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Abstract

The foreseen adoption of millimeter-wave (mmWave) communication systems in
our everyday life has increased the research interest on using this technology for
sensing applications. Previous work has shown that the reflections of the signals
transmitted by a mmWave device can be used to localize objects or people in the
environment and analyze their movement. Higher carrier frequencies, with their
large bandwidth availability are key to obtain better spatial resolution, effectively
allowing the usage of dedicated mmWave radar devices for the fine-grained analysis
of human gaits. This is of particular interest in bio-mechanical motion tracking
systems used in clinical and rehabilitation contexts, which are typically based
on expensive and impractical marker-based devices. In this work we design and
implement a deep-learning framework for mmWave radar-based motion tracking of
human gait, which can reconstruct the position of a set of key points on the human
body from the raw radar signal during motion. The proposed system extracts
point clouds representing the moving subject, making use of signal processing and
tracking techniques to remove noise from static objects and interference. Then,
we adapt a state-of-the-art Neural Network (NN) for point clouds, Pointnet++,
to our sparse and noisy radar data and propose a modification of the architecture
to exploit the temporal correlation of radar point clouds. The results obtained
on our own dataset show promising results despite the technical limitations of the
motion tracking system used as a ground truth to train the proposed NN. Our
system can reconstruct the position of 30 markers placed on the subject’s body
with an average accuracy of 17 cm, paving the road for future work on mmWave
markerless motion tracking based on a larger and more diverse set of measurements.
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Sommario

L’introduzione su larga scala di dispositivi di comunicazione a onde millimetriche
(mmWave) ha portato a un rinnovato interesse per le applicazioni che sfruttano
questa tecnologia per attività di monitoraggio dell’ambiente circostante (sensing).
Diversi studi hanno dimostrato che le riflessioni dei segnali trasmessi da questi
dispositivi possono essere usate per localizzare oggetti o persone e analizzarne i
movimenti. La maggiore disponibilità di banda, grazie all’utilizzo di frequenze
più elevate, ha permesso la realizzazione di dispositivi radar a onde millimetriche
in grado di analizzare nel dettaglio il movimento delle articolazioni delle persone.
Ciò può risultare particolarmente utile in contesti clinici e riabilitativi, dove at-
tualmente vengono utilizzati sistemi di tracciamento con marker, molto più cos-
tosi e di scarsa praticità. In questo progetto è stato sviluppato e implementato
un framework di deep learning per individuare e tracciare alcuni punti specifici
delle articolazioni, a partire dai dati grezzi ottenuti da radar a onde millimetriche
su persone in movimento. Il sistema proposto è in grado di estrarre una nuvola
di punti corrispondente al soggetto in movimento, utilizzando tecniche di elabo-
razione del segnale e tracciamento per rimuovere il rumore introdotto da oggetti
statici e interferenze. Quindi, una versione modificata della rete neurale Point-
net++, attualmente fra le reti stato dell’arte per nuvole di punti, è stata usata
sui dati grezzi prodotti dal radar, che presentano una bassa densità ed elevata
presenza di rumore. La rete neurale proposta, inoltre, è in grado di sfruttare an-
che l’evoluzione temporale delle nuvole di punti. I risultati ottenuti su un dataset
reale, raccolto come parte di questo lavoro, sono promettenti, nonostante le lim-
itazioni dell’equipaggiamento utilizzato per il tracciamento dei marker, necessari
per l’allenamento della rete neurale. Il modello di deep learning proposto è in grado
di ricostruire la posizione di 30 marker con un’accuratezza di 17cm, dimostrando
le potenzialità di un sistema di tracciamento senza marker, possibilmente basato
su misurazioni più complete e diversificate.
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1
Introduction

Many times in history technologies developed for a specific task have been reused,
adapted and transformed to apply them to new problems, often yielding unexpect-
edly good results. What is considered a source of errors or a disturbance for a
certain goal can sometimes be exploited in a new environment enabling unforeseen
applications. In wireless communications, multiple copies of the transmitted sig-
nal arrive at the receiver delayed, shifted in frequency and attenuated due to the
multipath effect. This phenomenon is caused by the objects in the environment
that reflect the transmitted signal in multiple directions, including towards the
receiver. This, in general, results in a disturbance from the communication stand-
point, as some processing is required at the receiver side to recognize the received
signals. However, using some appropriate processing, useful information on the
location, movement and nature of the reflecting objects can be recovered from the
multipath effect. This is the underlying principle of Radar devices, which can be
even exploited to created an accurate map of the environment.

The recent advancement in telecommunications towards transmissions with
higher frequency to increase the capacity of a transmission also allowed to reach
much more precise localization of the objects. This is due to the large available
bandwidth used, e.g., in mmWave systems, such as 5G-NR. The localization accu-
racy can reach a few centimeters with a few GigaHertz of bandwidth (see Ch. 2).
This increase in resolution allowed this technology to be used in many more appli-

1



cations, effectively giving birth in the last few years to the field of radio sensing.
Some examples include the automotive industry, where radars can be used to rec-
ognize objects and pedestrians and their activity for both assisted and self driving
cars, the security sector for intrusion detection or monitoring of crowds, human
computer interaction and the healthcare field to recognize mobility problems in
their initial phases, or to follow physical rehabilitations. In this thesis we focus
on the latter application, exploring the possibility of using mmWave radar sensing
to replace existing marker-based motion tracking systems. These are typically ex-
pensive and require rooms equipped with multiple fixed cameras. Moreover they
operate by tracking the position of markers placed on the body of the patient,
usually directly on the skin, which may prove challenging with special patients
(e.g. children) and in general may be uncomfortable. Different technologies can
be used to extract this spatial information, including cameras, Light Detection
And Ranging (LIDAR) and motion tracking setups. The choice of a radar system,
however, has many advantages with respect to the aforementioned alternatives:
it is relatively cheap, it does not require specific environments and calibration
procedures and in fact could be considered as a portable device, it is not affected
by lighting conditions, no device needs to be worn by the subject and no personal
data is collected. At the same time, developing a radar-based motion tracking
system is extremely challenging: (i) the reflected signals are heavily influenced by
noise and unwanted reflections by external sources which can degrade the results,
(ii) the accuracy of the spatial information on the reflectors is not on par with
LIDAR-based devices and (iii) the required accuracy on the localization of the
body parts is very high, i.e., in the order of a few millimeters.

This thesis has been developed as the initial part of a collaboration between the
Signet and the BioMovLab groups at the University of Padua. One of the main
goals is the reconstruction of the spatial position of some key points of the human
body, in particular related to the movements of lower limbs during gait. This set of
points is defined by the IOR-GATE protocol [1] and is tracked with a marker-based
motion tracking system. Contrary to the majority of the current research on this
topic that tries to identify only the joints, here the final objective is to reach a very
fine precision, as some of the markers are only a few centimeters apart from each
other. The current work does not achieve the desired results yet, also due to a lack
of data, as there are no currently publicly available datasets that use the same
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protocol. Moreover, because of the technical limitations of our motion capture
system and the time constraints, our own dataset was not sufficiently large and
diversified. Indeed the majority of the research in this field is still based on dataset
either computed synthetically from 3D meshes or with more advanced hardware
that generate much more dense and uniform point clouds that would not perform
as well in a real scenario. Despite these limitations, the present work showed the
great potential of mmWave radars for motion tracking when paired with powerful
deep learning models.

1.1 Radar and Marker Data Processing and Reconstruction

The collection and initial processing of the data requires configuring the radar
with the appropriate parameters to obtain the resolution necessary to track a
person. After the acquisition, the resulting point clouds are processed to identify
the set of points belonging to the subject and remove the noise introduced by other
objects and sources of interference. This is achieved by using both signal processing
techniques and tracking algorithms. Once most of the noise has also been removed,
the point clouds are matched in time with the respective markers from the motion
capture system to obtain a synchronized set of data. The resulting dataset is then
used to train a Neural Network model with the goal of reconstructing the position
of the markers from the corresponding point cloud. We propose an adaptation
of a state-of-the-art architecture for point clouds, Pointnet++ [2], to sparse and
noisy data and a modification to exploit the temporal correlation of the radar
point clouds. The contributions of this thesis can be summarized as follows:

1. the development of an algorithm to match two time sequences of point clouds
with variable numbers of points. The algorithm is also able to exploit pos-
sible differences in time intervals (i.e. the frequency at which the data is
captured);

2. the definition of a complete pipeline to enable end-to-end training of deep
learning models from raw mmWave radar data. This includes also the ma-
nipulation in time and space of the point clouds to apply data augmentation;

3. the adaptation of an advanced neural network, Pointnet++, to perform bet-
ter with sparse and noisy point clouds and its modification with the addition
of a Recurrent Neural Network (RNN) to exploit the temporal correlation
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of point clouds in a time sequence. Moreover, the network is adapted so
that its objective is general and customizable beyond pure classification nor
semantic segmentation (see Sec. 3.2 and Sec. 4.3.2), allowing the reconstruc-
tion of arbitrary spatial points. Finally a semi-supervised training approach
is introduced to speed up convergence.

The structure of the thesis is as follows. In Ch. 2 an introduction to Frequency
Modulated Continuous Wave (FMCW) radar devices is presented, along with the
related theoretical background. The principles of Multiple Input Multiple Output
(MIMO) radars are also summarized. Ch. 3 provides and overview of neural net-
works: the main concepts are introduced, with a focus on the main elements of
interest for this project, including the Convolutional Neural Network (CNN) and
the Recurrent Neural Network. In Ch. 4 the processing pipeline of the data and
the structure of the proposed neural network are described in details. A descrip-
tion of the algorithms used and the new ones developed is also present. Ch. 5
presents the results obtained by the processing pipeline step-by-step, along with
the final evaluation of the Neural Network. In Ch. 6 conclusions are drawn and
possible future advancements are briefly introduced.

1.2 State of the Art

For a complete and recent review of the current research in human joints esti-
mation with point clouds, [3] provides details related to the different possible
methodologies that can be exploited to tackle this task, including templates, fea-
tures and machine learning approaches. In [4] instead the authors focus mainly on
the advancements in neural networks for point clouds datasets. In this section, we
will not go into the details of the different approaches already present in the liter-
ature, but only give a short overview of some interesting and advanced researches.
In [5] the authors use a CNN to perform skeleton estimation with a mmWave
FMCW radar by converting the 3D spatial coordinates of the point clouds to 2D
heatmaps. This technique however is limited to a specific input resolution and
mapping between coordinates and pixels, and does not fully exploit the positions
of the points, as the mapping reduces the precision. Moreover the time depen-
dance of subsequent point clouds is not exploited. In [6] the time correlation of
the sequences is used with specially crafted CNNs that are applied on the planar
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decomposition of the 4D input data (3 dimensions for space and 1 for time) in
two 3D elements. The authors use a FMCW mmWave radar, but they obtain the
position of the target joints with a camera system synchronized with a Network
Time Protocol (NTP). Related to the use of Pointnet++, and its adaptation to
time sequences, [7] introduces the concept of PointRNN which consists of a RNN
that includes the feature extraction technique of Pointnet++. This is certainly an
interesting architecture, but it is tailored for point cloud future prediction rather
than key point localization.
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2
Overview of Mmwave Radar Devices

This chapter includes an overview of Radio Detection And Ranging (RADAR)
devices and their main characteristics. The analysis will focus on a subset of
features, the most important ones for the scope of this thesis, and in particular the
aspects that have a real impact for an application of human sensing and detection.
In Sec. 2.1 the main hardware components of the radar are briefly introduced, while
in Sec. 2.2 one specific type of radar, the FMCW radar is introduced. In Sec. 2.3
formulas for both range and velocity estimation and resolution will be derived
and in Sec. 2.4 the concept of MIMO radars will be presented. An analysis on
the estimation and range of the angle of arrival is also included to present all the
necessary components to obtain the spatial 3D position of an object as seen by
the radar.

2.1 Introduction to Radar Technology

Radars are electronic devices capable of emitting Electromagnetic (EM) signals
which can be either reflected or scattered by one or multiple targets, depending
on their surface, respectively smooth or rough. The difference between the trans-
mitted and the received signals is used to compute properties of interest of the
targets, including their position and velocity.

A radar usually consists of five main modules:
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• a transmitter that generates the EM waves;

• an antenna that introduces the EM waves into the propagation medium,
usually the atmosphere;

• a receiver that performs mixing on the reflected EM signals and includes
an Analog to Digital Converter (ADC);

• a circulator or switch that connects both the transmitter and the receiver
to the antenna and provides mutual isolation;

• a signal processor that further processes the digital signal to collect the
measurements and, possibly, perform the detection of the targets.

