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Introduction

The Standard Model (SM) of particle physics has proven to be highly successful in describing
elementary particles and their interactions. The recent observation of a new state compatible
with the properties of the Higgs boson at the Large Hadron Collider (LHC) put in place the main
missing block for its experimental validation. That notwithstanding, it is widely believed that
the SM is the low-energy version of a more fundamental theory. According to the naturalness
hypothesis, New Physics (NP) should occur already at the TeV scale, which is being directly
tested at the LHC. No NP signal was found during the first run, that achieved a center of mass
energy of 7 TeV.

There are however hints for NP in the flavor sector. Recent data in B physics point towards
lepton flavor universality (LFU) violation in semi-leptonic B decays, both in charged b — ¢
transitions as well as in b — s neutral currents. Additional tensions between SM predictions and
experimental measurements in semi-leptonic B decays arise for example in the B — K*u*pu~
decay, especially in the angular observable P;. These deviations from the SM have stimulated
an ongoing discussion about possible NP interpretations.

The present work analyses B anomalies and their compatibility with other low-energy observables
in a model-independent way. We assume that NP originates at a scale A much higher than the
electroweak symmetry breaking (EWSB) scale and describe its behaviour below A by means of
an Effective Field Theory (EFT) approach, as outlined in the first chapter.

In the second chapter we write the effective NP Lagrangian at the scale A, the aim being to
extend the analysis performed in [I, 2] by enlarging the basis of effective operators in this
Lagrangian from two to five well-motivated semi-leptonic operators. Then we build the low-
energy NP Lagrangian by computing the quantum effects induced at the GeV scale; a key tool
in this sense is provided by renormalization group equations (RGE).

In the third and last chapter we consider the phenomenological implications of the derived NP
Lagrangian. After revisiting B anomalies, we study observables receiving NP contribution at
loop level, which include Z-pole observables as well as LFU and Lepton Flavor (LF) violating
effects in 7 decays. Finally we consider a particular scenario motivated by global fits.
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Chapter 1

An effective approach to B anomalies

SM predictions have been experimentally verified to a great degree of precision over a wide
range of phenomena. However, we also know that the SM is not a complete theory: neutrino
oscillations, baryon asymmetry and the evidence for dark matter cannot be explained within
the SM. They are indications for the existence of physics beyond the SM.

It is commonly accepted that the SM constitutes a low-energy EFT of a more fundamental
theory; even though we still do not know how to extend it, the solution to the hierarchy problem
points towards the existence of new degrees of freedom in the TeV range.

Two complementary strategies are currently being used to investigate the TeV scale. Experiments
at the high-energy frontier, performed at the LHC at CERN, aim at directly producing and
detecting new heavy degrees of freedom, while high-precision experiments investigate virtual
effects from NP particles in lower-energy processes. The investigation of B physics fits into this
second effort.

1.1 The flavor sector of the Standard Model

The SM of elementary particles is based on the gauge group Gy = SU(3)c x SU(2), x U(1)y.
The matter content consists of fifteen fermion fields and a scalar, the Higgs field [[]

LiL(172)71/2 62'3(1,1)—1 QiL(372)+1/6 Um(3,1)+2/3 diR(371)71/3 ¢(1,2)+1/2, (1-1)

where every fermion field appears in three replicas called flavors, labelled by the index ¢ = 1,2, 3
and the SU(2), doublets L;, and ¢;, read L;, = (v;,,e;) and g, = (wip, diz)-
The SM Lagrangian is given by the sum of three terms,

ESM — ﬁg;{uge + EHiggs + E;(;kawa’ (12)

SM

'We denote fermion fields by (a, b),, where a, b and Y are the representations under SU(3)., SU(2), and
U(1)y, respectively.
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gauge
SM

They are defined as

where £ , LHigss and LYukava are the gauge, Higgs and Yukawa Lagrangians, respectively.

auge 1 A A 1 a v,a 1 v e /
EgMg = _ZGHVG - ZWMVWM - ZBNVBN + %@Z) ZlD@D s (13)
L5 — (Do) (D 6) + 12(66) — (8162, (1.4)
Lo = — (dYadlq, + u,Y,0'q, + €, Yoe'l, + he.) (1.5)

where primed fields denote fields in the interaction basis.

L& has a large global U(3)® = U(3)7 x U(3)3 flavor symmetry, corresponding to the indepen-
dent unitary rotations of the fermion fields in flavor space. This symmetry is explicitly broken
by the Yukawa Lagrangian, as the couplings Y, , . are in general non-diagonal matrices. As a
consequence, the residual flavor symmetry group of Lgy, is

Gr=U(1)p xU[)p, xU), xU1)g, , (1.6)

where U(1) and U(1)
vation, respectively.

are associated with baryon number and lepton family number conser-

In order to diagonalize each Yukawa coupling, two independent unitary matrices are needed
Y, = R,YPV! Yy = RyYPV] Y, = RYPVI, (1.7)

where VP Y.P and Y.’ are diagonal and R and V are unitary matrices. For practical purposes
it is often convenient to work in the basis where the Yukawas are diagonal, the so-called mass
basis (denoted by unprimed fields) which is related to the interaction basis by

’LL/L - VuU,L d/L - ‘/YddL L/L - UGLL)
u', = Ryug d, = Rydy e, = Reer . (1.8)

The rotations of the lepton doublet and of the right-handed quarks do not affect £8}/'¢ and
lead to no phenomenological consequences. The same does not hold for left-handed quarks:
since in general Y, # Yy, the up and down components of the quark doublet have to be rotated
LYukawa - Ag a result, £828° is not unchanged. In
particular, the only term feeling the change of basis is the charged-current interaction involving

with different matrices in order to diagonalize

quarks, which arises from the term ;. ilPq;,. We have

sntlquarks = —\Q/EWJ(%’V“%) +he = —\g/%WJ(VCKM)ij(%’V“djL) +he., (1.9)
where Ve = VJ Vy is the Cabibbo-Kobayashi-Maskawa (CKM) matrix. As we can see,
L quarks 18 flavor-diagonal in the interaction basis; by switching to the mass basis, tree-level
Flavor Changing Charged Current (FCCC) transitions arise due to the presence of Viyy.

The CKM matrix is of crucial importance in flavor physics, because it is the only source
of flavor-changing transitions in the SM. It can be parametrized in terms of four physical

parameters, three angles and a phase. The most used parametrizations are the standard

8



1.1. THE FLAVOR SECTOR OF THE STANDARD MODEL

(0,0 (1.0)

Figure 1.1: CKM unitarity triangle and allowed region in the p, 7 plane as obtained by the UTfit
collaboration [4].

parametrization, which utilizes three angles 6;; and a complex phase ¢, and the Wolfenstein
parametrization, where the CKM matrix elements are expanded in powers of the small parameter
A = |Vis| = 0.22 [3]. The Wolfenstein parametrization has the advantage of exhibiting the
strong hierarchy between the CKM matrix elements in a transparent way. Explicitly it is given
by

1—’\2—2 /\2 AN (p —in)
Vo = Y -2 AN? + O\, (1.10)
AN (1 —p—in) —AN 1
where A, p, and 7 are real parameters of order 1. Sometimes the rescaled variables p and 7, are
used:
A2 A2
p=p<1—?> + O\ 77=77<1—5> + O\ (1.11)
Since Viky is unitary, the following relations hold:
Y ViVk=1 3N ViVigsi - (1.12)
k=1...3 k=1..3

These relations are a specific feature of the SM, thus their experimental verification is a powerful
consistency check of the model. In particular, the relation

ViaVp + VeaViy + ViaViy = 0 Ans [p+in] +[(1—p) —in]+1=0, (1.13)

is phenomenologically very interesting, because it involves the sum of three terms of the same
order in A. It is usually represented as a triangle in the complex (p,7) plane (see figure [1.1(a))),

9
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the so-called CKM unitarity triangle. The angles and sides of the triangle can be extracted
from suitable flavor observables, thus the consistency of eq. (1.13)) can be experimentally tested.
Since the values of A and A are determined with good accuracy [4]

A = 0.22497 £ 0.00069 A =0.833£0.012, (1.14)

all the the observables sensitive to the CKM matrix elements can be expressed in terms of the
remaining parameters p and 7. The resulting constraints are shown in fig. |[1.1(b); the graph
shows that they are all consistent with a unique value of p and 7 [4]:

p=0.1534+0.013 7 =0.343 4 0.011. (1.15)

It is therefore clear that the SM provides an extremely good description of flavor physics.

We have seen that FCCC arise already at tree-level in the SM. On the other hand, Fla-
vor Changing Neutral Current (FCNC) processes are highly suppressed in the SM: besides
arising at one loop, these processes always involve at least one off-diagonal element of the CKM
matrix and are further suppressed by the Glashow-Iliopoulos-Maiani (GIM) mechanism [5].
Therefore, given the high suppression of FCNCs in the SM, FCNC transitions represent golden
channels to look for NP effects.

Among the most interesting FCNC processes there are the semi-leptonic B decays, based on the
underlying transitions b — s¢*¢~ and b — svv, as well as the purely leptonic decays B, — (¢~
(¢ = s,d) and the radiative decays b — sy and b — dvy [}

1.2 Present status of B anomalies

In the last fifteen years the experimental study of B decays has been carried out at the LHC and
at the B-factoried’| PEP II and KEKB. The two related experiments, BaBar and Belle, ceased
operating in 2008 and 2010 respectively; the upgrade of Belle, Belle II, will start collecting
data in early 2018. As to the LHC, three experiments are involved in the study of B physics:
ATLAS, CMS and LHCDb, where the latter was specially designed for studying the production
and the decay of b and ¢ hadrons. An LHCb upgrade is planned for 2019-2020.

Assuming that NP originates at a scale A in the TeV range, its effects on weak B decays are
suppressed by inverse powers of A. It is therefore reasonable to look for NP either in processes
which are very suppressed or forbidden within the SM or in observables predicted with high
precision in the SM.

An interesting class of B-physics observables falling into the second category is given by ratios
of partial widths of semi-leptonic decays with different flavors of leptons in the final state. These
ratios, also called R-ratios, are very clean observables, because hadronic uncertainties affecting

2For a comprehensive review on rare B decays, see [6].
3B factories are asymmetric ete™ colliders built with the explicit purpose of producing a huge number of B
mesons. They operated at the T (4s) resonance, which immediately decays into a B meson-antimeson pair.

10
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the individual branching ratios cancel in the ratio [6]. They test LFU and therefore constitute

powerful tests of the SM. In particular we consider the observables R“ (» and R D(*), defined as
R,u/e B(B — K(*):u+:u7)
K® ™ B(B — K®etem)’
B DD o B DS i
R‘r/@ B( — TV) P/B( — TV)SM { = e, (116)

DO B(B — DD/ B(B — D@D)gy

where RM¢ (v and R ) test pu-e and 7-¢ (¢ = e, 1) universality, respectively.

In the SM, weak mteractions are lepton-flavor universal, because gauge bosons couple in the
same way to leptons with different flavors. The only sources of LFU violation (LFUV) are the
masses of neutrinos, the masses of the charged leptons and their couplings with the Higgs boson,
which have a negligible effect on R-ratios. Hence, R’ /( ., and RD(*
has been observed that, in principle, radiative QED corrections could induce up to 10% effects
in R‘IQ/ “ and R‘;{/f . However, in practice, the explicit analysis performed in [7] shows that these

corrections do not exceed ~ 0.03 in the region 1 GeV? < ¢? < 6 GeV?, where ¢? is the di-lepton

, are expected to be unity. It

invariant mass. Therefore, any deviation of Rm*) from unity exceeding 1% in this region would
constitute a clear signal of NP.

Most notably, recent data point towards LEFUV both in charged-current as well as in neutral-
current transitions. The statistically most significant data are:

RY"=13440.17,
RYY=1.2340.07,

1 e gaae = 0-T45T05 £ 0,036,

he et geye = 068548 £ 0,047,

p/e _ +0.110

L q2€[0.045,1.1)GeV? = 0-66070.070 + 0024, (]_]_7)

where the values for the charged-current anomaly R/ D(*) follow from the average [§] of LHCb,

Belle and BaBar data [9, 10, [T1]. The results for R“K/  and R < come from the LHCD collabora-
tion [12, [13]. In particular, the result for RS was presented at CERN very recently [13].

B anomalies are not the only tensions in semi-leptonic B decays; recent experimental results
have shown other deviations from SM predictions in processes based on the semi-leptonic
transition b — sputp~. The most prominent deviation concerns the angular distribution of
B — K*p*p, in particular the observable P, which exhibits a 3¢ deviation from the SM
expectation value [I4]. Additional tensions arise in the branching ratios B(B — Ku*p~) and

B(B — ¢utp~) [15, [16].

In the present work we investigate B anomalies. To this end we need practical tools to
describe NP contributions to observables; rather than building an explicit extension of the SM,
we choose an EFT approach.

In the next section, we discuss some general aspects concerning EFTs; and then we focus on
their role in describing the SM and NP contribution to semi-leptonic B decays.

11



CHAPTER 1. AN EFFECTIVE APPROACH TO B ANOMALIES

1.3 Effective field theories

EFTs are a powerful and versatile tool in quantum field theory, because they provide a

general framework to tackle problems involving very different physical scales. A classical example
is given by processes whose typical energy E is much smaller than the energy scale of the
interaction responsible for the process, which is usually set by the mass M of the corresponding
mediator. This is exactly the case for weak B decays, where E ~ my, which is far below the
EW scale as well as the NP scale A ~ TeV. Therefore, B decays can be analysed by means of
an EFT approach both in the SM and in its NP extensions.
Two main tools are used to address this kind of problems: operator product expansion (OPE),
and renormalization group (RG). The idea behind OPE is that, if E < M, for the purpose of
computing the amplitude the full theory below M can be replaced by an effective Lagrangian,
made up by a series of local operators of dimension d > 4

'Ceffzz

d>4

M4 y Zc QY (1.18)

where the Q!” are all the possible d-dimensional operators compatible with the symmetry of the
theory that can be built using fields lighter than M. In going from the full theory to the OPE
series the heavy mediator is removed as a dynamical degree of freedom; its effect is encoded in
the dimensionless coefficients C;*, called Wilson coefficients.

For our purposes, we can safely truncate the series at d = 6, since higher-dimensional operators
have a faster decoupling with the scale M and are therefore subdominant. As a result, our
effective lagrangian reads

1 (5) )(5) 1 (6) /(6)
ﬁeffZMzi:Ci Q; +WZiICi Q- (1.19)

Hereafter we will omit the superscript (6) and @); will always denote a six-dimensional operator.
Now, let us suppose that the full theory is known and that we want to find an effective Lagrangian
Leg reproducing the amplitude computed in the full theory at a given order. Starting from the
general effective Lagrangian , we determine the Wilson cofficients C; by matching Lea
into Leg, namely by requiring

My = Megs = 33 XG0 (1@ 1) (1.20)

at the desidered order. Focusing on the one-loop case, we will find something of the form

M
Ci(p) =Ci(M k— In — 1.21
(1) =G + k= (1.21)
where C;(M) is the coefficient we would find by doing a tree-level matching, « is the strenght
of the interaction originating one-loop corrections and k is some constant. This procedure
amounts to computing the Wilson coefficients in ordinary perturbation theory; clearly it has to
be repeated for a sufficient number of processes in order to find all the C;.

