

1

n
(∆(f))2 +

(︃
ρ1 −

k

l

)︃
Γ(f) + ρ2Z(f)

for every f ∈ C∞(M) and every l > 0.

The purpose of this last part is to turn the equivalence theorem in this setting,
we hence have to compute R and T .
To do so we pass in determining the connection: in this case it can be compute
from the proof of proposition 4.20, so if ∇R is the Levi-Civita connection of (M, g =
gH ⊕ gV ) then ∇ is for our adapted frame

• ∇Yi
Yk = πH(∇

R
Yi
Yk) for πH : Γ∞(TM) → Γ∞(H) the projection.

• ∇ZYj = [Z, Yj] = 0
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• ∇Z = 0

Still following the proof we get the formula for the torsion of the connection

T (Yi, Yj) = −πV ([Yi, Yj]) = −πV (
∑︂

k

ckijYk +BijZ) = −BijZ

Hence the torsion of ∇ is zero if any of the argument is vertical otherwise is equal
to the opposite of the magnetic őeld along Z.

Finally now by deőnition

T (f) =
∑︂

i

∥T (Yi,∇Hf)∥
2
V =

∑︂

i

∥T (Yi,
∑︂

j

Yj(f)Yj)∥
2 =

∑︂

i

∥
∑︂

j

Yj(f)T (Yi, Yj)∥
2

so

T (f) =
∑︂

i

(︄
−
∑︂

j

Yj(f)Bij

)︄2

=
∑︂

i

(︄∑︂

j

Yj(f)Bij

)︄2

Also by deőnition R is

R(f) = Ric(∇Hf,∇Hf) +
∑︂

lk

(︃
−(∇Yl

(T (Yl, Yk))f)(Ykf) +
1

4
(T (Yl, Yk)f)

2

)︃

where each term is

• Ric(∇Hf,∇Hf) is the Ricci curvature associated to the connection ∇.

•

∑︁
k(
∑︁

l ∇Yl
(T (Yl, Yk))f)) · (Ykf) = 0 because by Yang-Mills condition the őrst

factor is zero.

•
1
4

∑︁
lk(T (Yl, Yk)f)

2 = 1
4

∑︁
lk(−BlkZ(f))

2 = 1
4

∑︁
lk(BlkZ(f))

2

Ultimately R becomes

R(f) = Ric(∇Hf,∇Hf) +
1

4

∑︂

lk

(BlkZ(f))
2 (5.2)

The equivalence theorem can be state down as

Theorem 5.9. In a complete with respect to the Carnot-Carathéodory distance sub-
Riemannian manifold from a magnetic őeld that satisőes the Yang-Mills condition,
it holds the following equivalence:

CD(ρ1, ρ2, k, n) ⇐⇒

{︄
R(f) ≥ ρ1gH(∇Hf,∇Hf) + ρ2(Z(f))

2

T (f) ≤ kgH(∇Hf,∇Hf)
∀f ∈ C∞(M)

for constants ρ1 ∈ R, ρ2 > 0, k ≥ 0 and n the dimension of the distribution
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Example 5.10. Suppose M̃ = R
2 with the Euclidean metric and A a 1-form,

then the sub-Riemannian manifold is M = R
3 while the magnetic őeld B = dA is

identiőed by a smooth function h ∈ C∞(M̃) since

B(X1, X2) = −B(X2, X1) =: h(x1, x2)

for {x1, x2} the standard coordinates of R2 and {X1, X2} its corresponding frame.
With the setting an adapted frame is {Y1, Y2, Z} where Z is the normal vector with
respect to the vertical metric gV and Yi is deőned by (5.1).
Since the vector őelds {X2, X2} comes from the Euclidean coordinates their Lie
bracket vanishes and

0 = [X1, X2] = c112X1 + c212X2 =⇒ c112 = c212 = 0

that in terms of adapted frame means for ij ∈ {1, 2}

ωk
ij = 0 γ12 = B12 = h = −γ12 δkij = 0

We suppose that the distribution is bracket generating and we postpone the proof
of under which condition it is of Yang-Mills type for later.
The inequality, Γ, ΓZ don’t change from section above, we can investigate how T
and R turn in this setting.
We can calculate how the operator T looks like

T (f) =
∑︂

i

(︄∑︂

j

Yj(f)Bij

)︄2

= (Y2(f)B12)
2 + (Y1(f)B21)

2 = (Y2(f)h)
2 + (−Y1(f)h)

2

= h2(Y1(f)
2 + Y2(f)

