




Abstract

In the context of Human-Robot Cooperation, the interaction between humans and robots
is a crucial point. In addition, the safety of the operator during the collaborative transport
of objects is fundamental. Therefore, in this thesis, an algorithm to enhance human-robot
cooperative transport has been developed. The aim is to let the robot better adapt to the
human operator’s motion during the transport in the workcell. This will be achieved by
taking advantage of some properly instantiated virtual obstacles and a fast approach to
check the robot manipulator collisions with such obstacles, in order to obtain boundaries
around the nominal path inside which the robot will accept deviations introduced by the
human operator motion. The nominal path will be made available by a global planner such as
RRT-Connect while respecting the boundaries will be managed by an MPC. The algorithm
has been tested in three use cases for DrapeBot, a European Project for the collaborative
draping of carbon őber patches. Tests were performed instantiating 100 to 100 000 virtual
obstacles. With 12148 obstacles instantiated the algorithm creates the boundaries joint
limits in 1.527 s with 99.9774% conődence.
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Chapter 1

Introduction

In this work, we will describe a new algorithm to obtain collision-free regions for a robot,

expressed as subspaces of the jointspace. The algorithm has been developed for a 6-DOF

robot arm system and then generalized for an n-axis robot. This work has been developed

and tested for the European Project DrapeBot, a project developing collaborative draping

of carbon őber parts[1], [2].

More in detail, draping is the process of placing soft and ŕexible patches of textile material on

a 3D shape. Despite the development of automated tape laying and őber placement, draping

remains very important due to its ŕexibility and its compatibility with a wide variety of fabric

materials. As a result, 30% of aerospace composite parts are still produced through draping,

while almost all marine and wind energy structures are made this way. At present, most

draping is done manually, with only 5% of aerospace composite parts using some automated

draping process[3]. In Figure 1.1 we can see a robot and a human holding together a carbon

őber patch.

Figure 1.1: Picture of a robot and a human performing a collaborative task related to draping

Robotic draping has made signiőcant progress with respect to the handling large patches of

material and accuracy of the draping, where it has reached TLR6-7, but there are a number

of challenges that still remain to be addressed, such as:

• Many parts include surface elements of high curvature, whose automatic draping is be-

yond the capabilities of a robot draping system and will likely remain out of reach

(technically and economically) for the foreseeable future. This creates a need for
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human-robot collaboration

• The robotic systems involved in draping are usually large-scale robots and interaction

methods are needed in which such robots can safely and efficiently cooperate with

humans

The DrapeBot project aims at increasing the range of parts for which (semi-)automated

robotic draping can be applied. This will be achieved by developing a collaborative ap-

proach, where the robot deals with larger areas of lower curvature and the human is draping

the geometrically complex features.

The focus of the work presented in this document is to enhance and simplify human-robot

collaboration during the motion of the robot. As an example, the typical operational cycle

is, starting with the robot in its home pose, going to pick up the patch, transferring the patch

to the mould and, after having performed the draping process, going back to the home pose.

Ideally, the robot performs such motion following a nominal path computed by a global plan-

ner. But, since there’s a human in the loop, the real path will deviate from the nominal one,

as the human operator will introduce unpredictable forces which will inevitably alternate it.

Therefore we need to let the robot follow the human movements as much as possible without

colliding with the objects in the scene and while maintaining a path resembling the nominal

one. Aiming this, the algorithm presented computes reasonable boundaries allowing this kind

of deviation, while respecting these boundaries will be guaranteed by the low-level controller.

We stated above that draping has applications in many different industries, and we will

now deőne some applications related to our speciőc system. One use-case for DrapeBot

is to be part in the production of łStradalež (designed and produced by Dallara as a car

manufacturer since 2019), where it will be used to manufacture complex components such

as the front hood (size: 2x1.5m) or the side panel (size: 3 x 0.7m). Another use-case will be

in shipbuilding, where it will be used for manufacturing the outer skin of the hull. Baltico

has developed the strand laying technique to automatically place carbon őbers on ribs to

produce the inner structure of the hull with an FRP (őber-reinforced plastic) skin on top.

This skin is currently draped manually and some degree of automation will also be beneőcial

for this production step. Typically, the hull is about 10 m long and 1.5 m high. Most of the

surface is relatively ŕat and suitable for automatic draping, but there are areas with high

curvature.

A third use-case is in the aerospace industry, where major parts of the structural framework

of airplane fuselage are skin-stiffening elements such as stringers and ribs, and the draping

strategy is deőned in the part design and dictates areas where the material has to remain

steady (seed points) and areas where the material has to be deformed (draped) into proper

őber angles. The partner related to the such application is DLR.

The algorithm developed in the current work will be tested in models of the workspaces of the

use-cases described. The results will be presented in Chapter 4, where the use cases will be

referred to as Dallara, Baltico and DLR, respectively. Its purpose will be to enhance human-
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robot interaction by computing boundaries around the nominal path in the jointspace, in

order to let the human operator deviate from the nominal path inside such boundaries

without entering into a collision with the objects in the workspace.

1.1 Objectives and Structure

In order to stay aligned with one of the main objectives of DrapeBot, which is to enhance

human-robot collaboration in the draping process, in the current work we focus on increasing

the adaptability of the robot to the human operator. More speciőcally there will be devel-

oped an algorithm at the interface between the global planning module and the low-level

controller. As the global planner will produce the nominal trajectory for the robot arm, we

cannot expect the such path to be coherent with human movements, as they’re inherently

unpredictable. The aim of the algorithm is to compute, starting from the nominal trajectory,

a set of boundaries expressed as joint values which will represent the interval inside which

the joints value can be moved during the movement, in order to accommodate deviations

from the nominal trajectory which are to be realistically expected as we have a human in the

loop. Such boundaries should also reasonably ensure to change the trajectory without giving

raise to collision within the workcell environment, as well as allowing paths resembling the

nominal one. The low-level controller will have the duty to respect such boundaries. The

aim can be stated as to enhance human-robot collaboration during movements by deőning

a subspace of the jointspace allowing deviations from the nominal trajectory.

This thesis will present some related works in Chapter 2, mainly related to Artiőcial Poten-

tial Fields (APF) and Model Predictive Controllers (MPC) and some techniques to analyze

the workspace and the jointspace. In Chapter 3 our solution will be described mathemati-

cally; it will be based on checking the collisions of particular robot conőgurations with some

virtual obstacles. In Chapter 4 the proposed solution will be tested and evaluated, with some

speciőed metrics, over the three use-cases previously described, Dallara, Baltico and DLR.