12



1.3. EFFECTIVE FIELD THEORIES

The next step is to evaluate the Wilson coefficients at the energy scale of the process we are
interested in, in order to compute its physical amplitude. We have to be careful in simply
substituting © = E in , because, due to the large difference between E and M, a large
logarithm «/In % ~ 1 might arise. If this is the case, aln % is not a good expansion parameter
and ordinary perturbation theory breaks down.

The problem is solved by switching from ordinary to RG-improved perturbation theory. To
understand this point, we observe that the matrix elements (Q;) in Mg have in general two
kinds of divergences: a divergence which can be fixed by standard wavefunction or coupling
renormalization, and another type of divergence, originating from the fact that we are using
operators with dimension higher than four. To fix this second divergence, operator renormaliza-
tion is required.

Defining the matrix Z, as

QV(a) = 25", Qi(a)
and remembering that ¢ = ﬁw q, the bare Lagrangian can be rewritten as
Loy =CQ(q") =CiZ 2, Qi(q) = CiQi + (2 Z3' - 3ij) CiQ; (1.22)

Alternatively, we can renormalize Wilson coefficients, using C” = Z.;; C; with Z. i = 45

ij Q jit

Once expressed the bare Lagrangian as the sum of renormalized coefficients and fields pjllus
counterterms, we find Z,, ; by requiring the corresponding countertem to cancel the "operator
divergences" in M.g. Note that, as a rule, the one-loop matrix element (Q;) in Mg has a
divergence proportional not just to @); itself, but to different operators (); as well; the latter
need a counterterm proportional to (); to be fixed. For this reason Z,,; is in general a matrix.

At this point we compute the anomalous dimension matrix, defined as

L
v =7 M@ZQ 7 (1.23)
and, by asking the bare Wilson coefficients to be u-independent, we find that the C; obey the

following renormalization group equation

i) = €0 (1.24)

Formally the solution can be written in terms of an evolution matrix U(u, M) as C;j(u) =
U(p, M)y; C;(M) [17, 18]. U(u, M) obeys the same equation as C; and is given by

9(p) 'yT(g)
Uu,Mi~:Texp[/ dg
(. M)y =T, o) Blg) |
Equation (1.24)) is solved using as initial condition C;(M), computed by matching the full

theory into the effective one. The choice ;p = M enables us to avoid large logarithms, so that

(1.25)

ordinary perturbation theory can be used. Then RGE are used to run Wilson coefficients from
the high-energy scale M to the energy scale of the process, F; the solution for C;(E) resums

13



CHAPTER 1. AN EFFECTIVE APPROACH TO B ANOMALIES

E
re-expanding the result in powers of «, the result in ordinary perturbation theory is recovered.

Equation (1.24]) shows us another important feature of effective field theories: even if at scale M
only a single Wilson coefficient C; is non-vanishing, for p < M in general new Wilson coefficients

logarithmic corrections (a In M>n to all orders n, yielding the LLA approximation [I7]. By

will be non zero, hence new operators will arise. This phenomenon is called operator mizing
and it is due to the fact that generally the anomalous dimension matrix 7;; is not diagonal.

1.3.1 EFT in NP

A common way to describe NP effects on observables is to consider the SM as the renormalizable
part of an effective theory, obtained by integrating out heavy degrees of freedom arising at
the scale A. The main advantage of the EFT approach is that it provides a very general and
model-independent description of NP effects by means of a limited number of parameters.
Assuming that NP originates at a scale A above the EWSB scale, which we identify with
a mass Mgyl a field theory valid above A should be invariant under the SM gauge group
Gay = SU(3)e x SU(2), x U(1).,, and contain all SM particles. Since NP degrees of freedom
can be integrated out below A, in the window below A and above mgy, the theory can be
described by the Lagrangian

L= ESM + £NP ) (126)

where Lyp is the effective Lagrangian describing NP; truncating the OPE series at d = 6, we

have’l

1
Lap = Y ZC’Qi . (1.27)

The operators (); are written in terms of SM fields and are invariant under Gg,. Reference
[19]@ provides the full list of six-dimensional operators compatible with gauge symmetry and
conserving baryon number: barring flavor structure and hermitian conjugation, there are 59 of
them.

1.3.2 Effective Lagrangians for B anomalies

Effective field theories are widely employed already within the SM. Even if in this case the
full theory is known, the EFT approach has the practical advantage of making computations of
amplitudes easier and to resum possible large logarithms.

One of the most significant applications of EFT in the SM concerns the description of weak
meson decays. As we already observed, these processes are characterized by the presence of
different energy scales, since their typical energy lies far below the masses of the W and Z boson.

4In our framework we identify %, mg, My and m, with a common mass Mpgw.

5There is only one five-dimensional operator, that is the Weinberg operator, which is responsible for the
generation of neutrino masses. Since it doesn’t play any role in our analysis, we safely neglect it. On the other
hand, out of the whole set of six-dimensional operators, we will focus on four-fermion operators.

6For a previous analysis, see [20].

14



1.3. EFFECTIVE FIELD THEORIES

It is therefore reasonable to describe them with a Lagrangian where the massive gauge bosons
have been integrated out. The effective Lagrangian we use to compute tree-level amplitudes in
substitution to Lgy, is the well-known Fermi Lagrangian

4G
G

where W and Z are not dynamical degrees of freedom, but their presence is taken into account

Lo =— TES TS i+ i T (1.28)

in the Wilson coefficient, Gy in this case.

However, EFTs show their full potential when it comes to taking into account higher-order
corrections, for example QCD or electroweak corrections. Following the steps outlined above, we
start from a general U(1).,, invariant effective Lagrangian. We determine the Wilson coefficients
in perturbation theory by matching the full theory into the effective one at the EW scale at
one loop. After computing the anomalous dimension matrix, the C; are then run down to the
low-energy scale with the help of RGE.

Let us consider the B decays on which the neutral-current anomalies R“K/<i) are based, namely
B — K®/¢*¢~. In the SM, b — s transitions are described by the following effective Lagrangian,
which contains the operators contributing to the semi-leptonic decays b — s¢*¢~ and b — svv
and to the radiative decay b — s at the quark level [6], 17, 21]

4G,
V2

where Aj, = ViV, Lex contains different types of operators: the current-current operators O,
and O, the QCD penguin operators O°~° (where we sum over p = u, d, s, ¢, b), the electromag-

2 2 10
L= =20 (300U 3 C0 - LY CO 0 i) ()
=1 =1 =3

netic and chromomagnetic dipole operators O” and O® and the semi-leptonic operators O°, O*
and O:

Op = Gy T"pe) (7" T"b2) Oy = (5.7up2) (P17"b2)
0" = (5:7bs) Z(ﬁfyup) 0" = (57,1"by) Z(ﬁ’y“TAp)
P p
0 = (59w 7pb2) 2_(P7*Y*P) 0° = (57,77, T bs) S (574"~ T p)
P p
e L . o
0" = {grm(5:0"bn) F 0" = Joami(5. T be) G,
62 62
0° — @(EL%I)L)(éw#ei) O — W(&%ﬂh)@ﬂu%ei)
2
€ — _
0" = g (Buube) P ). (1.30)

The sum over repeated flavor indices in the semi-leptonic operators is understood.

In principle we should consider also the chirally-flipped version of the dipole and the semi-leptonic
operators; however, they can be neglected, because the correspondent Wilson coefficients are
chirally-suppressed due to the (V — A)(V — A) structure of the charged current in the SM.
The operators relevant to the semi-leptonic process B — K/{T(~ are O° and O, hence the

15



CHAPTER 1. AN EFFECTIVE APPROACH TO B ANOMALIES

(a) (b) () (d) ()

Figure 1.2: Diagrams entering the computation of C? and C' in the full (a)-(c) and in the effective
theory (d)-(e).

Lagrangian we need to describe R% “in the SM is

4G
gf(f:!SM _ 55 /\Zs (C909 + 0w —f-CVOV) ’ (1‘31)

where for future convenience we have considered also the operator contributing to B — Kvv,

O¥. The Feynman diagrams relevant for the computation of C* and C' at the matching scale
mgw in the full and in the effective theory are displayed in figure [1.2]

Now the question arises of how new heavy degrees of freedom modify the Lagrangian (|1.29)
and, as a consequence, . Essentially NP can affect this low-energy framework in two ways:

o It can modify the operators already present in the SM. Since NP could violate both
LFU and LF, in general its presence will determine a contribution with a non-universal
and non-diagonal structure in the lepton flavor indices. As a consequence, we need to
substitute the implicit structure ¢ in the semi-leptonic terms with the more generic
structure ¢7.

o It can generate non-negligible contributions to the chirality-flipped versions of O"'* and
O¥ - which will be denoted by a primed sign - as well as scalar and tensor operators,

defined as
07" = - (EL »0r )(éie') 0" = L(<§L mbrs )(5175€'>
ij 1671'2 (R)YR(L) J J 167‘(’2 (R)YR(L) J
[ _ _ v 5 € - = v
OZ; = m(SO‘/ﬂ,b)<eiUu ej) O,Z; - ]_67T2 (So-/ﬂ’b)(eio-u 75ej) .

As observed in [21], the SU(2), x U(1)y invariance of the NP Lagrangian above myy
places constrictions on the Wilson coefficients of scalar and tensor operators: tensor
operators are excluded (Cj; = Cj° = 0) and scalar operators are not independent, because

S __ P Sr __ (Pr

In our analysis we consider NP effects in the coefficients C*", C**" and C*", hence the
Lagrangian we use to address R% “ reads
4Gy

o= (€3,08; + €03 + COL + C O + CLOY, + CHOY) | (1.32)
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where
0°. = i(g “b,)(Eivue;) 0¥ = 672(5 Pbr)(€ue))
ij (47T)2 LY Op 27/1 7 1 (471’)2 r7 Or Z’YH J
ez - ) ez -
021]0 - (471’)2 (3L7ubL)(ei7u75€j) Ozljo = (471.)2 (SRfyubR)(ei’y“%:’ej)

e? e?

0 = (BT =) Of = (G bl =) (133)

In order to describe the decay B — K*(*{~ we should take also dipole operators into accont.
However, they affect RY/S only in the low ¢? region [22]; in the central ¢? region, namely
1.1 GeV? < ¢ < 6 GeV?, the Lagrangian can be used for both R%/® and R“/?. Note
that primed Wilson coefficients enter Rx and Ry, with the opposite sign, because K is a
pseudoscalar and K* is a vector.

Summarizing what has been outlined so far, primed operators in L} are negligible in the SM
and therefore NP contributions are supposed to dominate. Unprimed operators are already
present in the SM, where they arise at one loop, and are modifed by NP in our framework.
Since in the SM no lepton-flavor violating operators arise, (C3,,)ij, (Cany)i; and (CZ,,);; have the
form Cg,,0;;, Cin0i; and C¥,,0;;.

Turning to the charged-current anomaly, we observe that in the SM the amplitude of the
b — clv transition is dominated by the tree-level exchange of a W boson. We take NP into
account by using the effective Lagrangian

4G, o _
§f§ = —WVcb(CLb)ij(CL%bL)(GLWHGL;')7 (134)

where the SM contribution to (C¢);; reads d;;.

1.4 Global fits and favoured scenarios

SM contributions to the Wilson coefficients in £} are known to next-to-leading order [6, [17].
NP contributions instead are investigated with the help of global fits involving observables
sensitive to their presence.

As discussed in the first section, recent experimental results have shown significant tensions
between measurements and SM predictions in processes based on the transition b — su*pu~. In
the last years several global analyses have investigated these discrepancies, with the common
aim of finding out whether they could be softened by NP contributions |23} 24, 25]. Even though
they differ in the treatment of theoretical uncertainties and in the choice of the observables
included in the fit, all these global analyses point in the same direction: tensions can be relieved
by a NP effect in C , interfering distructively with the SM.

The most recent global analysis of NP in b — su*yu~ is provided by [23]] By considering
NP contributions in individual Wilson coefficients, the scenario with NP in € only exhibits

"The observables included in the global fit are angular observables in B — K*u*p~, the branching ratios
B(B** — Ky ptp~), B(Bs = ¢putp~) and B(B — X utp~) and angular observables in By — ¢putp.
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Wilson coefficient | best fit point | pull
Crp —1.21 5.20

Ce = —Ci —0.67 4.80
(C2,,C8) (—1.15,40.26) | 5.00
(C2p,Co) (—1.25,40.59) | 5.30
(C2,, CL) (—1.34,—-0.39) | 540

Table 1.1: Best fit points and pulls for scenarios with NP in one or two Wilson coefficients [23]. The
subscript pu is omitted.

the strongest pull; the best fit point is given by (C3.),, =~ —1.2, which is consistent with the
previous global fits [24], 25]. Another good scenario is provided by (C2.)uu = —(Ci%),u- By
switching on NP in pairs of Wilson coefficients, the strongest pulls are obtained for NP in the
couples (C;,,,C.5,), (C;,,Cy,) and (C;,,,C,), which show a similar behaviour: best fit points
give a large shift in C), and a small shift in the other operator. These results are summarized

in table [[1l

Reference [23] also points out that although tensions can be coherently explained by a negative
(Cp)up, we still cannot rule out that they are caused by an underestimation of hadronic effects.
Future measurements of LFU ratios will play a clarifying role in this sense: a confirmation of
LFUV would be a clear evidence in favour of NP, because hadronic effects are lepton-flavor
universal. Interestingly, experimental results for B¢ and RY/S in the central ¢° region agree with
the predictions obtained using the best fit points in (C},,,C,,) and (C;,,,C;r,) and considering
the transition b — sete™ to be NP free. The latter hypothesis is motivated by experimental
results concerning b — se*e” processes [6].

Another recent analysis, [26], bases its fit on LFU observables, specifically the ratios R% “ and
R%f and the LFU differences of B — K*(*{~ angular observables Dp; . By switching on NP
in individual Wilson coefficients, it turns out that the fit shows a distinct preference for NP in

coefficients involving left-handed quark currents, namely C , Jee and C ., Jee- On the other hand,

an explanation of the measured values of R”K/  and R“K/f in terms of primed Wilson coefficients
only - corresponding to right-handed quark currents - is highly disfavoured. In fact, if primed
operators were dominant, we should have opposite anomalies (i.e. if R < 1, then Rg* > 1
and vice versa) because primed Wilson coefficients enter the two ratios with opposite signs.

In section we aim at studying a well-motivated scenario inolving NP in a single Wil-
son coefficient. In this regard, we make two main hypotheses. First, we suppose that the
tensions concerning rare b — sutpu~ decays and the LFU ratios R‘;(/(i) and R;/f;) are to be
explained within a common NP framework. Second, we consider the transition b — sete”
to be SM like. In view of these assumptions and of the results of [23] [26], two scenarios are
singled out, namely (C3;)u, = —(Cxp ) and the one with NP in C, only. Since the first one
has already been investigated in [I], 2], we will address the second one.
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Chapter 2

Effective NP Lagrangian at low energy

2.1 Building NP Lagrangian at scale A

As stated in the previous chapter, we describe NP contributions above the EWSB scale and
below the NP scale A - which we imagine being of order TeV - using the effective Lagrangian

1

where Q; are six-dimensional operators invariant under the SM gauge group Ggy = SU(3)c X
SU(2), x U(1),. The complete notation would be [C;] st [Qi]prst, Where p, 7, s and t are flavor
indices; to lighten the notation we will omit them unless they are strictly necessary.

