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Introduction
Non-linear electrodynamics (NED) theories have been studied since 1933 when Born and Infeld

constructed the first non-linear generalization of Maxwell’s electrodynamics [1],[2],[3]; it was originally
introduced to remove the singularity of the electric field of point-like charges on their space position.
Actually many years later Born-Infeld action showed up to be an important element in String Theory;
for instance in bosonic open String Theory it arises as an effective low-energy action, while in type II
superstring theories it describes an effective worldvolume theory of Dirichlet branes (in 10-dimensional
spacetime). Since then many other models have been proposed showing applications in String Theory,
gravity, cosmology and condensed matter [4]. For instance, there exist NED models coupled to gravity
which give rise to regular cosmological solutions by removing singularities at the initial time of the
evolution of the Universe. Other NED models have been used for the description of strongly correlated
condensed matter systems via a technique called gravity/CMT correspondence.
Among others, there exists an interesting phenomenon happening to almost all NED theories which is
the birefringence of light propagating in a uniform strong electromagnetic background. It consists in a
double refraction of ray of light that is split by polarization (with respect to the optical axis of the
material) into two rays taking different geodesic paths and the electromagnetic background plays the
role of an optical material. The Born-Infeld theory is the only physically consistent NED that does
not show this effect. This is an important effect since it can be tested by experiment, but yet to be
observed [4].

Source-free Maxwell theory is known to have two important symmetries, namely it is invariant
under both duality and conformal transformations. In general in NED theories these symmetries are
broken. It has been shown that there exist only two NED theories invariant under both conformal and
duality transformations [5]. The first one is the Bialyanicki-Birula theory [6] found in 1983 by passing
to the Hamiltonian formulation of Born-Infeld theory and taking the strong field limit (which cannot
be taken in Lagrangian formulation). The other one is the so-called ModMax, derived for the first
time by Bandos, Lechner, Sorokin and Townsend in 2020 [5]; actually this is the unique maximally
symmetric source-free non-linear extension of Maxwell theory [5],[7].

The description of Maxwell Electrodynamics in presence of electric charges has been developed
with the use of potentials, which are well defined everywhere if magnetic monopoles do not exist.
Actually if only electric charges are present in source-coupled Maxwell Electrodynamics, the duality
invariance gets broken. Paul Dirac was one of the firsts to propose a consistent description of Maxwell
Electrodynamics with magnetic monopoles. To this end he introduced an auxiliary object, the so-called
Dirac’s string, to tackle the problem of the consistency of the existence of the electromagnetic vector
potential in the presence of the monopoles [8]. Probably the most famous consequence of his theory
is that the presence of magnetic monopoles implies the quantization of the electric charges and thus
provides an explanation of this empiric fact. Since then many experiments have been conducted for
discovering magnetic charges; however they have not yet been observed.

The aim of this work is to study various aspects of ModMax electrodynamics . In particular, since it
is the unique maximally symmetric source-free non-linear extension of Maxwell theory, it is interesting
to couple to this theory charged sources and see what differences emerge in comparison with Maxwell’s
theory. We will see that we have the freedom to couple charges with different coupling constants
in order to get slightly different descriptions of the electrodynamics and we will discuss physical
motivations under these choices. We will present both Lagrangian and Hamiltonian formulations of this
source-coupled theory and some solutions of its non-linear field equations, as well as electric-magnetic
charge quantization conditions involved. To conclude we will consider ModMax birefringence and its
consequences on Compton scattering.

The structure of this work is as follows.
In Chapter 1 we will present ModMax electrodynamics and its symmetries, namely duality and
conformal invariance.
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In Chapter 2 we will couple to ModMax in three different ways different types of charged particles,
namely electric charges, magnetic charges and dyons. Then we will solve ModMax equations sourced by
different configurations of dyons. For instance, we will show that the Lienard-Wiechert fields generated
by a moving dyon are exact solutions of the ModMax electrodynamics.
In Chapter 3 we will make the Legendre transform from the ModMax Lagrangian to the Hamiltonian
formulation with the use of the Dirac constraint formalism and we will then pass to Quantum Mechanics
with the aim to find the quantization condition between electric and magnetic charges.
Finally, in Chapter 4 we will study ModMax birefringence and its application to Compton Scattering
in the presence of a magnetic background.
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1 ModMax Electrodynamics
In 4-dimensional spacetime ModMax electrodynamics is the unique source-free non-linear extension

of Maxwell theory invariant under both conformal and duality transformations [5],[7]. In this Chapter
we will present its definition and then we will study and prove its symmetries.

1.1 Definition of ModMax

We are in 4-dimensional spacetime with coordinates xµ = (ct, x⃗) and Minkowsky flat metric ηµν of
signature (+,−,−,−). Given the anti-symmetric field tensor Fµν and its dual ∗Fµν = 1

2ϵ
µνρσFρσ with

F i0 = Ei , F ij = −ϵijkBk and ∗F i0 = Bi , ∗F ij = ϵijkEk (1.1)

where E⃗ and B⃗ are the electric and magnetic fields respectively, we define the two Lorentz invariants,
the scalar S and the pseudo-scalar P,

S = −1
4FµνF

µν = 1
2
(
E⃗2 − B⃗2

)
, P = −1

4F
∗

µν F
µν = E⃗ · B⃗ . (1.2)

The Lagrangian density of ModMax is given by

L = Lγ(S, P ) = cosh γ S + sinh γ
√
S2 + P 2 (1.3)

where γ ≥ 0 is a dimensionless coupling constant; it is assumed to be non-negative in order to respect
the conditions of causality and unitarity. We can see that (1.3) reduces to Maxwell Lagrangian density
for γ = 0, otherwise it describes a non-linear theory.

For further consideration it is convenient to introduce the following anti-symmetric tensor

Gµν = − ∂L
∂Fµν

= −∂L
∂S

∂S

∂Fµν
− ∂L
∂P

∂P

∂Fµν
= LSF

µν + L ∗
P Fµν (1.4)

with LS = ∂L
∂S

= cosh γ + sinh γ S√
P 2 + S2

, LP = ∂L
∂P

= sinh γ P√
P 2 + S2

where when taking the derivative with respect to the components of Fµν we consider Fµν and F νµ as
dependent variables.
We can define

D⃗ = ∂L
∂E⃗

, H⃗ = − ∂L
∂B⃗

(1.5)

where D⃗ and H⃗ are the electric displacement and magnetic induction fields respectively, and so we
have in components

Gi0 = Di , Gij = −ϵijkHk and ∗Gi0 = H i , ∗Gij = ϵijkDk . (1.6)

The field equations in a source-free NED theory are written in terms of these four fields as follows

∇⃗ · B⃗ = 0 , ∂tB⃗ + ∇⃗ × E⃗ = 0⃗ , ∇⃗ · D⃗ = 0 , ∂tD⃗ − ∇⃗ × H⃗ = 0⃗ (1.7)

or in a manifestly covariant form

∂ ∗
µ F

µν = 0 , ∂µG
µν = 0 . (1.8)

Thanks to the first group of equations (also known as Bianchi’s identities) it follows that Fµν is the
curl of a 4-vector potential Aµ, namely

Fµν = ∂µAν − ∂νAµ . (1.9)
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1.2 Duality symmetry

It is known that source-free Maxwell equations are invariant under a duality transformation, which
involves a rotation of fields (Fµν , ∗Fµν). In NED theories this symmetry does not hold anymore in
general. However because of the analogy between Maxwell and NED equations in (1.8), one can define
a duality transformation involving the fields (Gµν , ∗Fµν) [6],[9]. In fact this transformation acts as an
SO(2) rotation with an angle parameter α ∈ [0, 2π] as follows{

G
′
µν = Gµν cosα− ∗Fµν sinα

∗F
′
µν = Gµν sinα+ ∗Fµν cosα (1.10)

Notice that Maxwell duality rotation is recovered when Fµν = Gµν , i.e. when the NED equations
reduce to the linear case.
This transformation has also an alternative equivalent form if we introduce the complex tensor
Gµν + i ∗Fµν . Then the duality transformation acts as a change of phase (i.e. as a U(1) transformation)

G
′
µν + i ∗F

′
µν = eiα (Gµν + i ∗Fµν) . (1.11)

Since Gµν is not independent but a function of Fµν defined in (1.4) the above transformations
are in general not a symmetry of the NED equations of motion. For this to be the case the NED
Lagrangian must satisfy a condition which we shall now derive.
With α being small, the infinitesimal transformation takes the form{

δ Gµν = −α ∗Fµν

δ ∗Fµν = αGµν
(1.12)

So in order to have duality invariance the following sequence of relations should hold

α ∗Fµν = −δ Gµν = ∂

∂Fαβ

∂L
∂Fµν

δFαβ = −α ∂

∂Fαβ

∂L
∂Fµν

∗Gαβ ⇐⇒

1
2ϵ

µνρσFρσ = 1
2ϵαβγδ

∂2L
∂Fµν∂Fαβ

∂L
∂Fγδ

= 1
4

∂

∂Fµν

(
ϵαβγδ

∂L
∂Fαβ

∂L
∂Fγδ

)
and if we integrate with respect to Fµν we find (up to a constant that we put to zero)

1
4ϵ

µνρσFρσFµν = 1
4ϵαβγδ

∂L
∂Fαβ

∂L
∂Fγδ

.

The constant of integration is put to zero because within a conformal invariant theory, if we rescale
Fµν the condition must remain the same.
Therefore the condition for the equations of motion to be invariant under these transformations is that
the Lagrangian density satisfies

F ∗
µν F

µν = G ∗
µν G

µν equivalent to E⃗ · B⃗ = D⃗ · H⃗ . (1.13)

Since ∗∗ = −1, for ModMax we find

G ∗
µν G

µν = (LSFµν + L ∗
P Fµν) (L ∗

S Fµν − LPF
µν) = F ∗

µν F
µν
(
L2

S − L2
P

)
+ FµνF

µν (−2LSLP ) =

= −4PL2
S + 4PL2

P + 8SLSLP = −4P
(
cosh2 γ − sinh2 γ

)
= F ∗

µν F
µν .