The results will also be discussed. Finally, in Chapter 5, the entire work will be summed up

and some considerations regarding future works will be observed.
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Chapter 2

Related Works

The problem we want to solve is to őnd a way to enhance the robot’s adaptability to the

human operator during collaborative tasks while maintaining a resemblance to the nominal

path computed for such a task. The critical point is that the robot must adapt to the human,

not the opposite. To the best of our knowledge, the problem at hand doesn’t have a canonical

solution in the current literature. There are though many related problems that are fully

available and which can be useful as inspiration and comparison, which will gradually lead

us to the decision of developing an algorithm to bound the nominal path in the jointspace.

Model Predictive Control and Artiőcial Potential Fields are good starting points, as they

allow us to update and modify the trajectory in real-time.

2.1 Model Predictive Control

In robotics technology, recent research trends focus on performing particularly critical tasks

optimally, while fulőlling some plant constraints to avoid failures, wear of the electro-

mechanical parts, or to guarantee safe and close human-robot interactions [4]. In the last

decades, among the control algorithms published in the literature, Model Predictive Control

(MPC) represents an appropriate and effective solution to solve this kind of problem, pro-

viding an optimal control strategy in case of even complex constrained dynamical systems

[5], [6].

Essentially a MPC is constituted by:

• a prediction model

• an objective or cost function

• constraints on the system states and inputs

The aim is to obtain a control law minimizing the objective function [7]. In simple cases

there could be no constraints, but they’re typically present in practice as well as in the cases

we’re going to describe. Formally, considering the example of a system with m inputs and p

outputs
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x(k + 1) = Ax(k) + Bu(k)

x(k) = xk

(2.1)

for the time horizon [k, k +N ], we want to minimize a cost function such as

min
u

V (x(k), uk, k) =
N−1
∑

i=0

[xT (k + i)Qx(k + i) + uT (k + i)Ru(k + i)] + xT (k +N)Pfx(k +N)

s.t. x(k) ∈ Xk, u(k) ∈ Uk

(2.2)

where Q ≥ 0, R > 0, Pf > 0 are the matrices setting the cost for the state vector x(k), the

input u and the őnal state x(k +N) of the time horizon respectively.

The result is an optimal control sequence uk = (u(k), u(k+1), ..., u(k+N −1)). The sets Xk

and Uk abstractly represent the possible constraints acting at each time step k. To better

understand how MPC can be applied to robotics, let’s őrst have a clearer depiction of the

kind of systems we are interested in.

A robot manipulator consists of a series of rigid bodies (links) connected by means of kine-

matic pairs or joints. Joints can be essentially of two types: revolute and prismatic. The

joints’ reference systems are called frames. The whole structure forms a kinematic chain.

One end of the chain is constrained to a base. An end-effector (gripper, tool) is connected

to the other end allowing manipulation of objects in space [8].

From a topological viewpoint, the kinematic chain is termed open when there is only one

sequence of links connecting the two ends of the chain; it is termed closed when the start

and the end of the chain coincide. The robot belonging to our system is open chain and all

its joints are revolute.

The mechanical structure of a manipulator is characterized by a number of degrees of free-

dom (DOFs) which uniquely determine its posture. Each DOF is typically associated with

a joint articulation and constitutes a joint variable.

As a őrst application of MPC to manipulators we are going to consider the robust multiloop

hierarchical control scheme designed by Incremona[9] to solve motion control problems. The

control scheme consists of three loops: an inner loop based on the so-called inverse dynamics

approach, aimed at transforming the nonlinear multi-input-multi-output (MIMO) robotic

system into a set of perturbed linearized decoupled single-input single-output (SISO) sys-

tems (the number of systems is equal to the number of the joints of the robot manipulator); a

second loop including a controller designed according to the so-called Integral Sliding Mode

(ISM) control approach, which has the role of rejecting at a higher rate all the matched

uncertainties in each frame; őnally, an external loop involving a controller of MPC type with

the role of guaranteeing the optimal evolution of the controlled system in the respect of state
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motion planner, embedding psychologically-grounded distance-velocity mapping and a real-

time safe motion unit. Despite these improvements, the system described by Eckhoff[11] still

suffers from the already mentioned limitations regarding our objective. Indeed it achieves

state-of-the-art safety but doesn’t signiőcantly address adaptability. Another related issue

is indeed that collision avoidance in these last two works is left to the global planner, which

by deőnition outputs a collision-free path. While this is true, this implicitly means that the

authors are taking into account only small modiőcations of the nominal trajectory by the

operator’s actions. This assumption is quite narrow, as the operator could be the origin of

more pronounced deviations, and we want to take into account this more general scenario.

Therefore we now start to evaluate collision-avoiding techniques.

2.2 Artiőcial Potential Fields

An effective paradigm for online planning relies on the use of artiőcial potential őelds (APF).

Essentially, the point that represents the robot in conőguration space moves under the in-

ŕuence of a potential őeld U obtained as the superposition of an attractive potential to the

goal and a repulsive potential from the obstacle region. Planning takes place in an incremen-

tal fashion: at each robot conőguration q, the artiőcial force generated by the potential is

deőned as the negative gradient ∇U(q) of the potential, which indicates the most promising

direction of local motion [8]. One ever present complication with APF is the presence of

states where the total potential is null, called local minima. In such states, no force is exer-

cised on the robot, and therefore it’s necessary to őnd a way to escape from such conditions.

In the following paragraphs, we will give a description of the state of the art on APF in order

to be able to analyze their limitations and compare these approaches with the one proposed

in this thesis.

One őrst simple application of APF is as a whole-arm path planning algorithm for a 6-DOF

industrial robot[12]. Here the obstacles are modeled as spheres or cylinders, and a repul-

sive force is exercised from their centers to the frames’ locations on the arm and on the

end-effector, while an attractive force is exercised by the goal position. Thus, this APF

uses just some points on the whole robot, not taking advantage of its entire structure. It is

also applied in a stand-alone system, where the aim is just to control the arm, but the arm

motions don’t have to take into account the presence of a human being. It shares with our

scenario the possibility of assuming a static environment during execution, which coupled

with obstacles modeled as stated, allows for simpliőed obstacles detection using their pro-

jection in the Z-O-X plane in order to compute their distance relative to the arm. A fast

way to manage objects’ distances in the environment will also be relevant in our solution.

The issue of not making use of the whole robot body is addressed by Park[13], which em-

ployed a rigid body model in order to apply the forces on the whole arm. The rigid body

model employs a dense amount of material points in order to approximate the structure of

each robot’s link. These two works[12], [13] also differ in how they detect obstacles, as in the
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őrst one the check was performed on the frames to see whether they appeared to fall inside

the spheres or cylinders, while in the second the check is performed over each material point

through a discrimination matrix. The obstacles are modeled as spheres with two layers, in

order to distinguish when the arm is effectively colliding with when they’re in hazardous

proximity. Also, instead of just using the end-effector goal pose as an attraction point, the

position of each material point at the joints’ goal values is used as an attraction basin. Such

joints’ values are obtained approximating the Jacobian with numerical methods to solve the

inverse kinematics problem, as this robot has 7-DOF.

