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Abstract

Epilepsy is one of the most common neurological diseases with around 50 million cases
globally, and nearly 80% of them appear in low- and middle-income countries (LMICs). It
is estimated that around 75% of epilepsy cases in LMICs are not treated correctly when
for up to 70% of those, it would be possible to live seizure-free thanks to the medicines.
One of the most consistent predictors of seizure recurrence, as well as the most common
test used to diagnose epilepsy condition, is electroencephalography (EEG), a noninvasive
method for recording brain electrical activity [1].

In this scenario, some companies are developing solutions to bring affordable devices
able to respond to LMICs setups, e.g. expert-independent and in a mobile environment.
Therefore, there is a necessity for an intuitive, automatic and real-time EEG recording
quality control feature running on a mobile phone.

The problem inspected in the thesis is the feasibility of such a feature. In the Introduc-
tion and State of the art chapters, the problem is stated and the standard methods used
are exposed through the PRISMA standard. The Design Thinking Process chapter
highlights the framework used to structure the project. The users’ needs and system
requirements chapter addresses the necessities of the users and defines their needs.
The data is recorded and organized in the Data collection chapter. The artefact de-
tection algorithm is designed and tuned for the specific data in the Riemannian Potato
Field (RPF) and practical design chapter. Eventually, the implementation and the de-
velopment of the quality feature in the mobile app are explained in RPF implementation
for embedded systems and Mobile app quality feature prototype chapters. The spe-
cific methods, results, conclusions, discussions and future works are examined for each
chapter. Finally, the outcomes of each chapter and the influenced discussions are linked
together in the final Discussions and conclusions chapter.



Abstract

L'epilessia & una delle malattie neurologiche pit comuni, con circa 50 milioni di casi a
livello globale, di cui quasi I'80% di essi si manifesta nei Paesi a basso e medio reddito.
Si stima che circa il 75% dei casi di epilessia nei Paesi a basso reddito non sia trattato
correttamente, mentre per il 70% di questi sarebbe possibile vivere senza episodi epilettici
grazie ai farmaci. Uno dei predittori piu stabili di ricorrenza delle crisi, nonché il test piu co-
munemente utilizzato per diagnosticare la condizione di epilessia, & I'elettroencefalogramma
(EEG), un metodo non invasivo per registrare I'attivita elettrica del cervello [1].

In questo scenario, alcune aziende stanno sviluppando soluzioni per fornire dispositivi a
prezzi accessibili in grado di rispondere alle particolari necessita dei Paesi meno svilup-
pati, ad esempio soluzioni che non richiedano esperti del settore, e in un setup mobile.
Pertanto, &€ necessario un metodo di controllo della qualita della registrazione EEG che
sia intuitivo, automatico e in tempo reale, e che funzioni su una applicazione installata su
uno smartphone.

Il problema esaminato nella tesi € la fattibilita di tale metodo. Nei capitoli Introduction e
State of the art, viene esposto il problema e i metodi normalmente utilizzati, attraverso lo
standard PRISMA. Il capitolo Design Thinking Process evidenzia il framework di riferi-
mento utilizzato per strutturare il progetto. Il capitolo users’ needs and system require-
ments affronta le necessita degli utenti e definisce i loro bisogni. | dati vengono registrati e
organizzati nel capitolo Data collection. L’algoritmo di classificazione degli artefatti viene
progettato e ne vengono calibrati i parametri, per i dati raccolti, nel capitolo Riemannian
Potato Field (RPF) and practical design. Infine, I'implementazione e lo sviluppo della
funzione di controllo della qualita nell’applicazione per smartphone sono spiegati nei capi-
toli RPF implementation for embedded systems e Mobile app quality feature prototype.
Per ogni capitolo vengono esaminati i metodi specifici, i risultati, le conclusioni, le dis-
cussioni e i lavori futuri. Infine, i risultati di ciascun capitolo e le discussioni che ne sono
derivate sono collegate tra loro nei capitoli finali Discussions and conclusions.
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1 Introduction

1.1 Epilepsy
Epilepsy is one of the most common neurological diseases globally [1].

Epilepsy was defined conceptually in 2005 as a disorder of the brain characterized by an
enduring predisposition to generate epileptic seizures. This definition is usually practically
applied as having two unprovoked seizures greater than 24 hours apart [2].

A seizure is a brief episode of involuntary movement that involves the entire body or parts
of it. It is often related to loss of consciousness or bladder function.

Seizure episodes are a result of excessive electrical discharges in a group of brain cells.
They can appear in several different ways, hitting parts of the brain or being generalized.
They can vary from causing prolonged convulsions to just brief lapses of attention. Finally,
they can vary in frequency, from less than one per year to several per day. [3]

Around 50 million people have epilepsy in the world, with an estimation of 5 million new
people diagnosed with epilepsy worldwide every year. Nearly 80% of epilepsy cases
appear in low- and middle-income countries (then LMICs) [1].

People with epilepsy have three times higher risk of premature death than the general
population. It is estimated that around 75% of epilepsy cases in LMICs are not treated
correctly. This is also known as the "treatment gap”. On the other side, seizures can be
controlled with the appropriate use of antiseizure medicines. For up to 70% of people
living with epilepsy, it would be possible to live seizure-free thanks to the medicines [1].

Electroencephalography (EEG) is one of the most consistent predictors of seizure recur-
rence [1], as well as the most common test used to diagnose epilepsy condition.

1.2 Electroencephalography

Electroencephalography (EEG) is a non-invasive method for recording brain electrical
activity by measuring the voltage between pairs of electrodes located uniformly on the
scalp. Nowadays, EEG is one of the most important techniques for recording cortical
brain activities, given its balance between accuracy and practicality, cost and easiness of
use.

The electrical activity of the brain is mainly caused by the post-synaptic potentials (PSPs),
in particular, for a change in membrane conductance and transmembrane potential pro-
voked by the neurotransmitter released by the travel of the action potential to the nerve
terminal [4].

The signal can lead to an excitatory post-synaptic potential (EPSP) on the dendrites or
to inhibitory post-synaptic potentials (IPSPs) on the cell body of the neuron. The com-
bination of EPSPs and IPSPs induces currents that flow within and around the neuron.
The EEG is essentially measuring these voltage changes in the extracellular matrix. The
measurement is taken on the scalp by a system of electrodes and amplifiers [4].



The interaction between the cortex and thalamus as well as the functional properties of
large neuronal networks in the cortex that have an intrinsic capacity for rhythmicity create
recognizable EEG patterns, varying in different areas of the neocortex that allow us to
make sense of the complex world of brain waves [5].

One of the drawbacks of this method is the sensitivity to external sources of information
other than brain activity, that contaminate the signal. These external sources are called
artifacts, and they can interfere with the brain signal in the time-frequency-space domain,
making the tasks of detection and the removal of the noise cumbersome [6].

The sources of artifacts can be classified as physiological activities of the user (e.g. move-
ments, muscle tensions, ECG..) or external sources such as environmental interferences,
electrode pop-ups or cable movement. They can be periodic events (e.g. ECG) or they
can appear irregularly. In addition, they can influence a group of channels (global) or only
a single channel (local) [6].

1.3 Example of epilepsy diagnosis in LMICs

Numerous companies are active in the EEG device market, with most of them targeting
high-income countries (HICs), and with different purposes than epilepsy diagnosis [7]. For
these reasons, EEG machines are expensive to buy ($15k min), difficult to operate, and
rare [8].

BrainCapture is "a Medical Technology Company bringing affordable EEG scans and in-
terpretations to everyone” [9]. Enabling cheap diagnosis, a larger portion of epilepsy
cases could get the needed treatment, solving the cost and the distribution problems.

The biggest challenge to be faced remains the lack of experienced professionals able
to acquire and validate EEG recordings, risking that all recorded data must be discarded
and re-measured. On this side, BrainCapture is aiming at developing methods and strate-
gies to provide non-professional EEG operators with the necessary support to perform a
successful scan.

The principal solution developed by the company consists of a mobile application to sup-
port and guide the EEG operator through all the steps necessary to perform an epilepsy
EEG test [9].

BRAINCAPTURE

A Medical Technology Company bringing affordable EEG scans and

interpretations to everyone

A low-cost, Bluetooth enabled An app for data collection and A Quality Control (QC)

electrode cap upload to cloud algorithm to ensure clean data

collection by non-experts

Figure 1.1: BrainCapture’s landing page. Picture from their website [9]. Three deliver-
ables are shown, and the last is the quality control feature, demonstrating the centrality
of this project in their vision.



1.4 Problem statement

When a recording is performed by non-expert technicians it is easily affected by EEG
artifacts, which are external sources of noise that contaminate the brain signal. These
recordings result in poor-quality tests, which are unreadable to neurologists and therefore
not usable for diagnosis. This aspectis of such significance thatitis considered a separate
deliverable on BrainCapture’s landing page, as reported in Figure 1.1.

In this work, an operative solution to this problem is researched. The idea is to inspect if it
is possible to make non-expert EEG operators acquire recordings of good quality, that can
be used for an epilepsy diagnosis. In particular, the main goal is to analyse the feasibility
of an online artifact detection algorithm, running on an embedded device, to support them
in the data acquisition.

The problem is composed of three main parts:

* The end users of these recordings are neurologists, that need to read the scans
to provide a diagnosis. For this reason, it is important to understand what a good-
quality recording is for them. Thus, understanding what their necessities are and
which aspects are problematic. In addition, the direct users of the system are the
non-expert technicians. It is fundamental to understand the difficulties and doubts
they may face during the acquisition process, and which are the best strategies to
support them.

» Anonline detection algorithm for EEG artifacts has to be researched, collecting train-
ing data, and analysing its accuracy and reliability.

* Finally, the main goal of this project, and overall research question, is to verify that
the implementation of the online detection algorithm is feasible to be run on an em-
bedded system, integrable on an existing application.






2 State of the art

2.1 EEG market for LMICs

The review for the competitors’ side has been elaborated using different sources. The
most interesting insights, as one might expect, came from conversations and private doc-
uments with colleagues within the company and in the company network [10][11][12].
From that point, the various devices mentioned were analysed in more detail through
their websites and private conversations. A summary of this work is given below.

The four key assets necessary to unlock the LMICs market are affordability, LMIC us-
ability, expert independence and telemedicine accessibility to neurologists [7]. Numerous
companies are active in the EEG device market [7]. They can be categorized as sta-
tionary (highly reliable) traditional medical-grade EEG and innovative wireless solutions
companies.

The biggest players in the first category are, amongst others, companies like Natus [13],
Cadwell [14], and Compumedics [15]. These and all the traditional companies are USA-
based and focus on highly profitable MedTech devices for high-income countries (HIC).
The data recorded with these devices is of high fidelity and high quality. On the other side,
the medical grade is expensive. In addition, the traditional EEG requires specialists on
site and the necessity of having a stationary setup with stable grid power.

For the second category, it is worth citing companies like Zeto [16] and Brain products
[17]. The products of these players try to overcome some of the traditional problems. For
example, they are wireless and do not rely on a stable source of power. The weakest
edge is the quality, as the products are intended for consumer or research purposes, and
the resolution is insufficient for key medical applications.

BrainCapture’s aim is to keep the advantages of both sides, overcoming the disadvan-
tages. The strongest competitive edge is the hardware price, which is about 20 times
cheaper than any other available product in the market. In addition, the solution provided
by BrainCapture merges together all the other three assets listed above: it is based on
a mobile infrastructure that is more widely available than grid power; it is independent
of expert technicians, as the mobile application aims to guide the nurse through all the
necessary steps; and the cloud storage of the recordings allow neurologists to access the
data in a telemedicine manner.

Below is the competitive business radar chart, highlighting the key assets and BrainCap-
ture positioning with respect to the other competition classes (i.e. traditional and innova-
tive companies).



EEG market for LMICs key assets

Data accuracy

Telemedicine Affordability
Expert-independence LMIC usability
I BrainCapture [ Innovative Traditional

Figure 2.1: Qualitative radar graph of EEG market for LMICs. Traditional solutions over-
take BrainCapture in data accuracy but perform poorly in all the other key assets for
LMICs. Other innovative solutions can compete on the remaining assets, but are not as
focused as BrainCapture on epilepsy diagnosis, therefore less specialized. The frame-
work used is quantitative, but the analysis is only qualitative.

As shown in the figure above, traditional companies overtake BrainCapture in the accu-
racy of the data recordings but are not competitive in the ease of use and LMIC conditions.
The innovative solutions, on the other hand, are more competitive on the four LMIC key
assets, but not as focused on them as BrainCapture, and therefore less specialized for
the peculiar challenges.



2.2 Artifact detection and removal: Literature review

To analyse the different methods for artifact detection, the PRISMA methodology has been
followed, and in particular the "study selection” point: "Describe the results of the search
and selection process, from the number of records identified in the search to the number
of studies included in the review, ideally using a flow diagram” [18][19].

7820 records from: Records removed before the screening:
Google Scholar: "EEG artifact o Record removed by automatic tools:
detection review” + "after 2018": 4230 records
* “relevance, top 40": 3190 records
+ ‘citations > 5": 10 records
o Record removed by human inspection:

-.\\ + "title pertinence”: 20 records
5 records excluded for lack of
10 records screened —
relevance
5 reports assessed for eligibility —— 2 reports em:ludei.j for dup!lcate
or not relevant information

pS I AR /’

3 reviews included in the
initial analysis

Figure 2.2: Flow diagram for the systematic review of reviews, as described in the
PRISMA method[19]. The results of the first research have been filtered out through
automatic tools and human inspection, to reach three final reviews used as references for
further analysis.

In Figure 2.2 the retrieval and filtering process for collecting the reviews on artifact detec-
tion and removal is shown. From general research, the results have been filtered out to
finally obtain 3 review papers [20][21][22]. Using the methods reported there as a start-
ing point, a more detailed and targeted analysis has been performed for each particular
method.

While the problem of artifacts is well known in the literature[6][20][21][22][23][24], a single
universal and complete method for artifact detection and removal does still not exist.

Different methods have been elaborated on over the last years. The most popular tech-
niques are based on blind source separation (e.g ICA and CCA) [25], time-frequency
representation (e.g. wavelet transform) [26], adaptive filtering and machine learning ap-
plications [23] [24] [27] [28].

None of them alone is the solution to all problems of EEG practical applications. In fact,
hybrid methods (e.g. EMD-BSS, Wavelet-BSS, BSS-SVM) are recently overtaking the
classic standalone methods [21].



In practical solutions, there are several factors that can affect the choice of the tech-
nique to implement, and each case has to be treated separately. In general, nowadays,

more applications involve BCI and neurofeedback, requiring computational light and on-
line methods [29].

In the following, a comparative analysis of the most common methods is shown. The
category used reflects the principle of adaptability to general situations.

online | embedded | automatic
Regression No No Yes
Wavelet No No Yes
ICA Yes No No
CCA Yes Yes No
Adaptive filter | Yes Yes Yes
BSS No No No

Table 2.1: Comparative analysis of different artifacts removal/detection methods

For most applications, artifact detection and removal algorithms have to run in real-time
and without the intervention of human actions to classify clean or artifact signals. Nowa-
days, mobile applications are always more popular, especially in portable and home
healthcare environments, so attention to embedded-friendly algorithms is also important.

Finally, numerous toolboxes have been developed over the years to work with EEG sig-
nals and to perform artifacts detection. Among the most important, EEGlab is a MATLAB
toolkit that provides a GUI for processing EEG signals using independent component

analysis (ICA) and time/frequency analysis, with artifact rejection built-in functionalities
[30].

Two extensions of EEGlab are of particular interest in this context: BCllab and ERICA[31].
BCllab [32] is a MATLAB-based toolbox built to provide methods for BCl development and
testing. This extends EEGIlab with real-time functions. BCllab is the latest of a sequence
of toolkits published for BCI purposes. This series includes BioSig, developed at Graz
University and focused on the offline analysis of a broad range of biosignals [33], and
OpenViBE, a framework that allows the design of functional BCl using a GUI [34]. ERICA
is an experimental environment for real-time interactive analysis and control of multimodal
experiments.



3 Design Thinking Process - methods
overview

The entire thesis conception and actuation followed a framework known as the "Design
Thinking Process”, proposed by the Hasso Plattner Institute of Design at Stanford [35].

Design Thinking:
A Non-Linear Process
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Figure 3.1: Visualization of the Design thinking framework. Picture from Interaction design
foundation [36]. 5 stages form the framework: Empathize, Define, Ideate, Prototype and
Test. The interactions are not linear, with each phase influencing all the others.

This framework scratches some guidelines to develop solutions for a problem. This frame-
work is composed of 5 stages: Empathize (research your users’ needs), Define (state your
users’ needs and problems), Ideate (challenge assumptions and create ideas), Prototype
(start to create solutions), Test (try your solutions out) [36].



In the empathisation phase, all possible knowledge about the problem is collected by
consulting experts and conducting meetings to engage and empathize with all the stake-
holders. In this phase, it is common to gain experience and insights while also visiting the
users’ physical environment.

In the definition phase, the problem has to be defined and scoped, always caring about
the human-centred side, in a "user-centric problem statement”.

In the third phase, the knowledge acquired in the first two stages is used to ideate solutions
to the problem statement. Different ideation techniques have been developed in the past
years, like "Brainstorm”, "Brainwrite”, "Worst Possible Idea” and "SCAMPER” [36].

In the prototyping phase, inexpensive and scaled-down versions of the product, or parts of
it, are developed to analyse the solutions of the Ideate stage. This stage is of fundamental
importance to start facing the real problems and understand better the different limitations.

In the last stage, scientific methods and metrics are developed to measure the perfor-
mances of the best solutions prototyped before, as well as the user interaction.

Finally, it is important to remember that these stages are only logically split and in a se-
quence, whereas, in a real case, borders are more shadowed. Moreover, even if the
stages have been explained in a linear order, they are strongly interconnected. In fact, as
shown in Figure 3.1, each stage contributes to refining, ideating, testing and improving all
the other sections, in an iterative manner.

3.1 Thesis organization

Following this framework, the thesis has been split into different chapters, each including
the methods used, the results obtained and the relative comments, and the final discus-
sions and future work. In particular, the structure is as followed:

Users’ needs and system requirements
This chapter is of extreme importance. In fact, it includes parts of the Empathy stage, the
Define stage and also of the Ideate stage.

For the Empathy side, the points of view of doctors and expert EEG technicians have
been started to be analysed through semi-structured interviews already available in the
company. Then, to refine and scope the knowledge, and to better understand the entire
system, further semi-structured questionnaires have been performed to expert techni-
cians and non-expert technicians. A brief epilepsy lesson and a trial recording have been
proposed to the non-experts, before letting them answer the questionnaire. In addition,
different meetings have been conducted with company colleagues to have a clear idea of
the entire system.

In the different iterations of the interviews, also several ideas have been proposed thinking
about possible solutions. This is part of the Ideate stage.

All the knowledge acquired in this chapter in all the different iterations has been summa-
rized in a lean canvas (LC) and in a user story map (USM). This process corresponds to
the Define phase.
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Data collection

This chapter is also part of the Empathy and Define stages. In fact, in this phase, data
have been collected at the Filadelfia neurological hospital. Several sessions have been
set for the recordings, for a total of 14 recordings. These provided the possibility to ac-
quire hands-on experience by facing technical problems, observing all the critical points
of an EEG scan, and discussing them with doctors and EEG technicians. In addition, nu-
merous scans have been analysed and annotated under the supervision of expert EEG
technicians, of fundamental importance for a deep understanding of the different artifacts
involved.

Riemannian Potato Field (RPF) and practical design

After understanding and scoping the problem, and ideating some solutions in the previous
chapters, in this one the artifacts detection algorithm is prototyped and tested. The field is
designed from a knowledge-based perspective and the algorithm is tuned with a model-
based optimization. In particular, hyperparameters are tuned with a bayesian optimizer
and use the F2 score, partial dependence plots, and visualizations of the predictions to
explain the optimization process. In addition, running time analysis has been performed
to test the feasibility on embedded platforms.

RPF implementation for embedded systems

The Prototype and Test stages continue in this chapter. To assess the feasibility of the
online quality feature on an embedded system, the RPF algorithm had to be converted
from Python language to Java. For this reason, all classes and methods necessary to
implement the RPF have been refactored to Java language. This requested to re-design
the libraries to fit the new language, taking into account also the future inevitable coop-
eration with Kotlin language, for the final implementation in the already existing mobile
application from BrainCapture.

All the code has been tested to assure the exact same behaviour with respect to the
Python program.

Mobile app quality feature prototype

Also, this chapter involves the Prototype and Test phases. The quality control feature is
implemented in Kotlin using the libraries developed before and Ul tools proper for android
development. Different tests have been idealized to analyse the final performances of the
system.

11
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4 Users’ needs and system requirements

The purpose of this chapter is to analyze the needs of the users, interacting with the
feature and to get the requirements that the MVP should fulfill. This chapter is of extreme
importance in the entire process, as all the further work will be shaped and designed
focusing on the most relevant requirements for this project.

4.1 Methods

The methods used for this analysis consist of surveys and continuous and iterative con-
versations with all the different stakeholders and users of the system. The continuous
relationship with all the stakeholders assured systematic communication and allowed for
keeping the system updated and controlled at each stage. As a starting point, initial dis-
cussions have been carried out with the colleagues in BrainCapture [37],[38],[39] to un-
derstand the context and the prior needs.

Documents previously available

Secondly, all the documents and material collected by BrainCapture have been read and
analyzed to have a starting point for further inspections. In particular, the documents avail-
able regard users and market descriptions, as well as the scope of the amplifier [appendix
A] [40]. In addition, an interview with a neurological doctor [appendix B] and an interview
with an EEG technician [appendix C] on the important aspects of EEG recordings were
available. Finally, a private document on "Top Technical Tips” [41] from TeleEEG [42] was
provided. All these documents together shaped an initial picture of the opportunities and
challenges that this project has to face. The interviews were not intended for the particular
purpose of this elaborate, so information had to be extrapolated from the documents, and
subsequently integrated and enriched with further conversations with the colleagues, in
an iterative setup.

Further analysis

From the knowledge acquired with the initial overview, deeper interviews have been pro-
posed with expert technicians and non-expert users. In particular, three semi-structured
interviews [appendixes D] have been carried out with expert EEG technicians and doctors
from Filadelfia neurological hospital [43].

