
Università degli Studi di Padova

Department of Information Engineering

Master Thesis in ICT for internet and multimedia

A deep learning approach for object counting

on embedded systems

Supervisor Master Candidate
Pietro Zanuttigh Federico Chiarello
Università di Padova

Co-supervisor
Andrea Cisco
E3 S.r.l

ACADEMIC YEAR 2022-2023
Date 12/10/2023

Abstract

This thesis discusses the implementation of a piece counter, based on deep learning methods, to be used
on industrial packaging lines. In particular, we aim at obtaining a system capable of detecting small objects
(diameter < 1cm) and that can be executed on embedded devices. The object detection models SSD MO-
BILENET V2 and SSD RESNET 50 , after a brief analysis of their characteristics, result to be the most
suitable for this application and their performance is measured by using bolts of different sizes as test object
to be detected. In the experimental results, the pros and cons of the two models are analyzed in terms of ac-
curacy, inference time and efficiency. All tests are performed on the development board NVIDIA JETSON
NANO in order to optimize models using TensorRT and evaluate the results.

iii

iv

Sommario

In questa tesi viene discussa l’implementazione di un conta pezzi,basato su metodi di deep learning, finaliz-
zato all’utilizzo su linee di confezionamento industriali. In particolare si vuole ottenere un sistema in grado
di rilevare oggetti di piccole dimensioni (diametro < 1cm) e che possa essere eseguito su dispositivi embed-
ded. I modelli di object detection SSDMOBILENET V2 e SSD RESNET 50, dopo una breve analisi delle
loro caratteristiche, sono risultati i più adatti a questa applicazione e le loro prestazioni sonomisurate usando
bulloni di diverse dimensioni come oggetto da rilevare. In base ai risultati ottenuti vengono analizzati pro e
contro dei duemodelli in termini di precisione,tempo di inferenza e efficienza. Tutti i test sono eseguiti sulla
scheda di sviluppo NVIDIA JETSONNANO in modo da poter ottimizzare i modelli tramite TensorRT e
valutarne i risultati.

v

vi

Contents

Abstract ii

1 Introduction 1

2 Deep Learning for
Compture Visions Applications 3
2.1 Deep Learning . 3
2.2 Convolutional Neural Network . 4
2.3 Network Training . 7

3 Object Detection 13
3.1 Object Detction Problem Definition . 13
3.2 Two-Stage BasedModel . 14
3.3 Single Shot Multibox Detector . 17

4 TensorRTOptimizer 21
4.1 TensorRT Structure . 21
4.2 TensorRTOptimizations . 22

5 Experimental Setup 27
5.1 Project objective . 27
5.2 Setup . 28
5.3 Dataset . 31
5.4 SelectedModels . 33
5.5 Work pipeline . 36

6 Results 37

7 Conclusion 45

References 49

vii

viii

1
Introduction

Computer vision is a task that aims to retrievemeaningful information fromdigital images or videos. Thanks
to the application of the artificial intelligence, and in particular the recent rise of deep learning and neural
networks, in the last few years computer vision has improved to such an extent to be used in a lot of appli-
cations. In healthcare, inspecting magnetic resonance images, computer vision can guide doctors to a preco-
cious diseases diagnosis[1], in agriculture animal tracking facilitates farmers work[2], and in transportation
autonomous vehicle are able to identify pedestrians[3], to give some examples among all possible applica-
tions.
The possibility to automate operations like item counting or defect detections has attracted the interest of
the industrial world towards computer vision too, in fact relying on machines to perform repetitive and te-
dious tasks speed up the production process and removes human errors.
In this project, carried out during the internship at the E3 S.R.L company, we focus on one of these indus-
trial scenarios. E3 is a company, founded in 2007 and based in Altavilla Vicentina, that deals with the design
and production of custom embedded systems for various applications, some examples are digital signal pro-
cessing in tempering process, laser driver system for gas measurement in food products and power supplies
for plating process. In particular one of the project developed during the years is a weighing system used
to count the number of elements in automated packaging lines. Item counters based on weighing systems
work well when dealing with few heavy objects, however their accuracy decreases if they have to count a lot
of small parts. In recent years, owing to the advancements in image-processing techniques, counters that
detect objects by extracting their edges have been developed, but the condition that the objects are clearly
distinguished from the background is essential. In contrast, recent deep- learning-based counters have the

1

advantage of being able to detect objects robustly in any environment, for this reason the purpose of the
company , in order to obtain a product suitable for all possible scenarios, is to develop an item counter ex-
ploiting machine learning.
This thesis, reporting studies and results obtained during the internship period, wants to be a proof of con-
cept of a deep-learning-based object counter. The core aspect analyzed to determine the feasibility of the
project is the relation between the computational capacity requested by deep learning frameworks and the
necessary hardware resources to implement it. In fact, one of the main benefits of embedded systems is that
they are designed to execute one specific task by optimizing the amount of processing power and memory,
making them comparatively affordable. For this reason, to obtain a marketable product, it is crucial to find
the best compromise between system performance, in terms of speed, accuracy and efficiency, and the re-
quired hardware capabilities.
In the first step of the thesis we study a set of object detection algorithms analyzing their strengths and draw-
backs, to determine the most suitable for our application.Then we reduce the system inference time and
memory footprint by using TensorRT optimizer, a key tool that optimizes the trained models for execu-
tion on NVIDIA GPUs. Subsequently, methodology and datasets used to train and test the selected object
detection algorithms are described. Finally, the obtained results are analyzed and commented.

2

2
Deep Learning for

Compture Visions Applications

In this section baselines are briefly introduced starting with a focus on deep learningmodel that significantly
improves the performance of object detection algorithms. We next go into detail about the convolutional
neural network architecture that is used to identify features andpatterns in an image. The trainingprocedure
is finally explained with a particular emphasis on the transfer learning technique.

2.1 Deep Learning

The standard neural network structure is the following:

• Input layer: the first layer of the network, it is fed by the input data.

• Hidden layers: set of layers where applying a linear combination, and using an activation
function, meaningful information is extracted from the input data.

• Output layer: it is the last set of neurons, it is used to show the outcome of the network.

A deep network maintains the same architecture but the number of hidden layers is greater, up to a hun-
dred unit. For this reason, the number of variables is orders of magnitude higher than a standard neural
network resulting in better performance. The higher degree of freedom exploitable is the strength of the
deep learning networks and the reason of their wide use. This feature however has some drawbacks, in

3

particular it is necessary a large amount of training data in order to avoid overfitting issues and the computa-
tional power needed to train and run themodel is not negligible. In computer vision are used convolutional
neural networks, a type of deep learning architecture particularly suitable to operate with 2D vectors, like
images. The major advantage of this network is that automates feature extraction process that is typically
involved with machine learning.

Figure 2.1: Convolutional Neural Network.

2.2 Convolutional Neural Network

Convolutional neural networks(CNNs) are specialized type of artificial neural networks that use convolu-
tion in place of general matrix multiplication.[4].
CNNs are particularly suitable for processing data that has grid-like topology, for this reason, since pictures
are commonly represented as a 2D grid of pixels, they are widely used in image processing and recognition.
The CNNs architecture is composed by three main type of layers:convolutional layer, pooling layer and
fully-connected layer, and it is designed to automatically learn spatial hierarchies of features through a back-
propagation algorithm[5] .