In order to get the most general description of NP contributions, Lyp at scale A, hereafter
denoted by LY., should include the whole set of dimension-six operators compatible with the
SM gauge symmetry, with unknown Wilson coefficients [C;(A)]yrs. Such a complete analysis
goes far beyond the scope of the present work. Moreover, aside from B anomalies and other
tensions in semi-leptonic B decays, there are no other hints of NP at present. It is therefore
reasonable to restrict ourselves to operators wich might have an impact on these observables.

That said, there are three main aspects we should keep in mind when building the NP Lagrangian:

o like in [I], 2], we want this NP Lagrangian to simultaneously account for both NC and CC
B anomalies;

e we require B anomalies to be explained by a tree-level NP effect within our framework.
Our choice should therefore provide a tree-level contribution to the operators involved
in the decays of interest (C,,,, C;y,,

for the charged current-anomaly). In particular, as far as the neutral-current process

C,,, and C,7/ for the neutral-current anomaly and ceb

b — sutp is concerned, we are ultimately interested in being able to reproduce the main
scenarios favoured by the global fits mentioned in the first chapter [23], 24] 25];

o the SM exhibits a strong hierarchy between the processes on which the anomalies are
based: b — cfv occurs already at tree level, while b — s¢*/~ arises only at one loop.
Therefore, we want to naturally extend this hierarchy to NP.

19



CHAPTER 2. EFFECTIVE NP LAGRANGIAN AT LOW ENERGY

As argued in [21], the complete list of dimension-six gauge invariant operators which could

possibly contribute at tree level to C}; and C;} is given by three four-fermion semi-leptonic

(1)
Lq >

. The operators which could give a tree-level contribution to the primed operators C7 and

operators - Qg Q) and Qg - and two operators involving the Higgs, Qf, and Qf7, (see table

Cm’ are Qeq, Qua and Qpq. Analogously, (C2);; might receive a tree-level contribution from Q(3)
and o)

It follows that in order to reproduce all possible NP tree-level contributions to the five operators
of interest our starting Lagrangian should include all the operators listed above. In the present
work we limit our analysis to semi-leptonic operators; we exclude the Higgs operators because
their presence at scale A would imply a tree-level modification of the Z and W couplings
to fermions, which are tightly constrained by LEP measurements. Consequently, the NP
Lagrangian at scale A will include the following five operators: QE,;), Q“) Qed, Qra and Qe
We further assume that NP couples only to the third generation in the interaction basis. This
choice is supported by the strong constraints on flavor physics involving the first two generations
and provides a natural suppression mechanism for the neutral-current anomaly with respect
to the charged-current one, because NP couplings to lighter generations are generated by the
rotation to the mass basis through small flavor mixing angles.

In conclusion we build £, by assuming that NP at scale A is dominated by

@ E;)]sz’rxs = (Z/ “g/ )(%LV”Q;/),L) (2.2)
[Q ]3333 = (EIL’Y T ) (@ 7, (2.3)
[Qua)ssss = (K;L’YME;L)(d/R’Yd r) (2.4)
[Qed]ssss = (égR,y#e;R)(d;RrydM%) (2.5)
[Quelssss = (85, 7G5,) (€371 €5) (2.6)

and write the NP Lagrangian as

0

NP — A2 (Ol [qu ]3333 + CB[Q(S)]ssszs + C4[Qld]3333 + C5[Qed]3333 + O6[Qqe]3333) . (27)

Here Oy = [Cj; (A)]ss35, C3 = [Cy (A)]s355 and so on.

With respect to reference [I, 2], where only the purely left-handed operators Q;,” and Q; were
considered, we added three operators involving at least one right-handed current. Although the
recently announced measurement of R S seems to discourage operators involving right-handed
quark currents [26], they still cannot be excluded.

Operators in are written in the interaction basis; later on we will need to move to the mass
basis. As we have seen, fields in the two bases are related by the unitary transformations ,
while Yukawa matrices are diagonalised as shown in (|1.7)). For the sake of simplicity, we define
the A and I' matrices:

u * d * e % ud
Aij = VuziVusi Aij = VaziVas; Aij = VesiVes; Aij = VisiVasj -

d _ * e __ *

1% = Ragiftas; I = RegiBes; (2.8)
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It is straightforward to show that A and I" satisfy the following properties:
L)'= X and (I =TV (f =wu,d,e)
2. MM =X\ and I/T/ =1/
3. (Audyt = \du
4. TrtA =1 and Trl/
5. MP=1and Y T/]>=1. (2.9)
]

]

Property 1. follows directly from the definition of A/ and I'/, while the other properties follow
from the unitarity of V and R matrices. We observe that A matrices are redundant, because
they are related to the CKM matrix as follows:

5. )\U - VCKI\/[)\dVCTK]\/[ , (2.10)
6. >\Ud - VCKNI)\d : (2.11)
A general parametrization of Af and I'/ matrices is provided by
2 *
, ] gl asfp oy
A = apBr BT By (2.12)
L+ o + 16,7 | 7 \
|ovg|” + 1By ot pr 1
2 *
] psl™ psot by
rf pior logl” op | . (2.13)

T+l Pl |
los|” + oyl g or 1

where ay, B¢, py and oy are complex numbers.
Using relations (1.8)) and (2.8)) we rewrite the NP Lagrangian at scale A in the mass basis,
obtaining
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CHAPTER 2. EFFECTIVE NP LAGRANGIAN AT LOW ENERGY

Cc,-C
‘CONP = (1A23)( L7 )\ eL)(uL’Y;L)\uuL) +

n (C1+ C3) (Cr —C3)
A2

A2
2C o -
+ T;(eLv Aet/)(UpYpAuad,) + hec. + E(VL’}/“)\SVL)(dR’y”FddR)

Cy,_ Z Cs,_ 7
+ 1 (€07 Acer) (dry* Tadi) + 5 (7" Teen) (dry" Tadr)

C Ce - ~
A2 (uL7 At (€l cer) + A—g(dey“)\ddL)(eR%FeeR). (2.14)

(Cy + C3)

A2 (€A eL)(JL'Yu)‘ddL)

(VL’Y A VL)(UL’VM)\dUL) + (ﬂL'YM/\eVL)(JL’yM)‘ddL)

The independent parameters in this expression are the five C; and the matrices \¢, A%, I'® and
I'?. All information about NP is encoded in the C;.

2.2 RGE flow from A to mgyw

In this section we start from the NP Lagrangian at scale A and run it down to mgy. This
is achieved by employing the renormalization group equations (RGE) in the limit of exact
electroweak symmetry. In particular we will refer to [27], which provides RGE to one-loop
accuracy for all 59 six-dimensional operators invariant under Gy, listed in [19]. They are written
in the format

= 167%v;,C; , (2.15)
where C; = 1672 [ d C We solve them in leading logarithm approximation using LY, as initial
condition; exphcltly the leading logarithm solution to these equations reads

1 . A
Czl)rst( ) Czl)rst(A) QCZprst (A) In ﬁ . (216)

167
Knowing that the only non-zero C;(A) are the ones in (2.7)) and neglecting all Yukawa couplings
but that of the top[l] we find out which operators are involved in the RGE flow; they are displayed
in table 211

Given the operators Qfm,st involved in the running, the Lagrangian at scale p will have the form

NP = A2 Z Z prst ;;)rst; (217)

i prst

for each @Q; we want to find C},.., (1) using eq. (2.16). In order to do this we need to determine

which flavor structure gives a non-zero C

pm(A); then we can compute the sum over the flavor

indices in (2.17)). This same procedure must be repeated for all the 22 operators appearing in
the RGE flow.

IThis corresponds to writing V.2 as Y, = y, P3, with P3 = diag(0,0, 1).
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2.2. RGE FLOW FROM A TO Mgy

Leptonic operators Semi-leptonic operators

[Qéé]pmt = (Z’pL/—yﬂg;‘L)(Z;R/yug;R) [QE])]PTSTE ( poYHKTL)<q;L7’uq;L)

[Qﬂe]prst = (Z;?LIYHE;L)(éISR,YHGLR) [Qg})}pmt ( LVMT g'I‘L)<qsL7 T th)

[Qeelprst = (Cprurn) Cn¥eln) | [Quulprst = (vl (W ut)
[Qalprst = (G 1l ) (digydy )
(Qaelprst = (@10, ) (Esr 7 ELR)
[Qeulprst = (€ Vuern) (Wer V" tiyy)
[Qedlprst = (@ 1uln) (dypydi)

Vector operators Hadronic operators

Qo = D) ) | Qe = (@) (@)

Qo = (B DES) T, 771, | QT orst = @y 1 0) (@ 7

(Qlon = DL @ dls) | QW arst = (@) (@ogr )

(Qitilor = GDLON @ 70,,) | Qs = (Tl (o1

(q ( »)
(Quclpr = (DiDad) (@) | [Qualprst = (7. ><*;Rv )
(Qualpn = (GDLS) Dy dl) | 1Q st = (]t )Ly ls)

R,YM TR

Table 2.1: SU(2), x U(1)y invariant operators invoved in the renormalization group evolution of
LY from A to the EW scale.

We show how this works for the operator [Qé;)]prst. Only a few terms survive in the equations
for [Cpglprst given in [27]:

. 1 1
Q)| = ([iju]wc% +-CY VY, ]m+ 9iC" st
prst|A 2 prot 2 prsv 9 prww

2
QC( Spr — =91C 1a 05 — giChy +995C, ) (2.18)

1
3 wwst 9 pruow prst prsv

A

From this expression we see that only the flavor structures ss33 and 33st give [C’éé)]prst(A) # 0.
Being careful not to repeat the same term twice, we can write the internal sum in (2.17)) for the

operator considered as

ZC(Z; (1) (1) C(l) (1£)q + Z <C(1) (1) C(1) Q(l) > n Zc(l) (ZI ’

prst prst prst 3333 3333 s 33ss 3333 ss33 5533 st 33st 33st
(2.19)
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with
¢ 2 2
635)33( ) Cl + 16 2 ( 101 - 99203)
L 2
&) _ b2 _
C3§§S(M) 167 2991(01 Cy)
L 2
1) _ 2
Cla, ) =~ 16390
cw (g = L & VIV, )30 + 03Y]Y, 2.20
gg%t(“) T 1672 2 ([ u)s303¢ + O3 ]3t) : (2.20)

Here L = In % After repeating the same procedure for all the operators involved in the running,
we find that the effective Lagrangian at the scale mpyw < gt < Ais given by £ = Ly + L, + Lesr,
where

Log = 0Ls + 0L, + 0Ly + 0Ly . (2.21)

Leg describes the contribution induced by renormalization group equations. Explicitly we have

L 2
OLow = {537z [(g%cl—s»g%cg)@% —§g%<a Q'

272
16m2A 3333 33ss

91(01 + OG)Q( - *01 ([Y Y] s303 + 553[YTY ]3t> Q(

5533 335t

+ (—3g3C1 + Cs(6g3 + 97)) Q") — 203C5Q"%), — gg2(1 Q%
3333 3388 5533
1

= 505 (VYoo + 00V Yo]ae) nggst - §g%<01 ~CQ .

4
+ 2[Va] s [V 3 ChQ 1w +202°C4Q 10 + —g2(CL — C)Q 14
33st 3333 9 33ss

2 4
— ~g(Cy + C5)Q 4.~ 29%%@ g — *9?(01 +C6)Q g0

3
1 8
— 506 ([Y Yolssds + 0ss[Y, Y, ]3t> Q ge, T 991( Cﬁ)Qg%?s

2
+ 2l o[Vl CoQgn, = 491C5Q e + 91(Cs = Co)Q e,
4

4
—591(Cs = C)Q ga — 29%(Ci+ @)QSS&J , (2.22)
0Ly, = L {(292(01 —Cy) + 292C3> Qu —495C3Q y
167T2A2 3 1 2 33ss 2 3ss3
4 2
+§g%(01 —C)Q 1 ggf(cs - C6)Qsé§3} , (2.23)
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L 2
0Ly = T6-2A2 (—6C1 A5y7 — 593(01 - 04))62%}??
2
<%wwt2ﬂa—@m§pgﬂa+%w%
33
—*9 C3Q(3) + <292(C Cs) — 6C6 53y > QHe + g92(04 +C5)Qmua
(2.24)
oL b2+ ol -2 CQ( +2g34(C1 + Co) Q4
H 167r2A2 91 1 6)% 90 392 3l g0 991 1 6)% qu
4
991(01 + CB>Q gd T 991(Cf 4+ C5)Q }]d + _691(04 + C5)Q ad ] .
33ss $s33 33ss
(2.25)

The sum over repeated flavor indices is understood.
Note that hereafter we will neglect the hadronic contribution 6Ly, because fully hadronic
operators play no role in our analysis.

2.2.1 Analysis of £y: modified Z and W couplings

The vector part of the effective Lagrangian encodes the way NP affects Z and W couplings.
In particular, we can write dL, as the sum of three contributions:

0Ly = 0L + 6LY + 6L (2.26)

0L% and 0LY describe the coupling among fermions and Z and W boson respectively, while
0L involves the Higgs field h. In order to see this, we rewrite the operators in dLy in the mass
basis; taking ¢ = (0, %) we get

1 v —
Qi —-4§~€%zf[<uLvﬂAevL>+—<eLvuAeeLn-+

[ ?@]33 = vz%[WJ(Dﬂ“Aeed +h.c] - 5 fVQVZ (T Aevr) — (€7 Aeer)] +
2
1 v — 7
Qs = 5 22 Zul(007" D) + (diyDads)] +
Qo =~ LW (@ Xd,) + ) = 222, (7N u,) — (X, )]+
\/§ K 2 Iz
2
[QHe]33 = ZQZH(ERW/HFQ?R) +
2 Cw
v
[QHd]ss - 5$Z (d “Ted ) y (2.27)
Cw

where dots stand for terms involving the Higgs field h. Plugging (2.27)) into (2.24]), we rewrite
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CHAPTER 2. EFFECTIVE NP LAGRANGIAN AT LOW ENERGY

0L% and 0L} compactly as
Z g g r r
OLY = = =2 = = =2 Z ((Ag])is fiu fin + (Dgh)is fint fin) (2.28)

(Sﬁy = _WWJ’_‘]#P_ + h.c. = _EW—F (AgzjylL/y €L + AgzjulLry dﬂL> + h.c. (229)

where ¢y = cos Oy. Ag{y . and Ag?/* express the NP modification of the couplings between
massive gauge bosons and fermions. The explicit expressions for Z couplings are

. v L [g7 )
(Agr)ij = A2 162 3(01 Cy) + g5C5 + 3Nu7 (C1 — C3) | X
v L1
(Ag)y = S5 1o (9508 — 91(Ca+ Co) XS
Y v L1 Y
(Ag)i; = A216723 {—9303 — g1 (G + 06)] Aij
y v L[4} )
(Agy)ij = A2 162 3(01 — C4) — 9305 4 3X537 (Cr + Cs) | XS,
. v2 L :1
(AgR)i = 13 622 591(06 —Cs) + 306/\33%]
v2 L 1
(Mg = 13750 |59 (Ca+ Co)| T, (2:30)

while those for W couplings read

v?2 L
(A9%)ij = {37502 (0CaNawi — 205C3) X
v? L 2
(A" = 57 { ggcg} 2, (2.31)

Remembering that in the SM the Lagrangians describing the interaction among fermions and
massive bosons are given by

»CiM - Z ‘]éLMO = Iz Z ((g{,Sh{>ijﬁL,nyjL + (g{z,SM)ijfiR’Yuij) (2'32)
g2 _ _
LM = \/_W+J§‘M +he EW: (g ese + (gh)igtnydse) + hec, (2.33)

with couplings

g{ SM) =41, SM(SU = (TSf - qf53v>6ij
{3 6@] = _qfézj )

SM) gR SM

A~ I/~ I/~
Q

gM)ZJ - 52]
9) = Vorm )i (2.34)

we can write the full Z and W Lagrangian in a compact notation

Ly = LN 4+ 6L% + LY = —?Z T — T (W e (2.35)
W

o
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2.2. RGE FLOW FROM A TO Mgy

where J*~ = Jk= 4+ Jib~ and J*° = JE? 4 JHD.