During the same period of this project, usability tests have been performed in the company.
They consisted of teaching lessons to non-expert technicians and in particular nurses. For
each nurse, a brief introduction to EEG, to artifacts, to BC’s device, and to the quality of
EEG recording is given. Then, an initial demonstration of the entire recording process
is performed, followed by three practice runs for each nurse. During the entire session,
notes of the behavior have been taken. In addition, semi-structured interviews have been
taken with the nurses, at the end of the day. The resulting affinity map (the only result
ready at the time of this thesis) has been used to enrich the scenario [44].

Finally, a semi-structured interview with the goal of inspecting doubts and techniques for
improving the recordings’ quality has been proposed to the nurses, in the role of non-
expert EEG technicians, on a voluntary base. Unfortunately, none of them replied to
the survey. For this reason, as representatives of the non-expert operator, an experi-
ment has been proposed for students without prior knowledge of EEG and EEG record-
ings. The scope of the experiment was to get an in-deep understanding of the doubts

13



that a non-expert user can think of when recording an EEG signal, and which require-
ments the system should implement to make the users aware of the quality of the data
recorded. The experiment reproduced the tests described before: a brief introduction
about epilepsy, EEG scan, artifacts, and acquisition quality (all based on knowledge from
the expert technicians), followed by a hands-on ftrial, consisting of a recording executed
by the subject. Subsequently, a semi-structured interview has been performed with each
participant [appendix E]. The participants were all male between 23 and 25 years old,
with no prior knowledge of EEG. One participant was a student of a UX course, therefore
understanding the principles of UX and mobile development and visualization.

Lastly, with all the knowledge acquired, a lean canvas [45] and a user story map (USM)
[46] have been designed, to summarize, organize and focus on the requirements for the
feature for the mobile application.

14



4.2 Results and conclusions
Patient journey and interactions of users

Sends back
EEG result to GP

Neurophysiologist
(reading and
interpreting EEG

Sends EEG

Clinic doing recordi
|:> EEG

GP or
neurologist

(referring and
diagnosing)

Patient Referral

Taking
Anamnesis

k Patient goes
home
O
Diagnose and > gl
treatment

Figure 4.1: Patient journey and how the users are connected in the EEG diagnosing flow
in Denmark. Picture from document [40]. The patient, typically after the manifestation of
seizures, consults the General Practitioner (GP), who can refer the patient to the EEG
scan procedure. Once the recordings are acquired, they are sent to the neurologist that
interprets them and sends back the results to the GP.

As shown in the figure above, the patient who experiences seizures will go to his General
Practitioner (GP)/neurologist. From the GP/neurologist, the patient can be referred to an
EEG clinic to have an EEG Scan done.

There are different types of EEG recordings: Standard EEG, 1-hour sleep-deprived EEG,
4-hour EEG, and 1-5 day EEG recording where the patient is admitted to the hospital.
Since the Standard EEG is the most commonly used type, the device is designed to sup-
port this process [40]. The standard procedure consists of different stages for calibration
and seizure stimulation that is out of the interest for this project, and at least 20 minutes of
resting state good quality data [47]. This time is intended to have probabilities of recording
at least a seizure.

At the clinic, an EEG operator will perform the EEG recording on the patient and send the
result to the neurophysiologist who then looks at the recording and interprets it. The inter-
pretation and conclusion report is then sent to the GP/neurologist who can then diagnose
and start treatment on the patient.

The scope of the amplifier, for what extends this project, is to support the EEG recording
process done by the EEG operator. As the system is designed for LMIC, and the first
market is expected to be Kenya, the device should apply to both facilities that already
provide epilepsy services and smaller facilities that don’t have any epilepsy services yet
but want to take them on [40]. Therefore the users stretch from experts in epilepsy diag-
nosing, EEG recording, and EEG interpreting to non-experts that have never tried doing
EEG-related services before. For this reason, the aim is to develop a system/device that
can also be used by non-specialists. Therefore the EEG operator user is divided into 2
personas: EEG technician and nurse/healthcare assistant.
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Relevant user personas

The patient is an indirect user (interacts indirectly with the system). The patient does not
handle any parts of the EEG equipment directly but is exposed to the equipment upon hav-
ing the EEG recording done on him/her [40]. This user is interested in a comfortable and
quick EEG session and in getting the right diagnosis and treatment (indirectly meaning a
quality EEG recording). This user group contains a severe variance and intra-differences
[appendix A, pag. 12-13.]. For the purpose of this project, the important categories to
focus on are cooperative and non-cooperative patients.

General Practitioner (GP)/Neurologist is an indirect user. The GP/Neurologist is the one
diagnosing the patient, prescribing medicine, and following up on treatment with the pa-
tient. GP/Neurologist can refer the patient to an EEG Scanning to support the diagnosis
[40]. This user is interested in diagnosing his patients correctly and therefore needs some-
one to do a quality EEG recording and get a quality EEG report back [40].

The EEG operator is a direct user. The EEG operator is the one actually handling the EEG
equipment and performing the EEG recording on the patient. [40] This user is interested
in doing a good, quality EEG Recording and handling the patient with care [appendix A,
pag. 13-18]

EEG artifacts dealing - experts point of view

The complete questionnaire developed from the knowledge acquired by the already avail-
able documents is reported in [appendixes C]. In the following, all already available infor-
mation as well as the following inspections have been summarized and organized in a
discursive manner.

From an expert point of view, the most important aspects to keep under control, in order
to record quality data, are the impedance of the electrodes and the EMG artifacts.

The impedance of the electrodes influences heavily the quality of the data and it is the most
essential aspect to keep under control. This is because a high impedance load acquires
noise from external sources, especially 50/60Hz from the power grid in the environment
[48]. Once the impedance for each electrode is lower than a certain threshold (usually 10
KOhm [47]), the next steps can be performed.

Muscles and movement artifacts are the dominant artifacts in EEG recordings. These are
particularly seen in babies and children patients, as well as non-cooperative patients. The
solution in most cases is to try to keep the patient calm and to not move, and to remember
to release the stress around the jaw and the shoulders. In non-cooperative or extreme
cases, the only solution is to prolong the recording or to take the best out of the data
acquired [appendixes B, C, D].
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EEG artifacts dealing - non-experts point of view

As expected, a user without prior knowledge of the EEG procedure has different doubts
with respect to an expert technician. In fact, the focus on the time series signal disappears,
and the quality of the data is not assessed from the waves themselves. Therefore, new
statistics and visualizations have to be developed in order to show the data quality.

The experiment conducted with the students resulted that a non-expert technician slav-
ishly follows the instructions given. They focused a lot on the list of good practices to
obtain a good quality scan, explained in the training and shown below:

Top 11 things to remember to make a good scan:
1. Correct placement of the cap/electrodes

2. Good connectivity - preferably green
3. Avoid gel bridges
4. Avoid artefact: Observe that the patient is relaxing
5. Correct instructions of exercises (eye blinking normal speed, jaw clench-relax-clench etc.)
6. Timing of exercise start/stop (annotations)
7. Annotate artefacts as close to the event as possible (seizure, movement, cough etc.)
8. Continue recording during seizures (severe seizure: Stop and call for help)*
9. Check electrode connectivity on suspicion
10. Patient should rest but not sleep (sleep towards the end is okay)
11. Try to reach min. 20 min of good recording (without artefacts)

Figure 4.2: List of good practices for a proper quality scan

For the same reason, they assess the quality of the data from this list. The problem is
that specific artifacts (e.g. jaw clenching, the stress in the shoulders, eye movements
with eyes closed...) are not visible just by looking at the patient. For example, the second
participant reported that the patient was not moving, when the quality of the scan was
corrupted by stress on the jaw area. Moreover, even though all of them judged the scan
taken of good quality, none of them had an explanation, but they were only referring to
the mentioned list. This means that they didn’'t have control over this aspect. This is
because they didn’t have any measurement or feedback from the system, apart from the
impedance feedback. Thus the idea of giving the user a tool for checking the quality of
the data, without having prior EEG knowledge and without looking at the signals.
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Therefore, it has been asked both expert and non-expert operators whether the two tools
shown below could help them in assessing the quality of the data recorded.

Resting time Resting time
oy - Sy

e et Sy’

Hyperventilation Photic stimulation

(a) Progression bar for data quality over time. A color scale (green: good,
orange: medium, red: poor)is used to visualize the quality of the segments
of data.

92% 92%
70%

95%

(b) Bust for data quality over space. The main sources of artifacts are visualized
as body regions. Eyes region for eye movements, the jaw region for stress in
the jaw area (clenching, chewing,...), the shoulders for artifacts from the bottom
part of the body, and top arrows for head movements. The same color scale is
used to visualize the quality of the region.

Figure 4.3: Proposed tools for assessing data quality over time (a) and space (b). A color
scale (green: good, orange: medium, red: poor) is used to visualize the quality of data.

The visualization on top, Figure 4.3(a), represents the quality of the data over time. A
green segment indicates that the quality in that portion of the recording was good. An
orange segment shows that the quality in that portion of time was still appropriate, while
a red segment indicates that the quality is poor. The white segment at the end represents
the time that still misses for the completion of the recording. On the progression bar,
indications of the stages of the standard protocol are given. An additional clock will show
the operator the time remaining for 20 minutes of a good recording. The image on the
bottom, Figure 4.3(b), shows the punctual quality. At every moment, the quality of each
part of the body is shown. A green area means that the patient is creating none or few
artifacts from that part of the body. Hence, no further actions have to be taken. An orange
area shows that, from that specific part of the body, some artifacts are being created.
A red region means a lot of artifacts are due to movements or stress in that part. For
example, in the figure above, the region of the jaw is affecting the scan, so the operator
will focus on taking actions to release the stress from there, such as opening a bit the
mouth.
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It's interesting how the results between expert and non-expert operators agree. Both
groups tend to give positive feedback to the progression bar, appreciating its usefulness
and intuitiveness. In other words, a progression bar is an object that all users are familiar
with, and in a glance gives the idea of how much time the scan has to be prolonged. On
the other side, the bust hasn’t been appreciated. The main reasons are that is not easy to
read and that the direct user prefers to fulfil the list above in Figure 4.2, and feels confident
of the quality checking those. It is the opinion of the author that this aspect has to be
investigated more. There are cases in which the patient seems relaxed and not moving,
whereas tensions can affect the quality of the data. For this reason, an indication of the
source of the noise could improve the quality and the simplicity of finding the solution. In
any case, it has been decided to include the progression bar in the MVP and to inspect
the visualization of the artifacts in the following iteration.

Tools for system requirements outline

Finally, all the information acquired in this section has been collected and organized with
two UX-specific tools: the Lean Canvas (LC) and the User Story Map (USM).

PROBLEM

Improve the quality of the EEG
recording acquired by non-
experts;

Suitable for LMICs users.
Integrate into the existing mobile
app;

SOLUTION

EEG online quality control
algorithm, with visualisation and
notification of artefacts.
Algorithm suited for embedded
solutions. Ul/UX cooperating with
the existing app;

Fewer interactions possible and
intuitive to non-experts.

UNIQUE VALUE PROPOSITION

The solution gives a fully
automatic EEG online quality
control paradigm, allowing non-
experts users from LMIC to be
aware when problems with the
quality of the acquisition arise.
The solution is integrated and
cooperating with the mobile app,
adding a new feature.

UNFAIR ADVANTAGE

The creator is also an insider of the
company, so he has full access to
the data, the procedures, the
mindset, and the vision of the
company. In addition, he has
continuous input and feedback
from them.

CHANNELS

Employer of the company,
continuous contact with all the
managers;

Technicians at Filadelfia hospital;

Mails exchange and interviews of
LMICs technicians.

CUSTOMER SEGMENTS

BrainCapture is the primary
customer, the company for which
the developer is creating the new
feature;

Eventually, the primary customers
are the non-EEG-experts operators
of the LMICs.

EXISTING ALTERNATIVES

There are no automatic alternatives to the
problem. At the moment, we rely on the
experience of the technician who
constantly evaluates - visually- the data
collected and decides whether the quality
is sufficient. Quality assessment is done
offline or not in embedded systems. They
are notintuitive and thought for experts
and research oriented.

Figure 4.4: Lean Canvas from the point of view of a student implementing the Quality
Control feature. It summarizes problems, solutions, and methods, scoping other important
aspects.

Figure 4.4 reports the Lean Canvas from the point of view of an employer of the company,
developing the quality control feature integrated into the existing mobile application. To
summarize all knowledge above as much as possible, the problem is to improve the quality
and support the recording of EEG data for epilepsy diagnosis by non-expert nurses in the
LMICs. The solution is a feature in the existing mobile application that implements an
online quality control algorithm for artifact detection and an intuitive visualization of the
quality, in order to extend the recording to reach a 20-minute good-quality scan.

In Figure 4.5 below, the User Story Map for the quality feature is reported. In particular, the
minimum valuable product is on the left side. Aiming at acquiring at least twenty minutes
of useful EEG data, the MVP focuses on estimating how much of the data recorded at any
time is clean, and suggests an estimate prolonging time for reaching the goal. In addition,
a progress bar visualizes the segments of the recording, coloring them accordingly to their
quality.

19



On following iterations, the operator will be notified when the data is corrupted, so that the
user can take immediate actions, resulting in a smaller loosing of time. In addition, initial
checks on the quality of the data will be performed with heuristics even before starting the
recording. For example, an extremely high level of 50Hz noise can mean a not appropriate
environment or connection, even having a proper impedance on each channel. Also,
leakages, channel bridges, broken electrodes, and systematic artifacts can be checked
in this phase. Finally, user customization will be implemented, for example for deactivating
the feature for non-cooperative users, or for removing specific artifacts from the detection.
For time constraints, these features are going to be implemented in the following stages
of the application.
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Figure 4.5: User story map (USM) for the quality control feature. The Minimum Valuable
Product (MVP) is shown on the left side. For the MVP, the quality feature is implemented
and the artifact epochs are visualized with a progression bar showing segments of time
of data colored with respect to their quality. In addition, a suggested prolonging time will
be shown.

In the most schematic way, the outcomes are that the problem to be addressed is to ac-
quire EEG recordings for which the quality is sufficient to diagnose epilepsy. The standard
sets 20 minutes of clean data the minimum for having enough information to diagnose
epilepsy [47]. Therefore, the goal is to acquire at least 20 minutes of clean data. For
this reason, the idea is to develop a feature for the already existing mobile application
to support the acquisition and to show the operator the remaining time for reaching the
minimum requirements.

20



One aspect that has not been yet examined in detail is the detection algorithm. From all
the information in this chapter, it is known that the algorithm is going to run in an embedded
system and that it needs to operate in an online matter, to immediately give feedback to
the operator. In addition, it is requested to be automatic, to assess the needs of non-expert
users. All these constraints are shown in the comparison Table 2.1 in the literature review
chapter. As shown in the table, the adaptive filter methods are the most promising. Many
different algorithms belong to this category. For ease of understanding, availability of
examples and code, and interest in analyzing Riemann geometry applied to the detection
of EEG artifacts, the Riemannian Potato Field algorithm has been chosen [49].

4.3 Discussion and future work

This chapter plays the most important role in guiding all the further decisions. As fre-
quently highlighted, this procedure is at the beginning from a logical point of view, but
it has to be intended as a background process always evolving and improving for each
iteration.

The methods used for the users’ needs surveys are standard and no other techniques
have been considered useful for significantly improving the understanding of the problem
in this first iteration of the project. The empathisation in this stage has been perceived as
successful. All the exchanges of views, ideas, and information performed with colleagues,
doctors, experts, and non-expert EEG technicians gave the right background to continue
with the definition and ideation of the problems and their solutions.

On the other hand, the set of people contacted could have been enlarged and enriched.
For example, although for external reasons, no nurses (i.e. the main target as non-expert
operators) could be interviewed, and instead general figures have played their role.

In addition, further aspects could have been inspected with subjects from the target coun-
tries, especially for the usability and artifact visualization parts. It is believed that further
investigations could have brought more detailed and focused insights. Again, this has not
been considered necessary for the minimum valuable product, but an aspect to consider
in the following iterations is to improve and customize the final feature.
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5 Data collection

This chapter focuses on the acquisition of the data needed for the detection algorithm.
Several aspects have influenced the process and many subjects played a role in the
design of the procedure. More precisely, the data collection had to deal with four projects:
this thesis, a Ph.D. work on artifacts detection, a medical study on epilepsy diagnosis
through wireless EEG devices, and BC’s test data comparison between their wireless
amplifier and a medical amplifier [50][51]. For this reason, the protocol has been adjusted
for fulfilling all different needs, balancing the time and effort necessary for each recording.
The data is covered by IRB given to the project by DTU. For accessing the data, contact
Tobias Andersen, toban@dtu.dk.

5.1 Methods

The recordings have been performed in Filadelfia hospital (then FIL). For BC’s data com-
parison (i.e. another project in the company), the signal has been recorded simultaneously
by BC’s amplifier and the medical amplifier through the use of splitters. BC’s cap and ECG
pads were connected as an input to two splitters, which outputs were then directed one
to BC’s device and one to FIL’s device, as shown in Figure 5.1 below.

Figure 5.1: System setup of the cap-splitters-amplifiers. EEG and ECG signals are cap-
tured by the EEG cap and ECG pads (encapsulated by the green ovals in the picture).
The splitters (in yellow) take these signals and split them redirecting the data to the Brain-
Capture’s amplifier (red on the right) and to the Natus’ amplifier (red on the left). The
signals are then recorded by the relative softwares. The data is therefore recorded simul-
taneously and from the same electrode positions.
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As it can be seen from Figure 5.1, the EEG cap (green on top) and the ECG pads (green
on bottom) are connected respectively to the EEG and the ECG splitters (yellow at the
center). From there, both inputs are split and redirected one to the medical device, and
from there to the PC via cable (red circle on left), and the other to BC’s amplifier and
then to a smartphone via Bluetooth. In this way, the same signal can be recorded almost
simultaneously and from the same location.

The device used by FIL hospital is the Natus Nicolet Cephalon V32, and the signal was
recorded with Natus Nicolet ICU Monitor [52] for which the same montage had been set.
The montage used by BC is a channel-to-reference montage, following the 10-20 stan-
dard system [53]. The channels used are shown in Figure 5.2. For BC’s recording, BC’s
amplifier has been used and the data was recorded with BC’s mobile application.
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Figure 5.2: Montage of the BC cap, following the 10-20 standard system. The red circles
are the electrodes used in the 10-20 system, the blue circle is the "GND” channel and the
green is the "REF” channel.

Fourteen participants joined the experiment. Most of them were BC’s employers or be-
longed to its network. 8 of them were between 23 and 25 years old, the remainder were
from 35 to 45 years old. 64% of users were male. All participants were healthy and with
no known previous epilepsy seizures. None of them had impairments on the scalp that
requested particular setups.

For each participant, the EEG technician applied the gel to obtain a value of impedance
lower than 10 KOhm [47] for each electrode. Then, after the person lay on a bed, a one-
minute scan of the resting state with eyes closed was recorded to assure that the system
was working properly and for having a calibration scan. During this minute, the technician
checked that the participant was relaxed, that the eyes were closed, and that no artifacts
were produced or, in case, annotated.
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Subsequently, to each participant, a series of tasks had been assigned, following the
protocol shown in appendix F. The protocol fulfills the different needs of the projects, and
it is intended to have a ground truth on what the user is doing at that moment. It can
be seen as divided into three phases. The first one consists of 10 minutes of resting
state. The participant is asked to relax as much as possible, keeping the eyes closed,
and not falling asleep. In the case of systematic artifacts created, different strategies
have been applied to keep them under control (e.g. a light mask on the closed eyes to
reduce unintentional later eye movement). Sporadic artifacts have been annotated. The
second phase introduced artifacts in the recording. To obtain them, the person was asked
to perform a series of movements to generate the artifacts. In particular, in sequence and
for 30 seconds for each task, the participant was asked to blink the eyes (without forcing
the movement [REF!]), to move the eyes from left to right and back (reproducing later eyes
movement), to move the head from left to right and back, to chew, to repeatedly clench
the jaw, and finally to shiver (i.e. moving the body convulsively). All the sequence was
repeated two times. Lastly, the third phase inspects different scenarios of resting states.
The participant, always keeping the eyes closed and relaxing, was asked to rest for 2
minutes. Then, for another 2 minutes, an arithmetical exercise consisting of counting
back by step of 7, from 200, was performed to study a focus state. Lastly, to simulate
electrode pops, some electrodes, randomly chosen, were moved and popped (always
including the "REF” channel as last).

BC'’s application automatically annotates the beginning and end times for each task. On
the FIL’s scan, instead, the technician was asked to annotate every not expected artifact.
In the second stage, the two signals (i.e. BC’s and FIL's scans) have been synchronized,
and the annotations are shared between the two files. In this way, each file has annota-
tions for the ranges of the exercises, and, within the exercise, all the artifacts produced.
This will make the following processes easier and more automatable. Finally, each scan
has been re-analyzed by the technician, checking that all annotations were correct.
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5.2 Results and conclusions

All the recordings acquired by the Natus device are correct and standard. On the other
side, some problems appeared on the BC’s scans. In particular, three scans had been
corrupted, therefore not useful. The main reason for corruption is due to the splitter [38].
More details will be given in the next sections.

In all the visualizations shown in this chapter, BC’s data has been band passed with a
fourth-order Butterworth filter between 0.5 and 70 Hz, and then a resonator model notch
filter of 20 Q-factor at 50 Hz has been applied to the data. This is because, while FIL’s
device has internal analog filters that clear the data, BC’s device does not contain any,
and this results in noisy data that would not be possible to visualize, as shown below in
Figure 5.3.
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(a) BC’s recording before filtering. The x-division is 1s, the y-division is 100V .

(b) BC’s recording after filtering. The x-division is 1s, the y-division is 100,V .

Figure 5.3: BC’s data visualization before (a) and after (b) filtering. The x-division is 1s,
the y-division is 100uV. The signal after filtering is clearer than before. This is especially
due to the power line 50H =z noise captured by the unfiltered BC’s amplifier, that overlaps
the brain signal.
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Calibration

(a) FIL’s recording (b) BC’s recording

Figure 5.4: Resting state data used for calibration. The x-division is 1s, the y-division is
100p V. The pictures are shown only for giving an overview of the data used. They are
not intuitive, the details are shown in Figures 5.5 and 5.6.