The problem of local minima was not addressed in the őrst work. Instead, in the second

work, the authors solved this problem through the dislocation of the rigid body into many

material points, as the force exercised on a single point can become null, but not the sum-

mation of all the forces.

Both of these works don’t address any aspect of human-robot collaboration. One way to

make use of APF to do so is, again, for increasing human operator safety[14]. This work

differs from the previous one in the detection of the obstacle. Obstacles are mapped in the

C-space, which was not the case before. For example, the mapping of a point obstacle for

two-links systems of 3-DOF is often a curve with two or three sections. This paper reports

results only for a two-links 3-DOF system but claims that the method can be extended into

higher DOF. The main utility would be, as the human enters a body part in a hazardous

region, this algorithm executes and impose a repulsive force on the robot, thus making it get

away from and avoid harming the user. It is a different approach to obtain a similar result to

what was described in the trajectory scaling MPC[10] and in the human aware planner[11].

Instead of trying to maximize the distance by an objective function, it uses the APF to pull

the robot away. Still, this result doesn’t come out to be useful for our aim, as improving

operator safety doesn’t turn out to help the robot to adapt to the user.

Other contexts of APF usage don’t give rise to direct solutions too. We can observe how

in Unmanned Aerial Vehicle (UAV) APF can be applied for collision avoidance[15] or for

autonomous exploration[16]. For collision avoidance, the authors report a heuristically acti-

vated APF, where the repulsive potential dominates attractive potential for coplanar obsta-

cles which are between the UAV and its goal, while attractive potential dominates repulsive

potential where the obstacle is detected but doesn’t lie in the path to the goal. The forces’

direction is always such that the UAV moves in straight lines, and this perpendicular ap-

proach manages the local minimum problem. This is an advantage of the aerial environment

which clearly doesn’t hold in an industrial environment for a robotic arm.

Regarding UAV in exploration, the technique presented makes use of APF to update an

entropy map when an obstacle is detected, in order to update an entropy function and then

construct a 3D octomap of the environment. The UAV is moved towards regions with lower

entropy, thus containing less information as they belong to less explored areas. The local

minima problem is solved with a local repulsive potential applied when the vehicle stands on
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Manipulators Plotting Time [s]

Orthoglide 7.650
Hybridglide 23.536
Triaglide 13.682
UraneSX 25.100

Table 2.1: Plotting times for the delta-like robots using the CAD method[20].

equations. Once the workspace has been deőned, it is possible to access the jointspace by

inverse kinematics, such as it was done with the APF with material points[13], although

this would add a computational burden if performed online. The most critical issue though

is that, once a signiőcant amount of obstacles are present in the environment, obtaining a

closed form becomes impossible or highly impractical.

To overcome this issue Xiangdong[19] has proposed a method for mapping the boundaries of

collision-free reachable workspaces. The obstacle and the end-effector are modeled as inter-

sections of convex implicit surfaces, speciőcally convex superquadrics in the cited work. By

employing an interior-point algorithm based on the Newton-Rampson method, the collision-

free conditions are obtained and integrated with the continuation method, creating an algo-

rithm that enables the boundary mapping of collision-free reachable workspaces. Clearly, as

these are boundaries on the workspace, they are computed from the end-effector perspective.

Therefore, the inverse kinematics issue remains, and for a 6-DOF system such as the one we

are considering there could be in general up to 16 admittable solutions[8].

Another interesting approach would be to use Cylindrical Algebraic Decomposition (CAD)[20].

Although this has again been tested in an obstacle-free environment, it would allow us to

obtain the jointspace directly differently from the previous two works cited, bypassing the

inverse kinematics approach. Some examples of the jointspace plots for a family of delta-like

robots computed using CAD are presented in őgure 2.3. In table 2.1 the computational

times for various robots (Orthoglide, Hybridglide, Triaglide, and UraneSX) are reported.

CAD has two main issues though. The őrst one is its computational complexity being dou-

ble exponential. This implies the computational time can explode pretty soon increasing

the input by a small amount. Also, the absolute values as reported in table 2.1 aren’t very

exciting, as we would like to get them in a couple of seconds at most in the real use-case. The

second issue would be that a jointspace obtained in an environment with obstacles would

not likely be expressable with a closed form, and thus it should be stored and, at each step,

the current joints values should be checked to be inside the storing structure or close enough,

adding again online computational burden and likely causing snappy movements. This last

criticality would also be present if we decided to take advantage of the previous work using

superquadrics and then "translate" the bounded workspace in a őnely sampled subspace of

the jointspace.

To overcome the issues and limitations presented, in the next chapter, we will develop an

algorithm to obtain boundaries in the jointspace deőning interval in which the nominal value
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Chapter 3

Proposed Solution

As we have seen in the previous chapter 2, we cannot provide a suitable way of allow-

ing collision-less deviations from the nominal path using only MPC or APF. As well, the

techniques [19], [20] for deriving valid subsets of the jointspace have their own limitations,

mainly in terms of computational complexity. In this chapter, we are going to explain and

discuss the solution that has been developed in order to őnd collision-free intervals in the

robot’s jointspace around the nominal values generated by the global planner. The solution

will present a linear computational complexity and will be entirely performed offline in the

jointspace, thus without occupying computational time for low-level controllers during exe-

cution.

The overall concept is to generate a volume that synthesizes the whole workspace but is

left free in the space surrounding the nominal path and near the goal, then the boundaries

deőning the őnal intervals are found by observing for which values of the joints the robot

collides with such volume. The algorithm consists of the following main steps:

• obtain the nominal path from the global planner;

• separate the obstacles into different categories, namely goal-obstacle, non-goal obstacles

and trail ;

• generate the volume;

• observe how the robot interacts with the volume.

The őrst step isn’t strictly part of the developed solution, but its output is a necessary

starting point. The development and testing of the algorithm were done using RRT-connect

as a global planner[21], but any kind of planner outputting the nominal path expressed by

joint values would be őne. In this work, the global planner takes as inputs the end-effector

start and goal positions in 3D Euclidean space.

Concerning the second step, the trail is a set that encapsulates the information about the

nominal path. As the set of obstacles, it will be composed of collision boxes, as we’ll better

describe in the next section.

