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Introduction

The Standard Model (SM) of particle physics has proven to be highly successful in describing
elementary particles and their interactions. The recent observation of a new state compatible
with the properties of the Higgs boson at the Large Hadron Collider (LHC) put in place the main
missing block for its experimental validation. That notwithstanding, it is widely believed that
the SM is the low-energy version of a more fundamental theory. According to the naturalness
hypothesis, New Physics (NP) should occur already at the TeV scale, which is being directly
tested at the LHC. No NP signal was found during the first run, that achieved a center of mass
energy of 7 TeV.
There are however hints for NP in the flavor sector. Recent data in B physics point towards
lepton flavor universality (LFU) violation in semi-leptonic B decays, both in charged b → c

transitions as well as in b→ s neutral currents. Additional tensions between SM predictions and
experimental measurements in semi-leptonic B decays arise for example in the B → K∗µ+µ−

decay, especially in the angular observable P ′5. These deviations from the SM have stimulated
an ongoing discussion about possible NP interpretations.
The present work analyses B anomalies and their compatibility with other low-energy observables
in a model-independent way. We assume that NP originates at a scale Λ much higher than the
electroweak symmetry breaking (EWSB) scale and describe its behaviour below Λ by means of
an Effective Field Theory (EFT) approach, as outlined in the first chapter.
In the second chapter we write the effective NP Lagrangian at the scale Λ, the aim being to
extend the analysis performed in [1, 2] by enlarging the basis of effective operators in this
Lagrangian from two to five well-motivated semi-leptonic operators. Then we build the low-
energy NP Lagrangian by computing the quantum effects induced at the GeV scale; a key tool
in this sense is provided by renormalization group equations (RGE).
In the third and last chapter we consider the phenomenological implications of the derived NP
Lagrangian. After revisiting B anomalies, we study observables receiving NP contribution at
loop level, which include Z-pole observables as well as LFU and Lepton Flavor (LF) violating
effects in τ decays. Finally we consider a particular scenario motivated by global fits.

5



CONTENTS

6



Chapter 1

An effective approach to B anomalies

SM predictions have been experimentally verified to a great degree of precision over a wide
range of phenomena. However, we also know that the SM is not a complete theory: neutrino
oscillations, baryon asymmetry and the evidence for dark matter cannot be explained within
the SM. They are indications for the existence of physics beyond the SM.
It is commonly accepted that the SM constitutes a low-energy EFT of a more fundamental
theory; even though we still do not know how to extend it, the solution to the hierarchy problem
points towards the existence of new degrees of freedom in the TeV range.
Two complementary strategies are currently being used to investigate the TeV scale. Experiments
at the high-energy frontier, performed at the LHC at CERN, aim at directly producing and
detecting new heavy degrees of freedom, while high-precision experiments investigate virtual
effects from NP particles in lower-energy processes. The investigation of B physics fits into this
second effort.

1.1 The flavor sector of the Standard Model

The SM of elementary particles is based on the gauge group GSM = SU(3)C × SU(2)L × U(1)Y .
The matter content consists of fifteen fermion fields and a scalar, the Higgs field 1

LiL(1, 2)−1/2 eiR(1, 1)−1 qiL(3, 2)+1/6 uiR(3, 1)+2/3 diR(3, 1)−1/3 φ(1, 2)+1/2 , (1.1)

where every fermion field appears in three replicas called flavors, labelled by the index i = 1, 2, 3
and the SU(2)L doublets LiL and qiL read LiL = (νiL, eiL) and qiL = (uiL, diL).
The SM Lagrangian is given by the sum of three terms,

LSM = Lgauge
SM + LHiggs

SM + LYukawa
SM , (1.2)

1We denote fermion fields by ψ(a, b)Y , where a, b and Y are the representations under SU(3)C , SU(2)L and
U(1)Y , respectively.
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CHAPTER 1. AN EFFECTIVE APPROACH TO B ANOMALIES

where Lgauge
SM , LHiggs

SM and LYukawa
SM are the gauge, Higgs and Yukawa Lagrangians, respectively.

They are defined as

Lgauge
SM = −1

4G
A

µνG
A − 1

4W
a
µνW

µν,a − 1
4BµνB

µν +
∑
ψ′
ψ̄′iD/ ψ′ , (1.3)

LHiggs
SM = (Dµφ)†(Dµφ) + µ2(φ†φ)− λ(φ†φ)2 , (1.4)

LYukawa
SM = −

(
d̄′RYdφ

†q′L + ū′RYuφ̃
†q′L + ē′RYeφ

†`′L + h.c.
)
, (1.5)

where primed fields denote fields in the interaction basis.
Lgauge

SM has a large global U(3)5 = U(3)2
` × U(3)3

q flavor symmetry, corresponding to the indepen-
dent unitary rotations of the fermion fields in flavor space. This symmetry is explicitly broken
by the Yukawa Lagrangian, as the couplings Yd,u,e are in general non-diagonal matrices. As a
consequence, the residual flavor symmetry group of LSM is

Gf = U(1)B × U(1)Le × U(1)Lµ × U(1)Lτ , (1.6)

where U(1)B and U(1)Lei are associated with baryon number and lepton family number conser-
vation, respectively.
In order to diagonalize each Yukawa coupling, two independent unitary matrices are needed

Yu = RuY
D
u V

†
u Yd = RdY

D
d V

†
d Ye = ReY

D
e V

†
e , (1.7)

where Y D
u , Y D

d and Y D
e are diagonal and R and V are unitary matrices. For practical purposes

it is often convenient to work in the basis where the Yukawas are diagonal, the so-called mass
basis (denoted by unprimed fields) which is related to the interaction basis by

u′L = VuuL d′L = VddL L′L = UeLL,

u′R = RuuR d′R = RddR e′R = ReeR . (1.8)

The rotations of the lepton doublet and of the right-handed quarks do not affect Lgauge
SM and

lead to no phenomenological consequences. The same does not hold for left-handed quarks:
since in general Yu 6= Yd, the up and down components of the quark doublet have to be rotated
with different matrices in order to diagonalize LYukawa

SM . As a result, Lgauge
SM is not unchanged. In

particular, the only term feeling the change of basis is the charged-current interaction involving
quarks, which arises from the term q̄iLi /DqiL. We have

LCC
SM|quarks = − g2√

2
W+
µ (ū′iLγµd′iL) + h.c. = − g2√

2
W+
µ (VCKM)ij(ūiLγµdjL) + h.c. , (1.9)

where VCKM = V †uVd is the Cabibbo-Kobayashi-Maskawa (CKM) matrix. As we can see,
LCC

SM|quarks is flavor-diagonal in the interaction basis; by switching to the mass basis, tree-level
Flavor Changing Charged Current (FCCC) transitions arise due to the presence of VCKM.
The CKM matrix is of crucial importance in flavor physics, because it is the only source

of flavor-changing transitions in the SM. It can be parametrized in terms of four physical
parameters, three angles and a phase. The most used parametrizations are the standard
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1.1. THE FLAVOR SECTOR OF THE STANDARD MODEL

(a) (b)

Figure 1.1: CKM unitarity triangle and allowed region in the ρ̄, η̄ plane as obtained by the UTfit
collaboration [4].

parametrization, which utilizes three angles θij and a complex phase δ, and the Wolfenstein
parametrization, where the CKM matrix elements are expanded in powers of the small parameter
λ = |Vus| ≈ 0.22 [3]. The Wolfenstein parametrization has the advantage of exhibiting the
strong hierarchy between the CKM matrix elements in a transparent way. Explicitly it is given
by

VCKM =


1− λ2

2 λ Aλ3 (ρ− iη)
−λ 1− λ2

2 Aλ2

Aλ3 (1− ρ− iη) −Aλ2 1

+O(λ4) , (1.10)

where A, ρ, and η are real parameters of order 1. Sometimes the rescaled variables ρ̄ and η̄ are
used:

ρ̄ = ρ

(
1− λ2

2

)
+O(λ4) η̄ = η

(
1− λ2

2

)
+O(λ4) . (1.11)

Since VCKM is unitary, the following relations hold:∑
k=1...3

V ∗ikVki = 1
∑

k=1...3
V ∗ikVkj 6=i . (1.12)

These relations are a specific feature of the SM, thus their experimental verification is a powerful
consistency check of the model. In particular, the relation

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0 ↔ [ρ̄+ iη̄] + [(1− ρ̄)− iη̄] + 1 = 0 , (1.13)

is phenomenologically very interesting, because it involves the sum of three terms of the same
order in λ. It is usually represented as a triangle in the complex (ρ̄, η̄) plane (see figure 1.1(a)),
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CHAPTER 1. AN EFFECTIVE APPROACH TO B ANOMALIES

the so-called CKM unitarity triangle. The angles and sides of the triangle can be extracted
from suitable flavor observables, thus the consistency of eq. (1.13) can be experimentally tested.
Since the values of λ and A are determined with good accuracy [4]

λ = 0.22497± 0.00069 A = 0.833± 0.012 , (1.14)

all the the observables sensitive to the CKM matrix elements can be expressed in terms of the
remaining parameters ρ̄ and η̄. The resulting constraints are shown in fig. 1.1(b); the graph
shows that they are all consistent with a unique value of ρ̄ and η̄ [4]:

ρ̄ = 0.153± 0.013 η̄ = 0.343± 0.011. (1.15)

It is therefore clear that the SM provides an extremely good description of flavor physics.

We have seen that FCCC arise already at tree-level in the SM. On the other hand, Fla-
vor Changing Neutral Current (FCNC) processes are highly suppressed in the SM: besides
arising at one loop, these processes always involve at least one off-diagonal element of the CKM
matrix and are further suppressed by the Glashow-Iliopoulos-Maiani (GIM) mechanism [5].
Therefore, given the high suppression of FCNCs in the SM, FCNC transitions represent golden
channels to look for NP effects.
Among the most interesting FCNC processes there are the semi-leptonic B decays, based on the
underlying transitions b→ s`+`− and b→ sν̄ν, as well as the purely leptonic decays Bq → `+`−

(q = s, d) and the radiative decays b→ sγ and b→ dγ 2.

1.2 Present status of B anomalies
In the last fifteen years the experimental study of B decays has been carried out at the LHC and
at the B-factories3 PEP II and KEKB. The two related experiments, BaBar and Belle, ceased
operating in 2008 and 2010 respectively; the upgrade of Belle, Belle II, will start collecting
data in early 2018. As to the LHC, three experiments are involved in the study of B physics:
ATLAS, CMS and LHCb, where the latter was specially designed for studying the production
and the decay of b and c hadrons. An LHCb upgrade is planned for 2019-2020.
Assuming that NP originates at a scale Λ in the TeV range, its effects on weak B decays are
suppressed by inverse powers of Λ. It is therefore reasonable to look for NP either in processes
which are very suppressed or forbidden within the SM or in observables predicted with high
precision in the SM.
An interesting class of B-physics observables falling into the second category is given by ratios
of partial widths of semi-leptonic decays with different flavors of leptons in the final state. These
ratios, also called R-ratios, are very clean observables, because hadronic uncertainties affecting

2For a comprehensive review on rare B decays, see [6].
3B factories are asymmetric e+e− colliders built with the explicit purpose of producing a huge number of B

mesons. They operated at the Υ(4s) resonance, which immediately decays into a B meson-antimeson pair.
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1.2. PRESENT STATUS OF B ANOMALIES

the individual branching ratios cancel in the ratio [6]. They test LFU and therefore constitute
powerful tests of the SM. In particular we consider the observables Rµ/e

K(∗) and Rτ/`

D(∗) , defined as

R
µ/e

K(∗) = B(B → K(∗)µ+µ−)
B(B → K(∗)e+e−) ,

R
τ/`

D(∗) = B(B̄ → D(∗)τ ν̄)exp/B(B̄ → D(∗)τ ν̄)SM

B(B̄ → D(∗)`ν̄)exp/B(B̄ → D(∗)`ν̄)SM

` = e, µ , (1.16)

where Rµ/e

K(∗) and Rτ/`

D(∗) test µ-e and τ -` (` = e, µ) universality, respectively.
In the SM, weak interactions are lepton-flavor universal, because gauge bosons couple in the
same way to leptons with different flavors. The only sources of LFU violation (LFUV) are the
masses of neutrinos, the masses of the charged leptons and their couplings with the Higgs boson,
which have a negligible effect on R-ratios. Hence, Rµ/e

K(∗) and Rτ/`

D(∗) are expected to be unity. It
has been observed that, in principle, radiative QED corrections could induce up to 10% effects
in Rµ/e

K and Rµ/e
K∗ . However, in practice, the explicit analysis performed in [7] shows that these

corrections do not exceed ∼ 0.03 in the region 1 GeV2 < q2 < 6 GeV2, where q2 is the di-lepton
invariant mass. Therefore, any deviation of Rµ/e

K(∗) from unity exceeding 1% in this region would
constitute a clear signal of NP.
Most notably, recent data point towards LFUV both in charged-current as well as in neutral-
current transitions. The statistically most significant data are:

R
τ/`
D = 1.34± 0.17 ,

R
τ/`
D∗ = 1.23± 0.07 ,
R
µ/e
K

∣∣∣
q2∈[1,6]GeV2 = 0.745+0.090

−0.074 ± 0.036 ,

R
µ/e
K∗

∣∣∣
q2∈[1.1,6]GeV2 = 0.685+0.113

−0.069 ± 0.047 ,

R
µ/e
K∗

∣∣∣
q2∈[0.045,1.1]GeV2 = 0.660+0.110

−0.070 ± 0.024 , (1.17)

where the values for the charged-current anomaly Rτ/`

D(∗) follow from the average [8] of LHCb,
Belle and BaBar data [9, 10, 11]. The results for Rµ/e

K and Rµ/e
K∗ come from the LHCb collabora-

tion [12, 13]. In particular, the result for Rµ/e
K∗ was presented at CERN very recently [13].

B anomalies are not the only tensions in semi-leptonic B decays; recent experimental results
have shown other deviations from SM predictions in processes based on the semi-leptonic
transition b → sµ+µ−. The most prominent deviation concerns the angular distribution of
B → K∗µ+µ−, in particular the observable P ′5, which exhibits a 3σ deviation from the SM
expectation value [14]. Additional tensions arise in the branching ratios B(B → Kµ+µ−) and
B(B → φµ+µ−) [15, 16].

In the present work we investigate B anomalies. To this end we need practical tools to
describe NP contributions to observables; rather than building an explicit extension of the SM,
we choose an EFT approach.
In the next section, we discuss some general aspects concerning EFTs, and then we focus on
their role in describing the SM and NP contribution to semi-leptonic B decays.
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CHAPTER 1. AN EFFECTIVE APPROACH TO B ANOMALIES

1.3 Effective field theories
EFTs are a powerful and versatile tool in quantum field theory, because they provide a

general framework to tackle problems involving very different physical scales. A classical example
is given by processes whose typical energy E is much smaller than the energy scale of the
interaction responsible for the process, which is usually set by the mass M of the corresponding
mediator. This is exactly the case for weak B decays, where E ∼ mb, which is far below the
EW scale as well as the NP scale Λ ∼ TeV. Therefore, B decays can be analysed by means of
an EFT approach both in the SM and in its NP extensions.
Two main tools are used to address this kind of problems: operator product expansion (OPE),
and renormalization group (RG). The idea behind OPE is that, if E �M , for the purpose of
computing the amplitude the full theory below M can be replaced by an effective Lagrangian,
made up by a series of local operators of dimension d > 4

Leff =
∑
d>4

1
M4−d

∑
i

C(d)
i Q

(d)
i , (1.18)

where the Q(d)
i are all the possible d-dimensional operators compatible with the symmetry of the

theory that can be built using fields lighter than M . In going from the full theory to the OPE
series the heavy mediator is removed as a dynamical degree of freedom; its effect is encoded in
the dimensionless coefficients C(d)

i , called Wilson coefficients.
For our purposes, we can safely truncate the series at d = 6, since higher-dimensional operators
have a faster decoupling with the scale M and are therefore subdominant. As a result, our
effective lagrangian reads

Leff = 1
M

∑
i

C(5)
i Q

(5)
i + 1

M2

∑
i

C(6)
i Q

(6)
i . (1.19)

Hereafter we will omit the superscript (6) and Qi will always denote a six-dimensional operator.
Now, let us suppose that the full theory is known and that we want to find an effective Lagrangian
Leff reproducing the amplitude computed in the full theory at a given order. Starting from the
general effective Lagrangian (1.19), we determine the Wilson cofficients Ci by matching Lfull

into Leff , namely by requiring

Mfull =Meff = 1
M2

∑
i

Ci(µ) 〈f |Qi(µ) |i〉 (1.20)

at the desidered order. Focusing on the one-loop case, we will find something of the form

Ci(µ) = Ci(M) + k
α

4π ln M
µ
, (1.21)

where Ci(M) is the coefficient we would find by doing a tree-level matching, α is the strenght
of the interaction originating one-loop corrections and k is some constant. This procedure
amounts to computing the Wilson coefficients in ordinary perturbation theory; clearly it has to
be repeated for a sufficient number of processes in order to find all the Ci.
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1.3. EFFECTIVE FIELD THEORIES

The next step is to evaluate the Wilson coefficients at the energy scale of the process we are
interested in, in order to compute its physical amplitude. We have to be careful in simply
substituting µ = E in (1.21), because, due to the large difference between E and M , a large
logarithm α ln M

E
∼ 1 might arise. If this is the case, α ln M

E
is not a good expansion parameter

and ordinary perturbation theory breaks down.
The problem is solved by switching from ordinary to RG-improved perturbation theory. To
understand this point, we observe that the matrix elements 〈Qi〉 inMeff have in general two
kinds of divergences: a divergence which can be fixed by standard wavefunction or coupling
renormalization, and another type of divergence, originating from the fact that we are using
operators with dimension higher than four. To fix this second divergence, operator renormaliza-
tion is required.
Defining the matrix ZQ as

Q(0)
i (q) = Z−1

Q ij
Qj(q)

and remembering that q(0) =
√
Zψ q, the bare Lagrangian can be rewritten as

Leff = CiQ(0)
i (q(0)) = CiZ2

ψ Z
−1
Q ij

Qj(q) = CiQi +
(
Z2
ψ Z

−1
Q ij
− δij

)
CiQj . (1.22)

Alternatively, we can renormalize Wilson coefficients, using C(0)
i = ZC ij Cj with ZC ij = Z−1

Q ji
.