The received signals are subject to four different forms of interference: electronic
noise, Electromagnetic Interference (EMI) from other sources, both unintentional
and intentional (jamming) and reflections from objects different from the intended
target [8].

Radars can be classified according to the positioning of their Transmit (TX)
and Receive (RX) antennas, either on the same device or separated, and to the
modulation of the signal they transmit. Regarding the modulation, the most
widely used radar type for sensing applications is the FMCW radar.

2.2 FWCM Radars

FMCW radars transmit signals called chirps. A chirp is a trigonometric function,
usually a sinusoid, whose frequency increases linearly with time. A chirp is char-
acterized by a start frequency fc, bandwidth B and duration Tc. The slope of the
chirp S is computed as:

S =
B

Tc

. (2.1)

The frequency at any given time can thus be computed as:

f(t) = fc +
B

Tc

t = fc + St. (2.2)

The transmission of a sequence of N equally spaced chirps in time is called
frame. Each frame is then associated to a single static capture of the environment
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Figure 2.1: Visualization of a transmission with chirps.

at time t. To capture the evolution in time of the environment, multiple frames
can be repeated with time Tframe and thus form the sawtooth pattern in Fig. 2.1
in the time-frequency domain.

The received signals from the target objects are mixed with the original ones
with the formula [9]

xif = xTXxRX =

(
ATX · ARX

2

)
cos[2π(fTX − fRX)t+ (ϕTX − ϕRX)], (2.3)

with xTX = ATX cos(2πfTXt+ ϕTX)

xRX = ARX cos(2πfRXt+ ϕRX)

to obtain the Intermediate Frequency (IF) signals, also known as beat signals. The
mixer, as depicted in Fig 2.2, includes a Low Pass (LP) filter so equation 2.3 does
not include the summation term in the trigonometric formula for the product of
cosines

cos(α) cos(β) = (cos(α + β) + cos(α− β)) /2. (2.4)

2.3 Information Content in Radar Signals

Different quantities of interest can be obtained from FMCW radars: from the
frequency of IF signals we can obtain the radial distance of an object, while from
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Figure 2.2: Block diagram of a mixer. Adapted from [10].

the phase we can derive its Doppler velocity.

2.3.1 Range Estimation and Resolution

The time it takes a transmitted signal to reach a target object at distance r and
be reflected back is [11]

τ =
2r

c
= ∆f

Tc

B
, (2.5)

which is the Round Trip Time (RTT) for a given distance r, assuming that the
velocity of propagation, c, is the speed of light. It follows that

r =
τ

2
c = ∆f

Tc

2B
c. (2.6)

Given the formula for an IF signal as in Eq. 2.3 we can apply a 2D Discrete Fourier
Transform (DFT) on the IF signal in time domain and obtain the same result as
in 2.5 that the frequency of a IF signal is [12]

∆f = S
2r

c
= Sτ. (2.7)
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In particular we can see that the frequency depends only on the distance and does
not allow to distinguish objects that occupy spatially distinct positions but at the
same radial distance from the radar. In fact, this DFT generates a peak for each
value of r where a target is detected and is thus called range-DFT.

The maximum distance that can be correctly identified by the radar, rmax,
determines a maximum IF frequency of (Eq. 2.7)

∆fmax =
S2rmax

c
(2.8)

and therefore if the ADC on the radar has a fixed sampling rate Fs, for the
Nyquist-Shannon theorem [13], to avoid aliasing it is necessary that Fs > ∆fmax

and thus
rmax =

Fsc

2S
. (2.9)

On the other hand, the minimum distance that allows a radar to distinguish
two near objects as independent is called range resolution and it is a parameter to
optimize, according to the type of sensing application involved. For the properties
of the DFT, the minimum distance for two objects to appear as independent
peaks in the range-DFT is for them to have a difference in frequency ∆f > 1/Tc.
Substituting Eq. 2.7 we obtain [11]

S
2∆r

c
>

1

Tc

(2.10)

∆r >
c

2STc

(2.11)

∆r >
c

2B
(2.12)

which implies that the range resolution depends only on the bandwidth. This is
an important result as it decouples the dependency of the range resolution to the
carrier frequency and allows to reach very high accuracy as long as a sufficient
bandwidth is available. As a direct consequence the designer of a FMCW radar is
free to choose the carrier frequency of choice depending on other constraints, for
example the bandwidth availability or desired accuracy on the Doppler velocity.
Currently, a lot of communication devices operate with frequencies below 6 GHz, so
a mmWave radar that operates at more than 60 GHz can exploit more bandwidth
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availability.

2.3.2 Velocity Estimation and Resolution

To distinguish two objects at the same radial distance we can not rely only on the
frequency of the IF signals, but we can analyze their phase to obtain their Doppler
velocities. In fact, a small displacement of an object will result in a evident change
in the phase of its IF signal, due to the small-scale Doppler effect induced by the
movement of the object. This takes the name of µ-Doppler effect.

For an object at distance r the phase is defined as

ϕ =
4πr

λ
(2.13)

and in particular the phase difference between two subsequent chirps is

∆ϕ =
4π∆r

λ
=

4πvTc

λ
= ω (2.14)

from which we can compute
v =

λω

4πTc

. (2.15)

Eq. 2.15 gives the Doppler velocity provided that we know that the two IF signals
we are considering come from the same object. In the general case where we receive
multiple reflected signals, to be able to distinguish the different reflectors, we need
to transmit a repetition of chirps equally spaced, i.e. a frame. We then apply a
range-DFT to each one of the groups of IF signals associated to a chirp and obtain
a matrix that contains the peaks in range of the reflected signals. By applying a
2D DFT, called doppler-DFT, on the matrix of their phases it is then possible to
distinguish the different targets at the same range and their velocities as seen in
Fig. 2.3.

To obtain an unambiguous value for the velocity, i.e., to distinguish when the
target is moving towards or away from the radar, we must assume that

|ω| < π (2.16)

and from Eq. 2.15 we obtain the maximum measurable velocity by a FMCW radar
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Figure 2.3: 2D Doppler‐DFT of IF signals.

[12]
vmax =

λ

4Tc

. (2.17)

For the properties of the Fourier transform a DFT is able to separate two frequen-
cies ω1 and ω2 if

|ω1 − ω2| >
2π

N
(2.18)

where N is the number of bins used for the DFT. From Eq. 2.18 and Eq. 2.14 we
obtain the velocity resolution

vres =
λ

2Tf

=
λ

2NTc

(2.19)

where Tf is the length of a frame, and N the number of chirps in a frame.

2.4 MIMO

A FMCW radar with a single antenna to transmit and receive is able to determine
only the distance and the velocity of a target object. To compute its spatial
location it is necessary to know also the Angle of Arrival (AoA) of the received
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Figure 2.4: AoA estimation in a SIMO radar.

signals, both in elevation and azimuth. This can be achieved by using multiple
antennas spaced apart on the radar.

Two main configurations can be set up for a multi antenna configuration:

• Single Input Multiple Output (SIMO) refers to a radar with a single TX
antenna and multiple RX antennas. The angle resolution depends directly
on the number of RX antennas: a higher number of antennas results in a
better resolution. Each RX antenna must have however its own independent
hardware processing chain and this poses some limits in terms of efficiency
and scalability.

• Multiple Input Multiple Output (MIMO) refers to a radar with mul-
tiple TX antenna and multiple RX antennas. The main advantage of this
configuration is that, given NTX TX antennas and NRX RX antennas, its
angle resolution is equivalent to the angle resolution of a SIMO radar with
NTX ×NRX antennas, but requires less hardware.

2.4.1 Angle of Arrival Estimation

In this section we will analyze a SIMO radar with two RX antennas, but these
considerations can be easily applied also to any number of RX antennas.

If the TX antenna transmits a signal, it will be received by both the RX an-
tennas, but the distance that the RX signal will have to travel will depend on
the location of the antennas. Fig 2.4 shows that the additional length that the
signal needs to travel to reach the second RX antenna is, thanks to the far-field
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approximation,
∆r = d sin(θ) (2.20)

where d is the distance between the two RX antennas and θ is the angle of arrival.
From Eq. 2.20 and 2.14 we can easily obtain θ

θ = sin−1

(
∆r

d

)
= sin−1

(
ωλ

2πd

)
(2.21)

where we can note that it differs by a factor 2 from Eq. 2.14 because here only the
RX signal has to travel the additional ∆r distance. In this case, from Eq. 2.16
we obtain the maximum angle that the radar can estimate, called Field of View
(FOV)

θmax = ± sin−1

(
λ

2d

)
= ±90 (2.22)

which is obtained when the distance between the RX antennas is d = λ/2.
Similarly to the doppler-DFT we can apply a DFT on the 2D peaks of the

doppler-DFT to distinguish objects with equal range and velocity, but different
Angle of Arrival as seen by the two RX antennas. This procedure is called angle-
DFT.

To compute the angular resolution we look at two object with AoA θ and θ+∆θ,
the phase difference from Eq. 2.14 and 2.20 is

∆ω =
2π∆d

λ
=

2πd

λ
(sin (θ +∆θ)− sin (θ)) (2.23)

≈ 2πd

λ
cos (θ)∆θ

as δ
δθ
sin (θ) = cos (θ). For the properties of the Fourier transform we have

∆θ >
2π

N
(2.24)

2πd

λ
cos (θ)∆θ >

2π

N

∆θ >
λ

Nd cos (θ)

which implies that the angle resolution depends on the Angle of Arrival, and in
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Figure 2.5:MIMO configuration in a radar.

particular is at its maximum with θ = 0 and thus

θres =
λ

Nd
(2.25)

=
2

N
with d =

λ

2

where N is the number of RX antennas.

2.4.2 Principles of MIMO Radars

From the previous section we obtained that the resolution on the AoA depends on
the number of RX antennas, but adding more antennas has important drawbacks,
as discussed earlier.

We now assume that we have a MIMO radar with 2 TX antennas and 4 RX
antennas and that the RX antennas are spaced apart by a distance d such that
the difference in phase at each RX antenna is a multiple of ω, as depicted in
Fig. 2.5. If the second TX antenna is at a distance 4d from the first antenna, the
transmission signal will have to travel an additional 4d sin(θ) according to Eq. 2.20
which results in a total phase difference at the receiver antennas of 4ω more than
with respect to the one seen from the first TX antenna. This is the same result
that we would have obtained if we had a total of 8 RX antennas in a SIMO radar,
but only a single TX antenna was added.

In general, we say that a MIMO radar with NTX TX antennas and NRX RX
antennas properly positioned, generates a virtual array of NTX × NRX virtual
antennas. By applying the same concept also to the elevation we can obtain a 2D
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virtual array as in Fig. 2.6.

2.4.3 Multiplexing

In MIMO radars the same RX antennas need to process the signals from different
TX antennas, and to do so they need to be able to distinguish the reflected signals
according to the TX antenna that sent them. There are multiple ways to achieve
this, and they usually belong to the category of multiplexing techniques, which
are widely adopted also in telecommunication technologies, such as in cellular net-
works. The property that allows signals to be distinguished is their orthogonality
and it can be achieved in three different ways:

• Time Division Multiplexing (TDM) achieves orthogonality in the time
domain: each transmitted frame is divided in blocks, and each block cor-
responds to a chirp transmitted in sequence, one at a time, by each TX
antenna. This technique, however, does not take full advantage of all the
transmission capabilities of the device, as only a single TX antenna is active
at any given time.

• Frequency Division Multiplexing (FDM) achieves orthogonality in the
frequency domain by transmitting the same chirp with all TX antennas that
operate at different sub-bands so that they do not overlap. Contrary to
TDM, here we transmit with all the TX antennas at the same time, but the
available bandwidth is split among them.

17



• Code Division Multiplexing (CDM) achieves orthogonality thanks to
the encoding of the signals themselves that make them orthogonal to each
other. This allows to transmit at the same time with all TX antennas and
occupy the full bandwidth, but requires some additional processing at the
receiver.
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3
Introduction to Neural Networks

This chapter provides an introduction to Artificial Neural Network (ANN), some-
times referred to as just Neural Network (NN), both as a general architecture and
more in details for the components that have been used in this project. Sec. 3.1
will present the main concepts of Neural Networks and in Sec. 3.2 different learning
paradigms will be introduced with a focus on their principal use cases. Sec. 3.3 will
introduce the loss functions typically used in ANN and in particular those used in
this project, while in Sec. 3.4 and Sec. 3.5 a short introduction to the optimization
of the training procedure and to some well known problems and solutions linked
to it are available. Finally Sec. 3.6 and Sec. 3.7 present two architectures of NN,
the convolutional and recurrent NN respectively.

3.1 Neural Networks

In the last decade Artificial Neural Networks have seen a sharp increase in adop-
tion and development in many different sectors ranging from healthcare [14] to
agriculture [15], to surveillance [16] thanks to their flexibility and easiness of im-
plementation.

