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Abstract

This work develops a study of machine learning applied to positioning tech-
niques based on times of arrival . We introduce a probabilistic framework to
model the times of arrival and the user position, and we use this framework
to empower a learning algorithm that learns information about the channel
bias.

Two variations of the algorithm are presented: the first uses a single
channel bias distribution for each base station, the other utilizes multiple
ones, dividing the cell into regions and assigning to each of them a different
distribution.

A simulator was developed to test the algorithm, showing good improve-
ments in the positioning precision. The algorithm and the simulator are
modelled in the context of an LTE network, but they can be adapted to any
wireless system that employs arrival times.
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Chapter 1

Introduction

Today positioning based on Global navigation satellite systems (GNSS) is

the most precise available in outdoor enviornment. However its performance

degrades in urban area, and it is often convinient to switch if off to save bat-

tery of the mobile devices. Mobile network positioning, although less precise

than GNSS, is an energy-efficient solution that comes with its advantages.

It can be used for example to automatically find the presence of coverage

holes by the network provider, minimizing the need of drive tests [1], [2].

Mobile positions are also used in emergency situations [3], in the USA when

an user call the 911 the network operator passes his position to the nearest

Public Safety Answering Point. Additionally mobile positioning can be used

to enhance satellite positioning [4], [5] or for location based services (LBS)

[6].

Time-of-Arrival (ToA) positioning techniques are used both in (GNSS)

and in LTE cellular networks. In GNSS such as GPS and GLONASS, satel-

lites are precisily synchronized and simultaneously transmit signals known

to the receivers. The receiver (not synchronized with the transimetters) is

able to estimate the ToA for each signal by using a sliding correlator for each

transmitting satellite. The ToA estimate is infact obtained as the maximum

value of the correlator output. With each ToA estimate the receiver is then

able to perform a multilateration calculation estimating its own position [7].

The same principle is used for Observed Time Difference Of Arrival (OT-
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CHAPTER 1. INTRODUCTION

DOA) in LTE networks where the transmitters are synchronized terrestrial

base stations [8].

Satellite systems and cellular network share characteristics such as carrier

frequency (order of gigaHertz), signal bandwidth (order of megaHertz) and

transmitter power (order of tens of Watts). However the main differences that

come into play in ToA positioning are the distance between transmitters and

receivers and the different Line-of-Sight (LOS) conditions. In particoular the

LOS can often be treated as a clear line of sight channel in satellite systems,

and the range distance can be calculated directly using the estimated ToA

and the speed of light. This is not true in cellular systems where the urban

environment and the relatively low position of base stations often create a

Non-Line-of-Sight (NLOS) environment.

In cellular networks the majority of the signal energy can arrive through a

NLOS reflection that bounces on buildings and obstacles [8]. As a result the

signal can travel up to a hundred of meters more than an hypothetical LOS

signal, causing the measured ToA to have a bias of hundreds of nanoseconds

(the signal moves at the speed of light). Furthermore when multipath fading

occurs in these channels, unresolvable multipath can also result in a positive

bias in the ToA [9]. In particular given the bandwidth W of the signal the

multipath componets cannot be resolved if the delays between paths is less

than 1/W , in this scenario the correlator create a blurred peak that makes the

LOS component indistinguishable from the next multipath component. In

ultrawide bandwidth (UWB) systems delays as small as nanoseconds can be

resolved [10], but in cellular networks the multipath bias can reach the order

of microseconds due to the smaller bandwidth (megaHertz). This bias in the

ToA measurement due to the NLOS reflections and to unresolvable multipath

fading is reffered to as channel bias. The channel bias is the main obstacle

that any ToA-based positioning technique must face in cellular networks [11].

In this work we present a positioning technique for LTE systems where

the mobile network can improve the accuracy of the position by estimating

the channel bias distribution for each base station. With the creation of a

probabilistic framework it is possible to learn information about the channel

bias and use its distribution to improve the position estimation.
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1.1. THESIS OUTLINE

1.1 Thesis outline

Chapter 2 presents the general framework of ToA-based positioning in LTE

networks. We then present the system model, the distribution used to model

the channel bias, the position estimator and the learning algorithm. Chapter

3 present the simulator that was implemented to test the algorithm aswell as

the adopted assumptions and the parameters choosen for the simulations. In

Chapter 4 we present the results while Chapter 5 contains conclusions and

possible extensions to this approach.
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Chapter 2

Framework

This chapter presents all the information about how the system model is cre-

ated. First we introduce LTE positioning, describing the positioning prob-

lem and the methods used in current mobile networks, then we introduce our

model.