Once expressed the bare Lagrangian as the sum of renormalized coefficients and fields plus
counterterms, we find ZQ ij by requiring the corresponding countertem to cancel the "operator
divergences" in Meff . Note that, as a rule, the one-loop matrix element 〈Qi〉 in Meff has a
divergence proportional not just to Qi itself, but to different operators Qj as well; the latter
need a counterterm proportional to Qj to be fixed. For this reason ZQ ij is in general a matrix.
At this point we compute the anomalous dimension matrix, defined as

γ = Z−1
Q µ

d

dµ
ZQ , (1.23)

and, by asking the bare Wilson coefficients to be µ-independent, we find that the Ci obey the
following renormalization group equation

µ
d

dµ
Ci(µ) = γji Cj(µ) . (1.24)

Formally the solution can be written in terms of an evolution matrix U(µ,M) as Ci(µ) =
U(µ,M)ij Cj(M) [17, 18]. U(µ,M) obeys the same equation as ~Ci and is given by

U(µ,M)ij = Tg exp
[∫ g(µ)

g(M)
dg

γT (g)
β(g)

]
ij

. (1.25)

Equation (1.24) is solved using as initial condition Ci(M), computed by matching the full
theory into the effective one. The choice µ = M enables us to avoid large logarithms, so that
ordinary perturbation theory can be used. Then RGE are used to run Wilson coefficients from
the high-energy scale M to the energy scale of the process, E; the solution for Ci(E) resums

13



CHAPTER 1. AN EFFECTIVE APPROACH TO B ANOMALIES

logarithmic corrections
(
α ln M

E

)n
to all orders n, yielding the LLA approximation [17]. By

re-expanding the result in powers of α, the result in ordinary perturbation theory is recovered.
Equation (1.24) shows us another important feature of effective field theories: even if at scale M
only a single Wilson coefficient Ci is non-vanishing, for µ < M in general new Wilson coefficients
will be non zero, hence new operators will arise. This phenomenon is called operator mixing
and it is due to the fact that generally the anomalous dimension matrix γij is not diagonal.

1.3.1 EFT in NP
A common way to describe NP effects on observables is to consider the SM as the renormalizable
part of an effective theory, obtained by integrating out heavy degrees of freedom arising at
the scale Λ. The main advantage of the EFT approach is that it provides a very general and
model-independent description of NP effects by means of a limited number of parameters.
Assuming that NP originates at a scale Λ above the EWSB scale, which we identify with
a mass mEW

4, a field theory valid above Λ should be invariant under the SM gauge group
GSM = SU(3)C × SU(2)L × U(1)em and contain all SM particles. Since NP degrees of freedom
can be integrated out below Λ, in the window below Λ and above mEW the theory can be
described by the Lagrangian

L = LSM + LNP , (1.26)

where LNP is the effective Lagrangian describing NP; truncating the OPE series at d = 6, we
have5

LNP = 1
Λ2

∑
i

CiQi . (1.27)

The operators Qi are written in terms of SM fields and are invariant under GSM. Reference
[19]6 provides the full list of six-dimensional operators compatible with gauge symmetry and
conserving baryon number: barring flavor structure and hermitian conjugation, there are 59 of
them.

1.3.2 Effective Lagrangians for B anomalies
Effective field theories are widely employed already within the SM. Even if in this case the

full theory is known, the EFT approach has the practical advantage of making computations of
amplitudes easier and to resum possible large logarithms.
One of the most significant applications of EFT in the SM concerns the description of weak
meson decays. As we already observed, these processes are characterized by the presence of
different energy scales, since their typical energy lies far below the masses of the W and Z boson.

4In our framework we identify v√
2 , mt, mW and mZ with a common mass mEW.

5There is only one five-dimensional operator, that is the Weinberg operator, which is responsible for the
generation of neutrino masses. Since it doesn’t play any role in our analysis, we safely neglect it. On the other
hand, out of the whole set of six-dimensional operators, we will focus on four-fermion operators.

6For a previous analysis, see [20].
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1.3. EFFECTIVE FIELD THEORIES

It is therefore reasonable to describe them with a Lagrangian where the massive gauge bosons
have been integrated out. The effective Lagrangian we use to compute tree-level amplitudes in
substitution to LSM is the well-known Fermi Lagrangian

Leff =− 4GF√
2
(
Jµ,0SM J

0
µ,SM + Jµ,+SM J−µ,SM

)
, (1.28)

where W and Z are not dynamical degrees of freedom, but their presence is taken into account
in the Wilson coefficient, GF in this case.
However, EFTs show their full potential when it comes to taking into account higher-order
corrections, for example QCD or electroweak corrections. Following the steps outlined above, we
start from a general U(1)em invariant effective Lagrangian. We determine the Wilson coefficients
in perturbation theory by matching the full theory into the effective one at the EW scale at
one loop. After computing the anomalous dimension matrix, the Ci are then run down to the
low-energy scale with the help of RGE.
Let us consider the B decays on which the neutral-current anomalies Rµ/e

K(∗) are based, namely
B → K(∗)`+`−. In the SM, b→ s transitions are described by the following effective Lagrangian,
which contains the operators contributing to the semi-leptonic decays b→ s`+`− and b→ sν̄ν

and to the radiative decay b→ sγ at the quark level [6, 17, 21]

Leff = −4GF√
2

(
λubs

2∑
i=1
CiOi

u + λcbs

2∑
i=1
CiOi

c − λtbs
10∑
i=3
CiOi − λtbsCνOν + h.c.

)
, (1.29)

where λpbs = VpbV
∗
ps. Leff contains different types of operators: the current-current operators O1

p

and O2
p, the QCD penguin operators O3−6 (where we sum over p = u, d, s, c, b), the electromag-

netic and chromomagnetic dipole operators O7 and O8 and the semi-leptonic operators O9, O10

and Oν :

O1
p = (s̄LγµTApL)(p̄LγµTAbL) O2

p = (s̄LγµpL)(p̄LγµbL)

O3 = (s̄LγµbL)
∑
p

(p̄γµp) O4 = (s̄LγµTAbL)
∑
p

(p̄γµTAp)

O5 = (s̄LγµγνγρbL)
∑
p

(p̄γµγνγρp) O6 = (s̄LγµγνγρTAbL)
∑
p

(p̄γµγνγρTAp)

O7 = e

16π2mb(s̄LσµνbR)Fµν O8 = gs
16π2mb(s̄LσµνTAbR)GA

µν

O9 = e2

16π2 (s̄LγµbL)(ēiγµei) O10 = e2

16π2 (s̄LγµbL)(ēiγµγ5ei)

Oν = e2

8π2 (s̄LγµbL)(ν̄iLγµνiL) . (1.30)

The sum over repeated flavor indices in the semi-leptonic operators is understood.
In principle we should consider also the chirally-flipped version of the dipole and the semi-leptonic
operators; however, they can be neglected, because the correspondent Wilson coefficients are
chirally-suppressed due to the (V − A)(V − A) structure of the charged current in the SM.
The operators relevant to the semi-leptonic process B → K`+`− are O9 and O10, hence the
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b

ei

W

q

Z, γ

s

ei

(a)

ei

b

W

u, c, t

W

s

νei

ei

(b)

b

ei

W

u, c, t

Ws

νei

ei

(c)

b

ei

q

s

q

eiGF

(d)

b

ei

q

s

q

γ

ei

(e)

Figure 1.2: Diagrams entering the computation of C9 and C10 in the full (a)-(c) and in the effective
theory (d)-(e).

Lagrangian we need to describe Rµ/e
K in the SM is

LNC,SM
eff = 4GF√

2
λtbs (C9O9 + C10O10 + CνOν) , (1.31)

where for future convenience we have considered also the operator contributing to B → Kν̄ν,
Oν . The Feynman diagrams relevant for the computation of C9 and C10 at the matching scale
mEW in the full and in the effective theory are displayed in figure 1.2.
Now the question arises of how new heavy degrees of freedom modify the Lagrangian (1.29)
and, as a consequence, (1.31). Essentially NP can affect this low-energy framework in two ways:

• It can modify the operators already present in the SM. Since NP could violate both
LFU and LF, in general its presence will determine a contribution with a non-universal
and non-diagonal structure in the lepton flavor indices. As a consequence, we need to
substitute the implicit structure ii in the semi-leptonic terms with the more generic
structure ij.

• It can generate non-negligible contributions to the chirality-flipped versions of O7−10 and
Oν - which will be denoted by a primed sign - as well as scalar and tensor operators,
defined as

OS(′)
ij = e

16π2 (s̄L(R)bR(L))(ēiej) OP (′)
ij = e

16π2 (s̄L(R)bR(L))(ēiγ5ej)

OT

ij = e

16π2 (s̄σµνb)(ēiσµνej) OT5
ij = e

16π2 (s̄σµνb)(ēiσµνγ5ej) .

As observed in [21], the SU(2)L × U(1)Y invariance of the NP Lagrangian above mEW

places constrictions on the Wilson coefficients of scalar and tensor operators: tensor
operators are excluded (CTij = CT5

ij = 0) and scalar operators are not independent, because
CSij = −CPij and CS′ij = CP ′ij .

In our analysis we consider NP effects in the coefficients C9(′), C10(′) and Cν(′), hence the
Lagrangian we use to address Rµ/e

K reads

LNC
eff = 4GF√

2
λtbs

(
C9
ijO

9
ij + C9′

ijO
9′
ij + C10

ijO
10
ij + C10′

ij O
10′
ij + CνijOν

ij + Cν′ijOν′
ij

)
, (1.32)

16
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where

O9
ij = e2

(4π)2 (s̄LγµbL)(ēiγµej) O9′
ij = e2

(4π)2 (s̄RγµbR)(ēiγµej)

O10
ij = e2

(4π)2 (s̄LγµbL)(ēiγµγ5ej) O10′
ij = e2

(4π)2 (s̄RγµbR)(ēiγµγ5ej)

Oν
ij = e2

(4π)2 (s̄LγµbL)(ν̄iγµ(1− γ5)νj) Oν′
ij = e2

(4π)2 (s̄RγµbR)(ν̄iγµ(1− γ5)νj) . (1.33)

In order to describe the decay B → K∗`+`− we should take also dipole operators into accont.
However, they affect Rµ/e

K∗ only in the low q2 region [22]; in the central q2 region, namely
1.1 GeV2 < q2 < 6 GeV2, the Lagrangian (1.32) can be used for both R

µ/e
K and R

µ/e
K∗ . Note

that primed Wilson coefficients enter RK and RK∗ with the opposite sign, because K is a
pseudoscalar and K∗ is a vector.
Summarizing what has been outlined so far, primed operators in LNC

eff are negligible in the SM
and therefore NP contributions are supposed to dominate. Unprimed operators are already
present in the SM, where they arise at one loop, and are modifed by NP in our framework.
Since in the SM no lepton-flavor violating operators arise, (C9

SM)ij, (C10
SM)ij and (CνSM)ij have the

form C9
SMδij, C10

SMδij and CνSMδij.
Turning to the charged-current anomaly, we observe that in the SM the amplitude of the
b → c`ν transition is dominated by the tree-level exchange of a W boson. We take NP into
account by using the effective Lagrangian

LCC
eff = −4GF√

2
Vcb(CcbL )ij(c̄LγµbL)(ēLiγµeLj) , (1.34)

where the SM contribution to (CcbL )ij reads δij.

1.4 Global fits and favoured scenarios
SM contributions to the Wilson coefficients in LNC

eff are known to next-to-leading order [6, 17].
NP contributions instead are investigated with the help of global fits involving observables
sensitive to their presence.
As discussed in the first section, recent experimental results have shown significant tensions
between measurements and SM predictions in processes based on the transition b→ sµ+µ−. In
the last years several global analyses have investigated these discrepancies, with the common
aim of finding out whether they could be softened by NP contributions [23, 24, 25]. Even though
they differ in the treatment of theoretical uncertainties and in the choice of the observables
included in the fit, all these global analyses point in the same direction: tensions can be relieved
by a NP effect in C9

µµ interfering distructively with the SM.
The most recent global analysis of NP in b → sµ+µ− is provided by [23]7. By considering
NP contributions in individual Wilson coefficients, the scenario with NP in C9

µµ only exhibits
7The observables included in the global fit are angular observables in B → K∗µ+µ−, the branching ratios

B(B0,± → K0,±
(∗) µ

+µ−), B(Bs → φµ+µ−) and B(B → Xsµ
+µ−) and angular observables in Bs → φµ+µ−.
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Wilson coefficient best fit point pull
C9

NP −1.21 5.2σ
C9

NP = −C10
NP −0.67 4.8σ

(C9
NP, C10

NP) (−1.15,+0.26) 5.0σ
(C9

NP, C9′
NP) (−1.25,+0.59) 5.3σ

(C9
NP, C10′

NP) (−1.34,−0.39) 5.4σ

Table 1.1: Best fit points and pulls for scenarios with NP in one or two Wilson coefficients [23]. The
subscript µµ is omitted.

the strongest pull; the best fit point is given by (C9
NP)µµ ≈ −1.2, which is consistent with the

previous global fits [24, 25]. Another good scenario is provided by (C9
NP)µµ = −(C10

NP)µµ. By
switching on NP in pairs of Wilson coefficients, the strongest pulls are obtained for NP in the
couples (C9

µµ, C10
µµ), (C9

µµ, C9′
µµ) and (C9

µµ, C10′
µµ), which show a similar behaviour: best fit points

give a large shift in C9
µµ and a small shift in the other operator. These results are summarized

in table 1.1.
Reference [23] also points out that although tensions can be coherently explained by a negative
(C9

NP)µµ, we still cannot rule out that they are caused by an underestimation of hadronic effects.
Future measurements of LFU ratios will play a clarifying role in this sense: a confirmation of
LFUV would be a clear evidence in favour of NP, because hadronic effects are lepton-flavor
universal. Interestingly, experimental results for Rµ/e

K and Rµ/e
K∗ in the central q2 region agree with

the predictions obtained using the best fit points in (C9
µµ, C10

µµ) and (C9
µµ, C9′

µµ) and considering
the transition b → se+e− to be NP free. The latter hypothesis is motivated by experimental
results concerning b→ se+e− processes [6].
Another recent analysis, [26], bases its fit on LFU observables, specifically the ratios Rµ/e

K and
R
µ/e
K∗ and the LFU differences of B → K∗`+`− angular observables DP ′4,5

. By switching on NP
in individual Wilson coefficients, it turns out that the fit shows a distinct preference for NP in
coefficients involving left-handed quark currents, namely C9

µµ/ee and C10
µµ/ee. On the other hand,

an explanation of the measured values of Rµ/e
K and Rµ/e

K∗ in terms of primed Wilson coefficients
only - corresponding to right-handed quark currents - is highly disfavoured. In fact, if primed
operators were dominant, we should have opposite anomalies (i.e. if RK < 1, then RK∗ > 1
and vice versa) because primed Wilson coefficients enter the two ratios with opposite signs.

In section 3.3 we aim at studying a well-motivated scenario inolving NP in a single Wil-
son coefficient. In this regard, we make two main hypotheses. First, we suppose that the
tensions concerning rare b → sµ+µ− decays and the LFU ratios Rµ/e

K(∗) and R
τ/`

D(∗) are to be
explained within a common NP framework. Second, we consider the transition b → se+e−

to be SM like. In view of these assumptions and of the results of [23, 26], two scenarios are
singled out, namely (C9

NP)µµ = −(C10
NP)µµ and the one with NP in C9

µµ only. Since the first one
has already been investigated in [1, 2], we will address the second one.
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Chapter 2

Effective NP Lagrangian at low energy

2.1 Building NP Lagrangian at scale Λ
As stated in the previous chapter, we describe NP contributions above the EWSB scale and

below the NP scale Λ - which we imagine being of order TeV - using the effective Lagrangian

LNP = 1
Λ2

∑
i

CiQi , (2.1)

where Qi are six-dimensional operators invariant under the SM gauge group GSM = SU(3)C ×
SU(2)L × U(1)em. The complete notation would be [Ci]prst[Qi]prst, where p, r, s and t are flavor
indices; to lighten the notation we will omit them unless they are strictly necessary.
In order to get the most general description of NP contributions, LNP at scale Λ, hereafter
denoted by L0

NP, should include the whole set of dimension-six operators compatible with the
SM gauge symmetry, with unknown Wilson coefficients [Ci(Λ)]pqrs. Such a complete analysis
goes far beyond the scope of the present work. Moreover, aside from B anomalies and other
tensions in semi-leptonic B decays, there are no other hints of NP at present. It is therefore
reasonable to restrict ourselves to operators wich might have an impact on these observables.
That said, there are three main aspects we should keep in mind when building the NP Lagrangian:

• like in [1, 2], we want this NP Lagrangian to simultaneously account for both NC and CC
B anomalies;

• we require B anomalies to be explained by a tree-level NP effect within our framework.
Our choice should therefore provide a tree-level contribution to the operators involved
in the decays of interest (C9

µµ, C9′
µµ, C10

µµ and C10′
µµ for the neutral-current anomaly and CcbL

for the charged current-anomaly). In particular, as far as the neutral-current process
b→ sµ+µ− is concerned, we are ultimately interested in being able to reproduce the main
scenarios favoured by the global fits mentioned in the first chapter [23, 24, 25];

• the SM exhibits a strong hierarchy between the processes on which the anomalies are
based: b → c`ν occurs already at tree level, while b → s`+`− arises only at one loop.
Therefore, we want to naturally extend this hierarchy to NP.
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CHAPTER 2. EFFECTIVE NP LAGRANGIAN AT LOW ENERGY

As argued in [21], the complete list of dimension-six gauge invariant operators which could
possibly contribute at tree level to C9

ij and C10
ij is given by three four-fermion semi-leptonic

operators - Q(1)
`q ,Q

(3)
`q and Qqe - and two operators involving the Higgs, Q(1)

Hq and Q
(3)
Hq (see table

2.1). The operators which could give a tree-level contribution to the primed operators C9′
ij and

C10′
ij are Qed, Qld and QHd. Analogously, (CcbL )ij might receive a tree-level contribution from Q(3)

`q

and Q(3)
Hq.

It follows that in order to reproduce all possible NP tree-level contributions to the five operators
of interest our starting Lagrangian should include all the operators listed above. In the present
work we limit our analysis to semi-leptonic operators; we exclude the Higgs operators because
their presence at scale Λ would imply a tree-level modification of the Z and W couplings
to fermions, which are tightly constrained by LEP measurements. Consequently, the NP
Lagrangian at scale Λ will include the following five operators: Q(1)

`q , Q
(3)
`q , Qed, Qld and Qqe.