4

Convolutional Layer

The convolutional layer is the core building block of a CNN, and its objective is to extract the high level fea-
tures from the images. An element-wise multiplication between the input images(denoted as input tensors)
and a 2D number array, called kernel, is calculated and the output summed, this process is repeated for each
output position. In figure2.2 is shown a graphical presentation of the convolution operation.

Figure 2.2: Example of convolution with a kernel 3x3.

The size of the convolutional operation output, for an input tensor of dimension Iw × Ih × c and a
Kw ×Kh kernel, is:

Ow =
Iw −Kw + 2P

Sw

+ 1 Oh =
Ih −Kh + 2P

Sh

+ 1 (2.1)

Where Sw, Sh are the vertical and horizontal stride that indicate how far the filter moves in every step
along one direction. P instead is the padding parameter. If no layer is added to the input image we talk
about valid padding and the result of the convolution operation, named feature map, has a reduced size re-
spect to the input tensor. On the other hand when the same padding is used, the feature map has the same
size as the input data because the filters are applied to the input tensors with additional rows and columns
of zero padding around the edges. This can help to preserve the information at the edges of the image and
improve the performance of the CNN, but clearly due to the larger input size the overall computational cost
increases. Finally, since the convolution is a linear operator, an activation function is applied to the output
to ensure the non-linearity.

5

The most used activation functions are:

• Sigmoid function:

f(x) =
1

1 + e−x
(2.2)

• ReLU function:
f(x) = max(0, x) (2.3)

(a)Valid padding (b) Same padding

Figure 2.3: Illustration of the two types of padding

Pooling Layer

The pooling operation is often used after a convolutional layer to further reduce the feature map size. The
dimension reduction is translated in several advantages, first the computational power necessary to train
the network decreases, secondly the network is more robust to small-shifts and distortions of the input and
finally the receptive field is increased. Usually in this layer are applied two types of function:max pooling
and average pooling. Max pooling returns the maximum value from the portion of image covered by the
kernel, while, for the same area, average pooling outputs the mean of the values. Max pooling also performs
noise suppression and for this reason is most commonly used.

Fully Connected Layer

The final stage of the CNNs architecture is usually composed by one ormore fully connected layer, the name
is due to the fact that every node of the output layer is linked to a node in the previous one. The feature

6

map of the last convolutional or polling layer is transformed in a one-dimensional vector, in an operation
known as flattening, and it passes through one or more fully connected layer to return the final outcome.
In the standard approach used to solve the classification task every fully connected layer is linked to the
successive one by a learnable weight and the last of these layers has a number of nodes equal to the number
of considered classes. Based on the classification task to solve, there are different types of activation functions
that are used. In case of binary classification the already cited sigmoid function (eq. 2.2) is used, while when
a multi-classification task is treated it is often applied the softmax function which is defined as:

f(z)i =
ezi∑K
i=1 e

zi
for i = 1, . . . , K z = (z1, z2, . . . , zk) ∈ RK (2.4)

Where K is the number of classes and i is the i-th class.
The aim of these activation functions (eq.2.2, eq.2.4) is to normalize the output, in this way each node ex-
presses the probability of the object to be identified to the correspondent class.

Figure 2.4: Pooling operation with a kernel 2x2

.

2.3 Network Training

The layers that make up the CNNs architecture have a lot of parameters to define, like the convolutional
filter values or the weights of the fully connected layer. Training procedure aims to determine the parameter
values in order to minimize the difference between the network output prediction and the ground-truth
label given in the training dataset. This result is achieved thanks the application of backpropagation and
gradient descent algorithms.

7

Backpropagation

Backpropagation repeatedly adjusts theweights of the connections in the network tominimize the difference
between the actual output vector of the net and the desired output vector[6]. The ”backward” part of the
name stands for the fact that the method starts to calculate the gradient of the error from the final layer and,
proceeding layer by layer, it reaches the first one. The algorithm could be divided in two parts:

• Forward phase: starting from the first layer to the output layer, for each input-output pair (xn, yn),
calculates and stores the result ŷn, akj and okj for each node j in layer k.

• Backward phase: for each input-output pair (xn, yn) calculates and stores the result ∂LCE

wk
ij

for each
weight wk

ij connecting node i in layer k − 1 to node j in layer k by proceeding from layer m, the
output layer, to layer 1, the input layer.

Figure 2.5: Illustration of backpropagation algorithm.

The forward phase is trivial, an input xn is supplied to the first layer and the output of the network is
computed performing the algebraic operations which are based on the network architecture, weights, bias
and activation function. The backward phase instead is the core of the algorithm and it is also the reason
of its efficiency. The aim of the backpropagation algorithm is to minimize the loss function, in order to do
that is necessary to calculate ∂LCE

∂wk
ij

for each wk
ij , if we substitute the cross entropy loss function expression

we obtain:

∂LCE(X, θ)

∂wk
ij

=
∂

∂wk
ij

(−
N∑

n=1

ynlog(pn)) (2.5)

8

DEFINITION EXPRESSION

Weight for node j in layer lk for incoming node i wk
ij

Bias for node i in layer lk bki
Number of nodes in layer k rk

Product sum plus bias for node i in layer lk aki
Output of activation function for node i in layer lk oki
Activation function g

Network output for the n-th input ŷn

Cross entropy loss function respect to
input-output pairsX = (x, y) and set of parameter θ LCE(X, θ)

Table 2.1: Terminology

where yn is the truth label and pn is the probability for the n-th class. Since the derivative of the sum of
function is the sum of the derivative of each function it possible to rewrite the equation (2.5) as:

∂LCE(X, θ)

∂wk
ij

= −
N∑

n=1

∂

∂wk
ij

ynlog(pn) =
N∑

n=1

∂Ln
CE

∂wk
ij

(2.6)

therefore the final result is obtained optimizing the error function for each input-output pairs separately
and subsequently combining it. In the further derivation the subscript n, when not necessary, will be omit-
ted for simplification.

Applying the chain rule, the error partial derivative can be expressed as:

∂LCE

∂wk
ij

=
∂LCE

∂akj

∂akj
∂wk

ij

(2.7)

the first term, named error, is denoted δkj ≡ ∂LCE

∂akj
, while the second term can be computed from the akj

equation*

∂akj
∂wk

ij

=
∂

∂wk
ij

rk−1∑
l=0

wk
ljo

k−1
l = ok−1

i (2.8)

*the bias term bki is subsituted with a correspondent weightwk
0j to obtain a more compact formulation

9

Using the chain rule, the error term is

∂LCE

∂akj
=

rk+1∑
l=1

∂LCE

∂ak+1
l

∂ak+1
l

∂akj
=

rk+1∑
l=1

δk+1
l

∂ak+1
l

∂akj
(2.9)

and remembering that

ak+1
l =

rk∑
j=0

wk+1
jl g(akj) (2.10)

the final equation is

δkj =

rk+1∑
l=1

δk+1
l

∂
∑rk

j=0 w
k+1
jl g(akj)

∂akj
=

rk+1∑
l=1

δk+1
l wk+1

jl g′(akj) (2.11)

Putting all together, for a single input-output pair, the partial error derivative can be expressed as:

∂LCE

∂wk
ij

= δkj o
k−1
i = g′(akj)o

k−1
i

rk+1∑
l=1

δk+1
l wk+1

jl (2.12)

From the equation (2.12) it is possible to observe the backward computation of the error, in fact the er-
ror δkj is depended on δk+1

j . Moreover it is appreciable the efficiency of the algorithm, indeed all the value
wk+1

jl , δk+1
l , oki and g′(akj) are already computed in the forward phase or in the previous layer partial deriva-

tive, and therefore, all the necessary parameters are always set up for the successive operation.