The system model uses the same framework used in LTE OTDOA but

goes a step further by using ToA samples not only to estimate the position

but also to learn information about the channel bias. As in all learning algo-

rithms the tradeoff is the necessity of a training time. However the strength

of the algorithm is that it does not need a fixed training set of data, instead,

it separates the data available in ToA batches and processes them in consec-

utive iterations. When sufficient ToA samples are gathered a new iteration is

performed, improving the estimation of the channel bias distribution. More-

over, once the parameters of the channel bias distribution are sufficiently

valid, the learning can be suspended, allowing the location server to perform

the position estimation using directly the learned parameters.

Since real datasets of LTE networks are usually protected by intellec-

tual property rights, we present some realistic assumptions that have been

adopted to create a simulator.

Finnaly it is important to note that while in this work we consider the

case of an LTE network, the approach used can be easily adapted to any

kind of wireless network.
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CHAPTER 2. FRAMEWORK

2.1 LTE positioning

In mobile networks Reference Signal (RS) are used in the down-link to esti-

mate the radio channel characteristics. These signals, transmitted at specific

times and frequencies, can be used for positioning purposes. In LTE the

Cell-specific Reference Signal (CRS) had a poor Signal to Interfirence plus

Noise Ratio (SINR) [12]. Therefore a new reference signal called Position-

ing Reference Signal (PRS) was defined in the release of the standard [13]

specifically for OTDOA positioning.

PRS are designed to increase the reference signal power while reducing

the interference of other BS through isolation. PRS are transmitted in pre-

defined bandwith and configuration parameters: subframe offset (∆PRS),

periodicity (TPRS), duration (NPRS), muting pattern and muting sequence

periodicity (TREP ). The period TPRS between positioning occasions can be

160, 320, 640, 1280 subframes, and the number of consecutive subframes

NPRS during a positioning occasion can be 1, 2, 4 or 6 subframes. An example

is presented in figure 2.1.

Fig. 2.1: Example of PRS transmissions (Source: [14])

Isolation to improve OTDOA performance can be achived in 3 domains:

• Code domain: each cell transmit a different PRS sequence, orthogonal
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2.1. LTE POSITIONING

to other PRS sequences in the code domain.

• Frequency domain: six possible frequency offsets are defined in the PRS

bandwidth. If two PRS collide in the frequency domain, orthogonal

sequences grant isolation.

• Time domain: time based blanking (muting), can also be used to pre-

vent collisions in the frequency domain.

PRS are configurable for each cell and a good Physical Cell Identity (PCI)

planning distributes the frequencies shift in a smart way; in this way it is

avoided the risk of having the same frequency in adjacent cells, or pointing at

each other. An example is presented in figure 2.2, where each color represents

a different frequency.

Fig. 2.2: PCI planning for PRS (Source: [14]).

The UE is informed about the PRS configurations through the LTE Po-

sitioning Protocol (LPP). The LPP provides the necessary communication
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CHAPTER 2. FRAMEWORK

between the Location Server (LS) and the UE, aswell as position requests

when a new measurement is necessary. A typical positioning routine is pre-

sented in figure 2.3.

Fig. 2.3: Example of LPP Positioning Procedure (Source: [14]).

2.1.1 OTDOA

Observed Time Difference Of Arrival (OTDOA) is the most precise position-

ing technique in LTE [15]. It is a multilateration method in which the UE

measures at least three ToA of PRS simultaneously transmitted by nearby

BS [16], [17]. The UE select a ToA of a reference BS and subtract the other

ToAs from it. For example with 3 BS and their ToAs, t1, t2, t3, the ob-

tained Time Differences Of Arrival (TDOA) are TDOA2,1 = (t2 − t1) and

TDOA3,1 = (t3 − t1). In LTE this TDOA is also called Reference Signal

Time Difference (RSTD). As shown in the next section each of these time
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2.1. LTE POSITIONING

difference corresponds to a hyperbola of possible user positions [18]. Intere-

secting two hyperbolas we obtain the estimated user position, as illustrated

in figure 2.4.

Fig. 2.4: OTDOA multilateration (Source: [14]).

Since the ToA measurements have an intrinsic error the intersection define

an area of possible positions rather than a single point. The error is caused

by many factors: multipath fading, unresolvable multipath, synchronization

error of the BS or simply ToA estimation error. The main parameter that

influences the precision of the measurement is the bandwith of the signal W ,

greater bandwiths come with more precise measurments since the multipath

components can be resolved with a precision of 1/W seconds. PRS are

usually defined between 2.5 MHz and 10 MHz and the RSTD error can go

up to hundreds of nanoseconds, leading to a position error that can be as

high as a hundred meters [8], [14].

11
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Other positioning techniques worth mentioning are: angle-based position-

ing [19], [20]; Received Signal Strength (RSS) [21], [22]; Round Trip Time

(RTT) positioning [23], [24]; Enhanced Cell ID [25].

