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Introduction

The study of neutron stars (NSs) allows to investigate properties of matter and processes that
occur under extreme conditions. Their strong magnetic fields (& 1012 G), far higher than the
ones achievable in a terrestrial laboratory, make them perfect candidates to test theoretical
physics under conditions which in no way can be reached with our instruments.

X-ray pulsars are neutron stars which accrete mass from a companion star. The strong
X-ray emission is given by the accretion of matter onto the NS surface which is strongly affected
by the NS magnetic field (B > 109 G): the accreting material from the accretion disk follows
the magnetic field lines toward the magnetic poles, forming an accretion column. Inside this
structure the material is heated to high temperatures and the opacity is dominated by the
scattering between electrons and photons (Basko & Sunyaev 1975). Because of the high B,
the X-ray photons are expected to be strongly polarized in two normal modes, the ordinary
and the extraordinary mode, defined by the direction of the photon polarization vector with
respect to that of the local magnetic field. Scattering cross sections in the presence of strong
magnetic fields are quite different for the two modes; in particular, the cross section which
involve X-mode photons turns out to be much lower than that for O-mode ones (see Canuto et
al. 197; Gnedin & Pavlov, 1974). Photon propagation becomes really angle-dependent adding a
further complexity in solving the already complicated integro-differential radiation transport
equation which provides the description of the outgoing radiation and NS spectra.

The arrival of future missions, like the NASA IXPE1 (Imaging X-ray Polarimetry Explorer),
with new generation X-ray polarimeters promise to add more information to high energy
astrophysical observations through polarimetric measurements. In fact, so far NSs were studied
only through the timing and spectroscopic measurements which could not provide a unique and
complete description of the geometry of these sources because of the spectral degeneracy: the
same spectral characteristics can be linked to different combinations of the parameters of these
sources. X-ray polarimetry will be the key to remove this ambiguity because polarization is
strongly affected by the magnetic field and so a measure of the degree and the orientation of the
polarized radiation would lead to a better description of the NS magnetic field and its geometry
as for the accretion columns.

In this thesis we focus on the Compton scattering in presence of a strong magnetic field,
which is one of the dominant processes in NS atmospheres and particularly in structures like

1https://ixpe.msfc.nasa.gov
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accretion columns in X-ray pulsars. Following the previous works by Nagel (1981) and Mészáros
(1992), we analyze the differential cross section in the non-relativistic limit for a hot plasma.
This quantity is extremely important for the numerical solution of the radiative transfer equation
in a scattering-dominated medium beyond two-stream approximation which was used so far.
In order to understand the spectral and polarization properties of the radiation emitted from
NSs, it is important to produce a valid numerical code which allows to solve consistently the
radiative transfer in such a medium within reasonable computational times.

This thesis is organized as follows:

• In chapter 1 we give a general description of neutron stars and in particular of accreting
columns;

• In chapter 2 we describe the motion of particles in a strong magnetic field, polarization
modes of radiation and their evolution when propagating in a magnetized medium;

• In chapter 3 we describe the radiation transport equation;

• In chapter 4 we introduce the quantum formalism for the magnetic Compton scattering;

• In chapter 5 we perform the analysis of the differential scattering cross section and its
numerical integration;

• Chapter 6 contains the conclusions.



Chapter 1

Neutron stars

Neutron stars (NSs) are extreme compact objects that are born in the core-collapse of massive
stars (8 .M/M� . 25), after a supernova (SN) explosion. At the end of the stellar evolution,
when all the nuclear fuel is exhausted, the hydrostatic equilibrium no longer holds since the
energy produced by the fusion is not enough to counterbalance the gravitational force and so
the star collapses. If the core mass is less than the Chandrasekhar mass MCh = 1.44M�, the
degenerate electron gas pressure prevents the star against further contractions and so it becomes
a white dwarf (WD). If M > MCh the degenerate electron gas pressure is not sufficient anymore
and the star keeps contracting. At ρd = 4.3× 1011 g cm−3, which is called neutron drip density,
free neutrons appear in the interior of the star due to the inverse β processes:

p+ + e− → n0 + νe , (1.1)

which counterbalances the neutron decay. Density keeps increasing until the degenerate neutron
gas pressure, together with the repulsive part of the strong nuclear force, becomes strong enough
to stop the collapse and a NS is formed. If instead the initial stellar mass is larger than about
25M� neither the degenerate neutron gas pressure nor any other mechanism can oppose the
gravitational force and so the star keeps collapsing becoming a black hole (BH). Typical values
for the NS radius are between 10− 20 km and masses between 1− 2M� so they achieve huge
densities, comparable or even higher than for an atomic nucleus (ρn = 1014 g/cm3).

The internal structure of a NS can be divided in five regions (Camenzind 2007):

• atmosphere which is just few centimeters thick;

• outer crust (106 g cm−3 ≤ ρ ≤ 4.3 × 1011 g cm−3), a solid region made by a Coulomb
lattice of heavy nucleons and a gas of relativistic degenerate electrons in equilibrium
against the β decay, (this part is very similar to the interior of a WD);

• inner crust (4.3× 1011 g cm−3 ≤ ρ ≤ (2− 2.4)× 1014 g cm−3), that consists in a lattice of
neutron-rich nucleons with a gas of superfluid neutrons and electrons;

• outer core (2− 2.4× 1014 ≤ 6× 1014 g cm−3), mainly composed by superfluid neutrons
with some superconductive protons, relativistic electrons and muons;

7
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• inner core (ρ & 6×1014 g cm−3), the nature of which is not clear yet, can contain hyperons,
more massive baryon resonances, π− and K- meson condensates and possibly deconfined
quarks.

Other two important features of NSs are the short rotational period and the huge magnetic
field, both of which can be explained invoking conservation laws during the core collapse. If
we assume that the angular momentum is conserved, then Ifωf = Iiωi, where I is the inertial
momentum, ω is the angular velocity and the star can be assumed as a homogeneous sphere (so
that I = 2/5MR2). Assuming that the mass of the progenitor star before the core collapse and
that of the compact object are of the same order of magnitude, we find ωf = ωiR

2
i /R

2
f . Since

the angular velocity and the period P are linked by the relation ω = 2π/P we finally obtain

Pf = Pi

(
Rf

Ri

)2

. (1.2)

Taking for the initial star typical values as Pi ∼ 105 s ∼ 1 day and Ri ∼ 106 km and supposing
Rf ∼ 10 km, we obtain a period of Pf ∼ 10−5 s. NSs with period between 10−3 ≤ P ≤ 10 s has
been observed. Thus NSs are expected to be really fast rotators, especially at the beginning of
their life because then the spin decreases as we will see.

As done for the angular momentum, we calculate the NS magnetic field assuming that the
magnetic flux is conserved during the collapse:

BfR
2
f = BiR

2
i ⇒ Bf = Bi

(
Ri

Rf

)2

. (1.3)

Using the same values for the radii and considering Bi = 100 G we find Bf ∼ 1012 G. This
makes NSs powerful magnets, the strongest discovered until now in the universe . So far NSs
with a magnetic field up to 1015 G were found.

The magnetic field, together with the rotation of the star, is the responsible for the behavior
and the evolution of the NS and in particular for the decrease of the rotation period. Although
generally it is not trivial to develop a well-defined model for the magnetic field of NS, we will
simplify here and suppose that it is a dipole, so in spherical coordinates it is

Bdip =
BpR

3

r3

(
cos θer +

sin θ

2
eθ

)
, (1.4)

where Bp is the intensity of the magnetic field at the magnetic poles and r and θ the radial and
polar coordinates respectively. The magnetic dipole moment m = 1/2BR3 and the rotation
axis are in general misaligned, so the magnetic field lines rotate rigidly with the star. A rotating
dipole emits radiation whose power is given by the Larmor formula

Ė = − 2

3c3
| m̈ |2= − 2

3c3
B2R6ω4 sin2 α

4
(1.5)

where α is the angle between the two vectors ω and m. The minus sign implies that the energy
is taken away from the star. This energy is simply the rotational energy Esd = Iω2/2, so the
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loss of rotational energy or spin-down luminosity is

Ėsd = Iωω̇. (1.6)

This implies that ω̇ is negative, which means that the star is slowing down. The evolution of
the rotation period is therefore given by

ω̇ = −B
2R6ω3 sin2 α

6Ic3
. (1.7)

We can now calculate the spin-down magnetic field at the poles as a function of P and Ṗ

equating 1.5 and 1.6

Bsd = Bp =

√
3Ic3

4π2R sin2 α
PṖ ' 3.2× 1019

√
PṖ G, (1.8)

where we have used R = 10 km, M = 1.5M�, I = 1045 g cm2 and sin2 α = 1. Integrating eq. 1.7
over time t, it is possible to calculate the characteristic age τc of the NS, assuming that the
initial angular velocity is far higher than the final one, that B remains constant and that the
loss of energy is completely due to the magnetic dipole radiation:

τc =
P

2Ṗ
. (1.9)

From these calculations, P and Ṗ turn to be two fundamental quantities to characterize NSs,
which therefore are usually represented in the P − Ṗ diagram. As shown in Figure 1.1, different
types of NSs (see next section) occupy different regions of the diagram. If the star magnetic
field does not change, a NS evolves moving in the diagram to larger period following a line of
constant B, like a normal star evolves along a track in the Hertzsprung-Russell diagram.