In the third step, we use the sets deőned in the step before to grow a volume from a height-

map overlapping the ŕoor of the workspace. More explicitly, we will derive a height for
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Global Planner

Objects Categories

Volume Generation

Jointspace Exploration

Joints Boundaries

Figure 3.1: Flowchart summarizing the proposed algorithm

each cell of the height-map and instantiate a prism (again a collision box) of such computed

height on that speciőc cell. The őnal volume will be the set of these prisms.

Finally, in the last step, we observe how the robot interacts with the previous volume in order

to deőne the boundaries. This will consist in observing if the robot collides with the volume

at some speciőc points in the jointspace. In the ŕowchart in őgure 3.1 we can visualize the

steps comprising the algorithm.

3.1 Objects Categorization

This preliminary step is needed as different objects should inŕuence the subsequent volume,

and thus the joints, differently. The objects will be divided into the three categories previ-

ously cited: goal-obstacle, non-goal obstacles, and trail. The goal-obstacle is just the obstacle

assumed to be below the goal position of the end-effector, the trail is the set of robot links

as they are oriented through the nominal path and non-goal obstacles are the remaining

obstacles. All the objects will be simpliőed through the use of collision boxes. We will now

give a mathematical description to let the reader better understand how such objects are

managed during the execution.

A collision box can be deőned by a Roto-Translational Matrix R ∈ R
4×4 containing the

information about the position of the box’s center and a vector s ∈ R
3 containing the

lengths of the box’s sides. Collision boxes give us the possibility of checking very efficiently

whether a point is inside them and whether two collision boxes are colliding. These will be

useful in various steps of the proposed algorithm.

In order to check whether a given point in 3D Euclidean space is inside a collision box we just
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need to translate the point being checked into a system of reference centered in the box’s

position, and then check if the point’s coordinates in this system are, in absolute value,

smaller than the relative box’s sides’ half lengths.

To check if two boxes are colliding we take advantage of an algorithm developed two decades

ago by Gottschalk[22], which performs some tests on two boxes returning 0 if they touch

and a positive number if they don’t.

From 3D models of the environments, we do have a collision box for each object, and thus

we have a set of obstacles’ collision boxes. It is undesirable for the volume to grow too

close to the object corresponding to the goal pose; as we get closer to the goal we do expect

the joints’ intervals to become narrower, as the human operator should have less maneuver

to deviate from the nominal path, but too much volume could lead to the collapse of the

interval to the nominal values, for reasons which will be clearer in section 3.3. This would

amount to leaving almost no freedom to the human operator.

Identifying the obstacle corresponding to the goal is therefore critical, as this object will

be treated differently from the others for the reason just described. We will refer to this

obstacle as goal-obstacle. Usually, in the use cases we’re interested in, the goal position of

the end-effector is above a table, as the robot should move from over one table to another

in order to perform draping or to pickplace tasks. Assuming this is true in general, we can

easily identify the collision box of the goal-obstacle with the simple procedure of Algorithm

1.

Algorithm 1 Identify Goal Obstacle

1: point← endeffector 3d pose
2: while point.Z > 0 do
3: for all collision box ∈ obstacles do
4: if point is inside collision box then return collision box

5: point.Z← point.Z−∆Z

To őnd the goal-obstacle the algorithm simply starts at the goal position of the end-effector

and then descends along the Z-axis until the point lies inside one of the obstacles’ collision

boxes. The check is performed using the algorithm for checking whether a point is inside a

collision box, outlined in the previous section. Once the goal-obstacle has been found, the

remaining obstacles are set to their own category.

It is necessary to take into account the nominal path as determined by the global planner.

In order to do so another set of collision boxes is deőned, called the trail. Given k sets of

joints’ values of the nominal path and m links, the trail is a set of m × k collision boxes,

where each collision box corresponds to a given robot link at a given point (in the jointspace)

of the nominal path.
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3.2 Volume Generation

The aim of this volume is to synthesize the obstacles and the spatial areas unrelated to the

nominal trajectory in one single object to be used to gauge the moving limits of the robot

with the procedure described in the next section. To perform this step we need a height

function and a height-map. The resulting volume will be again a set of collision boxes.

3.2.1 Height-Map

The volume is grown over a height-map which roughly approximates the workspace ŕoor.

A height-map was chosen over a 3D structure, such as an octree or octomap[16], because

it allows us to save a signiőcant amount of computational cycles, as we lose one spatial

dimension. We also don’t expect the human operator to deviate the trajectory signiőcantly

upward most of the time, and so adding more information in such a direction wouldn’t be

particularly useful.

A height-map was also preferred over a quadtree[23] since a possibility with an exploratory

approach would be that of resulting in a map with large void sections corresponding to the

free workspace. So, once the height of the cells gets computed, there could be signiőcant

discontinuities between two adjacent volumes, and this could be the origin of chaotic be-

haviors in the search for the őnal joints’ boundaries. As seen in section 2.2, a heterogenous

structure such as an octomap (or a quadtree) is better suited for exploratory purposes, but

in DrapeBot the environment is deőned by the workcell constructor and therefore can be

considered known, as well as static during a given trajectory movement. Indeed height-maps

are canonically used for reconstruction and mapping purposes, but here we are going to use

them for generative purposes.

The height-map can be deőned by an origin Oh ∈ R
3, a pair (xdim, ydim) of dimension of its

sides and a maximum number of cells MAXcells. The őrst two parameters should be chosen

such that the resulting height-map covers the ŕoor of the workspace. The resulting side of

a single cell would be side =
√

xdimydim
MAXcells

, the number of rows xL = xdim

side
and the number of

columns yL = ydim
side

. These last two values must be rounded to an integer value if needed. In

order to instantiate the volume we need a way to decide how much to grow up the volume

in each cell of the height-map.

3.2.2 Height Function

The aim of the height function is to set, cell by cell, the heights of the őnal volume. There

is ample freedom in the deőnition and tuning of the height function. For the current work,

the choice was to deőne a function that would make the volume grow higher closer to the

non-goal obstacles and lower when near the trail or the goal obstacle. By doing so we allow

the joints’ boundaries to exclude the regions of space around the obstacles but to not become

too narrowed around the nominal values or around the goal region.

The mathematical deőnition of the height function follows:
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3.3 Jointspace Exploration

Once the cohesive volume has been obtained, then it has to be used in order to impose one

bounding interval for each joint. Therefore, for each joint, it is necessary to őnd the upper

and lower bound. We propose the Algorithm 2 to search and describe the boundaries. The

algorithm reported founds the upper boundary. To őnd the lower boundary the algorithm

is symmetrical.