Figure 5.4 shows two examples of chunks of recording from BC (b) and FIL’s (a) amplifiers.
The pictures are not intuitive at a glance, so the details will be pointed out in the following.
Apart from the order of the channels shown by the viewer program, it can be seen that the
channels recorded are the same, with the same montage (i.e. each channel referenced to
reference). Therefore, the same procedures and algorithms can be used alternatively on
the two different files. This can be useful to compare the performances of the two different
sources of data. In addition, as described in the methods, it can be seen in Figure 5.5
that in the FIL recording (a), the artifact (electrode pop) on the channel "F4” is annotated,
and the beginning of the exercise (i.e. "TIMER START eyes closed”) is annotated on the
BC scan (b).
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(a) FIL's annotations. In the files from filadelfia’s (b) BC’s annotations. In the files from BrainCap-
system, the artifacts within “clean” exercises ture’s system, the beginning and end of each
(i.e. resting state, eyes closed, eyes open and exercise are annotated.

still, and eyes closed exercises) are annotated.

Figure 5.5: Annotations in FIL’s (i.e. artifacts) and BC (i.e. exercises extremes) files. The
x-division is 1s, the y-division is 100p V. Putting the annotations together, is going to be
possible to create the ground truth for training an algorithm in an automatic way.
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Finally, it can be seen in Figure 5.6 that artifacts in the calibration phase have been an-
notated. As it will be shown in the following chapters, this will be of extreme importance
in the correctness of the calibration, to remove those parts from it.
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Figure 5.6: Annotation of the artifacts in the calibration phase (FIL fiIe). The x-division is
1s, the y-division is 100u V. In this case, only FIL's annotations are relevant, because no
exercises are being performed in the calibration, but only resting state.

The calibration stage will be useful in the following stages of the project, in particular, is
needed for the artifact detection algorithm. The idea of a calibration stage popped up from
hands-on experiences collected from a pilot study for debugging the entire system.

Resting state and mental arithmetic

After verifying with the calibration state that the entire system was working properly, the
protocol started with ten minutes of resting state, thus the participant lying on a bed, with
eyes closed and relaxed. As for the case before, the picture of the entire scan would not
be informative, therefore only some portion of them will be shown.
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(a) Alpha waves in FIL’s recording
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(b) Alpha waves in BC’s recording

Figure 5.7: Visualization of alpha waves during resting state. The x-division is 1s, the
y-division is 100 V. Alpha waves are characterized by having a frequency between 8-
13Hz. Easily verified in the pictures above as 10 peaks are present for each time division.
Alpha waves appear when the patient is calm and focused. This is the state in which the
doctors prefer the patient to be, for the best EEG readability.
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In Figure 5.7 a visualization of the resting state is shown. It can be seen that a clear
pattern is created especially on the occipital lobes. This pattern, called alpha waves,
has a particular frequency between 8-13 Hz [54]. It is the normal behavior of the EEG
for the resting state, and it is the most common for the standard epilepsy protocol [55].
In this mode, it is easy, for the doctor, to detect seizures, as the pattern of the data is
very simple and clear, and any change can be easily visually detected. Also in this case,
all the artifacts have been annotated, building the ground truth for any possible learning
algorithm. In Figure 5.7 (a), the FIL’s data is shown, while (b) visualizes BC’s data. It
can be seen that, as expected, there are no behavioral differences in the data. Some
channels are though noisier (e.g. "F7”). This is a well-known problem from the company
that, up to the end of this project, didn’t find a reason for it. The researches are focused
on the hardware and on the splitter setup [56].

As there are no relevant differences between the visualizations of the recordings acquired
by the two different devices, for the next cases, only FIL’s data will be shown.

For the mental arithmetic exercise, no relevant differences appear with respect to the
resting state. The most relevant difference is in the presence of more eye movement,
due to the drowsiness of the participant, as the exercise was the semi-last of the protocol.
An example can be seen in Figure 5.8 below, where shifts of the signals can be seen in
channels "F7” and "F8”, indicating eyes movements:
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Figure 5.8: Visualization of EEG data during the mental exercise. The x-division is 1s,
the y-division is 100xV. Also in this case, alpha waves predominate the EEG. The EEG
is clean and readable by doctors.

In rare cases [57], midline theta rhythm, also known as "Ciganek” [58], can appear on the
EEG scan, as shown in the figure below. In this case, it can be seen that also the ECG is
visible on the EEG.
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Figure 5.9: Visualization of EEG data of Ciganek rhythm on "FZ”. The x-division is 1s,
the y-division is 100uV. ECG signal ("TEKG-REF” channels) has been resized to 500.V.
Ciganek rhythm is visible on the "FZ-REF” channel and shown with an annotation. In this
particular scan, it can be seen that the ECG signal is visible also in the EEG channels. For
example, in "T8-REF” channel a peak synchronized with the ECG peak is visible. This is
the reason why ECG signal is recorded. In this way, neurologists can have a reference
and do not confuse ECG peaks with epileptic seizures.
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Figure 5.10: Visualization of EEG data for still open eyes in a resting state. The x-division
is 1s, the y-division is 100pV. With eyes open, alpha waves disappear [59] [60]. Eyes
blinking is visible especially on "FP1” and "FP2” channels. These potential changes are
introduced by the corneo-retinal dipole (CRD) and the eyelid.

The above figure shows how EEG data appears when the participant is relaxed and keeps
their eyes open. It can be seen that the alpha waves disappear. This fact is still the subject
of debate among researchers. In the past much credence was given to the theory that
the presence of alpha waves indicates synchronization of brain activities due to "having
nothing to do” [59] [60], and, on the opposite, stimulating primary sensory area generates
low-amplitude, desynchronized EEG patterns in which the alpha rhythm is attenuated or
blocked [59]. Now, many studies discredit this view, bringing more and more examples of
cases where this is contradicted by experiments [61] [62] [63].
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Another fact to take into account is that, when the eyes are open, blinking and eye move-
ments are more likely to appear than when the eyes are closed. If for blinking the reason
is clear, for the eyes movements more comments can be done. In fact, even though with
eyes open it is easier than the participant moves to look around, it is also easy to instruct
him (of course if cooperative) to stare at a fixed point, blocking all possibilities of move-
ment. This is not possible when the eyes are closed, in which case the patient cannot
focus on a target. Itis in fact well-known [64] that when the eyes are closed, the presence
of lateral eye movements increases, especially when the participant is tired or is falling
asleep. For some patients, it is necessary to place a light mask over the eyelids to de-
crease these movements. The characteristics of blinking and eye movements are going
to be explained in the next sections.

EOG - Eyes blinking and lateral eyes movement
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Figure 5.11: Visualization of EEG data for eyes blinking. The x-division is 1s, the y-division
is 100uV. The participant is requested to repeatedly blink the eyes. The frequency is
decided by the user, but between 0.5 and 1Hz. The artifact is stronger on "FP1” and
"FP2” channels because closest to the eyes. Then, the amplitude of the signal decreases
distancing from the eyes region.

Figure 5.11 visualizes EEG data of a person that blinks the eyelids. As the eye moves,
the corneo-retinal dipole (CRD) and eyelid introduce potential changes in the EEG ac-
tivity [65]. In this case, the participant was asked to repeatedly blink the eyes, thus the
frequent artifact. Itis easy to see, and supported by literature [66] [67], that the blinking ar-
tifact shows the peak on the "FP1” and "FP2” channels (i.e. forehead) and that the power
decreases moving away from the eyes. For example, channels "F3” and "F4” have de-
creased peaks, and "C3” and "C4” are even lower. The participants have been instructed
to naturally blink their eyes and to not force the movement, leading otherwise to different
effects [68].
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Figure 5.12: Visualization of EEG data for lateral eyes movements, with open eyes. The
x-division is 1s, the y-division is 100V. The participant was requested to keep the eye
lids open and move the eyes horizontally, at a periodic rhythm. The corneo-retinal dipole
induces even more diffuse artifacts then the eye blinks.

In Figure 5.12 the appearance of lateral eye movements is shown. The idea is the same as
for the eyes blinking, the movement of the corneo-retinal dipole (CRD) induces potential
changes in the EEG recordings [68]. As for the case before, the peak of the artifact
appears on the frontal channels, reducing in intensity while moving away from the eyes
(i.e. "FP1"-"FP2” towards "F3”-"F4” and then "C3"-"C4”) [66] [67]. Also in this case, while
it is easy to instruct a cooperative patient to not move the eyes when they are open, it is
more difficult to control them when the eyelids are closed. Again, in certain circumstances,
external solutions have to be taken, for example the eyes mask [69]. An example of this
problem is shown below:
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Figure 5.13: Visualization of EEG data for lateral eyes movements when closed eyes. The
x and the y-division are as before. This time the eyes are closed and it can be seen the
overlap of lateral eye movements and alpha waves. In this case, the lateral movements
are unintentional, thus the rhythm is not forced.

In this case, it can be recognized that the eyes were closed because of the predominant
alpha waves, but the shifts of the signal visible for example on "FP1”, "FP2”, "F3”, and
"F4”, are caused by eye movements. This sometimes cannot be avoided.
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EMG - Lateral head movement, chewing, jaw clenching and shlvermg
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Figure 5.14: Visualization of EEG data for lateral head movements. x and y-divisions are
1s and 100pV. The participant is instructed to move the head horizontally. The artifacts
are due to the muscle movements and stress of the neck and shoulders, and from the
movements of electrodes in the scalp.

In the above figure, it can be seen that an important noise is added to the signal. This
is because an extreme number of muscles are involved and a lot of muscle tension is
created [70]. The muscles are distant from the scalp, so the effect is less visible. It is
generalized to all channels, but it is of particular strength on the temporal lobes [71].
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Figure 5.15: Visualization of EEG data for a person chewing. x and y-divisions are 1s
and 100p V. The participant is instructed to chew, without closing the mouth. In this case
the artifacts are generalized in all channels, and are due to the muscle movements and
stress of the jaw area.

Figure 5.15 visualizes the artifacts produced by a chewing action. Again, as skeletal
muscles are involved, the noise is generalized and most focused on temporal lobes [66].
This artifact, even if rare, is of great importance, as it can cover the signal completely [69].
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Figure 5.16: Visualization of EEG data for a person clenching the jaw. As for before,
x-division is 1s and y-division is 100uV. The artifact generated asking the participant to
repeatedly clench the jaw is strong and generalized. In this case, the participant was
instructed to clench the jaw hardly, but similar effect are visible already for low pressures
[66].

Figure 5.16 shows the appearance of a clenching artifact. This artifact is of extreme power
and is present on all channels. The intensity depends on the strength of the clench, but it
is visible already at low pressures [66]. The signal is unstable also a little before and for
some time after the action itself. The length of this artifact can be between a few hundred
milliseconds to some seconds [66].
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Figure 5.17: Visualization of EEG data for a person shivering. x-division and y-division
are 1s and 100nV. The shivering generates a generalized artifact due to muscles activity
in the body, and electrode movements in the scalp.

In Figure 5.17 the shivering artifact is shown. In this case, the artifact is not of extreme
strength but in general could be more intense. As for the other EMG artifacts, the noise is
generalized to almost all channels. The artifact length is usually shorter than a second. In
this case, the noise is longer because the participant was asked to simulate it by moving
the body convulsively.
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Electrode pops
In Figure 5.18 below, an example of an electrode pop artifact is shown:
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Figure 5.18: Visualization of EEG data for an electrode pop artifact on "P7”. x-division
is 1s and y-division is 100p V. This artifact is characterized by a rapid change of a sin-
gle channel, in the case of a channel-to-reference montage. It is normally generated by

movements of the electrodes.

The electrode pop is usually easy to recognize and characterized by an abrupt change of
one channel. In a channel-to-reference montage (i.e. as in this data), it can involve only
one single channel, and it usually goes to normality after a few seconds. It can be caused
by many factors as dryness or sweating skin, as well as rapid movements of the head
or also for physical damage. The case is different if the electrode pop involves "REF” or
"GND” channels. In fact, all voltage differences are computed with respect to "REF” (i.e.
channel-to-reference montage), while "7GND” is involved in a feedback-loop circuit to keep
the "REF” channel stable (DRL circuit [72]). Therefore, problems in "REF” or "GND” can
affect all the other channels, as shown in the figure below:
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Figure 5.19: Visualization of EEG data for an electrode pop artlfact on ”REF” x-division
is 1s and y-division is 100uV. This is a particular case of electrode pop, because all
channels are referenced in this montage to reference. So, if "REF” shifts, all values of
all channels are affected. The DRL circuit is designed for handling small variations in the
"REF” channels, and not for these events.
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Technical problems
BC’s amplifier is, as of writing, a beta device and some technical problems appeared in

some recordings. In particular, the most common problems were that some channels
were just recording noise (e.g. Figure 5.20) and that the ECG signal was spreading on all
the channels (e.g. Figure 5.21).

(a) Example of a recording with just noise in "F3” and "F4” channels. x-division is 1s and
y-division is 100V .
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(b) Power spectrum histogram of the "F3” channel. It can be seen that the power of the
signal is equally distributed over the entire range, with a negative peak at 50H z and a de-
crease after 70H z due to the notch and the bandpass filters always applied at the BC’s
recordings. A decrease also below 0.5H =z should be visible from the theory, but this partic-
ular visualization doesn’t show it intuitively.

Figure 5.20: Visualization of recordings with noisy channels (a) and the power spectrum
for one of those channels (b). The power spectrum of the noisy "F3” channel is almost
uniformly distributed, showing the behaviour of white noise.

As it can be seen from Figure 5.20 (a) above, while the participant is blinking (see "FP1”
and "FP2”) the "F3” and "F4” channels are not showing any artifacts. In 5.20 (b), the
power-frequency histogram is shown. It is easy to see that, instead of having a signal,
just white noise is recorded, most probably due to the thermal energy of the system.
The root reason is still under analysis from BC, and no formal solutions are given, even
though the most probable source is on the splitter setup [38]. It is interesting to see the
absence of the 50Hz and the decrease of power after 70Hz due to the filters applied for
the visualization, as described before.
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Figure 5.21: Visualization of EEG data for the ECG leakage. x-division is 1s and y-division
is 100uV. The peaks amplitude for the ECG "R1” channel has been resized to 500uV .
The ECG signal is spread over all the channels. This case differs from the one in Figure
5.9 because the ECG is present in all channels, and the amplitude of the artifact is inde-
pendent from the location. Also, noisy channels are visualized, for example "T9”, "Cz”,
and "Pz”, that in fact are not affected by the leakage, as they are not acquiring any signal.

In Figure 5.21, the ECG leakage can be seen throughout the scan. Also this problem has
still to be assessed and no explanations are available from the company at the moment.
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5.3 Discussion and future work

Protocol

As doctors are interested in the resting period after the stimulations (see section 4.3, on
the user needs) the best training and testing data would have been to have resting state
recordings with labeled artifacts naturally present in the scan. This would have implied
acquiring longer and more numerous sessions, and to have doctors label the recordings,
affecting the limited budgets and time of the projects. For this reason, it has been op-
tioned to instruct the participant to artificially create artifacts, not only for having samples
of them but also for having a ground truth, as it was known when the artifact appeared.
Side effects of the intentionality in the creation of artifacts (e.g. different behavior for the
blinking, if forced [68]) have been assessed, to be as close as possible to natural appear-
ances. This can affect and create biases for a detection machine learning algorithm. For
example, the periodicity and consistency of the same artifact, created by an intentional
repetition, can greatly affect parameters such as window size and generalization error.
Moreover, the disproportion of artifacts/non-artifacts data with respect to a real case can
affect performance measures based on unbalanced data [73].

In addition, for cooperative patients, epilepsy diagnosis is performed with eyes closed [47]
and therefore the artifacts are different from the one recorded (e.g. alpha waves), with
eyes open. On the other hand, for non-cooperative users, most of the time multimedia
support is used to focus the user and calm him down [69], so eyes are kept open and the
data is more similar to the one recorded. A better option, for this study, would have been
to instruct some users to keep their eyes open and some to keep their eyes closed during
the creation of the artifacts.

Moreover, the order of the tasks is the same for each participant. This can also lead to
biases in the data [74], for example, because participants are more tired at the end of the
protocol, leading, for example, to the mental arithmetic exercise creating fewer Ciganek
waves than expected. Thus, the order of the exercises could have been randomized for
less biased data.

Additionally, participants were healthy and relaxed, trained in the EEG recordings, and
aware of the effects of their actions, and the technician was an expert. All conditions that
differ from the project’s real case scan. This is acceptable for a prior study, but, as future
work, it should be extended to more real cases, for having a better understanding of the
technical problems that can appear, and for better training the detection algorithms.

Data acquired

Some recordings from BC’s device were affected by technical issues. While this created a
loss of useful data, it also gave many opportunities for heuristics for sanity check options.
This discussion will be enriched in future chapters. The correctness of the data has been
assessed in parallel by the author and the technician.

The data acquisition took a considerable amount of time. This sacrificed resources for
other parts of the project but gave extremely useful hands-on experience contributing to
a better understanding of the system and of the related problems.
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6 Riemannian Potato Field (RPF) and
practical design

In this section, the steps used to design the best potato field and tune the parameters for
BrainCapture’s cap and data are described. As it will be shown, the potato field is specific
for a certain setup.

6.1 Introduction

The Riemannian potato field (RPF) [49] is an online classification algorithm. It assumes
that the variance of artifact segments of the EEG signal is greater than when not arti-
fact. Under this assumption, it builds a system of comparison of signal epochs based
on covariance matrices processed by Riemannian geometry [75], and rejection based on
statistical tests [76]. The RPF is based on the previous Riemannian potato (RP) [77] al-
gorithm, in which only one potato (i.e. frequency-spatial filter) is applied to the signal. The
RPF extends RP by introducing the idea of potatoes focusing on each artifact class, and
by combining them, through statistical tests, to an aggregate evaluation. In other words,
the RPF can be seen as many RPs in parallel, with each RP single result contributing,
using the right-tail Fisher’s method [76] to the final assessment.

Geometry of Covariance Matrices

For a more in deep mathematical explanation of the properties of Riemannian geome-
try applied to covariance matrices, references to [75] and [78]. In the following, a brief
introduction is given.

With X € RE*N EEG signal epoch, with C' channels/electrodes and N temporal samples,
its covariance matrix ¥ € R*C s estimated easily and fast [49] (assuming N >> C [79],
and the signal being centered, e.g., after band-pass filtering), as:

Y= ﬁXXT (6.1)

Where N — 1 is used for the unbiased estimation version. For the reason that covariance
matrices are symmetric positive definite (SPD), they are confined in a cone of the Eu-
clidean subspace defined by the Cauchy-Schwarz inequality [49]. This subspace is shown
to possess the properties of a Riemannian manifold M, of dimension m = C(C +1)/2
[75].

The affine-invariant Riemannian (AIR) distance between ¥, and X5, and the geometric
mean ofi = 1, ..., I matrices X; (defined as the matrix that minimizes the sum of the square
distances between ¥;s on the manifold) [80] can be computed just using the eigenvalue
decomposition of the Ys involved [49]:

Y = Udiag( A1, ..., \0)UT (6.2)
where A1, ..., A\¢ are the eigenvalues and U the matrix of eigenvectors of 3.
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Principle of the RP

The RPF is an extension of the RP. It is so reasonable to start explaining the RP, as
minimal construction of the RPF. Again, the following explanation is concise, the details
can be found in the original paper [77].

The idea behind RP is to estimate a covariance matrix X of baseline (i.e. not artifacts)
and a measure of dispersion (z-score). Then, the Riemannian distance between ¥ and
the covariance matrix at "time” ¢, ¥; is computed and rejected if higher than an objective
statistical criterion [49]. The criterion is based on the z-score for the particular covariance
matrix X; at time t:

dy— 1
Ot—1

(6.3)

zZt

where the mean p and the standard deviation o are computed using the Riemannian
distances between the previous matrices and the baseline matrix:

po=1>d: (6.4)
=1
t
0 =23 (dr — i)’ (6.5)
t =7 T — Mt .
=1

"This z-score models the distribution of covariance matrices considered as clean and
provides a z-score threshold z;;, defining the hull of acceptability. The Riemannian potato
then rejects epochs whose covariance matrices lie out of this region of acceptability” [49],
as shown below:

Kok / N 8. °
201 | [/ \

I |
Ul \
200 [ / // \ ;
1801 | |

. ‘ R o, A
80 100 120 140 160 180 200 220

$(1,1)

Figure 6.1: 2D projection of the z-score map of a Riemannian potato, for 100 simulated
2 x 2 matrices X (in red) and their reference matrix (in black). The colormap defines the
z-score and a chosen isocontour z;h defines the potato. Image taken from [49].
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On a standard implementation, the algorithm adapts to the data by updating its parameters
(i.e. 31, pus—1, o¢—1) whenever the present matrix (X;) is free of artifacts (thus when
2zt < z,) following:

_ _1  __1 __1 _1
Y= 23 1(2t—212t2t—21)a2t2 1 (6.6)

where a € [0, 1] defines the speed of adaptation or learning rate. This online update is
equivalentto ¥; = (1 — a)%;_1 + o in the Euclidean geometry [75]. And:

i = (1= B)p—1 + Bdy (6.7)
of = (1= B)o7_y + Bdr — ) (6.8)
where the second learning rate S is usually chosen equal to a.

To summarize, the pseudo-code of the RP is shown below:

1: function calibration( {E¢}7=, ): returns Z,u, o
2 Estimation of mean I from {Z,}7_,
3 Estimation of the T distances to the reference Z
4: Estimation of the mean of distances u with Eq. (6.4)
5: Estimation of the standard deviation o with Eq. (6.5)
6.
7: function RiemannianPotato(E;, Tinic):
8 initialization: T « @
9 ift< Tmu
10: T « Tu{t}
11: ift= Tmf;
12: E7inier BTinier OT iy & Calibration({Z,} er)
13: if t > Tinie
14: Riemannian distance d; « &5 (Z;, ft_l)
15: Distance z-score z, « %
16: ifz, <z,, //i.e.clean covariance matrix
17: Update I, with Eq. (6.6)
18: Update u, with Eq. (6.7)
19: Update o, with Eq. (6.8)

Figure 6.2: Pseudo-code for the online Riemannian Potato algorithm

As explained above, the algorithm collects a certain number of covariance matrices (i.e.
computes the covariance matrices of the epochs) and then calibrates the Potato (Figure
6.2, line 12), hence, it computes the mean covariance matrix ¥z, ., with the Riemannian
mean, and it computes the average and the standard deviation of the distances with the
baseline matrix (Figure 6.2, lines 1-5). Then, for each new matrix, it computes the Rie-
mannian distance to the baseline matrix and converts it into the z-space (lines 13-15). If
the z-score is lower than the threshold (i.e. the covariance matrix is clean), it updates the
inner parameters (lines 16-19).