Let us make some comments about the expressions and . First of all, we immediately
notice that the NP contribution to the couplings has a non-diagonal flavor structure. In particular
NP introduces a formally tree-level source of lepton flavor violation (LFV) and LFUV, which is
absent in the SM. This has important phenomenological implications, which will be discussed
in the next chapter.

We also notice that the effective couplings have a dependence on the renormalization scale p,
which must cancel when amplitudes are computed. We check this explicitly for the Z boson
decay into a charged lepton pair, Z — €;e;. The goal is not to compute the full one-loop

amplitude for this process, but to check that the u dependence in the effective couplings Ag¢ and

Agt cancels properly. The relevant diagrams are shown in figure [2.1(a){and [2.1(b)l Specifically
2.1(a)| shows the formally tree-level contribution given by L}y, while 2.1(b)|shows the one-loop
contribution obtained by inserting the four-fermion interactions contained in £, in the vertex

labelled by C;. We will denote the two amplitudes by My, and Mg, respectively.
Mree Teads

Figure 2.1: Feynman diagrams involved in the process Z — ¢;e;.

. 92 —_ e e e e
Mtree - _Z?U# [(gL,SM + AgL)ijPL + (gR,SM + AgR)ijPR:| Uj

W

= Mgy + AM, + AM,. (2.36)

Miop receives contribution from six different diagrams, corresponding to the six operators in
(2.14]) which can be inserted in the vertex:

(a) (Clj\%cﬁ(éLy“)\eeL)(ﬂLvukuuL) (d) %(éR’Y“FeeR)(dR’WFddR>
(b) (cyljx%cs)(éL’Yﬂ)\e@L)(‘jL’Yu)‘ddL) (e) %<éR7ﬂFeeR)(aL7“)‘“uL)
(c) %(éLfy“)\eeL)(cZRv‘TddR). () %(éR%FeeR)(JL'Y“)\ddL)

Up- and down-type quarks run in the loop. The diagrams corresponding to cancel the
i dependence in Ag¢, the ones with cancel the p dependence in Ag¢. Denoting these
two amplitudes as M, and M respectively, so that My,,, = M, + My, we should find that
M, + AM, and M, + AM; do not depend on the renormalization scale.

We show the explicit computation in the case of M, starting from the loop diagram given by
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CHAPTER 2. EFFECTIVE NP LAGRANGIAN AT LOW ENERGY

the insertion of Let k£ and p denote the loop and the Z momentum respectively; Z is taken

to be on shell, so that p*> = m2. In dimensional regularization we find

Cr—C3 go
A2 oy

M,=3 e” i (uy" Povj) Z I (2.37)
1

where the integral Z; is given by

z'l — M47D/ (de Tr [Ué + mul)PYHPLUé +p + mul)%(ngL + g}szR)} .

2m)P (k2 —m2)((k+p)®> —m2,) (2.38)

Hereafter for simplicity we write ¢/, gf instead of gf .,,, g ¢ Using (A.2) we compute the
trace in the numerator, obtaining

Tel...] = gi Tr [fyu (K + plwPe] + g m2, Tr [, Py Pl

= 20} [ku(k + )y + ko (k + ) — k- (k + p)ny + 205 eapan| + 205m2 (2.39)
We then recast the denominator using the Feynman parametrization (A.3) with A = (k4p)*—m?,
and B = k* —m, . Noting that Az + B(1 —xz) = (k+px)* — (m;, —p’z(1 —x)) = (k+pz)* - A
we get

d°k Trf...]
=pu*" . 2.40
/ / ((k+px)? — A)? (240)
By performing the shift & — k — pz, we obtain
2
Tr[...] = 21, [gf ((D - 1> k? + p*r(1 — x)) + ggmil] : (2.41)

where we have kept only even powers of £ and used the substitution k,k, — %77“. We also
used the fact that terms proportional to p,p, give a zero contribution in the massless limit
thanks to the Dirac equation. The integral becomes

gL 4-D d”k k2 w, 2 u, 2 4-D d”k 1
L—%W/dﬁ 2 /@mwm_ay+@”%+%pﬂkwnu /QMNW—AF
2217W/ 2 1
dz (2 u) — 24" 1—2))1 . 2.42
m? (g" — g&) — 2g¢mZz(1 — z)) In ERSE e R (2.42)

Here we used the dimensional regularization integrals (A.5) and (A.4) and worked in the MS
scheme, keeping only leading logarithms. Plugging this into (2.37)) and remembering that the
only non-zero quark mass is m?, we find

6i C1—C5 go

(Ar)?2 A% oy

- )\§3/dx (megqj —2¢"m2x(1 — x)) In(m? — miz(l —z))

M, =

“=(ug\°Pyv) {292)\33mt In y% — 2g"m? /daz z (1 —z)lnp?

4+ 2g"m2(1 — \%) /d:c r (1 —z)In(—miz (1 —z))

(2.43)

*We can do this because [d”k k, k, f(k?) = 2= [dPk k? f(k?)
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2.2. RGE FLOW FROM A TO Mgy

The computation for the @ operator is analogous and gives

67 Cl—i‘Cg&
4r)2 A2 oy

+2mZgL/dxx 1—x)ln( mx(l—m))

My =~

(ug\°PLv) [—2g§m§/daz r (1 —z)np?

, (2.44)

where we considered all down-type quarks to be massless. M., can be easily obtained by
substituting C; + C3 — C4 and g? — ¢¢ in the expression for M, .
In conclusion, summing the amplitudes |[(a){(c)| we obtain

2

. i o v u —m2z(l—x)
M == e (u¢A Pv) 3 [ ALy2(Ch — Cy) / drln -
g g —m2x(1—1)
_6<61(01—C’4)+2203>/d:17x(1—:v)1n Iu2
u (L 25)9 M mi e (1—a)
+3A55 (2 3sw> ) /da: z(l—2x)ln oy w— . (2.45)

By comparing this expression with AM, we see that the u-dependence cancels in the sum,
which can be written in a compact way as

M, +AM, = —ifi(aiwvj)(agg)ij , (2.46)
W
where
ey V3 G, O W (1 22\ B ] XN
<5gL) A2 l )‘33yt (Cl — Cg)zl —6 (2203 + EI<CI - C4) IQ + 3/\33 (2 - 38\2,\,) 7\]2‘]1-3 167?’2 y
(2.47)
and the integrals Z;_3 are defined as
1 m? —m2z (1 —x)
I, = /0 dzx In 12
1 -m2z (1—1)
T, = / dr o (1 —z)n
5 ; rz(l—2x) 1z
1 m2 —m2z (1 —x)
T, = / 1 - 2)ln " 2.4
3 dea:( x)In oz (1= 1) (2.48)

In order to find dgf; from dg; we just need to take C3 = 0 and substitute C1,Cy, Af; with
Cs, Cs, I'f; respectively. We obtain

1)2

AZ

3 1 2 2 1 Te
(66)is l N y2C6Tr — 62(Co — Cs)Tn + 3\ < _ g2 ) 9213] i (2.49)

2 3°%) 27 16m

In leading logarithm approximation, that is keeping only terms of the form In #Z and neglecting
finite terms, the effective Z couplings to charged leptons read

A A g AT N
(5gL) A2 [3)\33:% (C Cg) In E + 9203 In mi + 31 (Cl 04) In ] 1671‘2
v? A A T
(095%)4 = [3)\33% Cs ln — —|— gt (06 —C5)In ] 167?2 (2.50)
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CHAPTER 2. EFFECTIVE NP LAGRANGIAN AT LOW ENERGY

Note that here we resctricted our analysis to Z couplings to leptons; obviously a similar
procedure could be followed for the effective Z couplings to quarks by considering the decay
Z — qq and for the effective W couplings by considering the processes W — ve and W — ud.

2.2.2 Integrating out W and Z at tree level

Heavy degrees of freedom, namely Z, W and the top quark, have to be integrated out when
going below the EW scale; we start by integrating out the massive bosons at tree level.
Given the complete Lagrangian ([2.35)), we integrate out Z and W at tree level exactly like in
the Fermi theory. This gives

tot 2 5 Uy -
L= (g + T

~ _z (‘]:MOJE sv T J:I\;[+J;:,SM> - (2J0

M
02 TR

T+ Ty g+ hee) (2.51)

We keep only terms linear in the NP contribution, i.e. linear in Ag. The first term is the Fermi
Lagrangian and belongs to Lg,, while the second one enters the effective Lagrangian, and we
denote it by dL3. At this point our effective Lagrangian reads

Log = 0Ly + 0Lsy + 0L . (2.52)

The next step is to rewrite Lo in the mass basis using ((1.8)). Operators with a 3333, 33ss, $s33
and 3ss3 flavor structure appear in the Lagrangian with coefficients which do not depend on
flavor indices. They can all be rewritten using the following two simple relations

féL’Yﬂf?{L = f_L’Yu)\ffL (2.53)
> fwti=fauf- (2.54)

The first one follows directly from and (2.8); the same relation holds for right-handed
fields once we substitute A/ with I'/. The second relation holds for both left- and right-handed
fields and can be easily obtained by remembering that rotation matrices are unitary.

Particular attention is needed when considering operators with structure 33st in 6L, because
their coefficients depend on the flavor indices s,t. From Y, = RUYUD V., and YuD = P3 y' we have

[YiVilss = y7 Ni

[YIViles = u7 VissViss

[YJ Yulse = yt VuzsViais

[Yalss[Y,) ] 3t = yt Agg RussRyys - (2.55)

Using these relations and the unitarity of rotation matrices we can show that the following two
relations hold

> (Vi Viladse + 6.a[Y,Valse) Vi Vil = w2 (PsX" + X" Py (2.56)

st

Y [Yalsa Yo I3t Ry Ruri = U7 Mg 03053 (2.57)

st
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2.2. RGE FLOW FROM A TO Mgy

These can be used to rewrite the terms containing the Yukawas in Lg,. For example, in

> ([YJYU]SS(S& + 053 [YJYU]Z%) Q(i)] (2.58)

st 33st

: 3
we can write Q(u); as
33st

Q( = ( 3L7u€3L)(qsL7MQtL)
33st

= Z(ZL'V/L)\GKL Vutzvusju]L7 Ui, + thz‘/dsjdjLﬁy dzL)
= Z(ZLVMAGK Vutzvus] (ujL’yuuiL + CZ]CEMV#CZ?[{(M> ) (259)

where dSM = Vi d, and we used the property \* = Ve AV . Plugging (2.59) into (2.58))
we get

Z(gL’YM)‘%L) Z [Y Yo]s303: + 63 [Y Yilat ) Viti Vis; (wjry"uir + Cic‘fl\%/udicfi(M)
J J

ij st

= (L9 ACn) (T (A Ps + Psda)uy, + d5™ (A, Py + Ps),)dS™™) (2.60)

where we used ([2.56]).

By carefully writing L. in the mass basis using these properties we get the effective Lagrangian
at u = mgyw with Z and W integrated out at tree level:

Lot = 13 2 Cilma)Qi = I 360, (261)

167r2A2 mEW ;

The operators @); and their coefficients &; are listed in the tables below.

Qi &
—6yfA§3(Cl + 03)

DL'VMVL)(eL%A)\eeL —6yf)\§3(C’1 + 03)
ViYpAeer) (€Vule —12y2 2% Cs
éL’Yu)\eVL ViYulr —12y§>\§303

%wq—@H&m—mmwa+@Ml 5)

[SIITN
@
no
— ol

2
)s
a—@%&ﬂ—%&%a—@wé
3€2[(C1 — Cy) — 3Cs] — 12y} Ny, (Cy — C5)) s,
—35€%(Cs — Cs) — 12Ce Ny (—35 + s3)
—3€%(C5 — Cg) — 12Cs\3y7s2,
606)\33%

Table 2.2: Leptonic operators: running from A to mpw.
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Q; &

(Ery"Acer) (U yuAutiy) (62 +393)Cy — (g7 + 15g3)Cs
(727" Xewy ) (A5 N M) (g3 +393)C1 — (g3 + 1593)C5
(exter) (UpyuAuur) —34e(Cy + Cp — Cy)

(exv"en) (U yuAuy) —4e2(Cy + Cp — Cy

(07" hee ) (7, A5
(7 e.) (A5, M)
(B en) (@A S)
(7 Ao (1 A M)
( )

drmCKJ\l

éLW“/\eVL)(ﬂL% L

—~
I
)
=
<
-

rY'Tadg ) €LVuNe
R’qudd NZemwzs
RVMFdd )

erYul cer) (U Y Ay,

e ’7;1 eeR)< ’YM)\dd

(d )
( )
( enVuleen)
( )
( )
(Vv Aev) (UpyuAuuy)

+4e
+g¢

—%62(01 + 06 + Cg
—462((71 + CG + Cg
—6g3C1 + 2(693 + 97)Cs

)
(97 —393)(Cy + C3)
)
)

—1292C4
—8e2[(Cy — Cy) + 3C5] — 1292\ (C1 + Cs) (3 — 2s3)
5e2[(C1 — Cu) + 3C5] + 8y2Aty (Cy + Cs) (—3 + 5%
2[(Cy — Ca) + 3Cs] — 125208 (Cy + Cs) (=5 + 352)

§ 2[(Cr — Cy) + 3C5] — 4y? X\, (C + C3) s2,
—3e2[(C) — Cy) — 3C5] — 124278 (C — C3) (5 — 252
—3e2[(Cy — C4) — 3C5] + Y2\ (Ch — Cs) (=3 + 5%)
€2 [(Cy — C4) — 3C5] — 12420 (C1 — Cs) (—5 + 352
+2e2[(C) — Cy) — 3C5] — 4y2\% (C) — Cs) 82,
—3€%(Cy + Cs)
—3€%(Cy + Cs)
5¢°(Cs = Cs) — 1297 05,C6 (5 — 35%)
3e2(C5 — Cg) + 8yf N43C65%,
—%62(05 —Cg) — 12@/,&2)\%306(—l + l53‘,)
—%62(05 — Cs) — 4y? N4, Cs2,
292Cy
29104

—4g3C5

—2g3C5

—2g3C5

(97 — 393)(C1 + Cs)

Table 2.3: Semi-leptonic operators: running from A to mgw.
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Qi &i
(V" Aevp) (U v (AuPs + PsAy)uy) —3y2(Cy + Cs)
(TP Aevi ) (A5 (N P + Pad)dg™™) | =3u2(Cr — Ch)
(exy" Aeer) (Uryu(AuPs 4+ P3Ay)uy) _%yt2<01 —Cy)
(@7 Aeer ) (A7 My (N Ps + PsA)d7 ™) | =337 (Cr + Cs)
(€27 Aevs) (U Ay (NP + PaAy)d™) —y; Cs

(Ervuleer) (Uryu( NP5 + PsAy)ur) —3Cey}

(Ervuleen) (A5, (AuPs + PsA,)dS™™) —3Cey}

(QR%F eR)(u?,R%u?,R) 2?/t A33C6

(exv*Acer) (UsrVulisr) 2?/?)\5301

(VL A ) (Usryythsr) 202 \%C,

Table 2.4: Semi-leptonic operators with projectors or u3: running from A to mgw.