1.1 Neutron star zoo

Even if theorized in the 30s (Baade & Zwicky 1934), the first observation of a NS took place
in 1967 when it was discovered the first radio pulsar (PSRs) (Hewish et al. 1968). Then, with
the improvement of high-energy observations in the ’90s, other types of NSs were identified
and now, altought radio PSRs are the most numerous class, NSs are observed across the entire
electromagnetic spectrum.

They are classified according to the position in the P − Ṗ diagram which is linked to the
primary power source for their emission and spin evolution. Rotation-Powered Pulsars (RPPs)
derive their energy primarily from the rotation of the star as seen in the previous section. The
rotation of neutron stars is responsible for the observation of their pulsed emission at radio
and X-ray wavelengths, the pulses being attributed to the passage of a beam of radiation from
the magnetic poles of the neutron star across the observer line-of-sight. To account for the
observation of radio pulses, the magnetic axis of the star, where the beam of radio emission is
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Figure 1.1: P − Ṗ diagram in logarithmic scale of the presently known NSs of different classes:
Rotation-Powered Pulsar (RPPs, blue-filled circles), Magnetars (red-filled circles), Rotating
Radio Transients (RRTs, cyan crosses), X-ray Dim Isolated Neutron Stars (XDINSs, green
diamonds). X-ray emitting pulsars are highlighted by the purple triangles. (http://www.atnf.
csiro.au/people/pulsar/psrcat/). Lines of constant Bp (grey) and characteristic age τc
(green) are superimposed.

http://www.atnf.csiro.au/people/pulsar/psrcat/
http://www.atnf.csiro.au/people/pulsar/psrcat/
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Figure 1.2: Schematic model of a pulsar with the magnetic and rotation axes misaligned (Lorimer
& Kramer 2005).

originated, and its rotation axis must be misaligned. There are two main populations of RPPs:
ordinary pulsars with τ ≤ 105 yr and periods in the range 10−1 − 1 s and millisecond pulsars
(MSPs) which have rotation periods between 1− 10 ms and τ ≥ 108 yr. Ordinary radio pulsars
are thought to have increased their rotation periods at a steady rate from their birth. On the
other hand, MSP short periods contrast with their old ages. The leading theory for the origin
of millisecond pulsars is that they were born in a binary system and then were spun up or
"recycled" by accretion from the companion. For this reason, millisecond pulsars are sometimes
called recycled pulsars.

Isolated Neutron Stars (INSs) are NSs whose X-ray emission is not powered by the rotational
energy losses. This group includes X-ray dim isolated neutron stars (XDINSs), central compact
objects (CCOs), rotating radio transients (RRATs) and magnetars.

Magnetars are characterized by a ultra-strong magnetic fields and by the emission of repeated
bursts in the hard-X/soft-gamma-ray. They were initially classified in two different groups, the
soft-gamma-ray repeaters (SGRs) and the anomalous X-ray pulsars (AXPs). SGRs were firstly
associated with gamma-ray bursts (GRBs) but then the repetition of the burst events excluded
this association since GRBs are unique events. AXPs were identified as anomalous pulsars
because of their luminosities far higher than Ėsd. The leading scenario for which AXPs and
SGRs are different manifestations of the same objects, the magnetars (Duncan & Thompson,
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1992), is sustained by the great number of properties shared by these two classes. They exhibit
long rotation periods, between 2− 12 s and period derivatives in the range 10−13 − 10−11 s s−1,
leading to characteristic ages between 103 − 106 yr and spin-down magnetic fields up to 1015 G.

XDINSs, also known as The Magnificent Seven, are seven close-by objects whose emission is
peaked in the X-ray (X-ray to optical flux ratio ≈ 104− 105) with luminosities LX ≈ 1030− 1032

erg s−1. They present rotational periods P ≈ 3 − 11 s and quite large period derivatives
Ṗ ≈ 10−14 − 10−13s s−1. These values lead to quite high values for the surface magnetic fields
Bsd ≈ 1013 G. Their unusually strong magnetic fields could act as an additional source of heating
that would explain their high luminosity. XDINSs are thought to be the evolution of magnetars
in which the magnetic field has substantially decayed (Mignani et al. 2008).

CCOs are INSs located at the center of supernova remnants (SNRs). Since there are only
few direct measurements of the spin periods, the age of these objects is inferred from that of
the SNR (which is approximately 104 yr). This indicates that they are young NSs (Halpern &
Gotthelf 2010). From the objects for which a measure has been possible, the period derivatives
turn out to be of the order of Ṗ ≈ 10−18 − 10−16 s s−1 and this lead to a value of the spin down
magnetic field of Bsd ≈ 1010 − 1011 G, the lowest ever estimated for INSs.

RRATs are a class of radio-emitting neutron stars recently discovered (McLaughlin et al.
2006). They show sporadic emission of single pulses which last ≈ 2 − 30 ms. The number
of observed RRATs is still very small, only ∼100 RRATs1. It is not clear yet the reason why
RRATs present this irregular emission. It has been suggested that RRATs may be related to
magnetars and XDINS (McLaughlin et al. 2006; Lyne et al. 2009) because some of these objects
exhibit long periods and higher magnetic fields than normal pulsars (BRRAT ≈ 1013 G). However,
the link between RRATs and other classes of NSs is not yet understood also because they are
found really scattered all over the P − Ṗ diagram.

X-ray Pulsars (XRPs) are magnetized (B > 109 G) NSs with a companion star that can
be a low-mass main sequence star or a massive star like a B-type star. In the first case they
form a low-mass X-ray Binary (LMXB) while in the second one a high-mass X-ray Binary
(HMXB). Their X-ray emission comes from the accretion of material from the companion star.
The magnetic field channels the accreting material towards the magnetic poles, producing what
is called an accretion column, where the kinetic energy of the free fall is converted into X-ray
thermal emission. Inside the accretion column the opacity is dominated by the scattering
between photons and electrons. Being close to the NS surface, this processes are strongly
influenced by the NS magnetic field. That is why a better comprehension of the scattering
process in a strong medium is needed to explain this kind of structure.

1See the ‘RRATalog’ for details on all known RRATs: http: //astro.phys.wvu.edu/rratalog
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Figure 1.3: Schematic view of the accretion column (Becker & Wolff 2007).

1.2 Accreting columns

The accreting material forms a disk outside the Alfén radius, i.e. the radius RA at which the
stellar magnetic field pressure equals the RAM pressure. At RA the disk is truncated and from
this point the material follows the magnetic field lines and falls freely towards the magnetic
poles in a long and narrow funnel, the accretion column. Estimated values for the accretion
column radius a, width d and length l are a ∼ 0.1RNS ' 105 cm centered at the magnetic pole,
d� a around 103 cm and l = 2a (Basko & Sunyaev 1975).

In the accretion column matter is slowed down from supersonic to subsonic velocities. We can
therefore distinguish two different regions: the free fall region in which matter has a supersonic
velocity v = (2GM/r)1/2 ∼ 0.65c and the shock region in which instead matter velocity is
subsonic (Figure 1.3). The first region is the largest one, it extends nearly till the NS surface.
The second one is really thin but it is here where gas slows down and a high radiation density
is found (Basko & Sunyaev 1976). It is from this second zone that the radiation escapes
freely. Basko & Sunyaev (1976) found a critical value for the mass accretion rate and hence
the luminosity which separates between two different accreting regimes, the high-rate and the
low-rate ones,

Lcrit =
d

R

c

κ

2GM

R

where M and R are the NS mass and radius, κ the opacity. Normally Lcrit is comparable to
the Eddington luminosity LEdd (Nelson et al. 1993). For LX & Lcrit the radiation pressure
is far higher than the gas pressure and so it dominates the shock. The accreting material is
indeed impeded by the emerging radiation, the accretion column becomes opaque along the
magnetic field axis so the X-ray photons can escape from its sides in a “fan-beam” pattern that
is directed perpendicular to the magnetic field. For LX . Lcrit instead matter falls almost freely
up to the NS surface, causing the braking of the plasma by a hydrodynamical shock. X-rays in
this case can escape vertically along the accretion column, producing a "pencil-beam" pattern.
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More recent considerations also predict that a fraction of the fan-beam emission can be reflected
off the surface of the NS, producing a secondary polar beam that is directed parallel to the
magnetic field axis in a "pencil-beam" model (Poutanen et al. 2013).

