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1 Polymer Physics

1.1 Introduction and aim of the thesis

The diffusion of a single monomer immersed in a fluid can be described using Brownian motion
and it is well known that the distribution of its displacements is Gaussian. Instead, as we will
show below, the distribution of a polymer center of mass may follow a sharp peaked, heavy
tailed non-Gaussian distribution. Indeed, one of the current research topics in Polymer Physics
is the Brownian non-Gaussian diffusion and this particular behaviour is modeled in terms of a
microscopic process called polymerization/depolymerization which is mathematically described
using tools provided by the queueing theory.
Distributions with the same anomalous features also appear in another context, financial mar-
kets. In particular a non-Gaussian behaviour is observed in the distribution of assets returns,
that is the logarithm of the assets price variation. Price trends depend on the number of orders
that traders make and they are collected in a list called order book.
Aim of this thesis is to make a link between these two worlds: Polymer Physics and financial
markets dynamics. In particular, queueing theory will be the key tool to reach this scope. In
this section the first world is described.

1.2 The diffusion of single particles: Brownian motion

Before describing polymer center of mass dynamics, it is propedeutic to show the behaviour of
single particles immerse in a fluid.
Starting from a one-dimensional fluid, let n(x, t) and pX(x, t)dx = n(x, t)dx/N be respectively
the local concentration of particles and the probability of finding a particle between x and x+dx
at time t. Due to the random collisions with the molecules of the solvent one can imagine that
gradients in the concentration can act as general forces inducing a matter flow. Fick’s first law
relates this diffusive flow j(x, t) to the gradient of concentration:

j(x, t) = −D0
∂n(x, t)

∂x
, (1)

where D0 is the diffusive constant with the dimension of a length squared divided by time. Now,
as a consequence of the mass conservation, the following continuity equation holds:

∂n(x, t)

∂t
= −∂j(x, t)

∂x
(2)

and putting the expression for the diffusive flow obtained in Eq. (1) in the previous we obtain
the diffusion equation:

∂n(x, t)

∂t
= D0

∂2n(x, t)

∂x2
. (3)

Solving with initial condition pX(x, 0) = n(x, 0)/N ∝ δ(x) one obtains the following Gaussian
distribution for a Brownian particle position:

pX(x, t) =
1√

4πD0t
e
− x2

4D0t (4)

with variance 2D0t.
The Brownian particle position X(t) is then a stochastic process and it can be well described
using the Langevin approach. Let us consider a one-dimensional particle immersed in a fluid
whose viscosity is indicated by η and make the hypothesis that the net force exerted on the
particle at time t by the surrounding fluid molecules can be resolved in two components:
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• a dissipative drag force −ξV (t) where V (t) is the particle velocity at time t and ξ ∝ η/m
is the friction constant;

• a randomly fluctuating force F (t) which follows these assumptions: E[F (t)] = 0 (zero
average), it is temporally uncorrelated, that is E[F (t′)F (t′′)] = Cδ(t′ − t′′), it is assumed
to be statistically independent of V (τ) for all τ < t.

The equations of motion are obtained applying Newton’s second law:{
dX
dt = V (t)
dV
dt = −ξV (t) + F (t)

m − 1
m

dΦ
dx

, (5)

where the Brownian particle mass is m and Φ is an external potential.
Considering an overdumped situation (more rigorously, the Smoluchowski time scale) the pre-
vious becomes:

dX

dt
=

1

ξm
F (t) +

1

m

dΦ

dx
(6)

and ignoring the external field, we can integrate with initial condition X(0) = 0:

X(t) =

∫ t

0

1

ξm
F (τ)dτ . (7)

Applying the hypothesis on F (t):

E[X(t)] =

∫ t

0

1

ξm
E[F (τ)]dτ = 0 ; (8)

E[X(t′)X(t′′)] =

∫ t′

0
dτ ′
∫ t′′

0
dτ ′′

1

ξ2m2
E[F (τ ′)F (τ ′′)] =

=

∫ t′

0
dτ ′
∫ t′′

0
dτ ′′

1

ξ2m2
Cδ(τ ′ − τ ′′) =

=
C

ξ2m2

∫ t′

0
dτ ′
∫ ∞

0
dτ ′′H(t′′ − τ ′′)δ(τ ′ − τ ′′) =

=
C

ξ2m2

∫ ∞

0
dτ ′H(t′ − τ ′)H(t′′ − τ ′) =

C

ξ2m2
t′ ,

(9)

where t′ < t′′ and H is the Heaviside step function. Then:

E[X2(t)]− E[X(t)]2 = E[X2(t)] = 2D0t , (10)

where 2D0 = C/ξ2m2, as expected from Eq. (4).
We can rewrite Eq. (7) as:

X(t) =
√
2D0B(t) , (11)

where B is named Wiener process and it is subjected to the following conditions: B(0) = 0,
E[B(t)] = 0, E[B(t′)B(t′′)] = t′ if t′ < t′′. Ignoring again the external field, Langevin equation
(6) can be rewritten as:

dX(t) =
√
2D0dB(dt) . (12)
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1.3 The diffusion of polymers: Rouse model

Polymers are long chain molecules composed of many repeating subunits called monomers.
Polystyrene is an example of synthetic polymer; proteins and DNA have a natural origin. Poly-
mers have very different chemical-physical properties and behaviours from each other and these
are determined by the characteristics of the monomers and their mutual binding. In the context
of this work we are not interested in local properties but in more general ones emerging from the
fact that polymers are just long chains and from thermodynamic quantities such as the quality
of the solvent in which the polymers are immersed [3].

Figure 1: In this picture we show a polymer: orange beads represent monomers, grey arrows
represent a Cartesian frame of reference and black arrows are the monomers position vectors
Rj .

The conformation of a 3D polymer may be described giving the position vector of its monomers.
If the chain consists of N beads then there are N position vectors R0, R1, . . . , RN−1. and if the
monomers have the same mass, the position of the polymer center of mass RG can be computed
as follow:

RG =
1

N

n−1∑
j=0

Rj. (13)

Rouse model is used in polymer physics to describe the dynamics of an ideal chain moving
through a liquid [2]. In this model the single chain diffusion is due to the Brownian motion of
every single bead composing it. So, every bead is subjected to two forces: a drag one and a
thermally stochastic one. The motion of a bead through the liquid induce a velocity field in
the liquid which will be felt by all the other beads. In the Rouse model, these hydrodynamic
interactions are neglected. Also we assume there are not excluded volume interactions between
the beads and we neglected the interactions between non-consecutive beads: the interaction
between two consecutive beads is represented by an harmonic spring. All the springs of the chain
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are assumed to have the same elasticity constant k which can be estimate from the quadratic
average position of a monomer E [Rj ·Rj ] = b2. In fact, applying equipartition theorem:

E
[
1

2
kR2

j

]
=

1

2
kb2 =

3

2β
→ k =

3

βb2
, (14)

where β = 1/(kBT ), kB is the Boltzmann constant and T is the absolute temperature. Using
this model it is possible to find the diffusion coefficient of the polymer center or mass. The total
force applied to the j−th bead is:

Fj =
3

βb2
(2Rj −Rj−1 −Rj+1) . (15)

Remembering the Langevin equation expressed in the Smoluchowski time scale (Eq. (6)):

dRj

dt
= − 3

βγb2
(2Rj −Rj−1 −Rj+1) + fj , (16)

where γ = mξ and fj = Fj/ξm and applying the same reasoning to the other beads we obtain
the following equations of motion:

dR0
dt = − 3

βγb2
(R0 −R1) + f0

dRj

dt = − 3
βγb2

(2Rj −Rj−1 −Rj+1) + fj 1 ≤ j ≤ N − 2 .
dRn−1

dt = − 3
βγb2

(RN−1 −RN−2) + fN−1

(17)

Now if we calculate the time derivative of the polymer center of mass we obtain:

dRG

dt
=

1

N

N−1∑
j=0

fj . (18)

Integrating:

RG(t) = RG(0) +

∫ t

0
dτ

1

N

∑
j

fj(τ) (19)

and averaging:

E
[
RG(t)−RG(0))2

]
= E

∫ t

0
dτ

∫ t′

0
dτ ′

 1

N

∑
j

fj(τ)

( 1

N

∑
k

fk(τ
′)

) =
6D0

N
t . (20)

This result is crucial: Rouse model states the diffusion coefficient of the polymer center of mass
depends on the size of the polymer:

D(N) =
D0

Nα
, (21)

where α = 1. In other models the parameter α is different. In the Zimm model, in which one
considers hydrodynamic interactions between monomers, one has α = 1/2 while in the reptation
model α = 2 [4]. Using the Wiener process notation, we can state that RG behaves as:

dRG(t) =
√

2D(N)dB(dt) . (22)