We further assume that NP couples only to the third generation in the interaction basis. This
choice is supported by the strong constraints on flavor physics involving the first two generations
and provides a natural suppression mechanism for the neutral-current anomaly with respect
to the charged-current one, because NP couplings to lighter generations are generated by the
rotation to the mass basis through small flavor mixing angles.
In conclusion we build L0

NP by assuming that NP at scale Λ is dominated by

[Q(1)
lq ]3333 = (¯̀′

3Lγ
µ`′3L)(q̄′3Lγµq′3L) (2.2)

[Q(3)
lq ]3333 = (¯̀′

3Lγ
µτa`′3L)(q̄′3Lγµτaq′3L) (2.3)

[Qld]3333 = (¯̀′
3Lγ

µ`′3L)(d̄′3Rγd′3R) (2.4)
[Qed]3333 = (ē′3Rγµe′3R)(d̄′3Rγd′3R) (2.5)
[Qqe]3333 = (q̄′3Lγq′3L)(ē′3Rγµe′3R) (2.6)

and write the NP Lagrangian as

L0
NP = 1

Λ2 (C1[Q(1)
lq ]3333 + C3[Q(3)

lq ]3333 + C4[Qld]3333 + C5[Qed]3333 + C6[Qqe]3333) . (2.7)

Here C1 = [C(1)
lq (Λ)]3333, C3 = [C(3)

lq (Λ)]3333 and so on.
With respect to reference [1, 2], where only the purely left-handed operators Q(1)

lq and Q(3)
lq were

considered, we added three operators involving at least one right-handed current. Although the
recently announced measurement of Rµ/e

K∗ seems to discourage operators involving right-handed
quark currents [26], they still cannot be excluded.

Operators in 2.7 are written in the interaction basis; later on we will need to move to the mass
basis. As we have seen, fields in the two bases are related by the unitary transformations (1.8),
while Yukawa matrices are diagonalised as shown in (1.7). For the sake of simplicity, we define
the λ and Γ matrices:

λuij = V ∗u3iVu3j λdij = V ∗d3iVd3j λeij = V ∗e3iVe3j λudij = V ∗u3iVd3j .

Γdij = R∗d3iRd3j Γeij = R∗e3iRe3j (2.8)
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It is straightforward to show that λ and Γ satisfy the following properties:

1. (λf )† = λf and (Γf )† = Γf (f = u, d, e)

2. λfλf = λf and ΓfΓf = Γf

3. (λud)† = λdu

4. Trλf = 1 and TrΓf

5.
∑
ij

|λfij|2 = 1 and
∑
ij

|Γfij|2 = 1 . (2.9)

Property 1. follows directly from the definition of λf and Γf , while the other properties follow
from the unitarity of V and R matrices. We observe that λ matrices are redundant, because
they are related to the CKM matrix as follows:

5. λu = VCKMλ
dV †CKM , (2.10)

6. λud = VCKMλ
d . (2.11)

A general parametrization of λf and Γf matrices is provided by

λf = 1
1 + |αf |2 + |βf |2


|αf |2 αfβ

∗
f αf

α∗fβf |βf |
2 βf

α∗f β∗f 1

 (2.12)

Γf = 1
1 + |ρf |2 + |σf |2


|ρf |2 ρfσ

∗
f ρf

ρ∗fσf |σf |
2 σf

ρ∗f σ∗f 1

 . (2.13)

where αf , βf , ρf and σf are complex numbers.
Using relations (1.8) and (2.8) we rewrite the NP Lagrangian at scale Λ in the mass basis,
obtaining

21



CHAPTER 2. EFFECTIVE NP LAGRANGIAN AT LOW ENERGY

L0
NP = (C1 − C3)

Λ2 (ēLγµλeeL)(ūLγµλuuL) + (C1 + C3)
Λ2 (ēLγµλeeL)(d̄LγµλddL)

+ (C1 + C3)
Λ2 (ν̄LγµλeνL)(ūLγµλduL) + (C1 − C3)

Λ2 (ν̄LγµλeνL)(d̄LγµλddL)

+ 2C3

Λ2 (ēLγµλeνL)(ūLγµλuddL) + h.c.+ C4

Λ2 (ν̄LγµλeνL)(d̄RγµΓddR)

+ C4

Λ2 (ēLγµλeeL)(d̄RγµΓddR) + C5

Λ2 (ēRγµΓeeR)(d̄RγµΓddR)

+ C6

Λ2 (ūLγµλuuL)(ēRγµΓeeR) + C6

Λ2 (d̄LγµλddL)(ēRγµΓeeR) . (2.14)

The independent parameters in this expression are the five Ci and the matrices λe, λd, Γe and
Γd. All information about NP is encoded in the Ci.

2.2 RGE flow from Λ to mEW

In this section we start from the NP Lagrangian at scale Λ and run it down to mEW. This
is achieved by employing the renormalization group equations (RGE) in the limit of exact
electroweak symmetry. In particular we will refer to [27], which provides RGE to one-loop
accuracy for all 59 six-dimensional operators invariant under GSM listed in [19]. They are written
in the format

Ċi = 16π2γjiCj , (2.15)

where Ċi = 16π2µ d
dµ
Ci. We solve them in leading logarithm approximation using L0

NP as initial
condition; explicitly the leading logarithm solution to these equations reads

Ciprst(µ) = Ciprst(Λ)− 1
16π2 Ċ

i
prst(Λ) ln Λ

µ
. (2.16)

Knowing that the only non-zero Ci(Λ) are the ones in (2.7) and neglecting all Yukawa couplings
but that of the top1 we find out which operators are involved in the RGE flow; they are displayed
in table 2.1.
Given the operators Qi

prst involved in the running, the Lagrangian at scale µ will have the form

LNP = 1
Λ2

∑
i

∑
prst

Ci
prst(µ)Qi

prst ; (2.17)

for each Qi we want to find Ciprst(µ) using eq. (2.16). In order to do this we need to determine
which flavor structure gives a non-zero Ċiprst(Λ); then we can compute the sum over the flavor
indices in (2.17). This same procedure must be repeated for all the 22 operators appearing in
the RGE flow.

1This corresponds to writing Y Du as Y Du = ytP3, with P3 = diag(0, 0, 1).
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2.2. RGE FLOW FROM Λ TO MEW

Leptonic operators Semi-leptonic operators

[Q``]prst = (¯̀′
pLγµ`

′
rL)(¯̀′

sRγ
µ`
′
tR) [Q(1)

`q ]prst = (¯̀′
pLγµ`

′
rL)(q̄′sLγµq

′
tL)

[Q`e]prst = (¯̀′
pLγ

µ`
′
rL)(ē′sRγµe

′
tR) [Q(3)

`q ]prst = (¯̀′
pLγµτ

a`
′
rL)(q̄′sLγµτaq

′
tL)

[Qee]prst = (ē′pRγµe′rR)(ē′sRγµe′tR) [Q`u]prst = (¯̀′
pLγµ`

′
rL)(ū′sRγµu′tR)

[Q`d]prst = (¯̀′
pLγµ`

′
rL)(d̄′sRγµd′tR)

[Qqe]prst = (q̄′pLγµq′rL)(ē′sRγµe′tR)

[Qeu]prst = (ē′pRγµe′rR)(ū′sRγµu′tR)

[Qed]prst = (ē′pRγµe′rR)(d̄′sRγµd′tR)

Vector operators Hadronic operators

[Q(1)
H`]pr = (φ†i←→Dµφ)(l̄′pLγµl′rL) [Q(1)

qq ]prst = (q̄′pLγµq′rL)(q̄′sLγµq′tL)

[Q(3)
H`]pR = (φ†i←→Da

µφ)(l̄′pLγµτal′rL) [Q(3)
qq ]prst = (q̄′pLγµτaq′rL)(q̄′sLγµτaq′tL)

[Q(1)
Hq]pR = (φ†i←→Dµφ)(q̄′pLγµq′rL) [Q(1)

qu]prst = (q̄′pLγµq′rL)(ū′sRγµu′tR)

[Q(3)
Hq]pR = (φ†i←→Da

µφ)(q̄′pLγµτaq′rL) [Q(1)
qd ]prst = (q̄′pLγµq′rL)(d̄′sRγµd′tR)

[QHe]pR = (φ†i←→Dµφ)(ē′pRγµe′rR) [Qdd]prst = (d̄′pRγµd′rR)(d̄′sRγµd′tR)

[QHd]pR = (φ†i←→Dµφ)(d̄′pRγµd′rR) [Q(1)
ud]prst = (ū′pRγµu′rR)(d̄′sRγµd′tR)

Table 2.1: SU(2)L × U(1)Y invariant operators invoved in the renormalization group evolution of
L0

NP from Λ to the EW scale.

We show how this works for the operator [Q(1)
`q ]prst. Only a few terms survive in the equations

for [C(1)
`q ]prst given in [27]:

Ċ(1)
`q
prst

∣∣∣∣∣
Λ

=
(

1
2[Y †uYu]svC

(1)
`q
prvt

+ 1
2C

(1)
`q
prsv

[Y †uYu]vt + 2
9g

2
1C

(1)
`q

prww
δst

+2
3g

2
1C

(1)
`q

wwst

δpR −
2
9g

2
1C `d

prww
δst − g2

1C
(1)
`q
prst

+ 9g2
2C

(3)
`q
prsv

)∣∣∣∣∣
Λ
. (2.18)

From this expression we see that only the flavor structures ss33 and 33st give [Ċ(1)
`q ]prst(Λ) 6= 0.

Being careful not to repeat the same term twice, we can write the internal sum in (2.17) for the
operator considered as

∑
prst

C(1)
`q
prst

(µ) Q(1)
`q
prst

= C(1)
`q

3333
(µ) Q(1)

`q
3333

+
∑
s

(
C(1)
`q

33ss
(µ) Q(1)

`q
33ss

+ C(1)
`q
ss33

(µ) Q(1)
`q
ss33

)
+
∑
s,t

C(1)
`q

33st
(µ) Q(1)

`q
33st

,

(2.19)
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with


C(1)
`q

3333
(µ) = C1 + L

16π2

(
g2

1C1 − 9g2
2C3

)
C(1)
`q

33ss
(µ) = − L

16π2
2
9g

2
1(C1 − C4)

C(1)
`q
ss33

(µ) = − L

16π2
2
3g

2
1C1

C(1)
`q

33st
(µ) = − L

16π2
C1

2
(
[Y †uYu]s3δ3t + δs3[Y †uYu]3t

)
. (2.20)

Here L = ln Λ
µ
. After repeating the same procedure for all the operators involved in the running,

we find that the effective Lagrangian at the scale mEW < µ < Λ is given by L = LSM +L0
NP +Leff ,

where

Leff = δLSL + δLL + δLV + δLH . (2.21)

Leff describes the contribution induced by renormalization group equations. Explicitly we have

δLSL = L

16π2Λ2

[
(g2

1C1 − 9g2
2C3)Q(1)

lq
3333
− 2

9g
2
1(C1 − C4)Q(1)

lq
33ss

− 2
3g

2
1(C1 + C6)Q(1)

lq
ss33
− 1

2C1
(
[Y †uYu]s3δ3t + δs3[Y †uYu]3t

)
Q

(1)
lq

33st

+
(
−3g2

2C1 + C3(6g2
2 + g2

1)
)
Q

(3)
lq

3333
− 2g2

2C3Q
(3)
lq

33ss
− 2

3g
2
2C3Q

(3)
lq
ss33

− 1
2C3

(
[Y †uYu]s3δ3t + δs3[Y †uYu]3t

)
Q

(3)
lq

33st
− 8

9g
2
1(C1 − C4)Q lu

33ss

+ 2[Yu]s3[Y †u ]3tC1Q lu
33st

+ 2g2
1C4Q ld

3333
+ 4

9g
2
1(C1 − C4)Q ld

33ss

− 2
3g

2
1(C4 + C5)Q ld

ss33
− 2g2

1C6Q qe
3333
− 4

3g
2
1(C1 + C6)Q qe

33ss

− 1
2C6

(
[Y †uYu]s3δ3t + δs3[Y †uYu]3t

)
Q qe
st33

+ 8
9g

2
1(C5 − C6)Q eu

33ss

+ 2[Yu]s3[Y †u ]3tC6Q eu
33st
− 4g2

1C5Q ed
3333

+ 2
9g

2
1(C5 − C6)Q qe

ss33

−4
9g

2
1(C5 − C6)Q ed

33ss
− 4

3g
2
1(C4 + C5)Q ed

ss33

]
, (2.22)

δLL = L

16π2Λ2

[(2
3g

2
1(C1 − C4) + 2g2

2C3

)
Q ll

33ss
− 4g2

2C3Q ll
3ss3

+4
3g

2
1(C1 − C4)Q le

33ss
− 2

3g
2
1(C5 − C6)Q le

ss33

]
, (2.23)
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δLV = L

16π2Λ2

[
(−6C1λ

u
33y

2
t −

2
3g

2
1(C1 − C4))Q(1)

Hl
33

+ (6C3λ
u
33y

2
t − 2g2

1(C1 − C4))Q(3)
Hl
33

+ 2
3g

2
1(C1 + C6)Q(1)

Hq
33

−2
3g

2
2C3Q

(3)
Hq
33

+
(2

3g
2
1(C5 − C6)− 6C6λ

u
33y

2
t

)
QHe

33
+ 2

3g
2
1(C4 + C5)QHd

33

]
,

(2.24)

δLH = L

16π2Λ2

[2
9g

2
1(C1 + C6)Q(1)

qq
33ss

+−2
3g

2
2C3Q

(3)
qq

33ss
+ 8

9g
2
1(C1 + C6)Q(1)

qu
33ss

−4
9g

2
1(C1 + C6)Q(1)

qd
33ss

+ 2
9g

2
1(C4 + C5)Q(1)

qd
ss33

+−4
9g

2
1(C4 + C5)Q dd

33ss

]
.

(2.25)

The sum over repeated flavor indices is understood.
Note that hereafter we will neglect the hadronic contribution δLH, because fully hadronic
operators play no role in our analysis.

2.2.1 Analysis of δLV : modified Z and W couplings

The vector part of the effective Lagrangian encodes the way NP affects Z and W couplings.
In particular, we can write δLV as the sum of three contributions:

δLV = δLZ
V + δLW

V + δLH
V . (2.26)

δLZ
V and δLW

V describe the coupling among fermions and Z and W boson respectively, while
δLH

V involves the Higgs field h. In order to see this, we rewrite the operators in δLV in the mass
basis; taking φ =

(
0, v+h√

2

)
we get

[Q(1)
H`]33 = v2

2
g2

cW
Zµ[(ν̄LγµλeνL) + (ēLγµλeeL)] + . . .

[Q(3)
H`]33 = −v2 g2√

2
[W+

µ (ν̄LγµλeeL) + h.c.]− v2

2
g2

cW
Zµ[(ν̄LγµλeνL)− (ēLγµλeeL)] + . . .

[Q(1)
Hq]33 = v2

2
g2

cW
Zµ[(ūLγµλuuL) + (d̄LγµλddL)] + . . .

[Q(3)
Hq]pR = −v2 g2√

2
[W+

µ (ūLγµλuddL) + h.c.]− v2

2
g2

cW
Zµ[(ūLγµλuuL)− (d̄LγµλddL)] + . . .

[QHe]33 = v2

2
g2

cW
Zµ(ēRγµΓeeR) + . . .

[QHd]33 = v2

2
g2

cW
Zµ(d̄RγµΓedR) + . . . , (2.27)

where dots stand for terms involving the Higgs field h. Plugging (2.27) into (2.24), we rewrite
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δLZ
V and δLW

V compactly as

δLZ
V = − g2

cW
ZµJ

µ,0
NP = − g2

cW
Zµ
∑
f

(
(∆gfL)ij f̄iLγµfjL + (∆gfR)ij f̄iRγµfjR

)
(2.28)

δLW
V = − g2√

2
W+
µ J

µ,−
NP + h.c. = − g2√

2
W+
µ

(
∆g`ij ν̄iLγµejL + ∆gqijūiLγµdjL

)
+ h.c. , (2.29)

where cW = cos θW. ∆gfL,R and ∆gq/` express the NP modification of the couplings between
massive gauge bosons and fermions. The explicit expressions for Z couplings are

(∆geL)ij = v2

Λ2
L

16π2

[
g2

1
3 (C1 − C4) + g2

2C3 + 3λu33y
2
t (C1 − C3)

]
λeij

(∆gdL)ij = v2

Λ2
L

16π2
1
3
[
g2

2C3 − g2
1(C1 + C6)

]
λdij

(∆guL)ij = v2

Λ2
L

16π2
1
3
[
−g2

2C3 − g2
1(C1 + C6)

]
λuij

(∆gνL)ij = v2

Λ2
L

16π2

[
g2

1
3 (C1 − C4)− g2

2C3 + 3λu33y
2
t (C1 + C3)

]
λeij

(∆geR)ij = v2

Λ2
L

16π2

[1
3g

2
1(C6 − C5) + 3C6λ

u
33y

2
t

]
Γeij

(∆gdR)ij = v2

Λ2
L

16π2

[
−1

3g
2
1(C4 + C5)

]
Γdij , (2.30)

while those for W couplings read
(∆g`)ij = v2

Λ2
L

16π2

[
6C3λ

u
33y

2
t − 2g2

2C3
]
λeij

(∆gq)ij = v2

Λ2
L

16π2

[
−2

3g
2
2C3

]
λudij . (2.31)

Remembering that in the SM the Lagrangians describing the interaction among fermions and
massive bosons are given by

LSM
Z = − g2

cW
ZµJ

µ,0
SM = − g2

cW
Zµ
∑
f

(
(gfL,SM)ij f̄iLγµfjL + (gfR,SM)ij f̄iRγµfjR

)
(2.32)

LSM
W = − g2√

2
W+
µ J

µ−
SM + h.c. = − g2√

2
W+
µ

(
(g`SM)ij ν̄iLγµejL + (gqSM)ijūiLγµdjL

)
+ h.c. , (2.33)

with couplings

(gfL,SM)ij = gfL,SMδij = (T f3 − qfs2
W)δij

(gfR,SM)ij = gfR,SMδij = −qfδij ,
(g`SM)ij = δij

(gqSM) = (VCKM)ij (2.34)

we can write the full Z and W Lagrangian in a compact notation

Ltot
Z,W = LSM

Z,W + δLZ
V + δLW

V = − g2

cW
ZµJ

µ0 − g2√
2
(
W+
µ J

µ,− + h.c.
)
, (2.35)
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where Jµ,− = Jµ,−SM + Jµ,−NP and Jµ,0 = Jµ,0SM + Jµ,0NP .
Let us make some comments about the expressions (2.30) and (2.31). First of all, we immediately
notice that the NP contribution to the couplings has a non-diagonal flavor structure. In particular
NP introduces a formally tree-level source of lepton flavor violation (LFV) and LFUV, which is
absent in the SM. This has important phenomenological implications, which will be discussed
in the next chapter.
We also notice that the effective couplings have a dependence on the renormalization scale µ,
which must cancel when amplitudes are computed. We check this explicitly for the Z boson
decay into a charged lepton pair, Z → ēiej. The goal is not to compute the full one-loop
amplitude for this process, but to check that the µ dependence in the effective couplings ∆geL and
∆geR cancels properly. The relevant diagrams are shown in figure 2.1(a) and 2.1(b). Specifically
2.1(a) shows the formally tree-level contribution given by Ltot

Z,W, while 2.1(b) shows the one-loop
contribution obtained by inserting the four-fermion interactions contained in L0

NP in the vertex
labelled by Ci. We will denote the two amplitudes byMtree andMloop respectively.
Mtree reads

Z

ej ei

(a)

Z

ej

q q

ei

Ci

(b)

Figure 2.1: Feynman diagrams involved in the process Z → ēiej .