The emission of the accretion column of XRPs has a spectrum that is empirically described
by a very hard power law (spectral index . 1.8) with a low-energy ( . 10 keV) cut-off (Caballero
& Wilms 2012). It has been demonstrated that the spectrum can be reproduced assuming
thermal Comptonization of bremsstrahlung, blackbody, and cyclotron seed photons (Nagel 1981).
However no self consistent, general model has been found due to the complexity of the physical
processes both in the accretion column and in the magnetosphere. A better and complete
description of the scattering processes, which are the dominant processes inside these structures,
would help to discriminate between various models for the emitting region.



Chapter 2

Radiation in strong magnetic fields

The motion of the charged particles in the presence of a strong magnetic field is strongly
anisotropic: they are free to move along the magnetic field direction while they are confined in
quantized orbits perpendicularly to it. The propagation of radiation in this magnetized medium
depends on the polarization modes of photons which are expected to be linearly polarized in
two normal modes, ordinary and extraordinary. Strong magnetic fields can also influence the
propagation of photons in vacuo, producing an increase of the observed linear polarization (Heyl
& Shaviv 2002, Taverna et al. 2015).

In this chapter we firstly describe the motion of an electron both in the limits of weak field
(2.1.1) and strong field (2.1.2). Then in section 2.2.1 we describe the photon propagation and
polarization modes in a magnetized plasma together with vacuum polarization effects. Finally
in section 2.2.2 we introduce the Stokes parameters both for a single photon and the entire
radiation.

2.1 Matter in strong magnetic fields

2.1.1 Weak field case

The equation of motion of an electron in a uniform, static magnetic field B is

d

dt
(mγv) =

e

c
(v ×B), (2.1)

with m rest mass of the electron, v its velocity and e its charge; γ = (1 − v2/c2)−1/2 is the
Lorentz factor. The first term in eq. 2.1 can be expanded as

d

dt
(mγv) = m

d

dt
(γv) = mγ

dv

dt
+mγ3v

v · a
c2

, (2.2)

with a = dv/dt = FL/m where FL = e/c (v ×B) is the Lorentz force, from which we see that
a and v are always perpendicular, then v · a = 0 and equation 2.1 becomes

γm
dv

dt
=
e

c
(v ×B). (2.3)
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Figure 2.1: Motion of an electron in a static, uniform magnetic field along z (Mészáros 1992).

Introducing the velocity components v‖ and v⊥, parallel and perpendicular to the field, respec-
tively, we have

γm
dv‖
dt

=
e

c
(v‖ ×B) = 0⇒

dv‖
dt

= 0⇒ v‖ = const. (2.4)

Being the only acting force the Lorentz force, which is perpendicular to the electron velocity,
|v| = cost and since

∣∣v‖∣∣ = const then also |v⊥| = const. Therefore particles move with a
uniform, circular motion in the plane perpendicular to the B field and with a constant motion
along z. This results in an helicoidal motion with a constant angle θ between the field and the
velocity as illustrated in Figure 2.1. Equating the equation of motion with the circular motion
equation we can infer the radius of the circular motion:

v2⊥
rL

=
e

c

v⊥ | B |
γm

⇒ rL =
mγcv⊥
eB

, (2.5)

which is called the Larmor or cyclotron radius. The angular frequency is

ωc =
eB

mγc
. (2.6)

2.1.2 Strong field case

In a strong magnetic field (B & 1012 − 1013 G) a quantum treatment is necessary since rL
becomes comparable to or smaller than the de Broglie wavelength of the electron λB = ~/p,
with p the electron momentum. Moreover, the electron motion perpendicular to the magnetic
field results quantized.

Quantum effects become important when

~
γmv

≥ γmcv⊥
eB

(2.7)
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which corresponds to a magnetic field

B ≥ m2c3γ2

e~

(v⊥
c

)2
= γ2β2

⊥BQ, (2.8)

where BQ is the critical magnetic field (or Schwinger magnetic field)

BQ =
m2c3

e~
= 4.413× 1013G. (2.9)

The classical cyclotron energy at B = BQ becomes equal to the electron rest mass energy mc2

εc = ~ωc = ~
eB

mc
= mc2(B/BQ). (2.10)

and, setting rL = λB, we obtain a characteristic magnetic quantum length scale for the electron

γmvc/eB = λ⇒ ~c/eB = λ

⇒ λ = (~c/eB)1/2 = 2.6× 10−10B
1/2
12 cm , (2.11)

where B is in units of 1012 G.

As in the classical limit, electrons move with a circular motion of frequency ωc in the plane
perpendicular to B and with a free constant motion along B. In the zero spin case, the energy
levels are

E = (n+ 1/2)~ωc + (1/2m)p2z

= (n+ 1/2)mc2(B/BQ) + (1/2m)p2z, n = 0, 1, . . .
(2.12)

i.e. a spectrum composed by a continuum along z and a discrete set of levels in the transverse
direction called Landau levels. They differ from the classical ones by the factor 1/2 which is
due to the zero-point energy of the ground state n = 0 which is 1/2mc2(B/BQ). The circular
orbits have also quantized radii

rn = (2n)1/2λ (2.13)

with λ given by 2.11.

If we include the contribution of the spin term, eq. 2.12 becomes

E =
1

2
~ωc(2n+ 1 + ζ) + (1/2m)p2z n = 0, 1, . . . ζ = ±1, (2.14)

where ζ are the spin eigenvalues. The relativistic generalization, obtainable by solving the Dirac
equation, is

E = [m2c4 + c2p2z + (2n+ ζ + 1)mc2~ωc]1/2 =

= [m2c4 + c2p2z + (2n+ ζ + 1)m2c4(B/BQ)]1/2 .
(2.15)
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2.2 X-ray Polarimetry

So far, X-ray sources has been studied only through spectral characteristics and time variabilities.
Even if lot has been achieved in our understanding of X-ray objects in this way, it is not enough
to have a full understanding of these sources. Different conditions and combinations of the
parameters of X-ray sources produce the same spectral characteristics which is why with the
spectral analysis only is not possible to univocally define the geometry of these sources. Two
more observables are needed: the direction and the magnitude of polarization which both can be
obtained from polarimetry measurements. The great importance of polarimetry has been already
emphasized (Soffitta et al. 2013): it could lead to a better understanding of the rotation-powered
and accretion-powered pulsar radiation mechanisms; it could help to determine the geometry and
the emission mechanism of Active Galactic Nuclei and micro-quasars, to find the magnetic field
configuration in magnetars and to determine the magnitude of the field, to find the mechanism
for X-ray production in pulsars (both isolated and accreting) and the geometry, to determine
how particles are accelerated in Pulsar Wind Nebulae, Supernova Remnants and Jets, to test
fundamental physics from quantum effects to quantum gravity and much more.

2.2.1 Photon propagation in a magnetized plasma

In the reference frame (x, y, z) with k along the z-axis, and the x-axis in the k −B plane, the
electric field of a photon can be written as

E = E0(z)e−iωt = A(z)ei(k0z−ωt), (2.16)

with k0 = ω/c and A = (Ax, Ay, Az) is the electric field complex amplitude. Maxwell wave
equation describes the evolution of the electric field of the photon

∇× (µ̄ ·∇×E) =
ω2

c2
ε ·E (2.17)

where µ is the magnetic permeability tensor and ε is the dielectric tensor. In a cold electron-ion
plasma under an external magnetic field B, electrons and ions (with charge, mass and number
density given by −e, me, ne and Ze, mi, ni respectively) are coupled by collisions with frequency
νei and have radiative damping frequencies νre and νri respectively. The dielectric tensor, in the
reference frame with B along z, is given by (Harding & Lai 2006)

ε(p) =


ε ig 0

−ig ε 0

0 0 η

 (2.18)

where

ε± g = 1− 1

ω

ω2
p(ω + iνei) + ω2

pi(ω + iνre)

(ω + iνre ± ωc)(ω + iνri ∓ ωci) + iωνei

η ' 1− 1

ω

(
ω2
p

ω + i(νei + νre)
−

ω2
p,i

ω + i(νei + νri)

)
.