Historically we may consider as the first example of ANN the perceptron. The
perceptron was initially developed as a binary classifier that could be taught to
approximate a binary function. The teaching procedure involves providing both
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the input and the output real values of the function to the perceptron, which
would internally try to predict the output and adjust its knowledge if the result
was wrong. By repeating this step with different input values the perceptron learns
an approximation of the target function. Assuming that the target function is the
sign function, given as input a set of real values x ∈ Rn, and the corresponding set
of signs y ∈ {0, 1}, the objective of the perceptron is to find a vector of weights w
and a constant term, called bias, b such that for every tuple (xi, yi), it holds that
sign(wixi + b) = yi or formally

sign(⟨w,x⟩+ b) = y (3.1)

The algorithm works with an iterative procedure that updates the vector of weights
and the bias whenever an input element is misclassified. It can be proved that
if the input set is linearly separable the perceptron converges to a perfect binary
classifier [17]. Neural Networks are an extension of this algorithm as in principle
they are able to approximate any generic function, not only binary functions.

We can define Neural Networks at a fundamental level as weighted graphs G =

{N,E} where each node, called neuron, is connected to the other nodes with
weighted edges. Each neuron receives in input a value x, weighted according to
the input edges Ein, and with a bias b added. The output value of the neuron is
obtained by applying a non-linear function σ(·), called activation function, to the
input value.

y = σ

(∑
e∈Ein

wex+ b

)
(3.2)

It should be noted that in the literature the bias may be collapsed in the vector
of weights: in this case it usually correspond to the value w0 which is always
associated to an input value x0 = 1. This notation will be used from here on.
Formally a Neural Network is thus determined by the triplet (V,E, σ), which is
called the architecture of the network. Contrary to the initial implementation
of the perceptron, the activation function in Neural Networks is not the sign
function, nor is it usually linear; if a linear function were used, for the linearity
of the function itself, the whole network would behave as a single perceptron,
thus eliminating the flexibility that non linearity introduces in the architecture
according to the Universal approximation theorem [18].
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Figure 3.1: Graph structure of a feedforward Neural Network.

The activation functions that are most commonly used are the sigmoid σ(z) =

1/ (1 + e−z), the hyperbolic tangent σ(z) = tanh(z) and the Rectified Linear Unit
(ReLU) σ(z) = max(0, z).

The simplest form of ANN is called Feedforward Neural Network (FFNN) and
its architecture is a directed acyclic graph with possibly different choices for the
activation function. To visualize the structure of a FFNN as in Fig. 3.1 we say
that the neurons are organized in layers, which are nonempty disjoint subsets of
nodes Nt such that every edge in E connects some node from layer Nt−1 to Nt and∪T

t=1 Nt = N . If all the nodes of layer Nt are connected to all the nodes of layer
Nt+1 ∀t ∈ T the network is said to be fully connected. The output of each node j

at layer t+ 1 can thus be computed as [17]

yt+1,j = σ

 ∑
i:(nt,i,nt+1,j)∈E

w ((nt,i, nt+1,j)) yt,i + bt

 (3.3)

which is the activation function applied to the weighted sum of the outputs of the
neurons at layer t.

The layer N0 is called input layer, the layer NT is called output layer, and all
layers N1, ..., Nt−1 are called hidden layers. When a network has more that 5 or 6
layers they are usually called deep networks.
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3.2 Supervised, Unsupervised, Reinforcement Learning

As in the case of the perceptron, a Neural Network learns by comparing its pre-
diction with the expected result and by updating the values of the weights and
bias whenever its prediction is wrong. In Sec. 3.4 the training procedure will be
presented more in details, while in Sec. 3.3 the main functions used for the com-
parison will be provided, here instead we want to focus on the different goals of
the networks and on the source of the expected results.

According to the learning task, ANN can be divided in these main categories:

• In Supervised learning the input data is always provided in tuples (x, y)
where each input value is accompanied by its expected result usually referred
to as label [19]. The collection of labels is called ground truth. The network
is then trained to match the expected results as closely as possible. The
final performance of the network is usually tested with some data that was
not provided during the training procedure, to avoid the situation where
the network learns a direct mapping of the input data to its expected result
rather than a generic mapping. This problem is called overfitting.
In many cases the labels are manually generated by actual people, for ex-
ample for the task of classification of images or sounds, and this historically
lead to very bad performance of the first networks [20]. A breakthrough in
this field was the introduction of the ImageNet database [21] with its col-
lection of 3.2 million labelled images, which allowed networks to be trained
with a huge amount of data and thus obtain better results.
Networks trained with supervised learning usually have one of the following
two objectives:

– Classification or pattern recognition is the task of correctly mapping
each input data to one or more predefined labels, called classes. If there
are only two classes we call the network a binary classifier. If an input
value must be mapped to a single class it is called one-class classifier
[22], otherwise it is called multiclass classifier. The results can either
be one-hot encoded, which is a 0-1 result for each class, or a probability
density for each label.

– Regression or function approximation is the task of learning the gen-
erating function of a set of input data, or a function that approximates
it. In this case the labels are the results of the target function applied
to the input values.
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Figure 3.2: Graph structure of an autoencoder.

• In Unsupervised learning the input data does not include labels, but a
cost function is provided as a function of the input data and the predicted
result. For instance, if we want to compress an image, the cost function
may be a score of how similar the compressed image is to the original data,
for example with Peak-Signal-to-Noise Ratio (PSNR) or Structural Similar
Index Measure (SSIM) [23].
As already anticipated, unsupervised learning is mainly used in estimation
problems and its main goal include clustering, dimensionality reduction (as
in compression or denoising), pattern recognition (as in anomaly detection).
One such architecture, the autoencoder [24], has gained popularity especially
in image compression and upsampling [25] and has been implemented also
in the video game industry [26, 27]. As seen in Fig. 3.2 it consists of two
main components: an encoder and a decoder. The encoder performs a di-
mensionality reduction on the input data and gives in output a vector called
code that will be the input to the decoder. The decoder then performs an
upscale of the code to reconstruct the original data. The versatility of this
architecture originates from the possibility of using the standalone encoder
for compression, the standalone decoder for upsampling or the full network
for denoising.

• Semi-supervised learning is a technique that allows to train a network
with a part of labelled input data and a part of data without label. It has
the advantage of combining the effective learning of precise labelled data
combined with the abundance and variability of unlabelled data [28].

• Reinforcement learning is a paradigm in which a Neural Network, called
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Figure 3.3: Graph structure of a GAN.

agent, tries to maximize a reward. The agent interacts with an environment
through a set of actions that depend on the state of the agent and that may
lead, depending on the state, to an immediate reward, but also influence
future rewards. The agent starts with no prior knowledge of the environment
and its task is to obtain the maximum cumulative reward by balancing the
exploration of new actions and the exploitation of the current knowledge.
This type of ANN resembles the core logic of many games and has been
proved to be able to play and beat some of them, including against human
beings [29]. On the other hand this type of network is a key component also
for autonomous systems, both for self driving cars and industrial processes
[30].

To conclude this section we briefly introduce one final architecture that was ini-
tially developed to help training unsupervised networks, but was later extended
also to supervised learning [31], semi-supervised learning [32] and reinforcement
learning [33]: the Generative Adversarial Network (GAN) [34]. A GAN is com-
posed of two different networks that compete in a game where the gain of one
network is the loss of the other, which is a zero-sum game. As depicted in Fig. 3.3
one network, the generator, creates new input data from a latent space from which
also the real input data can be generated, while the other network, the discrimi-
nator, is given as input either a real input data or a fake data generated by the
generator and needs to distinguish between real and fake. The generator has no
knowledge of the input dataset and its weights are updated whenever the discrim-
inator correctly identifies the data, while the discriminator is updated whenever
it fails.

This network is particularly important, because it showed impressive results in
the generation of synthetic portraits and reinforced the concerns related to the
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importance of privacy for visual images, one of the key aspects of the work behind
this thesis [35].

3.3 Loss Function

We have seen in the previous sections that an ANN learns by comparing its pre-
diction with predefined values (labels) and updating their weights accordingly. In
Sec. 3.4 we will see how it is done, while in this section we define how to compute
the error of the prediction from the label.

The function used to evaluate a candidate is called objective function and we
may want to either maximize or minimize it. Usually we want to compute the
error of the prediction, so we want to minimize it and we call it loss function or
simply loss.

In general the most used losses are:

• Cross-entropy is commonly used for classification, whenever the output
of the network is a probability distribution and it is usually referred to as
negative log-likelihood. For multiclass classification it is called Categorical
cross-entropy and is computed as

L =
M∑
j=1

yj log (ŷj) (3.4)

where yj is the expected outcome, ŷj is the predicted output and M is the
number of classes. The cost function computed on the complete output is
thus

C =
1

N

N∑
i=1

M∑
j=1

yij log (ŷij) (3.5)

with N the number of data samples.

• Mean Squared Error (MSE) is usually used for regression tasks and its
loss function, as the name implies is:

L = (yi − ŷi)
2 (3.6)

with the cost function defined as

C =
1

N

N∑
i=1

(yi − ŷi)
2 (3.7)
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These loss functions, however, are not well suited for point clouds. In this case,
we need a loss that can capture how similar two set of points are in an euclidean
space; three possibilities have been explored:

• Chamfer Distance (CD) between two point sets is the average minimum
distance of all the points in a set from the other set [36].

Definition 1. (Chamfer Distance) The Chamfer Distance between two point
sets S1 and S2 is defined as:

dCD(S1, S2) =
1

|S1|
∑
x∈S1

min
y∈S2

∥x− y∥2 +
1

|S2|
∑
y∈S2

min
x∈S1

∥x− y∥2 (3.8)

• Hausdorff Distance (HD) between two point sets measures the maximum
distance between any point in one set and its nearest point in the other set.

Definition 2. (Hausdorff Distance) The Hausdorff Distance between two
point sets S1 and S2 is defined as:

dHD(S1, S2) = max (h(S1, S2), h(S2, S1)) (3.9)

with h(S1, S2) = max
x∈S1

min
y∈S2

∥x− y∥2

• Per-Point Distance (PPD) is a measure of the distance between two
ordered set of points, computed as the mean of the distance of each pair of
ordered point.

Definition 3. (Per-Point Distance) Given two sets S1 and S2 with |S1| =
|S2| = N and a distance function d, the Per-Point Distance between the sets
S1 and S2 is:

dPPD(S1, S2) =
1

N

N∑
i=1

d(S
(i)
1 , S

(i)
2 ) (3.10)

where S
(i)
1 is the i− th point in set S1.

Some examples of distance functions are:

– Squared euclidean distance The Squared Euclidean Distance be-
tween two points x and y, x, y ∈ Rn is:

d(x, y) =
n∑

i=1

(xi − yi)
2 (3.11)
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– Cosine Similarity The Cosine Distance or Cosine Similarity between
two points x and y, x, y ∈ Rn is:

d(x, y) = cos(θ) =
x · y
|x||y|

(3.12)

where θ is the angle between the vectors x and y.
– Manhattan distance The Manhattan Distance between two points x

and y, x, y ∈ Rn is:

d(x, y) =
n∑

i=1

|(xi − yi)| (3.13)

Both Chamfer and Hausdorff Distances can be used for unordered set of points
and are well suited for unsupervised learning approaches, however they can not
be used to reliably learn ordered set of points by definition. The PPD loss instead
can be used as a simple and fast way to compute different type of distance metrics
between two ordered set of points with equal cardinality.

3.4 Training and Optimization

From this section we will consider a NN trained with a supervised learning ap-
proach. Most of the concepts however are valid also for the other learning paradigms.
In theory, Neural Networks are universal approximators, which means that even
a FFNN with a single hidden layer can approximate any function [37], under
certain assumptions. In practice, however, the size of the network would grow
exponentially with the complexity of the function and be therefore impossible to
implement.

We have thus established that the architecture of a network is of fundamental
importance to approximate our target function. At the same time we have intro-
duced in Sec. 3.1 the first approach to the learning paradigm with a single layer
and the sign activation function, while in Sec. 3.3 we have seen that the correctness
of the predictions can be computed and quantified only at the output layer.

We now link everything together and analyze how we can propagate the loss
computed at the output layer to all the hidden layer of a NN, in a general approach
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independent from its architecture and activation functions, and how to update the
weights to minimize the loss.

3.4.1 Gradient Descent

In this section we assume that we want to minimize a differentiable convex objec-
tive function f(w) that depends on the weights of our networks w (bias included).
The analysis can be extended also to non-differentiable functions by using subgra-
dients [17].