Mtree = −i g2

cW
ūi/ε

[
(geL,SM + ∆geL)ijPL + (geR,SM + ∆geR)ijPR

]
vj

≡MSM + ∆ML + ∆MR . (2.36)

Mloop receives contribution from six different diagrams, corresponding to the six operators in
(2.14) which can be inserted in the vertex:

(a) (C1−C3)
Λ2 (ēLγµλeeL)(ūLγµλuuL)

(b) (C1+C3)
Λ2 (ēLγµλeeL)(d̄LγµλddL)

(c) C4
Λ2 (ēLγµλeeL)(d̄RγµΓddR) .

(d) C5
Λ2 (ēRγµΓeeR)(d̄RγµΓddR)

(e) C6
Λ2 (ēRγµΓeeR)(ūLγµλuuL)

(f) C6
Λ2 (ēRγµΓeeR)(d̄LγµλddL)

Up- and down-type quarks run in the loop. The diagrams corresponding to (a)-(c) cancel the
µ dependence in ∆geL, the ones with (d)-(f) cancel the µ dependence in ∆geR. Denoting these
two amplitudes asML andMR respectively, so thatMloop =ML +MR, we should find that
ML + ∆ML andMR + ∆MR do not depend on the renormalization scale.
We show the explicit computation in the case ofML, starting from the loop diagram given by
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the insertion of (a). Let k and p denote the loop and the Z momentum respectively; Z is taken
to be on shell, so that p2 = m2

Z. In dimensional regularization we find

Ma = 3 C1 − C3

Λ2
g2

cW
εν λeij (ūiγµPLvj)

∑
l

λull Il , (2.37)

where the integral Il is given by

Il = µ4−D
∫ dDk

(2π)D
Tr
[
(/k +mul)γµPL(/k + /p+mul)γν(guLPL + guRPR)

]
(k2 −m2

ul
)((k + p)2 −m2

ul
) . (2.38)

Hereafter for simplicity we write gfL, gfR instead of gfL,SM, gfR,SM. Using (A.2) we compute the
trace in the numerator, obtaining

Tr [. . . ] = guL Tr
[
/kγµ(/k + /p)γνPL

]
+ guR m

2
ul

Tr [γµPLγνPR]

= 2guL
[
kµ(k + p)ν + kν(k + p)µ − k · (k + p)ηµν + 2ikαpβεαµβν

]
+ 2guRm2

ul
ηµν . (2.39)

We then recast the denominator using the Feynman parametrization (A.3) with A = (k+p)2−m2
ul

and B = k2−m2
ul
. Noting that Ax+B(1−x) = (k+ px)2− (m2

ul
− p2x(1−x)) = (k+ px)2−∆

we get

Il = µ4−D
∫ 1

0
dx
∫ dDk

(2π)D
Tr[. . . ]

((k + px)2 −∆)2 . (2.40)

By performing the shift k → k − px, we obtain

Tr[. . . ] → 2ηµν
[
guL

(( 2
D
− 1

)
k2 + p2x(1− x)

)
+ guRm

2
ul

]
, (2.41)

where we have kept only even powers of k and used the substitution kµkν → k2

D
ηµν

2. We also
used the fact that terms proportional to pµpν give a zero contribution in the massless limit
thanks to the Dirac equation. The integral becomes

Il = 2ηµν
∫
dx

[
−g

u
L

2 µ
4−D

∫ dDk

(2π)D
k2

(k2 −∆)2 +
(
guRm

2
ul

+ guLp
2x(1− x)

)
µ4−D

∫ dDk

(2π)D
1

(k2 −∆)2

]

' 2iηµν
(4π)2

∫
dx
(
2m2

ul
(guL − guR)− 2guLm2

Zx(1− x)
)

ln
(

µ2

m2
ul
−m2

Zx(1− x)

)
. (2.42)

Here we used the dimensional regularization integrals (A.5) and (A.4) and worked in the MS
scheme, keeping only leading logarithms. Plugging this into (2.37) and remembering that the
only non-zero quark mass is m2

t , we find

Ma =− 6i
(4π)2

C1 − C3

Λ2
g2

cW
(ū/ελePLv)

[
2guAλu33m

2
t lnµ2 − 2guLm2

Z

∫
dx x (1− x) lnµ2

− λu33

∫
dx
(
2m2

tg
u
A − 2guLm2

Zx(1− x)
)

ln(m2
t −m2

Zx(1− x))

+ 2guLm2
Z(1− λu33)

∫
dx x (1− x) ln(−m2

Zx (1− x))
]
. (2.43)

2We can do this because
∫
dDk kµ kν f(k2) = ηµν

D

∫
dDk k2 f(k2)
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The computation for the (b) operator is analogous and gives

Mb =− 6i
(4π)2

C1 + C3

Λ2
g2

cW
(ū/ελePLv)

[
−2gdLm2

Z

∫
dx x (1− x) lnµ2

+2m2
Zg
d
L

∫
dx x (1− x) ln

(
−m2

Zx (1− x)
)]
, (2.44)

where we considered all down-type quarks to be massless. Mc can be easily obtained by
substituting C1 + C3 → C4 and gdL → gdR in the expression forMb .
In conclusion, summing the amplitudes (a)-(c) we obtain

ML =− i

(4π)2
g2

cW
(ū/ελePLv) v

2

Λ2

[
3
2λ

u
33y

2
t (C1 − C3)

∫
dx ln m

2
t −m2

Z x (1− x)
µ2

− 6
(
g2

1
6 (C1 − C4) + g2

2
2 C3

)∫
dx x (1− x) ln −m

2
Z x (1− x)
µ2

+3λu33

(1
2 −

2
3s

2
W

)
g2

2
c2

W

∫
dx x (1− x) ln m

2
t −m2

Z x (1− x)
−m2

Zx (1− x)

]
. (2.45)

By comparing this expression with ∆ML we see that the µ-dependence cancels in the sum,
which can be written in a compact way as

ML + ∆ML = −i g2

cW
(ūi/ελevj)(δgeL)ij , (2.46)

where

(δgeL)ij = v2

Λ2

[
3
2λ

u
33y

2
t (C1 − C3)I1 − 6

(
g2

2
2 C3 + g2

1
6 (C1 − C4)

)
I2 + 3λu33

(1
2 −

2
3s

2
W

)
g2

2
c2

W

I3

]
λeij

16π2 ,

(2.47)

and the integrals I1−3 are defined as

I1 =
∫ 1

0
dx ln m

2
t −m2

Z x (1− x)
Λ2

I2 =
∫ 1

0
dx x (1− x) ln −m

2
Z x (1− x)

Λ2

I3 =
∫ 1

0
dx x (1− x) ln m

2
t −m2

Z x (1− x)
−m2

Z x (1− x) . (2.48)

In order to find δgeR from δgeL we just need to take C3 = 0 and substitute C1, C4, λ
e
ij with

C6, C5,Γeij respectively. We obtain

(δgeR)ij = v2

Λ2

[
3
2λ

u
33y

2
tC6I1 − g2

1(C6 − C5)I2 + 3λu33

(1
2 −

2
3s

2
W

)
g2

2
c2

W

I3

]
Γeij

16π2 . (2.49)

In leading logarithm approximation, that is keeping only terms of the form ln Λ
mt,Z

and neglecting
finite terms, the effective Z couplings to charged leptons read

(δgeL)ij = v2

Λ2

[
3λu33y

2
t (C1 − C3) ln Λ

mt

+ g2
2C3 ln Λ

mZ
+ g2

1
3 (C1 − C4) ln Λ

mZ

]
λeij

16π2

(δgeR)ij = v2

Λ2

[
3λu33y

2
tC6 ln Λ

mt

+ g2
1
3 (C6 − C5) ln Λ

mZ

]
Γeij

16π2 . (2.50)
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Note that here we resctricted our analysis to Z couplings to leptons; obviously a similar
procedure could be followed for the effective Z couplings to quarks by considering the decay
Z → q̄q and for the effective W couplings by considering the processes W → ν̄e and W → ūd.

2.2.2 Integrating out W and Z at tree level
Heavy degrees of freedom, namely Z, W and the top quark, have to be integrated out when

going below the EW scale; we start by integrating out the massive bosons at tree level.
Given the complete Lagrangian (2.35), we integrate out Z and W at tree level exactly like in
the Fermi theory. This gives

Ltot
Z,W = − 2

v2

(
Jµ,0J 0

µ + Jµ,+J−µ
)

≈ − 2
v2

(
Jµ,0SM J

0
µ,SM + Jµ,+SM J−µ,SM

)
− 2
v2

(
2J 0

µ,SMJ
µ,0
NP + Jµ,+NP J

−
µ,SM + h.c.

)
. (2.51)

We keep only terms linear in the NP contribution, i.e. linear in ∆g. The first term is the Fermi
Lagrangian and belongs to LSM, while the second one enters the effective Lagrangian, and we
denote it by δL∗V. At this point our effective Lagrangian reads

Leff = δLL + δLSL + δL∗V . (2.52)

The next step is to rewrite Leff in the mass basis using (1.8). Operators with a 3333, 33ss, ss33
and 3ss3 flavor structure appear in the Lagrangian with coefficients which do not depend on
flavor indices. They can all be rewritten using the following two simple relations

f̄ ′3Lγµf
′
3L = f̄Lγµλ

ffL (2.53)∑
s

f̄ ′sγµf
′
s = f̄γµf . (2.54)

The first one follows directly from (1.8) and (2.8); the same relation holds for right-handed
fields once we substitute λf with Γf . The second relation holds for both left- and right-handed
fields and can be easily obtained by remembering that rotation matrices are unitary.
Particular attention is needed when considering operators with structure 33st in δLSL, because
their coefficients depend on the flavor indices s,t. From Yu = RuY

D
u Vu and Y D

u = P3 y
t we have

[Y †uYu]33 = y2
t λ

u
33

[Y †uYu]s3 = y2
t Vus3V

∗
s33

[Y †uYu]3t = y2
t Vu33V

∗
ut3

[Yu]s3[Y †u ]3t = y2
t λ

u
33 Rus3R

∗
ut3 . (2.55)

Using these relations and the unitarity of rotation matrices we can show that the following two
relations hold∑

st

(
[Y †uYu]s3δ3t + δs3[Y †uYu]3t

)
VutiV

∗
usj = y2

t (P3λ
u + λuP3)ij (2.56)∑

st

[Yu]s3[Y †u ]3tR∗usjRuti = y2
t λ

u
33 δ3jδi3 . (2.57)
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These can be used to rewrite the terms containing the Yukawas in LSL. For example, in∑
st

(
[Y †uYu]s3δ3t + δs3[Y †uYu]3t

)
Q

(3)
lq

33st
(2.58)

we can write Q(3)
lq

33st
as

Q
(3)
lq

33st
= (¯̀′

3Lγµ`
′

3L)(q̄′sLγµq
′

tL)

=
∑
ij

(¯̀
Lγµλ

e`L)(VutiV ∗usjūjLγµuiL + VdtiV
∗
dsj d̄jLγ

µdiL)

=
∑
ij

(¯̀
Lγµλ

e`L)VutiV ∗usj(ūjLγµuiL + d̄CKM
jL γµdCKM

iL ) , (2.59)

where dCKM
L = VCKMdL and we used the property λu = VCKMλ

dV †CKM. Plugging (2.59) into (2.58)
we get∑

ij

(¯̀
Lγµλ

e`L)
∑
st

(
[Y †uYu]s3δ3t + δs3[Y †uYu]3t

)
VutiV

∗
usj(ūjLγµuiL + d̄CKM

jL γµdCKM
iL )

= (¯̀
Lγµλ

e`L)
(
ūL(λuP3 + P3λu)uL + d̄CKM

L (λuP3 + P3λu)dCKM
L

)
, (2.60)

where we used (2.56).
By carefully writing Leff in the mass basis using these properties we get the effective Lagrangian
at µ = mEW with Z and W integrated out at tree level:

Leff = 1
Λ2

∑
i

Ci(mEW)Qi = 1
16π2Λ2 ln Λ

mEW

∑
i

ξiQi . (2.61)

The operators Qi and their coefficients ξi are listed in the tables below.

Qi ξi

(ν̄LγµνL)(ν̄LγµλeνL) −6y2
t λ

u
33(C1 + C3)

(ν̄LγµνL)(ēLγµλeeL) −6y2
t λ

u
33(C1 + C3)

(ν̄LγµλeeL)(ēLγµνL) −12y2
t λ

u
33C3

(ēLγµλeνL)(ν̄LγµeL) −12y2
t λ

u
33C3

(ν̄LγµλeνL)(ēLγµeL) 4
3e

2 [(C1 − C4) + 3C3]− 12y2
t λ

u
33 (C1 + C3]

(
−1

2 + s2
W

)
(ν̄LγµλeνL)(ēRγµeR) 4

3e
2 [(C1 − C4) + 3C3]− 12y2

t λ
u
33 (C1 + C3)) s2

W

(ēLγµλeeL)(ēLγµeL) 4
3e

2 [(C1 − C4)− 3C3]− 12y2
t λ

u
33 (C1 − C3)

(
−1

2 + s2
W

)
(ēLγµλeeL)(ēRγµeR) 4

3e
2 [(C1 − C4)− 3C3]− 12y2

t λ
u
33 (C1 − C3)) s2

W

(ēRγµΓeeR)(ēLγµeL) −4
3e

2(C5 − C6)− 12C6λ
u
33y

2
t (−1

2 + s2
W)

(ēRγµΓeeR)(ēRγµeR) −4
3e

2(C5 − C6)− 12C6λ
u
33y

2
t s

2
W

(ēRγµΓeeR)(ν̄LγµνL) −6C6λ
u
33y

2
t

Table 2.2: Leptonic operators: running from Λ to mEW.
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Qi ξi

(ēLγµλeeL)(ūLγµλuuL) (g2
1 + 3g2

2)C1 − (g2
1 + 15g2

2)C3

(ν̄LγµλeνL)(d̄CKM
L γµλud

CKM
L ) (g2

1 + 3g2
2)C1 − (g2

1 + 15g2
2)C3

(ēLγµeL)(ūLγµλuuL) −4
3e

2(C1 + C6 − C3)
(ēRγµeR)(ūLγµλuuL) −4

3e
2(C1 + C6 − C3)

(ēLγµλeeL)(d̄CKM
L γµλud

CKM
L ) (g2

1 − 3g2
2)(C1 + C3)

(ēLγµeL)(d̄CKM
L γµλud

CKM
L ) −4

3e
2(C1 + C6 + C3)

(ēRγµeR)(d̄CKM
L γµλud

CKM
L ) −4

3e
2(C1 + C6 + C3)

(ēLγµλeνL)(ūLλµλudCKM
L ) −6g2

2C1 + 2(6g2
2 + g2

1)C3

(ēLγµλeνL)(ūLγµdrmCKML ) −12y2
tC3

(ν̄LγµλeνL)(ūLγµuL) −8
9e

2 [(C1 − C4) + 3C3]− 12y2
t λ

u
33 (C1 + C3)

(
1
2 −

2
3s

2
W

)
(ν̄LγµλeνL)(ūRγµuR) −8

9e
2 [(C1 − C4) + 3C3] + 8y2

t λ
u
33 (C1 + C3)

(
−1

2 + s2
W

)
(ν̄LγµλeνL)(d̄LγµdL) +4

9e
2 [(C1 − C4) + 3C3]− 12y2

t λ
u
33 (C1 + C3)

(
−1

2 + 1
3s

2
W

)
(ν̄LγµλeνL)(d̄RγµdR) +4

9e
2 [(C1 − C4) + 3C3]− 4y2

t λ
u
33 (C1 + C3) s2

W

(ēLγµλeeL)(ūLγµuL) −8
9e

2 [(C1 − C4)− 3C3]− 12y2
t λ

u
33 (C1 − C3)

(
1
2 −

2
3s

2
W

)
(ēLγµλeeL)(ūRγµuR) −8

9e
2 [(C1 − C4)− 3C3] + 8y2

t λ
u
33 (C1 − C3)

(
−1

2 + s2
W

)
(ēLγµλeeL)(d̄LγµdL) +4

9e
2 [(C1 − C4)− 3C3]− 12y2

t λ
u
33 (C1 − C3)

(
−1

2 + 1
3s

2
W

)
(ēLγµλeeL)(d̄RγµdR) +4

9e
2 [(C1 − C4)− 3C3]− 4y2

t λ
u
33 (C1 − C3) s2

W

(d̄RγµΓddR)(ēLγµeL) −4
3e

2(C4 + C5)
(d̄RγµΓddR)(ēRγµeR) −4

3e
2(C4 + C5)

(ēRγµΓeeR)(ūLγµuL) 8
9e

2(C5 − C6)− 12y2
t λ

u
33C6(1

2 −
2
3s

2
W)

(ēRγµΓeeR)(ūRγµuR) 8
9e

2(C5 − C6) + 8y2
t λ

u
33C6s

2
W

(ēRγµΓeeR)(d̄LγµdL) −4
9e

2(C5 − C6)− 12y2
t λ

u
33C6(−1

2 + 1
3s

2
W)

(ēRγµΓeeR)(d̄RγµdR) −4
9e

2(C5 − C6)− 4y2
t λ

u
33C6s

2
W

(d̄RγµΓddR)(ēLγµλeeL) 2g2
1C4

(d̄RγµΓddR)(ν̄LγµλeνL) 2g2
1C4

(d̄RγµΓddR)(ēRγµΓeeR) −4g2
1C5

(ēRγµΓeeR)(ūLγµλuuL) −2g2
1C6

(ēRγµΓeeR)(d̄LγµλddL) −2g2
1C6

(ν̄LγµλeνL)(ūLγµλuuL) (g2
1 − 3g2

2)(C1 + C3)

Table 2.3: Semi-leptonic operators: running from Λ to mEW.
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Qi ξi

(ν̄LγµλeνL)(ūLγµ(λuP3 + P3λu)uL) −1
2y

2
t (C1 + C3)

(ν̄LγµλeνL)(d̄CKM
L γµ(λuP3 + P3λu)dCKM

L ) −1
2y

2
t (C1 − C3)

(ēLγµλeeL)(ūLγµ(λuP3 + P3λu)uL) −1
2y

2
t (C1 − C3)

(ēLγµλeeL)(d̄CKM
L γµ(λuP3 + P3λu)dCKM

L ) −1
2y

2
t (C1 + C3)

(ēLγµλeνL)(ūLλµ(λuP3 + P3λu)dCKM
L ) −y2

tC3

(ēRγµΓeeR)(ūLγµ(λuP3 + P3λu)uL) −1
2C6y

2
t

(ēRγµΓeeR)(d̄CKM
L γµ(λuP3 + P3λu)dCKM

L ) −1
2C6y

2
t

(ēRγµΓeeR)(ū3Rγµu3R) 2y2
t λ

u
33C6

(ēLγµλeeL)(ū3Rγµu3R) 2y2
t λ

u
33C1

(ν̄LγµλeνL)(ū3Rγµu3R) 2y2
t λ

u
33C1

Table 2.4: Semi-leptonic operators with projectors or u3: running from Λ to mEW.