We will now describe Algorithm 2 in order to facilitate its understanding. Suppose we are

searching the upper bound for the őrst joint. The algorithm starts by setting the őrst joint

at its absolute upper bound, while other joints are set at their input, and kept at these

values in all the following steps of Algorithm 2. A collision check is performed between the

robot and the volume generated in the previous section. If there’s no collision, the algorithm

halts and returns the absolute upper bound as a result. Otherwise, the őrst joint is set to

the midpoint value between the input value and the absolute boundary. In such case, the

algorithm enters a loop, which is depicted in őgure 3.5. At each instance of this loop, a

collision check is performed as before. If there’s a collision, the joint is set to the midpoint

between the highest collision-free value and the current joint value. If there’s no collision,

the joint is set to the midpoint between the current value and the lowest colliding value.

The loop halts once the distance between the highest collision-free value and lowest colliding

value is less than a given range, and returns the highest collision-free value as the resultant

upper boundary.

Algorithm 2 Joint Upper Bounding

1: A← jointToBoundnominal

2: B ← UBmax

3: C ← B
4: JointToBound← B
5: if collision then
6: B = (A+ C)/2
7: JointsToBound← B
8: else
9: return B

10: range← B − A
11: while range > ∆ do
12: if collision then
13: C ← B
14: B ← (A+ C)/2
15: jointToBound← B
16: else
17: A← B
18: B ← (A+ C)/2
19: jointToBound← B

20: range← B − A
21:

22: return A
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Figure 3.5: Depiction of the loop searching for the upper boundary in Algorithm 2

More in detail: let D be the distance between the input value of the joint we want to bound

and r be the range parameter. At the beginning of the loop, D is the distance between

the highest collision-free value (input value) and the lowest colliding value (the absolute

boundary). At each step of the loop, D is cut in half. Therefore the exit condition can be

written as D
2k

< r, where k is the number of steps inside the loop. So, the loop is exited

when k > log2
D
r
. Therefore the whole algorithm 2 takes k = 1 steps if it doesn’t enter the

loop or k = 1 +
⌈

log2
D
r

⌉

if it does enter the loop.

In order to őnd the őnal boundaries this procedure has to be repeated for each joint with

various input sets. In the following, a sequence will be deduced to carry out such evaluations,

based on the magnitude of inŕuence each individual joint has on the entire robot.

3.3.1 Joints Hierarchy

In order to evaluate how much each joint inŕuence the position of the others and of the

whole robot, the following test was performed in a free environment for a model of the robot

system ABB IRB 6700 205-2.80, whose speciőcs are reported in Figure 3.6. One by one,

for each joint a random angular value was added, and the variation in the position of other

frames was observed and related to the angular variation. In the following table 3.1 the

mean values obtained are reported. Each joint was randomly varied 10 000 times using a

standard uniform distribution in the interval between each joint’s absolute boundaries. The

celli,j can be read as joint-i inŕuence on joint-j can be expressed with the such value of the

parameter. Using a loose notation, the 1 on the diagonal tells us that each joint inŕuence

itself perfectly, while 0 below the diagonal tells us no joint inŕuence the previous joints. The

other values are reported in mm
rad

.

In tables 3.2, 3.3 and 3.4 are respectively reported the maximum, minimum, and standard de-

viations obtained with the test described above. The standard deviation is σ =

√∑N
i (vi−vm)2

N−1
,

where vm is the mean, vi is one sampled value and the sample has N elements. In chapter 4
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j1 j2 j3 j4 j5 j6
j1 1 39.5225 322.792 235.623 673.823 1197.08
j2 0 1 596.778 1322.18 1496.61 1799.17
j3 0 0 1 96.6101 492.284 1048.88
j4 0 0 0 1 6.73508 4.23817
j5 0 0 0 0 1 6.44586
j6 0 0 0 0 0 1

Table 3.1: Mean of the joints’ inŕuence values in mm
rad

j1 j2 j3 j4 j5 j6
j1 1 49.5526 404.711 295.42 844.828 1500.88
j2 0 1 626.153 1387.26 1570.27 1887.72
j3 0 0 1 110.208 561.572 1196.51
j4 0 0 0 1 11.5 7.23657
j5 0 0 0 0 1 7.41628
j6 0 0 0 0 0 1

Table 3.2: Maximum of the joints’ inŕuence values in mm
rad

j1 j2 j3 j4 j5 j6
j1 1 4.03894 32.9872 24.0791 68.8603 122.334
j2 0 1 466.366 1033.25 1169.56 1406
j3 0 0 1 42.4665 216.391 461.052
j4 0 0 0 1 9.8511110−4 6.1989810−4

j5 0 0 0 0 1 2.55776
j6 0 0 0 0 0 1

Table 3.3: Minimum of the joints’ inŕuence values in mm
rad

j1 j2 j3 j4 j5 j6
j1 0 10.777 88.019 64.2498 183.738 326.42
j2 0 0 33.4064 74.0127 83.7771 100.714
j3 0 0 0 15.1195 77.0426 164.15
j4 0 0 0 0 3.92307 2.46866
j5 0 0 0 0 0 1.08049
j6 0 0 0 0 0 0

Table 3.4: Standard deviation of the joints’ inŕuence values in mm
rad
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See Figure 3.7 to better visualize how each joint inŕuence the whole robot.

Given such assumptions, we propose the following Algorithm 3 in order to őnd the boundaries

around a given point in the jointspace. With Bound(jk) we refer to applying the Algorithm

2 to őnd the upper boundary of the k-th joint and its symmetrical version to őnd the lower

boundary. To sum it up, the idea is to start from the őrst joint, which affects all the

robot structure, and őnd its boundaries using algorithm 2 while the other joints are at their

nominal values. Boundaries on the second joint are computed as the most restrictive ones

found by setting the other joints at nominal values and the őrst joint at its upper boundary

and then at its lower boundary. For the third joint all the combinations of lower and upper

boundaries on the őrst and second joint are used.

Algorithm 3 Joints Bounding

1: Bound(j1)→ j1,LB, j1,UB

2:

3: j1 ← j1,LB
4: Bound(j2)→ j2,LB, j2,UB

5: j1 ← j1,UB

6: Bound(j2)→ j2,LB, j2,UB

7:

8: j1 ← j1,LB
9: j2 ← j2,LB

10: Bound(j3)→ j3,LB, j3,UB

11: j2 ← j2,UB

12: Bound(j3)→ j3,LB, j3,UB

13: j1 ← j1,UB

14: j2 ← j2,LB
15: Bound(j3)→ j3,LB, j3,UB

16: j2 ← j2,UB

17: Bound(j3)→ j3,LB, j3,UB

18:

19: return {j1,LB, j1,UB, j2,LB, j2,UB, j3,LB, j3,UB} =0

Previously we described in section 3.1 how the volume shouldn’t be too much narrow, other-

wise, it could restrict the boundaries too much, to the point that an interval could collapse

to the sole nominal value. This scenario should be avoided by carefully deőning the height

function and doing proper testing, but as a secondary safe measure, it could be performed,

after Algorithm 3, a check of the boundaries obtained. If there’s an instance in which the

lower boundary, the upper boundary, and the nominal value are the same, then this interval

has collapsed. In order to go on, an arbitrary (but small) interval could be set around the

nominal value.