2.3 Consistency checks

Operators in tables [2.2] and [2.4] are generated by one-loop electroweak corrections to the
operators in LY. In this regard two types of diagrams need to be considered:

o Electroweak penguins
o Current-current diagrams

These corrections involve the exchange of Z, W and +, as well as the exchange of the Higgs and
of pseudo-Goldstone bosons. The latter arise from the fact that we choose to work in the R,
(£ = 1) gauge. We observe that in our framework Higgs and pseudo-Goldstone bosons interact
only with the top quark, because we neglected all other Yukawa couplings; thus corrections with
exchange of Higgs and pseudo-Goldstone bosons are responsible for the generation of operators
containing the projectors P; and the currents with the top (uszy*usr) (see table . We do not
compute all these corrections by hand to find the corresponding anomalous dimension matrix;
as stated at the beginning of this chapter, we rely on the renormalization group equations given
by [27]. However, we do some explicit consistency checks. These enable us to further check the
correctness of RGE and to learn how to compute the relevant types of one-loop corrections,
which will be useful for the second part of the running - from mgy down to 1 GeV.

In general in order to compute the full one-loop amplitude of a given process in the effective
theory described by Lagrangian £ = Lg + L3, + Leg We need to consider three types of
contributions: a genuinely tree-level contribution, indipendent from the renormalization scale
p, a formally tree-level contribution induced by RGE (i.e. deriving from L.g, which we shall
refer to as "RGE term") and a one-loop contribution, arising from the interplay of one of the
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CHAPTER 2. EFFECTIVE NP LAGRANGIAN AT LOW ENERGY

Figure 2.2: General form for the one-loop amplitude of a given process in the effective field theory

described by L. From left to right we have a purely tree-level contribution, a RGE contribution -
denoted by a shaded circle - and one-loop diagrams (either penguins or current-current diagrams).

four-fermions operators in £, and SM vertices. For consistency, the p dependence in the
one-loop term should be canceled by the RGE term, provided the wavefunction renormalization
has been taken into account.

In our calculations we check that this cancellation actually takes place for some significant
cases. In particular we consider electroweak penguins and current-current corrections with Z, W
and ~ exchange; we do not check the consistency for operators generated by the exchange of the
Higgs or pseudo-Goldstone bosons. For simplicity we choose four-fermion processes involving
particles with definite chiralities and mediated by a single ); in the RGE term.

Note that all external momenta can be taken to be zero, because the cancellation must take
place independently from the particles momenta. In fact, the & do not depend on momenta,
so the one-loop term they have to cancel can’t depend on momenta either. Clearly if we were
interested in the physical amplitude of the process we should take into account physical, on
shell external momenta.

Hereafter - unless otherwise specified - dots stand for terms independent from the renormalization
scale.

2.3.1 Consistency check for (e,7"\.e;)(€,.e.)

We start by considering the neutral-current lepton-flavor-violating process pjef — e;ef.. The
relevant diagrams are displayed in figure [2.3]

The only tree-level contribution comes from L.¢. In particular, given the chiralities of the
particles involved, the only relevant operator in Leg is (€,7"Acer)(€,V,€.), whose € is given in
table . Therefore the tree-level amplitude reads

i A?

ree — ———In—
M 16m2A2 2

2 1

Z(C1 = Ci = 3C3) = 6 NG(C1 - Ci) (—5 + 53 )|
Ao (Y, Pou) (uyt Pov) . (2.62)
The diagrams contributing to the process at one loop are the penguins in figure [2.3(b)| and
2.3(c), which involve a quark loop and the exchange of a photon and of a Z boson respectively.

Starting from the electromagnetic penguin, we observe that the operators we can insert in the
vertex labelled with C; are the ones involving a charged lepton current and an up/down-type
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2.3. CONSISTENCY CHECKS

Figure 2.3: Diagrams contributing to the process p; el — e; el in the effective theory above mpy.
From left to right: RGE contribution, electromagnetic penguin and Z penguin.

quark current:

Cy —Cs
A2

Ci + Cs
A?

eyt A eL)(JR’y#FddR) +..., (2.63)

L, = (exy! Aeer) (U Auur) + (e,7"A eL)(JL%)\ddL)
Cy

A2(

where dots stand for operators irrelevant to the process. Taking all three relevant operators into

account, we obtain the following expression for the amplitude of the electromagnetic penguin

i

4 2 2 2
M, = [362(01 — ) (Agg In ?’7‘1 + A% In :l I Y )

1672A2 2 2 m?
~ 220y 4 ) (A +)\ In +)\ I £
3 P 2 ms m2
9 12 12 2
—56204 <Ff11 m2 + T4, In£- " +T%In :?bﬂ Xy (0y, Pru)(uy! Pou) . (2.64)

The detailed computation can be found in the appendix section [A.2.1.1]

As to the Z penguin, in theory we should consider exactly the same operator insertions we
considered for the electromagnetic one. However, its amplitude is proportional to the Yukawa
coupling of the quark running in the loopE], so it is sufficient to consider the diagram with the
virtual top. The final result reads

l

Mo = 16202

1 2
642N (C1 - Ci) (—5 + 58 ) n 2 ] Xy (07, Po) (@ Pou) . (2.65)
t

The complete computation is given in the appendix (see section [A.2.1.2]).
Summing all contributions we get

Mtot = Mtree + M + MZ

e 2 A2
= 167 2/\2)‘12(”%P u)(uy" Pyu) lgez(Cl —Cy— BCg)an
u 1 A?
O X (G - 03)( 2t )1“ mg} ’ (2.66)

3This can be easily understood by observing that m; is the only mass scale besides A.
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where M? arises from the p-independent part in M., and is defined as

1
22y, 2ay  2a 2(C1=C3) C173¢ =0
(mu me 22 my 33)

oxd, oxd,  aad NG/ opa opd ppa N\ Ci

2 _

(2.67)

As expected, the renormalization scale dependence cancels in the sum.

2.3.2 Consistency check for (e,7/T)(dyy,[dy)

(b)

Figure 2.4: Tree-level contribution to the process ppe; — dgs;. On the left, the purely tree-level
contribution from L£Y,; on the right, the RGE contribution from Leg-.

Now we are interested in doing a consistency check involving the computation of curren-
current corrections. For this purpose we consider the process prel — dgs,; diagrams contribut-
ing to the process at tree level and at one loop are shown in figures and [2.5
At tree level the process receives a contribution from both LY, and L.g through the operator

(exyT%er)(dry,[dy):

1C 297 A2 _ _
Mo =2 (1= 2210 20 14, T (094 P (00, P (269

One-loop contributions involve the exchange of v and Z. Diagrams 2.5(h)| concern the
vertex correction and wavefunction renormalization. They give no contribution; in fact, as we
expect from the QED Ward identity, we find

M+ MG+M]I=0 MG+ M)+ M; =0. (2.69)

Given the fact that leptons are massless in our framework, the computation for the Z diagrams
proceeds in the same way, hence we get

MZ+MI+MZ=0 MG+ M7+ M =0. (2.70)

Regarding the remaining diagrams, we compute only M7” and M]”, because M]” = M)*
and M}'¥ = M}"?. Explicit calculation (see[A.2.2)) gives

2

l 2 _ _
MZ + MF = <—392 g5 g% C'5> [ln TIL:T + 1] T%,0%, (07, Pru) (1" Pro) . (2.71)

167272 2, 2
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Figure 2.5: One-loop contribution to the process ppe; — dz5,. Diagrams repre-
sent the vertex correction and wavefunction renormalization for the two currents in the operator
(ery*T%er)(dry,'%dr). The remaining current-current corrections to the operator considered are given

by 2.5(1
M] + M] can be obtained by substituting m2 — m% and 5% I — e q; in this expressio
2

. p e pd (- _
M] + M} =T6I02 (—362qeqd05) [ln e + 1] %1%, (0, Pru) (1" Pro) (2.72)

Y

hence the total amplitude at one loop reads

Migop = My + My =2 (Miz + M,f) +2(M] + M)

61 g . e _ _
- (2 Jr gg Cs + 62Qeqdc5> In '“2 'Yy F(il2 (U%LPRU) (U Prv) + ... .

T16mA2 \ @)
(2.73)
Remembering that g. = —1, g = —3, g5 = —s%, g% = —3555 and gicw = € = gasy we find
Migop = _t (—2g26’5) In p% TS, T¢ (vy, Pru) (uy" Prv) + . .. (2.74)
P 167m2A2 1 12 -~ 12 14 )

which cancels exactly the renormalization scale dependence in eq. (2.68]).

4We use m, as an IR regulator.
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2.3.3 Consistency check for (e,v*\€,)(u,v,\"u,)

Another interesting case is the one where current-current corrections with W boson exchange
appear; as an example we consider the process p;ef, — u,cg. Again, we have a tree-level
contribution from both £y, and Leg, where the relevant operator is (e,v*X°e,) (v, A uy):

1 1
A? 3272

At one loop we need to compute current-current corrections involving 7, v and W exchange.

A2 _
M = 35 (€1 = €0+ g (Gl + 30 — Cala + 156 o | A (o P (@)

Current-current Z and «y corrections are based on the insertion of a single LY, operator,
(e, Xe.) (v A uy). Using the result obtained in the previous subsection with the substitu-
tions qa — qu, g g% — 9 gy snd C5 — (C1 — C3), we find

1 3 _ _
Moy + M, = 1672A2 <91 + g2> (C1 — C3) In pi® Xy MYy (07, Pru) (ay" Ppo) + ... . (2.75)

Current-current W corrections instead are based on the insertion of four different L%, operators:
¢ (@7 Xe) (N ) for EB()} E6(e)} 26(g) amd ()
¢ (TN (T, for BB
¢ (e Ne,)(d,y,A,) for 6T
o (@A) (@7 M) for BB and 26T

Differently from the case with Z and ~, here diagrams describing wave function renormalization
and vertex corrections give a non-zero contribution. The results read
i
 16m2A2
1
1672A2

M, = <92 (Cy + Cg)) In g Ay Ay (07, Pou) (uy" Pov) +

My = —

(92 (€ — cg)) In g2 Aoy A% (09, Pyu) (@y" Poo) + . .. (2.76)

For the last two diagrams, [2.6(i)| and [2.6(j), we need to sum over all possible down quarks in
the loop. For the amplitude M; we find

2
Lo 1] 3 2 () (0 Pr0). @.77)

W

i

where the explicit computation can be found in [A.2.3.1] Since M, = My, My= M, =M, =
M, and M; = M, the total contribution given by one-loop W corrections is

MY =2M, 4+ AMy+2M, = 695C3) In p NSy NYy (0y, Pou) (ay" Pyo) + ..., (2.78)

i
167 2A2(
therefore the full one-loop contribution reads

Mloop = Mzot + Mtot + Mtot
(Cl(gf +3g5) — Cs(g7 + 1593)) In 1 Ay Ay (07, Pou)(@y* Poo) + ...,
(2.79)

1
T 327m2A2

which cancels the ;1 dependence in the formally tree-level RGE contribution.
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Figure 2.6: One-loop contribution to the process p; e}, — u.cr. Note that in this case the analogous
of diagrams [2.5(k)| and [2.5(1)| cannot be built.

2.3.4 Consistency check for (v,7*X%,)(e,v,,)

As a final example we consider a charged-current process, the tau decay 7 — v,ev,. The
corresponding diagrams are shown in figure 2.7, At tree level it receives both a SM and a RGE

Figure 2.7: Diagrams contributing to the process 7 — v;ei. From left to right, SM tree-level
contribution, RGE contribution and penguin with W exchange.

contribution from the purely leptonic operator (7, v*A%,)(€, v,V ) in Leg

2

7 7 A _ _
(—6yt2)\g303) In E A3 | (U Pou) (uy* Pov) . (2.80)

Mipee = |——5 + ——515
ree m2, * 16m2A2

The only diagram contributing at one loop is the penguin with exchange of a W boson and
insertion of the £, operator (d,A\%™~"u,)(v,v,A\%,). In general we should sum over all possible
combinations of up and down quarks in the loop, but given our choice for Yukawa couplings
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the only relevant couples are those involving the top and the down quarks d, s, b. Following the
same steps we saw fot the Z penguin, we find the following final result

2

1 _ _
(~6y2X55C5) In L5 X5, (ay" Py (ay* o) (2.81)
t

Mioon = 157372

As expected, the u-dependence cancels in the sum of the two amplitudes.

Like this operator, all purely leptonic charged-current operators are not renormalized by QED
interactions. In fact, using the Fierz identity, the operator (v,,7,7.)(€,7"Ve.) can be rewritten
as (VrpYuVer) (€L y*7,), and the charged lepton current (€,v*7,) is not affected by renormalization
due to the QED Ward identity.

2.4 Explicit matching at the EW threshold

In section we obtained the effective Lagrangian at the scale mgyw < 1 < A, eq. .
This Lagrangian contains all SM fields as dynamical degrees of freedom: heavy fields - W,
Z, top quark - and light fields, denoted by ¢,. Below the EW threshold heavy fields can be
integrated out; the theory is described by a new effective Lagrangian where only light fields
appear as dynamical degrees of freedom. As a rule, this Lagrangian will be the most general
Lagrangian we can write using the allowed d.o.f. and compatible with the residual U(1)ep
symmetry

Lor = 13 SR (60 (282

where Q; are U(1)ey, invariant operators containing only light SM fields and C;(y) are their
Wilson coefficients. The C;(y) are a priori unknown; they are determined by matching the
high-energy effective Lagrangian into the low-energy one.