(2.19)
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with ωpe = (4πnee
2/me)

1/2 is the electron plasma frequency, ωpi = (4πniZ
2ee/mi)

1/2 is the ion
plasma frequency, ωc = eB/(mec) is the electron cyclotron frequency and ωci = ZeB/(mic) is
the ion cyclotron frequency. The damping frequencies νei, νre and νri are given by

νei =
Z2nie

4

~ω

(
2π

mekT

)1/2

(1− e−~ω/kT )gffα ,

νre =
2e2ω2

3mec3
,

νri =
Z2meω

mi

γre.

(2.20)

where gffα is the Gaunt factor (Potekhin & Chabrier 2003).
Strong magnetic fields influence not only the behavior of matter but also photon propagation

in vacuum. According to quantum electrodynamics, the vacuum is filled with virtual electron-
positron pair which can be then polarized by the strong magnetic field. Thus in the magnetized
vacuum the dielectric and magnetic permeability tensors depart from unity, altering the radiative
scattering and absorption opacities (Mészáros & Ventura 1979; Pavlov & Gnedin 1984). Vacuum
polarization becomes significant when b = B/BQ & 1, which occurs in many NSs. The
contribution of vacuum polarization to the dielectric tensor is

ε(v) = a11 + qB̂B̂ (2.21)

where B̂ is the local magnetic field unit vector and the inverse magnetic permeability tensor is
given by

µ̄(v) = a11 +mB̂B̂. (2.22)

where a, q and m are function of b (Harding & Lai 2006). For ~ω � mec
2, a good approximation

for the coefficients a, q and m is given by Potekhin et al. (2004):

a ≈ −2αF
9π

ln

(
1 +

b2

5

1 + 0.25487b3/4

1 + 0.75b5/4

)
q ≈ 7αF

45π
b2

1 + 1.2b

1 + 1.33b+ 0.56b2

m ≈ −αF
3π

b2

3.75 + 2.7b5/4 + b2
.

(2.23)

In the limit of weak field, b� 1, these coefficients are given by (Adler 1971)

a = −2αF
45π

b2, q =
7αF
45π

b2, m = −4αF
45π

b2 (2.24)

where αF is the fine structure constant.
For B � 5 × 1016 G, the plasma and vacuum contributions of eq. 2.18 and 2.21 can be

summed linearly to obtained the total dielectric tensor ε (Ho & Lai 2003) which results in

ε =


ε′ ig 0

−ig ε′ 0

0 0 η′

 (2.25)
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Figure 2.2: Reference system for the polarization modes. The unit vectors EX and EO along
which the electric field two modes (X- and O-mode) oscillate are also shown.

where ε′ = ε + a and η′ = η + a + q. The inverse total magnetic permeability tensor instead
remains as in eq. 2.22.

The polarization modes are found more easily in the reference system with k along the
z-axis and B in the x− z plane, such that B̂ × k̂ = sin θBŷ, with θB the angle between k and
B (Figure 2.2). For normal modes propagating with E ∝ eikjz, eq. 2.17 reduces to

− k2j ẑ × [µ̄ · (ẑ ×Ej)] =
ω2

c2
ε ·Ej, (2.26)

where the subscripts j = 1, 2 specify the two modes. Solving the wave equation in this reference
system we obtain the unit vector along which the electric field of the two modes oscillate

Êj =
1√

1 +K2
j +K2

z,j


iKj

1

iKz,j

 (2.27)

where Kzj = iEz/Ey and Kj = −iEx/Ey is the mode ellipticity given by Ho & Lai (2003):

Kj = β ±
√
β2 + r (2.28)

with r = 1 + [m/(1 + a)] sin2 θB ' 1 and the polarization parameter β

β = −ε
′2 − g2 − ε′η′(1 +m/a)

2gη′
sin2 θB
cos θB

. (2.29)

The polarization parameter determines the properties of photon normal modes in the medium.
The refractive index nj = ckj/ω is given by

n2
j =

gη′

a(ε′ sin2 θB + η′ cos2 θB)

(
ε′

g
+

1

Kj

cos θB

)
. (2.30)

Thus, different polarization modes, both in plasma and in vacuum, lead to different values of
the refractive index, producing what is called birefringence.
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Figure 2.3: Plot of the mode ellipticity K as a function of the plasma density ρ for two photons
close to the vacuum resonance, one emitted in O-mode (solid line) and one in X-mode (dashed
line), with ~ω = 5 keV, θB = 45◦, B = 1013 G and Ye = 1 (Harding & Lai 2006).

For general values of the photon energy, |β| � 1 so that the two modes are linearly
polarized: mode 1, which is called extraordinary (X), has |K| � 1 and its electric field is almost
perpendicular to the k−B plane; while mode 2, which is called ordinary (O), has |K| � 1 and
its electric field is in the k −B plane. X- and O-mode photons interact very differently with
matter: the O-mode scattering opacity is largely unaffected by the magnetic field, while the
X-mode one is significantly reduced (by a factor of the order (ω/ωc)

2) because of the strong
confinement of electrons perpendicular to the magnetic field (Harding & Lai 2006). So O-mode
photons are trapped inside the magnetized medium while X-mode photons can escape.

The condition β = 0 specifies the resonance points, which occurs when plasma and vacuum
polarization effects equilize each other. At this point Kj ≈ 1 so both modes are circularly
polarized. The vacuum resonance for energies lower than ~ωc and not to close to ~ωci is located
at ω = ωp/

√
q +m. This leads to a condition for the plasma density

ρV ' 0.964Y −1e

(
~ω

1keV

)2(
B

1014G

)2

λ−2gcm−3, (2.31)

in which Ye is the plasma electron fraction and λ ' 1 is a slow varying function of B (see Harding
& Lai 2006). In Figure 2.3 the evolution of X- and O-mode of two photons, with energies ~ω
emitted from the NS surface with θB = 45◦, B = 1013 G and Ye = 1 and propagating close to the
vacuum resonance, is shown. For density ρ & ρV , the plasma term dominates over the vacuum
term and the normal modes are almost linearly polarized in their initial modes. Decreasing ρ,
K approaches 1 up to ρ = ρV . Here the two modes are exactly circularly polarized, the O-mode
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Figure 2.4: Graphic representation of the reference frames for different photons, with the
common propagation direction k.

is left-handed, the X-mode is right-handed. Passing to ρ . ρV O-mode can convert in X-mode
and viceversa, and the polarization returns again to be nearly linear when vacuum polarization
term dominates.

2.2.2 Stokes parameters

Another way to describe the polarization of the radiation is through the Stokes parameters,
which are a combination of the electric field complex amplitude components Ai from eq. 2.16.
In the reference frame (x, y, z) with z along k and x in the k −B plane as in Figure 2.4, the
Stokes parameters for one photon are

I = AxA
∗
x + AyA

∗
y = a2x + a2y

Q = AxA
∗
x − AyA∗y = a2x − a2y

U = AxA
∗
y + AyA

∗
x = 2axay cos(ψx − ψy)

V = i(AxA
∗
y − AyA∗x) = 2axay sin(ψx − ψy)

(2.32)

where a and ψ are related to A by

Ax = axe
−iψx , Ay = aye

−iψy . (2.33)

I describe the total intensity, Q the strength of linear polarization while U the orientation in
the x − y plane of the polarization vector and V the circular polarization. The set of Stokes
parameters defined for each photon fulfills the relation

I2 = Q2 + U2 + V2. (2.34)
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We can associate to the ordinary and extraordinary photons the Stokes vectors. Since for
O-mode ay = 0 and for the X-mode ax = 0 it results

Q̄
Ū
V̄


O

=


1

0

0



Q̄
Ū
V̄


X

=


−1

0

0

 (2.35)

where the bars denote the normalized Stokes parameters with respect to the photon intensity.
The major advantage of the Stokes parameters is that they are additive, so the collective

Stokes parameters for the entire radiation are simply the sum of the ones of single photons.
Combinations of the Stokes parameters define some observables for the entire radiation which
can be measured by polarimeters: the linear polarization fraction ΠL, the polarization angle χp
and the circular polarization fraction ΠC respectively defined as

ΠL =

√
Q2 + U2

I

χp =
1

2
arctan

(U
Q

)
ΠC =

V

I
.