Therefore ModMax is invariant under duality transformations.
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1.3 Conformal symmetry

Conformal transformations are transformations of coordinates x → x′ for which the metric trans-
forms only with a scale factor Λ(x) as

ηµν → η′
µν = ηρσ

∂xρ

∂x′µ
∂xσ

∂x′ν = Λ(x) ηµν . (1.14)

It is possible to prove that a conformal transformation is given by a transformation of coordinates
under Poincaré group transformations, scale transformations and special conformal transformations
[10].
Poincaré transformations are defined as

x′µ = Ωµ
ν x

ν + aµ with Ωµ
ν ∈ SO(1, 3) = {Ωµ

ν : Ω ηΩT = η , det Ω = 1} , aµ ∈ R4 . (1.15)

Scale transformations are defined as x′µ = αxµ with α > 0. Special conformal transformations have
their finite form depending on a vector parameter bµ and are defined as

x′µ = β(x, b)−1 (xµ − xνxν b
µ) with β(x, b) = 1 − 2 bνx

ν + bνb
ν xρx

ρ . (1.16)

By Noether’s theorem we know that given a general tensor field ϕ and a Lagrangian density L,
to any invariance of the action S[ϕ] =

∫
d4x L under a transformation of its variables corresponds a

conserved current Jµ defined as

δS =
∫
d4x ∂µJ

µ = 0 with Jµ = δxµ L + ∂L
∂(∂µϕ)δϕ (1.17)

where the infinitesimal transformations of coordinates and fields are δxµ = x′µ − xµ, δϕ = ϕ′(x) − ϕ(x)
and Jµ is defined up to a total derivative of an antisymmetric tensor Cµν , such that Jµ ∼ Jµ + ∂νC

µν .
In our case we have (up to the first order)

x′µ = xµ + ϵµ(x) +O(ϵ2) =⇒ δxµ = ϵµ(x) , (1.18)

A′
µ(x′) = ∂xµ

∂x′
ν

Aν(x) =⇒ A′
µ(x) + ϵν∂νAµ(x) +O(ϵ2) = Aµ(x) −Aν(x)∂µϵ

ν +O(ϵ2) thus

δAµ = −ϵν∂νAµ −Aν∂µϵ
ν = ϵνFµν − ∂µ(ϵνAν) . (1.19)

Therefore we have (using antisymmetry of Fµν)

Jµ = ϵν
(
δµ

νL − ∂L
∂Fµα

Fνα

)
− ∂L
∂Fµα

∂α(ϵνAν) = −ϵν Tµ
ν (1.20)

where we recognize in the first term Tµν which is called the stress-energy tensor, while the second term
is neglected because it can be written in the following way with the use of (1.8)

∂L
∂Fµα

∂α(ϵνAν) = ∂α

(
∂L
∂Fµα

ϵνAν

)
− ϵνAν∂α

∂L
∂Fµα

= ∂α

(
∂L
∂Fµα

ϵνAν

)
(1.21)

which is a total derivative of an antisymmetric tensor.

A sufficient condition for a theory to be invariant under conformal transformations is that the
stress-energy tensor is symmetric (Tµν = T νµ), traceless (Tµ

µ = 0) and conserved (∂µT
µν = 0) on the

mass shell, as we will show in the following.
Under Poincaré transformations we have ϵµ = ωµ

ν x
ν + aµ with ωµν = −ωνµ, thus

∂µJ
µ = −ωνα ∂µ(xα Tµν) − aν ∂µT

µν = −ωνα T
αν = 0 ;

3



under scale transformations we have ϵµ = (α− 1)xµ, thus

∂µJ
µ = (1 − α) ∂µ(xν Tµ

ν) = (1 − α)Tµ
µ = 0 ;

under special conformal transformations we have ϵµ = 2xνbν x
µ − bµ xνxν , thus

∂µJ
µ = −2 bµxν T

µν − 2xαbα T
µ
µ + 2 bνxµ T

µν = 0 .

For any NED theory the stress-energy tensor takes the form

Tµν = −ηµνL + ∂L
∂Fµα

F ν
α = −ηµνL −GµαF ν

α = −ηµνL − LS F
µαF ν

α − L ∗
P FµαF ν

α . (1.22)

For ModMax we can see that it is trivially symmetric, traceless

Tµ
µ = ηµν T

µν = −δµ
µL − LS F

µαFµα − L ∗
P FµαFµα = −4L + 4SLS + 4PLP = 0

and conserved. The latter property is proven with the use of (1.8) and noticing that ∂µL = −1
2G

αβ∂µFαβ ;
thus

∂µT
µν = 1

2Gαβ ∂
νFαβ + 1

2Gαµ (∂µF να − ∂αF νµ) = 1
2Gαβ

(
∂νFαβ + ∂αF βν + ∂βF να

)
= 0 .

Therefore the ModMax action and equations of motion are proven to be invariant under conformal
transformations.
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2 Coupling Charged Sources to ModMax
As in Maxwell theory, one can couple different types of charges to a NED theory. The most simple

ones are the electric charged particles, but one can theoretically assume also the existence of magnetic
charges (also called monopoles) as was done by Dirac for Maxwell theory [8]. In this Chapter we intend
to couple to ModMax both electric and magnetic charged particles.

2.1 Coupling electric charges

Given the spacetime with coordinates xµ, we shall describe a point-particle with electric charge
e and mass me moving along the trajectory yµ(τ) parameterized by a free parameter τ . We also
introduce the proper interval s defined by its infinitesimal displacement ds2 = ηµν dy

µdyν . The current
of this particle has the form

jµ
e = e

∫
dτ δ(4) (x− y(τ)) dy

µ

dτ
. (2.1)

In analogy with Maxwell theory, the action which describes the minimal coupling of an electric charged
particle to ModMax theory has the following form

S [A, y] =
∫
d4x L −

∫
d4x jν

eAν −me

∫
dτ

√
dyµ(τ)
dτ

dyµ(τ)
dτ

(2.2)

where L is the ModMax Lagrangian density (1.3).
Now we derive equations of motion from the variational principle.

Varying the action with respect to Aµ we get [11]

∂µ
∂L

∂(∂µAν) − ∂L
∂Aν

= 0 =⇒ ∂µG
µν = jν

e

which gives equations of motion of fields together with Bianchi’s identities

∂µG
µν = jν

e , ∂ ∗
µ F

µν = 0 . (2.3)

The variation of the kinetic term of the particle with respect to yµ gives (choosing τ = s, using
integration by parts and assuming compact support)

−me

∫
dτ

1√
dyµ(τ)
dτ

dyµ(τ)
dτ

dyµ(τ)
dτ

d

dτ
(δyµ) = −me

∫
ds

dyµ(s)
ds

d

ds
(δyµ) =

∫
ds

dpµ
e

ds
δyµ

where pµ
e (s) = me

dyµ(s)
ds

is the 4-momentum of the particle. Then the variation of

−
∫
d4x jν

eAν = −e
∫
d4x

∫
dτ δ(4) (x− y(τ)) dy

ν

dτ
Aν(x) = −e

∫
dτ

dyν

dτ
Aν(y(τ))

with respect to yµ gives (using integration by parts, assuming compact support and choosing τ = s)

−e
∫
dτ

d

dτ
(δyν)Aν(y(τ)) + dyν

dτ
∂µAν(y(τ)) δyµ = −e

∫
ds

dyν

ds
[∂µAν − ∂νAµ] δyµ .

So by extremizing the action with respect to yµ we find the standard Lorentz force

dpµ
e

ds
= e Fµν(y) dyν

ds
. (2.4)
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2.2 Looking for solutions of ModMax equations of motion

At this point we would like to find solutions of the NED field equations (2.3) in the case of ModMax.
The ModMax field equations have the following form

cosh γ ∂µF
µν + sinh γ ∂µ

(
S√

P 2 + S2
Fµν + P√

P 2 + S2
∗Fµν

)
= jν

e , ∂ ∗
µ F

µν = 0 . (2.5)

These equations are non-linear in general, however for some classes of fields they reduce to Maxwell’s
equations. For instance, in the case in which electric and magnetic fields are orthogonal i.e. satisfy
P = 0 (but S ̸= 0), the equations become linear

eηγ ∂µF
µν = jν

e , ∂ ∗
µ F

µν = 0 , (2.6)

where η = S/|S| and takes values η = ±1.
Also, if electric and magnetic fields have the same strength, i.e. S = 0 (but P ̸= 0) the equations
linearize

cosh γ ∂µF
µν = jν

e , ∂ ∗
µ F

µν = 0. (2.7)

More generically we can study the case in which both S and P are nonzero, but proportional to each
other, such that P = αS with α being a constant. Then the equations of motion again reduce to linear
ones (

cosh γ + η
sinh γ√
α2 + 1

)
∂µF

µν = jν
e , ∂ ∗

µ F
µν = 0 , (2.8)

One might have noticed that we have avoided the case in which both S and P are null. This is a
very important class of fields called null. For instance source-free plane waves satisfy this condition.
The issue is that for these fields the equations (2.5) are not analytic and the limit S, P → 0 is not
well defined. One can see that, for instance, taking first S → 0 and then P → 0 produces equations
which differ from those obtained by first taking P → 0 and then S → 0. In the case of ModMax,
this non-analyticity of the Lagrangian field equations can be resolved by going from the Lagrangian
to the Hamiltonian formulation in which the equations are regular for the null fields [4]. We will
consider the ModMax Hamiltonian formulation in Chapter 3. Here we just mention that the source-free
Hamiltonian equations of ModMax are solvable for null fields. For instance one can find the explicit
form of ModMax plane waves using a generalization of Bateman Potentials [12].

Coming back to our simplified equations, we can see that the particular classes of fields mentioned
above satisfy equations of motion which are similar to Maxwell ones, but with different coupling
constants between the fields and the charges. Therefore the solutions of Maxwell’s equations which
describe the fields satisfying P = αS with α being a constant are also the solutions of ModMax theory.
For instance, in Maxwell’s theory the solutions of the equations of motion

∂µF
µν = jν

e , ∂ ∗
µ F

µν = 0 (2.9)

describing the fields generated by a moving electric charged point-particle are called Lienard-Wiechert
fields [11]. Their 4-vector potential is

Aµ
LW = e

4π
vµ

vνLν

∣∣∣∣
s=s0

(2.10)

where Lν = xν − yν(s), vν(s) = dyν(s)
ds

, ων(s) = d2yν(s)
ds2 and s0 is the solution of LαL

α = 0 with
condition x0 > y0(s0). The corresponding Lienard-Wiechert field strength has the following form

Fµν
LW = e

4π
1

(Lαvα)3

[
Lµvν + LµLβ

(
vβων − ωβvν

)
− (µ ↔ ν)

] ∣∣∣∣
s=s0

. (2.11)
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We can easily see that the Lienard-Wiechert fields satisfy the condition P = 0, therefore we can
easily adopt them to be a solution of the ModMax equations (2.6) by making the following rescaling

Fµν
MM,LW = e−γ Fµν

LW . (2.12)

So the difference of ModMax and Maxwell theory is in the rescaling of the Lienard-Wiechert fields. Let
us elaborate on this difference in more detail by considering a charged point-particle fixed at the origin.
In Maxwell theory the fields produced by this charge are the Coulomb ones, while in ModMax theory
we have almost the same expression, but with the factor which rescales the particle charge. Explicitly
we get (in natural units)

E⃗ = e−γ e

4π
r⃗

r3 , B⃗ = 0⃗ (2.13)

where r⃗ = (x, y, z) is the position vector in space. Therefore, from (2.4) it follows that the Coulomb
force acted on a test point-particle of charge q at the position r⃗0 is given by

F⃗ = e−γ eq

4π
r⃗0
r3

0
(2.14)

which differs from Maxwell’s theory by the factor e−γ . However the usual Coulomb force is tested in
experiments with a very high precision, therefore for ModMax to be a physically consistent theory
should have a very small coupling constant γ.
We will see in the following that Coulomb law in the ModMax theory can be made exactly the same as
in Maxwell one, or in other words the scale factor eγ can be removed from the field equations (2.6) by
rescaling the ModMax Lagrangian.