"Due to its popularity, the RP algorithm has been implemented in different languages like
Python, Matlab, OpenViBE, and NeuroRT Studio” [49].
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Principle of the RPF

The main problem of the RP is related to the curse of dimensionality. When an artifact
generates variations on a channel, the distance between the actual covariance matrix
and the baseline doesn’t increase significantly if the dimension of the potato is too big
(the problem is already appreciable for headsets with 8 channels [49]). Thus the RPF
idea of defining and combining several potatoes of smaller dimensions is typically de-
signed to capture artifacts affecting specific channels and frequency bands. Then, all
z-scores resulting from the potatoes are combined on an aggregate p-value. Below, is a
visualization of the idea:

Multi-channel time-series signal (epoch)

p-value

Figure 6.3: Visualization of the RPF algorithm. The idea is to apply the RPs after spatial-
frequency filtering the signal, i.e. focusing on each particular artifact.

The final p-value p is obtained using the right-tail Fisher’s method [76] on the p-values p;
from each potato, computed as:

pj =1 — cdfng, (%) (6.9)

where cdfy; , is the cumulative distribution function of the normal distribution with mean
0 and standard deviation 1.

Fisher's method combines the p-values p; as:

J
g=—2) log(p;), q~ X3 (6.10)
j=1

where J is the number of potatoes in the RPF, and X3, is the chi-square distribution with
2J degrees of freedom. The final p-value is thus:

pzl—CdegJ(Q), p~Up (6.11)

where Uy ; is the uniform distribution between 0 and 1 [49].
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6.2 Methods

The algorithm for the Riemannian potato field classifier consists of two major design parts:
the field itself (i.e. spatial-frequency filters) and the hyperparameters for the different
configurations, for example, the threshold distance after which a covariance matrix is
considered artifact.

6.2.1 Design of the field

A potato field consists of a collection of spatial-frequency filters, each of them focused on
a particular artifact or class of artifacts, and each designed for a particular setup. This
means that, theoretically, all the possible sets of electrodes - with repetitions- and all the
possible combinations of cutoff frequencies should be tested. Moreover, prior knowledge
is provided by a rich artifacts literature [54] [66] [67] [70] [71] [81] [82] [20] [83]. This allows
thinking about the design of the field more from a knowledge-based perspective with re-
spect to a model-based optimization. The method chosen is to design some fields, collect
them in a set and use the set as a discrete parameter for the following hyperparameter
optimization.

From the system requirements chapter, it is known that the most important artifacts to
focus on are the movement artifacts and the artifacts created by the stress in the jaw
area. In addition, eye movements are also considered, even though less relevant. For
this reason, the design will focus on those characteristics. It's important to highlight that
the literature agrees to a certain extent on the topology of the artifacts, hence on the filters
to use. Also, for this reason, it is important to try different combinations, because different
indications are retrieved from different sources.

Artifacts can be physiological (originated because of the electrical activity of other body
parts) or external artifacts (the sources of these artifacts are electronic gadgets, transmis-
sion lines, etc.) [82]

EMG
Electromyogram (EMG) contamination derives from contractions and movements of the

-in particular- head muscles. EMG has a broad frequency distribution, but it has the great-
est amplitude between 20Hz and 30Hz frontally and 40Hz and 80Hz temporally. [66] [71]
[82]

EOG

Electrooculogram (EOG) records ocular activities. Generally, ocular activities are strong
enough to be recorded along with EEG. Eyes movements and eyes blinking are primarily
picked up by the frontal electrodes in the 3Hz to 10Hz frequency range. [81] [82]

ECG
ECG is not of particular interest to this application. Firstly because ECG is not avoidable,

secondly because doctors are trained to read the EEG over the ECG, and thirdly because
also the ECG is recorded, making the removal of this noise in post-processing easy.

Other artifacts
The other most important artifact to care about is the electrode pop. Electrode pop can be

caused by several conditions, among others heavy movements, sweating of the patient,
and malfunctioning of the electrode. This phenomenon results in a sudden drop in the
covariance of the target electrode with any other. Consequently, any two-by-two pairs of
electrode band-pass filtered around 1 and 20 Hz would effectively detect these events.
[49]
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Therefore, three different configurations have been designed starting from the above con-
siderations. In particular, below is a visualization of the different combinations chosen:

First field design

(O 1-20Hz  Eye blinks

@ 0.5-3Hz General low frequencies

(a) Visualization of the first design for the potato field

Second field design

O 1-20Hz  Eyeblinks

(@ 20-30Hz EMG frontal
@ 40-80Hz EMG temporal
0.5-3Hz General low frequencies

(b) Visualization of the second design for the potato field

Third field design
@ 1-20Hz  Eyeblinks
(20-30Hz EMG frontal

(©40-80Hz EMG temporal
0.5-3Hz General low frequencies

& Electrode pop in
1-20Hz .
@ pairs of channels

(c) Visualization of the third design for the potato field

Figure 6.4: Visualizations of the three potato field designs for the first iteration of param-
eters tuning
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In Figure 6.4 the three designs for the potato field in the set for the first iteration are shown.
As a reminder, a potato field is a set of spatial-frequency filters to be applied to the EEG
signal, and then to perform the RP algorithm on each of them.

The spatial side of the filter is highlighted on the scalp figure. In more detail, one color is
assigned to each potato, so channels colored differently belong to different potatoes, and
channels of the same color belong to the same potato. The frequency part of the filter is
visualized by writing the cutoff frequencies for each color (i.e. for each potato).

It can be seen that each field is an extension of the design above. In particular, in the
potato in Figure 6.4 (a), the field is composed of three potatoes: one for the eye blinks, one
for high frequencies artifacts in the occipital area, and the last that includes all channels
and focuses on low frequencies artifacts. The design is not specific and it doesn’t take
EMG artifacts into consideration. The second design, in Figure 6.4 (b), introduces two
additional potatoes to include respectively frontal and temporal EMG artifacts. Finally,
Figure 6.4 (c) shows the third design, in which, in addition to the second, electrode pops
artifacts are taken into account, by adding each pair of electrodes to the field.

For all designs, the biggest potato is the extremely unspecific focused on general low fre-
quencies artifacts, that contain all 27 channels ("FC2” and "CP1” are GN D and REF', not
considered). In all the other cases, potatoes contain a maximum of 6 channels. Also, the
first field is composed of 3 potatoes, the second field of 5, and the third of 24. Therefore,
the first field is expected to be the fastest and the third the slowest.

6.2.2 Hyperparameter optimization

Other than the configuration of the field, the algorithm relies on four other main hyperpa-
rameters: the distance threshold z to consider a chunk of signal for a particular potato
artifact, the probability threshold p for the Fisher’s test for the global chunk artifact, the
length [ and the overlapping o of the epoch of data to test. In deep, the classifier requires
many other hyperparameters: among others the alpha parameter « that controls for the
learning rate, the threshold parameters for the test probabilities, and other heuristics used
in computations (e.g. OAS method). All these parameters have been left out in the first
optimization iteration for simplicity purposes.

Two hyperparameters techniques have been used in the process: the grid search and the
bayesian optimization [84] [85]. The former was guided by the ease of conception and
implementation. This technique returned important information on the time and mem-
ory spent for each configuration. This technique has been abandoned at an early stage
of the process for bayesian optimization, faster, and more automated, and it gives the
possibility to search on a continuous space. The algorithm used is implemented by the
scikit-optimize package [86]. This decision was made because the number of configura-
tions to examine forced the grid search to run for a not feasible amount of time. Therefore,
the balance was between more iterations of the training (i.e. more tuning of the field) and
more accuracy for each iteration (i.e. better tuning of the hyperparameters).
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The RPF has been used for binary classification (i.e. 0: "artifact epoch”, 1: "clean epoch”)
problem. For each EEG recording, every artifact chunk on a "clean” exercise, and every
"artifact exercise” are annotated (see Chapter 5. Data collection). In each iteration of the
bayesian optimizer, when the best configuration (i.e. combination of the parameters z, p,
[, o, and field f) has been picked, the file is split into epochs of [ seconds (with [ € R) and
0% of overlapping (with o € R and o € [0, 100)). Only epochs that are completely included
in one annotated segment are kept and labeled with respect to the annotation (i.e. 0
if artifact, 1 if clean, and 2 if of no interest, for example when the epoch is not entirely
included in a segment). In the figure below, an example is shown, and successively
commented on:

Resting-state exercise Break Blinking exercise

Amplitude Artefact in between Y_/\/—k
[V] / ——

100 +

Data
T | — T T T \ ] ]
i} 0 | ! 20! 30 Time [s]

Segments ARTIFACT CLEAN NOT INTEREST ARTIFACT

1
: N 3 u s
Final epochs n 7 B
] I

] - 1 1 1
. 1=3.55 | o0=30%

Figure 6.5: Visualization of epochs labeling strategy

In Figure 6.5 a visualization of the method to label each epoch is shown. The signal with
the annotations is given (see Chapter 5. Data Collection). In the first exercise, of resting
state, an unexpected artifact appears ("unexpected” because it was not supposed to be
in that exercise, and so it is annotated). Between each exercise, a break period is given
to the participant to explain the next exercise and to rest. Then, another exercise starts
(in the case above, a blinking exercise). "Resting state”, "eyes open”, "eyes close”, and
"mathematical exercise” are considered "clean” segments of data, if no artifacts are anno-
tated within. "Blinking”, "lateral eye movement”, "lateral head movement”, “jaw clenching”,
"chewing”, and "shivering” are always considered "artifact” segments of data. Breaks in
between exercises are considered segments of "no interest”. Finally, data is split into
epochs of [ seconds (in the figure above, | = 3.5s) with 0% of overlapping (in the figure,
o = 30%). As ground truth, each epoch is labeled as the respective segment if completely
included, "not interest” otherwise.

Thus, in Figure 6.5, epochs 1-4 are "clean” because completely included in a "clean”
segment. For the same reason, epochs 6, 13, and 14 are labeled as "artifact”, and 10,
and 11 as "nointerest”. Lastly, epochs 5, 7, 8, 9, and 12 are not completely included in only
one segment, thus, following the most conservative choice, are labeled as "no interest”.
In this way, the ground truth for each recording is built, and performance metrics (scores)
can be measured for the algorithm.
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The score used for the optimization is the Fbeta score, with 8 = 2, thus F2. This is
because it is important to not lose artifact chunks, whereas it is acceptable to misclassify
clean epochs. The F2 score favors recall over precision, thus considering false positives
less relevant than false negatives.

As for the grid search, the running time has been inspected for each configuration, but it
has not been used in the score for the optimization, keeping the two metrics separated.

Different iterations have been performed for finding the best parameters and re-designing
the potato field in a trial-and-error matter. Firstly, for each iteration, the convergence plot
is analyzed for tuning the number of combinations to inspect in the following iteration.
Secondly, a partial dependence plot (PDP) [87] of the hyperparameters (i.e. z, p, window
duration [, overlapping o, and field f) is analyzed to understand the dependency of the
score with respect to one hyperparameter and all couples of parameters, and to improve
the ranges for the following iteration. Thirdly, a visualization of the data with ground truth
and predicted labels is created to visually inspect the performances and try to find patterns
of misclassification, to improve the field’s designs. Finally, for the online purposes of
the RPF, scatter plots of the running time with respect to each parameter of the RPF
have been analyzed to better understand the relationship between hyperparameters and
running time from an experimental point of view. Theoretically, for the RPF, "the cost
of the algorithm is dominated by the computation of eigen decomposition required for
i) the distance to the reference of each potato in the field, and ii) the update of each
reference matrix. The complexity of an eigenvalue-eigenvector decomposition is cubic
with the number of electrodes C' and therefore is dominated by the largest potato of the
RPF. This is a fast computation even for C' = 100 on modern computers, however, in
practice when C is large and large potatoes are used, dimensions can be reduced (by
PCA), in order to keep the computational cost always very low” [49]. For this reason, in
the design stage of the field, the size of the potatoes was kept small (i.e. below 8 [49]).
The number of potatoes influences the time necessary because more potatoes mean
more covariance matrices, more distance computations, and more predictions for each
chunk of data. Initially, also memory usage was taken into account but, after some tests,
it was clear that the space used by the algorithm was not relevant for any combinations,
and removed.

The optimization covers different subjects’ data for generalization purposes. Training the
classifier with more subjects improves the robustness of the system. In particular, two
subjects’ data have been used. This number is not particularly representative, but the
decision has been made for time constraints reasons.
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6.3 Results and conclusions

6.3.1 Convergence plots

In the following, three convergence plots are shown respectively for the first, for a middle,
and for the last iteration of parameters tuning. This is done to refine the number of combi-
nations to analyze in the Bayesian optimization, in order to reduce the amount of time for
each iteration. Note that, for constraints given by sklearn library, the optimizer can only
minimize a target function [86]. Therefore, the function to minimize is f(.) = 1 — F2(.),
equivalent to maximize f(.) = F2(.). For this reason, in the graphs below, the lowest the
function value, the best the F2.

Convergence plot
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(a) Convergence plot for the first iteration of the parameters tuning
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(b) Convergence plot for a middle iteration of the parameters tuning
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(c) Convergence plot for the last iteration of the parameters tuning

Figure 6.6: Convergence plots for different stages of parameters tuning

In Figure 6.6 (a), it can be seen that 1000 calls have been performed, but after 415 the
value of the function doesn’t decrease. For this reason, the number of calls has been
reduced in each iteration to 500 at an early stage, as shown in Figure 6.6 (b). Again, after
some ftrials, it was clear that the performances didn’t improve considerably even before
500 calls, whereas the training time is heavily affected by the number of combinations
considered. For this reason, the number of calls has reduced to 100. That gave the
opportunity to reduce the training time without affecting the final score, allowing for more
tuning iterations.
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6.3.2 Partial dependence plots (PDP)

In this section, the PDPs for the first and for last iterations are shown. "The PDP shows
the influence of each search-space dimension on the objective function. The diagonal
shows the effect of a single dimension on the objective function, while the plots below
the diagonal show the effect on the objective function when varying two dimensions. The
Partial Dependence is calculated by averaging the objective value for a number of ran-
dom samples in the search space while keeping one or two dimensions fixed at regular
intervals. This averages out the effect of varying the other dimensions and shows the
influence of one or two dimensions on the objective function. Also shown are small black
dots for the points that were sampled during optimization. A red star indicates per default
the best observed minimum?” [88].

First iteration

Again, as for the convergence plot, the optimizer is minimizing 1 — F'2, so lower values
mean better performances.
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Figure 6.7: PDP for the first iteration of parameters tuning
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The source space given to the Bayesian optimizer in the first iterations was:

z€[1,5| e N
peEle—8,1)eR
le[1,8] e N
0€[0.3,1)eR
fe{0,1,2}

In Figure 6.7 the partial dependences for the model parameters are shown. The source
space for the first iteration has been inspired by the RPF paper and examples [49][89], for
which a window size [ = 1s, overlap o = 50%, p = 1le — 4, and z = 2.5 have been taken.
For this reason, the ranges have been centered around those values.

Differently than expected, for each of the parameters but p, a value on the range extreme
is chosen (shown by the red stars). This fact highlights the possibility that the ranges do
not include the best values for the parameters, and that the performances would increase
expanding the range in that direction, as it will show below.

For z, and [ it can be seen that the graphs present steps. This is because the values
belong to the A/ space so that only discrete values are evaluated. For this reason, it has
to be careful with the extensions in the real values, for which no data points are available.
f, on the other side, is a categorical parameter. In fact, it is a set containing different
designs. Also in this case particular attention has to be taken to the extensions within the
values. Finally, p and o belong to R, and more uniform distributions of data points are
available.

It is interesting to note that for p, the best model picked a sub-optimal value (indicated by
the red line or star). This point is of great importance. From the couples of partial depen-
dence graphs, it might seem that the variables are mutually independent. In fact, it can
be seen that for each parameter, its single dimension dependence on the score (i.e. the
diagonal plots) is almost exactly reported on the double dimensions dependence graphs,
without any parameter influencing the behavior of the others in the final performances. If
this was the case, the best model would have picked the value that individually minimizes
1— F2(.). In contrast, the model that maximizes F'2(.) picked a sub-optimal solution for p
alone, showing relationships among parameters of a higher degree than two.

The best model for the first iteration, as shown in Figure 6.9 in the next section, and
highlighted in the PDP with red stars and red dashed lines, has parameters equal to
z=5p=>53e—2,1 =8, o=30%, and first field. It means that the RPF, at this stage,
prefers to have the longest and least overlapping epochs possible. Moreover, it tends to
have the highest z threshold, so to accept covariance matrices distant from the baseline
one, but to have a p similar to the example one. As the best z, [, and o are at the extremes
of the ranges, those have been enlarged in the following iterations.
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Last iteration

The PDP is reported, in Figure 6.8 below, for the best model in the last iteration of the
tuning. As said before, the ranges for p, [, and z have been changed between iterations to
always take more cases and to have a better distribution of the source space. In addition,
z and [ ranges have been converted to continuous intervals. The source space, in the
last iteration, was:
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In Figure 6.8 above, it can be seen that the graphs are more interdependent than before.
In fact, for all parameters except f, sub-optimal solutions have been picked, highlighting
a mutual dependence between the variables in the final F2 score. One possible explana-
tion is that the ranges in which the variables were before didn’t allow the parameters to
influence each other.

One property to note is that for each continuous range (i.e. all but f parameter), the value
that gives the best F2 score is in the between of the range, and not on the extremes.
Even though this could be because of a local minimum in the range, it is a better situation
than before. It is likely that the ranges are big enough to contain the global minimum of
the score. This is also supported by considering that the best model, by the final score,
doesn’t have any global minimum for each standalone parameter (except for f). For
example, looking at the z independent graph, the global minimum would be at 100, but
the best model has z =~ 65. Moreover, for all the parameters but f, neither local minimum
is chosen. On the other side, it does select the best f and close to the best [. Itis also true
that the difference between the best and the worst F2 is between 0.05 and 0.1 for each
parameter. This puts the difference between the best and the worst model in a different
perspective. In other words, the best model can choose sub-optimal single parameters
because they depend also on other parameters, but also because the difference between
the optimal and the sub-optimal choice is not too relevant. This could also be noted in the
convergence plot in Figure 6.6 (c), for which many different combinations return a similar
score. More in deep, three combinations give an F2 score closer than 2% with respect to
the best model. These models picked combinations as follows:

« 2 =0.760: z = 65.04, p = 5.58 - 1072, [ = 10, 0 = 40.48%, f : 0
« F2=0.756: z = 77.70, p = 5.74- 102, | = 8.10, 0 = 55.82%, f : 0
« 2 =0.751: z = 32.85, p = 6.65 - 102, | = 13.53, 0 = 70.19%, f : 0

As it can be noted, different combinations result in an almost-optimal score. An inverse
relationship can be seen between z and [: the longer [, the smaller z. This can be ex-
plained by the fact that I controls the dimension of the signal epoch, or, in other words,
how much information is contained in the respective covariance matrix. The data used
tends to favor longer epochs because the artifacts are continuous and bounded in chunks.
Therefore, for longer epochs, more artifact signal is contained and the covariance matrix
results in a bigger distance to the baseline one. In addition, for clean segments, longer
epochs average out small fluctuations of the signal, resulting in more stable covariance
matrices, making them closer to the baseline. Hence, a smaller z of threshold is needed
to distinguish clean and artifact epochs.

On the other hand, p is similar in each combination, and with the same order of magnitude
as the one used in the pyRiemann library examples (p = 0.01 [89]).

It is also interesting to note that all the best models picked the first field design. Also,
this fact results from the choice of the dataset. In fact, from the data, fewer artifacts are
considered than the one initially prospected. For example, even though “electrode pop”
is present on the dataset, it has been left out in the MVP (i.e. labeled as "not interest”),
therefore there are no differences between the second and the third field. This is because,
as shown before in Figure 6.4, the third field is the same as the second but with specific
potatoes for the electrode pops and, as these artifacts are not present in the training set,
the relative potatoes cannot contribute to the prediction, and on the opposite they dilute
the probabilities of the other in the Fisher’s method, worsening the specificity.
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6.3.3 Ground truth against predicted labels

For a better understanding of the fields and the different parameters, thus to dig into the
RPF black box, the graphs of the ground truth and the predicted labels by the RPF algo-
rithm for each person are shown below. In particular, the graphs represent the different
epochs as a sequence of dots (one dot for each epoch). Blue dots represent the ground
truth labels, obtained as explained above in Figure 6.5, and yellow dots visualize the re-
spective RPF predictions (note that "no interest” epochs are not visualized). The graphs
are split into different exercises.

First iteration

Comparnison for configuration
z=5, p=5.3e-2, |1=8, 0=30.0%, conf:first
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Figure 6.9: Comparison between predicted labels and ground truth for the best model by
F2 score for the first iteration of the parameters tuning

From Figure 6.9 it can be seen that many epochs are misclassified both for the "clean”
and "artifact” labels. In particular, for the first participant, "clean” epochs are well predicted
and some mistakes appear on the "artifact” classification. In the second case, instead,
both "clean” and artifact” segments are problematic.

Whether the behavior of the first person is expected, the same cannot be stated for the
second person. In fact, the F2 score tends to give more importance to artifact detection,
thus it would be expected to have more false positives (i.e. clean epochs classified as
artifacts) than false negatives (i.e. artifact epochs classified as clean).

To better understand this behavior, the differences in the artifacts between the first and
the second person are visualized in the figures below:
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Figure 6.10: Visualization of two classes of artifacts - head movement in (a), and jaw
clenching in (b) - for the first participant. x-division is 1s and y-division is 100
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Figure 6.11: Visualization of three classes of artifacts - eyes tension in the resting state in
(a), head movementin (b), and jaw clenching in (c) - for the second participant. x-division
is 1s and y-division is 100
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The importance of the figures above is in the mutual differences. First of all, it can be
seen, in Figure 6.11 (a) against (b) and (c), that the magnitude of the manually annotated
artifacts within the resting state exercise is visually lower than the one for the artifacts
exercises. Thus, it is easier to detect those artifacts than not the ones in the resting state,
also with high values of z. This can explain why, for the second participant, none of the
artifact epochs in the resting state exercise have been detected.