2.2 System model

The system model considers a wireless system with B transmitters (BS)

which are time synchronized, they transmit simultaneously mutually ortog-

onal PRS. The receiver UE uses a sliding correlator matched to each signal

waveform to estimates ToA from the corresponding BS. If the BS are not

synchronized it is possible to find the Relative Time Difference (RTD) by

time measurments at known positions [26]. There are not other stringent

requirements for the network itself.

The receiver is not synchronized with the transmitters, for this reason

the transmit time τ of the base stations cannot be known in advance and

must be accounted in the equation. In the ideal case of LOS transmission

and perfect estimation the ToA for each base station b ∈ {1...B} would be

equal to:

tb ideal =
||x− xb||

c
+ τ. (2.1)

• x = [x1, x2] is the unknown two-dimensional vector giving the position

of the receiver

• xb = [xb1, xb2] is the known two-dimensional vector giving the position

of base station b

• c is the known speed of light

• τ is the unknown transmit time, assumed to be the same for each base

station.

However in a real case scenario we have to account other factors. Hence

the ToA estimate for each base station b ∈ {1...B} is equal to:
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2.2. SYSTEM MODEL

tb =
||x− xb||

c
+ τ + γb + nb. (2.2)

• γb is the random variable that describes the channel bias. As explained

in the previous chapter non line-of-sight transmission and unresolvable

multipath create an unknown channel bias γb, which is modelled as

a random variable. It holds γb > 0, in fact the channel bias can be

thought of as a delay of the line-of-sight transmission.

• nb an additional unknown random variable that accounts for the resid-

ual estimation error and the base stations synchronization error.

The localization problem consists in estimating the device position vector

x and the transmit time τ given the positions of B base stations xb and the

ToA tb from each of them (b = 1, ..., B). As shown in the next sections the

learning algorithm takes care of estimating the distribution of γb and nb,

therefore we need at least three ToA measurements to solve for the three

unknowns x1, x2 and τ , hence it must be B > 3. It is possible to include

height using three-dimensional position vectors, in this case the requirement

becomes B > 4.

In OTDOA the transmit time τ is eliminated from the equations through

the difference between the ToAs. Given a reference ToA t1 the TDOA be-

comes:

TDOAi,1 = ti − t1 =
||x− xi||

c
− ||x− x1||

c
+ (τi − τ1) + (γi − γ1) + (ni − n1),

(2.3)

where the transmit time offset τi − τ1 is zero if the network is correctly

synchronized.

Here we opted for ToA instead of TDOA because this approach simplifies

the mathematical modelling of the algorithm. As shown in [27] these ap-

proachs are equivalent in terms of location estimate variance for LOS trans-

mission.
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2.2.1 Channel bias probability distribution p(γb)

In the general case the random variable γb that describes the channel bias

has an unknown probability distribution. The channel bias is given by how

the transmitted signals are reflected on obstacles like buildings and other ob-

jects in the enviornment. For this reason it is impossible to know in advance

the distribution that γb will have in a certain region and in particoular the

distribution can change from one area to another. In literature there are

many solutions to approximate the unknown distribution of γb, for exam-

ple using uniform distribution [28], exponential distribution [29] or gaussian

distributions [30] [31].

In this work we use a gaussian mixture to describe the probability distri-

bution p(γb), following the approach presented in [8]. This is advantageous

compared to other approaches because a gaussian mixture makes it possi-

ble to more accurately describe the real distribution and most importantly

because it will better adapt to different scenarios.

A gaussian mixture of Rb gaussians is used for each base station b, each

component i of the gaussian mixture has weight πib, mean µib and variance

σ̃2
ib. It holds

∑Rb
i=1 πib = 1 as normalization condition. The PDF of the

Gaussian Mixture is hence expressed as

p(γb) =

Rb∑
i=1

πib

σ̃ib
√

2π
e

[
−1

2σ̃2
ib

(
γb−µib

)2]
. (2.4)

The learning algorithm learns the parameters of the gaussian mixture

starting from an initial set of parameters. It is important to note that each

base station will have its own channel bias distribution p(γb) and that these

distributions can be different from one another.

2.2.2 Probability distribution of the error nb

The residual error nb (b = 1, ..., B) is the sum of the estimation error and

the BS synchronization error. These two error can be characterized by two

zero-mean Gaussian random variables with unknown variance σ2
syn and σ2

est.
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2.2. SYSTEM MODEL

Since these two errors are independet nb is also a zero-mean Gaussian random

variable with variance σ2
b = σ2

syn + σ2
est and PDF

p(nb) =
1

σb
√

2π
e

[
−1

2σ2
b

n2
b

]
. (2.5)

2.2.3 Likelihood distribution p(t|x, τ)

Using p(nb) the conditional likelihood of tb can be written as:

p(tb|x, τ, γb) =
1

σb
√

2π
e

[
−1

2σ2
b

(
tb−
||x− xb||

c
−τ−γb

)2]
. (2.6)