(2.36)

ΠL represents the fraction of the total number of photons polarized in one of the two modes.
χp represents the inclination of the polarization vector in the plane orthogonal to the line of
sight and ΠC represents the fraction of the total number of photons circularly polarized. As
seen, in presence of a strong magnetic fields photons are linearly polarized either in the X- or
O-mode. Since in the reference frame as Figure 2.4, X-mode has ax = 0 and O-mode has ay = 0,
V being ∝ axay, it is always 0. Therefore in the vacuum V = 0 and circular polarization can be
neglected.
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Chapter 3

Radiation transport in strongly

magnetized media

The transfer equation provides a useful phenomenological formalism which allows to solve for the
specific intensity in an absorbing and emitting medium. First of all, we define some important
quantities that describe radiation and physical processes in a medium. The energy dEω carried
by the radiation field with frequency between ω and ω + dω which crosses an infinitesimal
surface of area dA in the time dt and solid angle dΩ (Figure 3.1) is

dEω = Iω cos θdAdωdΩdt, (3.1)

where cos θ = n · k with n the surface normal of dA and k the radiation direction, and
Iω(x, y, z, θ, φ, ω, t) the specific intensity. Normally the time dependence is negligible since
the characteristic time over which radiation evolves is far smaller than the one of matter.
If the radiation propagates in vacuum, the specific intensity remains constant along a ray,
dIω/ds = 0. Otherwise, there are three processes which modify the specific intensity: absorption,
spontaneous emission and scattering. The emission process, which increases Iω, is characterized
by the monochromatic emission coefficient jω that is the energy produced per unit frequency,

Figure 3.1: Specific intensity through a surface dA.

25
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unit time and unit solid angle in an infinitesimal volume

dEe
ω = jωdV dΩdωdt. (3.2)

It depends only on the properties of matter and not on the incident radiation field. Similarly
for absorption, which decreases Iω, we introduce the monochromatic absorption coefficient αω
that is defined by the phenomenological law

dEa
ω = −αωIωdV dΩdωdt. (3.3)

The scattering process can behave both as an absorption and emission process. When the
photon is scattered, it is deviated from its original direction to a new one producing a decrease
of the specific intensity in the original direction and an increase in the scattered one.

The scattering of a photon from k with frequency ω to k′ with frequency ω′ is described by
the differential scattering cross section d2σs/(dΩ′dω′) which is the energy radiated per unit time
per solid angle over the incident energy per unit time per unit area. The scattering process can
produce an increase in the radiation field of

dE+
ω,s = dΩdωdtnedV

∫
d2σs
dΩ′dω′

(ω′ → ω)
ω

ω′
Iω′dΩ′dω′ (3.4)

considering all the photons which, coming from all the other directions, are scattered into k
direction. It can produce a decrease of

dE−ω,s = −dΩdωdtnedV Iω

∫
d2σs
dΩ′dω′

(ω′ → ω)dΩ′dω′ = −dΩdωdtnedV Iωσs(ω) (3.5)

since the radiation from k direction is scattered to other directions and so it is lost. Considering
all these contributions we obtain the radiation transport equation (RTE) in a medium for one
mode:

dIω
ds

= jω − (αω + neσs)Iω +

∫
neIω′

ω

ω′
d2σs
dΩ′dω′

(ω′ → ω)dΩ′dω′. (3.6)

For both the NS surface and accretion column, a good approximation that can be used
for solving RTE is the plane parallel assumption for which properties of matter and radiation
depend only on the depth in the medium. It is convenient to use µB = cos θB, (θB is the angle
between the photon propagation and B) and calculate the transfer equation with respect to dz
instead of the photon propagation direction ds which are linked by the relation dz = µBds.

It is the last term of the eq. 3.6 that, making the RTE an integro-differential equation,
complicates the problem. It can be solved only with numerical techniques. If we assume that
the scattering is coherent (ω = ω′) and the cross section is isotropic, so in the limit of Thomson
scattering, RTE is easier to solve. In this case, being the cyclotron energy typically above the
photon energies, the scattering is non-resonant and the differential scattering cross section has
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been calculated for each mode (Taverna & Turolla 2017):

d2σOO
dε′dΩ′

(α→ α′) =
3

8π
σT (1− µ2

B)(1− µ′2B)

d2σOX
dε′dΩ′

(α→ α′) =
3

8π
σT

(
ε

εc

)2

µ2
B cos2(φB − φ′B)

d2σXO
dε′dΩ′

(α→ α′) =
3

8π
σT

(
ε

εc

)2

µ′2B cos2(φB − φ′B)

d2σXX
dε′dΩ′

(α→ α′) =
3

8π
σT

(
ε

εc

)2

sin2(φB − φ′B)

(3.7)

where ε and εc are respectively the energy of the incoming photon and the cyclotron energy,
µB and µ′B are the cosine of the angle θB and θ′B and φB and φ′B are the associated azimuthal
angles. As we can see, photons can convert their polarization mode upon scattering. Moreover,
the cross sections of X-mode photons are proportional to a factor (ε/εc)

2 for which we can
see that it is strongly reduced as much as the magnetic field increases, being ωc ∝ B and so
the X-mode photon cross sections decrease with B−2. So the medium becomes optically thin
for X-mode photons while for O-mode photons the cross resembles the Thomson cross section.
Because of this difference in the behavior of the two modes, the RTE has to be separated in 2
equations, one for each mode. In a medium dominated by scattering (so jω = 0 and αω = 0),
the two RTEs for the two modes, in term of the photon number intensity ni (i =O,X), are

µB
dnO
dτ

=
∑
k=O,X

∫ {
− d

2σOk
dΩ′dε′

(α→ α′)nO(α)[1 + nk(α
′)]+

d2σk,O
dΩ′dε′

(α′ → α)

(
ε′

ε

)2

nk(α
′)[1 + nO(α)]

}
dε′dΩ′

µB
dnX
dτ

=
∑
k=O,X

∫ {
− d

2σXk
dΩ′dε′

(α→ α′)nX(α)[1 + nk(α
′)]+

d2σk,X
dΩ′dε′

(α′ → α)

(
ε′

ε

)2

nk(α
′)[1 + nX(α)]

}
dε′dΩ′

(3.8)

where dτ = σTnedz is the infinitesimal Thomson depth. In presence of local thermodynamic
equilibrium, the scattering cross section must follow the detailed balance condition

σki(α
′ → α) =

(
ε

ε′

)2

exp[−(ε− ε′)/kT ]σik(α→ α′) , (3.9)

so eq. 3.8 becomes

µ
dni
dτ

=
∑
k=O,X

∫ {
−σik(α→ α′)ni(α) + σik(α→ α′)Fi(α, ε

′)nk(α
′)

}
dε′dΩ′ , (3.10)

where Fi(α, ε′) ≡ exp[−(ε− ε′)/kT ](1 + ni(α))− ni(α).
In case of strong magnetic fields and high energies, in which the limit of Thomson scattering

is no longer valid, the radiative transfer equation takes the same form as 3.8 but with σij

calculated for the Compton scattering process. To calculate the total cross section σs it is



28 CHAPTER 3. RADIATION TRANSPORT IN STRONGLY MAGNETIZED MEDIA

necessary to perform a numerical integration over the different outgoing angles and frequencies.
This problem can be partially avoided using the optical theorem which links the total scattering
cross section with the imaginary part of the forward scattering amplitude Π(0)

σs =
4π

k
Im Π(0) (3.11)

where k is the photon momentum. Using QED, it is possible to calculate Π(0), so that σs can
be immediately obtained.

Still the problem of integrals remains in the last term of 3.6 where the differential scattering
cross section multiplied by the specific intensity has to be integrated over all the outgoing angles
and frequencies. In previous works this has been overpassed using the two-stream approximation,
i.e. assuming that the entire radiation field can be represented by radiation traveling at just
two angles. In this way the problem is greatly simplified but it is no more representative of a
highly angle-dependent problem of the magnetic scattering, which will be deeply analyzed in
next chapter.



Chapter 4

Compton scattering

In many high-energy astrophysical objects, one of the most important radiative processes is
Compton scattering. In particular inside accretion columns it is the largest source of opacity.
This process strongly affects the spectra of various sources since it produces photon wavelength
changes which alter the initial spectral distribution. While non magnetic scattering has been
thoroughly studied and a complete description is available, the magnetic scattering is still an
open issue.

Strong external magnetic fields significantly affect the properties of scattering (Harding &
Lai 2006). As seen in chapter 2.1 electrons are constrained to move in fixed and quantized
orbits determined by the field strength and to follow magnetic field lines. Cross section becomes
strongly dependent on energy, direction of photon momentum and polarization (in term of the
two polarization modes, O- and X-mode) and on the magnetic field strength. A number of
resonances corresponding to electron transitions between the Landau levels appear and their
values may far exceed the Thomson scattering cross section. These particular features of the
differential scattering cross section make the numerical implementation more complicated with
respect of the non-magnetic case.