2.3 Consistency checks
Operators in tables 2.2, 2.3 and 2.4 are generated by one-loop electroweak corrections to the

operators in L0
NP. In this regard two types of diagrams need to be considered:

• Electroweak penguins

• Current-current diagrams

These corrections involve the exchange of Z, W and γ, as well as the exchange of the Higgs and
of pseudo-Goldstone bosons. The latter arise from the fact that we choose to work in the Rξ

(ξ = 1) gauge. We observe that in our framework Higgs and pseudo-Goldstone bosons interact
only with the top quark, because we neglected all other Yukawa couplings; thus corrections with
exchange of Higgs and pseudo-Goldstone bosons are responsible for the generation of operators
containing the projectors P3 and the currents with the top (ū3Rγ

µu3R) (see table 2.4). We do not
compute all these corrections by hand to find the corresponding anomalous dimension matrix;
as stated at the beginning of this chapter, we rely on the renormalization group equations given
by [27]. However, we do some explicit consistency checks. These enable us to further check the
correctness of RGE and to learn how to compute the relevant types of one-loop corrections,
which will be useful for the second part of the running - from mEW down to 1 GeV.

In general in order to compute the full one-loop amplitude of a given process in the effective
theory described by Lagrangian L = LSM + L0

NP + Leff we need to consider three types of
contributions: a genuinely tree-level contribution, indipendent from the renormalization scale
µ, a formally tree-level contribution induced by RGE (i.e. deriving from Leff , which we shall
refer to as "RGE term") and a one-loop contribution, arising from the interplay of one of the
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Ci

Ci

...

Figure 2.2: General form for the one-loop amplitude of a given process in the effective field theory
described by L. From left to right we have a purely tree-level contribution, a RGE contribution -
denoted by a shaded circle - and one-loop diagrams (either penguins or current-current diagrams).

four-fermions operators in L0
NP and SM vertices. For consistency, the µ dependence in the

one-loop term should be canceled by the RGE term, provided the wavefunction renormalization
has been taken into account.

In our calculations we check that this cancellation actually takes place for some significant
cases. In particular we consider electroweak penguins and current-current corrections with Z, W
and γ exchange; we do not check the consistency for operators generated by the exchange of the
Higgs or pseudo-Goldstone bosons. For simplicity we choose four-fermion processes involving
particles with definite chiralities and mediated by a single Qi in the RGE term.

Note that all external momenta can be taken to be zero, because the cancellation must take
place independently from the particles momenta. In fact, the ξi do not depend on momenta,
so the one-loop term they have to cancel can’t depend on momenta either. Clearly if we were
interested in the physical amplitude of the process we should take into account physical, on
shell external momenta.
Hereafter - unless otherwise specified - dots stand for terms independent from the renormalization
scale.

2.3.1 Consistency check for (ēLγµλeeL)(ēLγµeL)

We start by considering the neutral-current lepton-flavor-violating process µ−Le+
R → e−Le

+
R. The

relevant diagrams are displayed in figure 2.3.
The only tree-level contribution comes from Leff . In particular, given the chiralities of the
particles involved, the only relevant operator in Leff is (ēLγµλeeL)(ēLγµeL), whose ξ is given in
table (2.3). Therefore the tree-level amplitude reads

Mtree = i

16π2Λ2 ln Λ2

µ2

[2
3(C1 − C4 − 3C3)− 6y2

t λ
u
33(C1 − C3)

(
−1

2 + s2
W

)]
λe12(v̄γµPLu)(ūγµPLv) . (2.62)

The diagrams contributing to the process at one loop are the penguins in figure 2.3(b) and
2.3(c), which involve a quark loop and the exchange of a photon and of a Z boson respectively.
Starting from the electromagnetic penguin, we observe that the operators we can insert in the
vertex labelled with Ci are the ones involving a charged lepton current and an up/down-type
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e

µ

e

e

(a)

µ

e

t, qℓ

e

t, qℓ

γ

e

Ci

(b)

µ

e

t, qℓ

e

t, qℓ

Z

e

Ci

(c)

Figure 2.3: Diagrams contributing to the process µ−Le+
R → e−Le

+
R in the effective theory above mEW.

From left to right: RGE contribution, electromagnetic penguin and Z penguin.

quark current:

L0
NP =C1 − C3

Λ2 (ēLγµλeeL)(ūLγµλuuL) + C1 + C3

Λ2 (ēLγµλeeL)(d̄LγµλddL)

+ C4

Λ2 (ēLγµλeeL)(d̄RγµΓddR) + . . . , (2.63)

where dots stand for operators irrelevant to the process. Taking all three relevant operators into
account, we obtain the following expression for the amplitude of the electromagnetic penguin

Mγ = i

16π2Λ2

[
4
3e

2(C1 − C3)
(
λu11 ln µ2

m2
u

+ λu22 ln µ2

m2
c

+ λu33 ln µ2

m2
t

)

− 2
3e

2(C1 + C3)
(
λd11 ln µ2

m2
d

+ λd22 ln µ2

m2
s

+ λd33 ln µ2

m2
b

)

−2
3e

2C4

(
Γd11 ln µ2

m2
d

+ Γd22 ln µ2

m2
s

+ Γd33 ln µ2

m2
b

)]
λe12(v̄γµPLu)(ūγµPLu) . (2.64)

The detailed computation can be found in the appendix section A.2.1.1.
As to the Z penguin, in theory we should consider exactly the same operator insertions we
considered for the electromagnetic one. However, its amplitude is proportional to the Yukawa
coupling of the quark running in the loop3, so it is sufficient to consider the diagram with the
virtual top. The final result reads

MZ = i

16π2Λ2

[
−6y2

t λ
u
33(C1 − C3)

(
−1

2 + s2
W

)
ln µ2

m2
t

]
λe12(v̄γµPLu)(ūγµPLu) . (2.65)

The complete computation is given in the appendix (see section A.2.1.2).
Summing all contributions we get

Mtot =Mtree +Mγ +MZ

= i

16π2Λ2λ
e
12(v̄γµPLu)(ūγµPLu)

[
2
3e

2(C1 − C4 − 3C3) ln Λ2

M2

−6y2
t λ

u
33(C1 − C3)

(
−1

2 + s2
W

)
ln Λ2

m2
t

]
, (2.66)

3This can be easily understood by observing that mt is the only mass scale besides Λ.
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where M2 arises from the µ-independent part inMγ and is defined as

M2 =


(
m

2λu11
u m

2λu22
c m

2λu33
t

)2(C1−C3)

(
m

2λd11
d m

2λd22
s m

2λd33
b

)C1+C3 (
m

2Γd11
d m

2Γd22
s m

2Γd33
b

)C4


1

C1−3C3−C4

. (2.67)

As expected, the renormalization scale dependence cancels in the sum.

2.3.2 Consistency check for (ēRγµΓeeR)(d̄RγµΓddR)

s

µ

d

e

Ci

(a)

s

µ

d

e

(b)

Figure 2.4: Tree-level contribution to the process µ−Re+
L → dRs̄L. On the left, the purely tree-level

contribution from L0
NP; on the right, the RGE contribution from Leff .

Now we are interested in doing a consistency check involving the computation of curren-
current corrections. For this purpose we consider the process µ−Re+

L → dRs̄L; diagrams contribut-
ing to the process at tree level and at one loop are shown in figures 2.4 and 2.5.
At tree level the process receives a contribution from both L0

NP and Leff through the operator
(ēRγµΓeeR)(d̄RγµΓddR):

Mtree = iC5

Λ2

(
1− 2g2

1
16π2 ln Λ2

µ2

)
Γe12 Γd12 (v̄γµPRu)(ūγµPRv) . (2.68)

One-loop contributions involve the exchange of γ and Z. Diagrams 2.5(c)-2.5(h) concern the
vertex correction and wavefunction renormalization. They give no contribution; in fact, as we
expect from the QED Ward identity, we find

Mγ
c +Mγ

d +Mγ
e = 0 Mγ

f +Mγ
g +Mγ

h = 0 . (2.69)

Given the fact that leptons are massless in our framework, the computation for the Z diagrams
proceeds in the same way, hence we get

MZ

c +MZ

d +MZ

e = 0 MZ

f +MZ

g +MZ

h = 0 . (2.70)

Regarding the remaining diagrams, we compute onlyMγ,Z
i andMγ,Z

k , becauseMγ,Z
i =Mγ,Z

j

andMγ,Z
k =Mγ,Z

l . Explicit calculation (see A.2.2) gives

MZ
i +MZ

k = i

16π2Λ2

(
−3 g

2
2
c2

W

geR g
d
R C5

)[
ln µ2

m2
Z

+ 1
]

Γe12Γd12 (v̄γµPRu) (ūγµPRv) . (2.71)
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d
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d
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s
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e

d
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Figure 2.5: One-loop contribution to the process µ−Re+
L → dRs̄L. Diagrams 2.5(c)-2.5(h) repre-

sent the vertex correction and wavefunction renormalization for the two currents in the operator
(ēRγµΓeeR)(d̄RγµΓddR). The remaining current-current corrections to the operator considered are given
by 2.5(i)-2.5(l).

Mγ
i +Mγ

k can be obtained by substituting m2
Z → m2

γ and g2
cW

gfR → e qf in this expression4

Mγ
i +Mγ

k = i

16π2Λ2

(
−3e2qeqdC5

) [
ln µ2

m2
γ

+ 1
]

Γe12Γd12 (v̄γµPRu) (ūγµPRv) , (2.72)

hence the total amplitude at one loop reads

Mloop =MZ
tot +Mγ

tot = 2
(
MZ

i +MZ
k

)
+ 2 (Mγ

i +Mγ
k)

= − 6i
16π2Λ2

(
g2

2
c2

W

geR g
d
R C5 + e2qeqdC5

)
lnµ2 Γe12 Γd12 (v̄γµPRu) (ūγµPRv) + . . . .

(2.73)

Remembering that qe = −1, qd = −1
3 , g

e
R = −s2

W, gdR = −1
3s

2
W and g1cW = e = g2sW we find

Mloop = i

16π2Λ2

(
−2g2

1C5
)

lnµ2 Γe12 Γd12 (v̄γµPRu) (ūγµPRv) + . . . , (2.74)

which cancels exactly the renormalization scale dependence in eq. (2.68).
4We use mγ as an IR regulator.
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2.3.3 Consistency check for (ēLγµλeeL)(ūLγµλuuL)
Another interesting case is the one where current-current corrections withW boson exchange

appear; as an example we consider the process µ−Le+
R → uLc̄R. Again, we have a tree-level

contribution from both L0
NP and Leff , where the relevant operator is (ēLγµλeeL)(ūLγµλuuL):

Mtree = i

Λ2

[
(C1 − C3) + 1

32π2

(
C1(g2

1 + 3g2
2)− C3(g2

1 + 15g2
2)
)

ln Λ2

µ2

]
λe12λ

u
12(v̄γµPLu)(ūγµPLv) .

At one loop we need to compute current-current corrections involving Z, γ and W exchange.
Current-current Z and γ corrections are based on the insertion of a single L0

NP operator,
(ēLγµλeeL)(ūLγµλuuL). Using the result obtained in the previous subsection with the substitu-
tions qd → qu, geR gdR → geL g

u
L snd C5 → (C1 − C3), we find

Mγ
tot +MZ

tot = i

16π2Λ2

(
g2

1
2 + 3g2

2
2

)
(C1 − C3) lnµ2 λe12 λ

u
12 (v̄γµPRu) (ūγµPRv) + . . . . (2.75)

Current-current W corrections instead are based on the insertion of four different L0
NP operators:

• (ēLγµλeeL)(ūLγµλuuL) for 2.6(d), 2.6(e), 2.6(g) and 2.6(h)

• (ν̄LγµλeνL)(ūLγµλuuL) for 2.6(c)

• (ēLγµλeeL)(d̄LγµλddL) for 2.6(f)

• (ēLγµλeνL)(ūLγµλudCKM
L ) for 2.6(i) and 2.6(j)

Differently from the case with Z and γ, here diagrams describing wave function renormalization
and vertex corrections give a non-zero contribution. The results read

Mc = i

16π2Λ2

(
g2

2
2 (C1 + C3)

)
lnµ2 λe12 λ

u
12 (v̄γµPLu) (ūγµPLv) + . . .

Md = − i

16π2Λ2

(
g2

2
4 (C1 − C3)

)
lnµ2 λe12 λ

u
12 (v̄γµPLu) (ūγµPLv) + . . . (2.76)

For the last two diagrams, 2.6(i) and 2.6(j), we need to sum over all possible down quarks in
the loop. For the amplitudeMi we find

Mi = i

16π2Λ2 (−4g2
2C3)

[
ln µ2

m2
W

+ 1
]
λe12 λ

u
12 (v̄γµPLu) (ūγµPLv) , (2.77)

where the explicit computation can be found in A.2.3.1. SinceMc =Mf ,Md =Me =Mg =
Mh andMi =Mj, the total contribution given by one-loop W corrections is

MW

tot = 2Mc + 4Md + 2Mg = i

16π2Λ2 (−6g2
2C3) lnµ2 λe12 λ

u
12 (v̄γµPLu) (ūγµPLv) + . . . , (2.78)

therefore the full one-loop contribution reads

Mloop =Mγ
tot +MZ

tot +MW

tot

= i

32π2Λ2

(
C1(g2

1 + 3g2
2)− C3(g2

1 + 15g2
2)
)

lnµ2 λe12 λ
u
12 (v̄γµPLu)(ūγµPLv) + . . . ,

(2.79)
which cancels the µ dependence in the formally tree-level RGE contribution.
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Figure 2.6: One-loop contribution to the process µ−Le+
R → uLc̄R. Note that in this case the analogous

of diagrams 2.5(k) and 2.5(l) cannot be built.

2.3.4 Consistency check for (ν̄LγµλeeL)(ēLγµνL)
As a final example we consider a charged-current process, the tau decay τ → ντeν̄e. The

corresponding diagrams are shown in figure 2.7. At tree level it receives both a SM and a RGE

τ

νe

W

ντ

e

νe

τ

e

ντ
τ

ν̄e

ντ

di

W

uj

e

Ci

Figure 2.7: Diagrams contributing to the process τ → ντeν̄e. From left to right, SM tree-level
contribution, RGE contribution and penguin with W exchange.

contribution from the purely leptonic operator (ν̄LγµλeeL)(ēLγµνL) in Leff

Mtree =
[
− i

m2
W

+ i

16π2Λ2 (−6y2
t λ

u
33C3) ln Λ2

µ2 λ
e
33

]
(ūγµPLu)(ūγµPLv) . (2.80)

The only diagram contributing at one loop is the penguin with exchange of a W boson and
insertion of the L0

NP operator (d̄LλduγµuL)(ν̄LγµλeeL). In general we should sum over all possible
combinations of up and down quarks in the loop, but given our choice for Yukawa couplings
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the only relevant couples are those involving the top and the down quarks d, s, b. Following the
same steps we saw fot the Z penguin, we find the following final result

Mloop = i

16π2Λ2 (−6y2
t λ

u
33C3) ln µ2

m2
t

λe33 (ūγµPLu)(ūγµPLv) (2.81)

As expected, the µ-dependence cancels in the sum of the two amplitudes.
Like this operator, all purely leptonic charged-current operators are not renormalized by QED
interactions. In fact, using the Fierz identity, the operator (ν̄τLγµτL)(ēLγµνeL) can be rewritten
as (ν̄τLγµνeL)(ēLγµτL), and the charged lepton current (ēLγµτL) is not affected by renormalization
due to the QED Ward identity.

2.4 Explicit matching at the EW threshold
In section 2.2 we obtained the effective Lagrangian at the scale mEW < µ < Λ, eq. (2.21).