Gradient Descent Optimization

Training a network is a process of finding kernels in convolution layers and weights in fully connected lay-
ers which minimize differences between output predictions and given ground truth labels on a training
dataset[5]. The difference to be minimized is measured by the loss function, also known as cost function,
that expresses howmuch the output predictions of the network deviates from the given ground truth labels.
The learnable parameters are updated through the gradient descent optimization algorithm. The gradient
of a function, in fact, indicates the direction of the maximum increasing, therefore updating the parameters
in the opposite direction the loss function will be minimized. A single update of a parameter is formulated
as follows:

w := w − α
∂L(X, θ)CE

∂w
(2.13)

10

where α is the learning rate and it is one of the most important hyperparameters to be set in the train-
ing process. We can notice that to apply the gradient descent method is necessary to calculate the partial
derivative of the loss function and it is here that the backpropagation algorithm previously described plays
its crucial role. All the process is repeated for a set number of times, defined by a hyperparameter called step,
and for each iteration the learnable parameters are updated in order to minimize the loss function. It is im-
portant to observe that in most of the cases it is used slight different version of gradient descent algorithm
called mini-batch gradient descent. The difference between the two methods is that in mini-batch gradient
descent only a subset of the training set is used to compute the gradient of the loss function, this is done for
memory limitations or to accelerate the training process. The dimension of the subset, called mini-batch, is
chosen to obtain a trade-off between optimization stability and computational cost.

Transfer Learning

A deep learning model requires huge dataset to be trained efficiently, and consequently a lot of computa-
tional power. These resources are usually own only by big companies and universities, therefore it’s rare for
a standard user to train a model from scratch. The common procedure indeed it is to use the transfer learn-
ing paradigm in order to reduce the size of the training dataset and at the same time speed up the training
process. Transfer learning is a machine learning technique where the knowledge a model has acquired by
training on a specific task is applied to solve a new problem. The base idea of this approach is that low-level
features such as edges, shapes, corners and intensity can be similar along different tasks, hence a pre-trained
neural network, that is obtained using a large amount of data, can be used as starting point to train a specific
purpose model. The two most common transfer learning strategies are:

• Feature Extraction: all the layers of the pre-trained neural network are frozen(not updated during the
training), but the last fully connected layers. In such a way the previous knowledge is used to extract
features from the new dataset images and only the classifier part is trained accordingly to the specific
task. In some cases instead of using only a fully connected layer, a simple linear classifier is added to
the features extractor.

• Fine Tuning: in this strategy not only the pre-trained network output classifier is replaced, but also
some of the previous layers are selectively retrained on the new dataset. In a convolutional neural
network the first layers are generally used to capture generic features, that could be useful to many
tasks, the later ones instead become progressively more specific. For this reason it is important to
decide carefully, based on the size of the available dataset, if retraining the entire network or only the
last portion, in order to avoid overfitting issues.

11

Reusing information frompreviously learned tasks to new tasks has the potential to significantly improve
learning efficiency[7], the pretrained models released from big companies and major universities in fact are
trained on thousands and thousands of images and therefore they have learned efficiently how to extract
the generic features, the main goal of the first portion of a deep learning network. The second advantage
of transfer learning strategies is that the training process involves only a subset of the total amount of the
network weights therefore it is more rapid.

Figure 2.6: Feature Extraction vs Fine Tuning.

12

3
Object Detection

Object detection is the task of identifying objects of interest within a picture. This task involves image clas-
sification to predict the class of the objects and object localization to determine their position in the image.
Object detection is the base to build more complex tasks, such as segmentation or object tracking, and there-
fore it is in continuous evolution. Over the years several object detection algorithms have been developed
and each of these has brought progresses in terms of efficiency, speed or accuracy.
In this section we will give a generic overview of the most important object detection frameworks in order
to determine, based on their qualities andweaknesses, their most suitable application. Firstly the two-staged
basedmodels will be briefly described, understanding why they are inadequate for the purpose of this thesis.
Then, the chapter continues with an in-depth analysis of the one-stage based models, in particular of the
SSD (Single Shot Detector) algorithm.

3.1 Object Detction Problem Definition

Before starting the description of the object detection frameworks it is useful to formally define the task we
have to solve. A set ofN images {x1, x2, ..., xN} and the corresponding annotations are given as input. The
annotation of the i− th image containingMi objects belonging toC classes has the following format:

yi = {(ci1, bi1), (ci2, bi2), ..., (ciMi
, biMi

)} (3.1)

where cij ∈ C is the class of the object and bij its bounding box. The aim of the detector, parametrized by

13

θ, is to generate predictions with the same format:

yipred = {(cipred1 , b
i
pred1

), (cipred2 , b
i
pred2

), ...,)} (3.2)

that minimize a loss function l defined as:

l(x, θ) =
1

N

N∑
i=1

l(xi, θ, yi, y
i
pred) + λ

R∑
j=1

θ2j (3.3)

Finally, during the evaluation of the model, an object is considered correctly detected if it is assigned the
proper label and the intersection-over-union (IoU) index is greater than a threshold T. The IoU index

IoU(bipred, b
i
gt) =

Area(bipred ∩ bigt)

Area(bipred ∪ bigt)
(3.4)

measures howwell the predicted bounding box (bipred)covers the ground truth one (bigt). Others very com-
monmetrics used in the evaluation of the object detection framework aremean average precision (mAP) for
the accuracy and frame per second (FPS) for inference time.

(a)Object Detection example (b) Illustration of the IoU index

Figure 3.1

3.2 Two-Stage BasedModel

In 2014 Ross Girshick proposed the R-CNN object detection algorithm[8] that significantly improves the
detection performance compare to the frameworks used at the time. The idea at the base of this approach

14

is to divide the detection process in two steps. In the first stage, through the selective search algorithm[9],
the model identifies portion of image where is likely to find a particular object, in the following step a CNN
takes as input each of these regions, known as ”region proposals”, and generates the feature vectors that feed
an SVM classifier. Finally the extracted features are used by a bounding box regressor to refine the original
proposal coordinates.

Figure 3.2: Example of selective search algorithm.

The main drawback of this approach is that the CNN has to process every region proposal, and since the
selective search algorithm generates 2000 of them computation and memory usage become really large. For
this reason in 2015 the same Girshick proposed an R-CNN improved implementation to tackle the prob-
lem, the Fast R-CNN [10]. In this second version feature map is computed for the whole input image and
fixed size region features are extracted from it. The region dimension is reshaped by the Region of Interest
(RoI) polling layer. The RoI pooling layer is a special case of the spatial pyramid pooling (SPP) layer with
just one pyramid level, its function is to partition the region proposal retrieved from the feature map into
a fixed number of divisions and for each of them performing a max pooling operation. The extracted fea-
tures vectors then feed a set of fully connected layers before two siblings output layers: a softmax classifier
and a bounding box regressor. Fast R-CNN achieves significantly faster inference time since it performs
the convolutional operation only once instead for each region proposal avoiding duplicate computations.
In addition, unlike R-CNN, in Fast R-CNN feature extraction, region classification and bounding box re-
gression steps are optimized all together increasing accuracy and without using extra cache space to store the
features. Despite of the considerable improvements in terms of speed and accuracy FastR-CNNarchitecture
still uses the selective search algorithm to generate the region proposals, and that introduces two remarkable
limitations:first it is a time-consuming process based on CPU architecture therefore it can’t exploit GPUs
parallel computation, and then the selective search algorithm is not optimized in data-driven-manner like
the rest Fast R-CNN pipeline thus it could produce misleading proposals. To face this issues, Shaoqing Ren
has developed the Faster R-CNN [11], in which a neural network is used as region proposals generator in

15

Figure 3.3: R-CNN vs Fast R-CNN vs Faster R-CNN.

place of the selective search algorithm. This new generator, named regional proposal network (RPN), is a
fully convolutional network which takes an image of arbitrary size and generates a set of object proposals on
each position of the feature map. The RPNmitigates the Fast R-CNN problems since it can be learned via
supervised learning permitting an end-to-end optimization and the computing time is sharply reduced. The
current version of Faster R-CNN is capable to reach several FPS on GPUs and it achieves 70%mean average
precision (mAP) on the public benchmark dataset PASCAL VOC 2007.