2.3 Different scaling of the ModMax Lagrangian

Let us rescale the ModMax Lagrangian density as follows

L = e−γ
(
cosh γ S + sinh γ

√
S2 + P 2

)
. (2.15)

Then

Gµν = − ∂L
∂Fµν

= e−γ
(

cosh γ + sinh γ S√
P 2 + S2

)
Fµν + e−γ

(
sinh γ P√

P 2 + S2

)
∗Fµν (2.16)

and for P = 0 the field equations now become the same as in (2.9). These have (for S > 0) the
standard Lienard-Wiechert fields as solutions, while the Lorentz force remains the same as in (2.4).
Therefore now the Coulomb law takes exactly the same form as in Maxwell’s theory and does not allow
to distinguish these two theories.

Let us note that the rescaling of ModMax Lagrangian has an important consequence: duality-
invariance condition (1.13) gets modified as follows

G ∗
µν G

µν = e−2γF ∗
µν F

µν (2.17)

and so the duality transformation involves the rotation of the fields (Gµν , e−γ ∗Fµν) in contrast to
that in (1.10).

2.4 Coupling magnetic charges

In standard Maxwell theory it is possible (at least theoretically) to assume the existence of a
magnetic current jµ

g and generalize accordingly Maxwell’s equations. However such a generalization
brings the issue of the existence of the electromagnetic 4-vector potential (at least defined in the whole
space). Dirac managed to formulate a consistent electromagnetic theory with magnetic charges (called

7



monopoles) and a potential defined everywhere except for a line going from the monopole to infinity
(the so-called "Dirac’s string") [8]. We would like to carry out a similar construction for ModMax.

We suppose that in addition to an electric charged point-particle we have a point-like monopole
of charge g and mass mg moving along a trajectory z(τ) parameterized by τ . We have the magnetic
current

jµ
g = g

∫
dτ δ(4) (x− z(τ)) dz

µ

dτ
. (2.18)

In analogy with Maxwell theory, we modify Bianchi’s identities in (2.3) by introducing the magnetic
current as follows

∂ ∗
µ F

µν = jν
g . (2.19)

As happens in Maxwell theory, we can assume that Fµν can be written in terms of a vector potential
defined everywhere except at least in one point on every closed surface enveloping the magnetic
monopole; in the best case we can assume that this fails only on a continuous line going from the
monopole to infinity (the Dirac’s string). We now parameterize the string worldsheet with a time
parameter τ and a space parameter σ ∈ [0; ∞) and since it starts from the monopole we can write its
embedding in spacetime as follows

wµ(τ, σ) = zµ(τ) + uµ(τ, σ) with the condition uµ(τ, 0) = 0 . (2.20)

We now generalize the electromagnetic field strength as follows

Fµν = ∂µAν − ∂νAµ − ∗Cµν =⇒ ∂ ∗
µ F

µν = jν
g = ∂µC

µν (2.21)

where Cµν is a tensor that has its support on the string worldsheet. It has the following form

Cµν(x) = −g
∫∫

dτdσ

(
∂wµ

∂τ

∂wν

∂σ
− ∂wν

∂τ

∂wµ

∂σ

)
δ(4) (x− w(τ, σ)) . (2.22)

To check that this field satisfies the equations (2.21) we need to use Stokes’ Theorem, which states
that given two functions U, V defined on a surface S of variables x, y with boundary ∂S, the following
equality holds ∫∫

S
dxdy

(
∂U

∂x

∂V

∂y
− ∂U

∂y

∂V

∂x

)
=
∫

∂S
U

(
∂V

∂x
dx+ ∂V

∂y
dy

)
. (2.23)

Here we have a surface with parameters (τ, σ) and the boundary (not at infinity) is given only by the
trajectory of the monopole at σ = 0, therefore

∂µC
µν = +g

∫∫
dτdσ

(
∂wµ

∂τ

∂wν

∂σ
− ∂wν

∂τ

∂wµ

∂σ

)
∂δ(4) (x− w)

∂wµ
=

g

∫∫
dτdσ

(
∂δ(4) (x− w)

∂τ

∂wν

∂σ
− ∂wν

∂τ

∂δ(4) (x− w)
∂σ

)
=

g

∫
dτ δ(4) (x− w(τ, 0)) ∂w

ν(τ, 0)
∂τ

= g

∫
dτ δ(4) (x− z(τ)) dz

µ

dτ
= jν

g .

We define the action in analogy with the one in (2.2) as

S [A, y, z, u] =
∫
d4x L −

∫
d4x jν

eAν −me

∫
dτ

√
dyµ(τ)
dτ

dyµ(τ)
dτ

−mg

∫
dτ

√
dzµ(τ)
dτ

dzµ(τ)
dτ

(2.24)

where L is as in (1.3) but with Fµν defined in (2.21).
We can see that the action depends on the vector potential, the trajectories of the charges and the
Dirac’s string. The latter must however be unphysical, i.e. the physical effects should not depend on
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the string position in space. A necessary condition for this to happen is that the string equations of
motion are not independent but follow from the other ones.

Let us see which equations of motion we get. Varying the action with respect to Aµ we get again
the electromagnetic field equations

∂µG
µν = jν

e (2.25)

accompanied by the Bianchi’s identities sourced by the magnetic current (2.19).
Varying the action with respect to yµ we get

dpµ
e

ds
= e [∂µAν − ∂νAµ]

∣∣
y

dyν

ds
(2.26)

and this is equal to the standard Lorentz force induced by the field strength (2.21) if Cµν(y) = 0 which
is true if the electric particle never passes through the string, so we impose the condition (known as
Dirac’s veto) y(τ) ̸= w(τ, σ). This implies that on the string the electric current is zero and equations
(2.25) reduce to

jµ
e (w) = 0 , ∂µG

µν(w) = 0 . (2.27)

Varying the action with respect to uµ we get∫
d4x

∂L
∂Fαβ

δ(−∗Cαβ) =
∫
d4x ∗GαβδCαβ = −g

∫
d4x ∗Gαβδ

∫∫
dτdσ

∂wα

∂τ

∂wβ

∂σ
δ(4) (x− w) =

−g
∫∫

dτdσ ∗Gαβ(w)
(
∂δwα

∂τ

∂wβ

∂σ
− ∂δwα

∂σ

∂wβ

∂τ

)
+ ∂∗Gαβ(w)

∂wµ

∂wα

∂τ

∂wβ

∂σ
δwµ =

−g
∫∫

dτdσ

(
∂(∗Gαβδwα)

∂τ

∂wβ

∂σ
− ∂(∗Gαβδwα)

∂σ

∂wβ

∂τ

)
+

−g
∫∫

dτdσ
∂∗Gαβ(w)
∂wµ

(
∂wα

∂τ

∂wβ

∂σ
δwµ − ∂wµ

∂τ

∂wβ

∂σ
δwα + ∂wβ

∂τ

∂wµ

∂σ
δwα

)
.

We are left with two integrals. The first one turns out to be null by Stokes’ Theorem in (2.23) because
on the boundary δuµ(τ, 0) = 0, while the second one, upon rearranging indices and noticing that
δwµ = δuµ, takes the form

g

∫∫
dτdσ

(
∂∗Gαβ

∂wµ
+ ∂∗Gβµ

∂wα
+ ∂∗Gµα

∂wβ

)
∂wµ

∂τ

∂wβ

∂σ
δuα .

Therefore the variation of the action with respect to uµ produces the Dirac string equations of motion(
∂∗Gαβ

∂wµ
+ ∂∗Gβµ

∂wα
+ ∂∗Gµα

∂wβ

)
∂wµ

∂τ

∂wβ

∂σ
= 0 (2.28)

which are identically satisfied because of Dirac’s veto (2.27). This indicates that the string does not
have independent dynamics and is hence unphysical.
Varying the action with respect to zµ we get

−g
∫
ds ∗Gαβ(z)δzαdz

β

ds
+mg

∫
ds

d2zµ

ds2 δzµ .

The first contribution is obtained by varying the purely electromagnetic part Lagrangian of the action
in the same way as we did for the string, applying Stokes’ Theorem in (2.23) and using condition (2.28),
while the second contribution is given by the variation of the monopole kinetic part of the action.
Denoting the monopole 4-momentum by pµ

g (s) = mg
dzµ(s)
ds

, we get the Lorentz force acting on the
magnetic charged particle

dpµ
g

ds
= g ∗Gµν dzν

ds
. (2.29)
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Let us conclude this Section by noticing that there exists a formulation for describing monopoles
developed by Wu and Yang [8] which allows to avoid Dirac’s veto (and so which makes the string
unobservable). Actually this formulation turns out to be valid not only for magnetic charges in
Maxwell’s theory, but for all NEDs. We will discuss it in the Appendix A.1.

2.5 Different choices for coupling charges

We shall start this Section from making an observation about equations of motion of fields produced
by the action (2.24). The form of equations (2.19) and (2.25) allow us to extend duality rotation to
currents in order that they remain form-invariant under duality (note that this is not a real symmetry,
since it mixes electric and magnetic constant charges). To do so we just need to apply the duality
rotation in (1.10) to the 2-vector (jµ

e , j
µ
g ).

Let us now consider the case of the rescaled ModMax Lagrangian (2.15). In this case if we want to
preserve duality symmetry with the condition (2.17), equations of motion would assume the form

∂µG
µν = jν

e , e−γ ∂ ∗
µ F

µν = jν
g (2.30)

which means that we effectively rescale the value of the magnetic charge in comparison to (2.19). This
brings a new definition of Cµν in (2.22) which becomes

Cµν(x) = −eγ g

∫∫
dτdσ

(
∂wµ

∂τ

∂wν

∂σ
− ∂wν

∂τ

∂wµ

∂σ

)
δ(4) (x− w(τ, σ)) . (2.31)

Thus varying the action (2.24) (with L the one in (2.15)) with respect to its variables we get the
equations of motion of fields in (2.30); Lorentz force for electric particles (2.26) and condition of Dirac’s
veto (2.28) remain the same while Lorentz force for magnetic particles becomes

dpµ
g

ds
= eγ g ∗Gµν dzν

ds
. (2.32)

If we want to get rid of the factor e−γ in (2.30) we could change the definition of magnetic current,
so that it becomes dependent on γ as follows

jµ
g = e−γ g

∫
dτ δ(4) (x− z(τ)) dz

µ

dτ
. (2.33)

With this new definition we restore the equation of motion of fields (2.25) and (2.19), Cµν recovers its
former form (2.22) as well as the Lorentz force for magnetic particles (2.29).