Marginalizing over the probability distribution p(γb) we obtain:

p(tb|x, τ) =

∫
p(tb|x, τ, γb)p(γb)dγb

=

Rb∑
i=1

πib

σib
√

2π
e

[
−1

2σ2
ib

(
tb−
||x− xb||

c
−τ−µib

)2]
,

(2.7)

where we used a new variable σ2
ib that represents the variance of the corre-

sponding gaussian mixture component σ̃2
ib plus the variance of the estimation

error, σ2
b :

σ2
ib = σ̃2

ib + σ2
b . (2.8)

Since the ToA measurements are independent it is possible to write the joint

likelihood distribution of the ToAs as:
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CHAPTER 2. FRAMEWORK

p(t|x, τ) =
B∏
b=1

p(tb|x, τ), (2.9)

where t is a vector containing the B ToAs, t = [t1, ..., tB].

2.2.4 Prior p(x, τ)

For each BS we define the prior pb(x, τ) proportional to the reciprocal of the

range ||x− xb||. In this way positions farther away from the BS are weighted

less. The overall prior is equal to the product of the priors of each base:

p(x, τ) = K
B∏
b=1

pb(x, τ) = K
B∏
b=1

1

(||x− xb||+ ε)
. (2.10)

Here ε is a parameter to prevent numerical instability, it must be true that

||x− xb|| � ε, and ε > 0; K is a normalization parameter.

2.2.5 Position MAP estimator

A Maximum a Posteriori (MAP) estimator is used for the position vector

x and transmit time τ . Using Bayesan inference the MAP probability is

proportional to the product of the likelihood p(t|x, τ) and the prior p(x, τ).

p(x, τ |t) ∝ p(t|x, τ)p(x, τ). (2.11)

The estimate (x̂, τ̂) is obtained as:

(x̂, τ̂) = argmax
x,τ

p(x, τ |t) = argmax
x,τ

p(t|x, τ)p(x, τ). (2.12)

Using the equations obtained in the previous sections we get:
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(x̂, τ̂) = argmax
x,τ

B∏
b=1

Rb∑
i=1

πib

(||x− xb||+ ε)σib
√

2π
e

[
−1

2σ2
ib

(
tb−
||x− xb||

c
−τ−µib

)2]
.

(2.13)

Figure 2.5 shows the typical shape of the position posterior distribution for

a single base station. Figure 2.6 presents a countour graph of three differ-

ent posterior distributions, each belonging to a different base stations; the

position MAP probability is the product of those distributions.

Fig. 2.5: Portion of the position posterior distribution for a single BS.
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Fig. 2.6: Countour graph of three posterior distributions.

2.3 Learning algorithm for the channel bias

distribution

The learning algorithm takes care of learning the parameters of the channel

bias probability distributions p(γb). The algorithm uses K iterations, each

iteration requires a set of N ToA measurements for each of the B base sta-

tions. At iteration k the parameters of p(γk,b) (b = 1, ..., B) are πib,k, µib,k

and σ2
ib,k (i = 1, ..., Rb). We group these parameters into a vector vb,k and

these vectors into a matrix Vk = [v1,k, ..., vB,k]. The idea behind the algo-

rithm is to use the parameters Vk to estimate the position (x̂, τ̂), and then

use this position to update the parameters Vk+1 which will be used in the

next iteration.
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2.3. LEARNING ALGORITHM FOR THE CHANNEL BIAS
DISTRIBUTION

Fig. 2.7: Scheme of the MAP estimation and learning algorithm.

LEARNING ALGORITHM

At every iteration k the following procedure is repeated for each base

station b using the parameters from Vk:

• For each ToA measurement vector tn (n = 1, ..., N) estimate the loca-

tion and transmit time without using the measurements from base b

(to prevent instabilities):

(x̂¬bk,n, τ̂
¬b
k,n) = argmax

x,τ

B∏
j=1,j 6=b

p(tj,n|x, τ)p(x, τ). (2.14)

• Compute the channel bias γn,k,b (n = 1, ..., N), using (x̂¬bk,n, τ̂
¬b
k,n) and

(2.2) as if the position estimates were the true location:

γn,k,b = tb,n −
||x̂¬bk,n − xb||

c
− τ̂¬bk,n. (2.15)

• Use the N measurements γn,k,b to update the parameters for the next

iteration.

[γ1,k,b, ...., γN,k,b]→ vb,k+1. (2.16)
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This update is a clustering problem for Gaussian Mixtures and can be

done in different ways. Here we opted for Expectation Maximization.

Other options are k-means clustering [32], or dirichlet processes [33].

It is important to note that since the position estimation is done with a

leave-out procedure that excludes b the minimum number of base stations

must be increased by 1. Hence it is required B > 4 for two-dimensional

position vectors and B > 5 for three-dimensional vectors.