In the following, we will consider only one-dimensional polymers.
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1.4 Critical polymers in the mean field limit and birth and death processes

Now we relax the size-fixed hypothesis and study chemostatted polymers immersed in a monomers
bath. In the polymerization process, monomers join the chain and in the depolymerization pro-
cess they leave the polymer chain: this imply the non-constancy of the polymer size. Such
a situation can be well described using the grand canonical ensemble formalism, where the
monomer fugacity z governs the partition function Zgc and the equilibrium distribution p∗N (n).
Let zc be the critical fugacity, g = z/zc and γ the universal entropic exponent. It can be
shown [4] that, close to criticality, the grand canonical partition function and the equilibrium
distribution behave asymptotically as:

Zgc(z) =
∞∑
n=1

(z/zc)
nnγ−1 and p∗N (n) =

(z/zc)
nnγ−1

Zgc(z)
. (23)

In the mean field limit γ → 1 [4] we obtain:

Zgc(z) =
g

1− g
and p∗N (n) = gn−1(1− g) . (24)

The average length and variance of the polymer size are:

E[N ] =
1

1− g
and σ2

N =
g

(1− g)2
. (25)

Here it can be appreciated the meaning of the critical fugacity: g = 1 separates a g < 1 dilute
phase of finite average size and variance from a g > 1 phase of infinite growth. In the limit
g → 1− we have σ2

n = gE[N ]2 ∼ E[N ]2 and this shows that near the critical point non-normal
fluctuations arise.
Another powerful way to describe chemostatted polymers in the mean field limit is thinking
polymers of as queues of monomers. If the symbol AN represents a N -sized chain, it can be
thought the polymer undergoes a chemical reaction like:

AN +A1 ↔ AN+1 .

The mathematical discipline studying such queueing systems is named queueing theory.
All queuing systems can be broken down into individual sub-systems consisting of entities queu-
ing for some activity and they can be thoughts of as customers waiting queueing for service. The
simplest of this systems are single queues, also called waiting lines. Single queues could be also
connected to create a queues network but in this work we are not interested in such complex
systems. As we know queues are a common every-day experience: typical examples might be
waiting for service in banks or supermarkets or waiting for a train or a bus.
The behaviour of a queue can be described by a birth-death process. They are stochastic pro-
cesses in which jumps from a state are only allowed to neighbouring states: a jump to the right
represents birth while a jump to the left represents death.
If N(t) ∈ N∗ is a population size then a birth-death process is a Markow process {N(t), t ≥ 0}
such that in an interval (t, t+∆t) each individual in the population has the probability λ∆t+ o(∆t)
of giving birth to a new individual and the probability µ∆t+ o(∆t) of dying. λ and µ are called
birth rate and death rate respectively and generally they are size-dependent but in the following
we will consider them size independent.
Fixing the ratio λ/µ = g, the state probabilities pN (n, t) of a chemostatted polymer size being
in state n at time t in the mean field limit can be described by the master equation:{

d
dtpN (1, t) = −λpN (1, t) + µpN (2, t)
d
dtpN (n, t) = λpN (n− 1, t) + µpN (n+ 1, t)− (λ+ µ)pN (n, t) n > 1

(26)
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with initial condition n = n0 at time t0 = 0 and size independent birth and death rate [4]. In
particular we can write λ = gµ where µ is determined by the chemistry of the system. In this
case Eq. (26) describes an M/M/1 queue [4] and represents the queue length in a system having
a single server where arrivals are determined by a Poisson process and job service times have an
exponential distribution.

Figure 2: A schematic illustration of a M/M/1 process

It is interesting to solve these equations in the stationary case, that is when all the derivatives
in Eq. (26) are zero (d(pN (n, t))/dt = 0 ∀n). Let us define p∗N (n) the stationary probability
function. Starting from n = 1 we obtain the following identity:

0 = −λp∗N (1) + µp∗N (2) (27)

and then

p∗N (2) =
λ

µ
p∗N (1) = gp∗N (1) . (28)

From the second equation of the system Eq. (26) we have:

0 = λp∗N (1) + µp∗N (3)− (λ+ µ)p∗N (2) (29)

and then:

p∗N (3) =

(
1 +

λ

µ

)
p∗N (2)− λ

µ
p∗N (1) = g2p∗N (1) . (30)