In the previous section, we evaluated how many steps Algorithm 2 does take. We’ll now

evaluate the whole solution from a computational perspective.
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3.4 Theoretical Time Analysis

In this section, the proposed algorithm will be analyzed from a computational perspective.

In particular, we want to observe how the dimensions of the height-map, and so the őnal

amount of collision boxes generated, inŕuence the computing time.

Let the global planner output a set of N points in the jointspace, which represent the nom-

inal path. Let the height-map be composed of m × n cells. Let the goal-position of the

end-effector be pg = [xg, yg, zg]
T ∈ R

3. Let the robot have L joints. Suppose there are NO

obstacles in the environment.

The Object Categorization step requires őrst identifying the goal obstacles, which can be

completed in a őnite amount of steps depending on the parameter ∆z (see algorithm 1).

More explicitly the steps required are zg
∆z

. To deőne the trail we just need to take all the

links’ collision boxes setting the robot at each point in the nominal path. Therefore getting

the trail requires NL steps. We call this őnite amount of time T1.

In order to generate the volume, it’s just needed to evaluate the height function cell by cell.

Notice that at each evaluation just one distance needed to be evaluated for the goal and the

trail, while the shortest distance of the obstacles must be found. So 2 +NO distances have

to be evaluated for each cell in order to compute the height function of that cell, and so

T2 = T2(NO).

Still, we end up with C ≤ m×n cells, as cells with null height function value do not instan-

tiate collision boxes.

As already stated in section 3.3 algorithm 2 takes 1 or k = 1 +
⌈

log2
D
r

⌉

. Here the most

expensive operation in terms of computational time, which is checking if the robot is colliding

with the volume, is executed. This single operation takes LC steps, as each link is confronted

with each component of the whole volume. Algorithm 3 performs such operations (1 + 2 +

22) = 7 times for both the upper and the lower boundaries.

Therefore the total time for this step T3 is bounded:

14CLN ≤ T3 ≤ 14CLN(1 +

⌈

log2
D

r

⌉

) (3.3)

This tells us that the discretization of the height-map is the main parameter under our control

to manage the computational time of the proposed method. This relation, represented by

C, appears to be linear, as well as the other relations with the not controllable parameters

L (since the robot is given), NO (since also the environment is given), and N . Based on this

analysis, the expected computational time is therefore smaller than what could have been

expected with the method described in chapter 2, particularly the one based on cylindrical

algebraic decomposition [20], which has a double exponential complexity.
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Notice that N also has a linear impact on the computational time.
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Chapter 4

Experimental Results

In this chapter, we are going to describe the methodologies used to test the proposed solution

and report and comment on the results achieved. The test was performed in the 3 use-cases of

the European project DrapeBot presented in Chapter 1: Dallara, Baltico and DLR. Dallara

belongs to the automotive sector, Baltico to shipbuilding, and DLR to the aerospace industry.

Each workcell is represented using a tree-like structure, where each object is instantiated as

a node from the root. Each object then has its own branches and leaves, containing the

transform and the 3D models. The structure is depicted in Figure 4.1, with a simpliőed

example of a workcell with two objects and a 3-DOF robot. TF stands for Transform.

Notice that the algorithm proposed in Chapter 3 was developed through Dallara and Baltico

and later adapted, as it will be explained in later sections in this chapter, to the third use-case

DLR.

4.1 Methodology

The typical operational sequence for the process of draping would be:

• home-patch: the robot goes from the home pose to the carbon-őber patch and picks it

up

• patch-mould : the carbon őber patch is transferred to the mould and then draped

• mould-home: the robot comes back to the home pose, and a new patch is prepared

Figure 4.2 depicts the process workŕow.

Given a workspace, the algorithm has been tested for the paths deőned above and summa-

rized in Figure 4.2. In order to analyze the performance of our approach, we collected the

following data:

• the time to generate the volume, the time to őnd the start boundaries, and the time

to őnd the end boundaries

• the numerical values of the boundaries
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• αt = αg = αng = 1

• dt,LB = 350 mm, dt,UB = 1500 mm

• dg,LB = 100 mm, dg,UB = 2000 mm

• dng,UB = 500 mm

• hmax = 1500 mm

• the activation function At(c) set zero height in all the cells more distant than 2800 mm

for Dallara and Baltico and 3000 mm for DLR, as well as all those that are right below

the trail.

The activation function’s parameter is set at a value such that no box is instantiated outside

the robot’s reach. Also, no box is instantiated below the trail. This check is rapidly performed

checking if any box in the trail would collide with a max height box instantiated in the cell.

If not, the height is normally computed using the height function. Some slight modiőcations

have been introduced with respect to the idealized version of equation 3.1. The second

component of the function, computing the contribution of the distance from the goal, is split

into a constant term and a term dependent on the distance:

h(c)goal =
1

3
hmax +

2

3
hmax

(

dg − dg,LB
dg,UB − dg,LB

)αg

(4.1)

Combined with the elimination of boxes below the trail, this minor change to the height

function allows us to grow the volume around the goal a bit faster than the rest. Indeed

this change allows us to start from a positive height close to the goal while keeping the area

coincident with the goal free from any volume. The exponents αt, αg and αng are set to 1 as it

was chosen to prefer tighter boundaries. Higher exponents would make the volume scale up

in a smoother way, although these exponents have less inŕuence on the őnal boundaries than

the distances’ UBs and LBs. As stated above, the other values have been őne-tuned through

trial and error. Notice they’re round numbers, as the overall method isn’t too sensitive to

small variations in these parameters.

Tests were performed with an Intel(R) Core(TM) i5-8250U CPU @ 1.60GHz and 8 GB of

RAM. In what follows we report the data collected from the experiments. Notice that the

frame corresponding to the őrst joint is at the origin of the reference system. The nominal

paths are computed by the global planner, taking into input the starting and the goal position

of the robot gripper.
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For the home-patch path the nominal values for the joints, as computed by the global planner,

are:

• {0, 0, 0, 0, 0, 0} rad at home;

• {−1.11219, 0.734922, 0.0866255,−3.14159,−0.749248,−1.11219} rad over the patch

table;

Tests results are reported in table 4.1.