2.3.1 Expectation maximization

Given a set of channel bias samples γn (n = 1, ..., N) the clustering problem

consists in finding the Rb gaussians that better fit the distribution of the

samples. Which means finding the weights πi, means µi and variances σ2
i of

this Gaussian Mixture (i = 1, ..., Rb), for simplicity we indicate this group of

parameters as v.

Each γn is treated as an observation from one of the gaussian mixture

components. We define a label z = (z1, ...zRb) for each observation; z is a

vector of Rb binary indicators that are mutually exclusive (only one zi is

equal to 1 and the other are equal to 0). For each sample γn this indicator

represents the identity of the gaussian mixture component that generated it.

The Gaussian Mixture weights can in fact be written as πi = p(zi). If these

indicators are known then it is easy to compute the parameters v using the

classic maximum likelihood estimation for each of the gaussian component.

Since z is not know, the goal is estimating the correct one for each γn. The

Expectation Maximization algorithm solve this problem by first estimating

the probability of the indicators zi and the using this probability to calculate

new parameters values for v [34].

We define the membership weight of the nth sample as:

wni = p(zni = 1|γn, v) =
pi(γn|zi, vi)πi∑Rb

m=1 pm(γn|zm, vm)πm
, (2.17)

here pi(γn|zi, vi)πi is the probability density for the ith gaussian.
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2.4. RANGE-AWARE LEARNING ALGORITHM

The EM algorithm is an iterative algorithm that updates the parameters

v untill when convergence is detected. It can be divided in two steps:

• Compute wni for all data points γn and for all mixture components

i = 1, ..., Rb. This gives an N × Rb matrix of membership weights

where each row sum to 1 (because
∑Rb

i=1wni = 1).

• Use the membership weights and the data to calculate new parameter

values. We define Ni =
∑N

n=1wni as the sum of the membership weights

for the ith component, this is the effective number of samples assigned

to component i. For each i the updated parameters are:

– πi,new =
Ni

N
,

– µi,new =
( 1

Ni

)∑N
n=1wniγn

– σ2
i,new =

( 1

Ni

)∑N
n=1wni(γn − µi,new)2

2.4 Range-Aware learning algorithm

It is possible to further expand the model by using multiple channel bias

distributions for each base station. In a real enviornment the channel bias

can change from one region to another due to many factors. This can be

taken into account defining regions within the cell and assigning a channel

bias distribution to each of such regions. Theoretically there is no limit to

the number of regions that can be used or to their shapes. However to avoid

overfitting we opted for three circular regions R1b, R2b, R3b defined by two

radius r1 and r2 for each BS b. These circles are defined using the BS as

center of the regions. Figure 2.8 shows an example for BS 1.

At iteration k each base station has three channel bias distributions:

p(γk,b)|R1 for R1, p(γk,b)|R2 for R2 and p(γk,b)|R3 for R3. Consequently

each BS has three parameter vectors vb,k,R1, vb,k,R2, vb,k,R3 with the parame-

ters of the corresponding distribution.
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Fig. 2.8: Example of 3 regions for BS 1.

RANGE-AWARE LEARNING ALGORITHM (RALA)

At every iteration k the following procedure is repeated for each base

station b:

• For each ToA measurement vector tn (n = 1, ..., N) estimate a pre-

liminary position x̂p using the MAP estimation of the normal learning

algorithm or TDOA positioning.

• Find which region contains x̂p for each BS b:

– if ||x̂p − xb|| < r1⇒ x̂p ∈ R1b.

– else if ||x̂p − xb|| < r2⇒ x̂p ∈ R2b.

– else x̂p ∈ R3b.

22



2.4. RANGE-AWARE LEARNING ALGORITHM

• For each BS b select the correct parameters vector vb,k,Ri, knowing the

region from the previous step.

• perform a MAP position estimation again, this time using the selected

parameter vectors vb,k,Ri. The obtained x̂n is the position estimate of

the Range-Aware algorithm for the nth time sample.

• For each BS b and for each region Ri update the parameters of vb,k,Ri

like in the learning algorithm. This time using only the positions x̂n

that belong to Ri.
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Chapter 3

Simulation setup

LTE/4G datasets are not easily accessible since they can contain sensible

information for the network operators. To test the performance of the al-

gorithm we created a simulator that first generates ToAs, and then run the

positioning algorithm to estimate the position and to learn the distribution

of the channel bias.

The structure of the simulator is presented in figure 3.1. The data generation

requires only the position of the BS. A total of NT random users position

Uxy are selected within the cell, for each of them B ToA are generated (one

from each BS), these ToA samples are created deducing a realistic model for

the channel bias. The obtained matrix MToA of size B × NT is passed to

the positioning algorithm, togheter with the matrix Bxy of the BS positions.