This Lagrangian contains all SM fields as dynamical degrees of freedom: heavy fields - W ,
Z, top quark - and light fields, denoted by φ`. Below the EW threshold heavy fields can be
integrated out; the theory is described by a new effective Lagrangian where only light fields
appear as dynamical degrees of freedom. As a rule, this Lagrangian will be the most general
Lagrangian we can write using the allowed d.o.f. and compatible with the residual U(1)em

symmetry

Leff = 1
Λ2

∑
i

C̄i(µ)Qi(φ`) , (2.82)

where Qi are U(1)em invariant operators containing only light SM fields and C̄i(µ) are their
Wilson coefficients. The C̄i(µ) are a priori unknown; they are determined by matching the
high-energy effective Lagrangian into the low-energy one.
As discussed in the first chapter, the idea behind the matching procedure is to compute the
amplitude of a certain physical process within the high and the low-energy effective theory;
these amplitudes are then required to be equal at the matching scale at a given order in the
parameters. As an example we consider once more the process µ−Le+

R → e−Le
+
R. Figures 2.3 and

2.8 show the diagrams contributing to the process in the effective theories described by (2.52)5

and (2.82). The penguins with light quarks in the loop cancel in the matching and we are left
with the equation in figure 2.9. Since the two penguins give a contribution ∝ ln m2

EW
m2
t
, which is

zero in the approximation mt ≈ mEW, we find

C(mEW) = C̄(mEW) , (2.83)

where C(mEW) and C̄(mEW) denote the coefficients of the operator (ēLγµλeeL)(ēLγµeL) in the
Lagrangian above and below the EW threshold.

5The matching can be performed starting directly from (2.52), where Z and W have already been integrated
out at tree level.
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Figure 2.8: Diagrams contributing to the process in the effective theory below mEW. Here the RGE
contribution is denoted by a shaded square.
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Figure 2.9: Explicit matching for the operator (ēLγµλeeL)(ēLγµeL) at the EW scale. Matching
between EFT below mEW (on the left) and EFT above mEW (on the right).

It can be easily seen that this is a general result, valid for all operators listed in tables 2.2-2.4.
As a consequence in order to write the Lagrangian (2.82) we just need to take equation (2.52)
and to remove tL and tR from the final result.

2.5 RGE flow from mEW to the GeV scale

In the previous section we derived the effective Lagrangian at the EW scale after integrating
out the massive bosons W and Z and the top quark

Leff = 1
Λ2

∑
i

C̄i(mEW)Qi = 1
16π2Λ2 ln Λ

mEW

∑
i

ξiQi . (2.84)

At this point our aim is to find the effective Lagrangian at the GeV scale; in order to do this we
need to run the Wilson coefficients from the EW scale down to µ ∼ 1 GeV. We observe that in
our setup the running below the EW scale does not generate any new operators.
In going from the EW scale to the GeV scale two energy thresholds must be crossed, correspond-
ing to the masses of the bottom and the charm quark, mb and mc. When crossing a threshold
we integrate out the corresponding matter field, thus reducing the number of dynamical degrees
of freedom in the theory. In this sense in every energy range we have a different effective theory:
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effective Lagrangian

Leff = 1
Λ2
∑
i Ci(µ)Qi

Leff = 1
Λ2
∑
i C̄i(µ)Qi

Leff = 1
Λ2
∑
i C̃i(µ)Qi

Leff = 1
Λ2
∑
i C∗i (µ)Qi

degrees of freedom

W , Z ,u, c, t, d, s, b, e, µ, τ

u, c, d, s, b, e, µ, τ

u, c, d, s, e, µ, τ

u, d, s, e, µ, τ

Confining effective theories need to be matched at the corresponding threshold. Like in the case
of the electroweak threshold, matching at mc and mb gives C̄i(µb) = C̃i(µb), C̃i(mc) = C∗i (mc) for
each Qi.
Working in leading logarithm approximation, in different ranges the Wilson coefficient for a
given Qi has the form

C̄i(µ) = C̄i(mEW)− bi
16π2 ln mEW

µ
mb < µ < mEW

C̃i(µ) = C̃i(mb)−
ci

16π2 ln mb

µ
mc < µ < mb

C∗i (µ) = C∗i (mc)−
di

16π2 ln mc

µ
1GeV < µ < mc ,

(2.85)

(2.86)

(2.87)

where the coefficients bi, ci and di have to be determined. Using the matching conditions at mb

and mc we find the following expression for C∗i (µ)

C∗i (µ) = Ci(mEW)− 1
16π2

(
bi ln mEW

mb

+ ci ln mb

mc

+ di ln mc

µ

)
≡ Ci(mEW) + δCi(µ) , (2.88)

where δCi(µ) encodes the running from mEW to µ ∼ 1 GeV. Rewriting it as

δCi(µ) = 1
16π2 ln mEW

µ
δξi (2.89)

with

δξi = − 1
ln µ

mEW

(
bi ln mEW

mb

+ ci ln mb

mc

+ di ln mc

µ

)
, (2.90)
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the effective Lagrangian at scale 1 GeV < µ < mc reads

Leff = 1
Λ2

∑
i

Ci(mEW)Qi + 1
Λ2

∑
i

δCi(µ)Qi

= 1
16π2Λ2 ln Λ

mEW

∑
i

ξiQi + 1
16π2Λ2 ln mEW

µ

∑
i

δξiQi . (2.91)

It is completely determined once we fix bi, ci, di for every Qi. The procedure we used to find
these coefficients is the following:

1. Choose a four-fermion process which receives RGE contribution only from Qi.

2. Within each energy range write the diagrams contributing to the process at the desired
order, one loop in our case. As stated previously, the process will in general receive
a truly tree-level contribution, a RGE contribution and a one-loop contribution with
insertion of L0

NP operators. Being under the EWSB scale, the only one-loop diagrams
we can build are those involving the exchange of a virtual photon and/or of the virtual
fermions which are still dynamical degrees of freedom in the energy range considered.
As a consequence there are just two kinds of diagrams involved in this computation:
electromagnetic current-current corrections and electromagnetic penguins, both of wich
have been analysed in the previous section. Clearly Wilson coefficients whose operator
cannot be generated by electromagnetic current-current or penguin corrections to the
operators in L0

NP are not renormalized by QED and have δξ = 0.

3. Range by range require the RGE term to cancel the renormalization scale dependence
emerging from the loop diagram. The three resulting conditions enable us to determine
bi, ci and di.

Note that this procedure is completely equivalent to employing renormalization group equations
for dimension-six U(1)em-invariant operators; finding bi, ci and di in fact basically amounts to
computing the anomalous dimension matrix for the Qi. As a matter of principle, one could
attempt to recover these equations starting from the RGE for GSM-invariant operators [27] by
switching off the SU(2)L gauge coupling and by appropriately substituting hypercharges with
electric charges.

Operators whose Wilson coefficients keep running below the electroweak threshold can be
divided in two main categories:

• current-current operators, given by the product of two V ± A currents. They have the
form Q = (f̄γµM fPf)(ḡγµM gPg), where f and g are fermions, P is a projector and M f/g

is either λf/g or Γf/g;

• penguin operators, appearing as product of a V ± A current with a vector current:
Q = (f̄γµM fPf)(ḡγµg). For our purpose it is convenient to analyse separately penguins
with a V ± A quark current and penguins with a V ± A lepton current.

In the next section we show how to apply procedure 1- 3 to these categories.
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2.5.1 Current-current operators
In order to find δξ for an operator of the form Q = (f̄γµM fPf)(ḡγµM gPg) we consider

the process f̄ifj → gkḡ`. The one-loop contribution below the EW threshold is given by
electromagnetic current-current diagrams with insertion of Q itself. Independently from the
energy range, the one-loop amplitude reads

Mloop = i

16π2Λ2

(
±6 e2 qf qg C

)
lnµ2 M1

ij M
2
k` (v̄γµPu)(ūγµPv) + . . . , (2.92)

where C is the coefficient of Q in L0
NP and the computation is performed along the lines of eq.

(2.72). We choose the minus sign if Q is of the kind LL or RR, the plus sign if Q is of the kind
LR or RL 6.
The RGE term must cancel the renormalization scale dependence inMloop within each range.
In the interval mb < µ < mEW eq.(2.85) gives

MRGE = i

16π2Λ2
b

2 lnµ2 . . . . (2.93)

For the µ-dependence to cancel in the sum, b = ∓12 e2 qf qg C.
The same procedure has to be repeated sistematically; sinceMloop is unchanged all the way
from mEW downwards, we find b = c = d. This implies

δξ = −b = ∓12 e2 qf qg C . (2.94)

2.5.2 Penguin operators
In the case of penguins we analyse a process with two fermions of the same family in final state,
f̄ifj → gkḡk.

Hadronic V ± A current

If the V ± A current contains quarks, the one-loop contribution to the process f̄ifj → gkḡk is
given by electromagnetic penguins with charged leptons in the loop. The inserted L0

NP operators
have the form CL(f̄γµM fPf)(ēγµλePLe) and CR(f̄γµM fPf)(ēγµΓePRe).
Remembering (2.64)7, the general formula for the amplitude reads

Mloop = i

16π2Λ2

[
−2e2

3 qgqe
∑
i

(CLλ
e
ii + CRΓeii) ln µ2

m2
ei

]
M f

ij(v̄γµPu)(ūγµv) + . . . , (2.95)

where the index i runs over the charged leptons in the loop. Since we assume mτ ∼ 1 GeV, in
the whole range from the EW scale down to 1 GeV all charged leptons are dynamical degrees
of freedom and we need to sum over i = 1, 2, 3. Substituting qe = −1 and using the property
Trλeii = TrΓe = 1 we obtain

Mloop = i

16π2Λ2

[
2e2

3 qg(CL + CR)
]

lnµ2M f
ij(v̄γµPu)(ūγµv) + . . . . (2.96)

6The origin of this difference lies in the spinor current contractions (A.6)-(A.9)
7Note that this expressione must be divided by three because leptons have no color.
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Applying the same reasoning followed for current-current operators, we find b = c = d. Therefore
δξ is

δξ = −b = 4e2

3 qg(CL + CR) . (2.97)

Leptonic V ± A current

In the case of a leptonic V ± A current, the relevant diagrams at one loop are electromagnetic
penguins with a quark loop. For a given f , three operators can be inserted in the penguin:
(f̄γµM ePf)(ūγµλuPLu), (f̄γµM ePf)(d̄γµλdPLd) and (f̄γµM ePf)(d̄γµΓdPRd). Denoting by Cu

L ,
Cd
L and Cd

R their coefficients in L0
NP, the total amplitude is given by

Mloop = −2ie2qg
16π2Λ2

quCu
L

∑
i

λuii ln
µ2

m2
ui

+ qd
∑
j

(
Cd
Lλ

d
jj + Cd

RΓdjj
)

ln µ2

m2
di

M e
ij(v̄γµPu)(ūγµv) + . . . ,

(2.98)

where the indices i, j run over the up and down quarks in the loop. In this case b 6= c 6= d,
because the number of "active" quarks diminishes when crossing the mb and mc threshold.
For mb < µ < mEW all quarks but the top are active, so we sum over i = 1, 2 and j = 1, 2, 3.
From (2.85) we get

b = 4e2 qg[quCu
L(1− λu33) + qd(Cd

L + Cd
R)] . (2.99)

We proceed analogously for the ranges mc < µ < mb and 1 GeV < µ < mc. Keeping (2.86) and
(2.87) in mind we find the following expressions for the coefficients c and d

c = 4e2qg
[
quC

u
L(1− λu33) + qdC

d
L(1− λd33) + qdC

d
R(1− Γd33)

]
h (2.100)

d = 4e2 qg
[
quC

u
L(1− λu33 − λu22) + qdC

d
L(1− λd33) + qdC

d
R(1− Γd33)

]
, (2.101)

thus the final expression for δξ reads

δξ = −4e2qg
3

[
2Cu

L − Cd
L − Cd

R +
(
Cd
Lλ̂

d
33 + Cd

RΓ̂d33

)
ln mb

µ
− 2Cu

L

(
λu33 + λ̂u22 ln mc

µ

)]
, (2.102)

where λ̂ = λ
ln µ
mEW

.

Equations (2.94), (2.97) and (2.102) allow us to compute δξi for every operator Qi; results are
shown in tables 2.6 and 2.5. The low-energy effective Lagrangian is now completely determined.
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Qi δξi

(ūLγµλuuL)(ēγµe) −4
3e

2(C1 + C6 − C3)
(d̄CKM

L γµλud
CKM
L )(ēγµe) −4

3e
2(C1 + C6 + C3)

(d̄RγµΓddR)(ēγµe) −4
3e

2(C4 + C5)
(ν̄LγµλeνL)(ūγµu) −8

9e
2
{
C1 − C4 + 3C3 − 2(C1 + C3)(λu33 + λ̂u22 ln mc

µ
)
}

-
{

+
[
(C1 − C3)λ̂d33 + C4Γ̂d33

]
ln mb

µ

}
(ν̄LγµλeνL)(d̄γµd) +4

9e
2
{
C1 − C4 + 3C3 − 2(C1 + C3)(λu33 + λ̂u22 ln mc

µ
)
}

-
{

+
[
(C1 − C3)λ̂d33 + C4Γ̂d33

]
ln mb

µ

}
(ēLγµλeeL)(ūγµu) −8

9e
2
{
C1 − C4 − 3C3 − 2(C1 − C3)(λu33 + λ̂u22 ln mc

µ
)
}

-
{

+
[
(C1 + C3)λ̂d33 + C4Γ̂d33

]
ln mb

µ

}
(ēLγµλeeL)(d̄γµd) +4

9e
2
{
C1 − C4 − 3C3 − 2(C1 − C3)(λu33 + λ̂u22 ln mc

µ
)
}

-
{

+
[
(C1 + C3)λ̂d33 + C4Γ̂d33

]
ln mb

µ

}
(ēRγµΓeeR)(ūγµu) +8

9e
2
{
C5 − C6 − (C5Γ̂d33 + C6λ̂

d
33) ln mb

µ
+ 2C6(λu33 + λ̂u22 ln mc

µ
)
}

(ēRγµΓeeR)(d̄γµd) −4
9e

2
{
C5 − C6 − (C5Γ̂d33 + C6λ̂

d
33) ln mb

µ
+ 2C6(λu33 + λ̂u22 ln mc

µ
)
}

(d̄RγµΓddR)(ēLγµλeeL) 4e2C4

(d̄RγµΓddR)(ēRγµΓeeR) −4e2C5

(ēRγµΓeeR)(ūLγµλuuL) −8e2C6

(ēRγµΓeeR)(d̄LγµλddL) 4e2C6

(ēLγµλeeL)(ūLγµλuuL) +8e2(C1 − C3)
(ēLγµλeνL)(ūLγµλudCKM

L ) −8e2C3

Table 2.5: Semi-leptonic operators: running from mEW to µ ∼ 1 GeV. Operators with δξi = 0 are
omitted.

Qi δξi

(ν̄LγµλeνL)(ēγµe) 4
3e

2
{
C1 − C4 + 3C3 − 2(C1 + C3)(λu33 + λ̂u22 ln mc

µ
)
}

-
{

+
[
(C1 − C3)λ̂d33 + C4Γ̂d33

]
ln mb

µ

}
(ēLγµλeeL)(ēγµe) 4

3e
2
{
C1 − C4 − 3C3 − 2(C1 − C3)(λu33 + λ̂u22 ln mc

µ
)
}

-
{

+
[
(C1 + C3)λ̂d33 + C4Γ̂d33

]
ln mb

µ

}
(ēRγµΓeeR)(ēγµe) −4

3e
2
{
C5 − C6 − (C5Γ̂d33 + C6λ̂

d
33) ln mb

µ
+ 2C6(λu33 + λ̂u22 ln mc

µ
)
}

Table 2.6: Leptonic operators: running from mEW to µ ∼ 1 GeV. Operators with δξi = 0 are omitted.
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Chapter 3

Phenomenological implications

This chapter addresses the phenomenological consequences of Lagrangian (2.7) and of its
RGE-improved evolution at low energy. Our main goal is to understand the limits imposed
by the experimental bounds on selected observables on the values of Rτ/`

D(∗) and Rµ/e
K . Keeping

this in mind, we start by analysing B anomalies and other B-decay channels receiving NP
contribution at tree level. We choose not to investigate the observable Rµ/e

K∗ , because the
discrepancy with respect to the SM concerns not only the central q2 region, but also the region
at low q2. As shown in [22], the NP contribution to Rµ/e

K∗ in the low bin is given by the dipole
Wilson coefficient C7

NP (which is tightly constrained by b→ sγ transitions [25, 28]) and by the
coefficients (C9(′)

NP )µµ and (C10(′)
NP )µµ, whose impact in this region is limited and cannot account for

the measured anomaly.
Subsequently, we take one-loop phenomenology into consideration, focusing on observables
which are so tightly constrained experimentally that the NP contribution plays a major role
despite showing up only at one loop. In particular we consider Z-pole observables and τ LFUV
and LFV decays. Finally, we thoroughly analyse a phenomenologically relevant scenario, where
NP affects dominantly the Wilson coefficient C9.
The NP contribution to the observables is parametrized in terms of the free parameters of L0

NP,
namely the five Ci and the matrices λe, λd, Γe and Γd. Before starting the phenomenological
analysis we significantly simplify our setup by assuming λ ≈ Γ. Given the absence of LFUV
and LFV in processes involving the first two generations, we also assume λe/d1i = Γe/d1i = 0
for i = 1, 2, 3 and λ

e/d
22 ≈

∣∣∣λe/d23

∣∣∣2 � λ
e/d
33

1. Moreover, λe23 and λd23 are taken to be real. The
parameters involved in our analysis are therefore C1, C3, C4, C5, C6 and λe/d23 .

1As a consequence, λe/d33 ≈ 1.
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3.1 Tree-level phenomenology

3.1.1 B anomalies
In our framework B anomalies receive NP contribution at tree level. In order to compute

this contribution explicitly, we need to match the low-energy Lagrangians LNC
eff and LCC

eff with
the NP Lagrangian L0

NP. Strictly speaking LNC
eff and LCC

eff should be matched to the Lagrangian
obtained by running the Wilson coefficients down to µ = mB, but RGE induced terms are
generally negligible with respect to tree-level ones2. From equations (1.32), (1.34) and (2.14)
we find

(C9
NP)ij = 4π2

e2λtbs

v2

Λ2λ
d
23λ

e
ij[C1 + C3 + C6] + . . .

(C10
NP)ij = 4π2

e2λtbs

v2

Λ2λ
d
23λ

e
ij[−C1 − C3 + C6] + . . .

(C ′9NP)ij = 4π2

e2λtbs

v2

Λ2 Γd23λ
e
ij[C4 + C5] + . . .

(C ′10
NP)ij = 4π2

e2λtbs

v2

Λ2 Γd23λ
e
ij[−C4 + C5] + . . .

(CνNP)ij = 4π2

e2λtbs

v2

Λ2λ
d
23λ

e
ij[C1 − C3] + . . .

(C ′νNP)ij = 4π2

e2λtbs

v2

Λ2 Γd23λ
e
ijC4 + . . .