By induction it is easy to obtain:

p∗N (n) = gn−1p∗N (1) . (31)

Imposing the normalization condition
∑

n p
∗
N (n) = 1 we obtain the following condition:

∞∑
n=1

gn−1p∗N (1) = 1 . (32)

If g < 1, remembering the geometric series properties we obtain as expected the same stationary
solution of Eq. (24).
There exists a time-dependent solution of Eq. (26) [4]:

pN (n, t) = e−(λ+µ)t

g n−n0−2
2 In−n0−2(at) + g

n−n0−3
2 In+n0−1(at) + (1− g)gn−1

∞∑
j=n+n0

g−j/2Ij(at)

 ,

(33)
where a = 2

√
λµ and In is the modified Bessel function of the first kind. It can be shown [4]

that, in the limit t → +∞, this solution reaches the stationary solution p∗N (n) computed before.
This is shown in the following graph. From Eq. (33) it is possible [4] to define the time scale τ
of the exponential decay of the auto-correlation coefficient r(t) ≈ e−t/τ :

τ =
1 + g

(1− g)2µ
. (34)
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If t ≪ τ we have pN (n, t) ∼ δn,n0 and if t ≫ τ we have pN (n, t) ∼ p∗N (n) [4].

Figure 3: In this figure we represent the solutions of Eq. (26) with λ = 4 and µ = 5 from
which we have τ = 9. Time is measured in 1/µ-units. The purple point represents the initial
condition pN (n, 0) = δn,4. The red graph represents pN (n, 0.2). The blue graph represents
pN (n, τ): one observes that when t ∼ τ the time dependent solution is similar to the stationary
ones, represented in orange.
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2 Financial markets

2.1 Introduction to financial markets

In this section we introduce some basic properties of financial markets. In particular we discuss
some trading principle and we introduce the order book and some ”stylized facts”, like the dis-
tribution of asset price returns.
Financial markets are systems in which a large numbers of traders interact with one another
and react to external information in order to determine the best price of a given item. These
items might be as different as equities, currencies, cryptovalute, stocks, animals or others. Ev-
erything that can be traded in financial markets is generally referred to as financial asset. Some
markets are localized in specific cities (New York, Tokyo, London) while others are delocalized
and accessible all over the world and it is also possible to trade online.
The time evolution of the price of a financial asset is unpredictable. For example stock represents
a “piece” of a company and the stock price reflects the overall value of this company. But this
value depends not only on the current situation but also on the company expected future per-
formance. If a new information is revealed that might affect the company’s future performance
than the stock price will vary accordingly. This uncertainty is reflected in the erratic behaviour
of the stock price that can be modeled using probabilistic tools such as stochastic processes and
Brownian motion.

2.2 Orders and order book

A market is a place in which investors can buy or sell certain quantities of a financial asset.
As we have seen before, the price of the asset is not static but it changes in time. The current
market price, also known as market value, is defined as the price at which a share of stock last
traded. The cause of the changes in the asset price are the orders investor places.
Let us consider a car. It is possible to both buy a car paying the dealer’s sticker price and to
negotiate a price and refuse to finalize the deal unless the dealer meets your valuation. Stock
markets work in the same way.
For an investor it is possible to make two kinds of order depending on his interests:

1. Market orders: they are transactions meant to execute as quickly as possible at the current
market price. If a trader place a market order to buy a stock, this order will be executed
immediately at the current bid price of the stock. The same will happen if he decides to
buy a certain quantity of stock.

2. Limit orders: they set the maximum or minimum price at which the investor will to buy
or sell. They are called limit orders. For example if a trader place a limit order to buy a
certain quantity of the asset at a certain price, the order will be executed only when the
current price of the asset will equal to this price or lower.

Because the second one needs time to be executed it is necessary to register them is a sort of
register: the order book.
Order book refers to a list of buy and sell limit orders (also called respectively bid and ask) for
a specific security or financial asset organized by price level. Some important features of the
order book are:

• Bid side: the list of the buy order and it is on the left of the current price;

• Ask side: the list of the sell order and it is on the right of the current price;

• Top of the book : the highest bid and the lowest ask;
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• (Bid-ask) spread : the difference between the top ask and the top bid. One can imagine
the current price is in the middle of the spread;

• Book/Market depth: in this thesis we refer to this concept as the total amount of volume
at each price level and it is related to the concept of liquidity, as we will see in subsection
3.2.