The positioning algorithm uses MToA to perform the learning and the MAP

estimation. The learning does not require to know the true user positions

Uxy, nor the model that generated the ToA. In fact the MAP estimate x̂ is

enough to correctly perform expectation maximization on the channel bias

distribution.

3.1 Channel bias samples

We consider a channel with h clusters, where the ith cluster arrives with a

delay γi, for i = 1, . . . , h − 1 with respect to the first cluster, for which we
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CHAPTER 3. SIMULATION SETUP

Fig. 3.1: Scheme of the simulator.

set γ0 = 0. Each cluster consists of a random number of rays, which arrive

with random phases but very close delay. Therefore, assuming a Rayleigh

fading model, the aggregate power of the ith cluster can be modelled as an

exponential random variable Pi with mean P̄i [35]. A typical power delay

profile is exponential with parameter α, so that the average received power

of the clusters can be expressed as P̄i = P̄0 exp(−αγi), i = 0, . . . , h− 1.

Now, the channel bias γ will take values in the set {γ0, γ1, . . . , γh−1}, with

γ = γj if the power of the jth cluster is larger than that of the other clusters.

Denoting by pγ(j) = Pr[γ = γj] we hence have

pγ(j) =
∏
i 6=j

Pr[Pi ≤ Pj] =

∫ ∞
0

∏
i 6=j

Pr[Pi ≤ aP̄0e
−αγj ]e−ada (3.1)

=

∫ ∞
0

∏
i 6=j

(
1− e−ae

−α(γj−γi)
)
e−ada (3.2)

A simplified model may be obtained by approximating (3.2) with

p̃γ(j) = F Pr[Pj ≤ P0] = F

∫ ∞
0

(
1− e−ae

−α(γj−γ0)
)
e−ada (3.3)

= F

(
1−

∫ ∞
0

e−a(1+e
−α(γj−γ0))da

)
=

F

eα(γj−γ0) + 1
(3.4)

where F is a normalization constant.
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3.1. CHANNEL BIAS SAMPLES

Considering h = 20 clusters uniformly distributed in the set [0, γMAX ],

with parameters α = 12×106 and γMAX = 500 ns, by using the approximate

expression given by (3.4), we get the PDF in figure 3.2. The parameters

were choosen respecting the location uncertainties presented by the Technical

Specification Group for Radio Access Network in [26] (a channel bias of 500

ns corresponds to a position error of 150 meters in the worst case scanario).

Fig. 3.2: p̃γ(j) used to generate channel bias samples (α = 12× 106).

We sample the channel bias PDF to generate ToA using the know

distance between the user position Uxy and the BS. For the sample n

(n = 1, ..., NT ) and BS b the ToA is:

tb,n =
||Uxy|n − xb||

c
+ γb,n. (3.5)
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3.2 Network geometry

To test the learning algorithm and his accuracy we consider a network with

4 base stations at the vertices of a square of side s = 1000m. The user

positions are selected randomly within this square as in figure 3.3.

Fig. 3.3: Example of 200 random UE positions with 4 BS at the corner of a
square area
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3.3. RANGE-AWARE ALGORITHM SIMULATION PARAMETERS

3.3 Range-Aware algorithm simulation param-

eters

To test the Range-Aware algorithm we suppose that the channel bias is prone

to be bigger as the distance from the BS increases. This is obtained creating

a function that defines the parameter α over the range of possible distances.

This is equivalent to say that as the distance of the user from the BS in-

crease, so increases the probability of having a NLOS transmission (with

LOS channels that become obstructed). In more general terms this means

that the probability of receiving the signal with a bigger delay increases over

distance. The channel bias behaves like this in cities with tall buildings that

bounce the signal, a worst-case scenario for positioning algorithms.

We used a polynomial function of order two to define the relation between α

and the user distance ||xb − x||, remembering that a lower α corresponds to

a higher probability of a big channel bias:

α = f(||xb − x||) = α1 + α2

(dMAX − ||xb − x||
dMAX

)2
. (3.6)

In this way we let α vary from:

• α = α1 when ||xb − x|| = dMAX

• α = α1 + α2 when ||xb − x|| = 0.

We define α1 = 4 × 106 and α2 = 28 × 106 and the maximum distance

allowed in the simulation to dMAX = 1500m. Figure 3.4 presents the function

f(||xb − x||). Figure 3.5 presents p̃γ(j) when ||xb − x|| = dMAX , and figure

3.6 when ||xb − x|| = 0. Finally figure 3.7 presents an example of channel

bias samples generated for 1000 random user positions.