Figure 3.4: Inference time and accuracy comparison between R-CNN architecture version on PASCAL VOC2007 and 2012 dataset.

16

3.3 Single Shot Multibox Detector

The two-stage based models have definitely permitted to achieve remarkable results in terms of accuracy.
However, the complex pipeline of these methods is too computationally intensive for embedded systems
and only with modern, and expensive, high-end hardware suitable for real time applications. These limita-
tions have been faced using a different approach, based on a single-stage architecture, whose most famous
implementations are SSD(Single Shot Multibox Detector)[12] and YOLO(You Only Look Once)[13]. SSD
and YOLO methods share the same core idea, instead of generating proposal regions and then applying a
classifier on them, like R-CNNmodels , object detection is treated as a regression problem in which spatially
separated bounding boxes and associated class probabilities are learned. The advantage of this approach is
that all the computation is encapsulated in one single neural network resulting in a faster detection and an
easier training process.

Figure 3.5: Comparison between YOLOv1 and SSD architectures.

SSD architecture is composed by a feature extractor in the first portion, called base network, and then
by a set of convolutional layers that generates output grids of different size. A high quality image classifier,
deprived of any classification layers, performs the feature extraction process, in the original SSD implemen-
tation is used VGG-16, but it can be replaced by other classification models making possible architecture
customization. At the end of the base network the feature map passes through the extra convolutional lay-
ers that are designed to obtain:

• Multiscale feature maps: because of convolutional operation, feature maps at different level of the
network have different receptive field. Receptive field is defined as the region in the input image that
a particular featuremap is looking at. Featuremap dimension decreases after each convolutional layer,

17

therefore one single cell represents awider area of the starting image. SSD algorithmuses this property
to execute multiscale predictions. The first feature maps, which a higher resolution are used to detect
small objects, while large ones are identified in the last level of the network.

• Detection predictions: in order to determine position and class of the object a set of small convolu-
tional filters is applied on each entry of the extracted featuremaps, in this way every cell is used for the
detection in the nearby region of the image. Assuming a feature map of sizemxnxp for each output
value to predict, thereforeN + 1(one more for background case) class probabilities and 4 bounding
box coordinates, it is applied a 3× 3× p filter.

Feature maps grid indicates to the detector where to search, but it doesn’t give any information about the
shape of the objects to find. If we use the standard deep learning approach, startingwith a randombounding
box prediction, model training will struggle to determine which of several object shapes it has to optimize.
SSD solves the problem associating to the feature map cells a set of default bounding boxes, each of them is
centeredwithin the cell and has different aspect ratio and sizes that aremodified by the 3×3 filters described
before in order to optimally fit the object to detect. Default boundary boxes scale is different for each level
of the network, since, as we have seen, SSDmodel is designed to perform multiscale predictions. The scale
of the default boxes is linearly spaced along them levels of the added convolutional layers:

sk = smin +
smax − smin

m− 1
(k − 1), k ∈ [1,m] (3.5)

where smin = 0.2 is the scale of the first layer and smax = 0.9 is the ones of the last layer. The aspect
ratios considered instead are a ∈ (1, 2, 3, 1

2
, 1
3
) from which is possible to obtain bounding box width and

height as:

wa
k = sk ×

√
a ha

k =
sk√
a

(3.6)

aspect ratio 1 is computed also in a different scale

s′k =
√
sk × sk+1 (3.7)

resulting in a total of 6 default bounding boxes per cell. The overall amount of output value computed
for each feature map therefore are (((N +1)+4)× 6)×m×n (except the first and last layer that use only
4 default bounding boxes).

SSD training process is divided in two phases, during the first step is necessary to pair a ground truth
bounding box j with a default bounding box i, amatching is considered as positive if the IoU index between
the two boxes is higher than a threshold, more formally is defined as:

18

Figure 3.6: Prespective changes the scale of the objects that are hence detected using different default boxes and featuremaps.

xij =

1 if IoU ≥ T

0 otherwise
(3.8)

in case of positive match SSD model penalizes the difference between predicted offset and ground truth
ones according the localization function

Lloc(x, l, g) =
N∑

i∈Pos

∑
m∈(cx,cy,w,h)

xk
ijsmoothL1(l

m
i − gmj)

ĝcxj =
(gcxj − dcxi)

dwi
ĝcyj =

(gcyj − dcyi)

dhi

ĝwj = log(
gwj
dwi

) ĝyj = log(
ghj
dhi

)

(3.9)

where ĝcx, ĝcy, ĝw, ĝh are the offsets for the center (cx, cy), widthw and heighth of the default bounding
box d respect to the ground truth box g. The predicted offsets instead are indicated as lcx, lcy, lw, lh.
In terms of classification error positive matches are penalized by the probability assigned to the correspond-
ing ground truth class ĉpi , while for negative matches it is used the background class ĉ0i . The resulting confi-
dence loss is:

19

Lconf (x, c) = −
N∑

i∈Pos

xp
ijlog(ĉ

p
i)−

∑
i∈Neg

log(ĉ0i)

where ĉpi =
exp(cpi)∑

p c
p
i

(3.10)

The overall loss function minimized in the training process is the weighted sum of confidence and local-
ization loss:

L(x, c, l, g) =
1

N
(Lconf (x, c) + αLloc(x, l, g)) (3.11)

20

4
TensorRTOptimizer

The request for more and more accurate models has led to a significant rise of neural network complexity
and dimension. Workingwith embedded systems available hardware resources are limited, therefore become
essential to exploit hardware acceleration in order to obtain low response time and contained memory foot-
print. To answer this needed NVIDIA develops TensorRT[14], an SDK specifically designed for its GPUs
that optimizes deep learningmodels trained in any framework. TensorRT structure and principal optimiza-
tion operations will be described in the following of this chapter.

4.1 TensorRT Structure

TensorRT includes both deep learning inference optimizer and runtime, the two separated working mode
are defined respectively as build and deployment phases. The build phase imports a trainedmodel and based
on several parameters, such as target deployment GPU, batch size, working memory and quantization, per-
forms the model optimization. The output of this phase is an optimized inference engine that is saved in
a serialized file called plan. TensorRT has been developed to working with any deep learning framework,
for this reason the most common platforms like TensorFlow and PyTorch are integrated with TensorRT by
high-level APIs that facilitate import operation. However, given the deep learning frameworks variety and
to favor interoperability is a good procedure to convert trained model in theONNX format before starting
the build phase. Open neural network exchange(ONNX)[15] is an open format that provides a common
language any machine learning framework can use to describe its models.