To summarize, we have three different choices for coupling charges to ModMax assuming the
canonical minimal coupling to electric currents:

1. Non-rescaled ModMax (1.3) and standard definition of magnetic current (2.18).

2. Rescaled ModMax (2.15) and standard definition of magnetic current (2.18): this preserves
duality symmetry with the modified condition (2.17) and makes the standard Lienard-Wiechert
fields (2.11) to be a solution of ModMax, but the sourced Bianchi’s identities acquire the explicit
dependence on γ.

3. Rescaled ModMax (2.15) and new definition of magnetic current (2.33) containing the dependence
on γ: this removes the explicit dependence on γ in the equations of motion (2.30), but modifies
the formal duality transformation of electric and magnetic currents so that now we have to apply
(1.10) to the 2-vector (jµ

e , e
γ jµ

g ).

From now on within this paper we shall refer to one of these different choices with their relative number.
In Chapter 3 we will see that the Dirac quantization condition for the electric and magnetic charges
changes from case to case.

10



2.6 Coupling dyons

Upon having assumed the existence of magnetic charges, one can also assume the existence of
particles carrying both electric and magnetic charges; such kind of particles are called dyons. We would
like to couple dyons to ModMax. We start from considering a dyon with mass m forming the electric
and magnetic currents along zµ(τ)

jµ
e = e

∫
dτ δ(4) (x− z(τ)) dz

µ

dτ
, jµ

g = g

∫
dτ δ(4) (x− z(τ)) dz

µ

dτ
. (2.34)

The Dirac’s string has the same form (and assume same notation) of the previous one in (2.20), as well
as the field strength (2.21).
In analogy of what have been done previously, we write the action of this configuration as

S [A, z, u] =
∫
d4x L −

∫
d4x jν

eAν −m

∫
dτ

√
dzµ(τ)
dτ

dzµ(τ)
dτ

(2.35)

where L is the one in (1.3).
Like above, varying the action with respect to Aµ we get equations of fields

∂µG
µν = jν

e (2.36)

together with Bianchi’s identities
∂ ∗

µ F
µν = jν

g . (2.37)

Varying the action with respect to zµ we find the Lorentz force for dyons

dpµ

ds
= (e Fµν + g ∗Gµν) dzν

ds
(2.38)

while varying with respect to uµ we find same condition (2.28), which is identically satisfied if we
assume that the dyon trajectory cannot cross the string due to Dirac’s veto.

If we assume other coupling choices, such as number 2, the action becomes as (2.35) with L in
(2.15) and we get equations of fields and Lorentz force for dyons

∂µG
µν = jν

e , e−γ ∂ ∗
µ F

µν = jν
g ,

dpµ

ds
= (e Fµν + eγg ∗Gµν) dzν

ds
(2.39)

while condition (2.28) stays the same.
If we make coupling choice number 3 we have the action (2.35) with L in (2.15) and we restore

equations (2.36), (2.37) and (2.38).

2.7 Generalization of Lienard-Wiechert fields

Now we would like to generalize Lienard-Wiechert fields in presence of dyons; in other words
we would like to find the fields produced by a moving point-dyon with a given trajectory that is
not influenced by its own generated fields. We shall see that we can use our knowledge of standard
Lienard-Wiechert fields (2.11) to solve the problem.
We want to solve equations (2.36), (2.37) simultaneously. We start from finding solution to equations

∂µK
µν =

∫
dτ δ(4) (x− z(τ)) dz

µ

dτ
, ∂ ∗

µ K
µν = 0 (2.40)

which, in analogy with (2.11), is given by

Kµν = 1
4π

1
(Lαuα)3

[
Lµvν + LµLβ

(
vβων − ωβvν

)
− (µ ↔ ν)

] ∣∣∣∣
s=s0

(2.41)
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where Lν = xν − zν(s), vν(s) = dzν(s)
ds

, ων(s) = d2zν(s)
ds2 and s0 the solution of LαL

α = 0 with
condition x0 > z0(s0).

We therefore make the ansatz for the field produced by the dyon as follows

Fµν = e−γ e Kµν − g ∗Kµν . (2.42)

It is clear that equations (2.37) are satisfied.
We have the identity ∗KµνKµν = 0. We also introduce the notation K2 = KµνKµν ; explicitly it
becomes

KµνKµν = 2
(4π)2 (Lαuα)6

[
LβL

β(1 − 2Lδω
δ) − (Lδu

δ)2
]

(2.43)

and imposing condition LαL
α = 0 we always have K2 < 0.

So now we evaluate the two Lorentz scalars S, P resulting to be proportional to each other

−4S = FµνFµν = (e−2γ e2 − g2) K2 , −4P = ∗FµνFµν = 2e−γ eg K2 =⇒ P = 2e−γ eg

e−2γ e2 − g2S .

We then evaluate Gµν from (1.4) remembering the proportionality between S, P and that −K2 > 0

Gµν =
(

cosh γ + sinh γ e
−2γ e2 − g2

e−2γ e2 + g2
−K2

| −K2|

)
Fµν + sinh γ 2e−γ eg

e−2γ e2 + g2
−K2

| −K2|
∗Fµν =⇒

Gµν = e Kµν − e−γg ∗Kµν (2.44)

and this solves equations (2.36). Therefore our ansatz (2.42) is correct and it is the generalized
Lienard-Wiechert field for ModMax (with coupling choice number 1).

We can proceed in analogue way to find Lienard-Wiechert fields for different coupling choices. For
coupling choice number 2 we get

Fµν = e Kµν − eγ g ∗Kµν , Gµν = e Kµν − e−γ g ∗Kµν (2.45)

and satisfy equations (2.39). For coupling choice number 3

Fµν = e Kµν − g ∗Kµν , Gµν = e Kµν − e−2γ g ∗Kµν (2.46)

and satisfy equations (2.36), (2.37).

Now given the fields, one can see how a dyon interacts with them in the assumption that its charges
are small enough to not change perceptibly the fields. To do so we need to consider the Lorentz
force caused by the fields produced by the dyon described above acting on a test-dyon of electric and
magnetic charges q and p in a point of the space xµ and having a 4-velocity vµ. We denote with the
index J = 1, 2, 3 the different coupling choices as before. We get (doing some trivial calculation)

dpµ
1

ds
=
[
e−γ(qe+ pg) Kµν + (pe− qg) ∗Kµν] vν , (2.47)

dpµ
2

ds
= [(qe+ pg) Kµν + eγ(pe− qg) ∗Kµν ] vν , (2.48)

dpµ
3

ds
=
[
(qe+ e−2γpg) Kµν + (pe− qg) ∗Kµν

]
vν . (2.49)
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2.8 Looking for solutions of ModMax equations of motion with dyons

We have found the solution for the fields produced by a moving dyon in ModMax electrodynamics.
In this Section we would like to find solutions for other non-trivial configurations of dyons. Explicitly
and in a non-covariant form equations of motion (2.36), (2.37) read (with jµ = (ρ, j⃗))

∇⃗ · B⃗ = ρg , ∂tB⃗ + ∇⃗ × E⃗ = −j⃗g , ∇⃗ · D⃗ = ρe , ∂tD⃗ − ∇⃗ × H⃗ = −j⃗e . (2.50)

Since equations of motion are non-linear, we cannot simply sum up solutions to get a new one, so we
cannot predict easily for instance the fields produced by two moving dyons. The idea is to try to find
configurations with a nice relation between the two Lorentz scalars S, P (1.2) in order to simplify our
equations as done in Section 2.2: thus we shall proceed making ansatzes and evaluating their Lorentz
scalars.

We work in the 4-dimensional spacetime with coordinates (t, x, y, z) = (t, r⃗) and we start from the
static case. Unfortunately for two fixed dyons of arbitrary charges we could not find a solution easily;
however if we require that their charges are equal, the problem becomes very simple; actually we can
find a bigger class of solutions imposing a condition on their charge densities. We ask that the charge
density of our configuration satisfies

ρe(r⃗) = ef(r⃗) , ρg(r⃗) = gf(r⃗) (2.51)

where e, g are two electric and magnetic charges and f(r⃗) is a function with dimension of length at
power −3. Our ansatz for fields produced by this configuration is

E⃗(r⃗) = e−γ e

4π

∫
d3r′ f(r⃗′) r⃗ − r⃗′

|r⃗ − r⃗′|3
, B⃗(r⃗) = g

4π

∫
d3r′ f(r⃗′) r⃗ − r⃗′

|r⃗ − r⃗′|3
. (2.52)

In this case we find that
P/S = 2e−γ eg

e−2γe2 − g2 (2.53)

which is constant, so the two Lorentz scalars are proportional to each other and we see easily that the
electric displacement and the magnetic induction fields are (remembering the definition of Gµν (1.4))

D⃗(r⃗) = e

4π

∫
d3r′ f(r⃗′) r⃗ − r⃗′

|r⃗ − r⃗′|3
, H⃗(r⃗) = e−γ g

4π

∫
d3r′ f(r⃗′) r⃗ − r⃗′

|r⃗ − r⃗′|3
. (2.54)

Knowing that

r⃗ − r⃗′

|r⃗ − r⃗′|3
= −∇⃗

( 1
|r⃗ − r⃗′|

)
, ∇⃗2

( 1
|r⃗ − r⃗′|

)
= −4π δ(3)(|r⃗ − r⃗′|)

one can easily check that these fields are a solution (and so the solution) for our charge densities. This
is a quite big class of configurations; for instance two fixed dyons of same charges, every uniformly
fixed charged object (a plane, a sphere etc), but also many more non uniform configurations.
Finding classes of solutions in the dynamic case is far more complicated and nothing interesting has
been found.

To conclude this Section we want to specify that we solved equations of motion related to coupling
choice number 1. If one is interested to see which form the solutions assume in the other choices,
he has to do the following steps. To deal with the coupling choice number 2 one has to send the
fields (E⃗, B⃗) → (eγE⃗, eγB⃗); for the coupling choice number 3 one has also to send the magnetic charge
g → e−γg.

13



3 Dirac’s Charge Quantization for ModMax
While studying Maxwell theory with the presence of electric and magnetic charges, Paul Dirac

ended up to a quantization condition that must hold between the two kinds of charges; this seems
to explain why electric charge gets quantized, however existence of magnetic charges is required, and
these have not been observed yet. In this Chapter we will consider an analogue problem for ModMax
with the aim to figure out whether the electric-magnetic charge quantization condition gets modified.
One way to derive Dirac’s quantization is to pass to the Hamiltonian formulation as Quantum
Mechanics requires [8]. To do so we need to perform the Legendre transform from the Lagrangian to
the Hamiltonian.