3.3.1 Regions radius

We set r1 = 500m and r2 = 900m, obtaining the regions in figure 3.8.
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Fig. 3.4: α as a function of ||xb − x||
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3.3. RANGE-AWARE ALGORITHM SIMULATION PARAMETERS

Fig. 3.5: p̃γ(j), with α = 4× 106

Fig. 3.6: p̃γ(j), with α = 32× 106
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Fig. 3.7: Channel bias samples for base station 1 in 1000 random positions.
Darker colors represent bigger channel bias.
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Fig. 3.8: Regions of the RA Learning Algorithm
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Chapter 4

Results

The simulator was used to collect a variety of results, studying different

perfomance metrics of the algorithm. In particular we investigated:

• The improvement of the performance when p(γb) is trimmed for nega-

tive values, and the convergence of the algorithm in both cases.

• The clustering of the channel bias gaussian mixture for different val-

ues of Rb (number of components of the gaussian mixture) and the

consequent change in perfomances.

• The comparison with a TDOA direct position estimation that uses the

three nearest BS.

• The performance of the Range-Aware learning algorithm compared to

the normal one.

The size of each iteration was 1000 samples and to test the convergence

we used a total of 8000 samples (8 iterations). The initial parameters of the

Gaussian Mixtures are µib = 50ns and σib = 10ns for each component i, with

weights uniformely divided, πib = 1/Rb.
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4.1 Trimmed p(γb)

When generating data, and in real measurements, the channel bias is always

greater than zero. In fact a negative channel bias could be obtained only with

a signal moving faster than the speed of light. This means that the perceived

ToA is always over-estimated and never under-estimated. The same is not

true for the estimated user position and the distance from the base stations,

which can be greater or smaller than the true distance. Since the learning

algorithm uses the estimated user position to reverse engineer the channel

bias distribution it is possible, and in fact it often happens, that the channel

bias probability distribution has positive values for negative channel bias.

This can be seen for example in figure 4.1. Since we know that these values

represent a case which is physically impossible, we can optimize the algorithm

by trimming the channel bias distribution p(γb). To do so we multiply it for

the unit step function 1(γb) and we renormalize it. An example is presented

in figure 4.2.

Figure 4.3 compares the CDF of the position error for the two versions of

the algorithm. Figures 4.4, 4.5 present the position error mean and standard

deviation at each iteration when p(γb) is not trimmed. While figures 4.6,

4.7 present these results with a trimmed p(γb). Since this adjustment brings

massive improvements to the algorithm we have used it for the rest of the

simulations. We keep referring to the trimmed distribution as p(γb) because

this adjustment is done only before each MAP estimate and the rest of the

algorithm remains unchanged.

36
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Fig. 4.1: p(γb) and γ samples frequency, Rb = 3.
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Fig. 4.2: Trimmed p(γb), Rb = 3.
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Fig. 4.3: CDF comparison between a trimmed and non-trimmed p(γb).
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Fig. 4.4: Mean position error at each iteration. Non-trimmed p(γb).

Fig. 4.5: Position error standard deviation at each iteration. Non-trimmed
p(γb).
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Fig. 4.6: Mean position error at each iteration. Trimmed p(γb).

Fig. 4.7: Position error standard deviation at each iteration. Trimmed p(γb).
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4.2 Convergence and Gaussian Mixture com-

ponents

As it is possible to see from figures 4.6 and 4.7 already at the third iteration

the algorithm reachs convergence and stops improving. This can be also

seen in figure 4.8 where the CDF of the fourth iteration overlaps the CDF

of the third one. Table 4.1 presents mean and standard deviation of the

position error at the third iteration, a higher number of componets Rb slightly

improves the precision.

Position error, iteration 3
Rb = 1 Rb = 3 Rb = 5

Error mean [meters] 29.3 28.4 27.5
Error std dev [meters] 34.3 32.6 31.2

Table 4.1: Position error mean and standard deviation at the third iteration
for different values of Rb.

Figures 4.9, 4.10, 4.11 present p(γb) at the third iteration for different

values of Rb (Rb = 1, Rb = 3, Rb = 5). Figure 4.12 presents the CDF at the

first and third iteration for those values of Rb.
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Fig. 4.8: CDF for different iterations, (Rb = 3).
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Fig. 4.9: p(γb) for BS 1 (iteration 3, Rb = 1).
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Fig. 4.10: p(γb) for BS 1 (iteration 3, Rb = 3).
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Fig. 4.11: p(γb) for BS 1 (iteration 3, Rb = 5).
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Fig. 4.12: CDF at first and third iteration for Rb = 1, Rb = 3, Rb = 5.
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4.3 Comparison with TDOA

The learning algorithm was compared with a TDOA multilateration algo-

rithm. TDOA multilateration uses three ToA to generate two hyperbolas

and find the estimated position as intersection of these hyperbolas. Here

TDOA uses only the three smallest ToA, corresponding to the three closest

BS. For an honest comparison the LA was tested with both four and three

BS (in this case all base stations are used for the learning but only three

are used for the position MAP estimate). Figure 4.13 presents the CDF

compared to the LA when 4 BS are used, while figure 4.14 when only 3 BS

are used. Figures 4.15, 4.16 present the comparison of position error mean

and standard deviation over multiple iterations. By iteration three the LA

outperforms the TDOA multilateration (even if only three BS are used). The

mean error and standard deviation at iteration three are presented in table

4.2.