Secondly, it can be seen that the artifacts created by "person 17, in Figure 6.10 (a) and
(b) have a greater magnitude of those created by "person 27, in Figure 6.11 (b) and (c),
making their detection easier for the RPF classifier. This explains why for "Person 17,
more artifact epochs are correctly classified with respect to "Person 2”.

Finally, the F2 score is visualized, comparing it with a few baseline scores. In particular,
three baselines are computed: a "random” baseline, in which, for each epoch, a random
(50/50) label is assigned, an "artifact” baseline, in which all epochs are labeled as artifact,
and a “proportional” baseline, in which to each epoch, a random label is assigned with
uniform distribution ("clean label’/’total epochs”). In this case, "clean label’/"total epochs”
=0.61.

Actual F2 score compared with baselines

0.8 1 0.76

Scare

Actual values  Random Artifact  Proportional
Method

Figure 6.12: Real data F2 compared with different baselines for the best model for the
first iteration of the parameters tuning

It can be seen in Figure 6.12 that the F2 score for the best model in the first iteration
is 0.71. This value is better than the ones resulting from a random guess, in which F2
score, in this case, is 0.47, or from a proportional guess, with an F2 of 0.39. On the other
hand, the performance is worse than labeling all epochs as artifact. If it would not make
sense to consider all epochs not clean, the fact that the F2 score is higher than the model
prediction highlights that the performances of the model are poor.

Itis interesting to note the effect of the weightin the F2 measure. The proportional baseline
score is lower than the random baseline because F2 weights recall (true positive/ground
positive) are higher than precision (true positive/predicted positive). So it is better to spot
all the artifact epochs (i.e. obtaining high recall) than retrieving only the correct ones
9i.e. obtaining high precision). In the random baselines, guessing "clean” 50% of the time
results in a better recall than not guessing it for 100 — 61 = 39% of the time.
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Last iteration

Itis interesting to see the difference in the classification task between the best RPF model
in the first and the last iteration of the hyperparameters tuning. For this reason, the same
graph as before has been reported for the last iteration.

Comparisen for configuration:
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F2:0.81
Person 1

Artifact block Artifact block
Clean —_— s e ——
Artifact == 58 B8 B804g—8s888 8
Eyes Eyes Eyes | Mental
Resting state open +  ground truth open closed { math
predicted
] é 10 1‘5 2‘0 25
time [min]
Person 2
Artifact block Artifact block
Clean — e e om - . - — o ——— ————
Artifact B i — = HE8 88 8B 85— |88 38 85
Eyes Eyes Eyes | Mental
Resting state open: +  ground truth open closed! math
predicted

time [min]
Figure 6.13: Comparison between predicted labels and ground truth for the best model
by F2 score for the last iteration of the parameters tuning

Differently from the first iteration results, it can be seen, in Figure 6.13, that all epochs for
the artifacts have been classified correctly. On the other side, many of the "clean” epochs
have been misclassified. Thus, the RPF is too sensitive to small variations of the signal.

In any case, the behavior this time is clearer than before. In fact, the classifier gives
more importance to artifact detection (i.e. recall), to the detriment of precision, and, as
expected, all artifact epochs are retrieved.

Finally, as before, the F2 score is compared with the three baselines and shown in Figure
6.14. This time, the proportion of "clean epochs”/"total epochs” is 0.62.

It can be seen that this time, the F2 score for the trained model overtakes the baselines.
This means that the model can actually retrieve more information from the data than any
guessing. It can also be noted that the baselines are very similar to the case before, as
expected. The differences with the previous case lie in the proportions between clear
and total epochs. In fact, a slightly higher proportion results in a slightly lower F2 score,
because the unbalance assumes higher importance. For example, in the "proportional”
baseline, more epochs are labeled as clean, on average, reducing the recall. On the
"artifact” baseline, having more clean epochs result in a lower precision.
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Actual F2 score compared with baselines
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Figure 6.14: Real data F2 compared with different baselines for the best model for the
last iteration of the parameters tuning
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6.3.4 Running time analysis

In this last section, the results of the time analysis are shown. The relation between
the running time (later rt) with each parameter is studied. Two experiments have been
performed. The first by running the RPF algorithm over the following grids of parameters:

z € {20,40,80}

pe {1078, 1074, 1072}
1€{1,5,10,15,20,30}

o € {0.1,0.25,0.5,0.75,0.9}
fe€{0,1,2}

The second, keeping all parameters constant to z = 20, p = 1072, 1 = 10, o = 0.25
and creating fields with pt € A/ amount of potatoes and ch € A/ amount of channels for
each potato. With f,, ., the configuration in which the field has pt potatoes, each with ch
channels, the RPF algorithm has been run over the grid of parameters:

z =20
p=10"2
=10
0=0.25

fe{fpt_cn,pt € {1,2,4,8,16,32,64},ch € {2,4,8,16,27}}

Analysis of rt vs configuration
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Figure 6.15: Scatter plots of the running time of the RPF with respect to f. Each call
is represented by a point. The dimension of the marker is proportional to the number of
epochs evaluated in that call.

58



In Figure 6.15 the rt of the RPF algorithm is scattered with respect to the three field
designs. Each dot represents a call of the algorithm, and the size of the marker is pro-
portional to the number of epochs (n) evaluated in the call. The exact n in each call is
returned as a variable by the algorithm itself. Fast estimation of the number of epochs
is given by n < T'/(l x 0), where T is the total useful time in the recording, i.e. the total
length of the segments not labeled as "no interest”. This estimation is in general greater
than the actual number of epochs because of the border effect between segments. When
an epoch contains parts of two different segments are labeled as "no interest” and not
analyzed.

It can be seen that the rt is dependent both on f and on n. Keeping in mind that the y-axis
is in logarithmic scale, it is easy to see that, for the third configuration, the average rt is
higher than for the second, which is higher than for the first. Additionally, the calls with
higher n (i.e. markers of bigger sizes) are associated also with higher running times for
each configuration.

This was expected from the theory treated in the introduction of this chapter and in the
quote reported in section 6.2.2 Hyperparameter optimization, for which the cost of the
algorithm is dominated by the eigenvalue decomposition required for the distance to the
reference of each potato in the field and the update of each reference matrix. In this case,
the update of the reference matrix plays a minor role in the comparison, as it is plausible
to assume that the number of clean epochs detected by each call is essentially the same
overall, as also proven by the experimental data. In fact, on average, the markers of the
same size and color are always in the same region, thus not much variability in time is
given by the update itself, but more from the number of epochs to analyze.

The third configuration has 24 potatoes against the 5 of the second and the 3 of the first.
Therefore, with the same number of epochs processed, the third design is expected to be
more expensive than the second, in turn, slower than the first. Also, itis expected that the
higher n, the higher the overall time, to analyze all the epochs. The figure above is given
more as a qualitative starting point, a more in deep analysis with quantitative examples is
going to be shown in a later stage.
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Analysis of rt vs zand p

The plots of the two parameters to which the rt is independent are reported below in Figure
6.16. As before, the size of the markers is proportional to n, and the colors correspond to
the design. z and p are considered categorical classes, thus the scale is not respected.
This is not a problem because, as shown afterward, no information can be retrieved by the
x-axis. In addition, horizontal jitter is added to better visualize the otherwise overlapping
data points.

Running time with respect to the z threshold Running time with respect to the p threshold
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Figure 6.16: Scatter plots of the running time of the RPF with respect to z (on the left)
and p (on the right). Each call is represented by a point. The dimension of the marker is
proportional to the number of epochs evaluated in that call. Note that the values on the
x-axis are not in scale.

In Figure 6.16 the plots of the rt with respect to z and p are visualized. Again, we have
the information about the configuration and n, as blue bigger points are higher than blue
smaller points, and blue points are higher than the green and red points with the same
size.

New knowledge is brought by the fact that the distributions of r¢ are the same for all the
values of z and p. The conclusion is that the running time, as expected, is independent
of z and p.

This fact is less expected. In fact, from the theory, we know that the time to run the algo-
rithm should be dependent also on the number of updates of the baseline matrix, which is
dependent on the z and p values. In fact, for example, if p = 1, all epochs are considered
clean and each should make the RPF baseline update, slowing the computation. On the
other side, p = 0 should consider all epochs as artifacts and never update the matrix of
baseline.

As can be seen by the experiments, though, none of these influence significantly the
computation. No in deep analysis on this aspect are present in the paper from Barthelemy
et al. [49].
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Analysis of rt vs n

Finally, rt with respect to n is reported below. Firstly, a linear plot is shown to highlight the
linear dependence between n and rt, then a log-log plot is shown to better visualize the

data. Also in this case, horizontal jitter is added to clearer visualizations.
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Figure 6.17: Scatter plots of the running time of the RPF with respect to n.

As expected, the rt depends heavily on the number of epochs n. In fact, when n increases,
the average rt increases linearly, as shown in Figure 6.17. This visualization clusters the
small values, so a log-log plot is reported below:
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Figure 6.18: Scatter plots of the running time of the RPF with respect to n.

In the figure above, the small values of n are better visualized. For example, it is possible
to note that for values of n < 1000, the rt is lower than the one expected from the fitting.
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This means that there are some additional processes that slow down the computation
when the number of epochs increases. Most probably this is due to the internal costs of
the Python language.

Analysis of rt vs ch

In the following graph, the running times with respect to the number of channels for each
potato are shown. In particular, both the total running time for the entire algorithm and
the time for the covariance matrix computation is reported. Each data point is shown with
a marker, for which its dimension is proportional to the number of potatoes in that field.
In this way, it's more intuitive to compare fields with the same number of potatoes, but
a different number of channels for each of them. A fit is run over the designs with the
maximum number of potatoes, to show the relationship averaging out the contribution
given by a different pt.
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Figure 6.19: Scatter plots of the running time of the RPF with respect to ch. Each point
represents a combination of pt and ch. The size of the marker is proportional to pt

As expected, the relationship is over than linear. More data points would be necessary
for achieving a better estimation, but it is clear that the relationship is higher than the first
degree. It is also rational that, with a parity of channels for each potato, a higher amount
of potatoes result in a slower computation, as the algorithm needs to be run more times.

In addition, again predicted by the theory, the covariance time dominates the total running
time of the algorithm. In fact, the computation of the covariance matrices is the heaviest
task of the RPF. The proportions of computation time over total time, when the design has
64 potatoes, are [85.18, 86.69,87.99, 89.60,91.01] respectively for [2,4, 8,16, 32] channels
for each potato, reflecting the predominance of the covariance matrices computation time.
It is also interesting to note that the proportion increases with the number of channels.
The computation of the matrices weighs increasingly more on the total time because that
overtakes the corollary fixed setup costs of the practical algorithm from Python.
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Analysis of rt vs pt

In the figure below, the running times with respect to the number of channels for each
potato are shown. As before, both the total running time for the entire algorithm and the
time for the covariance matrix computation are reported. Again as in the previous case,
each data point is shown with a marker, but this time its dimension is proportional to the
number of channels in that field. In this way, it's more intuitive to compare fields with
the same number of channels for each potato, but a different number of potatoes. A fit
is run over the designs with the maximum number of channels, to show the relationship
averaging out the contribution given by different ch.
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Figure 6.20: Scatter plots of the running time of the RPF with respect to pt. Each point
represents a combination of pt and ch. The size of the marker is proportional to ch.

From Figure 6.20 above, it is clear that there is a linear relationship between the number
of potatoes pt for a design and the running time of the algorithm when only designs with
the same number of channels per potato are taken.

This was expected from the theory. In fact, the covariance computation time is proportional
to the cube of the number of channels for the particular potato, but then the singular potato
times are only added together. In this experimental setup in which all potatoes have the
same number of channels, this results in a multiplication (i.e. summing the same time for
a pt amount of time) hence in a linear relationship.

As for the previous graph, it can be seen that the covariance time dominates the total
time. About 90% of the time is spent on the covariance matrix computation.
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6.4 Discussion and future work

All the time analysis results with respect to the different parameters and designs options
of the fields (i.e. amount of channels and number of potatoes) were expected from the
theory and are comparable with the ones obtained in the main referenced papers [49][77].

On the other hand, if some parameters obtained are similar to the ones used in [49], for
example, the p value (i.e. p = 0.0058 vs p = 0.001) and the o value (i.e. 0 = 0.4 vs
o = 0.5), the other parameters (i.e. [ and p) are very different. It is important to remember,
though, the different methods used. In the paper from Barthelemy et al., z has been
chosen from a statistical point of view, and | has been chosen arbitrarily from common
sense. In this case, the choice of the parameters has been done from a hyperparameter
tuning perspective, hence the parameters giving the best results have been selected.
This difference has also been highlighted in the results and conclusions section, in which
the inverse proportion between z and [ is shown. In fact, usually, also the window size is
taken into account in the z-score computation, and this relation is highlighted. In this case,
instead, the computation of the z-score is independent of the sample size, and therefore,
using a different window size [, also z needs to adapt.

It's not possible to compare the accuracy obtained in this project with other works, and this
is because the reference paper focused on the comparisons among different calibrations
and setups of the RPF, and only comparative performances were given. In addition, the
design is specific for each headset, so no benchmarks were available for BrainCapture’s
data-specific case. Finally, most of the literature in the automatic EEG artifact detection
uses the F2 score instead, to be independent of the usual dataset unbalance. In this case,
instead, as the goal was driven by a real application and users’ needs, the F2 score has
been preferred to privilege false positives and to be sure not to miss any artifact epoch.
In this context, an example of the different scores that would have been obtained for the
best model by F2 score in the last iteration of hyperparameters tuning is shown in Figure
6.21. In particular, AUC, F1, and F2 scores are shown.
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Figure 6.21: Comparison of different measurement scores (F1, F2, and ROC AUC). For
each score, the prediction of the best model by F2 (called "Actual values”) is compared
with three baselines: random guess, each epoch labeled artifact, and a guess proportional

to the "clean”-"artifact” epochs ratio in the recordings.
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Obviously, the F2 score is the highest for the actual model, which has been optimized
with that goal. It is interesting to note how it would have changed with the other methods.
In fact, for the F1 score (that weights recall and precision equally), the score is lower
because, in the final best model, many clean epochs are predicted as artifacts to not miss
any artifact epochs. This decreases the precision, which has a more significant impact
on the F1 score. For AUC the explanation is similar, as it is independent of the balance
between the classes, and it is a measure of separability. Also, in this case, the high ratio of
false positives decreases the final score. Exactly the same considerations can be made
for the baselines. In particular, the "artifact” baseline is higher for the F2 score because it
weights the recall more, and the recall is of course maximum if all epochs are considered
artifacts. For any measurement, the actual model performs better than the respective
baselines.

The best outcomes from the referenced paper have been used for this project. Thus,
the RPF instead of the RP and semi-online calibration have been used [49]. Exactly as
in the paper, many other improvements can be implemented. For example, the fixed
point Riemannian mean instead of the gradient, which should speed up the computations
keeping the same accuracy, for a high amount of matrices. Also, all equations (6.3), (6.4),
(6.5), (6.7), and (6.8) can be replaced with their geometric versions [49], more stable
towards outliers.

It is important to remember that the design of the field is bound to the specific headset. In
other words, a new set of spatial filters must be designed for each new cap. This fact is
not problematic at this stage, and knowing the vision of the company neither in the next
future. But it could become a problem if, for example, many caps and configurations are
going to be used for different purposes by BrainCapture. In general, this is a problem for
generability and transfer learning. In the following iterations, from electrode-based spatial
filters, region-based spatial filters can be designed, with a translation map based on scalp
locations of the electrodes.

Also, the transfer learning possibilities have been explored only briefly, and they were
based on the generalization error given by training the algorithm in different subjects. In
the future, it is fundamental to inspect and explore this aspect more, to understand to
which extent it is possible to transfer the knowledge (i.e. hyperparameters and baseline
matrix) to new subjects. In this use case, the transfer learning is helped by the calibration
section, thus the semi-dynamic manner. In addition, in the standard EEG scan, the first
exercises consist of the creation of artifacts to give the doctor a reference. This section
can be used as ground truth in exactly the same way the training had been performed in
this project.

An aspect that hasn’t been exploited but is of incredible potentiality for future iterations
is the computation of the p-value. In fact, Fisher's method combines all the potatoes
giving them the same weight. A study of how different weights influence the importance
attributed to each potato could be assessed, prioritizing certain artifacts over others.

In addition, the role of the calibration can be inspected in more detail. In fact, calibration
is a fundamental aspect for the final performance. In the reference paper [49] a robust
calibration is proposed, following a procedure standardly used. Hence, collecting the
covariance matrices in a set and applying the first calibration, then using this first baseline
matrix to reject artifact epochs from the initial set, and repeating the calibration with only
the matrices remaining. This two-layers calibration can be easily implemented in the
future.
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The learning rate has not been taken into the analysis but it can be revealed of extreme
importance. In fact, the alpha parameter has been set constant to 0.01. This means that,
for each clean epoch, the baseline matrix shifts of 1% toward the new matrix, as well
as the mean and the standard variation of the z statistic. This parameter can potentially
change drastically the behavior of the classifier, updating the baseline to the drifts of the
system. In fact, bigger values of « induce the system to be flexible and to follow the
natural systematic changes of the signal as baseline drifts due to physiological changes
(e.g. sweating, electrode movements,...), or psychological differences due to fatigue (e.g.
inducing more eyes movements), attention state (e.g. fewer alpha waves), and relaxation
(e.g. initial stress due to the new environment and tests). On the other hand, smaller
values of a keep the system more stable and prevent it to adapt to repetitive artifacts in
the signal. For all these reasons, this parameter has to be deeply analyzed in the future.

Finally, it has to be remembered that the RPF algorithm has been trained and generalized
only on two recordings, thus the results can be improved by annotating and inserting in
the pipeline more files.
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7 RPF implementation for embedded
systems

7.1 Methods

In this section, the methods used for implementing and testing the code in Python and
Java for the RPF algorithm, and in Kotlin for the integration of the algorithm in the Android
mobile app are described.

7.1.1 Python programming - usage of the pyRiemann library

Python examples of the Potato field were referenced in the paper by Quentin Barthélemy
et al [49]. In particular, the pyRiemann [90] python library was used. The library pyRie-
mann implements several distance measurements, clustering, and linear algebra meth-
ods based on the Riemannian geometry, used for building up the functions necessary for
the algorithm. The examples given have been modified to comply with the necessities for
the field design and the tuning of the parameters.

The code developed can be found published on GitHub [91]. In particular, with respect
to the example found in the API gallery examples, [89], only the Riemannian potato field
(RPF) method was kept, leaving out the Riemannian potato (RP) method. This is be-
cause, in the first iteration of the project, only the RPF was of interest. In addition, the
visualization of the real-time simulation has been removed, and the F2 measurement test
has been implemented instead. Moreover, all the implementations for the automatic tun-
ing of the parameters - i.e. testing all the different configurations - have been written from
scratch. All the pipeline has been automatized.

7.1.2 Java programming - translation and refactoring of the python code
and libraries

As the main objective of the thesis was to test the feasibility of the quality feature, it was
necessary to re-implement the Python libraries and the RPF algorithm into Java language,
to make it runnable on an embedded platform - in particular, the Android system. As
a second step, the algorithm will need to cooperate with the Kotlin language. For this
reason, a considerable part of the project has been focused on the translation of Python
code.

After a thorough examination of the program and all the libraries in Python, a list of func-
tionalities necessary for the logic of the algorithm was drawn up. The basic operations
that the program must complete are, first of all, the computation of covariance matrices,
normalized covariance matrices (useful for neglecting signal power), and regularised co-
variance matrices (for stability reasons).

Secondly, basic functions of linear algebra and matrix calculus such as multiplication,
summation, power elevation, inversion, exponential, logarithm, and extraction of eigen-
values of matrices are needed to manipulate the fundamental objects in elaboration. In
addition, it is necessary to have signal processing functionalities, in particular, to be able
to filter the signal.

Furthermore, the logical building blocks on which the entire theory is based are the oper-
ations of Riemann geometry on the spaces of symmetric positive definite (SPD) matrices
- the covariance matrices - such as the Riemann distance, the Riemann mean, the Eu-
clidean mean, and geodesics.
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Finally, some statistical tools are needed, such as the cumulative density function for
gaussian and chi-square distributions.

Most of the operations above have been translated into static functions for usability and
ease of implementation, and to align with the Kotlin language, which prefers standalone
functions. In any case, some classes have been introduced in the code to give structure
to the program, such as the class "Potato” and "PotatoField” which contain definitions
of the structural elements of the algorithm. In particular, an object of the "PotatoField”
class maintains a list of "Potato” objects, each of them stores the properties of the potato
- cut off frequencies and electrodes of interests (i.e. frequency and spatial filtering) - and

supporting functions as fit”, “partial_fit” and "predict_probability” for the classification of
the different signal’s portions.

In Figure 7.1 below, the container classes and their functions are visualized.

Potato PotatoField

+ z_th: double

+ mean: double

+ std: double + z_threshold: double

+ mean_cov: Matrix p_threshold: double

+ last_cov: Matrix alpha: double

+ min_freq: double potatoes: ArraylList<Potato>
+ max_freq: double n_potatoes: int

+ alpha: double

+ ch_indexes: int[]

+ + + +

+ PotatoField(z: double, p: double, alpha:

+ Potato(th: double, al: double, minF: double, min_fs: int[], max_fs: int[],
int, maxF: int, ch_indexes: int[]) channels: String[][])
+ fit(X: ArraylList<Matrix>): void + fitField(X: double[l1[1[]1): void
+ partialFit(): void + partialFitField(): void
+ predictProbability(M: Matrix): double + pt(-jed:tcltProbabilityField(M: double[1[]):
ouble

+

predict(M: Matrix): boolean
+ predictField(M: double[][1): boolean

Figure 7.1: Visualization of the container classes Potato and Potato Field.
attribute or method.

+”: public

It can be seen, from the figure, that the classes implement the main functionalities of the
RP and RPF algorithms. The PotatoField class relies on the Potato one. In the mobile
application, only methods of the PotatoField class are going to be called. In particular, at
the initialization of the app, an instance of the RPF is created with the constructor. After
collecting the epochs for the calibration, the "fitField” method is called to initialize the field.
Then the “predictField” method is called for each new epoch, and the “partialFitField”
updates the potatoes if the epoch is clean. Internally, the PotatoField instance calls the
respective Potato methods for each potato of the field, hence implementing the algorithms
shown in the previous chapter.