In section 4.1 we introduce the scattering process in absence of magnetic field in the Thomson
and Compton limits. In section 4.2 we introduce the magnetic scattering using the formalism
by Nagel (1981) and Mészáros (1992) which is then analyzed in chapter 5.

4.1 Non-magnetic scattering

Depending on the energies involved, there are two kinds of processes: Thomson scattering
in which the photon energy ~ω is far lower than the electron rest-mass mec

2 and Compton
scattering in which ~ω & mec

2.

Thomson scattering can be treated in the classical electromagnetic theory because it applies
in the limit ofmec

2 � hω. It can be considered as an elastic scattering because there is no energy
exchange between the two particles. The electric field of the incident wave (photon) accelerates
the electron, that can be considered at rest, causing it to radiate at the same frequency of

29
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Figure 4.1: Thomson scattering geometrical configuration. Without loss of generalization, the
scattering is assumed here to occur in the x− z plane, with α the angle between the scattered
photon and the z-axis.

the incident wave in any directions. The electron will oscillate along the photon electric field,
emitting electromagnetic dipole radiation which turns out to be polarized even if the incident
radiation was unpolarized. The differential scattering cross-section is the ratio between the
energy radiated per unit time per unit solid angle (calculated with the Larmor formula) and
the incident energy per unit time per unit area (described by the average Pointing vector). For
Thomson scattering it is

dσT =
r20
2

(1 + cos2 α)dΩ, (4.1)

where α is the angle between the direction of the scattered photon and that of the incident
photon, see Figure 4.1. As we can see, the differential Thomson cross section just depends on
the scattering direction α. Integrating over the solid angle we find the Thomson cross-section
for scattering onto electrons,:

σT =
8π

3
r20 =

8πe4

3m2
ec

4
∼ 6.65× 10−25cm2. (4.2)

σT does not depend on the frequency, so high- and low-frequency photons are equally efficiently
scattered.

To explain the shift in wavelengths for Compton scattering, it is necessary to consider the
electromagnetic radiation not as a pure wave phenomenon but as a stream of photons which
exchange energy and momentum.

When the energy of the incident photon becomes comparable to the rest-mass energy of the
electron, upon scattering photon exchanges energy and momentum with the electron, causing
an increase or decrease of the photon wavelength and the recoil of the electron. In a hot plasma,
electrons cannot be considered at rest, so the electron velocity distribution must be introduced
to describe the electron distribution. If after the scattering photons lose energy and electrons
acquire it, the process is called Compton scattering, in the opposite case it is usually called
Inverse Compton scattering.

It is common to introduce two reference frames: the laboratory frame in which the electron
is moving with a velocity v along the z-axis as it is shown in Figure 4.2a; and the electron rest
frame (ERF) in which the electron is at rest and which moves in a relative motion with relative
velocity v (Figure 4.2b). The convenience of using two different frames is that the differential
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(a) Laboratory frame. (b) Electron Rest Frame (ERF).

Figure 4.2: Geometry of the Compton scattering.

cross section is easier to calculate in the ERF, while the electron and radiation distribution
is known in the laboratory frame. It is possible to pass from a system to the other just with
a Lorentz transformation. Calling ε = ~ω/mec

2 the adimentional energy, with the "′" all the
quantities after the scattering and with the subscript "1" all the quantities in the lab frame the
differential scattering cross section is described by the Klein-Nishina formula:

d2σ

dε′dΩ′
=
r20
2

ε′2

ε2

(
ε

ε′
+
ε′

ε
− sin2 θ

)
δ(ε′ − ε∗), (4.3)

where δ(x) is the Dirac delta function and

ε∗ =
ε

1 + ε(1− cos θ)
. (4.4)

In the Thomson limit ε∗ = ε (coherent scattering), and so the differential cross section take the
form of eq. 4.1. Eq. 4.3 can be integrated over the solid angle and outgoing photon energy and
we find the total cross section and its asymptotic limits

σKN =
πr20
ε

{[
1− 2(1− ε)

ε2

]
ln(1 + 2ε) +

1

2
+

4

ε
− 1

2(1 + 2ε)2

}
(4.5a)

= σT ×

1− 2ε+ . . . ε� 1

3
8ε

(
1
2

+ ln 2ε
)

+ . . . ε� 1.
(4.5b)

In Figure 4.3 we can see the two limits of the total cross section indicated in eq. 4.5b, for which
for low energies σKN ' σT while for high energies σKN ∝ 1/ε.
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Figure 4.3: Plot of the total cross section given by Klein-Nishina formula. The dashed blue line
divides the two regimes which correspond to the two limits at low and high energies.

4.2 Magnetic scattering

We follow the treatment used by Mészáros (1992) to describe the differential Compton scattering
cross section in the magnetic scattering process in the non-relativistic case. For the sake of
simplicity we will neglect the spin contribution and we will consider only the case in which before
and after scattering the electron is in the ground Landau level, n = n′ = 0. According to QED,
the scattering process is described completely by its scattering matrix T , which contains the
information about the probability amplitudes. It can be obtained starting from the perturbation
Hamiltonian of an electron of momentum p by the incident photon of momentum k and electric
field A

T = H1 +H2 =
e

2c
(v ·A+A · v) +

e2

2mc2
A2. (4.6)

The matrix elements which describes the scattering process are

〈f |T | i〉 =

∑
r 〈f |H1 | r〉 〈r |H1 | i〉

Ei − Er
+ 〈f |H2 | i〉 , (4.7)

where |i〉 = |0, s, 0〉 is the initial state of the electron, |f〉 = |0, s′, p′〉 is its final state and |r〉
all the possible intermediate states that can have n 6= 0. The various states of the electron are
characterized by three quantities: the Landau level n which is assumed 0, the spin number s
and the electron momentum k.

In Thomson limit we can use the dipole approximation and so only three terms remain, Ta,
Tb, Tc, which have ∆n = 0 and which correspond to the Feynman’s diagrams in Figure 4.4. Ta
and Tb come from the first term in eq. 4.7, the first-order term, while the third one is from the
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(a) (b)

(c)

Figure 4.4: Feynman diagrams for Thomson scattering with n = n′ = 0 (Mészáros 1992).

quadratic interaction in the second term

Ta =
2παF~2c
ωL3

(~ωc/m)1/2e′∗−(~ωc/m)1/2e−
~ω − ~ωc

(4.8a)

Tb =
2παF~2c
ωL3

(~ωc/m)1/2e+(~ωc/m)1/2e′∗+
~ω − (~ωc + 2~ω)

(4.8b)

Tc =
2παF~2c
ωL3

(e′∗+e+ + e′∗−e− + e′∗z ez) (4.8c)

where αF is the fine structure constant, L3 is a normalization volume, e+,−,z and e′+,−,z are
the components of the i-th polarization mode unit vector in the rotating coordinate (e+,− =

ex ± iey, ez = ez) in which the polarization matrix is diagonal. If there is no magnetic field,
the cross section is entirely described by Tc. The magnetic field introduces the resonance
features at ω ∼ ωc which we find in the denominators of Ta and Tb and which strongly enhance
the scattering probability of photons with energies corresponding to the ground Landau level.
Summing all three terms, we get

〈f |T | i〉 =
2παF~2c
mωL3

( ω

ω + ωc
e′∗+e+ +

ω

ω − ωc
e′∗−e− + e′∗z ez

)
. (4.9)

We calculate the differential cross section from the scattering rate Q, which is the number of
scattering per unit time, dividing it by the incoming flux c/L3. Using Fermi’s golden rule and
the photon density ρ = L3ω2/(2πc)3~ we obtain

Q =
2π

~
| 〈f |T | i〉 |2ρ =

α2
F~2

m2cL3

∣∣∣∣∣ ω

ω + ωc
e′∗+e+ +

ω

ω − ωc
e′∗−e− + e′∗z ez

∣∣∣∣∣
2

(4.10)
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(a) (b)

(c) (d)

(e)

Figure 4.5: Feynman diagrams for Compton scattering in the case n = n′ = 0 (Mészáros 1992).

and thus the differential cross section, calling u = (ωc/ω)2 is

dσ

dΩ
(ê′, k̂′ ← ê, k̂) = α2

F

(
~
mc

)2
∣∣∣∣∣ 1

1− u1/2
e′∗+e+ +

1

1− u1/2
e′∗−e− + e′∗z ez

∣∣∣∣∣
2

. (4.11)