In Fig. 4 all these properties are graphically resumed.

Figure 4: In this picture the cumulative depth chart of an order book is shown. The green side
is the bid side: a column represents the sum of the orders at each price level from the top bid
to the column itself. The red side is the ask side and the meaning of the columns is the same as
before. Market/book depth can be seen as the sum of the first and the last column of the chart.

2.3 Geometric Brownian motion

Now we try to model asset prices as stochastic processes using a variant of the Brownian motion.
Let Y (t) be the price of a financial asset at time t and X(t) = lnY (t) be the natural logarithm
of the asset price.
The most common stochastic model of stock price dynamics assumes that X(t) is a diffusive
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process and the X(t) increments are Gaussian distributed. This model is called “Geometric
Brownian motion” [8]. Indeed, in this model, Y (t) is the solution of the following stochastic
differential equation:

dY = ωY dt+ σY dB , (35)

where ω and σ are real and positive constants. In particular σ is called volatility. Remembering
the definition of X(t) we can expand its differential up to the second order:

dX = d(lnY ) =
1

Y
dY − 1

2Y 2
dY 2 . (36)

Substituting Eq. (35) we obtain:

dX =
1

Y
(ωY dt+ σY dB)− 1

2Y 2
(ωY dt+ σY dB)(ωY dt+ σY dB) . (37)

Considering the second order differentials as negligible and knowing the Wiener process is pro-
portional to dt1/2 [1] we obtain:

dX = ωdt+ σdB − σ2

2
dt = (ω − σ2

2
)dt+ σdB = ω′dt+ σdB , (38)

where

ω′ = ω − σ2

2
. (39)

Defining S(t, t0) = X(t) −X(t0) as the (log-)return of the asset price, we obtain the following
expression:

S(t, t0) = ω′(t− t0) + σB(t) , (40)

where B(t0) = 0 and whose probability density function is [8]:

pS(s, t, t0) =
1√

2πσ2∆t
e−

(s−ω′∆t)2

2σ2∆t , (41)

where ∆t = t− t0.
This model has to face empirical data, obtained from financial time series. Systematic deviations
from the model predictions are observed: the distribution of returns seems to be non-Gaussian,
sharp peaked and heavy tailed. This behaviour of the asset prices is one of the so called stylized
facts, that we briefly describe in the following paragraph.

2.4 Stylized facts

As we have seen in the previous sections, there are different financial assets and different kind
of markets. One could easily imagine that, since different markets are not necessary influenced
by the same events or information sets, price series obtained from different markets will exhibit
different properties. Indeed it is reasonable to think real estate, corn futures and cryptovalute
markets are not similar.
Anyway, analyzing their properties from a statistical point of view one can observe that seem-
ingly random variations of asset prices share some non trivial statistical properties. These facts,
common across a wide range of assets, markets, and time periods, emerging from the statistical
analysis of price variations are called stylized facts.
There’s a lot of these common properties and in the following we show some of the most inter-
esting:

11



• Heavy tail : the precise form of the tail of the distribution of returns is difficult to determine.
However it seems to display a Pareto-like tail (that is, a power-law tail).

• Aggregational Gaussianity : increasing the time scale τ over which returns are calculated
their distribution appear more like a Gaussian distribution.

• Volume/volatility correlation: trading volume, that is the number of shares, is correlated
with all measures of volatility.

There are other stylized facts such as the asymmetry of the return distribution and the absence
of autocorrelations. See for instance [7].

2.5 Returns distribution properties and models

Figure 5: Empirical PDF for log-returns of Chevron stock traded in New York Stock Exchange
in the period 1989 to 1995. The smooth line is the Gaussian distribution with the same variance
calculated from the data [6].