As discussed in the first chapter, the idea behind the matching procedure is to compute the
amplitude of a certain physical process within the high and the low-energy effective theory;
these amplitudes are then required to be equal at the matching scale at a given order in the
parameters. As an example we consider once more the process u; el — e, ef. Figures and
show the diagrams contributing to the process in the effective theories described by E]
and . The penguins with light quarks in the loop cancel in the matching and we are left

zero in the approximation m; & mgw, we find
C(mew) = é(mEW) ’ (2.83)

where C(mgy) and C(mgw) denote the coefficients of the operator (€,7*\.e,)(€,7,€.) in the
Lagrangian above and below the EW threshold.

5The matching can be performed starting directly from 1) where Z and W have already been integrated
out at tree level.
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H e LG ¢ C;
o o qe qe
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Figure 2.8: Diagrams contributing to the process in the effective theory below myyw. Here the RGE
contribution is denoted by a shaded square.

e

Figure 2.9: Explicit matching for the operator (e,v*Acer)(eryuer) at the EW scale. Matching
between EFT below mgy (on the left) and EFT above mgyw (on the right).

It can be easily seen that this is a general result, valid for all operators listed in tables
As a consequence in order to write the Lagrangian (2.82)) we just need to take equation (12.52))
and to remove ¢; and ¢ from the final result.

2.5 RGE flow from mgy to the GeV scale

In the previous section we derived the effective Lagrangian at the EW scale after integrating
out the massive bosons W and Z and the top quark

_ A
Leg = Al? Zci(me)Qi = 1 N Zfz‘@i . (2-84)

T 16m2A2 . Mg

At this point our aim is to find the effective Lagrangian at the GeV scale; in order to do this we
need to run the Wilson coefficients from the EW scale down to u ~ 1 GeV. We observe that in
our setup the running below the EW scale does not generate any new operators.

In going from the EW scale to the GeV scale two energy thresholds must be crossed, correspond-
ing to the masses of the bottom and the charm quark, m; and m.. When crossing a threshold
we integrate out the corresponding matter field, thus reducing the number of dynamical degrees
of freedom in the theory. In this sense in every energy range we have a different effective theory:
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ol A effective Lagrangian degrees of freedom

‘Ceff == %Zz Cz(ﬂ)@l W7 A ,U, C,t,d,S,b,e,M,T
—T— Mew

‘Cef‘f = /\12 Zz él(ﬂ’)QZ u, c, d7 Saba € W, T
My

Eeﬂ = ﬁzzél(p’)Ql u, C, d757€7M7T
—me

£eff = ﬁ21cz*(:u)@l u7d75767,u77-
——1 GeV

Confining effective theories need to be matched at the corresponding threshold. Like in the case
of the electroweak threshold, matching at m, and my gives C;(y) = Ci(1), Ci(me) = C;(m.) for
each Q);.

Working in leading logarithm approximation, in different ranges the Wilson coefficient for a
given @; has the form

_ — bz m
i) = Ci(mgw) — T6.2 In ;W mpy < pb < Myw (2.85)
~ ~ C; m
Ci(1) = Ci(my) T6m2 In 7&; me < p < myp (2.86)
* * d’l Me
Ci(u) =Cr(me) — = In ” 1GeV < u < me, (2.87)

where the coefficients b;, ¢; and d; have to be determined. Using the matching conditions at my,
and m, we find the following expression for C; (1)

= Ci(mew) + 3Ci(11) (2.88)
where 0C;(11) encodes the running from myy to u ~ 1 GeV. Rewriting it as
1 Mew
0Ci(p) = 1 0&; 2.
Ci(p) = {1 . & (2.89)
with
1
56 = — b ln Y e ™ g m ) (2.90)
In m’;w my Me 1
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2.5. RGE FLOW FROM My, TO THE GEV SCALE

the effective Lagrangian at scale 1 GeV < pu < m, reads
1 1
Lot = A2 Zcz(mEW)Qz + A2 Z oCi (1) Qi
1

Lo, A S 6Q:+ lm;WZ%QZ-. (2.91)

T I672A2 T gy & 167202

It is completely determined once we fix b;, ¢;, d; for every );. The procedure we used to find
these coefficients is the following:

1. Choose a four-fermion process which receives RGE contribution only from Q);.

2. Within each energy range write the diagrams contributing to the process at the desired
order, one loop in our case. As stated previously, the process will in general receive
a truly tree-level contribution, a RGE contribution and a one-loop contribution with
insertion of LY, operators. Being under the EWSB scale, the only one-loop diagrams
we can build are those involving the exchange of a virtual photon and/or of the virtual
fermions which are still dynamical degrees of freedom in the energy range considered.
As a consequence there are just two kinds of diagrams involved in this computation:
electromagnetic current-current corrections and electromagnetic penguins, both of wich
have been analysed in the previous section. Clearly Wilson coefficients whose operator
cannot be generated by electromagnetic current-current or penguin corrections to the
operators in LY, are not renormalized by QED and have 6 = 0.

3. Range by range require the RGE term to cancel the renormalization scale dependence
emerging from the loop diagram. The three resulting conditions enable us to determine

bi7 C; and dz

Note that this procedure is completely equivalent to employing renormalization group equations
for dimension-six U(1)ep-invariant operators; finding b;, ¢; and d; in fact basically amounts to
computing the anomalous dimension matrix for the ;. As a matter of principle, one could
attempt to recover these equations starting from the RGE for Ggy-invariant operators [27] by
switching off the SU(2), gauge coupling and by appropriately substituting hypercharges with
electric charges.

Operators whose Wilson coefficients keep running below the electroweak threshold can be
divided in two main categories:

» current-current operators, given by the product of two V' + A currents. They have the
form Q = (fy,M?Pf)(gy,M9Pg), where f and g are fermions, P is a projector and M7/9
is either A//9 or T'//9;

o penguin operators, appearing as product of a V + A current with a vector current:
Q = (fvuM'Pf)(g7v.9). For our purpose it is convenient to analyse separately penguins
with a V' + A quark current and penguins with a V' £+ A lepton current.

In the next section we show how to apply procedure 1- 3 to these categories.
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CHAPTER 2. EFFECTIVE NP LAGRANGIAN AT LOW ENERGY

2.5.1 Current-current operators

In order to find §¢ for an operator of the form Q = (fv,M?Pf)(gv,M9Pg) we consider
the process f; fi = gxge. The one-loop contribution below the EW threshold is given by
electromagnetic current-current diagrams with insertion of ) itself. Independently from the
energy range, the one-loop amplitude reads

Mioop = (16 e’ qs qq C’) In 22 Mf] M}, (v, Pu)(uy,Pv) + ..., (2.92)

7
1672A2
where C' is the coefficient of ) in £, and the computation is performed along the lines of eq.
([2.72)). We choose the minus sign if @ is of the kind LL or RR, the plus sign if Q is of the kind
LR or RL[

The RGE term must cancel the renormalization scale dependence in M., within each range.

In the interval my < p < mgw eq.(2.85) gives
For the p-dependence to cancel in the sum, b = F12 €2 ¢; ¢, C.

The same procedure has to be repeated sistematically; since My, is unchanged all the way
from mgy downwards, we find b = ¢ = d. This implies

6 =-b=7F12e*qr q, C. (2.94)

2.5.2 Penguin operators

In the case of penguins we analyse a process with two fermions of the same family in final state,
fifi = 9k

Hadronic V 4+ A current

If the V 4+ A current contains quarks, the one-loop contribution to the process f; fi = gxgr is
given by electromagnetic penguins with charged leptons in the loop. The inserted LY, operators
have the form C,(fv,M’Pf)(ev,\°P.e) and Cr(fr, M’ Pf)(e7y,I¢Pxe).

Remembering ﬂ the general formula for the amplitude reads

1 2e? e e ,U2 fr= _

16212 [—quqe Z(CL)W + CrI%) In "y M (vy, Pu)(uy,v) + ..., (2.95)

1 et

Mloop =

where the index ¢ runs over the charged leptons in the loop. Since we assume m, ~ 1 GeV, in
the whole range from the EW scale down to 1 GeV all charged leptons are dynamical degrees

of freedom and we need to sum over ¢ = 1,2, 3. Substituting ¢ = —1 and using the property
TrA§; = TrI" = 1 we obtain
?: 262 2 f — —
Migop = T62A2 ?qg(C’L + Cr)| In p” M (v, Pu) (uy,v) + ... (2.96)

5The origin of this difference lies in the spinor current contractions lj()
"Note that this expressione must be divided by three because leptons have no color.
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2.5. RGE FLOW FROM My, TO THE GEV SCALE

Applying the same reasoning followed for current-current operators, we find b = ¢ = d. Therefore
o€ is
4e?

Leptonic V + A current

In the case of a leptonic V' 4+ A current, the relevant diagrams at one loop are electromagnetic
penguins with a quark loop. For a given f, three operators can be inserted in the penguin:
(fruMePf)(uy N Pou), (fv,MPf)(dy, A\ P.d) and (fv,M¢P f)(dv,I?Pyd). Denoting by C¥,
C? and C¢ their coefficients in £, the total amplitude is given by

NP

2

—2ie’q . 1 o/ _
Mooy = 75517 40" Z/\” o gy (CONS + CaTd ) In e M (07, Pu) (@y,v) + - ..
U’L _] 1]

(2.98)

where the indices 7, j run over the up and down quarks in the loop. In this case b # ¢ # d,
because the number of "active" quarks diminishes when crossing the m; and m, threshold.
For my, < p < mgw all quarks but the top are active, so we sum over ¢ = 1,2 and j = 1,2, 3.
From ([2.85) we get

b= 4e® qoquCr (1 — Ag3) + qa(C7 + CR)]. (2.99)

We proceed analogously for the ranges m,. < < myp and 1 GeV < p < m.. Keeping (2.86]) and
(2.87) in mind we find the following expressions for the coefficients ¢ and d

¢ = 4¢%q, [quC(1 = Niy) + @uC2(1 = AL) + qiC20 —T%)| (2.100)
d = 4€? g, [quC(1 = Mg — N5p) + @aC(1 — M) + quCib(1 — T5)| (2.101)
thus the final expression for 6§ reads

4e?q,
3

5€ = — [203 — O — O (O + Ol  In TZ” — o (Agg + 3% In ﬂ;)] o (2.102)

where A = ; A
n ’NLEW

Equations (2.94)), (2.97) and (2.102)) allow us to compute 6¢; for every operator ();; results are
shown in tables [2.6] and The low-energy effective Lagrangian is now completely determined.
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Qi 0&;

(U v Ao (vt e) —%ez(C'l + Cs — C)

(dSMy, X dS5M) (Ey0e) —L2(C) + Cs + C)

(dpy"Tady) (v,e) —3€*(Ca+ C5)

(77" Aoy ) (liy,00) —3e2{C1 — Ci +3C5 — 2(Cy + C5) (Nl + Ay In <) }
- {4 |(Cr = Cs)Ady + CuTy| I }

(77" Aoy ) (dy,d) 2e2{Cy — Cu+3C5 = 2(Cy + Cs) (Mg + Ay In 220 }
- {+](C1 = C3)Ady + Cul'dy ] n }

(€L Aeer) (ury,u) —8¢2 {C’l —Cy —3C5 —2(C, — C3)( N5 + )\ uc>}
- {+[(C1 + Co)My + CuTdy| In ™2}

@y At ) (dy,d) ae2{C1 = Cy = 3C5 — 2(C1 — Cy) (Mg + Ay In ) |
- {+[(C1+ C3)Ms + Cul'ds| I 7}

(Exy T ) () {Cs = Co = (CsT'dy + Coddy) In ™ + 2C5( N + Aty In ) }

(ery'Te eR)(de)

1 8¢2
g€
_4.2
9¢

{C5 = Co — (C5T'dy + Coddy) In ™ + 2C5 (M

)

(dey"Tadr)(€,7,A€L) 4e2Cy
(dr7"Tadz) (@l eer) —4e2C}
(erypleer) (UL Ayt —8¢2C}
(ervuleen)(diy" Nad,) 4e*Cy
(exv*Acer) (UpyuAutir) +8¢%(Cy — Cs)
(€7 Aev) (UryuAudy™™) —8e2C

omitted.
Qi 5¢;
(T Aevi) (Evpe) 162 {01 — Cu+3C5 = 2(Cy + C) (g me) |
. {+](C1 = o)Ay + Cul'gy| m e}
(€27 Neer) (7€) 1e2{C) — Cy = 3C5 — 2(Cy — Cs)( My + Ay In ) |
- {+[r+ Co)My + Cul'dy] m e}
(éR’V”FeeR)(é%e) _’6 {05 Ce — (C5f§l3 + CG;‘%:&) In % + 2C6( g5 + 5‘752 In n:f)}

Table 2.5: Semi-leptonic operators: running from mgyw to p ~ 1 GeV. Operators with §§; = 0 are

Table 2.6: Leptonic operators: running from mgyw to i ~ 1 GeV. Operators with d¢; = 0 are omitted.
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Chapter 3

Phenomenological implications

This chapter addresses the phenomenological consequences of Lagrangian and of its
RGE-improved evolution at low energy. Our main goal is to understand the limits imposed
by the experimental bounds on selected observables on the values of RTD/(i) and R‘;{/ ¢, Keeping
this in mind, we start by analysing B anomalies and other B-decay channels receiving NP
contribution at tree level. We choose not to investigate the observable R“K/f , because the
discrepancy with respect to the SM concerns not only the central ¢? region, but also the region
at low ¢2. As shown in [22], the NP contribution to R/ in the low bin is given by the dipole
Wilson coefficient C7, (which is tightly constrained by b — sv transitions [25, 28]) and by the
coefficients (C3),, and (CX”),,., whose impact in this region is limited and cannot account for
the measured anomaly.

Subsequently, we take one-loop phenomenology into consideration, focusing on observables
which are so tightly constrained experimentally that the NP contribution plays a major role
despite showing up only at one loop. In particular we consider Z-pole observables and 7 LEUV
and LFV decays. Finally, we thoroughly analyse a phenomenologically relevant scenario, where
NP affects dominantly the Wilson coefficient C°.

The NP contribution to the observables is parametrized in terms of the free parameters of L7,
namely the five C; and the matrices A\°, A%, I'* and I'?. Before starting the phenomenological
analysis we significantly simplify our setup by assuming A ~ I'. Given the absence of LFUV

and LFV in processes involving the first two generations, we also assume /\i/d = Fi{d =0

2
for © = 1,2,3 and )\géd ~ )\Séd‘ < )\gé Moreover, \5; and A4, are taken to be real. The

parameters involved in our analysis are therefore Cy, C5, Cy, C5, Cg and Agéd.

d
L As a consequence, )\gé ~ 1.
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3.1 Tree-level phenomenology

3.1.1 B anomalies

In our framework B anomalies receive NP contribution at tree level. In order to compute
this contribution explicitly, we need to match the low-energy Lagrangians L] and L£J§ with
the NP Lagrangian L9 . Strictly speaking £ and L£J§ should be matched to the Lagrangian
obtained by running the Wilson coefficients down to u = my, but RGE induced terms are

generally negligible with respect to tree-level oneﬂ. From equations ((1.32), (1.34) and ([2.14)
we find

9 47T2 02 d ye
(Cip)ij = =5 ﬁ)‘%’)/\ij[ol +C3+Cg] + ...
472 02 .
(C;](;)ij = ﬁp)\gzs)\”[—cl - 03 + 06] + ...
472 02 .
(Cop)ij = ﬁﬁrgi’)/\ij [Cy+ C5] + ...