3.1 Legendre transform

Given a general Lagrangian L(q, q̇) dependent on generalized coordinates q and velocities q̇ (here q
and q̇ can be interpreted as arrays of variables), we define Legendre transform as follows

(q, q̇) → (q, p) =
(
q,
∂L

∂q̇

)
(3.1)

where p are the generalized momenta associated to coordinates q.
We now shall write Legendre transform for ModMax. We start from considering the action minimally
coupled with only pure electric and magnetic charges (we do not consider dyons). We have written its
Lagrangian formulation with the action (2.24) which is linked to the Lagrangian through the relation

S =
∫
dt L . (3.2)

So we need to specify a parametrization for our free parameter τ , and a proper choice is to set
τ = t; then for our trajectories we set

y0 = z0 = t , w0 = t =⇒ u0(τ = t, σ) = 0 . (3.3)

We have as generalized coordinates(
Aµ(x⃗), y⃗, z⃗, u⃗(σ)

)
with x⃗ ∈ R3 , σ ∈ (0,∞) ; (3.4)

notice that we have the continuous parameters x⃗, σ defining continuous sets of coordinates Aµ(x⃗), u⃗(σ)
and we did not include σ = 0 since the string (2.20) brings condition u⃗(t, 0) = 0.
We define the associated generalized velocities as follows

Ȧµ(x⃗) = dAµ(x⃗)
dt

= ∂0A
µ(x⃗) , ˙⃗y = dy⃗

dt
= v⃗e , ˙⃗z = dz⃗

dt
= v⃗g , ˙⃗u(σ) = du⃗(σ)

dt
. (3.5)

The Lagrangian is given by

L =
∫
d3x L − eA0(y⃗) + e v⃗e · A⃗(y⃗) −me

√
1 − v⃗2

e −mg

√
1 − v⃗2

g (3.6)

where L is the ModMax in (1.3).
Legendre transform defines the following conjugated momenta.

For the fields Aµ(x⃗) we have

pµ
A(x⃗) = ∂L

∂(∂0Aµ(x⃗)) = ∂L
∂F0µ

(x⃗) = −G0µ(x⃗) ⇐⇒ p⃗A(x⃗) = ∂L
∂E⃗

= D⃗(x⃗) , p0
A(x⃗) = 0 . (3.7)
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For yi we have

pi
y = ∂L

∂ẏi
= e Ai(y⃗) +me

vi
e√

1 − v⃗2
e

. (3.8)

For zi it is useful to use the following relations

∂w0

∂t
= 1 , ∂wi

∂t
= vi

g + u̇i ,
∂w0

∂σ
= 0 , ∂wi

∂σ
= ∂ui

∂σ

so using antisymmetry of Gµν and properties of δ(4)(x− w) we get∫
d3x

∂

∂żi
L =

∫
d3x

1
2
∂L
∂Fµν

∂(− ∗Cµν)
∂vi

g

= g

∫
d3x ∗Gµν(x⃗) ∂

∂vi
g

∫∫
dtdσ

∂wµ

∂t

∂wν

∂σ
δ(4) (x− w(t, σ)) =

g

∫
dσ ∗Gjm(w⃗) δ j

i

∂um

∂σ
= g

∫
dσ ϵimnD

n∂u
m

∂σ
= −g

∫
dσ

[
D⃗ × ∂u⃗

∂σ

]i

;

overall we have that the conjugated momenta to zi are

pi
z = ∂L

∂żi
= −g

∫
dσ

[
D⃗(w⃗(σ)) × ∂u⃗

∂σ

]i

+mg

vi
g√

1 − v⃗2
g

. (3.9)

For the string ui(σ) we get (doing similar calculations as above) for σ > 0∫
d3x

∂

∂u̇i(σ)L = g

∫
dσ′ ∗Gµν(w⃗) ∂

∂u̇i(σ)

(
∂wµ

∂t

∂wν

∂σ′

)
= g

∫
dσ′ ∗Gjm(w⃗) δ j

i δ(σ − σ′) ∂u
m

∂σ′ =⇒

pi
u(σ) = ∂L

∂u̇i(σ) = −g
[
D⃗(w⃗(σ)) × ∂u⃗

∂σ

]i

, σ > 0 . (3.10)

3.2 The ModMax Hamiltonian

To derive the Hamiltonian H(q, p) associated to L(q, q̇) we need to invert Legendre transform (3.1)
with respect to p in order to find q̇ = q̇(q, p), then H is given by

H(q, p) =
[
q̇ · ∂L

∂q̇
− L(q, q̇)

] ∣∣∣∣
q̇=q̇(q,p)

. (3.11)

Notice that Legendre transform is required to be invertible, otherwise we could not write q̇ in terms of
(q, p). However we will see that in our specific case is not possible (at least for all momenta). This
complication showed up also in Maxwell theory, and Dirac developed a formalism that revealed to
be very powerful to deal with this problem but not only; it is known as the constrained Hamiltonian
formalism.
Within this formalism we look to singular parts of Legendre transform as primary constraints, such as
constraints between coordinates and momenta that hold without using equations of motion. We do
the inversion of Legendre transform when possible writing the so-called Canonical Hamiltonian, and
then add the constraints in a proper way to get the so-called Total Hamiltonian. We will describe the
details step by step.

In our case we have that from equations (3.7) and (3.10) derive

φ0(x⃗) = p0
A(x⃗) ≈ 0 and φi(σ) = pi

u(σ) + g

[
D⃗(w⃗(σ)) × ∂u⃗

∂σ

]i

≈ 0 (3.12)

where ≈ stands for "weak equality", such as an equality that does not necessary hold anymore if we
consider a variation of the quantities involved (so X ≈ 0 means X = 0 but does not imply δX = 0).
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To make a consistent description of the dynamics of the system we need that the constraints remain
null throughout their time evolution, which means that their total time derivative must be null (with
weak equality); these requirements are called consistency conditions.

We start from writing the Canonical Hamiltonian HC ; it is given with same procedure as in the
non-pathological case, but omitting contributions of momenta involved in the singular parts of Legendre
transform. In our specific case we do not consider p0

A(x⃗) and pi
u(σ). The details of calculations are

contained in Section A.2 in the Appendix and we find that the Canonical Hamiltonian is given by

HC =
∫
d3x

[
H + e δ(3)(x⃗− y⃗)A0(x⃗) −A0(x⃗) ∇⃗ · D⃗

]
+
√
π⃗2

e +m2
e +

√
π⃗2

g +m2
g (3.13)

where we recognize the two effective momenta

π⃗e = p⃗y − e A⃗(y⃗) , π⃗g = p⃗z + g

∫
dσ D⃗(w⃗(σ)) × ∂u⃗

∂σ
(3.14)

and the source-free Hamiltonian density of ModMax

H = Hγ(D⃗, B⃗) = 1
2 cosh γ

(
D⃗2 + B⃗2

)
− 1

2 sinh γ
√(

D⃗2 + B⃗2
)2

− 4
(
D⃗ × B⃗

)2
. (3.15)

We specify that here B⃗ depends on the vector potential and the string through the relation

B⃗(t, x⃗) = ∇⃗ × A⃗(x⃗) − g

∫
dσ

∂u⃗(t, σ)
∂σ

δ(3) (x⃗− z⃗(t) − u⃗(t, σ)) . (3.16)

We also incidentally specify that (3.15) is the Hamiltonian we were talking about in Section 2.2
which admits source-free null field solutions and in this formulation we have as independent variables
B⃗, D⃗.

To get the Total Hamiltonian HT we have to add to the Canonical Hamiltonian all the constraints
(related to the momenta omitted before) weighted with some arbitrary multipliers, usually called
Lagrange’s multipliers.
In our case we define four arbitrary multipliers λ0(x⃗), λ⃗(σ) (actually they are a continuous set of
multipliers dependent on the continuous parameters x⃗ ∈ R3 and σ ∈ (0,∞)) which allows us to write

HT = HC +
∫
d3x λ0(x⃗)φ0(x⃗) +

∫
dσ λ⃗(σ) · φ⃗(σ) . (3.17)

This is the Hamiltonian that we wanted. This construction guarantees that we restore the same
dynamics of the Lagrangian formalism under some conditions that will be discussed in the next Section.

3.3 Conservation of constraints

Firstly we need to verify that consistency conditions hold (four in total in our case). The best case
is that constraints are conserved during time evolution of the system just by satisfying equations of
motion (otherwise we need to define other so-called secondary constraints and verify further consistency
conditions). Fortunately this is the case we will find.
To evaluate the total time derivative of a function in Hamiltonian formulation we need to use Poisson
Brackets (PB). Given the Hamiltonian H(q, p), we denote the PB between two functions f(q, p; t) and
g(q, p; t) (can be also explicitly time dependent) as follows

{f, g} = ∂f

∂q
· ∂g
∂p

− ∂f

∂p
· ∂g
∂q

. (3.18)
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We then have that total derivative of a function f(q, p; t) is given by

df

dt
= {f,H} + ∂f

∂t
. (3.19)

Going to our specific case, the total derivative of a general function f dependent on our generalized
coordinates, momenta and time assumes the form

df

dt
=
∫
d3x

∂f

∂Aµ(x⃗)
∂HT

∂pµ
A(x⃗) +

∫
dσ

∂f

∂ui(σ)
∂HT

∂pi
u(σ) + ∂f

∂yi

∂HT

∂pi
y

+ ∂f

∂zi

∂HT

∂pi
z

+ (3.20)

−
∫
d3x

∂f

∂pµ
A(x⃗)

∂HT

∂Aµ(x⃗) −
∫
dσ

∂f

∂pi
u(σ)

∂HT

∂ui(σ) − ∂f

∂pi
y

∂HT

∂yi
− ∂f

∂pi
z

∂HT

∂zi
+ ∂f

∂t
.

Therefore first consistency condition reads

dφ0(x⃗)
dt

= dp0
A(x⃗)
dt

= ∇⃗ · D⃗(x⃗) − e δ(3)(x⃗− y⃗) ≈ 0 (3.21)

which is weakly null thanks to equations of motion of fields.
For the other three consistency conditions the details about the calculations are contained in Section A.3
in the Appendix and in the end we get

dφi

dt
(σ) = g ϵirm

∂ur

∂σ

[(
λm(σ) + ∂HT

∂πm
g

)
∂nD

n(w⃗(σ)) − e
∂HT

∂πm
e

δ(3)(y⃗ − w⃗(σ))
]

≈ 0 (3.22)

which are weakly null thanks to Dirac’s veto (for σ > 0).