Max CBox CBox Computational Time [ms] Conődence Factor

100 43 82 95.3839
150 62 69 95.7548
200 88 90 95.8161
500 227 121 98.9903
750 351 165 98.8935
1000 457 170 99.5000
1500 704 209 99.2742
2000 940 231 99.5903
3000 1424 284 99.8613
5000 2393 387 99.8548
7500 3618 551 99.9968
10000 4834 609 99.9871
12000 5794 771 99.8387
15000 7249 1000 99.9226
20000 9685 1149 99.8258
25000 12148 1527 99.9774
30000 14600 1771 99.9742
40000 19461 2319 99.9839
50000 24348 2680 99.8581
100000 48829 5782 99.9903

Table 4.1: Results of home-patch path, use-case Dallara

We can see the CF steadily increasing with the number of collision boxes composing the

volume. As well, computational time increases, but we manage to have CF over 99% for just

170 ms spent.

In Figure 4.4 a visualization of how the boundaries behave while the robot moves towards

the goal. The őrst joint is kept in a tight range, the second joint acquires more space getting

close to the goal while the third loses mobility in one direction. This can be interpreted as

the robot’s rotation around the z-axis getting restricted as the robot reaches the patch table,

while more freedom is added to the second joint allowing the robot to regulate the proximity

with the table. The third joint’s boundaries get narrower, as it controls the arm yam and it

must prohibit the arm to crash unto the table. The values depicted are those obtained with

20000 collision boxes as a maximum. This value was observed to generally produce a high CF.

Indeed also the next images of the boundaries will be obtained with 20000 set as a maximum.
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Regarding the patch-mould path the nominal values for the joints, as computed by the global

planner, are:

• {−1.11219, 0.734922, 0.0866255,−3.14159,−0.749248,−1.11219} rad over the patch

table;

• {0.251572, 0.282489,−0.107214,−3.14159,−1.39552, 0.251572} rad over the mould ta-

ble;

Tests results are reported in table 4.2.

Max CBox CBox Computational Time [ms] Conődence Factor

100 48 71 93.4484
150 70 89 94.6000
200 95 98 92.8516
500 248 151 99.1484
750 379 174 98.6484
1000 504 191 99.3742
1500 769 215 99.3032
2000 1036 246 99.7742
3000 1565 296 99.8226
5000 2630 411 99.7742
7500 3961 567 99.9774
10000 5288 717 99.9613
12000 6360 815 99.8677
15000 7969 1329 99.9161
20000 10642 1584 99.8000
25000 13326 1593 99.9903
30000 16018 2105 99.9968
40000 21370 2636 99.9774
50000 26735 3340 99.8677
100000 53574 7888 99.9968

Table 4.2: Results of patch-mould path, use-case Dallara

We can observe how, for lower discretization, the CF is lower than for the home-patch path,

although it still goes above 99.9% for higher discretization. The patch-mould path appears

to be the hardest of the three, as it is amidst two main obstacles, the patch table, and the

mould table. In őgure 4.5 we can observe how this time the őrst joint is kept in a narrow

interval during the whole path, as the robot goes from one table to another table directly.

The second joint upper boundary and the third joint lower boundary keep a more or less

steady value during the whole trajectory, as the proximity to the tables is kept stable since

both tables have the same height.
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Regarding the mould-home path the nominal values for the joints, as computed by the global

planner, are:

• {0.251572, 0.282489,−0.107214,−3.14159,−1.39552, 0.251572} over the mould table;

• {0, 0, 0, 0, 0, 0} at home;

Tests results are reported in table 4.3.

Max CBox CBox Computational Time [ms] Conődence Factor

100 44 71 99.9484
150 64 78 98.4806
200 89 86 100
500 225 119 100
750 345 164 100
1000 456 173 100
1500 701 206 100
2000 933 202 100
3000 1414 287 100
5000 2378 365 100
7500 3578 527 100
10000 4761 598 100
12000 5709 689 100
15000 7160 837 100
20000 9547 1224 100
25000 11963 1829 100
30000 14364 1600 100
40000 19159 2015 100
50000 23948 3023 100
100000 47974 5325 100

Table 4.3: Results of mould-home path, use-case Dallara

We can notice the CF remarkably going to 100% even for very low discretization and main-

taining steadily the value. The mould-home path is clearly the easiest path, as the robot

steps away from the obstacle into a safe pose. In őgure 4.6 we can observe the őrst and

third joint boundaries widening up going toward the home point. Curiously the second joint

narrows, but as the CF is so high we can deduce that this is not likely to be for obstacle

avoidance but rather just for pushing toward the home point target.
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Tests results are reported in table 4.4.

Max CBox CBox Computational Time [ms] Conődence Factor

100 50 67 96.9968
150 72 79 97.5161
200 103 90 98.6097
500 264 143 98.7613
750 400 166 99.1581
1000 549 197 98.3903
1500 823 216 99.3581
2000 1100 225 99.8806
3000 1658 313 99.371
5000 2822 447 99.6548
7500 4258 600 99.8452
10000 5660 681 99.8935
12000 6781 867 99.8581
15000 8531 1157 99.8774
20000 11384 1316 99.771
25000 14285 1766 99.7774
30000 17141 1788 99.8387
40000 22837 2353 99.8548
50000 28623 3068 99.8613
100000 57415 6683 99.929

Table 4.4: Results of home-patch path, use-case Baltico

As we can see in Figure 4.8, the situation is pretty similar to the corresponding case of the

Dallara use-case in őgure 4.4, concerning the őrst two joints. The third, on the other hand,

keeps a quite wide interval for the whole path. One likely explanation is that the end-effector

goal point is at a position that leaves the arm sufficiently away from the table, thus allow-

ing a good deal of mobility. We can observe the CF stably surpassing 99% quite soon, from

a 1500 maximum amount of collision boxes onward, with a low computational time of 216 ms.
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The nominal values for the joints for the patch-mould path are:

• {0.978215, 0.766918, 0.0255917,−3.14159,−0.778286, 0.978215} rad over the patch ta-

ble;

• {2.59301,−0.629514,−2.18935, 1.00597e− 16,−1.89352,−0.548579} rad over the mould

table;

Tests results are reported in table 4.5.