Position error, iteration 3
TDOA LA, 4 BS LA, 3 BS

Error mean [meters] 46.9 28.4 31.4
Error std dev [meters] 44.5 32.6 26.5

Table 4.2: Position error mean and standard deviation for TDOA, LA with
4 BS and LA with 3 BS (iteration 3, Rb = 3).
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Fig. 4.13: CDF of TDOA and Learning Algorithm with 4 BS (Rb = 3).
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Fig. 4.14: CDF of TDOA and Learning Algorithm with 3 BS (Rb = 3).
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Fig. 4.15: Mean position error at each iteration for TDOA and LA (Rb = 3).

Fig. 4.16: Position error standard deviation at each iteration for TDOA and
LA (Rb = 3).
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4.4 Range-Aware algorithm results

The Range-Aware Learning Algorithm (RALA) was compared with the nor-

mal Learning Algorithm (LA). In this simulation we let the parameter α vary

over distance as explained in the previous chapter. The Range-Aware algo-

rithm uses multiple distributions for each base stations. This can be seen in

figures 4.17, 4.18, 4.19 where the distributions change between a region and

another. In this environment the normal algorithm is losing information by

using only one distribution for each base station. Figure 4.20 presents the

CDF of the two algorithms. Table 4.3 presents the position error precision

at iteration three.

Position error, iteration 3
LA RALA

Error mean [meters] 33.0 28.2
Error std dev [meters] 33.9 31.2

Table 4.3: Position error mean and standard deviation for RALA and LA
(iteration 3, Rb = 3).
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Fig. 4.17: p(γb) for BS 1 in Region 1 (iteration 3, Rb = 3).
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Fig. 4.18: p(γb) for BS 1 in Region 2 (iteration 3, Rb = 3).
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Fig. 4.19: p(γb) for BS 1 in Region 3 (iteration 3, Rb = 3).
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Fig. 4.20: CDF of the Range-Aware LA and normal LA.
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conclusion

The simulations proved that the learning algorithm is effective in improving

the position estimation. The mean position error was reduced by 40% in

respect to the TDOA multilateration, reducing the variance at the same

time. The Range-Aware variation proved to be effective if the channel bias

changes over space, reducing the mean position error by an additional 15%

in respect to the normal learning algorithm. The results showed also that

three base stations are enough to obtain good measurements if the learning

is already performed.

One important feature that was found is the fast learning speed, in fact

2000 samples divided in two iterations are enough to reach convergence.

Moreover it is important to remind the fact that a real location server using

this algorithm needs to perform the learning only once in a while, either to

learn the parameters for the first time or to recalibrate them if it is necessary.

The learned parameters can be memorized and then used without the need

to keep track of all the measurments collected during the learning.

5.0.1 Future works

The approach presented in this work can be extended in a plethora of ways

and adapted to many different scenarios. In first place the algorithm, be-

ing based on learning and using little to no assumption about the network,

is prone to adapt to different environments and conditions. Secondly the
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Range-Aware variant opens the way to even more capabilities and possible

extensions. In this work we opted for range-based regions, but it is possible

to define angle-based regions, or even better, a combination of the two. Fur-

thermore it is possible to exploit machine learning even more by letting the

definition of these regions to the algorithm itself. One approach to achieve

this would be by using clustering of the channel bias over space instead of

clustering over time (the one used in this work). This approach can be

adapted to IoT and UWB signals where frequent reflections easily degrade

the position estimation.

Other possible extensions can be done to the probabilistic framework

of the algorithm. Including for example a movement tracking feature and

consequently a position predictor that can be used to weight the next position

estimates.
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Acronyms

BS Base Station.

CSR Cell-specific Reference Signal.

GNSS Global Navigation Satellite System.

LA Learning Algorithm.

LOS Line Of Sight.

LPP LTE Positioning Protocol.

LS Location Server.

LTE Long Term Evolution.

MAP Maximum A Posteriori.

NLOS Non Line Of Sight.

OTDOA Observed Time Difference Of Arrival.

PCI Physical Cell Identity.

PRS Positioning Reference Signal.

RALA Range-Aware Learning Algorithm.

RS Reference Signal.
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Acronyms

RSTD Reference Signal Time Difference.

RTD Relative Time Difference.

SINR Signal To Interference plus Noise Ratio.

TDOA Time Difference Of Arrival.

ToA Time of Arrival.

UE User Equipment.

UWB Ultra Wide Band.
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