We want to study in more detail the properties of the asset return distribution. In Fig. 5 we
show an example of this kind of distribution.
One way to quantify the deviation from the normal distribution is by using the coefficient of
kurtosis κ defined as the ratio of the fourth central moment and the square of the second central
moment [4]:

κ =
E[(S(t, t0)− E[S(t, t0)])4]
E[(S(t, t0)− E[S(t, t0)])2]2

. (42)

• If κ = 3 we have a Gaussian distribution;

• If κ > 3 we have a ”fat tails” distribution and it is said leptokurtic;

• If κ < 3 the distribution is said platikurtic.
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Analyzing different sets of returns, at different time scales, one can observe that κ spread from
15 to higher values such as 60 or 74 and that these properties are more pronounced if the time
scale ∆t < 1 day that is for intraday values of ∆t [7]. There have been proposed many para-
metric models trying to explain the return distribution.
The Levy stable non-Gaussian model implies that lnY (t) undergoes a discontinuous time evolu-
tion and S(t, t0) is characterized by a non-Gaussian distribution with infinite second and higher
moments [6][8].
Another model that has been proposed uses the Student’s t-distribution. This distribution is
governed by a parameter n and the k-moments of the distribution with k < n are all finite. By
varying the control parameter n one can approximate with good accuracy the log price change
distribution [6].
A different model proposed by Clark utilized the concepts of mixture of Gaussian distributions
and subordination between stochastic processes. Clark interpreted the leptokurtic behaviour
observed in empirical analysis as the result of the fact that the trading activity is not uniform
during the trading interval. In fact from analysis of the market activity it is known that the
number of transactions occurring in the market in a given time fluctuates. We call this fluc-
tuating number trading volume and we denote the cumulative trading volume up to time t by
Ω(t). In his model the distribution of log price increments occurring from a given level of trading
volume P (S(Ω(t)) is subordinated to the one of individual trade P (S(t)) and directed by the
distribution of the trading volume. By assuming P (S(t)) to be Gaussian and P (Ω) to have all
moments finite, Clark proved that P (S(Ω(t))) is a leptokurtic distribution with all the moments
finite. The specific form of the distribution depends on Ω(t) [6].
The last model is interesting because it tries to connect the distribution of returns to market mi-
crostructure properties such as trading activity. In the next section we will show a simple model
following the idea that there exists a process subordinated by another “microscopic process”.
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3 Polymer Physics, financial markets and anomalous diffusion

3.1 Analogies between polymer physics and financial markets

In this section we show the principal result of this thesis work: the proposal of a model based
on queueing theory for the order book in order to describe the time variations of asset prices.
It is possible to make a parallel between a polymer and an order book:

• Both are of course two chains or queues, whose beads are called respectively monomers
and limit orders;

• The polymer center of mass is related to the current price that can be thought in the
middle of the spread;

• The size of the polymer is related to the market depth;

• Brownian motion, which every monomer is subjected, can be related to the geometric
Brownian motion for the returns;

• A chemostatted polymer, that is a polymer immersed in a monomers bath, can be related
to an orders book immersed in an ”order bath”;

• Polymerization process, the association of a monomer to the chain, is equivalent to the
arrival of a new limit order;

• Depolymerization process, the departure of a monomer from the chain, is equivalent to
the execution of a limit order.

In several models (like Rouse, Zimm and Reptation) the volatility of the polymer center of mass
is related to the polymer size (see Eq. (21)). In order to complete the analogy between these
two systems, it should be natural to wonder if the volatility of an asset price is somehow related
to the book/market depth.

3.2 Volatility and liquidity

Market liquidity refers to the efficiency or ease with which an asset or security can be converted
into ready cash without affecting its market price. In other words, the liquidity of the market
can be recognised by how low the uncertainties of execution price are. The most liquid asset is
cash itself; real estate market is an example of illiquid market.
In addition, one consider market depth, which absorbs the price changes accompanied by trade
execution, as an important factor in explaining market liquidity. Then, market depth can be
thought as a liquidity proxy.
Now, it is well known [9] in market microstructure theory that liquidity (market depth) and
assets volatility are inverse correlated or anticorrelated. This means the deepest the market, the
lower the volatility and vice versa. It is reasonable to model the relationship between volatility
of the asset price and market depth as:

σ =
√

2D(N) =
√

2D0/Nα , (43)

where N is the total number of limit orders and α > 0 is a real number (in analogy with Eq.
22).
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3.3 A simple birth and death model for the order book

In a critical chemostatted polymer, size is time dependent because of polymerization, and this is
one of the two sources of randomness (the other one is the standard thermal agitation imparted
by the solvent and represented by the Wiener process). The size of the polymer can be described
with a birth-death process: we try to do the same with the ”size” of the order book (the book
depth).
If we think the orders listed in the order book as a population we can easily apply birth and
death processes to his description [10][11]. A simple birth and death model for the order book
can be built with these assumptions:

• All orders are assumed to be of unit size;

• Price levels are discrete, {1, 2, . . . , k};

• We consider only a side of the book, for example the ask side. So all limit orders are ask
orders and all market orders are buy orders;

• For all p ∈ {1, 2, . . . , k} limit orders at price p are submitted according to a Poisson process
with parameter λp . These processes are assumed to be mutually independent so that the
number of orders submitted is a Poisson process with λ =

∑
p λp;

• Limit orders are executed according to a Poisson process with parameter µ.