21

Figure 4.1: TensorRT build phase.

In the deployment phase the plan file generated in the previous step is deserialized to create a TensorRT
engine object that is used to run inference on the target platform. The advantage of working with plan files
is that inference devices don’t have to install any deep learning frameworks.

Figure 4.2: TensorRT deployment phase.

4.2 TensorRTOptimizations

TensorRT applies transformation to neural network structure and usesmemorymanagement techniques in
order to optimize the imported model. Since the optimization operations are designed for the specific hard-
ware architecture it is important that the build phase is run in the target platform. The main optimizations
performed are:

• Precision reduction

• Layer and tensor fusion

• Target specific auto-tuning

• Dynamic tensor memory

• Multi-stream execution

22

Precision Reduction

During training deep learning frameworks use 32-bit single-precision to achieve the highest possible accu-
racy in gradient descent and backpropagation algorithms. However, it is experimentally proven[16] that
inference phase requires less numeric precision, with some attentions it can work in FP16 half-precision, or
even INT8 precision, without affect heavily accuracy. In case of reduction to INT8 precision, since the range
is very tight respect FP32, TensorRT requires a representative input dataset to determine the best weights
representation. Precision reduction optimization allows to noticeably decrease the model dimension and to
obtain lower inference time.

Layer and Tensor Fusion

TensorRT optimizer analyzes neural network structure searching for pattern of layers that can be optimized.
This operation modifies the network architecture obtaining a lighter and more efficient model, but the un-
derlying computation remains the same. Firstly TensorRT performs vertical layer fusion of very common
set of operations that are applied one after the other, such as convolution, bias and ReLU. This fusion into
one single layer allows to reduce kernel launches and avoids writing into and reading frommemory between
layers, operations that in several cases are even slower than kernel computation, becoming the pipeline bot-
tleneck. Another type of fusion is layer aggregation, or horizontal fusion, this operation merges layers that
apply the same operation to the same source tensor but with different weights. The output of the combined
layer is disaggregated to feed different portion of the network. Horizontal fusion decreases memory over-
head since the input tensor are copied from host to GPU only once resulting in further improving model
efficiency.

Figure 4.3: Original network before fusion optimization.

23

(a)Vertical fusion (b)Horiziontal fusion

Figure 4.4: An example of vertical and horziontal layer fusion

Target Specific Auto-tuning

The same operation can be executed in different manner, TensorRT exploits this property in the optimiza-
tion process. As an example, convolution operation can be performed by several algorithms[17], but some
implementations work better than other based on hardware architecture and working parameters. For this
reasonTensorRTselects hand-tuned andoptimized implementations for each layer basedon the targetGPU,
input data, batch size and filter dimension in order to ensure the highest possible performance.

Dynamic Tensor Memory

Model memory footprint is reduced allocating memory for each tensor only for its usage time and identi-
fying chances of memory re-use. It helps to optimally exploit the available memory, a crucial operation in
embedded platform.

Multi-stream Execution

TensorRT exploits parallelism computations processing multiple CUDA streams simultaneously. CUDA
(or Compute Unified Device Architecture) is a parallel computing platform and application programming
interface (API) that allows software to use certain types of graphics processing units (GPUs) for general pur-
pose processing [18]. In the standard serial CUDA approach the computation is divided in three steps:first
input memory is copied from host to the device then it executes the kernel and finally output memory is

24

transferred back from device to host. This process is defined as CUDA stream. TensorRT enables to execute
multiple streams at the same time dividing the memory in chunks, in this way while a piece of memory is
on transfer from host to the device a kernel execution is running and another portion of memory is copied
from device to host. With this approach three steps of different streams are processed concurrently.

Figure 4.5: Cuda stream,serial and concurrent mode[19].

25

26

5
Experimental Setup

In this section are discussed the project objective and the working environment, it starts with a brief descrip-
tion of the hardware and software tools used to obtain the results then it continues introducing models and
datasets employed during the test sessions.

5.1 Project objective

The objective of the internship period, and therefore the one of this thesis project, is to study the feasibility
of a deep learning-based object counter on an embedded system. More in the details the final system has to
be suitable to counting object of small-size in automated packaging lines. E3 company has several years of
experience in the design, develop and implementation of embedded systems, however it is still taking its first
steps on the fields of machine learning and artificial intelligence, that is why it wants to analyze the potential-
ities and limitations of this new project before starting to invest in technological resources and workforce to
develop it. In particular the purpose is to measure the performance in terms of:

• Frame rate : we want to obtain a system that can detect in real-time the objects of interest.

• Accuracy detection : the usage of the deep learning approach has to ensure a low error-rate (5% <)
and a good localization of the object(IoU > 0.8).

The results are collected using the bolts as example of object to detect, but the consequent considerations
want to be extendable, as much as possible, to all small-size objects in order to achieve a complete overview
of the problem.

27

5.2 Setup

TensorFlow

TensorFlow[20] is an open source framework for machine learning with a particular focus on training and
inference of deep neural networks. It has been released in 2015 by Google as successor to DistBelief[21], a
closed-source library used internally at the company, and currently it is one of the most popular machine
learning frameworks. The main reasons that bring to the decision to use TensorFlow in this thesis project
are:

• Scalability: TensorFlow optimally performs training procedure on GPUs cluster, but it is also very
flexible in inference mode, in fact it can run trained models on various platforms, ranging from large
distributed clusters in a datacenter, down to running locally on mobile devices[22].

• Open source: TensorFlow is an open-source library therefore it has a good documentation and an
active community working on it. Moreover, it offers a collection of pre-trained detectionmodels that
are useful for initializing new ones when training on novel datasets.

• Object Detection API: TensorFlow provides specific object detection API, that makes it easy to con-
struct, train and deploy object detection models.

Training Hardware

Deep neural networks have permitted remarkable improvements in many AI applications, including com-
puter vision, but the performance growth has come at a cost:a significant computational demand. For ex-
ample, ImageNet 2012 challenge winner AlexNet[23] (84.7% accuracy) takes 1.4GOPS to process a single
224×224 image, while ResNet-152[24] that won the 2015 edition (96.5% accuracy), takesmore than an order
of magnitude more computations, 22.6GOPS.In particular, for any deep learning model the training phase
is the most resource-intensive task and almost in every case requires GPUs high-parallel computations capa-
bilities. The traditionalCentral ProcessingUnit (CPU)handles all themain functions in computer hardware
architectures and has few powerful cores (usually from 2 to 64) that allows to execute sequential tasks effi-
ciently. Instead, Graphic Processing Units (GPUs), originally designed for computer graphic purpose, are
specialized components with thousands of cores that excel in repetitive and highly-parallel computing tasks
that makes this hardware particularly suited to run deep learning algorithm based onmatrix multiplications
and convolutions. Unfortunately, E3 S.r.l company doesn’t have such hardware, therefore we make use of

28

a cloud GPUs platform to work around the problem. Cloud GPUs are platforms that provide hardware
acceleration for an application using GPUs on a cloud server, several big companies offer this service such as
Microsoft withAzure, AmazonwithAWS andGoogle with Colab, the latter is the one used in this project as
it provides themost beginner-friendly environment. A brief benchmark test is conducted to estimate GPUs
computation advantages in our specific case, and in this way evaluate possible company investments in this
technology in the future. The model trained in the test is InceptionV3[25] at the end of which a small neu-
ral network classifier is added, this is done to retrieve results with different amount of trainable parameters
using InceptionV3 as feature extractor or fine-tuning the entire model.