In a hot plasma we cannot consider the electron at rest because thermal motions become
important, so we have an electron momentum distribution f(p) which we assume to be unidime-
sional along the magnetic field direction, taken to coincide with the z-axis; moreover we cannot
use the dipole approximation. So now, there are 5 contributions to the scattering amplitude
from the matrix 〈f |T | i〉 which correspond to the Feynman’s diagrams in Figure 4.5 (setting
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~ = c = m = 1):

Ta =
2παF√
ωω′L3

√
ωc
√
ωc

1
2
p2 + ω − ωc − 1

2
(p+ k)2

e−e
′∗
− (4.12a)

Tb =
2παF√
ωω′L3

√
ωc
√
ωc

1
2
p2 + ω − ωc − 1

2
(p− k′)2 − ω − ω′

e+e
′∗
+ (4.12b)

Tc =
2παF√
ωω′L3

(p+ rk)(p+ k − k′/2)
1
2
p2 + ω − 1

2
(p+ k)2

eze
′∗
z (4.12c)

Td =
2παF√
ωω′L3

(p− k′)(p− k′ + k/2)
1
2
p2 + ω − 1

2
(p− k′)2 − ω − ω′

eze
′∗
z (4.12d)

Te =
2παF√
ωω′L3

(e′∗+e+ + e′∗−e− + e′∗z ez) (4.12e)

where ω and ω′ are the initial and final frequencies. Summing the 5 terms we obtain the
scattering amplitude matrix

〈f |T | i〉 =
2παF~2c√
ωω′mL3

(Π+e
′∗
+e+ + Π−e

′∗
−e− + Πze

′∗
z ez) (4.13)

where Π is the polarization matrix whose components are (~ = m = c = 1)

Π+ = 1− ωc
ω′ + ωc − pk′ + k′2/2

(4.14a)

Π− = 1 +
ωc

ω − ωc − pk − k2/2
(4.14b)

Πz = 1 +
(p+ k/2)(p+ k − k′/2)

ω − pk − k2/2
− (p− k′/2)(p− k′ + k/2)

ω′ − pk′ + k′2/2
. (4.14c)

In order to obtain the differential cross section, we calculate the scattering rate Qc as in the
previous case, and we average it over the electron distribution function

Qc =
2π

~
| 〈f |Π | i〉 |2δ(Ei − Ef ) =

α2
F~2ω′

m2cL3ω
| 〈f |Π | i〉 |2δ(ω + ∆ω − ω′). (4.15)

The photon energy change is given by

∆ω = ω′ − ω = (p2 − p′2)/2~m (4.16)

and the momentum change is

∆p = p′ − p = ~∆k =
~ω′

c
cos θ′ − ~ω

c
cos θ (4.17)

and so
∆ω = ∆k

p

m
− ~

(∆k)2

2m
. (4.18)

For given p, θ and θ′, ω′ is uniquely determined because energy and momentum must be conserved.
So for a given initial and final state of the photon (ω, θ, ω′, θ′) there is only one momentum for
the electron

p0 = m
∆ω

∆k
+

1

2
~∆k. (4.19)
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Figure 4.6: Reference frame used to calculate the polarization states.

It is easy now to average over p and we get the differential cross section

d2σ

dω′dΩ′
= r20

ω′

ω

m

|∆k|
f(p0)(|Π+e

′
+e+|2 + |Π−e′−e−|2 + |Πze

′
zez|2). (4.20)

As already said in chapter 2.2, in a strong magnetic fields radiation is nearly linearly polarized
in two transverse modes, the O-mode and X-mode, which in the following we denote with 1 and
2 respectively. To calculate the polarization states, in the reference frame with B along the
z-axis and the wave vector in the x− z plane as in Figure 4.6, two orthogonal polarization state
basis |a〉 and |b〉 are chosen

|a〉 =


− cos θ

0

sin θ

 , |b〉 =


0

1

0

 (4.21)

We can evaluate the forward amplitude matrix elements

〈a |T | a〉 =
1

2
cos2 θ(T+ − T−) + sin2 θ Tz, (4.22a)

〈a |T | b〉 = −〈b |T | a〉 = − i
2

cos θ(T+ − T−), (4.22b)

〈b |T | b〉 =
1

2
(T+ − T−) (4.22c)

where T+,−,z are given by

T+,−,z =

∫
dpf(p)Π′+,−,z(p) (4.23)

with Π′i are the new polarization matrices which come from eq. 4.14 specialized to ω′ = ω, k′ = k

and adding the radiation damping γr = 2e2ω2/3mc3 so that the convergence of the integrals is
ensured:

Π′+ =
ω − kp+ k2/2

ω + ωc − kp+ k2/2 + iγr

Π′− =
ω − kp− k2/2

ω − ωc − kp+ k2/2 + iγr

Π′z =
ω

k

(
p+ k/2

ω − kp− k2/2 + iγr
− p− k/2
ω − kp+ k2/2 + iγr

) (4.24)
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If we use a one-dimensional Maxwell-Boltzmann distribution for f(p), we can rewrite the
amplitude matrix elements using the plasma dispersion function W (z)(Fried & Conte 1961; Kirk
1980) which is convenient to use for numerical purposes

T f+ = 1 + i
√
π
ωc + iγr

∆ω
W

(
ω + ωc + k2/2 + iγr

∆ω

)

T f− = 1− i
√
π
ωc − iγr

∆ω
W

(
ω − ωc − k2/2 + iγr

∆ω

)

T fz = −i
√
π
ω

k

ω + iγr
∆ω

[
W

(
ω − k2/2 + iγr

∆ω

)
−W

(
ω + k2/2 + iγr

∆ω

)] (4.25)

where ∆ω = ω | cos θ | (2kT/m)1/2. Diagonalizing the matrix T we obtain the polarization
modes in the form

|e1〉 = cosψ |a〉+ i sinψ |b〉 , |e2〉 = −i sinψ |a〉+ cosψ |b〉 (4.26)

with
tan 2ψ =

2i 〈a |T | b〉
〈a |T | a〉 〈b |T | b〉

. (4.27)

In Figure 4.7 the differential scattering cross section is plotted for an incident ordinary photon
of energy ~ω = 40 keV and direction θ = 45◦ scattered into an extraordinary photon for four
outgoing angles θ′ = 20◦, 70◦, 120◦, 160◦ . As we can see, there are peaks in the cross section
which corresponds to the cyclotron resonance, i.e. when ω = ωc. The sharpness of this resonance
is due to the fact that, giving θ and ω, just electrons with a particular velocity can absorb that
photon, and giving θ′, the ω′ of the final electron is uniquely selected.
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Figure 4.7: Differential scattering cross section d2σ12/dΩ′dω′ for Compton scattering from
ordinary (1) to extraordinary (2) photon as a function of the final photon energy computed for
4 different final angles 20◦, 70◦, 120◦, 160◦. The incident photon has energy ~ω = 40 keV and
direction θ = 45◦, the plasma temperature is 10 keV and the cyclotron energy is 50 keV.
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Analysis of the cross section

The differential scattering cross section given by Nagel (1981) has been analyzed and integrated
numerically (using the trapezoidal rule). The result is compared with the total cross section
obtained through the optical theorem. First of all, we integrated eq. 4.20 over the outgoing
photon energies (in the range 1 − 200 keV) and angles (between 1◦ and 180◦), for incoming
photons in the energy range of 1 − 100 keV. We initially assume an incoming photon angle
of θ = 45◦, a plasma temperature of 10 keV and a magnetic field of ∼ 1012 G as in the cited
paper. In Figure 5.1 the total cross section for X-mode and O-mode photons is shown. The
curves obtained through the numerical implementation fit very well the behavior predicted by
the optical theorem

σ1,2 = −4πr0
c

ω

(
ImT f+|e+|

2 + ImT f−|e−|
2 + ImT fz |ez|

2) . (5.1)

As expected, the O-mode scattering cross section at low energies turns out to be of the order of
the Thomson cross section, while the X-mode one increases as ε2 in the same energy range (see
equations 3.7). The oscillations around the resonance bump are due to two main reasons: firstly,
the choice of the integration grid for, which we considered as uniform in the range 1− 100 keV
and which is good for low energies, while it should be defined ad-hoc for higher energies and in
particular in the range where the resonance appears; moreover the use of the trapezoidal rule
for the integration is not that accurate.

However when we perform the same calculation for a just slightly higher temperature, the two
curves start to diverge for low energies as we can see in Figure 5.2. For even higher temperatures
this problem is even more significant. In Figure 5.3 we show the case of temperature of 50 keV.