In this context, N(t) represents the book depth, the number of orders listed in the order book
at time t. The state probabilities follow Eq. (26) with size independent birth and death rate,
that is the same equation governing the polymerization/depolymerization process in the mean
field limit.

3.4 Anomalous diffusion

Since we are considering two systems sharing the same phenomenology, we denote both the
polymer center of mass and the logarithm of the asset price with X. The size of the system is
indicated by N .
Since N(t) is a random variable, also the coefficient of diffusion has to be (see Eqs. (21) and
(43)). This means that in the evolution of the variable X(t) there are two source of randomness:

1. The thermal agitation imparted in the first situation by the fluid in which Brownian
particle is immersed and in the second by the interactions between traders. It is represented
respectively by Brownian motion and geometric Brownian motion.

2. The polymerization/depolymerization process which affect the intensity of the Brownian
motion and the arrival/departure of new limit orders which affect the intensity of the
geometric Brownian motion.

Brownian motion is named the subordinated process and N(t) the subordinator process.
Remembering Eqs. (22) and (38) (with ω′ = 0), X evolves according to:

dX(t) =
√
2D(N)dB(dt) . (44)

Under ordinary conditions the stationary distribution of N is strongly peaked around its mean
value and the ”diffusion of the diffusive coefficient” is difficult to detect. But in proximity of
the critical point (that is, when g → 1−) the divergence of the size of the system N changes
drastically the situation.
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In the limit t → 0+ it is possible to study the subordinator character of the diffusion. For any
given realization [n(t)] = {n(t′) ∈ N∗|0 ≤ t′ ≤ t} of the stochastic process N(t) the PDF of X
satisfies this diffusion equation:

∂

∂t
pX(x, t|[n(t)]) = D0

(n(t))α
∂2

∂x2
pX(x, t|[n(t)]) , (45)

with the initial condition X(0) = 0. Now we reparameterize the diffusing path in terms of a
coordinate which converts the diffusion coefficient in an unitary one:

dX(z) = dB(dz) , dz = 2D(n(t))dt , (46)

where z ≥ 0 is a path variable corresponding to the realization of the stochastic process Z(t)
defined as:

Z(t) =

∫ t

0
dt′2D(N(t′)) . (47)

Now we can rewrite Eq. (45) as:

∂

∂z
pX(x, z) =

∂2

∂x2
pX(x, z) , (48)

whose solution is:

pX(x, z) =
e−

x2

2z

(2πz)1/2
. (49)

In order to determine the probability pX(x, t) of finding the center of mass at position x at time
t, knowing it starts in the origin of the frame of reference with N(0) = n0 monomers, we can
use the subordination formula:

pX(x, t) =

∫ ∞

0
dz

e−
x2

2z

(2πz)1/2
pZ(z, t) , (50)

where pZ(z, t) is the probability distribution of the process Z(t). This formula describes pX(x, t)
as a mixture of Gaussian distributions.
At large time t ≫ τ the subordinated Brownian character becomes distinctive: since D is
deterministic, then in this limit Z(t)/t is a number itself [4]. One can think the diffusion
coefficient as the following weighted mean:

Dav =
∞∑
n=1

D(n)p∗N (n) =
∞∑
n=1

D0

nα
p∗N (n) . (51)

In particular it is interesting to look at the shape of the initial probability density function of
X under equilibrium conditions. If one defines the unit-variance variable:

X(t) =
X√

E[X2(t)]
, (52)

it can be shown (see App. A), using subordination formula and after some algebraic calculations
involving path integrals, that in the limit t → 0+ X(t) follows the PDF:

pX(x, 0+) =
∞∑
n=1

p∗N (n)
e
−Davn

αx2

2D0√
2π D0

Davnα

, (53)
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which depends only on g and α. In Fig. 6 we show the graph of this distribution.

Figure 6: In this picture we show the semi-log graph of the distribution Eq. (53) for different
values of g when α = 1, that is for a Rouse polymer. Also the unit-variance Gaussian is plotted.