Now we need to evaluate PB between the constraints; we would like that they all commute and so
are all first-class; this tells us that we restored degrees of freedom of the Lagrangian formalism and the
complete dynamic description of the system. In our case the only non-trivial PB to evaluate are

{φi(σ), φj(σ′)} =
∫
dσ′′

(
∂φi(σ)
∂um(σ′′)

∂φj(σ′)
∂pm

u (σ′′) − ∂φj(σ′)
∂um(σ′′)

∂φi(σ)
∂pm

u (σ′′)

)
. (3.23)

Actually the result is already contained in (3.22), and explicitly we have

{φi(σ), φj(σ′)} = g ϵijk
∂uk

∂σ
δ(σ − σ′) ∂nD

n(w⃗(σ)) . (3.24)

We can see that also these PB are null because of Dirac’s veto. Therefore all constraints are first-class.

3.4 Dirac’s quantization condition

At this point we are ready to make the transition to Quantum Mechanics. In particular we have that
first-class constraints become conditions that the state vector ψ has to satisfy. In our case constraints
(3.12) read

φj(σ)ψ = 0 ⇐⇒
[
−i ∂

∂uj(σ) + g ϵjlmD
l(w⃗(σ))∂u

m

∂σ

]
ψ(u⃗) = 0 . (3.25)

The solution to this equation is given by

ψ(u⃗) = exp
{

−ig
∫

S
dS⃗ · D⃗

}
ψ(u⃗0) with dS⃗ = ∂u⃗′

∂σ
dσ × du⃗′(σ) (3.26)
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where u⃗0 corresponds to some fixed position of the string and S is a surface going from w⃗0 = z⃗ + u⃗0 to
w⃗. It is easy to check that this is a solution since (the other calculations are trivial)

∂

∂ui(σ)

∫
ϵmjk

∂u′j

∂σ′ dσ
′ du′k Dm(x⃗) = ϵmjkδ

ik
∫
dσ′ δ(σ − σ′)∂u

j

∂σ′D
m(w⃗(σ′)) = ϵimj

∂uj

∂σ
Dm(w⃗(σ)) .

Now, since the argument of the exponent in (3.26) is purely imaginary, if we make a whole rotation
of 2π of the string, the following relation must hold

g

∫
S
dS⃗ · D⃗ = 2πN (3.27)

with N ∈ Z and S being a closed surface. Therefore, indicating with V the volume enclosed by S,
using Stokes’ theorem and using equations of motion we finally end up to the quantization condition,
such as

g

∫
S
dS⃗ · D⃗ = g

∫
V
d3x ∇⃗ · D⃗ = g

∫
V
d3x j0

e (x) = ge = 2πN =⇒ eg

2π ∈ Z . (3.28)

We can see that this result is independent on γ and is the same that Dirac found for Maxwell theory.

If we now change our Lagrangian so that we make coupling choice number 2, we find analogue
Legendre transform, however since Cµν gained a factor eγ (2.31) we get instead of (3.9) and (3.10)

pi
z = ∂L

∂żi
= −eγg

∫
dσ

[
D⃗(w⃗(σ)) × ∂u⃗

∂σ

]i

−mg

vi
g√

1 − v⃗2
g

, (3.29)

pi
u(σ) = ∂L

∂u̇i(σ) = −eγg

[
D⃗(w⃗(σ)) × ∂u⃗

∂σ

]i

. (3.30)

The Hamiltonian stays formally the same as in (3.17), but H changes: it is not only rescaled by the
overall factor e−γ , but also the field D⃗ is rescaled as D⃗ → eγD⃗; thus we have

H = 1
2e

−γ cosh γ
(
e2γ D⃗2 + B⃗2

)
− 1

2e
−γ sinh γ

√(
e2γ D⃗2 + B⃗2

)2
− 4 e2γ

(
D⃗ × B⃗

)2
. (3.31)

Also the following quantities become

π⃗g = p⃗z + eγg

∫
dσ D⃗(w⃗(σ)) × ∂u⃗

∂σ
, φi(σ) = pi

u(σ) + eγg

[
D⃗(w⃗(σ)) × ∂u⃗

∂σ

]i

. (3.32)

Consistency conditions remain valid (they just gain a factor eγ in front of g as shown in (3.32)) and
our state vector ψ and quantization condition become

ψ(u⃗) = exp
{

−ieγg

∫
S
dS⃗ · D⃗

}
ψ(u⃗0) =⇒ eγ eg

2π ∈ Z . (3.33)

This time the quantization condition is manifestly dependent on γ.
If we make coupling choice number 3, we restore the former Legendre transform, the vector state ψ

and the quantization condition (3.28); the Hamiltonian stays the same as in (3.17) but with H as in
(3.31).

We finish this Section just mentioning that the same procedure will not work if we consider a single
dyon coupled to ModMax since the integral done in (3.28) turns out to be not well defined.
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4 Compton Effect in ModMax
Compton effect is a well known scattering process which involves a photon interacting with an

electron which results in the increase of the wavelength of the scattered photon. This effect was
described for the first time by Compton in 1923 assuming the radiation interacting with the electron
to show particle-like behavior, which means considering light made of particles called photons.
In [13] Compton effect has been studied in a magnetic background for general NED theories whose
Lagrangians satisfy some constraints; in particular the mixed derivative with respect to S, P of the
Lagrangian density L(S, P ) was assumed to be null, which is not the case for ModMax. In this Chapter
our aim is to study Compton effect in a magnetic background for ModMax, and we will do it for two
different orientations of B⃗ and then try to interpret the results.

4.1 Plane waves in uniform magnetic background field

To start we need to find ModMax plane wave solutions in a magnetic background. As we have
already mentioned, within source-free ModMax Lagrangian formulation it is not possible to find plane
wave solutions to equations of motion in the vacuum. However it is possible to find weak electromagnetic
waves in presence of a constant strong background field as shown in [5], leading to the birefringence
effect, which consists in a double refraction of ray of light that is split by polarization (with respect to
the optical axis of the material) into two rays taking different geodesic paths and the electromagnetic
background plays the role of an optical material. In particular, for a generic non-linear Lagrangian
density in the form L(S, P ) with uniform constant background fields E⃗, B⃗, weak plane wave solutions
are described by the wave 4-vector kµ = (ω, k⃗) satisfying [6]

k2 = n±(kρFρµ)(kνF
νµ) (4.1)

where Fµν is the background field and n± are the so-called "birefringence indices" since they determine
two forms of the dispersion law. For ModMax the birefringence indices are [5]

n− = 0 , n+ = tanh γ√
S2 + P 2 − tanh γ S

. (4.2)

In 3-vector notation we find that (4.1) reads

ω2 − k⃗2 = n±
[
(k⃗ · E⃗)2 − (ωE⃗ + k⃗ × B⃗)2

]
. (4.3)

For n− = 0 we get usual plane waves with ω = |⃗k| travelling with the speed of light. For n+, if we only
take a uniform magnetic field B⃗ as the background, we see that the equation reduces to

ω2 − k⃗2 = 2 tanh γ
B⃗2(1 + tanh γ)

[
(k⃗ · B⃗)2 − k⃗2B⃗2

]
= k⃗2 2 tanh γ

1 + tanh γ
(
cos2 φ− 1

)
=⇒

ω2 = k⃗2
(
cos2 φ+ e−2γ sin2 φ

)
with cosφ = k⃗ · B⃗

|⃗k||B⃗|
(4.4)

so we get a plane wave solution moving slower than light since γ > 0 (actually this result motivates
the choice of non-negative γ).
Indicating with (E , p⃗) the 4-momentum of the photons of the plane wave (which is equal to the
wave 4-vector (ω, k⃗) since in natural units ℏ = 1), the energy-momentum relation for the subluminal
propagating wave follows trivially from (4.4) to be

E2 = p⃗2
(
cos2 φ+ e−2γ sin2 φ

)
with cosφ = p⃗ · B⃗

|p⃗||B⃗|
. (4.5)
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We can see that for different angles between p⃗ and B⃗ we get different relations.

We conclude this Section by mentioning that the dispersion relation (4.4) will remain the same also
if we consider a rescaled ModMax Lagrangian. This is because the birefringence indices are ratios of
combinations of derivatives of the Lagrangian with respect to S, P and then are independent on the
scale factor of the Lagrangian.

4.2 Compton effect with orthogonal magnetic field

As in [13] we first consider a magnetic field orthogonal to the direction of the incoming photon
momentum and assume that the electron is at rest before scattering. Hence, the initial 4-momentum of
the electron is (me, 0⃗), where me = λ−1

e are the electron mass and the Compton wavelength respectively;
upon scattering with the photon the electron acquires the 4-momentum (Ee, p⃗e). The 4-momentum of
the incoming photon is (E , p⃗) and of the outgoing one is (E ′, p⃗′). Because of our choice of the orientation
of B⃗ we have p⃗ · B⃗ = 0 and so from (4.5) we have the following energy-momentum relations

E2 = e−2γ p⃗2 , E ′2 = p⃗′2f2(γ, φ) where f2(γ, φ) = cos2 φ+ e−2γ sin2 φ , (4.6)

and φ is the angle between p⃗′ and B⃗.
Conservation of the 4-momentum implies that

E2
e = (E +m− E ′)2 , p⃗2

e = (p⃗− p⃗′)2 = p⃗2 + p⃗′2 − 2 p⃗ · p⃗′ . (4.7)

Remembering that E2
e − p⃗2

e = m2 and using (4.6) we find

p2(e−2γ − 1) + p′2(f2 − 1) − 2pp′(e−γ f − cos θ) + 2m (e−γp− p′ f) = 0 (4.8)

where p = |p⃗|, p′ = |p⃗′| and θ is the angle between p⃗ and p⃗′. Written in terms of the wavelengths of the
photons λ = 1/p and λ′ = 1/p′ the above equation becomes

λ′2(e−2γ − 1) + λ2(f2 − 1) − 2λλ′(e−γ f − cos θ) + 2λλ
′

λe
(e−γλ′ − λ f) = 0 . (4.9)

Solving for λ′ we find (considering only the positive root)

λ′ = 1
2 − 2λe/λ sinh γ

{
fλ+ λe(f − cos θ)+ (4.10)

+
√

[eγfλ+ λe(f − eγ cos θ)]2 + 2eγλλe(1 − f2)(1 − λe/λ sinh γ)
}
.

One can see that for γ = 0 we have f = 1 and the usual Compton scattering formula is restored as one
should expect.