In the following Figure 7.2, the auxiliary classes for the methods above are shown. All
these methods are called by the container classes to filter the incoming signal, compute
the different versions of covariance matrices, apply the Riemannian operations such as
mean and distance, compute the z-score of an epoch, and combine all of them together
to obtain the p-value.
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+!

+!

+!

MatrixAux

sqr(x: double): double
power(M: Matrix, p: double): Matrix
exp(M: Matrix): Matrix
log(M: Matrix): Matrix

regularizeCovarianceMatrix(sig: doublel][]): Matrix
computeCovarianceMatrix(sig: double[][]): Matrix
normalizeCovMatrix(M: Matrix, method: String): Matrix

LogEuclideanMean(set: ArrayList<Matrix=): Matrix
EuclideanMean(set: ArraylList<Matrix=): Matrix
RiemannianMean(set: ArraylList<Matrix=): Matrix
RiemannianDistance(P: Matrix, Q: Matrix): double
RiemannianGeodesic(P: Matrix, Q: Matrix, lambda: double): Matrix
estimate_centroid(X: ArrayList<Matrix=): Matrix

transform(P: Matrix, M: Matrix): double

getZScore(dist: double, mean: double, std: double): double
normCDF(z: double): double

getNormProb(z: double): double

getChiProb(z: double, n_potatoes: int): double

SignalProcAux

filter_bandpassAndChannels(signal: double[][],
1_f: double, h_f: double, channels: int[]): double[][]
notch_filter(signal: double[l[], f: double): doublel][]

Figure 7.2: Visualization of the auxiliary classes for the RPF algorithm. "+!”; public and
static method.
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7.1.3 Tests - correctness of the Java functions

Parallel to the writing of the code parts, various tests were written and executed to verify
that all the functionalities were correct and that the results were in line with those obtained
in Python. The tests were divided into five sections: basic matrix operations, creation of
covariance matrices, Riemann geometry operations, bandpass filtering, and container
class tests.

Basic matrix operations

For this group of operations, the tests consist of creating random valid and not-valid matri-
ces in Python, copying them on Java, and running the functions on each matrix, checking
that then the results are the same in both versions of the code.

Creation of the covariance matrices

For this group of tests, raw data have been injected into the methods for computing the
covariance matrices, then the resulting matrices have been element-wise compared. In
particular, standard covariance matrices, normalized covariance matrices, and regular-
ized covariance matrices creation methods have been tested.

Riemannian geometry operations

For this set of tests, the covariance matrices created above have been used to compute
the Riemannian distance, the Riemannian mean, the Euclidean mean, and the Rieman-
nian geodesic among SPD matrices always both in Python and in the implemented Java
code. Also in this case the results (matrices of values) have been compared element-
wise.

Bandpass filtering
In this case, some raw signals have been filtered in Python and in Java, then the frequency
domain has been examined to verify that the distribution is the same.

Container class tests

Finally, the entire code has been tested by running the Python and Java implementa-
tions of the RPF algorithm in parallel and checking that the probabilities of detecting the
artifacts, for each section of the signal, are the same.

In Figure 7.3, the test class is visualized.
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Test

+! readMatrixFromPython(Filename: String, r: int, c: int): double[][]
+! readCovFromPython(Filename: String, dim: int): ArraylList<Matrix>
+! writeMatrixToPython(Filename: String, mat: double[][]): void

+! testCov(mat: doublel[][]): void
+! testCovNormalization(mat: double[][]): void
+! testCovRegularization(mat: double[]l[]): void

+! testRiemannianMean(set: double[][][]): void

+! testLogEuclideanMean(set: double[][][]): void

+! testRiemannianDistance(P: double[l[], Q: double[]l[]l): void

+! testRiemannianGeodesic(P: double[][], Q: double[l[], lambda:
double): void

+! testFilters(mat: double[]l[], l_f: double, h_f: double, n_f:
double, channels: int[]): void

+! testFit(set: double[][][], p: Potato): void
+! testPartialFit(mat: double[][], p: Potato): void
+! testPredict(mat: double[]l[], p: Potato): void

+! testFitField(set: double[][][], pf: PotatoField): void
+! testPartialFitField(mat: double[][], pf: PotatoField): void
+! testPredictField(mat: double[][], pf: PotatoField): void

Figure 7.3: Visualization of the test class for the RPF algorithm. "+!”: public and static
method.

It can be seen that all the methods of the other classes are tested. Three first three
functions are auxiliary and needed to share the results between Python and Java, to check
that the results are the same. This is done in Python for ease of use. The following chunk
focuses on testing the computation of the covariance matrices, i.e. normal, normalized,
and regularized. Then the different Riemannian functions are tested, verifying that the
returned matrices are the same as Python. The filtering is tested with "testFilters”. Finally,
the container classes PotatoField and Potato are tested with the last set of methods.
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7.2 Results and conclusions
This section reports the results obtained for the tests outlined above.

7.2.1 Tests - correctness of the Java functions

Basic matrix operations

Each resulting matrix has been compared element-wise after applying the same operation
on the same initial matrices. After some debugging iterations, the resulting matrices are
the same. The elements of the matrices have been truncated for precision issues in the
exchanging of data between Java and Python.

Creation of the covariance matrices

The testing of the creation of the covariance matrices and the debugging iterations took
a considerable amount of time. If for the base computation a built-in method was pro-
vided in the library [92], the same cannot be stated for the normalized and the regularized
covariance matrices. For the normalization, two methods have been implemented and
tested: covariance-based and trace-based [93]. Both methods are useful when, in the
particular potato, the power of the signal is not relevant, e.g. when a low-frequency arti-
fact on the entire scalp is searched. Furthermore, the regularization has been performed
via the Oracle method (OAS) [94]. In the design stage, both Ledoit-Wolf [95] and OAS
methods have been analyzed. Eventually, the OAS coefficient has been preferred over
the Ledoit-Wolf because convergence is significantly faster and more accurate because it
is of easier implementation and comprehension and because it requires less computation
time and power [94][96][97]. Regularization is used for stability purposes. In fact, in the
computation of the Riemannian mean, many invertions and power elevations of matrices
are required, and those led to numerical instabilities that can be solved by the shrinkage.
The shrinkage consists of stabilizing the values in the matrix diagonal, thus re-centering
the most extreme values. All tests led to the same results for all the beginning matrices.
Thus the functions have been proved correct.

Riemannian geometry operations

The implementations of these functions (i.e. Riemannian distance, Riemannian mean,
Euclidean mean, and Riemannian geodesic) have been inspired by [49][77][75] and by
the Python library code [90]. Also, in this case, all the results (either matrices or values)
have been element-wise compared. After several iterations, the implementations have
been proven correct as before. The implementation of the Riemannian mean required
particular efforts. In particular, as explained above, the regularization method for the
covariance matrices has been introduced to compensate for the numerical instabilities
due to invertion operations.
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Bandpass filtering

In Figure 7.4, the result of the Butterworth bandpass filter is shown for the same signal,
processed with Python and with Java methods.

Grand Average comparison of PSDs

-11 java
python

|
A
~

a.\ IIR filter parameters

|
LA
w

Butterworth bandpass zero-phase (two-pass forward and reverse) non-causal filter:
\l - Filter order 16 (effective, after forward-backward)
\ - Cutoffs at 4.00, 30.00 Hz: -6.02, -6.02 dB

Power [dB]
L L
=] v o

—

|
"
~

-18 = =

-19

0 50 100 150 200 250
Freguencies [Hz]

Figure 7.4: Visualization of the grand average PSD resulting from filtering the same signal
with the same bandpass filter in Python and in Java.

It can be seen that the results are not exactly the same. This was not expected, as the
methods are from the standard libraries, and no sources of differences are mentioned in
the documentation.

In particular, the greatest differences are notable for frequencies below 3Hz and above
50Hz. This reflects a difference in the suppression of the signal outside of the cutoff
regions. The most probable reason for this difference is due to inner parameters that
have not been equalized between the two methods.

To dig deeper into the problem, the implementation libraries of the two methods have
been analyzed. The methods, though, referred to other methods, each of them in different
libraries, resulting in broad and tangled research. Eventually, for time constraints, it has
been decided to postpone this analysis for the following iterations of the project, as the
difference is not relevant for MVP purposes. The fact that this difference is not relevant
will be shown in the probability predictions section, below.

Container classes

Both implementations gave the same results. The probabilities given from the two algo-
rithms are, apart from numerical rounding, the same. Small differences in the probabilities,
but not in the artifact detection, are introduced with the filtering. This was expected as it
has been shown above that the filtering introduces small differences in the data.

73



7.3 Discussion and future work

Not many decisions have been made in this chapter that could have had a relevant impact
on the outcome of the project. In other words, because this chapter treated the refactoring
of the algorithm in Java language, and only the correctness of the implementation was of
interest, all the relevant design decisions had already been taken in the previous sections.
Therefore, not many discussion inputs can be observed. In particular, standard good
practices have been adopted for the Java implementation, and no further work could have
been done within the purpose of this project.

In the following iterations of the project, the code should be refactored and optimized under
memory usage, CPU load, and running time. For example, the fixed point Riemannian
mean method could be implemented. In addition, the code could be commented on in a
more descriptive manner, and a stable version could be published for external debugging
and usage, as no Java version of the RPF is available up to now.
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8 Mobile app quality feature prototype

In the chapter, the prototyping of the quality feature for the mobile application is explained.
In particular, for the MVP, the visualization of the progress bar has been implemented.

8.1 Introduction

To test the feasibility of the online quality control feature in the mobile application, the
feature has been implemented. Having the feature running returned important knowledge
on the technical aspect side, as well as the user experience. The feature needed to
cooperate with the already existing application. The purpose of the app is to guide non-
expert technicians through the standard EEG scan, providing the best information for
acquiring good-quality recordings. The goal of the quality feature is indeed on this side,
i.e. improving the overall quality by prolonging the scan of an amount of time at least equal
to the useless data recorded, thus, the epochs labeled as artifacts by the RPF algorithm.

For the MVP, an idea of the initial requirements was given by the results of chapter 4
Users’ needs and system requirements. In fact, in the interviews performed with expert
and non-expert technicians, as well as from the usability tests provided, the need for a
progress bar that can show the parts of the clean data against poor quality data was found.

The general and high-level workflow of the existing app is overall linear and shown on the
next page in the wireframe in Figure 8.1. The vision for the existing mobile application
is to guide the operator through all the steps to perform an EEG scan that can be used
by a doctor to diagnose epilepsy. In other words, doctors need artifact-free segments in
which the EEG brain signal is readable. It is better if these segments are consecutive
and long, rather than fragmented. From the welcoming page, in Figure 8.1(a) in the top-
left corner, the nurse is guided through the registration of the patient and the connection
to the Bluetooth amplifier. From there, the first quality check is provided by the feature
implemented in the top-right corner. The application reads the impedance measured for
each electrode (as a proportion of 128Hz signal power read by the electrodes against
the one sent by GND [98]) and visualizes the quality of the connection with a color scale:
green - good, orange - poor, white - insufficient.

In the second row of screens in Figure 8.1(a), it is assumed that everything is function-
ing and well connected. The application starts saving the incoming EEG signal from the
Bluetooth connection. A customizable set of exercises is proposed. This is a recursive
stage, in which the operator instructs the patient on the next exercise (bottom-left screen),
starts the timer for the exercise, and visually checks that the patient doesn’t create arti-
facts. When the timer stops, it can go to the end of the exercise to continue with the next
one. Each exercise can be skipped. At the beginning and at the end of each exercise,
an annotation is assigned to the signal, to make the following reading by the doctor eas-
ier. When the set of exercises is concluded, the uploading page is shown (bottom-right
screen), and the recording is saved.

At every moment during the recording, the operator can check that the device is connected
and that all the channels are at a proper impedance level. In addition, the operator can
annotate visually recognized artifacts, like talking, snoozing, or movements. These two
functions are provided by the screens in Figure 8.1 (b), accessible at any moment with
the two buttons in the exercise screens.
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Figure 8.1: Wireframe visualization of the existing mobile application, updated to Septem-
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The quality assessment, in the existing application, is given by the impedance feature,
and by the manually annotated events that the operator can detect. For a better track of
the artifacts, and for an estimation of the time to prolong the recording to have a stan-
dard time (i.e. twenty minutes) of a good quality recording, the quality feature has been
implemented.

In Chapter 4 Users’ needs and system requirements, the necessity for an intuitive way
to visualize the artifact segments of EEG signal (i.e. the progress bar for the MVP) has
been interiorized. In Chapter 6 Riemannian Potato Field (RPF) and practical design, the
online and embedded friendly method for artifact detection has been studied and tuned for
BrainCapture data, analysing also the performances. In chapter 7 RPF implementation
for embedded systems, the RPF algorithm has been converted into Java language, to
make it compatible with an android operating system portable device.

In this chapter, the libraries written are exploited to implement the quality feature and to
cooperate with the existing application.

8.2 Methods

8.2.1 Android development

The structure of the RPF algorithm has been implemented in Kotlin, the language in which
the existing app is developed. Kotlin is compatible with native Java classes and methods,
so the libraries can be applied with no further work. Java libraries have been written
from the beginning with the practical application idea, so they have been designed and
implemented to handle in the correct way the data received. Thus, only minor details are
going to be corrected on the library’s side.

From the application functional side, some functions will be modified or added to include
the RPF algorithm. In particular, “startRecording” is the function called when the exercises
start and that emits the impedance values acquired from the BT flow. This function is
going to be modified because, differently from the case before in which the EEG data
were just saved to the recording, now they are going to be read and evaluated with the
RPF. Therefore, "startRecording” initializes a new function called "startEvaluateEEG” to
generate a flow of quality objects. In more detail, this function gets the EEG samples from
"startRecording”, it buffers them into chunks of data, and passes them to a new function
"getChunkQuality”. "getChunkQuality” receives these chunks of data and it applies the
RPF algorithm to evaluate their quality. The results of "getChunkQuality” are given as input
to the smoothing function "getSegmentQuality”, which applies an averaging method to get
a smoother visualization. Its result is finally emitted in a new flow by "startEvaluateEEG”.
Finally, the quality objects are collected by the "collectQualityFlow” and saved in a mutable
list. The prolonging estimated time is computed from the number of chunks labeled as
artifacts.

Thirdly, from the user interface side, a new button that opens a newly designed and im-
plemented screen will be added to the exercise screens. In this new screen, a label with
the prolonging time estimation is visualized, as well as the progress bar. The bar is going
to be initially designed as a sequence of rectangles, each colored with the respective seg-
ment quality. This last interface object is going to be bound through the "BindingAdapter”
named "segmentQuality”. This will bind the color of each segment of the bar with the
respective value in the mutable list.

The entire process is visualized in Figure 8.2 below.
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¢ fun getSegmentQuality(segment): return qualityObject
if nr. clean chunks in segment > 2*t/3
return green
else if nr. clean chunks in segment > t/3
return orange
else
return red

Lo NOW WM R

¢ fun getChunkQuality(chunk): return boolean

10: return rpfClassification(chunk)
11:
12: fun startEvaluateEEG(EEGsamples): emit qualityObjects

13: initialization: chunk « empty buffer , segment « queue[t elem.]
14: chunk « n consecutive EEGsamples

15: calibration: rpfCalibration(first c chunks)
16: for each chunk

17: segment « getChunkQuality(chunk)
18: emit getSegmentQuality(segment)

19:

20: fun startRecording(collect EEGsamples):

21 ... //other not relevant instructions

22: startEvaluateEEG(EEGsamples)

23:

24: list barSegments

25: fun collectQualityFlow(collect qualityObject):
26: barSegments « qualityObject

27:

28: binder segmentQuality:

29: for each segment in barSegments

30: colour the Ul segment respectively

Figure 8.2: Visualization of the flow for the modified or added functions for the quality
feature.

8.2.2 User Interface validation - A/B tests

In order to validate the visualization of the progress bar, A/B tests have been prepared on
the user interface. In the following, the different tests are shown.

Amount of quality levels

An A/b test has been designed to test how many levels to present to the EEG operator. In
particular, whether using three or two levels, e.g. green - good quality, orange - medium,
and red - bad; or green - good quality, red - bad quality. The two different designs are
shown below:

A design

B design

Figure 8.3: Visualization of the A/B test for the number of quality levels.

The test was in a semi-structured questionnaire manner. In particular, the level of com-
prehension of the colors as well as the specificity of the data shown have been planned
to be tested. Due to time constraints, this test had not been performed.
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Feature accessing mode

First of all, an A/B test has been designed to check the preferred method to access the
new feature. In particular, design A shows three buttons on the exercise screens, and
the middle one directly opens the feature screen. Design B, instead, shows two buttons,
and the left one brings to a multitab screen opened on the impedance tab, in which the
operator can switch to the quality tab. The two different designs are shown in the figure

below.
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Figure 8.4: Visualization of the A/B test for the feature accessing flow.

Also, this test has not been performed for time constraints. In this case, the time for
reaching the quality status screen would have been measured, after asking the operator
to check for the quality of the recording. In addition, a semi-structured questionnaire would
have asked for the intuitiveness of the options.

8.2.3 Correctness and performance testing

After the android development, the feature has been tested with simulated data to verify
that the results are consistent with the predictions given by Python. In particular, the same
recording has been analyzed with the Python algorithm and given as simulated data to the
Android algorithm. Then, the prediction of each epoch has been compared element-wise.

Secondly, the performance of the algorithm has been measured. In particular, memory
allocation, CPU load, and battery drain have been profiled with the Android Studio profiler
with and without the feature running, to compare the differences in the performances. The
profilation has been performed during the first exercise, to remove other variables.
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8.3 Results and conclusions

8.3.1 Android development
The resulting pseudocode is shown in Figure 8.2 in the methods. The final code cannot be
published for the company policy, as the feature is integrated into the entire application.

In Figure 8.5 below, the Ul for the new quality feature is shown.

The bar is updated every time a new segment is recorded, and the quality is visualized
with the three colors. The timer shows how long the recording is estimated to be prolonged
to reach twenty minutes of good-quality data scan.

P8 Quality status X

Additional time:

3 min

Figure 8.5: Ul of the new quality feature, reachable from the middle button present in
every exercise screen.
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8.3.2 Correctness and performance testing

In the following, the results for the correctness of the implementation and the comparison
between the performances of the app with and without the new features are shown.

Correctness

The outcome of the algorithm in Java and in Python has been compared. The Java code
adds the extra step of averaging epochs for having smoother segments in the protocol.
After filtering the Python results with the same method, the segments are equal element-
wise, proving the correctness in a general case.

CPU load

¥ THREAD:! 0)

B App:4% Others: 11 % == Thrgads: 49
00

(b) Visualization of the CPU load with the quality feature running

Figure 8.6: Visualizations of the CPU load for the app with and without the quality feature.
In both cases, the profilation has been performed during the first exercise.

As it can be seen in Figure 8.6, the difference between the two versions of the application
is negligible. In fact in Figure 8.6(a), it can be seen that the CPU load without the quality
feature is 3%, whereas in (b), it can be seen that the quality feature adds 1% of CPU
pressure, to reach a total of 4% of load.

This behavior was expected, as the method was chosen to be computational light.

In addition, it can be seen that routine background applications weights more on the CPU
than not the application itself. This means that its entire contribution is inexpensive.
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Battery consumption

egscanner.core.main.MainActivity dk.braincaptu gsC: re.main.MainActiyity

00:01:61.666
CPU: Light
W Network: None

M Location: None

M Location: 0
Wake Locks:0
M Alarms & Jobs: 0

B Network: None

M Location: None

M Location: 0
Wake Locks: 0
W Alarms & Jobs: 0

(a) Visualization of the battery consumption(b) Visualization of the battery consumption with
without the quality feature the quality feature running

Figure 8.7: Visualizations of the battery consumption for the app with and without the
quality feature. In both cases, the profilation has been performed during the first exercise.

The difference between Figure 8.7(a) and (b) (i.e. without (a) and with (b) the quality fea-
ture) is minimal, as expected from the fact that the difference of CPU load is not relevant.

In fact, even though CPU pressure and power consumption are not proportional in general
[99], in this case, the CPU load difference is a good indication that the battery pressure
is not going to change heavily because all the other relevant factors as screen time and
RAM usage are constant in the two versions.
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Memory pressure

02:15.000 02:20.000 01:25.000 01:30.000 01:35.000

(a) Visualization of the memory pressure with-(b) Visualization of the memory pressure with
out the quality feature the quality feature running

Figure 8.8: Visualizations of the memory pressure for the app with and without the quality
feature. In both cases, the profilation has been performed during the first exercise.

In Figure 8.8, the memory used by the application is shown for the case in which the
quality feature is disabled (a) and the one in which is running (b). Note that the scale
for the two cases is not the same. In this case, the difference is small but relevant. In
fact, removing the constant items as "Java”, "Native”, and "Others”, the differences lie
in "Graphics” (+9.6%), in which the new feature adds one screen with the progression
bar, and "Code” (+18%), for the new functions added. On the other hand, "Stack”, i.e.
the LIFO stack of objects, is constant. This means that the potato field does not impact
memory relevantly.

It is important to note that the memory pressure has not been optimized in the design of
the algorithm, as it was out of the scope of the project. So these results can be improved
in the following iterations.
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8.4 Discussion and future work

The results reinforce what was already known from the theory, thus the overload added
by this feature is minimal. The goal for this first iteration was to study the feasibility of the
system, and not to optimize it, thus the final additional load can only improve.

This chapter is open to an immense amount of future work. First of all, the two Ul tests
could be performed and implemented, and all Ul aspects (e.g. information shown, inter-
actions with the users, colors...) should be validated. Secondly, more performance tests
could be executed in a more systematic and continuous way. Thirdly, the entire smooth-
ing method should be validated through experiments to examine the best granularity to
return to the operator. Finally, at this stage, everything is ready to test the capacity of the
system to support the EEG operators and to improve the overall quality of the recorded
files. It is believed that these tests will return a huge amount of knowledge to guide the
work toward the second iteration of the project.
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9 Discussions and future work

The following chapter will cover the discussions and future work of the project. As men-
tioned in the Methods Overview chapter, the entire process followed a holistic and mul-
tidisciplinary technique, in which each component contributes to validating, giving feed-
back, and improving each other. In all the chapters, the discussions and future work
sections focused on their specific topics. In this chapter, instead, the mutual influences
are discussed, and the general future work is highlighted.