As we can see from the graph in Fig. 6, the distribution pX(x, 0+) is sharp peaked, heavy tailed
and leptokurtic when g → 1−. For all the α coefficients the kurtosis diverges at the critical value
g = 1 at time t = 0+. Comparing Figs. 6 and 7 one can appreciate the similarity between the
distribution predicted by this model and an empirical distribution of log returns.
Instead, when t ≫ τ it can be shown [4] that a power law decay holds for the excess kurtosis:
κ − 3 ∝ 1/t. This means as the time increases, pX(x, 0+) appears more Gaussian, as expected
from empirical studies on the distribution of log-returns.

3.5 Conclusions

In this thesis we have briefly introduced some basic concepts of Polymer Physics and financial
markets. In the last section we have shown that these two worlds seem to share the same
phenomenology. This allowed us to derive the PDF of both the center of mass of a chemostatted
polymer near the critical polymer in the mean field limit and the log-returns of a financial
asset. In particular, the two key points are the hypothesis on the relation between volatility and
liquidity and the birth-death model of the order book. It would be very interesting to study in
more detail how market depth affects asset volatility, for instance including imbalances between
bids and asks. Other models could be proposed using more complex queues than the M/M/1
or trying to model both sides of the order book.
Now the model we have proposed has to face empirical data: the next step is the calibration
of the model through financial data. Thanks to this procedure it will be possible to verify its
goodness and to individuate the best parameters g and D0 in order to fit empirical data.
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Figure 7: Empirical PDF for high frequency log-returns of the Xerox stock traded in the New
York Stock Exchange during the two years period 1994 to 1995. The smooth line is the Gaussian
distribution with the same variance calculated from the data. The plot is semi-logarithmic [6].
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A Demonstration of Eq. (53)

Since the stochastic process Z(t) (defined in Eq. (47)) depends on N(t) we can express the PDF
pZ(z, t) of the former in term of the PDF pN [n(t)] of the latter:

pZ(z, t|n0) =

∫
d[n(t)]δ

(
z −

∫ t

0
dt′

2D0

(n(t′))α

)
pN [n(t)] , (54)

with initial condition N(0) = n0. Then, from Eq. (50),

pX(x, t|n0) =

∫
d[n(t)]

∫ ∞

0
dz

e−
x2

2z

(2πz)1/2
δ

(
z −

∫ t

0
dt′

2D0

(n(t′))α

)
pN [n(t)] =

=

∫
d[n(t)]

e
− x2

2
∫ t
0 dt′ 2D0

(n(t′))α(
2π
∫ t
0 dt

′ 2D0
(n(t′))α

)1/2 pN [n(t)] . (55)

By discretizing the time in km intervals lasting ∆t and using the Markovianity of the process
N(t) we can take the limit km → ∞, ∆t → 0 such that km∆t = t:

pX(x, t|n0) = lim
km→∞

∑
n1,...,nkm

pN (nkm |nkm−1) . . . pN (n1|n0)
e
− x2

2
∑km

k=1
∆t

2D0
(nk)α(

2π
∑km

k=1∆t 2D0
(nk)α

)1/2 . (56)

Since we are interested in the limit t → 0+ we consider only the first time interval ∆t:

pX(x,∆t|n0) =

∞∑
n1=1

pN (n1|n0)
e
− x2

2∆t
2D0

(nk)α(
2π∆t 2D0

(nk)α

)1/2 . (57)

Eliminating the dependence from the initial condition:

pX(x,∆t) =

∞∑
n0=1

pX(x,∆t|n0)p
∗
N (n0). (58)

If we now use Eq. (57):

pX(x,∆t) =

∞∑
n1=1

p∗N (n1)
e
− x2

2∆t
2D0

(n1)
α(

2π∆t 2D0
(n1)α

)1/2 . (59)

From the previous it follows that:

E[X2] =
∞∑

n1=1

p∗N (n1)
2D0∆t

(n1)α
= 2Dav∆t , (60)

where Dav is defined as in Eq. (51). Now passing to the variable X = X/
√
E[X2] we obtain:

pX(x,∆t) =

∫
dxpX(x,∆t)δ

(
x− x√

E[X2]

)
=

∫
dxpX(x,∆t)δ

(
x− x√

2Dav∆t

)
. (61)

From the latter we finally obtain Eq. (53).
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