472 v? .
(Cap)ij = ﬂprgs)\zj[—@ +Cs] + ...

, 472 02 .
(CNP)ij = 62)\2 ﬁ)‘gS/\zg[Cl - 03] +..
v 47T2 Uz d ye
(C{vp)ij = 62/\23 PFQS)‘ijcﬁl +..
. 1)2 /\ud .
(CLI,)NP)z‘j - Vj CsAij +--- (3.1)

where dots stand for subleading RGE terms.
We focus on the ratios R“K/ “ and Rg(i), defined in ([1.16|) and subject to the experimental bounds
1} In our framework R’;(/ “ can be written as
e e+l + o+ e
B e +culf e + el
G+ (C) i+ (C )l + 1€ + (€ )+ (CF)

Ca + (Cho)ee + (Cl)ecl” + 1€ + (Cl)ee + (C)ecl*
(Cop)ees (C¥o)ee, (CL)ee and (CiY)ee can be neglected because A§; = 0. Working linearly in NP
contributions and substituting C3,, ~ —C&, ~ 4.2 [6], we find

2

(3.2)

. 2 1 0? e
R ~14 CTWPAgs/\zz (C1+Cs+Cy) (33)
SM S

which results in the numerical expression

028 AN

RMe~1—
K A2(TeV?) 103

(Ci+C5+Cy) . (3.4)

2This is true unless particular cancellations among parameters take place; we suppose that this is not the
case.
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The ratio describing the charged-current anomaly, R7!

(o 1S given by

e

D) = m (3.5)

Keeping only linear NP contributions and neglecting A{; and A§, with respect to \§;, we find

/e v? /\5:)?
Using the relation A" = Vi A%, A% can be expressed as A% = Vo A\ + VAL, Substituting
numerical quantities, we end up with the following expression

T/l C Vs

Ry, ~1— 0.12m)\33 (VCbAgg + )\§3> : (3.7)

3.1.2 Further tree-level phenomenology in B decays

Besides B anomalies, our framework predicts tree-level NP effects in other B-decay channels:

o An important example is given by the decay B — Krvv, which is strictly related to the
neutral-current anomaly. In fact, NP enters this process through the coefficients C¥, and
CY.; as equation shows, these are closely linked to the coefficients describing NP in
b— stte~, CYY and CL%". This happens because they ultimately originate from the same
SU(2), x U(1)y invariant operators in L9,

We consider the observable R7Y, defined as

B(B — Kvv)
B(B — Kvv)sy

Ry = (3.8)
which is subject to the experimental constraint R}’ < 4.3. In our framework R}’ can be
expressed as

Z..

vy
K =

2
C + C _ Zij ‘CSVM(SiJ + (C;p)u (C;/p)ij’z .
3 ]CSM 31Cxl”

(3.9)

By expanding the numerator and using the property >-;;|A{;|* = 1 and TrA® = 1, we find

2 Ny, 7w 0? 2

3|Cy,| aX, A2

d
N T U

~ 1
"3 Cr ] g, A2

(Cy — Cs+Cy) + ( —(Cy - Cs+ 04)>2 . (3.10)

Since CY,, ~ —6.4, we get the numerical result

(3.11)

WN1+06<>\§3 01—03+c4> 03<Ag3 01—03+C4>2
KN . .

0.01  A2(TeV?) 0.01  A2(TeV?)
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o The presence of a non-zero \$; implies non-vanishing branching ratios for lepton-flavor-
violating decays involving third generation leptons, for example B, — 7 and B — K7p.
The branching ratio for this second process reads [29]

B(B = Krp) 2107 (9.6 [(Clp)ur + (Clo)ur|” + 101(C8 ) + (CH2) ) - (3.12)
Employing the relation E(C;S% = A33/xg,, we find
NP/ K

e
22

— )\e ? 9 19 10 /10
B3 -+ K 20107 (3] (061(€2 )+ a4 101(C + €T
(3.13)

Given the order of magnitude we expect for C°, C¥,C*, C'” to account for B anomalies,
this is well below the current experimental bound B(B — K71pu) < 4.8 x 107° [30].

e Our framework predicts a tree-level NP contribution also to the purely leptonic decay
Bs — pp, which is sensitive to C%".

« LFUV in B — D/v is related to LFUV in B — (v, described by the observable Rg/fl,
[2]. The experiment Belle II, which should start data taking in early 2018, is expected to
measure this quantity to a 5% precision.

3.2 One-loop phenomenology

Renormalization group evolution induces two main effects. First, as discussed in section
Z and W couplings to fermions are modified with respect to the SM. Second, as we can
see from equation (2.91]) and the related tables, at low energies a purely leptonic Lagrangian is
induced. As a consequence, we expect LFV and LFUV effects in Z, W and 7 observables. In
this section we examine some of them.

3.2.1 Z-pole observables

The NP modification to Z couplings explicitly breaks both LF and LFU in weak
interactions. The consequent deviations of Z-pole observables from SM expectation values are
tightly constrained by LEP measurements of the Z decay widths, left-right and forward-backward
asymmetry. Remembering the definition of the axial and vector couplings

Vg = (gﬁ)a + (gf;)ze ap = (gf)ee - (Qﬁ)ua (3.14)

we consider the observables 7= and 2=, which quantify the universality of Z couplings to charged
leptons. Experimental bounds on these couplings are derived from the measured values of
asymmetries and are given by [31]

YT~ 0.959 (29) 47— 1.0019 (15). (3.15)
Ve Qe
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In our framework they read

Ur 2 e e e e

0 l-7—= ey [(697 )33 — (697)11 + (097 )33 — (697 )11] (3.16)
ar e e e e

o 21 =21(0g1)33 = (0g2)11 = (0g%)ss + (0g7)u] - (3.17)

Plugging (12.50)) into these expressions we obtain

Uy 24 A A A
v—e ~1-— 1_ Zz%\, [3A23y?(01 — Cg + Cﬁ) IHE + 9303 IHE + 31(01 — C4 + CG — 05) In W]
. A A 2 A
I 1 2x, [3A33y§(01 = Ce)ln— + ¢2CsIn — + (0, — Oy — Cs + C5)In ] :
Qe my my 3 my,
(3.18)
and substituting numerical values we get the following estimate
v 0.05
T xl—— [(C] — C3+ Cg) + 0.2C5 +0.02 (C; — Cy + Cs — C:
ve A2(Tov?) (€1 = G+ Co) + 0265 + 002 (C) = Gy + Co = C5)]
T 0.004
& ~ [(01 — 03 — 06) + 0203 +0.02 (01 — 04 — 06 + C5>] . (319)

ac  A2(TeV?)

Another important observable is the number of neutrinos N,, which is extracted from the
invisible Z width. Taking the NP modification of Z couplings to neutrinos into account, N,
can be approximated by

0.008

N, ~3+4(6g7)s3 =~ 3+ A2

[(Cy + C3) —0.2C5 +0.02 (Cy — Cy)] - (3.20)

The experimental bound reads N, = 2.9840 =+ 0.0082 [31] .

3.2.2 Purely leptonic effective Lagrangian

The effective low-energy Lagrangian (2.91)) contains a purely leptonic Lagrangian L. Taking
into account the explicit values of the &; and 0&; for leptonic operators, we can write it as

4G > e r e e — e r er er
ﬁf:ff = _TQF[(GL’W}‘ er) Z(f”)”“f) (29§MCt - chfy) + (eryuA“er) Z(f’Y“f)(QQgMCt — Qs )
f f
+ (e Av) (Dyper + Y, Vexud,) + hacl, (3.21)
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where f = {v,,e.,ex, Uy, Up, dy,dr} and gl,, is the Z coupling to the f field in the SM. The
coefficients cf, 7, ¢f’, ¢S’ are defined as

Y
31}2 9 A2
¢ = 5553 (C1 — C3)A35In ——
t o 32m2A27 33 2
w2, A2
e’ - - O Aur 1 A
“ 32m2A\2 Y 633 ML m2,,
2 9 ) ,
e v 9 A . m ) mc
d m?
—A33(C1+C3+Cy)In 2
2 2 9 ) ,
er (% 2 A u m u mc d mb
C'y - me [(CG - 05) hl E + 206 </\33 hl % + )\22 hl Iu2> — )\33 (CG + 05) ln ?
cc 3U2 2 ” A2

Leptonic processes triggered by this Lagrangian get a NP contribution from a combination of
¢, 5, ¢f and Jor from their primed counterparts. In general this contribution will depend on
the renormalization scale u; this dependence must cancel when computing the matrix element.
The scale dependence is encoded in the coefficients £, ¢7" and ¢, because they include the
electromagnetic contribution, which runs from A to the low-energy scale . The contribution
coming from the loop diagram with the top instead runs only from the higher scale A to myy,
because for lower values of p the top is integrated out. It is worth noting that the coefficient c{®
has no electromagnetic NP contribution; this happens because fully leptonic charged-current
operators, as already observed, aren’t renormalized by QED effects.

Lagrangian (3.21]) manifestly generates both LFV and LFUV processes. Given the hierarchy in
A, NP effects are maximized in transitions involving the third generation. As a consequence,
we focus on 7 decays. In the SM leptonic 7 decays 7 — (v, (¢ = p,e) proceed trough the
tree-level exchange of a W boson, with the universal coupling associated with the charged-current
interactions. Due to the W coupling universality, all these decay modes have equal amplitudes
in the SM, provided that final fermion masses are neglected. The NP contribution instead
violates LF and LFU; we consider 7 — fvv as an example of LFUV and 7 — 3 as an example
of LFV.

3.2.3 17— /lvv
LFU breaking effects in 7 — fvv (with ¢, 5 = e, ) are described by the observables

B(T — EQJU!?)QXP/B(T — gg’lVlj)SM

R7/f2 = 3.22
T B(p = ev)exp/ B — evi)su 522

which are subject to the strong experimental constraints [32]
RI/* = 1.0022 + 0.0030 RT/¢ = 1.0060 = 0.0030 . (3.23)
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The process T — (i;1; Teceives a contribution both from the SM Lagrangian and from £%;. The
SM contribution reads

4G, - _ 4G R - _
Loy = —W@ﬁw(&%%’ﬂ(%’L’V“TL) = —W&ﬂig(&%ﬁ)(ViL’Y“VjL)7 (3.24)

where we used the Fierz identity (7i,7,7)(€oy"vin) = (Uiryuvjn) (€y" 7). The part of L we
are interested in is given by

4GF e e cclye e i —
W {|:Ct5ij)\é3 + Ct ()\EJ(Szg + )\235£j>:| (gLfY/LTL)<ViL7uij)

+Cf/5ij)\§3(gR’yMTR)(ljiL’tujL)} . (325)

L _
‘Ceff__

Therefore the full Lagrangian contributing to 7 — fvv is

L= _455 {(CZE)Z'J'(EL%LTL)(’Z‘LV”VJ'L) + (O;Z)ij (ZR’YMTR)<I;iL’tujL)} ) (3.26)

where (C71)ij = 0¢j0is + ¢{0ij Mg + (053 + Ai30¢;) and (CFF)ij = ¢§'Ajg0y;. The ratio R7/* can
be expressed in terms of these coefficients as follows
T4 T4
> [(C )il + [(Cr )i
la1 e la1 e :
i (O )i+ 1(Cr™ )iy 2

RT/f2 — (3.27)

Working linearly in NP contribution, only the interference between the SM term and the
charged-current term survives, giving

C
T/l ~, cCy€e Ao e 3
RT/* 1420 ~ 14 0.008 )\33A2(Te 7 (3.28)

3.24 17— 3u

One of the most studied LFV processes generated by L5 is the decay 7 — 3, which is forbidden
in the S. The only contribution is given by L

4G [ (4 - 77
ﬁﬁﬂ = _TZF 53 [(cor — Ct)(ML'YuTL)(ML”Y“ML> + CLR(ML’YMTL)(MR’Y“MR)

+(Cp — C?)(NR’YHTR)(/]L”Y#ML) + C/LR(NR'YMTR)(/]R'Y“NR)] T, (3.29)

where ¢}, = 2s53,¢" 4+ ¢, Adapting the formula given in ref. [33] we find

G2m?
(= 3u) = 1;27T3

IXsal” [2cun — )2 + €+ 207, + (¢ — )] - (3.30)

3This is rigorously true if we consider neutrinos to be massless; taking neutrino mixing into account 7 — 3u
receives a one-loop SM contribution. However the corresponding branching ratio is tiny B < 10740, far below
the current experimental limit. An observation of 7 — 3 in the near future would therefore be an unambiguous
signal of NP, beyond that needed to account for neutrino masses.

23



CHAPTER 3. PHENOMENOLOGICAL IMPLICATIONS

If at least one among C — C3 and Cg is non-zero the term proportional to the Yukawa coupling
gives the leading contribution; in this case we neglect the electromagnetic contribution given by
c5, obtaining

GZm?
19273

Knowing that the 7 lifetime is 7, = (290.17 £ 0.53 4 0.33) - 10~ s [34] we find the following
numerical expression for the branching ratio

A\ [ (Cr = C5)? C2 -
B 3u)~ 2] |5.0 4.5 6 -1078. 3.32
(7 = 3u) <0.3> [ ATV ATV ) (3:32)

I(r — 3p) =

IX5a? [ 2(1255, — 8% +2) + ¢ 2(12sy, — 4s%, +1)] - (3.31)

The current experimental bound reads B(r — 3u) < 2.1- 1078 [30].

3.3 Study of a motivated scenario (only Cy)

So far we obtained the general analytic expressions for B anomalies and for other significant
observables; no specific hypothesis on the coefficients C; in L, has been made yet. In this section
we specify our analysis to a phenomenologically relevant case. In view of the considerations in
section [1.4] we examine the scenario where only (C2,),, is non-vanishing. Operators containing
a right-handed quark current are absent in this scenario; the only difference with respect to
[T, 2] is the presence of a non-zero Cs. By imposing (C%),, = (C¥)uu = (CX%) ., = 0 we obtain
the following conditions on the C;

Cy+ Cs = Cq Cy=Cs5=0. (3.33)

Taking the NP scale to be A ~ 1 TeV, the free parameters in this setup are C}, Cs, A3y and \S,.
Our initial assumptions about the structure of A° and A\ straightforwardly imply [As¥| < 0.5;
we can further restrict the bounds on A§;, because |AS,| < 0.1 [35] and A§, =~ |)\§3|2 imply
|AS3] < 0.3. As to (4 3, we can safely assume |C 3| < 3.

Given (3.33), B anomalies read

T C ‘/CS
R =1-012 2 (Vb)\g3 4 )\§3>
o 0.28 A5, \?

On the other hand, the expressions for the relevant observables - which we shall refer to as
constraint observables - simplify to

d _ d _ 2
R;g=1+o.6<A2301 C3>+0.3<A2301 C3>

001 A2 0.0l A2
n 0.05 \S
%:1_ o (2G04 0.20540.02 (201 + Ch))
Qr e 03
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3.3. STUDY OF A MOTIVATED SCENARIO (ONLY Cy)

Constraints
Vv

K
B(t—3p)
z

. A
—b— Exp. point

oo e L

1.1 1.15 1.2 1.25‘ 1.3 1.35 R

D1')

Figure 3.1: Impact of one-loop-induced constraints on the values of R;/é) and R% for Cy € {-3,3},

C3 € {—3,0}, X§3 € {—0.3,0.3} and A3 € {—0.04,—0.001}. The experimental point shows the value
of R“K/ ¢ and the combined value of Rg/ﬁ and Rg/f .