(CcbL,NP)ij = − v
2

Λ2
λud23
Vcb

C3λ
e
ij + . . . , (3.1)

where dots stand for subleading RGE terms.
We focus on the ratios Rµ/e

K and Rτ/`

D(∗) , defined in (1.16) and subject to the experimental bounds
(1.17). In our framework Rµ/e

K can be written as

R
µ/e
K ≈

∣∣∣C9
µµ + C9′

µµ

∣∣∣2 +
∣∣∣C10
µµ + C10′

µµ

∣∣∣2
|C9
ee + C9′

ee|
2 + |C10

ee + C10′
ee |

2

≈ |C
9
SM + (C9

NP)µµ + (C9′
NP)µµ|2 + |C10

SM + (C10
NP)µµ + (C10′

NP)µµ|2

|C9
SM + (C9

NP)ee + (C9′
NP)ee|2 + |C10

SM + (C10
NP)ee + (C10′

NP)ee|2
. (3.2)

(C9
NP)ee, (C9′

NP)ee, (C10
NP)ee and (C10′

NP)ee can be neglected because λe11 = 0. Working linearly in NP
contributions and substituting C9

SM ≈ −C10
SM ≈ 4.2 [6], we find

R
µ/e
K ≈ 1 + 2

C9
SM

π

αλtbs

v2

Λ2λ
d
23λ

e
22 (C1 + C3 + C4) , (3.3)

which results in the numerical expression

R
µ/e
K ≈ 1− 0.28

Λ2(TeV2)
λe22λ

d
23

10−3 (C1 + C3 + C4) . (3.4)

2This is true unless particular cancellations among parameters take place; we suppose that this is not the
case.
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The ratio describing the charged-current anomaly, Rτ/`

D(∗) , is given by

R
τ/`

D(∗) =
∑
j |(CcbL )3j|2∑
j |(CcbL )`j|2

. (3.5)

Keeping only linear NP contributions and neglecting λe11 and λe22 with respect to λe33, we find

R
τ/`

D(∗) ≈ 1− 2 v
2

Λ2
λud23
Vcb

C3λ
e
33 (3.6)

Using the relation λud = VCKMλ
d, λud23 can be expressed as λud23 = Vcsλ

d
23 + Vcbλ

d
33. Substituting

numerical quantities, we end up with the following expression

R
τ/`

D(∗) ≈ 1− 0.12 C3

Λ2(TeV2)
λe33

(
Vcs
Vcb

λd23 + λd33

)
. (3.7)

3.1.2 Further tree-level phenomenology in B decays

Besides B anomalies, our framework predicts tree-level NP effects in other B-decay channels:

• An important example is given by the decay B → Kν̄ν, which is strictly related to the
neutral-current anomaly. In fact, NP enters this process through the coefficients CνNP and
Cν′NP; as equation (3.1) shows, these are closely linked to the coefficients describing NP in
b→ s`+`−, C9(′)

NP and C10(′)
NP . This happens because they ultimately originate from the same

SU(2)L × U(1)Y invariant operators in L0
NP.

We consider the observable Rνν
K , defined as

Rνν
K = B(B → Kν̄ν)

B(B → Kν̄ν)SM
, (3.8)

which is subject to the experimental constraint Rνν
K < 4.3. In our framework Rνν

K can be
expressed as

Rνν
K =

∑
ij

∣∣∣Cνij + Cν′ij
∣∣∣2

3 |CνSM|
2 =

∑
ij |CνSMδij + (CνNP)ij + (Cν′NP)ij|2

3 |CνSM|
2 . (3.9)

By expanding the numerator and using the property ∑ij|λeij|2 = 1 and Trλe = 1, we find

Rνν
K ≈ 1 + 2

3
λd23
|CνSM|

π

αλtbs

v2

Λ2 (C1 − C3 + C4) + 1
3

(
λd23
|CνSM|

π

αλtbs

v2

Λ2 (C1 − C3 + C4)
)2

. (3.10)

Since CνSM ≈ −6.4, we get the numerical result

Rνν
K ≈ 1 + 0.6

(
λd23
0.01

C1 − C3 + C4

Λ2(TeV2)

)
+ 0.3

(
λd23
0.01

C1 − C3 + C4

Λ2(TeV2)

)2

. (3.11)
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• The presence of a non-zero λe23 implies non-vanishing branching ratios for lepton-flavor-
violating decays involving third generation leptons, for example Bs → τµ and B → Kτµ.
The branching ratio for this second process reads [29]

B(B → Kτµ) ≈ 2 · 10−9
(
9.6 |(C9

NP)µτ + (C ′9NP)µτ |2 + 10 |(C10
NP)µτ + (C ′10

NP)µτ |2
)
. (3.12)

Employing the relation (C9
NP)µτ

(C9
NP)µµ = λe23/λe22, we find

B(B → Kτµ) ≈ 2 · 10−9
(
λe23
λe22

)2 (
9.6 |(C9

NP)µµ + (C ′9NP)µµ|2 + 10 |(C10
NP)µµ + (C ′10

NP)µµ|2
)
.

(3.13)

Given the order of magnitude we expect for C9, C9′,C10, C10′ to account for B anomalies,
this is well below the current experimental bound B(B → Kτµ) ≤ 4.8× 10−5 [30].

• Our framework predicts a tree-level NP contribution also to the purely leptonic decay
Bs → µ̄µ, which is sensitive to C10(′)

NP .

• LFUV in B → D`ν is related to LFUV in B → `ν, described by the observable Rτ/`
Bτν

[2]. The experiment Belle II, which should start data taking in early 2018, is expected to
measure this quantity to a 5% precision.

3.2 One-loop phenomenology
Renormalization group evolution induces two main effects. First, as discussed in section

2.2.1, Z and W couplings to fermions are modified with respect to the SM. Second, as we can
see from equation (2.91) and the related tables, at low energies a purely leptonic Lagrangian is
induced. As a consequence, we expect LFV and LFUV effects in Z, W and τ observables. In
this section we examine some of them.

3.2.1 Z-pole observables
The NP modification to Z couplings (2.30) explicitly breaks both LF and LFU in weak

interactions. The consequent deviations of Z-pole observables from SM expectation values are
tightly constrained by LEP measurements of the Z decay widths, left-right and forward-backward
asymmetry. Remembering the definition of the axial and vector couplings

v` = (g`L)`` + (g`R)`` a` = (g`L)`` − (g`R)`` , (3.14)

we consider the observables vτ
ve

and aτ
ae
, which quantify the universality of Z couplings to charged

leptons. Experimental bounds on these couplings are derived from the measured values of
asymmetries and are given by [31]

vτ
ve

= 0.959 (29) aτ
ae

= 1.0019 (15) . (3.15)
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In our framework they read

vτ
ve
≈ 1− 2

1− 4s2
W

[(δgeL)33 − (δgeL)11 + (δgeR)33 − (δgeR)11] (3.16)
aτ
ae
≈ 1− 2 [(δgeL)33 − (δgeL)11 − (δgeR)33 + (δgeR)11] . (3.17)

Plugging (2.50) into these expressions we obtain

vτ
ve
≈ 1− 2λe33

1− 4s2
W

[
3λ33

u y
2
t (C1 − C3 + C6) ln Λ

mt

+ g2
2C3 ln Λ

mt

+ g2
1
3 (C1 − C4 + C6 − C5) ln Λ

mZ

]
aτ
ae
≈ 1− 2λe33

[
3λ33

u y
2
t (C1 − C3 − C6) ln Λ

mt

+ g2
2C3 ln Λ

mt

+ g2
1
3 (C1 − C4 − C6 + C5) ln Λ

mZ

]
,

(3.18)

and substituting numerical values we get the following estimate

vτ
ve
≈ 1− 0.05

Λ2(TeV2)
[(C1 − C3 + C6) + 0.2C3 + 0.02 (C1 − C4 + C6 − C5)]

aτ
ae
≈ 1− 0.004

Λ2(TeV2)
[(C1 − C3 − C6) + 0.2C3 + 0.02 (C1 − C4 − C6 + C5)] . (3.19)

Another important observable is the number of neutrinos Nν , which is extracted from the
invisible Z width. Taking the NP modification of Z couplings to neutrinos into account, Nν

can be approximated by

Nν ≈ 3 + 4(δgνL)33 ≈ 3 + 0.008
Λ2 [(C1 + C3)− 0.2C3 + 0.02 (C1 − C4)] . (3.20)

The experimental bound reads Nν = 2.9840± 0.0082 [31] .

3.2.2 Purely leptonic effective Lagrangian

The effective low-energy Lagrangian (2.91) contains a purely leptonic Lagrangian L`eff . Taking
into account the explicit values of the ξi and δξi for leptonic operators, we can write it as

L`eff = −4GF√
2

[(ēLγµλeeL)
∑
f

(f̄γµf)(2gfSMc
e
t −Qψc

e
γ) + (ēRγµλeeR)

∑
f

(f̄γµf)(2gfSMc
e ′
t −Qfc

e ′
γ )

+ ccct (ēLγµλeνL)(ν̄LγµeL + ūLγµVCKMdL) + h.c.] , (3.21)
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where f = {νL, eL, eR, uL, uR, dL, dR} and gfSM is the Z coupling to the f field in the SM. The
coefficients cet , ceγ, ce ′t , ce ′γ are defined as

cet = 3v2

32π2Λ2y
2
t (C1 − C3)λu33 ln Λ2

m2
EW

ce ′t = 3v2

32π2Λ2y
2
tC6λ

u
33 ln Λ2

m2
EW

ceγ = v2

48π2Λ2 e
2
[
(3C3 − C1 + C4) ln Λ2

µ2 + 2(C1 − C3)
(
λu33 ln m

2
EW

µ2 + λu22 ln m
2
c

µ2

)

−λd33 (C1 + C3 + C4) ln m
2
b

µ2

]

ce ′γ = v2

48π2Λ2 e
2
[
(C6 − C5) ln Λ2

µ2 + 2C6

(
λu33 ln m

2
EW

µ2 + λu22 ln m
2
c

µ2

)
− λd33 (C6 + C5) ln m

2
b

µ2

]

ccct = 3v2

16π2Λ2y
2
tC3λ

u
33 ln Λ2

m2
t

.

Leptonic processes triggered by this Lagrangian get a NP contribution from a combination of
ccct , ceγ, cet and/or from their primed counterparts. In general this contribution will depend on
the renormalization scale µ; this dependence must cancel when computing the matrix element.
The scale dependence is encoded in the coefficients ceγ, ce ′γ and ccct , because they include the
electromagnetic contribution, which runs from Λ to the low-energy scale µ. The contribution
coming from the loop diagram with the top instead runs only from the higher scale Λ to mEW,
because for lower values of µ the top is integrated out. It is worth noting that the coefficient ccct
has no electromagnetic NP contribution; this happens because fully leptonic charged-current
operators, as already observed, aren’t renormalized by QED effects.
Lagrangian (3.21) manifestly generates both LFV and LFUV processes. Given the hierarchy in
λe, NP effects are maximized in transitions involving the third generation. As a consequence,
we focus on τ decays. In the SM leptonic τ decays τ → `ν̄`ντ (` = µ, e) proceed trough the
tree-level exchange of a W boson, with the universal coupling associated with the charged-current
interactions. Due to the W coupling universality, all these decay modes have equal amplitudes
in the SM, provided that final fermion masses are neglected. The NP contribution instead
violates LF and LFU; we consider τ → `ν̄ν as an example of LFUV and τ → 3µ as an example
of LFV.

3.2.3 τ → `ν̄ν

LFU breaking effects in τ → `ν̄ν (with `1,2 = e, µ) are described by the observables

Rτ/`1,2
τ = B(τ → `2,1νν̄)exp/B(τ → `2,1νν̄)SM

B(µ→ eνν̄)exp/B(µ→ eνν̄)SM
, (3.22)

which are subject to the strong experimental constraints [32]

Rτ/µ
τ = 1.0022± 0.0030 Rτ/e

τ = 1.0060± 0.0030 . (3.23)
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The process τ → `ν̄jνi receives a contribution both from the SM Lagrangian and from L`eff . The
SM contribution reads

LSM = −4GF√
2
δ`jδi3(¯̀

LγµνjL)(ν̄iLγµτL) = −4GF√
2
δ`jδi3(¯̀

LγµτL)(ν̄iLγµνjL) , (3.24)

where we used the Fierz identity (ν̄iLγµτL)(¯̀
Lγ

µνjL) = (ν̄iLγµνjL)(¯̀
Lγ

µτL). The part of L`eff we
are interested in is given by

L`eff = −4GF√
2
{[
cetδijλ

e
`3 + ccct (λe`jδi3 + λei3δ`j)

]
(¯̀
LγµτL)(ν̄iLγµνjL)

+ce ′t δijλe`3(¯̀
RγµτR)(ν̄iLγµνjL)

}
. (3.25)

Therefore the full Lagrangian contributing to τ → `ν̄ν is

L = −4GF√
2
{

(Cτ`
L )ij(¯̀

LγµτL)(ν̄iLγµνjL) + (Cτ`
R )ij(¯̀

RγµτR)(ν̄iLγµνjL)
}
, (3.26)

where (Cτ`
L )ij = δ`jδi3 + cetδijλ

e
`3 + ccct (λe`jδi3 + λei3δ`j) and (Cτ`

R )ij = ce ′t λ
e
`3δkj. The ratio Rτ/`

τ can
be expressed in terms of these coefficients as follows

Rτ/`1,2
τ =

∑
ij |(C

τ `2,1
L )ij|2 + |(Cτ `2,1

R )ij|2∑
ij |(C

`2,1 e
L )ij|2 + |(C`2,1 e

R )ij|2
. (3.27)

Working linearly in NP contribution, only the interference between the SM term and the
charged-current term survives, giving

Rτ/`
τ ' 1 + 2 ccct λe33 ≈ 1 + 0.008λe33

C3

Λ2(TeV) . (3.28)

3.2.4 τ → 3µ
One of the most studied LFV processes generated by L`eff is the decay τ → 3µ, which is forbidden
in the SM3. The only contribution is given by L`eff

L`eff = −4GF√
2
λe23 [(cLR − cet )(µLγµτL)(µ̄LγµµL) + cLR(µLγµτL)(µ̄RγµµR)

+(c′LR − ce ′t )(µRγµτR)(µ̄LγµµL) + c′LR(µRγµτR)(µ̄RγµµR)] + . . . , (3.29)

where c(′)
LR = 2s2

Wc
e (′)
t + ce (′)

γ . Adapting the formula given in ref. [33] we find

Γ(τ → 3µ) = G2
Fm

5
τ

192π3 |λ
e
23|

2
[
2(cLR − cet )2 + c2

LR + 2c′2LR + (c′LR − ce ′t )2
]
. (3.30)

3This is rigorously true if we consider neutrinos to be massless; taking neutrino mixing into account τ → 3µ
receives a one-loop SM contribution. However the corresponding branching ratio is tiny B . 10−40, far below
the current experimental limit. An observation of τ → 3µ in the near future would therefore be an unambiguous
signal of NP, beyond that needed to account for neutrino masses.
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If at least one among C1−C3 and C6 is non-zero the term proportional to the Yukawa coupling
gives the leading contribution; in this case we neglect the electromagnetic contribution given by
ceγ, obtaining

Γ(τ → 3µ) = G2
Fm

5
τ

192π3 |λ
e
23|

2
[
ce 2
t (12s4

W − 8s2
W + 2) + ce ′ 2t (12s4

W − 4s2
W + 1)

]
. (3.31)

Knowing that the τ lifetime is ττ = (290.17± 0.53± 0.33) · 10−15s [34] we find the following
numerical expression for the branching ratio

B(τ → 3µ) ≈
(
λe23
0.3

)2 [
5.0(C1 − C3)2

Λ4(TeV4)
+ 4.5 C2

6

Λ4(TeV4)

]
· 10−8 . (3.32)

The current experimental bound reads B(τ → 3µ) 6 2.1 · 10−8 [30].

3.3 Study of a motivated scenario (only C9)
So far we obtained the general analytic expressions for B anomalies and for other significant
observables; no specific hypothesis on the coefficients Ci in L0

NP has been made yet. In this section
we specify our analysis to a phenomenologically relevant case. In view of the considerations in
section 1.4, we examine the scenario where only (C9

NP)µµ is non-vanishing. Operators containing
a right-handed quark current are absent in this scenario; the only difference with respect to
[1, 2] is the presence of a non-zero C6. By imposing (C10

NP)µµ = (C9′
NP)µµ = (C10′

NP)µµ = 0 we obtain
the following conditions on the Ci

C1 + C3 = C6 C4 = C5 = 0 . (3.33)

Taking the NP scale to be Λ ≈ 1 TeV, the free parameters in this setup are C1, C3, λd23 and λe23.
Our initial assumptions about the structure of λe and λd straightforwardly imply |λe,d23 | ≤ 0.5;
we can further restrict the bounds on λe23, because |λe22| ≤ 0.1 [35] and λe22 ≈ |λe23|

2 imply
|λe23| . 0.3. As to C1,3, we can safely assume |C1,3| ≤ 3.
Given (3.33), B anomalies read

R
τ/`
D = 1− 0.12 C3

Λ2λ
e
33

(
Vcs
Vcb

λd23 + λd33

)

R
µ/e
K = 1− 0.28

Λ2
λe22λ

d
23

10−3 (C1 + C3) . (3.34)

On the other hand, the expressions for the relevant observables - which we shall refer to as
constraint observables - simplify to

Rνν
K = 1 + 0.6

(
λd23
0.01

C1 − C3

Λ2

)
+ 0.3

(
λd23
0.01

C1 − C3

Λ2

)2

vτ
ve

= 1− 0.05λe33
Λ2 (2 C1 + 0.2 C3 + 0.02 (2 C1 + C3))

aτ
ae

= 1 + 0.007λe33
C3

Λ2
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Figure 3.1: Impact of one-loop-induced constraints on the values of Rτ/`
D(∗) and Rµ/eK for C1 ∈ {−3, 3},

C3 ∈ {−3, 0}, λe23 ∈ {−0.3, 0.3} and λd23 ∈ {−0.04,−0.001}. The experimental point shows the value
of Rµ/eK and the combined value of Rτ/`D and Rτ/`D∗ .