The above expression is very complicated; however we expect γ to be very small, in particular a
consequence of PVLAS experiment (which was thought to test vacuum birefringence in QED) allows
us to estimate a bound on the value of γ to be γ ≤ 3 · 10−22 [4]. Hence it is reasonable to perform a
Taylor expansion of (4.10) up to the first order in γ which results in the following simpler expression

λ′ = λ+ λe(1 − cos θ) + γλ

[
1 − sin2 φ

1 + λe/λ (1 − cos θ)

] [
1 +

(
λe

λ
+ λ2

e

λ2

)
(1 − cos θ)

]
+O(γ2) . (4.11)

We see that in ModMax the difference of the wavelengths of the incoming and outgoing photons is a
bit greater than that in Maxwell’s electrodynamics. Therefore, with a sufficiently precise measure one
might be able to estimate (at least an upper bound on) the value of γ from the Compton effect.
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4.3 Compton effect with parallel magnetic field

Let us orient the uniform magnetic field B⃗ along the momentum p⃗ of the incoming photon. With
this configuration, indicating as before with θ the angle between p⃗ and p⃗′ (which is the same between
B⃗ and p⃗′ by construction), we see that the energy-momentum relation (4.5) takes the following form

E2 = p⃗2 , E ′2 = p⃗′2f2(γ, θ) where f2(γ, θ) = cos2 θ + e−2γ sin2 θ . (4.12)

Imposing the conservation of the 4-momentum and proceeding as above we find the relation

λ′ − fλ− λλe

2λ′ (1 − f2) − λef + λe cos θ = 0 . (4.13)

Solving for λ′ we find (considering only the positive root)

λ′ = 1
2fλ+ 1

2λe(f − cos θ) + 1
2

√
λ2

e(f − cos θ)2 + λ2f2 + 2λλe(1 − f cos θ) . (4.14)

One can see that for γ = 0 we have f = 1 and the usual Compton scattering formula is restored, while
if we perform the Taylor expansion up to the first order in γ we get

λ′ = λ+ λe(1 − cos θ) − γ
λ sin2 θ

1 + λe/λ (1 − cos θ)

[
1 +

(
λe

λ
+ λ2

e

λ2

)
(1 − cos θ)

]
+O(γ2) . (4.15)

In contrast with the previous case we found that the expected wavelength variation is a bit less
than the one we would measure in Maxwell electrodynamics.

4.4 Interpretation of Compton effect in ModMax

Instead of Maxwell electrodynamics, ModMax scattering process involves both the non-linearity
of the electrodynamics and the possible change of velocity of the scattered photon due to a different
polarization with respect to the magnetic field. Hence we could think that the difference with respect
to Maxwell electrodynamics of the variation of the photon energy due to Compton effect is the sum of
two contributions: one is due to the variation of photon dispersion relation (and so its velocity) in the
magnetic background while the other is intrinsic to ModMax. Our aim is to guess the explicit form of
the intrinsic contribution given by ModMax in the final expression of variation of photon wavelength
in Compton scattering. This will hopefully give us a physical interpretation of ModMax Compton
scattering behaviour.

To show this we have to search for Compton scattering with particular configurations in which the
scattered photon has the same velocity as the incident one. This is quite hard computationally so we
restrict to the scattering that happens on the xy-plane. We have (with same notation as before) an
incoming photon with 4-momentum (E , p⃗) and an outgoing one with (E ′, p⃗′); the background magnetic
field forms an angle −φ with p⃗ and has no z-component, while the angle between p⃗ and p⃗′ is θ. We
have then the following energy-momentum relations

E2 = p⃗2f2 where f2 = f2(γ, φ, θ) = cos2 φ+ e−2γ sin2 φ , (4.16)
E′2 = p⃗′2f ′2 where f ′2 = f ′2(γ, φ, θ) = cos2 (φ+ θ) + e−2γ sin2 (φ+ θ) . (4.17)

Proceeding as in the previous Section we have to solve the equation

λ′2(f2 − 1) + λ2(f ′2 − 1) − 2λλ′(ff ′ − cos θ) + 2λλ′

λe
(fλ′ − f ′λ) = 0 . (4.18)
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Solving for λ′ we find

λ′ = f ′

2f − λe/λ(1 − f2)

{
λ+ λe(f − cos θ)+ (4.19)

+ 1
f ′

√
2λλe(f − f ′ cos θ) + f ′2λ2 + λ2

e[f ′2 + f2 − 2ff ′ cos θ − 1 − cos2 θ]
}
.

For the considered configuration we see that the incident and scattered photons have equal velocities
when θ = 0, −2φ, π− 2φ, π. When θ = 0 the photon does not scatter and λ′ = λ . For the other cases,
introducing

∆λ(θ) = λ′(θ) − λ− λe(1 − cos θ) , (4.20)

we get the following expressions up to the first order in γ

∆λ(−2φ) = γ λe sin2 φ (1 − cos 2φ)
1 + λe/λ (1 − cos 2φ)

[
1 +

(
λe

λ
+ λ2

e

λ2

)
(1 − cos 2φ)

]
, (4.21)

∆λ(π − 2φ) = γ λe sin2 φ (1 − cos (π − 2φ))
1 + λe/λ (1 − cos (π − 2φ))

[
1 +

(
λe

λ
+ λ2

e

λ2

)
(1 − cos (π − 2φ))

]
, (4.22)

∆λ(π) = γ λe sin2 φ (1 − cosπ)
1 + λe/λ (1 − cosπ)

[
1 +

(
λe

λ
+ λ2

e

λ2

)
(1 − cosπ)

]
. (4.23)

These expressions have a common pattern. Thus our claim is that the intrinsic contribution of ModMax
in λ′ (proportional to γ) is given by

∆λ = γ
λe sin2 φ (1 − cos θ)
1 + λe/λ (1 − cos θ)

[
1 +

(
λe

λ
+ λ2

e

λ2

)
(1 − cos θ)

]
(4.24)

where φ is the angle between the magnetic field and the incoming photon momentum, while θ is the
angle between the incoming and outgoing photon momenta. The other contribution proportional to γ
is believed to be given by the change of velocity of the photon induced by the magnetic background,
and is expected to become null if velocities of incoming and outgoing photons are equal.

Actually this claim is confirmed by the form of (4.11). We can rewrite ∆λ in the following way

∆λ = γ

[
λ(1 − sin2 φ)

1 + λe/λ (1 − cos θ) + λe(1 − cos θ)
1 + λe/λ (1 − cos θ)

] [
1 +

(
λe

λ
+ λ2

e

λ2

)
(1 − cos θ)

]
; (4.25)

in this form if the velocities of the incoming and outgoing photons are equal (which means φ = ±π/2) we
are left only with the intrinsic term of ModMax. In (4.15) this contribution does not appear since φ = 0.

Hence we could interpret the difference between Maxwell and ModMax Compton scattering in the
following way. We have an intrinsic contribution of ModMax which always gives a greater wavelength
and lower energy of the scattered photon than the ones expected in Maxwell’s theory.
Furthermore, we have a contribution related to change of the velocity of the outgoing photons in
comparison of the incoming ones (due to the birefringence) which gives a greater or lower wavelength of
the outgoing photon than expected from Maxwell case if the velocity of the outgoing photon increases
or decreases respectively (and there is no change if the velocities remain equal) as one can see by
looking at (4.25) and (4.15) respectively.
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Conclusion
In this work we have studied ModMax electrodynamics coupled to charged sources. We have seen

that we produce different dynamics with different couplings to the ModMax Lagrangian, showing some
similarities and differences from Maxwell electrodynamics. In particular the Lorentz force acting on
electric particles can be made the same as in Maxwell’s theory by choosing a suitable rescaling of
the ModMax Lagrangian; however, in the presence of magnetic charges the Lorentz force in ModMax
always differs from that in Maxwell’s theory. We also found that Lienard-Wiechert fields produced by
a moving dyon are exact solutions of ModMax equations of motion.
We then studied ModMax birefringence in a constant magnetic background and Compton scattering,
which exhibited differences from Maxwell’s electrodynamics independently by ModMax coupling choices.

It is still to be understood whether ModMax can be regarded as a fundamental extension of Maxwell
electrodynamics or it is just an effective field theory for the description of certain models, for instance
of specific materials in condensed matter theory. These are interesting challenges for future research.
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A Appendix
In this Appendix we shall derive explicitly some equations that have been given without a proof

and we shall motivate some brief comments made during this paper.

A.1 Avoiding Dirac’s veto

On the Dirac’s string the potential Aµ is not well defined (so it shows a singularity); however the
electromagnetic fields are well defined. It is reasonable to think that this singularity has no physical
implications. Wu and Yang made a construction in which this singularity is avoided [8], and is suitable
for any general Lagrangian density L dependent on the field strength Fµν .

We start from considering the trajectory of the magnetic charged particle z(τ); ∀τ we consider two
overlapping open sets of the 3-dimensional space Ra(τ) and Rb(τ) whose union gives the whole space.
In other words, indicating the whole space with R3 of coordinates {x1, x2, x3}, we can define those sets
as all R3 minus two non overlapping lines going from the magnetic particle to infinity. For instance we
could take Ra as the whole space minus a vertical straight line going from the monopole to infinity
along the negative x3-axis and Rb as the whole space minus a vertical straight line going from the
monopole to infinity along the positive x3-axis. In formulas ∀τ

Ra(τ) := R3 \ {x3 ≤ z3(τ), x1 = z1(τ), x2 = z2(τ)} , (A.1)
Rb(τ) := R3 \ {x3 ≥ z3(τ), x1 = z1(τ), x2 = z2(τ)} . (A.2)

At every moment in the regions are well defined the vector potentials A(a)
µ and A

(b)
µ and the field

strength is defined to be
Fµν = ∂µA

(a)
ν − ∂νA

(a)
µ = ∂µA

(b)
ν − ∂νA

(b)
µ (A.3)

thus it is independent on a, b. Therefore in the overlapping region Rab := Ra ∩Rb the potentials can
differ only by a gauge transformation, which means

A(a)
µ −A(b)

µ = αµ =⇒ ∂µαν − ∂ναµ = 0 in Rab . (A.4)

We also have another condition that we see considering a closed surface enveloping the monopole, and
doing a line integral on a closed loop Γ on the surface and in Rab∮

Γ
αµdξ

µ = g (A.5)

since thanks to Stokes’ theorem we have that the integral is equal to the outward magnetic flux on
the closed surface. This condition has to be taken as a consistency condition of αµ. We also have an
equivalence between the equation

∂µF
µν = jν

g (A.6)

and the definition of the potentials thanks to condition (A.5).
Now we build up the new action as follows

S [A, y, z] =
∫
d4x L − e

∫ ∗
dτ

dyν

dτ
Aν(y(τ)) −me

∫
dτ

√
dyµ(τ)
dτ

dyµ(τ)
dτ

−mg

∫
dτ

√
dzµ(τ)
dτ

dzµ(τ)
dτ
(A.7)

where∫ ∗
dyµAµ(y) =

∫ Q

−∞
dyµA(b)

µ (y)+
∫ ∞

Q
dyµA(a)

µ (y)+β(Q) with β(Q) =
∫ Q

dξµ
(
A(a)

µ −A(b)
µ

)
(A.8)

where Q is a point on y(τ) ∩ Rab and the integral β(Q) is taken along a path in Rab from ∞ to Q.
β(Q) is important to make the action independent on Q as it is clear to see. Also if we move Q on a
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path defined as Γ in (A.5) we can see that β(Q|ϕ = 2π) − β(Q|ϕ = 0) = g because of (A.5), so we must
take the quantity eβ(Q) mod eg if we want the action to be continuous with respect to the distortion
of the world lines.