Definition 4. (Gradient) The gradient of a function f : Rd → R is

∇f(w) =

(
∂f(w)

∂w1

, . . . ,
∂f(w)

∂wd

)
(3.14)

In particular we observe that in a stationary point, corresponding to a minimum,
either local or global, the gradient is a vector of zeros, while if it is computed in
any other points we obtain a vector that points in the direction of steepest ascent,
which is the largest increase of f in the region around the point. Intuitively, to
minimize the objective function, we want to move in the direction opposite to
the gradient. We can then build an iterative procedure that takes the name of
Gradient Descent (GD) or Batch Gradient Descent (BGD) as follows:

1. initialize the vector of weights w(0) with zeros, a random distribution or with
an initial guess if available

2. compute the gradient of the function with weights w(t) from its first order
Taylor approximation

f(u) ≈ f(w) + ⟨u−w,∇f(w)⟩ (3.15)

where (t) is the current time step

3. update the weights to move in the direction opposite to the gradient

w(t+1) = w(t) − η∇f(w(t)) (3.16)

where η, called learning rate, controls the length of the step and thus influ-
ences the convergence speed and the accuracy
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4. repeat step 2 and 3 until a stopping condition is met, for instance: ∇f(w(t+1)) =
0 which means the gradient is zero, a set number of iterations has been
reached, or the improvement on the solution is too small

where w(t) is the vector of weights at time step t.
GD has two main disadvantages: it updates the weights only after all the input

data has been processed, requiring a possibly large amount of time and memory,
and it converges to the first minimum that it finds, depending on the starting
weights w(0), which in the case of non-convex functions may not be the global
minimum. To solve both issues, variations of GD have been developed. The two
main variations are:

• Stochastic Gradient Descent (SGD) performs the update of the weights
for every input data, one at a time, sampled uniformly. This reduces both
the time and memory footprint, but the point-wise updates are only a noisy
estimate of the true gradient and may locally deviate from it (but they still
add up to the true gradient). This non linear behavior on the other hand
could help in avoiding local minima and can also be stabilized with the use
of other techniques such as momentum. Momentum is used to accelerate
the descent of SGD in its main direction by dampening the occasional oscil-
lations. This is done by adding a fraction γ of the update vector from the
previous time step to the current update vector [38].

ut = γut−1 + η∇f(w(t)) (3.17)

w(t+1) = w(t) − ut

where u is the update vector.

• Mini-batch Gradient Descent is a solution in the middle between GD
and SGD. It uses mini batches of input data of size k, a parameter chosen
at the beginning, and performs the update of the weights after every mini
batch. This results in a reduced time and memory usage with respect to GD
and more stable updates with respect to SGD, effectively balancing the two
solutions.

Besides Gradient Descent, other techniques are briefly presented [39]:

• Adagrad [40] uses different learning rates for each parameter and adapts
them at each time step, by increasing the update vector for parameters that
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are less frequent.

w
(t+1)
i = w

(t)
i −

η√
Gt,ii + ϵ

∇f(w(t)
i ) (3.18)

where i is the index of a parameter, t is the time step, ϵ is a smoothing
factor that avoids divisions by zero and Gt,ii is a diagonal matrix where each
diagonal element is the sum of the squares of the gradients in wi up to time
step t.

• Adadelta [41] is an extension of Adagrad that reduces its strong decrease in
learning rate and memory footprint necessary to store all the past gradients.
To do this it considers only a window of size n of the previous gradients
and does not store them directly, but keeps only a decaying average of their
squares.

• Adam or Adaptive Moment Estimation [42] keeps both a decaying average of
the squared gradients vt and a decaying average of the gradients themselves
mt, similarly to momentum. The update vector is then computed as

w(t+1) = w(t) − η√
v̂t + ϵ

m̂t (3.19)

with m̂t =
mt

1− βt
1

and v̂t =
vt

1− βt
2

with β1 and β2 parameters.

3.4.2 Forward Pass and Backpropagation

The last element that defines the training and learning procedure of a Neural
Network is the actual computation of the gradient and the propagation of the
update vectors from the output layer to the first hidden layer, according to the
contribution of the neurons in the prediction. This process consists of two steps:
forward pass and backpropagation.

Forward Pass

Forward pass is the step that follows the natural path of the network: at each
step t, for a given input data dt each neuron connected to the input layer, n0,j

30



computes its activation according to its weight and activation function and the
result is passed to the following neurons that are connected to the input layer.
Each neuron nl,j, l = 1, . . . , T of the following layer then sums all the activations
from its parent neurons with Eq. 3.3 and computes its activation and so on until
the last hidden layer is reached. The activations of the neurons in the output layer
will be the prediction of the network ŷ, but the activations of all the nodes are
needed for the backpropagation step.

Backpropagation

Once the error on the prediction has been computed with the loss function, the
weights of the neurons involved in the prediction are updated according to their
contribution. From Eq. 3.3 we know that the final activation is a function of all
the previous activations, and for the chain rule of the derivative we have that,
given f (g(x)), its derivative is df

dx
= df

dg
dg
dx

which implies that

∂L(w)

∂wl,j

=
∑
k

∂L(w)

∂ak

∂ak
∂wl,j

(3.20)

where ak is the activation at each node k. We can then compute the update
vector for each weight by starting from the last layer, where each activation is a
function of the activations of the neurons that are connected to it, and going back
recursively until we reach the first hidden layer. This procedure that in a single
sweep propagates the errors from the end to the beginning of the network is thus
called backpropagation [43].

3.5 Overfitting

The training of a Neural Network usually is not a fast and simple procedure. When
all the samples in the input dataset have been used once for training, we say that
an epoch has elapsed. Usually with Neural Networks a few hundreds of epochs are
necessary to reach convergence. This means that in practice the network will see
the same data multiple times and may learn an approximation of the data itself
rather than of the generating function. This problem is commonly referred to as
overfitting [44].
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There are multiple techniques that can be used to mitigate this problem, and
the main ones can be divided in two categories: structural stabilization and regu-
larization [45].

Structural stabilization consists in changing the architecture of the network
itself, and in particular the number of weights involved in the prediction process.
A network should be scaled according to the problem it needs to solve, if it is
simple, in the sense that it can be modelled with a small number of parameters,
a big network would probably overfit the training data. There is no universal
rule to estimate the number of parameters needed for a given problem, but a good
approach consists in performing the same training with scaled versions of the same
network to understand its behavior. The reduction in size can be achieved either
by eliminating some weights (pruning) or by sharing the same weights among
multiple layers [46].

With regularization, instead, we usually indicate the addition of constraints on
the weights of a network, usually by limiting their values. In fact small param-
eters usually lead to a more generalized model, while large weights may cause
big changes in activation functions and generate big variations in output even for
small changes in input. This may lead to problem especially in the presence of
noise in the input data. Some techniques that can be used are [47]: weight decay
[48] which applies a penalty on the value of the weights, usually by using their
L2 norm; weight elimination [49] that favours strong connections by discarding
smaller activations; dropout which randomly removes some nodes during training
[50].

Besides the optimization of the network itself, to avoid overfitting, it is possible
to act also on the input dataset to generalize the data. With data augmentation we
refer to the technique that allows to extend an input dataset by adding carefully
crafted variations of the original data. To make an example, in the case of images
of numbers, we can rotate the images, flip them, rescale the number in the image,
stretch or warp it or add noise. This will increase the data available for training
and increase the capability of the network in generalizing the problem.
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3.6 Convolutional Neural Networks

A Convolutional Neural Network (CNN) [51] is a specialized type of FFNN that
is particularly good in finding relations in 2D structures, both in a temporal (e.g.
time series) and spatial (e.g. images) sense. They saw a huge boost in popularity
after its adoption in AlexNet, a Neural Network that achieved state-of-the-art
performance in image classification [52]. The two main problems of fully-connected
FFNN that CNN solve are:

• the huge amount of weights used to connect each neuron from layer l to all
neurons in layer l + 1

• the lack of spatial dimension due to the flattening of the input data to a 1D
array.

At the core of a CNN there is the convolution, a mathematical operation that
substitutes the matrix multiplication of Eq. 3.3 and that is applied on the 2D
representation of the input data I with a filter, called kernel, K that is a matrix
of weights. The result of the convolution is then passed through an activation
function to a single neuron in the following layer. Each neuron in the following
layer is thus connected only to a subset of neurons in the previous layer, which
corresponds to the region where the kernel was applied, called receptive field. While
the size of the kernel, and thus of the receptive field, is usually small, if multiple
convolutional layers are used in sequence, the nodes in the deeper layers will still
have a large receptive field with respect to the input layer.

Differently from the convolution of signal processing, the convolution in a CNN
is defined as [43]:

S (m,n) = (K ∗ I) (m,n) =
∑
i

∑
j

I (m− i, n− j)K (i, j) (3.21)

but is in practice implemented as the cross-correlation

S ′ (m,n) = (K ⊗ I) (m,n) =
∑
i

∑
j

I (m+ i, n+ j)K (i, j) (3.22)

which differs from Eq. 3.21 for the orientation of the kernel. However this is not
a problem if we consider that all kernels will be flipped in the same way and the
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Figure 3.4: Convolution with a kernel in a CNN. Adapted from [53]

network will simply learn flipped features.
As shown in Fig. 3.4 the kernel slides on the input data according to a parameter,

the stride, that controls the length of the shift at each step. To preserve the original
dimension or to make input data compatible with the size of the kernel and the
stride, padding can be applied. The result of the sweep of a single kernel on
the input data generates a feature map. Multiple kernels then generate multiple
feature maps. If the input data is composed of multiple channels, for example
the RGB channels of an image, the result of the convolution on each channel is
summed and the generated feature map for each kernel will be again a 2D matrix.
Whenever the output of a CNN is used as input of another CNN, the feature maps
of the input are treated as channels.

Convolutional Neural Networks aim at extracting features that are invariant
to translation, deformation and scaling. For this reason they apply the following
techniques:

• the weights are shared in the same feature map, which means that to gen-
erate a feature map the same kernel is shifted across the input data. This
allows the network to be invariant to shifts as the same feature is checked
across the whole input.

• convolutions are usually followed by pooling operations [54], which take as in-
put a feature map and return a scaled version of it. The scaling is performed
by shifting on each feature map a window of configurable size that performs
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Convolution

Pooling

Figure 3.5: Graph representation of a CNN

a unidirectional mapping of the data, usually by taking the maximum or
the average of the data in the window. The length of the shift, called stride,
and the size of the windows are parameters to tune. This allows each layer
to be invariant to small scale deformation of the input data.

• multiple convolutional and pooling layers are concatenated one after the
other, so that small kernels can be used to extract small features at the first
layers and large features at the last layers, thanks to the reduction in scale
of the pooling, as shown in Fig. 3.5. This guarantees a good invariance to
translations, deformations and scaling of the input data.

3.7 Recurrent Neural Networks

A Recurrent Neural Network (RNN) is another type of advanced ANN developed
to address the lack of Neural Networks capable of exploiting events correlated in
time, or in other words, time series. This section will not go into the details of
the implementation or of the learning approach of RNN, but will just be a general
introduction. For a more in depth analysis, [55] provides all the mathematical
background.

The first written reports on recurrent networks date back to the 40s [56] while
in the 80s the first mathematical analysis appears [57, 58], but it is only with the
advent of discrete GPUs and their huge leap in performance from the mid 2010s
that it became possible to practically explore this new type of architecture. The
input of a RNN is no more a single vector, but a time series of vectors, and its
events are passed to the network in a sequential order. To learn from past inputs
the RNN keeps an internal state or context that depends on the previous inputs
and a matrix of weights that is shared for all input vectors.
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Figure 3.6: Graph representation of a RNN where x is the input, h is the state,W is the vector of weights, o is the
output, L is the loss and y is the ground truth.

The term recurrent implies that the network can be represented in a recursive
way, as depicted in Fig. 3.6, but at the same time it can also be easily unfolded in
a directed acyclic graph. This implies that backpropagation can be used also in
RNN and in particular it takes the name of backpropagation through time (BPTT).

The main problem of standard RNN is their weak long-term temporal depen-
dence, which is due to the vanishing of the gradient. With this term we refer to
the reduction in the value of the gradient that we observe when we compute it at
the end of a time sequence and we propagate it to the first vectors of the sequence,
or to the first nodes in the unfolder graph.

Long-Short Term Memory (LSTM) networks [59] were developed to solve this
issue. They are built on top of the standard RNN architecture, but they introduce
the concept of gated units. Gated units are cells that manipulate the state at each
time step by choosing the dependance on the new input and on the previous state
as seen if Fig. 3.7. LSTM cells include three gates:

• the input gate controls what information from the new input data to save;

• the forget gate controls what information from the previous state to dis-
card;

• the output gate filters the current state to compute the output.