In this top-down setup, the users’ needs chapter introduced the constraints and require-
ments for the system. The knowledge that the feature had to run on limited computational
resources and in a real-time matter directed the research on light-weight detection algo-
rithms, preferred to heavier but possibly more accurate ones. This choice can be argued
in different ways. Only to cite one example, the training takes more time for machine
and deep learning classifiers, but once the model is trained, the personal experience sug-
gests that the prediction can be fast enough and computationally inexpensive for a mo-
bile environment, thus combining accuracy with computational power. In addition, new
frameworks such as TensorFlow Light [100] have been released and can be used to run
deep learning models on an android device. Several reasons have turned away from
this solution. First- EEG signals are intrinsically different for users and sessions affect-
ing the re-usability and generalization of models [101], thus making transfer learning of
fundamental importance. From the Riemannian geometry study [78], it was known that
Riemannian based algorithms are performing transfer learning particularly due to Rieman-
nian geometric properties [75]. In addition, the basis of the RPF algorithm was already
available in Python, speeding up the initial stages and giving the opportunity to test it and
assess the feasibility in a real application. Also, RPF presents the outcome in an intuitive
manner, thus facilitating the work of visualizing and interpreting the results. Although this
point does not seem of much importance at this stage of the project, it will be central to
future iterations, where, instead of having a binary classifier, each artifact can be sep-
arately classified and the operator can focus on each one, augmenting specificity. This
aspect is not only important for the UX and Ul, but also for the design of the field. In fact,
a multi-class classifier can return extremely useful insights on which artifacts are mostly
mis-classified, giving the opportunity to improve the field to better fit the data. In this con-
text, it is also known from the users’ needs chapter that not all artifacts have the same
importance and that for example, eyes blinking are less important than head movements.
The RPF fits this aspect quite well. In fact, in this iteration, in the evaluation of the final p-
value, the same importance is assigned to each potato, but in the next iterations, it would
be possible to adjust the different weights or to give complete control, on which artifacts
to keep and which to ignore, to the operator, thus increasing customization.

Over the scope of this first stage of the thesis, the RPF has not been compared to other al-
gorithms in an experimental manner. From the 'understanding’ phase, though, it is known
that several researchers are studying different methods. These can be compared through
the framework built in the prototype chapter. In fact, the "return rpfClassification(chunk)”
in line 10 of the pseudo-code in Figure 8.2, called by the "getChunkQuality” function, can
be replaced by any algorithm that accepts an epoch as input and returns a binary label.
In this way, the performances of any new method can be experimentally profiled. In addi-
tion, data collected in parallel from the Filadelfia device has been used to tune the RPF.
Filadelfia data is less noisy because analogue filters in the Natus amplifier process the
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EEG signal. An analysis of the differences in the parameters tuning and in the perfor-
mance of RPF for BrainCapture’s data is of interest in the future.

The data collected is of considerable value not only for all the projects that requested
them but also for future ones. It is of great importance to understand the impact of the
protocol used in the classifier algorithms. The data is strongly biased around the artifacts.
In particular, it takes the proportion of artifacts to the extreme, losing the specificity of the
real-case scenario. In a standard EEG scan, the proportion of clean epochs is markedly
higher than the artifact one. Moreover, depending on the class of artifact, artifacts appear
randomly during the recording and for a shorter period of time than the one presented in
the protocol used. These two factors can influence both the parameter values of the RPF
and the performance scores. On one hand, the window length and overlap (and, indirectly,
also z and p thresholds) are influenced by the consecutive representation of the same
artifact. The RPF is convenient to take a long window length because it encapsulates
more of the artifact variance, and it is easier to separate it from a clean epoch (thus
influencing also z and p). On the other hand, the resulting balance between the two
classes made it easier to apply the F2 score, which would have been greatly affected by
data unbalancing. It is also true that this balance would be lost in any case moving to a
multi-artifact classifier, as in that case each class of artifacts would be unbalanced with
the "clean” class. In that eventuality, data should be re-balanced removing a proportion of
the “clean” epochs from the training set or augmenting the artifacts classes. Otherwise,
metrics not dependent on the balancing can be adopted, such as the ROC AUC score.
Using the AUC score, though, the bigger importance given to the artifact class would be
lost for better separability. But it is known from the users’ needs, that in this case recall
is more important than separability. In addition, it should be always kept in mind all the
practical variables that can influence the choices, such as time constraints. Having a
protocol in which the artifacts are controlled, allows for annotating recordings in a faster
way and with less dependence on experts than in a standard recording. This allows non-
expert neurologists to create the ground truth, and in the few weeks available for the
project it gave the opportunity to insert it in the pipeline. Finally, the compartmentalization
in the protocol is also reflected in the calibration exercises at the beginning of the standard
EEG scan. That stage can become of fundamental importance for the performances of
any algorithm, because, from the beginning and in an individualized manner, examples of
any class of artifacts are available before starting any recording.

The calibration is one aspect that can weigh enormously on the entire analysis. Deep
investigations on the calibration stage were out of the scope of this project. A two-step
robust calibration technique has already been discussed in the RPF discussions section.
On top of that, past recordings can be used to create a generalized baseline matrix, used
in the first step of the robust calibration to remove the outliers. Another huge branch
to inspect could be the advantages brought by using the standardised protocol. In fact,
the artifact exercises at the beginning, useful for the neurologists to have a reference
when they read the scans, can return more information than the one used now. A future
exploration can evolve by applying Riemannian clustering methods like Mean-shift or K-
mean [102] to the signal. This could mean having one baseline for each class of artifacts
and clustering the incoming epochs with the closest baseline.
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Just the surface of the UX design and prototyping has been scratched. In this part of
the project, immense work can be done to improve all the other parts. For example, it is
known from the results of the users’ needs chapter, that the patients can be particularly
stressed in the first part of the recording, affecting the calibration section. Simple heuris-
tics on the standard variance of EEG clean signals can be used to start with the exercises
only when it is recorded with proper quality. Secondly, a bunch of heuristics can be used
before and during the recording to give feedback to the operators. For example, 50H z
noise level can be constantly measured to make sure that the GN D and REF electrodes
are well connected (practical eventuality, found in data acquired with an old version of
the BrainCapture’s device in Bhutan [103]). In addition, the entire smoothing process to
pass from epoch quality to segment quality has just been sketched. From the interviews
with the doctors and the EEG technicians, it is clear that is not relevant to alert the oper-
ator for small and sparse chunks of artifact signal. For this reason, a smoothing function
can be designed to summarise the information into bigger segments to visualise in the
progress bar. This part strictly depends on the window size parameter returned by the
hyperparameters tuning.

Finally, the outcomes of this project allow for testing the actual improvements in the quality
of the signals acquired, by the difference in the data acquired with the quality feature
activated or not.

87



88



10 Conclusions

The feasibility of an online EEG artifact detection algorithm, implemented on an embedded
system, has been successfully researched in this analysis. The conclusions of the entire
project are sketched in this chapter.

In particular, after an initial introduction to the problem and insight into the analysis, a
brief overview of the state of the art of solutions has been summarized, showing that
only a few methods are suitable for the use case.

Different documents previously collected by the company have been studied to empathise
with the users’ needs. Further analysis was conducted through experiments and semi-
structured questionnaires to doctors, expert EEG technicians, and non-expert volunteers.
In addition, several data collection sessions have been performed in a neurological hos-
pital, to immerse into the environment and get hands-on experience. The theoretical
knowledge on EEG scan reading has been acquired from doctors, understanding there is
a need to clean data to visualize and recognize seizure patterns. From experienced tech-
nicians and recording sessions, different practical expedients to obtain clean scans have
been interiorised. A list of good practices to avoid the generation of artifacts has been
compiled, reserving particular importance to the relaxation part. Finally, the best meth-
ods to support non-expert technicians have been assessed by the experience gained by
working beside them.

The problem and the system requirements have been defined and then shown using
the lean canvas tool. Subsequently, solutions have been ideated and presented through
a user story map. The outcomes are that the direct users (i.e. non-expert operators) need
an intuitive system that supports them during the recording of the data. This support is
going to be implemented as a new feature in the existing mobile app from BrainCapture,
showing a real-time quality-based color-coded progress bar. In addition, an estimation
of the duration to prolong the recording is visualized on the same screen. The ideation
process acceded to the selection of the Riemannian Potato Field (RPF) for the design of
the real-time artifact detector. It has been tuned firstly by designing different fields and then
applying a hyperparameter optimizer, maximizing the F2 score obtained by comparing the
predicted labels of the epochs with the ground truth retrieved from the events annotated in
the scans collected. The results obtained have been analysed to understand the mutual
influences between parameters and to analyse execution time with a view to real-time
implementation.

To test the feasibility, in response to the problem statement, the RPF has been imple-
mented for embedded systems, i.e. coded into Java language. The mobile applica-
tion quality feature has also been prototyped and incorporated into the existing android
application. The tests conducted consisted of comparing the profiled CPU load, mem-
ory pressure, and energy consumption of the mobile application in which the feature is
activated and in which it is deactivated.

The results prove that this feature is feasible to run online and on a mobile device. In
addition, an F2 score of 0.81 has been obtained from the data used. Finally, the process
is developed with a top-down strategy, always keeping the users’ needs as the focal point.
Thus, the proposed solutions address all the practical questions posed by the research
problem successfully.
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A BC relevant extract of the document on

”User requirements”
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EEG recording types
The Standard EEG Recording
User personas (EEG operator)
Patient description
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Kenya specifics
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User requirements
PATIENT
GP/Neurologist requirements
EEG operator
The EEG clinic
The neurophysiologist/reader of EEG
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so that | can perform the
(relates to guidance for the operator of the device and putting the focus on the patient
not the equipment, technical issues etc.)

RR

As a patient | need my personal data to be accessible only to relevant people involved in
my diagnosis and treatment like my GP or neurologist because | want to protect my
privacy.

As a patient | need a precise diagnosis so that | can get the correct treatment that will
help me live a normal life.
(relates to the quality of EEG recording and patient info given to the EEG reader)

BR

As a patient | need a low cost EEG scanning and reading process since | have to pay
out of pocket if | don’t have insurance. (business requirement)

GP/Neurologist requirements = Referring and diagnosing doctor

As a GP/neurologist | need to be able to refer all my epileptic patients to an EEG scan
(neonates are out of scope for BC1) so that | can help all patients to the best of my
ability.

(relates to e.g. cap sizes and app Ul)

As a GP/neurologist | need a quality report from the EEG reader so that | can diagnose
the patients and prescribe the right medicine.

EEG operator

The overall process

As the EEG operator | need to be able to perform the standard EEG scanning process
on patients so that | am in compliance with the medical procedure of scanning for

epilepsy.

As the EEG operator | need to be able to use the BC1 on all patient groups so that |
can help them all to get an EEG recording.
(this relates to the cap/electrodes and the app Ul (questions, guidance and flexibility)
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As the EEG operator | need the BC1 to be easy to use so that | don’t need special
training or expert knowledge to operate it. | need to be able to operate the BC1 just by
reading the User Guide.

As the EEG operator | need the user guide to be easy to understand so that | can
quickly learn how to operate the BC1 and start scanning without further training time
and costs.

As an EEG operator | need the device to be small and mobile so that | can take it to the
location of the patient since the patient can sometimes be prohibited in coming to the
clinic (e.g. sick people, people living in rural areas etc)

As an EEG operator | need to be able to do EEG scans in rural areas where there is no
wifi so patients who live remotely can still get diagnosed and treated.

As an EEG operator | need to be able to do EEG scans in rural areas where there is no
or poor power supply so patients who live remotely can still get diagnosed and treated.

As an EEG operator | need the BC1 to be robust so that | can bring it to rural areas and
so that noncooperative patients don’t break it e.g. by pulling the amplifier to the floor by
moving around or pulling the cap/electrodes cables.

As an EEG operator | want the BC1 to look visually appealing and as little “medical” as
possible so that it induces trust and calm in patients (e.g. children and patients with
mental illnesses)

Install and setup phase - phone

As an EEG operator | need to be able to use a phone that is easily accessible for me,
so that | don’t need to buy a new phone to download and operate the app.

As an EEG operator | need it to be easy to find and install the app on my phone.
(or another person who does it)

As an EEG operator | need it to be easy to set up the phone and the app (if any initial
set up is needed) to start doing EEG recordings so that | don’'t make mistakes or get
stuck in the process.

Prepare equipment phase

CA | As an EEG operator | need enough cap sizes to cover the range of my patient’s head

P circumference so that | can do EEG recordings on all my patients.

CA | As an EEG operator | need it to be quick and easy to identify which cap size is right for

P my patient so that | don’t waste time on picking the wrong cap and stress the patient by
trying to fit a wrong sized cap.

CA | As an EEG operator | need it to be easy to place the cap correctly on the patient’s head

P so that | don’t place it askew and get reading from wrong electrode positions.
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As an EEG operator | need it to be intuitive and quick to connect the cap to the amp so
that | don’t make mistakes and cannot start an EEG recording.

As an EEG operator | need it to be easy to place ECG on the patient so that | don’t
stress the patient too much with the risk of inducing uncooperativeness.

As an EEG operator | need it to be intuitive and quick to connect the ECG to the amp
so that | don’t make mistakes and cannot start an EEG recording.

As an EEG operator | need it to be intuitive how to operate the amplifier (turn it on and
off, charge it etc.) so that | don’t make mistakes.

As an EEG operator | need it to be intuitive and easy to connect the app with the
amplifier so that | don’'t make mistakes and get stuck or connect to the wrong ampilifier.

CA | As an EEG operator | need it to be quick and easy to gel up the electrodes so that the
P process is as short as possible for the patient and not stress the patient unnecessarily.
CA | As an EEG operator | need it to be easy to identify if the cap electrodes are connected
P or not so that | don’t do mistakes like apply more gel and create bridges.
CA | As an EEG operator | need the cap to be difficult to move or take off once it is placed
P correctly on the patient's head so that a non-cooperative patient does not manipulate
the cap and diminish the quality of the EEG recording.
CA | As an EEG operator | need the cap to be robust so that my patient doesn't break it
P during recording by e.g. scratching the head, pulling the cords etc.
EEG recording phase
As an EEG operator | need to collect the patient information that the EEG reader needs
to interpret the EEG recording.
RA | As an EEG operator | need to tie myself (my ID) to the EEG recording so that | can

identify my recordings from other operators' recordings.

As an EEG operator | need to add patient identification to the EEG recording so that
the EEG reader and the diagnosing doctor can identify the right person.

As an EEG operator | need to be able to identify which recordings | have done so that if
| have an interrupted recording that | need to finish later, | don’t open my colleagues
recordings and add notes etc. to the wrong recording.

As an EEG operator | need the app Ul to be easy to use so that | don’t make mistakes
that could ruin the recording or the interpretation.

As an EEG operator | need to be well guided through the actual EEG recording
process so that | know what to do and when to do it.
(relates to the sequence of HV and PS, contraindications etc.)

As an EEG operator | need it to be clear which EEG recording type | choose (free form
or standard EEG), so that | don’t choose the wrong one.
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As an EEG operator | need it to be easy to evaluate how the recording session went
and send the right information to the EEG reader so that the EEG reader can interpret
the EEG recording correctly.

As an EEG operator | need to be able to add free notes to the recording in the moment
so that | can give any information to the EEG reader that | believe is important.
(e.g. patient needed a glass of water, patient was crying etc.)

As an EEG operator | need to be able to adjust the recording process (in the moment)
to fit the individual patient so that | adapt to the physical and mental capabilities of the
patient. (app Ul needs to be flexible: skip, navigate back and forward, come back, finish
etc.)

As an EEG operator | need to be able to finish the started process (from the
pre-interview to the en evaluation) at any point so that | can stop causing any more
distress to a non-cooperative.

As an EEG operator | need it to be easy to identify if an electrode that has already
been connected loses its connectivity during recording so that | can take appropriate
actions to connect it again.

As an EEG operator | need to be able to report events that are important information
for the EEG reader, so that it is easier for the EEG reader to interpret the EEG
recording.

(relates to seizures, coughs, movements etc.)

EEG recordings - sending and handling

As an EEG operator | need it to be easy to send the EEG recording to the EEG reader
so that the diagnosing process can continue as soon as possible.

As an EEG operator | need to be able to re-send an EEG recording in case of
interruption from power cut’s or similar so that the diagnosing process can continue as
soon as possible.

As an EEG operator | need to be able to access and send an EEG recording that has
been taken in a rural area with no wi/fi or power network at a later stage so that the
diagnosing process can continue.

As an EEG operator | need only the finished recordings to be sent to the EEG reader.
Interrupted recordings should be stored on the phone and sent when | have finished
them at a later stage or accepted to send an unfinished recording.

(e.g. interrupted recordings due to non-cooperative patients where notes need to be
added later)

As an EEG operator | need to be able to free up space on my phone so that | can
continue doing EEG recordings.

Cleaning phase
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CA

As an EEG operator | need it to be easy to take the cap off the patient’s head so that it
does not give discomfort to the patient.

CA | As an EEG operator | need the cap/electrodes to be robust so that | don’t break them

P during dismounting from the patient and cleaning.

CA | As an EEG operator | need it to be easy to disconnect the cap from the amplifier so

P that | easily can move on to clean the cap.
As an EEG operator | need it to be easy to disconnect ECG from the amplifier so that |
can put my equipment away.

CA | As an EEG operator | need the cap to be easy to clean, so that | don’t risk using a

P “dirty” cap on a new patient causing the impedances to be high or contaminating the
patient.

CA | As an EEG operator | need to be able to clean the cap/electrodes with water and

P normal cleaning agents so that | don’t need to buy special, expensive cleaning agents
that might be hard to get.

CA | As an EEG operator | need the cap to be easy to hang (or otherwise place) to dry so

P that it dries fast and in an orderly way.

CA | As an EEG operator | need the cap to dry fast so that | can quickly use it again with a

P new patient and do as many scans as needed per day.

CA | As an EEG operator | need the cap to be robust against the soap agents | use. (relates

P to the cap mesh etc.)
As an EEG operator | need it to be easy to clean the ECG so that | can use it right
away with another patient.
As an EEG operator | need to be able to swipe off the amplifier with commonly used
cleaning agents/wipes.
Maintenance
As an EEG operator | need to be able to see when the amplifier battery needs charging
so that | don’t start an EEG scan and run out of battery midway interrupting the scan..
As an EEG operator | need to be able to see when the amplifier is fully changed so that
| can stop the charging and use it for EEG scans.
As an EEG operator | need to be able to see the battery level if | go to rural areas with
poor power supply, so that | know if | have enough battery to do the needed EEG
scans.

CA | As an EEG operator | need it to be easy to identify the cap lifespan (electrodes and

P mesh etc.) so that | don’t continue to use a cap that doesn’t perform optimally anymore.

Storage phase
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As an EEG operator | need the device to be easy to store in the clinic so that it doesn’t
take up too much space, does require special protection or hanging racks etc.

As an EEG operator | need the individual device to be easy to distinguish from other
devices (if | have purchased multiple devices), so that | can easily pick the right one.

FREE RECORDING MODE

As an EEG operator | need to be able to perform an EEG scan of any length not tied to
the standard EEG process or other specific medical processes so that | do a recording
for purposes free of choice.

As an EEG operator | need to be able to collect patient data to the free format EEG so
that the EEG reader can interpret the recording correctly.

As an EEG operator | need to be able to add free notes about the free format EEG
recording explaining the purpose of my recording.

The EEG clinic

As the EEG clinic owner | need the device to be low cost so that | can sell EEG scans at
a reasonable price that patients can afford to pay for.

As the EEG clinic owner | need to be able to use the device with a minimum of extra
costs of cotton swabs, syringes, conductive gel etc. so that | can sell EEG scans at a
price that patients can afford and or maximize profit.

As the EEG clinic owner | need to be able to use the device with an easily accessible
conductive gel so that | don’t run out of it and can’t do EEG scans.

As the EEG clinic | need fast delivery of my new bought BC1 product in order to start
helping my patients.

See comments from Lisbeth....

The neurophysiologist/EEG reader

As the EEG reader | need to receive high quality EEG recordings so that | can interpret
the EEG correctly and send a quality concluding report to the diagnosing doctor.
(relates to ease of use, impedance levels, patient information, supporting notes etc.)

As an EEG reader | need to be able to open the EEG recording (+ patient data) in a
program accessible to me so that | can access the data.
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As an EEG reader | need to be able to send my EEG report to the diagnosing doctor so
that the patient can get the right diagnosis and treatment.

Information sharing platform - (Cloud)

EEG reader

UR-
XX

As an EEG reader | need to be able to access the cloud with a personal login so that
no one else can access the EEG recordings that | am handling.

As an EEG reader | need to be able to see if there are any new EEG recordings that |
need to interpret so that | can get to work and help the patient getting a diagnosis soon.

As an EEG reader | need to be able to see from which clinic the EEG recording is sent
from so that | know who | am collaborating with and can clarify any issues arising.

As an EEG reader | need to be able to download the EEG recordings to my reading
program in order to interpret the EEG.

As an EEG reader | need to be able to upload my interpretation report and address it to
the diagnosing doctor so that the patient gets diagnosed.

As an EEG reader | need to be able to see old recordings and interpretation reports so
that | can get an overview of what | have done, e.g. to check against my payment.

As an EEG reader | need recordings and interpretation reports to be tied to the
individual patient so that | can see how many recordings have been done for each
patient and go back and check previous recordings and compare with new recordings
for that particular patient.

As an EEG reader | need to have an overview of the date of the recordings and
interpretation reports so that | can easily see the recording history for each patient
without having to open the recordings/interpretation reports.

(EEG reader can see e.q. that the last recording was done three years ago etc.)

As an EEG reader | need a payment system to be connected to the cloud so that | can
get paid for the EEG reports that | have done.

Diagnosing doctor

As the diagnosing doctor | need to be able to access the cloud with a personal login so
that no one else can access the EEG recordings and reports that are connected to my
clinic.

As the diagnosing doctor | need to be able to see if there are any new EEG reports that
| need to read so that | can diagnose the patient and start treatment.

As the diagnosing doctor | need to be able to see which EEG reader has done the
interpretation report so that | know who | am collaborating with and can clarify any
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issues arising.

As the diagnosing doctor | need to be able to download the EEG report to my
computer, open and read it so that | can diagnose the patient and start treatment.

As the diagnosing doctor | need to be able to find the old EEG recordings and
interpretation reports for the individual patients so that | can get an overview of the
patient's EEG history. This helps me in diagnosing and evaluating if the medicine is
working.