2) = h2gH(∇Hf,∇Hf)

We compute every term of formula (5.2) separately

1

4

∑︂

lk

(BlkZ(f))
2 =

1

4
(B12Z(f))

2+(B21Z(f))
2 =

1

4
(hZ(f))2+(−hZ(f))2 =

1

2
h2Z(f)2

Claim 5.11. The Ricci curvature associated to ∇ is zero

Proof. Let ∇R be the Levi-Civita connection of the manifold (R3, g = gH ⊕ gV ) and
{Y1, Y2, Z} the adapted frame deőned above, which, we recall is g-orthonormal.
Applying Koszul formula for the orthonormal frame, i, j, k ∈ {1, 2}

2g(∇R
Yi
Yj, Yk) = g([Yi, Yj], Yk)− g([Yj, Yk], Yi) + g([Yk, Yi], Yj)

and substituting [Yi, Yj] =
∑︁

k c
k
ijYk+dA(Xi, Xj)Z = BijZ one get for i, j, k ∈ {1, 2}

2g(∇R
Yi
Yj, Yk) = 0

because Yk and Z are g-orthogonal.
So ∇Yi

Yj = πH(∇
R
Yi
Yj) = 0.
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The Ricci curvature can be compute starting by the Riemannian curvature that is
for P,K,L ∈ X(R3)

R(P,K)L = [∇X ,∇K ]L−∇[X,K]L

Naturally if any of the vector őelds is vertical the curvature vanishes. Focusing only
in the case of horizontal vector őelds we get for i, j, k ∈ {1, 2}

R(Yi, Yj)Yk = [∇Yi
,∇Yj

]Yk −∇[Yi,Yj ]Yk = ∇BijZYk = Bij∇ZYk = 0

The curvature is the zero tensor and its trace, i.e. the Ricci curvature, is of course
zero.

We can try to compute under which condition the manifold is of Yang-Mills
type, but before we need to compute the covariant derivative of the torsion. Let
T̃ ∈ Γ∞(T ∗M⊗2 ⊗ TM) be the torsion tensor őeld such that

T̃ (X, Y, df) = df(T (X, Y )) = T (X, Y )(f)

then it holds

T̃ (Yi, Yj, df) = −BijZ(f) = −B ⊗ Z(Yi, Yj, df)

that means

T̃ = −B ⊗ Z

then by the deőnition of covariant derivative

∇Yi
T̃ = −∇Yi

B ⊗ Z − B ⊗∇Yi
Z = −∇Yi

B ⊗ Z

this means that we only care about the covariant derivative of the magnetic őeld.
So let K be an horizontal vector őeld

∑︂

i

(∇Yi
B)(Yi, K) =

∑︂

i

Yi(B(Yi, K))− B(∇Yi
Yi, K)− B(Yi,∇Yi

K)

=
∑︂

ij

Yi(K
jB(Yi, Yj))− B(Yi, Yi(K

j)Yj +Kj∇Yi
Yj)

=
∑︂

ij

Yi(K
j)B(Yi, Yj) +KjYi(B(Yi, Yj))− Yi(K

j)B(Yi, Yj)

=
∑︂

ij

KjYi(Bij)

In order to the initial sum be zero for any choice of horizontal vector őeld K, it
must holds for any j ∈ {1, 2} ∑︂

i

Yi(Bij) = 0

that in our setting becomes

Y1(h) = 0 Y2(h) = 0
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so the manifold is of Yang-Mills type if the magnetic őeld h is a constant different
from zero, otherwise the distribution is not bracket generating.
The condition T (f) ≤ kgH(∇Hf,∇Hf) get simpliőed in

h2gH(∇Hf,∇Hf) ≤ kgH(∇Hf,∇Hf)

Finally the equivalence theorem becomes

Theorem 5.12. For (R3, H, gH) sub-Riemannian manifold from the magnetic őeld
h ∈ R \ {0} that is complete with respect to the Carnot-Carathéodory distance it
holds the following equivalence:

CD(ρ1, ρ2, k, 2) ⇐⇒ (
1

2
h2 − ρ2)Z(f)

2 ≥ ρ1gH(∇Hf,∇Hf) ∀f ∈ C∞(R3)

for constants ρ1 ∈ R, ρ2 > 0, k ≥ h2.

So for example we deduce that the generalized curvature-dimension inequality
CD(ρ1, ρ2, k, 2) for this manifold holds when ρ1 = 0, 0 ≤ ρ2 ≤

1
2
h2 and k ≥ h2.
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