Figure 5.1: Model tested.InceptionV3 architecture has 25M trainable parameters while the added classifier 350K.

Figure 5.2: Training times.

The results in figure 5.2, obtained for different image input size, depict the training time using AMD
Ryzen 5500 CPU and NVIDIA Tesla T4 GPU, the standard one available in Colab, and they confirm as
CPUs training is feasible only for very small models and using low image resolution.

29

Component Cores Clock Speed Memory Price Speed

AMDRYZEN 5500 6 4.2GHz SystemMemory 100$ 434GFLOP in FP32

NVIDIA Tesla T4 2560 1.6GHz 16GBGDDR6 2000$ 8.1TFLOP in FP32

Table 5.1: Hardware used for training time comparison

Inference Hardware

There are many single-board computer to develop AI on embedded systems[26], but NVIDIA Jetson is
without a doubt the world’s leading computing platform, it offers a set of edge devices that for their high-
performance, form factor, low power consumption, and advanced thermal management system are ideal for
various industrial applications. These reasons, joined to the possibility to exploit TensorRT optimization
on NVIDIA GPUs, lead to adopt a Jetson platform also in our work case. In this project we use the Jetson
Nano Development board, however Jetson family comprehend more powerful solutions like Jetson Orin
and Jetson Xavier that can be considered for future improvements.

(a) JetsonNano specification

(b) Jetson Nano board

Figure 5.3: JetsonNano board and specification

30

5.3 Dataset

The training dataset is one of the main factors that determines deep neural network performances [27]. A
high-quality, large-size dataset is crucial to obtain an accurate model and complete the final task successfully.
To be as close as possible to these features the collected samples must be uncorrelated to each other and in
a plentiful number, however the creation of such a dataset is not trivial since it requires a lot of time and
effort in the process of retrieving and annotating the necessary images. For this reason, techniques as data
augmentation and transfer learning are widely used to reduce the cardinality of the training dataset and
therefore lighten the workload. Following these considerations we built a training dataset of 500 images,
using the bolt as element to detect, although there is no theoretical results that say which is the optimal
dataset dimensionwe have empirically verified that, for our specific case, a drop in performance occurs below
this value. We decide to use the bolt as case of study, among all the possible alternatives, principally for two
reasons, first it is a classical example of element that is difficult to count precisely with the standard weighing
approach which determines the number of element dividing the total measured weight by the weight of a
single item, and then because bolts are produced in various forms factor therefore we can analyze the system
performance with the same object taken in different size. In order to do that two test dataset are collected:

• DATASET A: Contains 100 images of bolts M3 , 5.5mm in diameter

• DATASET B: Contains 100 images of bolts M6 , 10mm in diameter

To fairly compare the results the sample of both dataset are acquired with the same device (Samsung S10e
camera) and at the same distance (30cm).

31

Figure 5.4: Training dataset samples. The samples are themost possible uncorrelated to achieve a good generalization of a real world

scenarios.

Figure 5.5: Dataset A samples examples.

Figure 5.6: Dataset B samples examples.

32

5.4 Selected Models

Aswehave seen in chapter 2 SSD is themost suitablemethodwhenworkingwith embedded systems. During
the years several SSD versions have been released, each of these replaces the original backbone layers with
other architectures.Among all the possible solutions we decide to compare and analyze these two versions:

• SSD MOBILENET V2: is a lightweight implementation that is designed for efficient computation
on mobile devices and embedded systems.

• SSD RESNET50: is a more accurate version that improves feature extraction ability by exploiting
residual module in the backbone layers.

The choice falls in these two networks to study the results of models that prioritize different metrics, as re-
ported inTab5.2ResNet50 favors accuracy at the expenseof computation complexity,whileMobileNetV2[28]
ensures a low inference time, but less robust detection.

Model Parameters FLOPs Top 1-err

MobileNetV2 3.4M 300M 28

ResNet50 25M 3.8B 20

Table 5.2: Comparison betweenMobileNetV2 and ResNet50 backbones

ResNet50

Intuitively, by increasing the number of layers the resulting neural networks should be more and more ac-
curate, however this assumption is true up to a certain limit. It is well-known in fact that deeper neural
networks are affected by the vanishing gradient problem which causes accuracy saturation and degradation
of the performance. To mitigate the problem ResNet architecture proposes a new building block structure
that makes use of skip connections. Skip, or shortcut, connections are paths that directly link the input of
a layer to the output of one 2 or 3 hops away, the stack of layers connected by a skip connection is called
residual block. The advantage of residual blocks is that, driven to zero weights and bias, they can easily learn
the identity function, in this way whenever a block are not retrieve any meaningful information is skipped
preserving the overall performance of the network. Skip connections therefore facilitate the task of each layer
making it incremental respect to the previous ones, the result is amore stable and efficient trainingprocedure.

33

Figure 5.7: Residual Block.

Another way to interpret residual block is that because of skip connections backpropagation algorithm
is capable to propagate larger gradients to initial layers given the possibility to train deeper networks. As
results ResNet architecture can stack multiple residual blocks without running into the vanishing gradient
problem ensuring robust detection on a wide range of tasks.

Figure 5.8: ResNet architecture.

MobileNet V2

MobileNetV2 is an architecture specifically designed for mobile and resource constrained environments.
Thenovelty respect to its predecessor,MobileNetV1[29], is the introductionof thebottleneck residual block
(Fig.5.9). The block is made up by two 1×1 pointwise convolution and one 3×3 depthwise filter. The first
pointwise convolution has the purpose to expand the number of the channel of the input tensor, and for
this reason it is also known as expansion layer. While, the second 1×1 convolution, the so-called projection

34

layer, performs the opposite operation bringing back the filtered data to a low-dimension.

Figure 5.9: Bottleneck residual block.

The expansion factor t is the hyperparameter that defines how much to expand the data processed into
the block (the standard value is 6). For example,suppose an input tensor with 24 channels, the expansion
layer provides to the depthwise filter a 24 × 6 = 144 channels tensor, subsequently the projection layer
reduces the filtered data channels, let’s say to 32. Following this procedure the tensors that flow between
the blocks have low-dimension reducing the overall number of operations, however thanks to the compres-
sion/decompression approach the filtering operations is performed on high-dimensional tensors avoiding
to loss too much information. The trick that makes this all work, of course, is that the expansions and pro-
jections are done using convolutional layers with learnable parameters, and so themodel is able to learn how
to best (de)compress the data at each stage in the network.

Input size: 224× 224× 3
Layer Expansion Factor Stride Repetition Output size
conv - s2 1 112× 112× 32

bottleneck 1 s1 1 112× 112× 16
bottleneck 6 s2 2 56× 56× 24
bottleneck 6 s2 3 28× 28× 32
bottleneck 6 s2 4 14× 14× 64
bottleneck 6 s1 3 14× 14× 96
bottleneck 6 s2 3 7× 7× 160
bottleneck 6 s1 1 7× 7× 320
conv pw - s1 1 7× 7× 1280

average pool 7× 7 - s1 1 1× 1× 1280
conv pw - s1 1 1× 1× k

Table 5.3: MobileNetV2 architecture

35

5.5 Work pipeline

The procedure followed to train, optimize and test the object detection models can be sum up in these prin-
cipal stages:

1. In the first step the collected training samples are annotated using LabelImg, a lighten software imple-
mented in python that generates annotation files in the .xml extension.