We can now use this idea to avoid Dirac’s veto. We start from considering the part of the action
containing the electric current; this integral is not well defined if the trajectory of the charged particle
Γe intersects the string. Assume that this happens in a point Q of the space, then let be R and S two
other points on Γe ∩Rab very closed to Q. So now

I = e

∫ ∗

Γe

dyµAµ(y) = e

∫ S

−∞
dyµA(b)

µ (y)+e

∫ ∞

R
dyµA(a)

µ (y)+e

∫ R

S
dyµA(a)

µ (y)+eβ(S)−eβ(R) . (A.9)

If we take the limit for R,S → Q the third term of I vanishes and the difference of eβ becomes the
line integral of A(b)

µ − A
(a)
µ on a path Γ′ not intersecting the string going from S to R and I stayed

defined mod eg. For an infinitesimal path Γ′ we simply have

I = e

∫
Γe

dyµA(b)
µ (y) = e

∫
Γ′

e

dyµA(a)
µ (y) (A.10)

where Γ′
e is the same as Γe except for a small contour around the string. Taking this as a definition,

we easily find usual Lorentz force for the electric charged particle varying the total action with respect
to yµ since for this new part we have (here J stands for a or b)

δI = e

∫
Γ′

e

dτ
dyν

dτ

[
∂µA

(J)
ν − ∂νA

(J)
µ

]
δyµ = e

∫
Γe

dτ
dyν

dτ
Fµνδy

µ mod eg .

This is because doing a small contour around the string makes the string unobservable (at the cost to
define the action mod eg in order to be continuous as a functional of trajectories).

A.2 Calculation of the Hamiltonian

In this Section we shall evaluate the Canonical Hamiltonian (3.13).
We see that the variables (3.14) will help us doing the inversions of (3.8) and (3.9); for instance for ˙⃗y,
squaring both sides of equation (3.8), we can find

v⃗2
e = π⃗2

e

π⃗2
e +m2

e

=⇒
√

1 − v⃗2
e = me√

π⃗2
e +m2

e

so with easy calculation we get (doing the same for v⃗g)

v⃗e = π⃗e√
π⃗2

e +m2
e

, v⃗g = π⃗g√
π⃗2

g +m2
g

. (A.11)

The Canonical Hamiltonian using (3.11) is given by

HC =
∫
d3x

[
∂L

∂(∂0Aµ)∂0Aµ − L
]

+ e A0(y⃗) + p⃗y · v⃗e +me

√
1 − v⃗2

e − e v⃗e · A⃗(y⃗) + p⃗z · v⃗g +mg

√
1 − v⃗2

g .

We need to write it in a better way. Firstly we shall introduce the following Hamiltonian density

H = D⃗ · E⃗ − L (A.12)

which stands for the Hamiltonian density conjugated to the Lagrangian density L in a source-free
system. For ModMax Lagrangian density (1.3) we explicitly get (3.15) as shown in [5].
Also we can see that since

Bi = −1
2ϵ

ijkF jk and 1
2ϵ

mnl ∗Cnl = 1
2ϵ

mnlϵnl0kC0k = 1
2ϵ

mnlϵnlkC0k = −C0m
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we have explicitly

Bi(x) = −1
2ϵ

ijkF jk(x) = ϵijk∂jA
k(x) + C0i(x) = ϵijk∂jA

k(x) − g

∫∫
dσdt′

∂ui

∂σ
(t′, σ) δ(4)(x− w)

which gives the explicit expression for B⃗ in (3.16).
Now we shall do the following calculation that will be useful later∫

d3x ∗Ci0G
i0 = 1

2

∫
d3x ϵi0jmC

jmGi0 = g ϵijm

∫
dσ Di(w⃗(σ))(vj

g + u̇j)∂u
m

∂σ
.

Thus using the above result we can see that∫
d3x

[
∂L

∂(∂0Aµ)∂0Aµ − L
]
+e A0(y⃗) =

∫
d3x

[
D⃗ · E⃗ − L

]
+e δ(3)(x⃗−y⃗)A0(x⃗)+Gµ0∂µA0− ∗Cµ0G

µ0 =

∫
d3x

[
H + e δ(3)(x⃗− y⃗)A0(x⃗) + ∂i(A0G

i0) −A0∂iG
i0 − ∗Ci0G

i0
]

=∫
d3x

[
H + e δ(3)(x⃗− y⃗)A0(x⃗) −A0∇⃗ · D⃗

]
+ v⃗g ·

(
g

∫
dσ D⃗(w⃗(σ)) × ∂u⃗

∂σ

)
because the total derivative vanishes (assuming compact support) and we ignore the part with ˙⃗u.
We also can write in a more elegant way the following expressions

p⃗y · v⃗e +me

√
1 − v⃗2

e − e v⃗e · A⃗(y⃗) = p⃗e · π⃗e√
π⃗2

e +m2
e

+ m2
e√

π⃗2
e +m2

e

− e π⃗e · A⃗(y⃗)√
π⃗2

e +m2
e

=
√
π⃗2

e +m2
e ;

p⃗z · v⃗g + v⃗g ·
(
g

∫
dσ D⃗(w⃗(σ)) × ∂u⃗

∂σ

)
+mg

√
1 − v⃗2

g = π⃗g · π⃗g√
π⃗2

g +m2
g

+
m2

g√
π⃗2

g +m2
g

=
√
π⃗2

g +m2
g .

Grouping all together we end up with the Canonical Hamiltonian (3.13).

A.3 Calculation of the total derivative of constraints

In this Section we shall evaluate equations (3.22). The full derivative of the constraints is given by

dφi

dt
(σ) = dpi

u(σ)
dt

+ g ϵijk

[
dDj(x⃗)
dt

∂uk

∂σ
δ(3)(x⃗− w⃗) +Dj(x⃗)∂u

k

∂σ

d

dt
δ(3)(x⃗− w⃗) +Dj(w⃗) ∂

∂σ

duk

dt

]
(A.13)

We then have to evaluate further total derivatives. We start from evaluating the following partial
derivatives which will be useful later.

∂πm
g

∂ui(σ) = g ϵmnl ∂iD
n(w(σ)) ∂u

l(σ)
∂σ

− g ϵmni ∂rD
n(w(σ)) ∂u

r(σ)
∂σ

; (A.14)

∂φm(σ′)
∂ui(σ) = g ϵmnl

∂ul

∂σ′ ∂iD
n δ(σ − σ′) + g ϵmniD

n ∂

∂σ′ δ(σ − σ′) ; (A.15)

∂H
∂Bl(x⃗) = Dm∂E

m

∂Bl
− ∂L
∂Er

∂Er

∂Bl
− ∂L
∂Bl

= − ∂L
∂Bl

= H l(x⃗) ; (A.16)

∂Bl(x⃗)
∂ui(σ) = g

∂ul

∂σ
∂iδ

(3)(x⃗− w⃗(σ)) − g δ l
i

∫
dσ′ δ(3)(x⃗− w⃗(σ′)) ∂

∂σ′ δ(σ − σ′) ; (A.17)

∂Bl(x⃗′)
∂Aj(x⃗) = ϵlmj

∂

∂x′m δ
(3)(x⃗− x⃗′) . (A.18)
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Using (A.15),(A.16) and (A.17) we find that the total derivative of the string momentum is

dpi
u(σ)
dt

= − ∂HT

∂ui(σ) = −∂HT

∂πm
g

∂πm
g

∂ui(σ) −
∫
dσ′ λm(σ′) ∂φ

m(σ′)
∂ui(σ) −

∫
d3x

∂H
∂ui(σ) =⇒

dpi
u(σ)
dt

= −∂HT

∂πm
g

∂πm
g

∂ui(σ) − g ϵmnl λ
m(σ) ∂u

l

∂σ
∂iD

n(w⃗(σ))+ (A.19)

+g ϵmni λ
m(σ) ∂rD

n(w⃗(σ)) ∂u
r

∂σ
− g

∂ul

∂σ
(∂lH

i(w⃗(σ) − ∂iH
l(w⃗(σ)) .

The total derivative of δ(3)(x⃗− w⃗(σ)) is given by

d

dt
δ(3)(x⃗− w⃗(σ)) = ∂δ(3)(x⃗− w⃗(σ))

∂zj

∂HT

∂pj
z

+
∫
dσ′∂δ

(3)(x⃗− w⃗(σ))
∂uj(σ′)

∂HT

∂pj
u(σ′)

=⇒

d

dt
δ(3)(x⃗− w⃗(σ)) = −

(
λj(σ) + ∂HT

∂πj
g

)
∂jδ

(3)(x⃗− w⃗(σ)) . (A.20)

Using (A.16) and (A.18) we find the total derivative of the field momentum p⃗A(x⃗) = D⃗(x⃗)

dDj(x⃗)
dt

= − ∂HT

∂Aj(x⃗) = e
∂HT

∂πm
e

∂Am(y⃗)
∂Aj(x⃗) −

∫
d3x′ ∂H

∂Bl(x⃗′)
∂Bi(x⃗′)
∂Aj(x⃗) =⇒

dDj(x⃗)
dt

= e
∂HT

∂πj
e

δ(3)(x⃗− y⃗) − ϵjml ∂mH
l(x⃗) . (A.21)

Lastly we need the total derivative of the string which is given by

duk(σ)
dt

= ∂HT

∂pk
u(σ) = λk(σ) . (A.22)

Now by substituting (A.19), (A.20), (A.21) and (A.22) in (A.13) and doing straightforward
calculations we end up with

dφi

dt
(σ) = eg ϵijkδ

(3)(y⃗−w⃗(σ))∂HT

∂πj
e

∂uk

∂σ
−g ∂u

r

∂σ

(
λm(σ) + ∂HT

∂πm
g

)[
ϵmni∂rD

n+ϵrnm∂iD
n+ϵinr∂mD

n
]
.

Using the fact that ϵirmϵ
irm = 6 and

ϵirm (ϵmni∂rD
n + ϵrnm∂iD

n + ϵinr∂mD
n) = 3ϵirmϵmni∂rD

n = −6δr
n∂rD

n = −6∂nD
n

we find the expression in (3.22).
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