0.008)5
N, =3+ T““’?’((J1 +C5—0.2C5+0.02C)
T e O
RT/%2 =14 0.008 AggAf;’
A5\ [L (Ch = Cy)? (C1+ Cs)? 8
= . 4, 1078 .
B(r — 3u) (03) [50 o A 0 (3.35)

It is interesting to observe that although two neutral-current operators are present in L7,

the ratio 2= turns out to depend exclusively on the Wilson coefficient of the charged-current
operator QZ’I) at scale A, Cs. Choosing |\%| < Vi in order to avoid too much fine tuning when
reproducing the CKM matrix, there is a strong relation between the allowed departure from

1 of RTD/f;), or and RY“?. Since the latter are tightly constrained by experimental bounds,

5R;/(€) = R;/f;) — 1 will be tightly constrained as well.
This can be clearly seen in the graph displayed in figure 3.1 which shows the allowed regions
for R’;(/ “ and RTD/f;) when bounds on constraint observable are imposed. Each constraint
observable is evaluated for a given quadruple (O}, C3, A3, A%) in parameter space; if the result
is compatible with the experimental value within 20, the values of R‘;g ‘ and R;/(e*) for that
particular quadruple are plotted with the color associated to the observable considered. The
same procedure is repeated for quadruples randomly distributed in parameter space. Note that
the bound on the observable R%Y is imposed a priori on all quadruples.

Altough all observables receiving NP contribution at one loop impose strong bounds on B
anomalies, Z-pole observables set the strictest limits, forcing 5R;/(€) to be < 0.02. Like in [11 2],

we conclude that current data on constraint observables challenge a simultaneous explanation
T/l

of the present values of R%/® and Ry

4Note that Z-pole observables are considered as a single constraint.
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ST HJ\Jiw TTT UJH]‘

[TT !‘H!II}‘
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-
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Figure 3.2: B(t — 3u) vs. B(B — K7p) within our model for two different configurations of Cy

and C3, imposing all constraints but R/ { . We let parameters vary in the ranges C5 € {—3,3},
g D)

¢, € {—0.3,0.3}, A%, € {—0.04,0.04} and A € {1,2} TeV.
23 23

In the plot of figure we analyse the correlation between the predictions for two LFV decays
in our model, namely the semi-leptonic process B — K7p and the purely leptonic decay 7 — 3.
The graph shows that the loop-induced process 7 — 3u is a much more sensitive probe of the
considered scenario than the tree-level observable B — K7pu, due to the current and expected
future experimental resolutions.
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Conclusions

In the last few years the experimental collaborations of LHCb, Belle and Babar reported
indications of LFUV in the processes B — K™¢{ and B — D" /{v. Since the universality of
weak interactions is one of the key predictions of the SM, these results have triggered a large
interest about possible NP interpretations.

In the present work we have analysed R%ﬁ) and RTD/(é) in a model-independent way, assuming
that NP originates at a scale A ~ 1 TeV. We have started by building the NP Lagrangian at
the scale A in terms of five six-dimensional semi-leptonic operators. Then we have derived the
low-energy effective Lagrangian extensively: we have addressed running effects from A to the
EW scale by employing one-loop RGE in the limit of exact electroweak symmetry, and, after
integrating out heavy degrees of freedom, we have described the evolution down to 1 GeV using
RGE dominated by the electromagnetic interaction.

In the last part of our work, we have studied the most relevant phenomenological consequences
of the derived Lagrangian. After considering B anomalies and other B decays receiving NP
contribution at tree level, we have investigated the phenomenology arising at one loop. Since
the most important effects of the running are the modification of the Z and W couplings and
the generation of a purely leptonic effective lagragian, we have focused on LFUV and LFV in
Z-pole observables and in 7 decays. Motivated by the global fits regarding NP in b — su*pu~
transitions, we have finally considered the scenario where only the Wilson coefficient C* receives
NP contributions, with the aim of quantifying the impact of one-loop-induced constraints on
RTD/(E*) and R“K/ °. We have found that in this scenario Z-pole observables set the strictest bound
on the allowed values for B anomalies, because they imply R;/({) < 1.02. This result conveys the
same message as [I}, 2]: electroweak radiative corrections challenge a simultaneous explanation
of R“K/ “ and R;/f;) and cannot be ignored when addressing B anomalies.

Finally, we have identified the leptonic decay ™ — 3u as the most promising channel to test
LFV effects in our framework.
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Appendix A

A.1 Formulas

~ relations

{97} =2

vy, = =297

Vi = 4n"

VP, = =297y

TuVaYv = NuaVv + Now Y — N Ve + Z'E,ual/pfypﬁ)/g)

Trace formulas

Tr[y# "] = dn™”
Tr[y 9"y 2] = 40" — 00" 4+ 0t n"?)
Tr[y°] = Tr[y°4#4"] = 0
Tr[y*v"7*7°y°] = —4ie*”
Tr[y"y"..] =0

N——

odd
Tr[y> y#4%..] =0
odd

Feynman parameters

AB / AerBl—a:)]

Dimensional regularization

2m)P (k2 — A)? (4m)2 \ € A

v p [ d%k 1 i (2 12
2 - 2 flndr+m
() /(QW)D A2 (4n) (e Findr iy

D 2 ; 2
(,u2)2[2)/(d i b __ A <—2—ln47r—'u+7—1+0(e)>

99

v+ o)

(A.1)

(A.3)



APPENDIX A.

Spinor currents contractions

VYo Vo Prayw) (57" Prgyv) n°° = 16 (05, Prsytt) (uy* Prgyv)
0y YV Pryu) (U’YW Vv R<L>U) Nap = 4 (07, Preryt) (" Pryv)

ap _

(v
(v
( Y Yo Vo Pr(r U) uy" vy Preryv) (07 Preeyu) (Uy" Ppigyv)

(07" YY" Pryu) (u%ﬂ/ Y Prr)v )Uaﬁ =16 (EVMPR(L)U) (a'YuPL(R)U)

Proof: Using the last relation in (A.1)) we show that

(VYo Pryw) (W 57" Pryv) = (0% Prayw) (Wa¥s7” Preyv)
+ (07 Pry ) (W V570 Prcyv)
+ 2 (VY0 Prayu) (W Prayv)
+ i€uavp (VY Priy) (87" Pry)

(07" YY" Prcaytt) (897 0 Paiyv) = (07" Praytt) (879,777 Paciyv)
+ (07" Preryu) (W vs7 Py v)
+ 2 (0Y* Preyu) (ﬂvﬂPR(L)v)
i€ (59, Prayt) (@977 Pacsy )

(%70 Prey ) (Y57 Prayv) = (0% Proy ) (070787 Prceyv)
+ (09 Prayw) (WY Y570 Priyv)
+ 2 (VY Priytt) (Uys Preryv)
— i€uavp (V7 Pryu) (ﬂv“vm”PMR))

(077" Paoytt) (57,775 Proinyv) = (07" Pagey) (9,79 Prryv)
+ (07" Pryw) (m“vﬂ%PL(R)v)
+ 2 (UY* Pryu) (Q_L’}/BPL(R)U)
— 0" (07, Prpyu) (ﬂ’Yu’Yﬁ%PL(R))

where we used 79 Py = Py and v*P, = —P,. These imply (A.6])-(A.9).
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A.2. DETAILED COMPUTATIONS FOR CONSISTENCY CHECKS

A.2 Detailed computations for consistency checks

A.2.1 Consistency check for (e, v*A.e.)(e.v.€L)
A.2.1.1 Electromagnetic penguin

M., receives contribution from the insertion of the three operators in (2.63). We start by
inserting the operator with coefficient (C} — C3). Letting ¢ be the momentum carried by the
photon and k£ the momentum circulating in the loop, the amplitude reads

2_ C’l Z / d”k Tr[ £+%+muzm LK+ )]

M=33 C(01 k)2 —m2 (k2 —m2) A (09" Pou) (uy” Puo)

3

where we multiplied by 3 in order to account for the three quark colors. Note that we cannot
choose immediately ¢ = 0; we need to check that the pole cancels first. Using trace formulas in

(A.2)) we find

Tr[([ + K+ mui)%APL(k + M)y =2 (0 + k) ko + (C+ K)ok, — nuk - (€4 k)
+m2, 4 i(0+ B K o)

We then recast the denominator using the Feynman parametrization 1} with A = ((+k)*—
and B = k* —m? . Noting that

Az + B(1 —z) = (k4 (x)> —m] — Ca(1—z) = (k+(z)* — A,

where A =m?2 + ?z(1 — ), we get

/ d°k Te[(f + K+ mu,)v. P (%+mul )] / / der Te[(f + K + mu)vu P (F + mu,) 7]
@2m)P  ((L+ k)2 —m2)(k? - ((k+ lx)? — A)? '

Performing the shift & — k — ¢z the trace becomes

Te[...] —2 [(12) — 1) K + (mzl + Pr(1 - a:))] N — 20,0,2(1 — ),
where we have kept only even powers of k and used the substitution k,k, — %77#- Note that
the chiral stucture of the current giving the loop content plays no role, since the 5 dependence
in the trace cancels after the shift.

The term o< £,¢,, does not contribute because, thanks to Dirac equation, it yields zero when
contracted to the fermionic currents; then

e e ZA / [(12)_1)/(32;1 (k2 ﬁQAV

+ (mi + (1 - x)) / (;l;fD (k? —1A)2)] Al (09" Pru)(uy" Pro) .

!This can be done because [ d”kk,k, f(k?) = 2= [ dPkE?f(f?)
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Using dimensional regularization integrals (A.5)) and (A.4)) and eliminating divergences in the
MS scheme, we find
. 1 86 Cl
T 16m2 2

1 2
Z AL / dx (€2x(1 - x)) In %Aig(ﬁv“PLu)(Tw“PLv) :
The pole in £ = 0 cancels, so £ can be safely taken to be 0. The final result yields

/l: e
= 16272 l?)e (Cy — C3) Z)\ In u] Ao (0 Pou) (uyt Pyo) .
In order to compute the contribution deriving from the other two operators in (2.63)) we just
need to change the charge of the particle running in the loop ( e? — —2¢?%) and to substitute
A% with A4 and T'9.
In conclusion, the final result reads

i 4 2 u lu2 /1,2 u /L

u C

9 112 12 2
_ 562(01 + C3) (Afl In —; iz )\5‘21 = + M\, In mb>
2 2
_56204 <I‘§l11 i rs, 2 " —|— e, In -~ )] Ao (0y, Pou) (Ut Pou) .
d s b

A.2.1.2 7 penguin

The amplitude for the Z penguin with the top quark running in the loop reads

My = — 3\,

Cy —Cs 973 n"r / dPk Tr [([ + K+ mt)VuPL(k +my) (giPr + QZVvPR)}
N e —m) (2 (O B2 — m)(k2 — m3)
AL (0 Pru) (U970 P + 957 Pr)v) -
Since the propagator is massive we can safely take ¢ = 0, hence

My =g, CCo B[ 8 T+ )Pl 4 )P + g T)
A gmz ) (en)p (k2 —m)?

Ao (07" Pru)(u(g;y” Pr + 937" Pr)v) -
We then compute the trace using ([A.2

9 9 2
Tr[...] = ELTT Ky + 2L m;Tr ] = 2n {92 <D - 1) K+ gémﬂ )

and find the following expression for the amplitude

., C1—C g2 2 dPk k? dPk 1
My :6)‘33173 2 [gi ( - 1)/( 2 "‘ngf/ 2)2

A2 c2m? D 2m)P (k? — mg)? (2m)? (k? — m;
A (0 Pyu)(u(gyvuPr + 957, Pr)v)
u C1 —Cs 92 /’LQ e (= —( e e
=033 A2 c%v;l% (_29154) In E?/\12(U7MPLU)(U<9L7MPL + QR'YMPR)U) :
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In the last step we used the dimensional regularization integrals (A.5)) and (A.4). Remembering
that m? = QmZQCW 2 the final result is

My = Ao (03, Pu) (" Puu) | =617 Mg (Cr — Cs) (_2 * S%V> n 512] .
i

i
167m2A2

A.2.2 Consistency check for (e;7"T%¢;)(dx7,[%dy)
A.2.2.1 Computation of M7

Taking all external particles to have momentum p, the amplitude of the diagram in figure [2.5(i)|
is given by

MZ — _ 92 eg

a C5 pe / A"k (k —p)*(k — p)? (07,707 Pru) (457" Pro)
i 2 9r Ir A2z Tz .

(2m)P (k* —m3)(k — p)*x
We take p = 0 and rewrite the numerator using k“k? = %naﬁ and the spinor contraction 1 ,
obtaining

M7= -2 95 9% gre I / A’k kk? (09,707 Pru) (@757 Prv)
(A R

G A? (2m)P (k2 — my )2k
2 D
_ 49 e a G d7k 1 i
B _4£ i I E/ )P (k2 —m2) 211 (07, Pr) (07" Pyv)
g e dPk 1 . - B
7 f iAQ / / m%x>2F12F6112 (U’YuPRU> (U’Y‘HPRU) ,

where in the last step we rewrote the denomlnator using (A.3)). Next we compute the integrals
over the loop momentum using 1’ the result in the MS subtraction scheme reads

: 2
t 92 /”L e 1d (5 =
MZ = (—4 g5 g C’5> [ + 1] [ (07, Pru) (uy* Pro) .
1672A2 2 JROR m2 1Az AT e "

A.2.2.2 Computation of M?

The computation is similar to the MZ one, except for the y-structure appearing in the numerator.
Using the spinor current contraction (|A.7) we find

Z_ % . 41551 / Pk kKP (07" 7y Pu) (9,777, Pav)
k %v RA2 12+ 12 (27T)D (kz _ mz)2k4
2

i 9 d 14 e Td /= _
9595 C'5> [ln + 1] [T (07, Pru) (uvy® Pro) . (A.10)
167T2A2 < R m% 12+ 12 put R R

A.2.3 Consistency check for (e, v*\,)(u,y,A"u,)
A.2.3.1 Computation of M;

Let p = 0 be the momentum of the external particles and & the loop momentum. W have

220 dPk koKP (0y,7a v, Pou) (ayHysy” Poo
92 3>\§22Au IZVTZQ/( (’)/M,Y’y L)(/Y’Y/B’Y L).

Mi==5"2 27)D (k2 — m2,)
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We observe that 3°;[A“Vegu1i[Viyliz = A% due to A properties.
Using k°k® = k—;naﬁ and the spinor current contraction 1) we find

M; =~

492 dP 1
9203/ ( : Xio Ay (07, Pru) (" Po)

A2 2m)P k2(k2 —m2)
The Feynman parametrization is the same we used for M.; the final result in the MS scheme
reads

2
(—495C3) lln :72 + 1] Ao AL (07, Pou) (" Poo)

W

i
M; = 1672A2
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