2. The annotation files, one for each image, are converted in a unique TFRecord file. TFRecord is the
Tensorflow’s own binary storage format that makes easy to import and preprocess data with the func-
tionality provided by the TensorFlow Object Detection (TFOD) API[30].

3. Starting fromthemodels provided in the tensorflowmodelzoo, pre-trainedon theCOCO2017dataset,
we use TFODAPI to perform the training process on our dataset.

4. The trained models are converted in the ONNX format to facilitate interoperability with the Jetson
Nano board and the optimization procedure.

5. TensorRT is used to generate serialized engine file optimizing the previously trained ONNXmodel.
We perform the optimization in both single and half precision to analyze possible different behaviors.

6. The optimized models, in single and half precision, and the original one are evaluated on the two test
datasets.

36

6
Results

In this section we comment the performance of the models, optimized and not, previously described. The
training procedure is conducted setting a cosine-decay learning rate with an initial value of 2 × 10−3 and
15000 steps, while the batch size, because memory constraint, is of 16 samples. After several attempts we
find that this combination of learning rate and iterations offers the best solution ensuring low fluctuation
of the loss metrics and at the same time the convergence of the network parameters to the optimal value.

Figure 6.1: Classification loss.

We train the SSD-MOBILENETV2 using two different input image size, (320× 320 and 640× 640) in

37

order to measure the impact of the image resolution on the overall performance of the model. However, in
the training step, as shown in the figures Fig 6.1 andFig 6.2 there aren’t noticeable differences between the two
versions in terms of classification and localization errors. Instead, as expected, SSD RESNET50(640× 640

input image) achieves slightly better results in both metrics.

Figure 6.2: Localization loss.

Regarding the detection accuracy, the performance of the models are evaluated with recall and precision
metrics:

Figure 6.3: Confusionmatrix.

Precision =
TP

TP + FP
Recall =

TP

TP + FN
(6.1)

Recall is the fraction of relevant elements detected, while Precisionmeasures the rate of correct detections
among all the retrieved ones. The two metrics are not particularly useful when used in isolation, in fact a
system with high recall but low precision returns many results, but most of its predicted labels are incorrect,

38

instead a systemwith high precision but low recall returns very few predictions, but correctly identifies most
of them. Therefore, to properly estimate the better trade-off, we plot precision against recall curve as a func-
tion of the model’s confidence score threshold. More specifically recall and precision are computed sorting
the detections in descending order of confidence score. The resulting curves are shown in Fig.6.4.

(a)Dataset A.

(b)Dataset B.

Figure 6.4: Precision-Recall curve for the different optimizations

For eachmodel we obtain the best balance between recall and precisionmaximizing the F1 score function,
defined as:

F1 = 2× Precision×Recall

Precision+Recall
(6.2)

We can notice that the lower resolution version of the SSD-MOBILENETV2* performs much worse re-

*in the following the two versions are abbreviated as SSD-MOBNET320 and SSD-MOBNET640

39

DATASET A
Model Precision Recall Conf. Threshold

SSD-MOBNET320 0.43 0.20 0.28
SSD-MOBNET640 0.93 0.57 0.25
SSD-RESNET50 0.95 0.85 0.14

Table 6.1: Dataset A, FP32 optimizedmodels precision and recall at the correspondent confidence threshold

DATASET B
Model Precision Recall Conf. Threshold

SSD-MOBNET320 0.92 0.76 0.31
SSD-MOBNET640 0.98 0.95 0.30
SSD-RESNET50 0.98 0.96 0.32

Table 6.2: Dataset B, FP32 optimizedmodels precision and recall at the correspondent confidence threshold

spect to the other two models, especially in the case of the smaller bolts(DATASET A). On the DATASET
B SSD-MOBNET640 and SSD-RESNET50 are able to detect over the 95% of the test samples with a re-
markable precision, however the performance, as for SSD-MOBNET320, drops when themodels are tested
on the DATASETA. This problem is not unexpected, in fact it is well known that SSD algorithm decreases
its accuracy when has to detect objects that are too small respect the resolution of the image[31]. Finally,
the precision-recall curves in Fig. 6.4 confirm that the optimization procedure, in single and half precision,
doesn’t damage the overall detection performance of the models.

Object-detection methods encounter difficulties in detecting heavily compacted scenes, an issue that must
be considered in an object-counting system where in some frames it is possible to have a lot of items to de-
tect in a limited portion of the image. To study the behavior of the selected models the fraction of missed
detections is computed as the density of objects in an image varies. We express the density of items in each
test image as the average of the minimum distances, measured in number of pixels, between the centers of
the bounding boxes that belong to the annotation setB.

D =

∑
x∈B min

y∈B
d(xc, yc)

|B|
(6.3)

Clearly SSDMOBNET640 and SSDRESNET50 have a low error rate at any distance on the DATASET
B, as depicted in Fig.6.5b, since as we have seen previously they detect the bigger bolts efficiently, while we

40

can appreciate how the worse performance of SSD MOBNET320 is principally due to the poor results in
detecting very close objects. On the DATASET A, dealing with the smaller bolts, only SSD RESNET50
ensures reliable detections (error rate< 5%) when the bolts are sufficiently spaced,Dmin > 80, in all other
cases the number of errors committed is too high to be accepted.

(a)Dataset A.

(b)Dataset B.

Figure 6.5: Error-Distance curves for the different models

41

(a)MOBNET320 (b)MOBNET640 (c)RESNET50

Figure 6.6: Detection example onDataset A

(a)MOBNET320 (b)MOBNET640 (c)RESNET50

Figure 6.7: Detection example onDataset B

42

Thenext step is the evaluationof themodels inference time. On the JetsonNanoboard, SSDMOBNET320,
SSD MOBNET640 and SSD RESNET50 achieve 30FPS, 10FPS and 2.5FPS respectively. As shown in
Tab6.3, these results are obtained by exploiting the TensorRT optimizer which allows to reduce the infer-
ence time from 2 to 3 times. In addition, we also observe that half-precision significantly improves the
performance compare to single-precision only in the case of SSD RESNET50, on the other lighter models
the detection time obtained by the two versions is basically the same.

INFERENCE TIME [ms]
Model ONNX FP32 FP16

SSD-MOBNET320 100 36(−64%) 33(−67%)

SSD-MOBNET640 236 110(−53%) 107(−55%)

SSD-RESNET50 890 648(−27%) 385(−56%)

Table 6.3: Inference timemeasuraments for the different models and optimizations

The usage of TensorRT also reduces the amount of necessary GPUmemory to run the different models,
like depicted in Fig.6.8. The memory reduction due to half and single precision optimization on the three
considered models follows the same trend described for the inference time.

Figure 6.8: GPUmemory usage.