36



tanh

tanh

x(t)

h(t-1) h(t)

c(t-1) c(t)

h(t)

Forget
Gate

Input Gate

Output Gate

Figure 3.7: LSTM cell representation.

It is then possible to control the reduction in gradient during backpropagation
by acting on the gates.

Gated Recurrent Units (GRU) [60] are a variation of LSTM that simplify the
structure of the cells by removing the output gate and by using only two gates,
called update gate and reset gate. This in turn reduces the overall number of
parameters required for the network.

Some variation of the GRU include Minimal Gated Units (MGU) [61] that use a
single gate and Content Adaptive Recurrent Units (CARU) [62] that use a content-
adaptive gate instead of the update gate.
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4
Proposed Solution

This chapter describes the processing framework from the raw data captured by the
radar to the final output of the proposed neural network, including all the necessary
algorithms implemented for the intermediate steps. The processing involves two
main parts:

• the preprocessing of the data from the acquisition system to obtain a
dataset of labelled point clouds. A point cloud is the set of points that
represents the objects detected by the radar at a time t, also called radar
frame, and each label contains the spatial position of the markers at time t;

• the prediction of the coordinates of each marker using a novel neural net-
work architecture based on the popular PointNet++ [2].

In Sec. 4.1 the extraction of the point clouds and the ground truth is discussed
in a step-by-step approach. Sec. 4.2 introduces the algorithms that have been
developed and used. Finally in Sec. 4.3 further processing of the data, specifically
related to its use in NN, is discussed followed by the description of the main
components of the Pointnet++ architecture and of the proposed models.

4.1 Raw Data Processing

The preprocessing includes the capture of the data and its manipulation. The
acquisition system is made up of a mmWave radar and a motion capture system
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or, in general, a device that can provide the position of the markers. A possible
alternative could be a system made up of multiple cameras. In the following,
we denote by sequence a set of ordered frames corresponding to a single data
acquisition.

The pipeline of the data preprocessing steps is as follows:

1. raw data is captured concurrently by the radar and the motion capture
system in a synchronous fashion;

2. the raw data is then processed in parallel:

(a) the 3D spatial coordinates of the valid∗ points are extracted together
with their velocity to generate point clouds;

(b) the data from the motion capture setup is processed to generate the
spatial coordinates of the markers;

3. clustering and tracking algorithms are applied on the sequences of point
clouds from the radar to identify, in each frame, the subset of points corre-
sponding to the target person;

4. for each sequence the point clouds and the markers’ coordinates are com-
pared to find the spatial shift that determines the best overlap. This proce-
dure is needed to find the best alignment between the ground truth markers
and the measured radar point cloud whenever the two capture systems can
not be synchronized precisely, for instance with a NTP;

5. each sequence is divided in subsequences of equal length with overlapping
for the training process. The choice of a fixed length for each subsequence
is mandated by the development framework used, but allows also to restrict
the dependance in time only to a limited amount of frames, both to reduce
complexity and generalize the model.

∗The definition of valid points is provided in Sec. 4.1.1
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4.1.1 Point Cloud Extraction

As described in Ch. 2 with a FMCW radar in MIMO configuration it is possible to
estimate the 3D spatial coordinates of any object that reflects the signals. In par-
ticular the raw data from the radar usually includes the distance, the velocity, the
angle of arrival in both azimuth and elevation and the strength of the reflections.

With this information it is possible not only to localize the source of every
reflected signal, but also to keep only the relevant information, i.e., the reflections
from the main reflectors in the environment. This is achieved by sparsifying the
signal which implies keeping only the main reflecting points through the Constant
False Alarm Rate (CFAR) algorithm [8]. This applies a dynamic threshold on
the power spectrum of the output signal, thus only retaining points that have a
significantly higher reflected power with respect to their local background. Instead,
to discard the reflections from static objects, the clutter, a high pass filter, called
Moving Target Indication (MTI) [8], is exploited to remove the reflections with
Doppler frequency close to zero. This procedure allows us to keep only the points
that are probably reflected by the subject, as human beings are characterized by
continuous changes in Doppler frequency [63].

4.1.2 Person Detection and Tracking

The point clouds returned by the initial radar processing will still include noise
from multiple sources, including interference and moving objects. To identify only
the points reflected by the target person, the typical approach is to (i) perform a
frame by frame detection of clusters of points, based on their density, and (ii) to
sequentially track these clusters using Kalman Filtering (KF) techniques [64]. The
method applied here is taken from [65] and is briefly described in the following.

For the density-based detection approach, Density-Based Spatial Clustering of
Applications with Noise (DBSCAN) [66] is the algorithm of choice as it performs
well as long as the subjects to track are sufficiently separated, or, as in our case,
a single subject is present [67]. It requires two parameters as input, a radius ϵ,
and an integer, mpts, that represent the number of points contained in the sphere
of radius ϵ centered on a point for it to be considered dense and thus part of a
cluster. For simplicity the clustering is performed on the 2D space (x − y), by
ignoring the z axis, the elevation.
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Given a set of clusters for each frame, their centroid is computed as the obser-
vation of their position. At each time step k, which corresponds to a frame of the
sequence, each cluster is identified by its state sk = [xk, yk, ẋk, ẏk]

T which contains
the position and the velocity of its points. We then assume that the state follows a
constant-velocity evolution sk = Ask−1 where A is the transition matrix. Finally
we use a KF tracker to sequentially estimate the state of a cluster ŝk by updat-
ing the predictions based on the constant-velocity model with the positions from
the observations. The clusters, and thus the observations, are associated with
the corresponding tracks in subsequent frames with a Nearest-Neighbors Joint
Probabilistic Data Association (NN-JPDA) algorithm [68].

4.1.3 Motion Capture Setup

The collection of the data for the ground truth requires a setup that can precisely
identify the position of some specific parts of the human body. For this project the
IOR-GATE protocol [1] was used with the Vicon † motion capture system which
was proven to be very precise and stable [69]. Before starting the acquisition
process, the software used, Nexus‡, needs to be configured with a model (referred
to also as protocol) that represents the relative positions of the markers with
respect to each other. When a capture acquisition is performed the software tries
to fit the model on the markers it sees and provides a label for each marker that
is able to see and that is compatible with the model. If a marker is not seen or
it does not fit in the model it is discarded. Due to the challenging positioning of
some markers and on the suboptimal number of cameras available, some markers
could not be tracked in all frames, with some of them appearing in as low as 20% of
the frames. To tackle this issue and still be able to perform a supervised training,
some adaptations have been performed, including a variation on the computation
of the loss as described in Sec. 4.3.4.

†https://www.vicon.com
‡https://www.vicon.com/software/nexus/
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4.2 Algorithms

4.2.1 Point Clouds and Markers Matching

The radar and the motion capture setup are separated systems and thus have
no automatic way to match on a frame by frame basis the point clouds with
the corresponding marker positions. For the training to be effective, however, it
is necessary to have a dataset that for each frame of the radar associates the
coordinate of the corresponding markers.

One simple and effective way to tackle this problem is to overlap the two sets,
shift one of the two and find the most optimal shift according to some distance
measure. Alg. 4.1 shows the pseudocode that computes the best shift given a
sequence of frames of point clouds Sr = [r0, r1, . . . , rn] and of marker positions
Sm = [m0,m1, . . . ,mn] and a distance function d.

Algorithm 4.1 Point clouds and marker matching for a single sequence
function compute_shift(Sr, Sm)

n← size(Sr)
z ← size(Sm)
shifts← [−n,−n+ 1, . . . , n]
distances← [ ]
for shift in shifts

dshift ← 0
for i in [0, . . . , n)

if i+ shift in [0, . . . , z)
ri ← Sr [i]
mi ← Sm [i+ shift]
di ← d (ri,mi)

else
di ← penalty

dshift ← dshift + di

distances.insert (dshift)
index← argmin (distances)
return shifts [index]

However this algorithm does not take into account that the radar may capture
data with a different frame rate with respect to the motion system, nor that
we may want to add a penalty that is dynamically computed according to the
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number of overlapping frames, rather than adding a constant term. For the first
problem, we may consider sampling from the longer sequence at the lower rate of
the two, but this would discard a lot of information, in particular the frames that
may be near one of the sampled values but that carry much more information
(for instance frames that contain more markers positions). To solve the second
problem, instead, we can also keep track of the number of overlapping frames and
scale the final distance accordingly.

This leads to the revision in Alg. 4.2 where we assume that the motion capture
system has a higher frame rate and its set is Sm = [m0,m1, . . . ,mz] with z ≥ n.

This algorithm, however, in this form has a possible weak point: if the sequence
includes a repetitive action, there could be multiple good shifts and, depending on
the distance function used and on the points captured in the frames, the penalty
associated to a lower overlapping may not be enough to find the real shift (as in
Fig. 5.5). If timestamps are available for both the radar and the motion captures
it is possible to further refine the results by leveraging the temporal correlation.
If instead, as in our case, the timestamps are available only for the radar while
the motion capture system returns only the time at which it began the capture,
but not of any specific frame, it is still possible to obtain an approximate time
difference. This time delta can be computed between the timestamp of the first
radar frame and the corresponding shifted marker frame (or vice versa). For a
given acquisition setup this time difference will be similar for different sequences
and can thus be used to find possible outliers in the computed shifts. Sec. 5.3.3
will provide an example for this case.

Moreover heuristic considerations can be applied to speed up the computation,
for example by considering a reduced range for the possible shifts, for instance
if the radar captures always start after the motion captures, we can discard the
negative values. If instead we know that the captured action is not repetitive and
thus should show a prominent minima, we can avoid testing shifts one by one and
perform an optimized search.

One final consideration regarding this algorithm is related to the distance func-
tion used. For this project the query ball algorithm (presented in Sec. 4.2.3) was
used by considering as centroids the markers. If we assume that the markers are
spread evenly on the surface of the body, the query ball algorithm reaches its
minimum when the point cloud is surrounded by markers, however in practice the
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Algorithm 4.2 Complete point clouds and marker matching for a single sequence
function look_around(set, indexstart, indexend)

subset← [ ]
for s in set [indexstart, . . . , indexend]

subset.insert (size (s)) ▷ Use size as the information content
interval ← (indexend − indexstart) /2
penalty ← [1, . . . , interval) ▷ Example of linear penalty
penalty ← concatenate (flip (penalty) , [0] , penalty)
subset← subset− penalty
index← argmax (subset)
return set [indexstart + index]

function compute_shift(Sr, Sm, fpsmarker, fpsradar, d)
n← size(Sr)
z ← size(Sm)
shifts← [−z,−z + 1, . . . ,−1, 0, 1, . . . , z]
distances← [ ]
fpsdiff ← floor ((fpsmarker/fpsradar)/2) ▷ Interval between two sampled values
for shift in shifts

dshift ← 0
nnon_overlaps ← 0
for i in [0, . . . , n)

if i+ shift in [0, . . . , z)
ri ← Sr [i]
zi ← floor (i ∗ fpsmarker/fpsradar)
mi ← look_around (Sm, zi + shift− fpsdiff , zi + shift+ fpsdiff )
di ← d (ri,mi)

else
nnon_overlaps ← nnon_overlaps + 1

dshift ← dshift + di

nnon_overlaps ← nnon_overlaps/n ▷ Compute non-overlapping as percentage
dshift ← dshift ∗ (1− nnon_overlaps) ▷ Example of distance scaling
distances.insert (dshift)

index← argmin (distances)
return shifts [index]
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radar receives most of the reflections from the surface in front of it, which could
lead to a small displacement in time, or in other words in a systematic error. That
however does not influence the neural network, as it would learn a systematic
displacement of the positions of all the points, while their relative position would
still be correct. If instead the majority of the markers are in the front or the back
of the person, this could lead to a worse error if the captures are performed with
different sides facing the radar: the two systematic errors will be opposite to each
other and thus generate a double error.

4.2.2 Farthest Point Sampling

Farthest Point Sampling (FPS) is an iterative algorithm used to extract a subset
C of elements from a set of points S where a distance function d exists such that
the sampled points are as far as possible among each other, according to d, so that
C should be a good approximation for S. It works as follow:

1. Choose the first point from S and add it to the set of chosen points C

2. Compute the distance from each point in S from its nearest point in C

3. Choose the point in S with the maximum distance and add it to C

4. Repeat step 2 and 3 until you reach the desired number of points in C

The choice of the first point to add to C determines the final output of the
algorithm. To obtain the best result it should be executed for any possible choice
of the first point and the best set C should be kept. However, to reduce the
computational time, it can also be chosen at random from a uniform distribution
as shown in Alg. 4.3. In this case the solution is approximate.

4.2.3 Ball Query

Ball Query (BQ), also known as query ball point, is a simple algorithm that, given
a set of points S, a set of centroids C and a radius r, finds all the points in S that
are distant at most r from any point in C as described in Alg. 4.4.