Nν = 3 + 0.008λe33
Λ2 (C1 + C3 − 0.2 C3 + 0.02 C1)

Rτ/`1,2
τ = 1 + 0.008λe33

C3

Λ2

B(τ → 3µ) =
(
λe23
0.3

)2 [
5.0(C1 − C3)2

Λ4 + 4.5(C1 + C3)2

Λ4

]
· 10−8 . (3.35)

It is interesting to observe that although two neutral-current operators are present in L0
NP,

the ratio aτ
ae

turns out to depend exclusively on the Wilson coefficient of the charged-current
operator Q(3)

`q at scale Λ, C3. Choosing |λd23| . Vcb in order to avoid too much fine tuning when
reproducing the CKM matrix, there is a strong relation between the allowed departure from
1 of Rτ/`

D(∗) , aτ
ae

and R
τ/`1,2
τ . Since the latter are tightly constrained by experimental bounds,

δR
τ/`

D(∗) = R
τ/`

D(∗) − 1 will be tightly constrained as well.
This can be clearly seen in the graph displayed in figure 3.1, which shows the allowed regions
for Rµ/e

K and R
τ/`

D(∗) when bounds on constraint observables4 are imposed. Each constraint
observable is evaluated for a given quadruple (C1, C3, λe23, λd23) in parameter space; if the result
is compatible with the experimental value within 2σ, the values of Rµ/e

K and R
τ/`

D(∗) for that
particular quadruple are plotted with the color associated to the observable considered. The
same procedure is repeated for quadruples randomly distributed in parameter space. Note that
the bound on the observable Rνν

K is imposed a priori on all quadruples.
Altough all observables receiving NP contribution at one loop impose strong bounds on B

anomalies, Z-pole observables set the strictest limits, forcing δRτ/`

D(∗) to be . 0.02. Like in [1, 2],
we conclude that current data on constraint observables challenge a simultaneous explanation
of the present values of Rµ/e

K and Rτ/`

D(∗) .
4Note that Z-pole observables are considered as a single constraint.
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Figure 3.2: B(τ → 3µ) vs. B(B → Kτµ) within our model for two different configurations of C1
and C3, imposing all constraints but Rτ/`

D(∗) . We let parameters vary in the ranges C3 ∈ {−3, 3},
λe23 ∈ {−0.3, 0.3}, λd23 ∈ {−0.04, 0.04} and Λ ∈ {1, 2}TeV.

In the plot of figure 3.2 we analyse the correlation between the predictions for two LFV decays
in our model, namely the semi-leptonic process B → Kτµ and the purely leptonic decay τ → 3µ.
The graph shows that the loop-induced process τ → 3µ is a much more sensitive probe of the
considered scenario than the tree-level observable B → Kτµ, due to the current and expected
future experimental resolutions.
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Conclusions

In the last few years the experimental collaborations of LHCb, Belle and Babar reported
indications of LFUV in the processes B → K(∗)`` and B → D(∗)`ν̄. Since the universality of
weak interactions is one of the key predictions of the SM, these results have triggered a large
interest about possible NP interpretations.
In the present work we have analysed Rµ/e

K(∗) and Rτ/`

D(∗) in a model-independent way, assuming
that NP originates at a scale Λ ∼ 1 TeV. We have started by building the NP Lagrangian at
the scale Λ in terms of five six-dimensional semi-leptonic operators. Then we have derived the
low-energy effective Lagrangian extensively: we have addressed running effects from Λ to the
EW scale by employing one-loop RGE in the limit of exact electroweak symmetry, and, after
integrating out heavy degrees of freedom, we have described the evolution down to 1 GeV using
RGE dominated by the electromagnetic interaction.
In the last part of our work, we have studied the most relevant phenomenological consequences
of the derived Lagrangian. After considering B anomalies and other B decays receiving NP
contribution at tree level, we have investigated the phenomenology arising at one loop. Since
the most important effects of the running are the modification of the Z and W couplings and
the generation of a purely leptonic effective lagragian, we have focused on LFUV and LFV in
Z-pole observables and in τ decays. Motivated by the global fits regarding NP in b→ sµ+µ−

transitions, we have finally considered the scenario where only the Wilson coefficient C9 receives
NP contributions, with the aim of quantifying the impact of one-loop-induced constraints on
R
τ/`

D(∗) and Rµ/e
K . We have found that in this scenario Z-pole observables set the strictest bound

on the allowed values for B anomalies, because they imply Rτ/`

D(∗) . 1.02. This result conveys the
same message as [1, 2]: electroweak radiative corrections challenge a simultaneous explanation
of Rµ/e

K and Rτ/`

D(∗) and cannot be ignored when addressing B anomalies.
Finally, we have identified the leptonic decay τ → 3µ as the most promising channel to test
LFV effects in our framework.
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Appendix A

A.1 Formulas
γ relations

{γµ, γν} = 2ηµν

γµγνγµ = −2γν

γµγνγργµ = 4ηνρ

γµγνγργσγµ = −2γσγργν

γµγαγν = ηµαγν + ηανγµ − ηµνγα + iεµανργ
ργ5 (A.1)

Trace formulas

Tr[γµγν ] = 4ηµν

Tr[γµγνγργσ] = 4(ηµνηρσ − ηµρηνσ + ηµσηνρ)
Tr[γ5] = Tr[γ5γµγν ] = 0
Tr[γµγνγργσγ5] = −4iεµνρσ

Tr[γµγν ...︸ ︷︷ ︸
odd

] = 0

Tr[γ5 γµγν ...︸ ︷︷ ︸
odd

] = 0 (A.2)

Feynman parameters

1
AB =

∫ 1

0
dx

1
[Ax+ B(1− x)]2 (A.3)

Dimensional regularization

(µ2)2−D2
∫ dDk

(2π)D
k2

(k2 −∆)2 = − 2i∆
(4π)2

(
−2
ε
− ln 4π − µ2

∆ + γ − 1 + o(ε)
)

(A.4)

(µ2)2−D2
∫ dDk

(2π)D
1

(k2 −∆)2 = i

(4π)2

(
2
ε

+ ln 4π + ln µ
2

∆ − γ + o(ε)
)

(A.5)
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Spinor currents contractions

(v̄γµγαγνPR(L)u) (ūγµγβγνPR(L)v) ηαβ = 16 (v̄γµPR(L)u) (ūγµPR(L)v) (A.6)
(v̄γνγαγµPR(L)u)

(
ūγµγ

βγνPR(L)v
)
ηαβ = 4 (v̄γµPR(L)u) (ūγµPR(L)v) (A.7)(

v̄γµγαγνPL(R)u
)

(ūγµγβγνPR(L)v) ηαβ = 4 (v̄γµPR(L)u) (ūγµPL(R)v) (A.8)

(v̄γνγαγµPR(L)u)
(
ūγµγ

βγνPL(R)v
)
ηαβ = 16 (v̄γµPR(L)u)

(
ūγµPL(R)v

)
(A.9)

Proof: Using the last relation in (A.1) we show that

(v̄γµγαγνPR(L)u) (ūγµγβγνPR(L)v) = (v̄γνPR(L)u) (ūγαγβγνPR(L)v)
+ (v̄γµPR(L)u) (ūγµγβγαPR(L)v)
+ 2 (v̄γαPR(L)u) (ūγβPR(L)v)
+ iεµανρ (v̄γρPR(L)u) (ūγµγβγνPR(L))

(v̄γνγαγµPR(L)u)
(
ūγµγ

βγνPR(L)v
)

= (v̄γµPR(L)u)
(
ūγµγ

βγαPR(L)v
)

+ (v̄γνPR(L)u) (ūγαγβγνPR(L)v)
+ 2 (v̄γαPR(L)u)

(
ūγβPR(L)v

)
+ iεναµρ (v̄γρPR(L)u)

(
ūγµγ

βγνPR(L)

)

(v̄γµγαγνPR(L)u) (ūγµγβγνPR(L)v) = (v̄γνPR(L)u) (ūγαγβγνPR(L)v)
+ (v̄γµPR(L)u) (ūγµγβγαPR(L)v)
+ 2 (v̄γαPR(L)u) (ūγβPR(L)v)
− iεµανρ (v̄γρPR(L)u)

(
ūγµγβγ

νPL(R)
)

(v̄γνγαγµPR(L)u)
(
ūγµγ

βγνPL(R)v
)

= (v̄γµPR(L)u)
(
ūγµγ

βγαPL(R)v
)

+ (v̄γνPR(L)u)
(
ūγαγβγνPL(R)v

)
+ 2 (v̄γαPR(L)u)

(
ūγβPL(R)v

)
− iεναµρ (v̄γρPR(L)u)

(
ūγµγ

βγνPL(R)
)

where we used γ5PR = PR and γ5PL = −PL. These imply (A.6)-(A.9).
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A.2. DETAILED COMPUTATIONS FOR CONSISTENCY CHECKS

A.2 Detailed computations for consistency checks

A.2.1 Consistency check for (ēLγµλeeL)(ēLγµeL)
A.2.1.1 Electromagnetic penguin

Mγ receives contribution from the insertion of the three operators in (2.63). We start by
inserting the operator with coefficient (C1 − C3). Letting ` be the momentum carried by the
photon and k the momentum circulating in the loop, the amplitude reads

M = 3 · 2
3e

2C1 − C3

Λ2

∑
i

λuii

∫ dDk

(2π)D
Tr[(/̀+ /k +mui)γµPL(/k +mui)γν ]
`2((`+ k)2 −m2

ui
)(k2 −m2

ui
) λe12(v̄γµPLu)(ūγνPLv) ,

where we multiplied by 3 in order to account for the three quark colors. Note that we cannot
choose immediately ` = 0; we need to check that the pole cancels first. Using trace formulas in
(A.2) we find

Tr[(/̀+ /k +mui)γµPL(/k +mui)γν ] =2 ((`+ k)µkν + (`+ k)νkµ − ηµνk · (`+ k)
+m2

ui
+ i(`+ k)αkβεαβµν

)
.

We then recast the denominator using the Feynman parametrization (A.3) with A = (`+k)2−m2
ui

and B = k2 −m2
ui
. Noting that

Ax+B(1− x) = (k + `x)2 −m2
ui
− `2x(1− x) = (k + `x)2 −∆ ,

where ∆ = m2
ui

+ `2x(1− x), we get

∫ dDk

(2π)D
Tr[(/̀+ /k +mui)γµPL(/k +mui)γν ]

((`+ k)2 −m2
ui

)(k2 −m2
ui

) =
∫ 1

0
dx
∫ dDk

(2π)D
Tr[(/̀+ /k +mui)γµPL(/k +mui)γν ]

((k + `x)2 −∆)2 .

Performing the shift k → k − `x the trace becomes

Tr[. . . ] → 2
[( 2
D
− 1

)
k2 +

(
m2
ui

+ `2x(1− x)
)]
ηµν − 2`µ`νx(1− x) ,

where we have kept only even powers of k and used the substitution kµkν → k2

D
ηµν

1. Note that
the chiral stucture of the current giving the loop content plays no role, since the γ5 dependence
in the trace cancels after the shift.
The term ∝ `µ`ν does not contribute because, thanks to Dirac equation, it yields zero when
contracted to the fermionic currents; then

M =4e2(C1 − C3)
`2Λ2

∑
i

λuii

∫ 1

0
dx

[( 2
D
− 1

) ∫ dDk

(2π)D
k2

(k2 −∆)2

+
(
m2
ui

+ `2x(1− x)
) ∫ dDk

(2π)D
1

(k2 −∆)2)

]
λe12(v̄γµPLu)(ūγµPLv) .

1This can be done because
∫
dDkkµkνf(k2) = ηµν

D

∫
dDkk2f(f2)
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Using dimensional regularization integrals (A.5) and (A.4) and eliminating divergences in the
MS scheme, we find

M = i

16π2
8e2

`2
C1 − C3

Λ2

∑
i

λuii

∫ 1

0
dx
(
`2x(1− x)

)
ln µ

2

∆ λe12(v̄γµPLu)(ūγµPLv) .

The pole in ` = 0 cancels, so ` can be safely taken to be 0. The final result yields

M = i

16π2Λ2

[
4
3e

2(C1 − C3)
∑
i

λuii ln
µ2

m2
ui

]
λe12(v̄γµPLu)(ūγµPLv) .

In order to compute the contribution deriving from the other two operators in (2.63) we just
need to change the charge of the particle running in the loop (4

3e
2 → −2

3e
2) and to substitute

λu with λd and Γd.
In conclusion, the final result reads

Mγ = i

16π2Λ2

[
4
3e

2(C1 − C3)
(
λu11 ln µ2

m2
u

+ λu22 ln µ2

m2
c

+ λu33 ln µ2

m2
t

)

− 2
3e

2(C1 + C3)
(
λd11 ln µ2

m2
d

+ λd22 ln µ2

m2
s

+ λd33 ln µ2

m2
b

)

−2
3e

2C4

(
Γd11 ln µ2

m2
d

+ Γd22 ln µ2

m2
s

+ Γd33 ln µ2

m2
b

)]
λe12(v̄γµPLu)(ūγµPLu) .

A.2.1.2 Z penguin

The amplitude for the Z penguin with the top quark running in the loop reads

MZ =− 3λu33
C1 − C3

Λ2
g2

2
c2

W

ηνρ

`2 −m2
Z

∫ dDk

(2π)D
Tr
[
(/̀+ /k +mt)γµPL(/k +mt)(gtLγvPL + gtRγvPR)

]
((`+ k)2 −m2

t )(k2 −m2
t )

λe12(v̄γµPLu)(ū(geLγρPL + geRγρPR)v) .

Since the propagator is massive we can safely take ` = 0, hence

MZ =3λu33
C1 − C3

Λ2
g2

2
c2

Wm
2
Z

∫ dDk

(2π)D
Tr [(/k +mt)γµPL(/k +mt)(gtLγvPL + gtRγvPR)]

(k2 −m2
t )2

λe12(v̄γµPLu)(ū(geLγνPL + geRγ
νPR)v) .

We then compute the trace using (A.2)

Tr [. . . ] = gtL
2 Tr [/kγµ/kγν ] + gtL

2 m
2
tTr [γµγν ] = 2ηµν

[
gtL

( 2
D
− 1

)
k2 + gtRm

2
t

]
,

and find the following expression for the amplitude

MZ =6λu33
C1 − C3

Λ2
g2

2
c2

Wm
2
Z

[
gtL

( 2
D
− 1

) ∫ dDk

(2π)D
k2

(k2 −m2
t )2 + gtRm

2
t

∫ dDk

(2π)D
1

(k2 −m2
t )2

]
λe12(v̄γµPLu)(ū(geLγµPL + geRγµPR)v)

=6λu33
C1 − C3

Λ2
g2

2
c2

Wm
2
Z

(−2gtA) ln µ2

m2
t

λe12(v̄γµPLu)(ū(geLγµPL + geRγµPR)v) .
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In the last step we used the dimensional regularization integrals (A.5) and (A.4). Remembering
that m2

t = 2m2
Zc

2
W

g2
2

y2
t the final result is

MZ = i

16π2Λ2λ
e
12(v̄γµPLu)(ūγµPLu)

[
−6y2

t λ
u
33(C1 − C3)

(
−1

2 + s2
W

)
ln µ2

m2
t

]
.

A.2.2 Consistency check for (ēRγµΓeeR)(d̄RγµΓddR)
A.2.2.1 Computation of MZ

i

Taking all external particles to have momentum p, the amplitude of the diagram in figure 2.5(i)
is given by

MZ
i = − g

2
2
c2

W

geR g
d
R

C5

Λ2 Γe12 Γd12

∫ dDk

(2π)D
(k − p)α(k − p)β (v̄γµγαγνPRu) (ūγµγβγνPRv)

(k2 −m2
Z)(k − p)4∗

.

We take p = 0 and rewrite the numerator using kαkβ = k2

D
ηαβ and the spinor contraction (A.6),

obtaining

MZ
i = − g

2
2
c2

W

geR g
d
R

C5

Λ2 Γe12 Γd12

∫ dDk

(2π)D
kαkβ (v̄γµγαγνPRu) (ūγµγβγνPRv)

(k2 −mZ)2k4

= −4 g
2
2
c2

W

geR g
d
R

C5

Λ2

∫ dDk

(2π)D
1

k2(k2 −m2
Z)Γe12 Γd12 (v̄γµPRu) (ūγµPRv)

= −4 g
2
2
c2

W

geRg
d
R

C5

Λ2

∫ 1

0
dx
∫ dDk

(2π)D
1

(k2 −m2
Zx)2 Γe12Γd12 (v̄γµPRu) (ūγµPRv) ,

where in the last step we rewrote the denominator using (A.3). Next we compute the integrals
over the loop momentum using (A.5); the result in the MS subtraction scheme reads

MZ
i = i

16π2Λ2

(
−4 g

2
2
c2

W

geR g
d
R C5

)[
ln µ2

m2
Z

+ 1
]

Γe12Γd12 (v̄γµPRu) (ūγµPRv) .

A.2.2.2 Computation of MZ
k

The computation is similar to theMZ
k one, except for the γ-structure appearing in the numerator.

Using the spinor current contraction (A.7) we find

MZ
k = g2

2
c2

W

geRg
d
R

C5

Λ2 Γe12Γd12

∫ dDk

(2π)D
kαkβ (v̄γνγαγµPRu)

(
ūγµγ

βγνPRv
)

(k2 −mZ)2k4

= i

16π2Λ2

(
g2

2
c2

W

geRg
d
RC5

)[
ln µ2

m2
Z

+ 1
]

Γe12Γd12 (v̄γµPRu) (ūγµPRv) . (A.10)

A.2.3 Consistency check for (ēLγµλeeL)(ūLγµλuuL)
A.2.3.1 Computation of Mi

Let p = 0 be the momentum of the external particles and k the loop momentum. W have

Mi = −g
2
2
2

2C3

Λ2 λ
e
12
∑
i

[λuV ]1i[V †]i2
∫ dDk

(2π)D
kαkβ (v̄γµγαγνPLu) (ūγµγβγνPLv)

k4(k2 −m2
W) .
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We observe that ∑i[λuVCKM]1i[V †CKM]i2 = λu12 due to λ properties.
Using kαkβ = k2

D
ηαβ and the spinor current contraction (A.6) we find

Mi = −4g2
2C3

Λ2

∫ dDk

(2π)D
1

k2(k2 −m2
W)λ

e
12λ

u
12 (v̄γµPLu) (ūγµPLv) .

The Feynman parametrization is the same we used forMc; the final result in the MS scheme
reads

Mi = i

16π2Λ2 (−4g2
2C3)

[
ln µ2

m2
W

+ 1
]
λe12λ

u
12 (v̄γµPLu) (ūγµPLv) .
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