To understand this behavior we have to consider the shape of the non-relativistic Maxwellian
f(pc), which appears as a multiplicative factor in eq. 4.20 and introduces the dependence on
the temperature in the differential cross section. If we focus on the momentum distribution
function for a fixed incoming photon energy, we can see that an increase in the temperature
produces a significant broadening (Figure 5.4).

This means that as the temperature increases the contribution of the scattering amplitudes
at high outgoing photon energies becomes more and more important. Looking at the behavior

39
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Figure 5.1: Total cross sections for the two modes normalized to the Thomson cross section.
The subscripts 1 represent the ordinary mode while 2 the extraordinary mode. The red and
green curves represent the total cross section calculated through optical theorem while the blue
and yellow ones result from numerical integration.

Figure 5.2: Total cross sections for the two modes as in Figure 5.1 but with T = 14 keV.
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Figure 5.3: Total cross sections for the two modes as in Figure 5.1 but with T = 50 keV.

Figure 5.4: Momentum distribution function f(pc) for four values of the temperature in the
case of an incoming photon with energy ε = 3.5 keV.
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of the Π+, Π− and Πz terms, for a low-energy incoming photon1, we can easily see that the Π+

and Π− contributions are practically negligible over the almost entire ε′ range, except for a clear
divergence in correspondence of the cyclotron resonance (Figure 5.5a and 5.5b).

On the other hand, Πz assumes much higher values and also shows a divergence at a higher
energy than that of Π+ and Π− (Figure 5.6). In this way the Πz term becomes predominant at
higher ε′, where f(pc) assumes higher values at higher temperatures. This causes the deviation
at low incoming photon energies shown in Figure 5.3.

Contrary of Π+ and Π−, Πz refers to the processes in which the virtual electron is in the
Landau ground state, and so its divergence cannot be due to the resonance. Considering the
denominator of the first fraction in Πz (which refers to the scattering amplitude Tc), it turns
out to be

− ~2k∆k3 + (2m~ω − ~2k2)∆k2 − 2m~∆ω∆k , (5.2)

that has three zeros. The first one is at ∆k = 0, i.e.

ε′ =
εµ

µ′
. (5.3)

Then, solving the remaining equation one has

− εµµ′2

~c3
ε′2 +

ε2µ2µ′

~c3
ε′ +

2mεµ′

~c
ε′ − 2mεµ

~c
ε′ = 0 , (5.4)

from which the second zero is clearly ε′ = 0 while the third one turns out to be

ε′ = ε
µ

µ′
+

2mc2

µ′

(
µ′ − µ
µ′µ

)
. (5.5)

The situation is the same for the second fraction (amplitude Td) except for a minus sign in the
third zero, which is in this case

ε′ = ε
µ

µ′
− 2mc2

µ′

(
µ′ − µ
µ′µ

)
. (5.6)

Because of what we concluded above, we can say that the divergence of Πz at high energies ε′

should not be there. This is confirmed by Mushtukov et al. (2016), who derived the propagator
associated to the amplitudes Ta, Tb, Tc and Td. In their equation (35), it turns out that the
denominator is of the form

V 2 − E2
n , (5.7)

where V =
√
m2c4 + p2c2 + ~ω for a and c processes, V =

√
m2c4 + p2c2 − ~ω for b and d

processes and
En =

√
m2c4 + p2vc

2 + 2~nB/BQ , (5.8)

with pv the momentum of the virtual electron and n its Landau level. This denominator can be
zero only in correspondence of the cyclotron resonance. However, since for c and d processes

1In fact, the deviations highlighted in Figure 5.2 and5.3 between the numerical integrated cross sections and
those obtained through the optical theorem is larger at low incoming photon energies.
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(a)

(b)

Figure 5.5: Polarization matrices Π+ (a) and Π− (b) for three outgoing angles θ′ = 16◦, 52◦, 67◦,
with ε′ = 3.5 keV, θ = 45◦.
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Figure 5.6: Polarization matrix Πz for an outgoing angle θ′ = 47◦, with ε′ = 3.5 keV, θ = 45◦.

n = 0, the denominator becomes zero only for ~ω = 0, which is unphysical, i.e. there are not
divergences in the amplitude.

On the other hand, it can be noted that, using the non-relativistic approximation for the
electron energy in V and En the denominator in equation (35) of Mushtukov et al. (2016) can
be zero also at an energy

~ω =
2mc2

µ2

(
1− p

mc
µ

)
, (5.9)

which is similar to the zero in the denominators of Πz we found above. For this reason, we tried
to calculate the Πz term using the full relativistic energy for the electron. The result is shown
in Figure 5.7: the divergence at high energy disappeared, but the width of the divergence at
ε′ = 0 is enhanced. This produces strong deviations in the total cross section with respect to
that obtained via the optical theorem even at T = 10 keV which did not present this problem
before.
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Figure 5.7: The scattering amplitude matrix Πz calculated with the relativistic energy for the
electrons and virtual electron.

Figure 5.8: Total cross section for the two modes as in Figure 5.1 but with Πz in the relativistic
limit.
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Chapter 6

Conclusion

The differential scattering cross section in a hot, strongly magnetized plasma has been analyzed
in the non-relativistic limit. This process is crucial to describe the spectra of NSs which present
the highest magnetic fields known in the universe. Moreover in structures like accretion columns
in accreting pulsars, scattering is one of the largest source of opacity and it defines the emission
pattern in the X-ray emission.

In the presence of a strong magnetic field, the motion of the charged particles is strongly
anisotropic: they are free to move along the magnetic field direction while they are confined in
quantized orbits perpendicularly to it. Moreover, photons are expected to be linearly polarized
in the two normal modes, ordinary and extraordinary. The propagation of radiation in this
magnetized medium depends on the polarization modes of photons which can change upon
scattering. The scattering opacity for X-mode photons is strongly reduced with respect of
O-mode photons by a factor (ω/ωc)

2. Being ωc proportional to the strength of the magnetic field,
for high values of B the medium is optically thin for X-mode photons which can escape from
the surface, while it remains optically thick for O-mode ones. Thus the radiation is expected
to be linearly polarized mostly in the X-mode. Strong magnetic fields can also influence the
propagation of photons in vacuo.

In order to solve the radiation transport equation, which has to be done separately for the
two modes, and which allows to describe the observed spectra of these sources, a good treatment
of the magnetic scattering process is needed for each combination of initial and final energies and
angles. Although Thomson scattering has been studied deeply in literature, Compton scattering
in strong magnetic fields still lacks of a formalism which allows to perform numerical simulations
within reasonable computational times. In fact, the behavior of the magnetic scattering cross
section is very complex and exhibits divergences for specific combinations of the incoming
and outgoing photon directions and energies. Bringing under control these features, which
were overlooked in past investigations, is extremely important in the numerical solution of the
radiative transfer equation in a scattering-dominated medium beyond two-stream approximation.

Thus an analysis of the differential scattering cross section has been performed in the quantum
formalism, analyzing the approach by Nagel (1981) and Mészáros (1992). This promises to

47



48 CHAPTER 6. CONCLUSION

comply with the requirement of short computational times, since it provides analytical formulae
for both the differential and total scattering cross sections. Nevertheless some problems arise:
Nagel (1981) and Mészáros (1992) already noted that the occurrence of angular divergences
forces to solve the problem in the two-stream approximation. Moreover, they showed the results
for a temperature of 10 keV only.

We performed the same calculation just for a slightly higher temperature, we noticed that
the cross section obtained through the numerical integration starts to diverge for low energies
with respect to the one calculated with the optical theorem. At even higher temperatures, but
still remaining in the domain of the non-relativistic limit, the two cross sections largely differ.
To explain this behavior we analyzed the distribution function f(pc), which is the one that
introduces the dependence on the temperature in the differential cross section. An increase
in the temperature produces a significant broadening of this function which assumes higher
values at high energies. This means that as the temperature increases the contribution of the
scattering amplitudes at high outgoing photon energies becomes more and more important. We
found that the contributions of the Π+ and Π− terms for a low-energy incoming photon are
practically negligible over the almost entire ε′ range while instead the Πz term dominates at
higher ε′, where f(pc) assumes higher values at higher temperatures. We thus analyzed the Πz

amplitude and we tried to suppressed its divergency at high ε′ which produces the deviation in
the total scattering cross section at low incoming energies. We used the relativistic energy for
the electrons to calculate the scattering propagate since, as shown by Mushtukov et al. (2016),
in the relativistic formalism the divergence does not appear. In this way the divergence at
high energy disappears instead the one at ε′ = 0 is strongly enhanced. This produces again
an overestimate of the total cross section even at T = 10 keV and which makes this approach
useless.

More tests are currently underway to describe the magnetic scattering cross section.
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