As described in Sec. 4.3.1, some points may be repeated in the same frame, and
this could influence the result of the ball query algorithm, which could group the
same point multiple times. Although on average points are repeated once or twice,
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Algorithm 4.3 Farthest Point Sampling Algorithm
function farthest_point_sampling(S, Csize, d)

C ← [ ]
c0 ← random (S)
C.insert (c0)
while size (C) < Csize

dists← [ ]
for s in S

dmin ← +∞
for c in C

dc ← d (c, s)
if dc < dmin

dmin ← dc
dists.insert (dmin)

index← argmax (dists)
C.insert (S [index])

return C

as seen in Fig 4.3, we still apply a unique constraint on the source set of points to
remove the duplicates and keep the structure as similar as possible to the original.

Algorithm 4.4 Revised Ball Query Algorithm
function query_ball_point(S, C, r, d)

S ← unique (S)
dists← d (S,C) ▷ Distance matrix S × C

dists← min (dists, axis = 1) ▷ Min distance for each s in S

mask ← dists < r
return S [mask]

4.3 Neural Network Architecture

The architectures proposed in this section are characterized by a common underline
architecture that is in fact a revision of Pointnet++ [2]. Pointnet++ was chosen as
the base model because it currently performs among the best in the extraction of
features from point clouds and it is easy to modify and adapt to different purposes,
for instance to sparse point clouds [4], such as the ones produced by mmWave
radars. We define three different models: a baseline model with a variation of
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the original Pointnet++ to be more suited to our dataset and two models that
take advantage also of the temporal dependance of the frames in a sequence by
exploiting a RNN. Given the very specific positioning of the markers we need to
predict, rather than a generic skeleton, we rely on supervised learning, but at the
same time test the efficacy of a semi-supervised approach where the same network
tries to learn both the markers positions and to reconstruct the original point
cloud.

4.3.1 Dataset Preprocessing

Neural networks often perform best when they are trained on input datasets that
are normalized to a reference interval, usually [0, 1] [45]. Although in theory pre-
serving the original dimension would simply scale the weights involved, in practice
this poses other problems. In fact Gradient Descent optimizes all weights with
the same pace, which implies that if one dimension, for instance the range, has
higher absolute values than the azimuth and elevation, the optimization will focus
mainly on the range. This consideration is particularly important when we deal
with the absolute position of the points. If we consider that in our setup the sub-
ject walks towards and away from the radar, we realize that the elevation is almost
constant, while the range and azimuth may change considerably inside a sequence.
If we were to apply a global normalization, where we compute the maximum and
minimum per-sequence, we would deform excessively the shape, while a local one
(per-frame) would retain the correct proportions, provided that the normalization
is performed independently on the three axis. If the three axis were to be normal-
ized together, the result would be, again, deformed, as the absolute positions of
the points may not be comparable in the three axis. This is relative to a specific
action, in our case walking, but the reasoning stands also for other activities, e.g.
jumping. In fact, what we observed as best performing for the learning process
between the two, was not a global rescale, but a local one.

However the normalization to a fixed interval on a per-frame basis destroys the
absolute dimensions of the point clouds, for instance if two subsequent point clouds
are one two times wider in azimuth with respect to the other, they would both
be normalized to the same interval and the difference in size would be lost. This
problem can be tackled with a different approach: instead of a fixed normalization,
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we can shift the reference system of the point clouds from an absolute value (the
position of the radar that captured the data) to a relative one, to reduce the
absolute values associated to the points, while still preserving the real dimensions
of the point clouds.

For this purpose we tested multiple approaches. The simplest solution would
be to center each frame on the centroid (the point computed with coordinates
equal to the mean of all the points of the point cloud) given by its point cloud
and shift the markers by the same translation matrix. Other solutions include
computing the centroid on the first or last frame of a sequence and use it for the
whole sequence, to maintain the spatial movement that is lost if each frame is
centered with its own centroid. The last solution that has been tested includes
computing the centroid and thus the translation matrix at each frame, but use
the translation from the previous frame instead of the current one for the actual
shift of the point clouds. This allows maintaining the spatial movement, but only
on a local level.

Another preprocessing that is applied to the input data is directly related to
the learning framework, that requires that the shape of the input data be con-
stant, which means that the sequences in input must be of a predefined length.
Considering that the frame rate of our radar is 10 frames per second, we build our
dataset in sequences of 30 consecutive frames, which results in 3 seconds of data
acquisitions, as done in [6]. This provides a good balance between enough informa-
tion to follow the movement of the subject while maintaining the computational
complexity in the NN reasonable. To expand the total amount of data available
for training we allow two subsequent sequences to overlap by a fixed value of 25
frames. To have a consistent input shape we also assume that each frame is made
up of 256 points, which is close to the maximum number reached in the whole
dataset, and in case there are not enough points we repeat some of them, sampled
uniformly at random.

4.3.2 Pointnet++ Architecture

Pointnet++, also referred to as pointnet2, [2] is a hierarchical neural network ar-
chitecture developed as an extension of the older Pointnet network [70]. Its goal
is to learn a set of features that identify a point cloud by exploiting the spatial
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encoding of its points and aggregate them at different resolutions. Contrary to
Pointnet, the process of feature extraction is performed at different scales to cap-
ture the details of both fine and large-scale structures. In principle, this could
be done with a CNN, i.e., a sequence of convolutional and pooling layers. How-
ever, it would have some practical drawbacks, like discarding some of the spatial
information about the input data, e.g., the density, and not being invariant to the
ordering of the input points.

The processing performed by Pointnet++ can be described by the following
steps:

1. partition the set of input points in regions determined by a distance metric;

2. compute local features in each region for a small neighborhood of points;

3. subsample the input set of points to obtain higher level features;

4. repeat from step 1 until you reach a sufficient abstraction.

For this procedure to be effective, three key elements must be defined: how to
partition the input set, how to compute the features given an input set and how
to subsample it.

For the partitioning, the original paper uses the BQ algorithm described in
Sec. 4.2.3. This algorithm, given a set of centroids and a radius, returns all the
points in the input set that are contained in a sphere centered in each centroid
with the given radius. Moreover the authors limit the maximum number of points
to associate to each centroid. For the choice of the centroids, they use the FPS
algorithm described in Sec. 4.2.2 that guarantees a better coverage with respect
to random sampling. The feature learner of choice at each scale is Pointnet, which
provides robust results for unordered set of points, as shown in the original paper.
Finally, to subsample the input sets and reduce the scale of the learning problem,
the same centroids and associated spheres from the partitioning step are used.

The output of this approach is a set of features that can be used for classifica-
tion. However, these are not sufficient if the task is, e.g., semantic segmentation
(the problem of separately labeling each single point), or in general involves the
reconstruction of the original set or a scaled version of it, as in our case. When
dealing with these more challenging problems, the point features are used in layers
called Feature Propagation (FP), that try to reconstruct the original set of points
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Figure 4.1: Visual representation of a Set Abstraction layer.

and associate some feature to each one, in an architecture that we could associate
to an autoencoder.

Set Abstraction Layer

The Set Abstraction (SA) layer is used to extract the features of the input point
set at a given scale. Given a set of points S with optional features f , a number
of centroids N , and a radius r, the SA layer computes the set of N centroids,
C, with FPS then applies the BQ algorithm to partition S and f and passes
each partition to a Multi Layer Perceptron (MLP) layer. A MLP is implemented
as a convolutional layer with a kernel of unitary size, followed by an optional
normalization performed on each batch, called Batch Normalization (BN). These
features can be further used as input to other MLP layers with a different number
of filters (kernels) and the final result is obtained after a max pooling. The feature
extractor corresponds to the original Pointnet. Fig. 4.1 shows the architecture for
this layer.

Grouping Strategy

One of the main contribution of Pointnet++ is its hierarchical architecture that
allows the network to adapt the learning resolution depending on the density of
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the points. Point clouds, especially if obtained with mmWave radars, contain
spaces where the concentration of points is high and others where it is low, which
means that the point clouds have usually different densities in different areas. This
implies that we may want to extract features at a low scale for dense areas and at
a large scale in sparse areas, to capture both the details and the bigger structures.
To do so the authors propose two different approaches:

1. in Multi-Scale Grouping (MSG) the different scales are obtained by
grouping points in increasing spheres around each centroid obtained with
FPS; the inscribed points are then the input of different pointnet feature
extractors scaled accordingly to the input area and the final features are
concatenated together. In other words, the input set S and number of
centroids N are used as input to multiple SA layers with different radius
r = [r0, . . . , rs] and the final features are concatenated. This process can
be expensive, especially when the number of centroids is high. To limit the
computational burden, subsampling may be applied to reduce the overall
number of points and centroids between groups of SA layers;

2. in Multi-Resolution Grouping (MRG) the scales are obtained with a
subsampling based on the centroids after each SA layer. Given an input
set S, number of centroids N and radius r = [r0, . . . , rs], the first SA layer
receives as input (S,N, r0) and returns the features f0, then the centroids
are considered the new input set S ′ = C and a new number of centroids to
compute N ′ are defined for S ′. The second SA layer then computes features
with the new input (S ′, N ′, r1, f0) by concatenating the summarized features
from the previous layer and the result of a new Pointnet applied on the
current input.

Feature Propagation Layer

The Feature Propagation layer allows propagating features from the subsampled
layer to the original input set. It works with a hierarchical propagation strategy by
interpolating feature values based on the inverse distance weighted average from
k nearest neighbors according to [2]:

f (j)(x) =

∑k
i=1 wi(x)f

(j)
i∑k

i=1 wi(x)
(4.1)
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Figure 4.2: Visual representation of a Feature Propagation layer.

with wi(x) =
1

d (x, xi)
p , j = 1, . . . , C.

Fig. 4.2 shows the connection between SA and FP layers.

4.3.3 Architecture Revisions

Pointnet++ proved to reach state-of-the-art results in multiple datasets, including
MNIST [71] and ModelNet40 [72]. In both cases, however, the goal was either
classification or semantic segmentation and it did not involve the construction of
new points. Moreover the aforementioned datasets are made up of very dense
point clouds, with several thousands sampled points per image, while in our case
the radar outputs always less that 300 valid points per frame and on average 95

points with a 90-percentile of just 170 as seen also in Fig. 4.3. Finally, those
datasets were constructed by uniformly sampling 2D or 3D models, and variable
densities were used only during training, while our data represents real subjects
in a real environment with all the limitations that this setup implies, including
missing frames, noise, and much more variable densities of the point clouds. On
the other hand, each frame of our dataset is part of a sequence and as such can
exploit the temporal correlation with respect to the other frames of its sequence.

All this implies that the original Pointnet++ can not be applied directly for our
use case, but needs both a rescaling to match our lower resolution and a change
in architecture to exploit the temporal information in a sequence.

53



0 50 100 150 200 250
Number of points in a frame

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e 

de
ns

ity
 (%

)

Figure 4.3: Cumulative histogram of the number of points in a frame

Baseline Model

The first aspects to consider while modifying the network architecture are the
objective and the data in input to the network. Indeed, the choice of the number of
centroids to extract in each SA layer and the radius of the spheres around them is a
challenging task that requires the knowledge of the hardware used for the capture,
the subject to capture and the conditions of the environment. This implies that
the parameters used are not universal, but should be tuned for different settings.

In our case the point clouds are very sparse and the number of centroids used in
the original Pointnet++ were not compatible with our data, in fact in the first SA
layer the authors use 1024 centroids which is four times the total number of points
in our most complete frames. Moreover the number itself of SA layers was too
high and in fact we found that the best configuration for us included three and not
four SA layers. For the choice of the radius we need to consider if normalization
is applied, as it changes the range and thus the distance of the points. In this
case our values are similar to the original ones as the coordinates are defined in a
similar interval.

These considerations lead to a baseline model that we use as reference to eval-
uate the performance of the recurrent models. It includes three SA layers with
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MRG grouping and the same number of FP layers to rescale the features. We then
append a convolutional layer followed by maxpooling and a final Fully Connected
(FC) layer to obtain the positions of the markers. The FP layers were included
after a study on their efficacy and in all cases they provided a higher accuracy
as long as the network was not too big. Indeed, the most important element to
keep into consideration is the scale of the network. Given that we have a limited
amount of data, it’s very difficult to avoid overfitting and in particular we need to
keep the number of weights to a low value. For this reason we also included the
final convolution and maxpooling and considered adding another FC layer with
a low number of neurons, to reduce the complexity, but our tests showed it de-
graded the performance. A visual representation of the baseline model is depicted
in Fig. 4.4.