43

44

7
Conclusion

This thesis work analyzes a deep learning based object counter implemented on an embedded system. Al-
though object counting is not a new application of deep learning and there are many examples of this task
in the literature, it is still a difficult problem to solve on embedded devices because of the specific hardware
resource constraints. Nowadays effective application of deep learning techniques within embedded system
is generating considerable interest, in fact moving the computation from cloud servers to edge devices re-
duces power consumption and network bandwidth, ensures low-latency and preserves data privacy. The
work focuses on the implementation of a deep learning system running on the Jetson Nano board that is
able to count bolts in automated packaging lines. The performance of the counter is far from being perfect,
especially in the case of the smaller bolts, but it is satisfactory considering the relatively small dataset used
for training and the light models used for the detection. In particular, among the different models tested
in this work, we observe that SSDMOBNET640 ensures the best trade-off between accuracy(98%) and in-
ference time(100ms) in the case of bolts in diameter greater than 1cm. When the dimension of the object
to detect decrease it is necessary to use more complex models to maintain an acceptable accuracy, like SSD
RESNET50, and in this case TensorRT optimizer provides remarkable results on the reduction of the infer-
ence time andmemory usage. However, on JetsonNano board the frame rate obtained, about 2.5FPS, is still
too small to work on real-time condition. A future direction is to exploit more powerful Jetson modules in
order to obtain low inference time also with complex model architecture. Another possible improvement is
the implementation of a defect detection system along with the object counter, in this way during the count-
ing phase it is also performed the quality check of the pieces. Despite the specific application on bolts, it is
important to highlight the generality of the implemented pipeline, that can be adapted to different contexts.

45

46

Reference

1. J. Bernal, K. Kushibar, D. S. Asfaw, S. Valverde, A. Oliver, R. Martí, and X. Lladó, “Deep convolu-
tional neural networks for brain image analysis on magnetic resonance imaging: a review,” Artificial
Intelligence in Medicine, vol. 95, pp. 64–81, 2019.

2. M. Kashiha, C. Bahr, S. Ott, C. P. Moons, T. A. Niewold, F. Ödberg, and D. Berckmans, “Automatic
identification of marked pigs in a pen using image pattern recognition,” Computers and Electronics in
Agriculture, vol. 93, pp. 111–120, 2013.

3. M. Heimberger, J. Horgan, C. Hughes, J. McDonald, and S. Yogamani, “Computer vision in au-
tomated parking systems: Design, implementation and challenges,” Image and Vision Computing,
vol. 68, pp. 88–101, 2017. Automotive Vision: Challenges, Trends, Technologies and Systems for
Vision-Based Intelligent Vehicles.

4. I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016. http://www.
deeplearningbook.org.

5. R. Yamashita, M. Nishio, and R. K. G. Do, “Convolutional neural networks: an overview and appli-
cation in radiology,” Insights into Imaging, vol. 9, no. 10, pp. 611–629, 2018.

6. D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by back-propagating
errors,”Nature, vol. 323, pp. 533–536, 1986.

7. T. G. Karimpanal and R. Bouffanais, “Self-organizing maps for storage and transfer of knowledge in
reinforcement learning,”Adaptive Behavior, pp. 111–126, 2019.

8. R.Girshick, J.Donahue, T.Darrell, and J.Malik, “Rich feature hierarchies for accurate object detection
and semantic segmentation,” 2014.

9. J. R. R. Uijlings and K. E. A. van de Sande, “Selective search for object recognition,” International
Journal of Computer Vision, 2013.

10. R. Girshick, “Fast r-cnn,” 2015 IEEE International Conference on Computer Vision (ICCV), 2015.

47

http://www.deeplearningbook.org
http://www.deeplearningbook.org

11. S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time object detection with region
proposal networks,” 2016.

12. W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, andA. C. Berg, “SSD: Single shotMulti-
Box detector,” in Computer Vision – ECCV 2016, pp. 21–37, Springer International Publishing, 2016.

13. J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified, real-time object
detection,” 2016.

14. TensorRTNVIDIA, 2023. https://developer.nvidia.com/tensorrt.

15. ONNXOpen Neural Network Exchange. https://onnx.ai/, 2023.

16. Z. Song andK. Shui, “Researchon the acceleration effect of tensorrt indeep learning,” Scientific Journal
of Intelligent Systems Research Volume, vol. 1, no. 01, 2019.

17. K. Pavel and S. David, “Algorithms for efficient computation of convolution,” in Design and Archi-
tectures for Digital Signal Processing (G. Ruiz and J. A. Michell, eds.), ch. 8, Rijeka: IntechOpen, 2013.

18. Wikipedia contributors, “Cuda—Wikipedia, the free encyclopedia,” 2023.

19. CUDA Stream: Serial Model vs Concurrent Model. https://leimao.github.io/blog/
CUDA-Stream/, 2022.

20. M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean,
M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,
M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens,
B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals,
P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-scale machine learn-
ing on heterogeneous systems,” 2015. Software available from tensorflow.org.

21. J. Dean, G. S. Corrado, R. Monga, K. Chen, M. Devin, Q. V. Le, M. Z. Mao, M. Ranzato, A. Senior,
P. Tucker, K. Yang, and A. Y. Ng, “Large scale distributed deep networks,” inNIPS, 2012.

22. M.Abadi, P. Barham, J. Chen, Z.Chen, A.Davis, J.Dean,M.Devin, S.Ghemawat, G. Irving,M. Isard,
M. Kudlur, J. Levenberg, R. Monga, S. Moore, D. G. Murray, B. Steiner, P. Tucker, V. Vasudevan,
P. Warden, M. Wicke, Y. Yu, and X. Zheng, “Tensorflow: A system for large-scale machine learning,”
2016.

48

https://developer.nvidia.com/tensorrt
https://onnx.ai/
https://leimao.github.io/blog/CUDA-Stream/
https://leimao.github.io/blog/CUDA-Stream/

23. A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolutional neu-
ral networks,” in Proceedings of the 25th International Conference on Neural Information Processing
Systems - Volume 1, p. 1097–1105, Curran Associates Inc., 2012.

24. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proceedings of
the IEEE conference on computer vision and pattern recognition, pp. 770–778, 2016.

25. C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z.Wojna, “Rethinking the inception architecture for
computer vision,” 2015.

26. H. A. Imran, U. Mujahid, S. Wazir, U. Latif, and K. Mehmood, “Embedded development boards for
edge-ai: A comprehensive report,” 2020.

27. J. G. A. Barbedo, “Impact of dataset size and variety on the effectiveness of deep learning and transfer
learning for plant disease classification,” Computers and Electronics in Agriculture, vol. 153, pp. 46–53,
2018.

28. M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “Mobilenetv2: Inverted residuals
and linear bottlenecks,” 2019.

29. A.G.Howard,M.Zhu, B.Chen,D.Kalenichenko,W.Wang,T.Weyand,M.Andreetto, andH.Adam,
“Mobilenets: Efficient convolutional neural networks for mobile vision applications,” 2017.

30. TensorFlow Object Detection 2 API. https://github.com/tensorflow/models/tree/
master/research/object_detection, 2023.

31. J.-S. Lim, M. Astrid, H.-J. Yoon, and S.-I. Lee, “Small object detection using context and attention,”
2019.

49

https://github.com/tensorflow/models/tree/master/research/object_detection
https://github.com/tensorflow/models/tree/master/research/object_detection

	Abstract
	Introduction
	Deep Learning for Compture Visions Applications
	Deep Learning
	Convolutional Neural Network
	Network Training

	Object Detection
	Object Detction Problem Definition
	Two-Stage Based Model
	Single Shot Multibox Detector

	TensorRT Optimizer
	TensorRT Structure
	TensorRT Optimizations

	Experimental Setup
	Project objective
	Setup
	Dataset
	Selected Models
	Work pipeline

	Results
	Conclusion
	References