As the diagnosing doctor | need to have relevant patient and EEG information
displayed in the cloud so that | can easily get an overview of the patient’s recordings,
i.e. patients name or ID, recording date, report date, no. of recordings etc.

As a diagnosing doctor | would like to be able to attach comments to a patient’s
profile/EEG reports in the cloud in order to have a quick overview of essential
information, like chosen medicine etc.

As a diagnosing doctor (GP/neurologist) | need to be able to create profiles of my EEG
operators in the cloud so that they can be assigned with a login to the mobile app and
upload EEG scans.

As a diagnosing doctor | need to be able to deactivate or delete profiles of my EEG
operators in the cloud if they are e.g. no longer employed with me.
(this should not delete any EEG recordings made by the EEG operator)

As the diagnosing doctor | need to be able to delete patients from the cloud system if
the person is no longer my patient.

As a diagnosing doctor | need to be able to delete EEG recordings or reports
connected to a patient so that | can clear out fault recordings, very old recordings etc.
so that they do not disturb my overview.

Clinic/admin

As a clinic | need to be able to create a profile in the cloud for each of my diagnosing
doctors (GP/neurologist) so that they have an account that they can log in to and find
recordings and reports.

As a clinic | need to have stats of my diagnosing doctors and their work to have an
overview of how well my clinic is doing.

As a clinic | need to be able to delete my diagnosing doctors from the cloud if e.g. they
are no longer employed at my clinic.

As a clinic | need to be able to delete my profile completely from the cloud if | no longer
need the BrainCapture services.
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Already available interview with an EEG
doctor

Date: Tue 9th November
Participants: Steve Coates (TeleEEG), Charlotte Stow (TeleEEG), Paul Loomis (BrainCapture),
Louise Klok (BrainCapture)

Interview with Dr Coates on EEG reading

Q1: Which patient information is important in order to be able to read an EEG received remote?
Name, age, sex, conscoius state of the patient (sleep, drowsy, awake).

Family history of epilepsy (yes/no?)

How often the patient has seizures.

Nature of seizure. Helps to focus on where we will find a seizure and what sort (helpful in
planning the recording/tests or reading the EEG or both?)

Recovery period.

Other neurological problems

Diabetes

Cardiovascular problems (why?)

- Also look at standard guidance.

We get EEG’s where performa has been filled out by the person doing the EEG. (In EEG
reading programs). Tick-boxes (state of the patient etc.) and free hand (past history, nature of
seizure etc.).

Q2: Is there important information about how the recording session went?
Cooperative, non-cooperative, sedated.

A good technician will explicitly say “hyperventilation was performed well for 3 min”. Any less
than that they will also give an explanation. How well and how long. The same with photo
stimulation, they will say how well the patient tolerated it.

Not all do, but they should.

Every EEG should be annotated: Eyes closed, eyes open, patient coughed, patient had a
seizure. Sometimes it doesn’t happen nearly enough though.

(It could be possible to make something like “comment on the session using these phrases” and
then have pre-defines choices)

Q3: What is a standard recording? (Hyper, photo stimulation etc.?)

Routine adult EEG is 20-30 min. Depending on the patient's tolerance. And includes
hyperventilation and photo stimulation.

Neonate it's 1 hour.

Q4: When do artefacts become too much to read the EEG?
| would not try to quantify something like that.



We train technicians to comment on artefacts in the EEG. But they don’t always. All interpreters
can recognize artefacts and tell the difference between artefacts and epileptic signals. There are
some gray areas but usually.

Eye movements are not really a problem. Eye lit flitter can sometimes last the whole EEG, but
you can still read the EEG. Eye movement artefacts don't matter that much. Interpreter should
still be able to read what'’s in the EEG. | don’t know when you would say it's too much.

EMG artefacts (clenching jaws etc.), that’s usually only temporary. A Childs EEG is usually full
of EMG artefacts and all you can see is small gaps in between of background activity. So to
specify, now it's too much, it's hard to do.

In rare cases we have to decline reading an EEG because there’s not enough normal
background to pick out. If electrode impedance is not down there is often a lot of noise.

Moving artifacts are usually temp, especially in adults. Eye movement artefact we can see, they
are not a problem.

An experienced reader can look past the artefacts to the background.

Idea: Electrode impedance artefacts, EMG and movement are all high freq. maybe look at that
with the SW. If there is too much in this period of time reject the EEG, or if it's too much within
the epox prompt the technician.

Q5: Initial test and checking montages in the beginning of a recording, what is the technician
checking for?
Not all clinics do this in their protocol. Most don’t. They just get on with the recording.

Usually good practice to change montages during recording to look at various areas of the
scalp. But a lot of EEG machines don’t have this capability so they don’t do that.

Montages: ref and bipolar.

Bipolar: see if there is a focus of epilepsy activity and where it is.

Ref: used to size and responses. You might pick up an epileptic signal that is small in Bipolar
montage but big in referential montage. But you don’t know where it is.

There is no fixed protocol to change montages. Because the interpreter can always change the
montages.

Areason for having a protocol for checking various montages in the beginning could be to
check that the electrodes are in the right area. But you would expect from a technician that the
electrodes are in the right place.

In the UK we don’t do this procedure of checking montages in the beginning of a recording.

***EN D**
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Already available interview with an EEG
technician

Date: Wed 10th November 2021
Participants: Anne Clarke (TeleEEG), Charlotte Stow (TeleEEG), Louise Klok (BrainCapture)

Interview with Anne Clarke (EEG technician) on EEG reading

Q1: Which patient information is important in order to be able to read an EEG received remote?
Basic demographics: Age, clinical history as to why they want the EEG, description of the
events, last known event - if 1-2 hours ago the EEG will be affected by it.

Button is needed for annotating if a patient seems to have a seizure.

Interpreter would like to know why we are seeing the patient? When did they have seizures,
how often, stiffness in limbs, vomiting.

Q2: Is there important information about how the recording session went?

If it's a child, were they asleep, awake, sedated.

Certain medications will influence the EEG. Could it be done by a drop down menu? Yes, there
are probably 2-3 meds you could mention and then “other”.

Children: It's kind of obvious in the EEG when they are moving around. It would be good to have

annotations that could be pressed saying “movement”, “restless”. Some artefacts can be
awkward and could make an interpreter uncertain if it's a genuine seizure or an artefact.

Eye closure in a young child is in the lap of the Gods. Hard to get a child to calm down. Let’s get
a readable EEG rather than worry about the details on what they are doing.

Q3: What is a standard recording? (Hyper, photo stimulation etc.?)
Standard: Hyperventilation for 3 minutes. If less <3min it is noted/annotated. Patient could have
an absent seizure and then not respond. Annotation: “not responding”.

Hyperventilation is done not far into the recording. Not towards the end. Because after hyper
you are more likely to see abnormalities. So hyper after maybe the first 5 min.

We normally do photic towards the end.

Does it make sense to have a button to start/stop any kind of other provocations? Yes,
sometimes you might do a second hyperventilation, or (reflect epilepsy) doing crosswords etc.

Q4: When do artefacts become too much to read the EEG?

The important thing is that you can measure the impedance. That is a huge way of reducing a
lot of artefacts. Often it is poor contact that will lead to lots of artefacts.

Secondly is movements.



In children moving around you will get it (artefacts), so the person recording needs to be trained
to calm children down. Distract them.

It's a common thing to ask a patient to relax their jaws or stop chewing. Because you get bursts
of EMG activity going through.

When do you know an artefact is too much? It's just something you recognize from seeing the
EEG. | suppose it's when you can’t detect certain frequencies over certain channels.
If you have to put a limit on it, let’s say 2 seconds.

Q5: Initial test and checking montages in the beginning of a recording, what is the technician
checking for?

They are doing that to generate artefacts to be able to recognize the artefacts in the patient. |
tend to do that sometimes with patients doing 24 hours home recording because you can’t see
the patient. So when they come back you can recognize the artefacts because certain artefacts
can mimic epileptic signals so it's only when you recognize it by eye that you know what you are
looking at.

Gel bridges are quite obvious. Then you just have a flat line.

It's not like the old days when it was on paper then you had to change montages. But you don’t
have to do that now when it is all digital.

***EN D***
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Further interviews with EEG
technicians

Date: [N
Participants: [N (-i'=ceifia Hospital), NN
(Filadelfia Hospital), | N | I (Fi2de</fia Hospital), Giovanni Grego

(BrainCapture)

Interview with experienced technicians on EEG quality
assessment

Q1: Which are the artifacts that most affect the reading?

Participant 1:
Answer:

o Eye movement. Some patients with closed eyes can'’t relax their eyes (they move from
side to side, something they can’t always control), This can impact the EEG special in
the frontal region, but can usually also effect the other channels too. So what we do in
this case, is that we take a small sand bag, made for the eyes, and we lay it over the
eyes, this usually relaxes the eyes so we don’t see artefacts.

¢ Muscle artefact from the jaw and face. We see this a lot, when the patients do not relax
their faces. Most people are tense in their face without even knowing, so | will normally
tell my patients (in the beginning of the scan) to relax their faces and maybe to open
their mouth just a little bit so that their teeth do not touches.

e Movement in general. Example talking, moving their head and body.

e 50 Hz noise. Usually from devises that are connected to electric power for example the
socket (the electricity output from the wall, I'm not sure of the name) and the patient hold
the devise ore is near it.

Participant 2:
Answer... Muscle artefacts.

Participant 3:
Movement artifacts, especially in small children, cognitive handicapped adults

Q2: What do you usually keep under control when you take a scan? What do you look at on the
waveforms?

Participant 1:
Answer:

¢ Right placement of the electrodes.

e Knowing our equipment works (no broken electrodes ore cables, and so on).

e Impedance are fine.

o Telling the patient to relax. If possible | make the patient relax in a bed without talking,
telling them to relax all muscles in their face.

¢ No devises or some kind of electricity near the patient. Don’t wanna have 50 hz noise.



Closed eyes. During the EEG scan, | want the patient to have closed eyes as much as
possible. Because the EEG is so much more readable and many rhythms are only
shown with closed eyes.

What do you look at on the waveforms? Answer:

¢ “PDR’” (posterior dominant rhythm - an Alfa rhythm over the occipital region (usually
01 and 02).

o Eye blinking, both open and closed eyes.

o Epileptic pattern

o Normal non epileptic pattern.

Participant 2:
Answer...Depends on the age and how the patients “normal” background looks.

Participant 3:
| suspect artifacts (motoric) especiallz when there is a extreme high amplitude, very sharp-
waveforms

Other artifacts looking at the ECG bar/video

Q3: What do you do if something goes wrong, if you see there is a lot of noise?

Participant 1:
Answer:

Check impedances. If they are bad, | will jell up and scrub, to be sure they are fine.

Ask the patient to relax and lay/sit still._Maybe they are moving or tense in their face.
Check the electrode is the impedance still bad maybe it's because its broken, and need
to be changed.

Check the head box. Is the electrodes pressed in right, no gab ore poor connection.
Check the cables. Are they too twisted or are they well connected.

50 Hz noise. Check if there is any devises ore some kind of cable/power near the
patient.

Eye movement. As mentioned before some patients can have a lot of eye movement, in
that cases we have a small sand bag we can lay over the patient’s eyes.

Protocol and montage. Check if the protocol and montages is right, did anything change
by mistake.

Participant 2:
Answer... Try to find out why. Is there good impedanse. Is the any loose wires ore

chargingkabels near by.
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Participant 3:
Order a new EEG, evt. with sleep and melatonin
Try to describe the quite parts of the EEG and conclude only with insecurity due to noise

Q4: What statistics and information would you like to have to understand how the quality of the
scan is, if you cannot have access to the waveforms?

(Examples if no ideas: percentage of quality in real-time, percentage of the quality in the last
minutes, visualization of the quality in real-time (colors), where the problems come from,
progression bar, visual artifacts notes...)

Participant 1:
Answer:

¢ | would like to know if the impedances are fine.

e It would also be nice to know if there is a lot of “data-noise” in “real time”. So | could
maybe go through a check list to make sure | get the best scan as possible. Maybe
something like the steps | mentions above in Q3.

Participant 2:
Answer...l don’t understand the question.

Participant 3:
where the problems come from > Yes this would be nice

visual artifacts notes > Yes please

Q5: Would a progression bar to see the quality of data over time be useful? (E.g. | see there is a
lot of red in one section and | decide to prolong that section for having better data)

Resting time Resting time

Ny .

Hyperventilation Photic stimulation

Participant 1:
Answer:
e Yes, | actually think this would be a great idea if you can’t read the EEG! Sometimes we
will also prolong the scan if we know the scan have been affected with noise, artifact and
SO on.



Participant 2:
Answer... | don’t understand the question.

Participant 3:

Answer...

Yes, this would be nice, but most of the time our recordings are really good

and otherwise if the patient is moving a lot most of the time > the whole EEG i disturbed

It would not be necessary for a std EEG = 30min because | can screen the EEG fast
Would help for recordings with more 1 hour

Q6: Would a half-bust with colored sections be useful? To see, at the moment, if there are
artifacts generated by which parts of the body.

92% 92%

Participant 1:
Answer:

e Hmm | don’t know if | would need it.

Participant 2:
Answer... Maybe it could help. But | depends why there is artefacts.

Participant 3:
No, would give me extra information, since | am experienced in spotting and locate artifacts
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Q7: Would a notification when the data is of bad quality be useful? If yes, do you think an audio
alarm could be a problem for the patient?

Participant 1:
Answer:

e Yes, if it was me running a scan without EEG | would like to be informed if the scan is
suddenly doing bad. But is the natification to the patient ore the staff? Because | think
the staff should be there to help and assist the patient on what to do if an alarm sound
goes on.

About an audio alarm, | think it could work well if the patient beforehand is explained
about the sound what it means and what to do if they hear it and maybe with some help
fron the staff. | also think the alarm should be gentle and not “choking” ore with a lot of

volume.
Participant 2:
Answer...That might be use full. The most important thing is good impedance
Participant 3:
During recording this would be nice, if the technician is as experienced as in our center it is not
necessary

An audio alarm would disturb th recording and stress most of the patients even more

Q8: Would a notification when the patient is falling asleep useful? If yes, how do you understand
from the data that the participant is sleeping?

Participant 1:
Answer:

o First,  wanna mention that its not bad if a patient falls asleep. It's actually something we
really often wanna see in the proses of finding out if the patient have epilepsy or not.
Example when we get a new patient to Filadelfia we will do 2 scans, one “standard scan’
where the patient is awake, and one “sleep scan” where the patient is sleeping. At other
hospitals, | know they often tell the patient to try sleep in the end of a “standard scan”.
The reason for this is that 20-30 % of people with epilepsy will only have seizures during
sleep.

e But a notification when the patient falls asleep would be a great idea, because
sometimes you can also have very sleepy patients there example will fall asleep during
hyperventilation or other tasks we want them to do. Sometimes, we must remind the
patient to stay awake.

Another thought on why it could be a good idea, would be to maybe prolong the scan a



bit? Because who knows maybe that patient is one of those who only shows epileptic
pattern during sleep. Just a thought.

e How do | know if the patient is sleeping by looking at data.
We look for different sleep patterns, there will tell us if the patient is sleeping or not.
So people are sleeping in cycles, we have 4 sleep stages in one cycle and they repeat
them self again and again.
For each stage, we see different sleep pattern on the EEG. Example the first sign of
sleep will be that the amplitude of the waves over O1 and O2 (that we call PDR
(Posterior dominant rhythm) will be flat. You cannot see any waves, just a flat line. At the
same time the eyes will begin flutter from side to side (lateral). It shows a very clear
pattern in the EEG (look like eye flutter artefacts in the frontal and pre temporal regen).
Also over CZ you will see something we call “vertex sharp waves” it's a normal sleep
pattern, where you will see a delta wave with a very high amplitude and often look very
sharp.
These are the first 3 signs that a patient is sleeping. Throughout the cycle, you will see
many other different sleep patterns that will change during each stage.

Participant 2:
Answer...There will be Wertex in central midtline.

Participant 3:
No technician/me should be able to spot this

interupted/disappeared backgound/diffuse slowing consistent for more than one epoche >
pointing towards N1

Not always difficult to tell since many patients in stnadard EEG tend to shift between
drowsiness/awake state

Q9: Would a notification when the data is continuously really noisy or when the data is
constantly null be useful? (For example when there is a false positive in the impedance reading
due to the hairs.)

Participant 1:
Answer:
e Yes | think that would be a great idea. Like | answer in Q7, some kind of notification

would be nice, so you can be sure the scan will be as good as possible.
| think what | would like to have doing a scan without the EEG, would first be some kind
of check list before the scan begin, to make sure my starting point is right. Then | would
like some kind of visual “real time” picture of the impedances maybe in red/green color,
so | always know the connection is fine. Then | think the idea of a progression bar would
be nice, also with colors. Where | can see if the date have been too noisy and maybe if it
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could show me if the patient is sleeping could be cool too.
Then some kind of notification if the data is bad will be very useful to, in that case you
can have some kind of “check list” ready, to go throw to solve the problem.

Participant 2:
Answer... | don’t understand the question.

Participant 3:
| am not sure if you mean during recording or describing

During recording and describing af visual signal would be useful
Not an audio signal, see answer Q7
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E Further interviews with non-expert
operators

Interview on EEG quality assessment with non-experts

Q1: What do you think is the quality of the data you took? How much a doctor can understand
from the data you took?

Answer...

Participant 1:
5
All electrodes were green. The patient was relaxed. | annotated the artifacts.

Participant 2:

4

We were in a noisy environment, we don’t have details but just the big picture of what was
happening.

Participant 3:
5
Some electrodes were yellow. The patient didn’t move.

Q2: How sure are you about the previous answer? Why? What went wrong or good?
Answer...

Participant 1:

3

a- | am not sure. | just followed the points.
b - Nothing, everything worked smoothly.

Participant 2:

2

a - Some things were assumed to be correct (impedance, gelling...) but no other information is
given, | do not know about EEG.

b - Nothing went wrong. It was quick, all green things fast. It was not easy to relax if someone
tells you to relax, because relaxing is abstract and personal.

Participant 3:

1

a- | have no idea of the data. | did not have any information about it. The user didn’t move but
some electrodes were yellow. | don’t know how much it can affect.

b- Some electrodes were yellow
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Q3: What would give you a better understanding of the quality of the recording? (E.g. someone
tells you the final quality; or someone tells you each time something is going wrong; or every
time you want, you can ask for the quality in that moment; other ideas...)

Answer...
Participant 1:
At the end (or also during the scan) a doctor tells me how good the data is.

Participant 2:
A professional tells me what the quality is.
A list of important priorities.

Participant 3:
Yes, if someone tells me the quality of course | can know how good the scan was. No | don’t
want any other information.

Q4: Knowing that the important aspect of a scan is to collect 20 minutes of good quality data, do
you think it would help to have a bar that tells you how long it is of good quality? Why?

(Note: Green means: in this period the quality was good; yellow means: quality was enough; red
means that the quality was not enough)

Resting time Resting time

. "

—_— ——’

Hyperventilation Photic stimulation

Answer...
Participant 1:
Yes, perfect! With a clock that says how much time | miss.

Participant 2:
Yes, it would be very nice.
Do we need something more? No.

Participant 3:
Yes with this | would easily assess the quality, and understand if | have to take more data



Q4: Would help you to have a visualization of why the quality is bad and from where the
problems come, like in the example below?

(Note: Green means: in this area the user is not creating artifacts; yellow means: quality is
enough; red means that the quality is not enough because of artifacts created in this area)

92% 92%

Answer...
Participant 1:
| think it is great. | can understand where is the problem from

Participant 2:
No | think it is confusing, | do not understand. As said before | think the bar is enough

Participant 3:
Yes it can help but | would prefer to follow the list without this.
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Protocol for Filadelfia Scans

F Protocol used for data recording

Set the environment up (connections of the electrodes to Natus, splitter...);

Make the participant sign the consent form;

Explain the procedure:

o lying on the bed for the resting state;

o artefacts (eye movements, head movements) plus arithmetic exercise;

o electrode pops by touching the head;

Gel the participant up;
Start the recording: name the file “FIL_XX.edf” with “XX” the user_id given by

BrainCapture;

e Protocol:

Task Starting time Duration Notes

Resting State - Eyes | 0:30 10 min At the beginning of

closed, just lie and the task, open and

relax close the eyes slowly
for 5 times.

Eyes Open 10:30 1 min Keep the gaze on a
fixed point

Eyes Blink 11:30 30 sec Don’t force the blink,
just open/close
without forcing

Lateral Eye 12:30 30 sec Keep the head

movements straight and move
only the eyes

Lateral Head 13:30 30 sec Keep the body

Movement straight. Move the
eyes with the head

Chewing 14:30 30 sec Without clenching too
hard

Jaw Clenching 15:30 30 sec Keep teeth in contact
and clench/release
the jaw

Shivering 16:30 30 sec Make many and




small fast movements
with the body

Eyes opened 17:30 2 min

Eyes Blink 20:30 30 sec Don’t force the blink,
just open/close
without forcing

Lateral Eye 21:30 30 sec Keep the head

movements straight and move
only the eyes

Lateral Head 22:30 30 sec Keep the body

Movement straight. Move the
eyes with the head

Chewing 23:30 30 sec Without clenching too
hard

Jaw Clenching 24:30 30 sec Keep teeth in contact
and clench/release
the jaw

Shivering 25:30 30 sec Make many and
small fast movements
with the body

Eyes closed 26:30 2 min In the meanwhile,
explain the next
exercise

Mental arithmetic* 28:30 2 min Perform a focusing

task. Keep your eyes
closed.
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Electrode pops**

30:30

4 min

Touch/move/remove
some electrodes.

*In the mental arithmetic task, the participant is asked to count down mentally, starting from 200,
by steps of 7; (i.e. 200, 193, 186, 179, 172, 165, 158...) and to notify the technician when
he/she finishes. If the track is lost, start again from 200. Stop the participant after 2 min. N.B. the
participant has to count mentally and with the eyes closed, without speaking.

**Electrode pop task consists in touching or moving or removing an electrode to study certain
types of noise in the channels. In particular: gently move/touch in order “FP1”, “P3” and “P8”
each for 5 sec, then wait for 1 min; then pull/remove in order “F4” and “T7” and wait for 1 min.
Finally, touch “REF” for 5 sec, wait 1 min, then pull/remove “REF” and wait for 1 min.

Save the file as “FIL_XX.edf” where “XX” is the user_id given by BrainCapture.
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