Recurrent Models

The design of the recurrent models is also an interesting study. The first element
to focus on is the placement of the recurrent layers: we may consider using them
before the SA layers, between SA and FP layers, or after the FP layers. The
first possibility was discarded as RNN do not perform well with unordered data.
The other two were both evaluated, including the option of removing the FP
layers and directly feeding the output of the RNN to the final layers. The best
numerical results were obtained by placing a single RNN layer between the SA
and FP layers. Different types of RNN have been tested, including GRU and
LSTM, in different combinations, for example with multiple subsequent layers
and bidirectional. Our tests show that the simplest architecture, with a single
GRU, was the one that performed best, possibly because of the limited amount of
data available for training.
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Figure 4.5: Visual representation of the ConcatGRU neural network architecture.

The last part of the design is related to the way in which the features from the
SA layers are passed to the RNN. A RNN in fact requires a time sequence of 1D
vectors, while each SA layer returns a list of variable length of features. We tested
two possible alternatives: either concatenating the features from all the SA layers
in a single vector, or using as input of the RNN the features from the SA layers,
one layer at a time. In the second case we tried with RNN with and without shared
weights. The different ways of encoding the features also implies a difference in
the size of the RNN, as it needs to output the same number of features it receives
in input for the subsequent FP layers to work properly. Adding FC layers could
also be considered an alternative to restore the original size of the SA features,
but from our results it did not perform as well. The tests we performed show that
both ways of encoding provide similar results. In particular we observe that if we
concatenate all the features, it performs best when we limit the number of filters
in the SA layers to downscale the size of the RNN, while when we use the features
from the SA layers one layer at a time it gives better results when the weights
are shared. We define as ConcatGRU the model with concatenated features and
SequentialGRU the other. The visual representations of these recurrent models
are shown in Fig. 4.5 and Fig. 4.6.

To reduce the possibility of overfitting, as described in Sec. 3.5, we applied
regularization to the RNN and dropout throughout the network, in particular,
before, inside and after the RNN and after the FP layers. We decided not to
apply pruning of points as our frames are already sufficiently sparse and with
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Figure 4.6: Visual representation of the SequentialGRU neural network architecture.

a strong variability between consecutive frames. Moreover the radar sometimes
captures empty frames, further reducing the actual number of complete frames.

4.3.4 Selective Loss

The choice of the loss, as explained in Sec. 3.3 is particularly important, especially
given the non-ideal condition of our setup. The goal of our network is to compute
the position of a fixed number of markers for each frame and in particular we
require that each output point corresponds to a specific marker. This implies that
while the input set is unordered, as we have no control over how many points
are obtained for each part of the body, the output points must be ordered, to
reconstruct the correct positioning of the markers.

For this to work it is necessary that the loss be computed on a point by point
basis between each pair of predicted points and markers. This is in fact the
definition of the per-point distance. In our case the motion capture system could
not determine the position of every marker for every frame. As a consequence
only the visible markers could be used for the computation of the loss. Given that
the learning framework requires a fixed number of markers for each frame, the
simplest solution was for us to add an additional dimension that represents if a
marker was recognized or not and set all those not available to 0 on a per-frame
basis. This leads to a revision of Per-Point Distance which takes the name of
Selective Per-Point Distance (SPPD) whose formula is Eq. 4.2 where M is the
set of markers, P is the set of predicted points, M (i,0) is the position of the i-th
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marker and M (i,1) is 1 if the marker is visible and 0 otherwise.

dSPPD(M,P ) =
1∑N

j=1 M
(j,1)

N∑
i=1

d(M (i,0), P (i))M (i,1) (4.2)

This loss is in practice the mean distance between the visible markers and their
predictions. The choice of the mean rather than the sum is to avoid the increase
in loss if more markers are present.

For the training procedure a semi-supervised approach has also been tested
by connecting the results of the FP layers also to a decoder that reconstructs
the original point clouds. For this test the loss used was the Chamfer Distance
for this output and the usual SPPD for the prediction of the markers, weighted
respectively by a factor of 5 and 1.

4.3.5 Data Augmentation

Data augmentation is a set of techniques that is used to perform transformations
on the input data to reduce the possibility of overfitting and possibly avoid local
minima in Gradient Descent. Contrary to regularization, it is not a collection
of general techniques, but it is tailored to the type of data in input. Moreover,
contrary to dataset preprocessing, it is applied to extend the original input data,
not to change its representation.

For our tests we applied four different types of randomized transformations:

• independent shift of each point in any combination of the three axis x, y, z,
in a predefined interval;

• global permutation of the axis x, y, z on a per-frame basis;

• shuffle of the points in a frame;

• per-frame rotation of the point cloud in any combination of the three axis
x, y, z.

It should be noted that Pointnet++ is invariant to shuffles of the point clouds,
so this type of transformation was used only to verify this property.
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5
Results

In this chapter we describe the results of the whole pipeline of data processing,
from the setup of the equipment to the final predictions. In Sec. 5.1 the equipment
used for the acquisition of the dataset is presented, highlighting its main charac-
teristics. Sec. 5.2 briefly describes the software enhancements developed for the
radar application and the developed framework for managing the whole pipeline
from the processing of the data to the training of the models. In Sec. 5.3 the
results of the data processing is described step-by-step. In Sec. 5.4 the details of
the proposed models and learning parameters are explained, while in Sec. 5.5 the
final results are presented and discussed.

5.1 Equipment Setup

5.1.1 Data Acquisition Setup

The acquisition of the dataset that has been used for this project was performed
in the bio-mechanics research laboratory of the University of Padua, in the De-
partment of Information Engineering. The laboratory is equipped with a motion
capture system from Vicon, paired with the Nexus software. The system includes
six cameras placed on the two long walls with the radar placed on one of the
shorter walls, on a table at about 80 cm of height. Fig. 5.1 shows the arrange-
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Camera

Figure 5.1: Planimetry of the laboratory.

ment of the hardware. Due to the positioning of the cameras of the Vicon system,
some markers were not simple to track, in particular those in the inner side of the
knees and feet, as seen in Fig. 5.2. One of the parameters to consider during the
setup of the equipment is the FOV of the radar both in azimuth and elevation.
This in practice limits the minimum distance from the radar that the test subject
must maintain, as the limited elevation FOV can prevent a complete view of the
subject’s body in the radar reflected signal, as shown in Fig. 5.3.

We acquired a total of 100 sequences of 10 seconds. However, the actual usable
sequences in which at least one marker is visible amount to around 8 minutes of
acquisitions due to the aforementioned Vicon and radar FOV limitations.

5.1.2 Radar Parameters

The radar used for our project is the combination of the MMWCAS-RF-EVM∗ and
MMWCAS-DSP-EVM † boards from Texas Instruments, which use four AWR2243P‡

radar chips. Each chip includes 4 RX and 3 TX antennas for a total of 16 RX and
12 TX antennas. The radar operates at frequencies in the range from 76Ghz to
81GHz and can be used in different configurations, including SIMO and MIMO.
For our tests we used all antennas with a MIMO setup that creates a total of 86
non overlapping virtual antennas. Tab. 5.1 shows the main TX parameters of the
radar that can be used to compute the metrics that we defined in Ch. 2. Some of

∗https://www.ti.com/tool/MMWCAS-RF-EVM
†https://www.ti.com/tool/MMWCAS-DSP-EVM
‡https://www.ti.com/product/AWR2243
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Table 5.1: Radar parameters

Parameter Value
FOV Azimuth ±π/3
FOV Elevation ±π/6

Chirp duration (Tc) 81 µs
Chirps per frame (Nc) 64
Samples per chirp (Ns) 512

Sampling frequency (Fs) 8 MHz
Starting frequency 76 GHz

Bandwidth 4.16 GHz

them are computed hereafter: from Eq. 2.9 and Eq. 2.1 the maximum range is

rmax =
Fsc

2S
= 18.46 m

with a resolution in range from Eq. 2.12 of

∆r =
c

2B
= 0.036 m. (5.1)

For the velocity, if we consider as carrier frequency the frequency at half chirp,
fc ≃ 78GHz, we can compute the maximum velocity from Eq. 2.17, remembering
that λ = c/f , as

vmax =
λ

4Tc

=
c

4fcTc

= 11.72 m/s.

The resolution on the velocity is instead from Eq. 2.19

vres =
λ

2Tf

=
λ

2NcTc

= 0.36 m/s.

5.2 Software Development

5.2.1 Radar Acquisition Software Development

As described in Sec. 4.2.1, our capture setup involves two independent systems
that can not communicate with each other and thus can not synchronize precisely
the beginning of a capture. Moreover, the software provided by Texas Instruments
does not save the timestamp for each frame, nor does the software for the Vicon
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system, which simply saves one timestamp at the beginning of the capture. While
we don’t have control on the software for the motion capture system, we can exe-
cute a limited set of lua§ commands on the radar interface, mmWave Studio¶. This
allowed us to define both a Graphical User Interface (GUI) to easily configure the
chirp parameters of the radar and start each capture sequence, and to collect the
timestamp whenever a new capture is started. The set of lua instructions available
does not allow to realize a GUI, so we developed a client that constantly polls a
server written in Python which displays and is controlled by the aforementioned
GUI. It should be noted, however, that the collected timestamps are not precise,
as we lack control of the actual functions that interact with the Linux subsystem
in the radar, and can only collect the time at which those functions are called, but
not when the radar actually starts the first transmission. A finer control could be
achieved only by writing a new application in C++ that directly interacts with
the radar.

5.2.2 Framework Architecture

Besides the aforementioned development of the software for the radar, the original
code provided by the authors‖ has also been rewritten completely to be compatible
with the latest versions of the Tensorflow∗∗ framework. The functions written in
C++ have been converted to python to make it more portable and allow the
training procedure to be performed also on CPU and servers with no control over
the installed libraries. Besides this, a complete framework has been written from
the ground up to dynamically generate new architectures by providing a list of
the desired layers as a simple command line parameter or in a JSON file. This
framework can be used also to control any type of data augmentation described
in Sec. 4.3.5 and allows the use of wildcards to dynamically infer the shapes of the
custom layers without the need to provide them manually. Full control of all the
parameters of the SA and FP layers is also guaranteed, together with a limited
flexibility over the main architecture: the block of SA and FP layers is fixed but
multiple types of layers can be added in the middle or after.

§https://www.lua.org/
¶https://www.ti.com/tool/MMWAVE-STUDIO
‖https://github.com/charlesq34/pointnet2

∗∗https://www.tensorflow.org/
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Figure 5.4: Radar point cloud before (left) and after (right) the execution of the clustering and tracking algorithms.

5.3 Data Processing

5.3.1 Clutter Removal

The removal of the clutter, the reflections with Doppler velocity close to zero,
is particularly important, as it can be clearly seen in Fig. 2.3 that represents the
result of the Doppler-DFT. We removed all the reflecting points with a velocity be-
tween ±0.05m/s, as they possess very low Doppler velocity and thus are probably
not generated by the intended subject. The resolution of the DFT corresponds to
the number of chirps per frame, Nc = 64, for the Doppler-DFT and to the number
of samples taken for each chirp during the analog to digital conversion, Ns = 512,
for the range-DFT.

5.3.2 Person Detection

Although the clutter removal process discards the reflections from static objects,
other sources of undesired reflecting points still remain. Fig. 5.4 shows that many
reflections are present with a velocity greater than the clutter removal threshold
we used. From the figure the noise seems overhelming with respect to the points
corresponding to the subject, but in practice this type of noise usually appears
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in a single frame and is different in the subsequent ones, while the points of the
subjects are close in adjacent frames, and thus relatively easy to track in time.
As a consequence the clustering algorithm with tracking described in Sec. 4.1.2 is
able to remove most of the noise as shown in the figure.

5.3.3 Point Clouds and Markers Matching

As introduced in Sec. 5.2.1 the matching between point clouds and markers can’t
be based only on the timestamps. However in the case of a repetitive action, where
by repetitive we mean an action that is repeated in time with similar values for the
three axis x , y z, the matching algorithm introduced in Sec. 4.2.1 will still yield
multiple minima, as seen in Fig. 5.5. In this case the lowest error corresponds to the
most probable shift, as the algorithm considers the total overlapping portions of
the two sequences, the point clouds and the markers positions, but the timestamps
can still help in determining possible outliers. In fact, we can compute the time
difference between the timestamp of the point cloud at the target shift and compare
it with the timestamp returned by the motion capture system when it started
the capture. In a set of acquisitions performed with the same hardware and
in sequence, we can assume that these time differences should match and, in
particular, if the repetitions are sufficiently separated in time, it is possible to
find outliers. This time comparison may not work if the acquisitions are collected
in different days or with different types of hardware as the computers may have
a drift in their local time. While Fig. 5.5 shows the error associated to a person
swinging his arms in place, Fig. 5.6 shows the error computed for a person walking.
Contrary to the previous image, here we have a more pronounced minima and
the comparison with the time stamps may not be necessary. Fig. 5.7 shows the
superposition of the point cloud for the radar and the markers which we proved
to be sufficient for our purposes.

5.4 Networks Architectures

The main parameters of the SA and FP layers are shared among all three models,
and in particular Tab. 5.2 summarizes the parameters used for the SA layers, while
for the FP layers we use the filters defined in Tab. 5.3. Batch Normalization is
applied in the MLP of the SA layers, but it is not included in the FP layers. The
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Figure 5.5: Error between markers and point clouds computed for each shift of the point cloud for an action with
a repeting pattern.
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Table 5.2:Models SA layers parameters

SA layer 1
Centroids 32

Radius 0.15 m
Points in sphere 8

MLP filters [4, 4, 8]

SA layer 2
Centroids 16

Radius 0.25 m
Points in sphere 8

MLP filters [8, 8, 16]

SA layer 3
Centroids 8

Radius 0.4 m
Points in sphere 8

MLP filters [16, 16, 32]

Table 5.3:Models FP layers parameters

Parameter Value
MLP filters FP 1 [32, 32]
MLP filters FP 2 [32, 16]
MLP filters FP 3 [16, 16, 16]

final layers, after the FP layers, include a CNN with 32 filters and kernel size [1, 5]

followed by max pooling and a final FC layer with 30×3 units, to compute the 3D
coordinates of the predicted marker points. Dropout is applied with probability
0.2.

For ConcatGRU we divide the number of MLP filters in the SA layers in half
and we use a GRU layer with 384 units, while for the SequentialGRU model
we use a GRU layer with 256 units. While it would be advisable to reduce the
number of units in the GRU layers, these should be in the same number as the
components of the output vectors returned by the SA layers for the FP layers
to work. The use of FC layers to reduce the two dimensions did not provide
satisfactory results. In all recurrent models we apply recurrent dropout with
probability 0.2 and regularization both to the kernel and the recursion operation
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with the L2 norm with parameter 0.01.

5.4.1 Learning Parameters and Dataset

The semi supervised approach introduced in Sec. 4.3.4 improved the speed of
convergence, but the computational burden introduced, in the end negated such
improvement in time. Considering that the training has been performed on CPU
and not on GPU, the results may change if a graphic card were to be used, so we
don’t discard completely this modification of the architecture for future studies.
Regarding the improvement in accuracy, we did not observe any benefit.

We performed the training of our models with the Adadelta optimizer, with an
initial learning rate of 0.01. Contrary to what is usually done with NN we do not
decrease the learning rate during the training procedure, but instead we restore
the optimizer to its original state and learning rate to speed up convergence after
300 epochs for two times, and then we let the optimizer adapt the learning rate
for the remaining 900 epochs. In total our training requires 1500 epochs to reach
convergence.

With the considerations reported in Sec. 5.1.1 we obtain in total 1116 sequences
of 30 frames with around 80% of overlapping frames. We divide the dataset in 1000

sequences for training and 116 for test. The test sequences are chosen uniformly
from the original set of acquisitions and correspond to complete captures, which
implies that they do not share frames with sequences from the training set.

5.5 Networks Results

As described in Sec. 4.3.2, SA layers compute the features also on the set of features
associated to its input point cloud. While in Fig. 4.1 we showed that the first SA
layer receives in input only the 3D coordinates, it is in fact possible to associate
also to the input point cloud some features. This can be for example the relative
power of the reflected signal or the Doppler velocity. The latter is particularly
interesting as it shows a strong correlation between adjacent points, as seen in
Fig. 5.8. In our tests, however, it did not improve the results and was thus not
included for the final evaluation.

In the following considerations we define with x the azimuth, with y the depth
or range and with z the elevation. The values reported are in absolute form, which
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Figure 5.8: Velocity in a radar acquisition
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means that they are not normalized, as we have observed that normalization results
in worse performance (computed by taking into account the change in scale due to
the normalization). Instead our choice of centering each frame on its own centroid
provided the best results, even when compared to centering on the centroid of the
previous frame. This implied that the preservation of the transition between two
consecutive frames does not help with the prediction in this case. This result can
be explained if we consider that, contrary to synthetic datasets, our data includes
noise. A direct normalization in the [0, 1] interval would in fact result in very
different final values between adjacent frames if there is even a single noisy point
distant from the main set of points corresponding to the subject. Moreover this
type of normalization would make the frames where the subject is too close to the
radar, or some parts of the cloud are missing for instance due to the clustering
algorithm, simply wrong as they would be considered as complete point clouds
and strecthed accordingly, while instead they are only partial. A simple change of
reference system to the centroid of each point cloud, instead, preserves the original
shape across the same sequence and even between sequences, while avoiding that
the network learns an absolute reference system.

Table 5.4: Absolute mean distance (in meters) of the proposed models from the ground truth.

Model x y z

Baseline 0.11 0.21 0.17
ConcatGRU 0.08 0.13 0.09

SequentialGRU 0.08 0.14 0.10

Tab. 5.4 shows that the addition of the RNN provides better results. It also
appears that concatenating the features from the SA layers is better than passing
a SA layer at a time, even if we consider that we are using a GRU layer with more
units and thus less performant for our case. In fact, a further reduction in the
number of units would require the removal of a SA layer, while an increase always
results in worse performance.

From Tab. 5.4 we also notice that there is a prevalent error in the y axis, the
depth for all models. There may be multiple reasons to explain this, but two are
probably the most relevant:

• when the subject is too close to the radar, besides the FOV limitations
described in Sec. 5.1.1, we also observe that the noise is much stronger and
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Figure 5.9: Radar acquisition of a subject too close to the radar (red)

more difficult to remove. In particular, our current clustering algorithm is
not able to remove it completely. The algorithm to match markers and
radar frames still works properly as it considers the whole sequence, but the
addition of the noise results in point clouds that are distorted primarily in
the y and x axis, as shown in Fig. 5.9. Moreover, the computation of the
centroid for the translation of the reference system will also consider the
noise as part of the point cloud and thus create a bias mainly in the y axis,
while the x axis balances itself;

• our dataset is made up of acquisitions of a subject walking towards and away
from the radar in a single direction for a given acquisition. This implies that
when the subject changes direction, the position of the markers with respect
to the point cloud is reversed both in the x and y axis, further increasing
the difficulty of the task, especially with such a small dataset.

Moreover in Tab. 5.5 we can see that the bias is comparable in the different
groups of markers, for instance the last 12 markers are all on the feet. Indeed
in Fig. 5.10 it appears that the predicted markers assume the correct structure
but are simply translated. If we look at Fig. 5.11 the results appear even more
convincing. However if we consider a sequence where the subject is in the opposite
direction as in Fig. 5.12, we realize that the network predicts the wrong direction
and is also not able to recognize and fit the position when the feet are separated.
This could be again due to a lack of data, which we plan to deal with in future
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Figure5.10: 3Dvisualization of predictedmarkers (blue) and ground truth (orange)with SequentialGRU. The points
are centered on the source point cloud centroid.
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Figure5.11: 2Dvisualization of predictedmarkers (blue) and ground truth (orange)with SequentialGRU. The points
are centered on the source point cloud centroid.
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Figure 5.12: 2D visualization of predicted markers (blue) and ground truth (orange) with SequentialGRU with
markers on the left (red) and right (green) side highligthed. The points are centered on the source point cloud
centroid.

measurement campaigns.
These results show that absolute values like the ones showed in Tab. 5.4 are not

sufficiently informative of the accuracy of a model. In particular, this is amplified
when the input data is not sufficient in terms of diversification and quantity, which
could lead to overfitting.
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Table 5.5:Mean distance of ConcatGRU from the ground truth for each marker in meters.

Marker label x y z

C7 0.05344 0.12524 0.08356
LA 0.12136 0.10959 0.07847
RA 0.11081 0.12590 0.08638
L5 0.05355 0.10816 0.06401

RPSIS 0.05833 0.11102 0.06182
LPSIS 0.06827 0.11485 0.06574
RASIS 0.09579 0.10547 0.06941
LASIS 0.09837 0.08712 0.07183
RGT 0.14165 0.09517 0.06663
LGT 0.10096 0.09697 0.08053
RLE 0.10102 0.10882 0.07002
LLE 0.09705 0.11567 0.08316
RME 0.05826 0.11246 0.07320
LME 0.03821 0.12335 0.08367
RHF 0.09902 0.11282 0.09128
LHF 0.09797 0.12057 0.08779
RTT 0.08986 0.13612 0.09867
LTT 0.07036 0.12375 0.11152
RLM 0.08274 0.14580 0.12514
LLM 0.08357 0.14563 0.11948
RMM 0.05930 0.14159 0.11665
LMM 0.06134 0.14485 0.11244
RCA 0.06682 0.15594 0.11476
LCA 0.06862 0.16612 0.12361

RVMH 0.09442 0.15031 0.11491
LVMH 0.09840 0.14838 0.11867
RIMH 0.06341 0.16080 0.12507
LIMH 0.06636 0.16310 0.11216
RIIT 0.07977 0.16437 0.11279
LIIT 0.08024 0.15665 0.11215
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6
Conclusion

In this work we have explored the field of radio sensing for motion tracking appli-
cations. In particular, we explored the possibility of using radars to substitute the
need of markers in specific situations where privacy or mobility may play a major
role. We have proposed a pipeline for the acquisition and processing of the data
captured by a FMCW radar assisted by a motion capture system. The generated
dataset has then been used to train different models of Neural Networks to collect
preliminary leads on the efficacy of different architectures.

Our results show that the presence of noise poses a significant problem to the
training of a neural network even when trained with multiple data augmentation
types. Our current clustering technique in particular was not able to distinguish
the noise introduced when the subject was too close to the radar, a situation
that should however be avoided during data acquisition for this specific type of
objective. At the same time, however, it performed properly at correct distances
and it can also be tuned to possibly work better at lower ranges. Our novel
algorithm to match the sequences from the radar and the motion capture system,
instead, proved to work reliably even in the presence of noise. This allows to
more easily set up test environments to capture new data without the necessity of
precise synchronization between the radar and the motion capture system.

We have also developed a complete framework for the processing of the data in
Tensorflow which includes loading, repartitioning, enhancing and training. We ob-
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served that among the transformations of the data that we defined, the subtraction
of the centroid of each point cloud as a form of normalization gave the best results.
This may be related to the presence of noise and incomplete frames in our dataset,
but can still give some insight for future works. Given the reduced amount of
data available our proposed models do not perform that well and in particular are
easily subject to overfitting. The data augmentation techniques we tested did not
improve the situation, which may be interpreted that with RNN a certain amount
and diversity of data is still a prerequisite that can not be overlooked. Our results,
however, still show that RNN can in fact exploit the temporal correlation in the
sequences of data from a radar and improve the prediction, suggesting that this
is probably the right way to tackle the problem of skeleton estimation.

6.1 Future Works

This project was a preliminary work toward the design of contactless radar-based
motion tracking systems. Here we propose some insights into future developments:

• the high quantity of frames where markers are not present due to the dif-
ficulty in tracking some specific markers with the motion capture system
could be lowered by interpolating frames. By assuming that the change in
position of a marker in two adjacent frames is limited, we can exploit the
fact that the motion capture system has a higher frame rate to create hy-
brid frames that include all the markers in the adjacent frames with their
position interpolated;

• the impact of noise and undesired multipath reflections in a real mmWave
radar dataset can not be overlooked. Pointnet++ was originally designed
with synthetic or LIDAR-like data in mind. For this reason, it employs
techniques that do not perform as well with noisy data. For instance it uses
FPS that in the presence of noise would almost always put some centroid
outside of the set of points corresponding to the subject. In this case, in fact,
even random sampling would probably perform better. However we suggest
investigating some more advanced algorithm that does not simply rely on
the distance, but also on the density of the points in the area. For instance
FPS could be simply reused with a distance function that is computed as
the distance from the nearest point in the set of centroids, divided by the
number of points in a sphere of a given radius around it. This in practice
makes use of the BQ algorithm presented in Sec. 4.2.3;
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• attention layers have shown great performance in datasets with noisy data,
where noise may not only be the addition of unwanted points, but also the
lack of parts of the point cloud due to the clustering algorithm, occlusion or
other factors. We plan to consider them in a new model architecture;

• our tests showed signs of overfitting with models with higher complexity,
for instance with Bidirectional RNN, but these architectures still hold the
potential to greatly improve results. We plan on reconsidering them after
the collection of a larger dataset;

• given the symmetrical nature of the human body it may be possible to define
a loss that does not discriminate between left and right, at least for an initial
pre-training of the weights.
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