Max CBox CBox Computational Time [ms] Conődence Factor

100 54 72 95.8742
150 78 93 95.6226
200 109 95 97.9226
500 280 144 97.529
750 425 176 98.5258
1000 588 190 97.3839
1500 878 215 98.0355
2000 1175 266 99.6226
3000 1772 330 98.8806
5000 3013 465 99.3935
7500 4538 665 99.7516
10000 6040 802 99.6742
12000 7251 948 99.6645
15000 9120 1099 99.7323
20000 12168 1454 99.3903
25000 15240 1785 99.6839
30000 18301 2096 99.6645
40000 24395 2876 99.6484
50000 30566 3689 99.5387
100000 61276 8010 99.7452

Table 4.5: Results of patch-mould path, use-case Baltico

The situation depicted in őgure 4.9 is analogous to the patch-mould path in Baltico, with

narrow boundaries on the őrst joint, the second joint’s ones getting narrower and the third’s

widening. It is peculiar that for the second joint, the nominal value also constitutes the

lower bound, meaning that the end-effector goal is at a critical position. We notice overall

high values for the CF, but as it was for Dallara, this path presents the lowest CF for this

whole use-case, at low discretization, with 95.8742%. The patch-mould path conőrms to be

the hardest.
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For the mould-home path the nominal values for the jointspace:

• {2.59301,−0.629514,−2.18935, 1.00597e− 16,−1.89352,−0.548579} rad over the mould

table;

• {0, 0, 0, 0, 0, 0} rad at home;

Tests results are reported in table 4.6.

Max CBox CBox Computational Time [ms] Conődence Factor

100 43 64 99.929
150 63 83 99.9419
200 85 85 99.9355
500 216 122 100
750 333 161 100
1000 442 181 100
1500 676 199 100
2000 894 221 100
3000 1357 323 100
5000 2282 411 100
7500 3454 523 100
10000 4611 745 100
12000 5524 793 100
15000 6912 1046 100
20000 9222 1360 100
25000 11561 1376 100
30000 13891 1614 100
40000 18519 2280 100
50000 23161 3160 100
100000 46436 5954 100

Table 4.6: Results of mould-home path, use-case Baltico

As it was for Dallara the mould-home path appears to be the easiest, giving raise to an early,

in terms of maximum number of boxes, CF at 100%. Figure 4.10 shows that boundaries

again attempt to guide the joints toward home. The őrst joint follows a narrow path, where

the starting and ending points are also quite apart due to the tables’ disposition in the

workcell. Differently from Dallara, this workcell leaves room for the second joint to variate,

but the third joint is on the other hand pushed towards its lower boundaries, again to push

the robot toward home.
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comparable to the ones in Dallara and Baltico for what concerns the patch-mould and mould-

home paths. The home-patch path on the other hand shows a slight underperformance, likely

due to the proximity of the linear axis to the table for the patch, as well as having deliberately

tried to move the pinpoint above the center of such table. This position is likely one of the

hardest, as the robot has to stretch the arm over the table and very close to the table, but

being so goal obstacle some volume is removed from its surroundings leaving more freedom to

the joints than in the other scenarios. The őnal CF can still be considered good, as it stably

goes above 90%. The other paths behave similarly to the previous use-cases, widening the

boundaries towards the home pose and tightening it towards the goal point over the mould.

Max CBox CBox Computational Time [ms] Conődence Factor

100 37 398 90.5355
150 52 479 91.1097
200 79 453 92.9387
500 199 453 92.5355
750 305 472 92.8419
1000 417 504 91.7452
1500 629 522 91.5839
2000 866 562 93.2097
3000 1309 648 93.0548
5000 2239 772 92.7677
7500 3328 975 93.3129
10000 4440 1124 92.7194
12000 5345 1208 92.9839
15000 6742 1452 92.8194
20000 9055 1657 92.9226
25000 11276 1898 93.0742
30000 13491 2222 93.0645
40000 18055 2816 93.2581
50000 22714 3583 92.9419
100000 45567 7209 92.8355

Table 4.7: Results of home-patch path, use-case DLR
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Max CBox CBox Computational Time [ms] Conődence Factor

100 66 498 88.1
150 89 497 88.4097
200 136 575 89.5581
500 336 670 87.1032
750 529 618 86.7935
1000 713 552 87.8
1500 1084 534 93.729
2000 1464 723 92.6613
3000 2204 885 94.7742
5000 3793 975 95.9032
7500 5655 1415 95.9774
10000 7518 1684 97.0613
12000 9051 1617 96.971
15000 11353 2056 98.1613
20000 15286 2434 98.1935
25000 18987 3822 98.0226
30000 22827 3427 98.1323
40000 30506 4839 96.9839
50000 38319 5932 98.0613
100000 76690 13646 98.1387

Table 4.8: Results of patch-mould path, use-case DLR

Max CBox CBox Computational Time [ms] Conődence Factor

100 52 884 93.7387
150 82 542 92.7839
200 118 581 91.9548
500 305 538 99.8774
750 477 508 99.9968
1000 643 557 99.9516
1500 961 607 100
2000 1293 640 100
3000 1963 712 100
5000 3342 984 100
7500 5003 1061 100
10000 6661 1222 100
12000 8041 1336 100
15000 10046 1817 100
20000 13475 2419 100
25000 13475 2419 100
30000 20229 2763 100
40000 27033 3406 100
50000 33794 4790 100
100000 67751 10320 100

Table 4.9: Results of mould-home path, use-case DLR
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4.3 Discussion

The algorithm performs efficiently in the use cases presented. The worst CF obtained is

92.8516% in the patch-mould path of Dallara’s use-case, while in the slightly modiőed ver-

sion for DLR we touch a low of 86.7935%, although for very low discretization. As already

stated, the patch-mould path appears to be the hardest one, as indeed it is the path closer

to the highest amount of obstacles. Unexpectedly though, while still performing better than

patch-mould at low discretization, the home-patch path has the lowest CF in DLR in the

latter tests. This could be due to situational reasons, such as a slightly more challenging

disposition of the obstacles and in particular a őnal pose more oriented toward the center of

the patch table rather than the center of the mould. The proximity of the obstacles to the

linear axis and thus to the whole robot system is likely the root cause of the performance

difference from DLR to the other two use-cases, as the linear axis implies the robot is al-

ways pretty close to the obstacles. The trade-off is clearly that the robot can move fast and

efficiently across the workcell, although this doesn’t help for the speciőc objectives of this

thesis work. Regarding the patch-mould path in Baltico and Dallara, a CF over 99% is still

obtainable, as in both these use-case the obstacles are much more spaced out than in DLR.

The mould-home path on the other hand is the easiest path, as the robot travels away

from the obstacles. The algorithm achieves a remarkable CF = 100% already for very low

discretizations of the height-map, with 216 total collision boxes for Baltico and just 89 for

Dallara. On DLR at 100% in mould-home there are 961 instantiated boxes. More boxes are

usually instantiated in DLR, as the workcell appears to be larger, and this appears to be

the fundamental reason behind its increased computational times. Now that we’ve observed

that the boundaries seem useful in terms of avoiding collision, let’s indeed give a look at the

computational times.

As it was theoretically evaluated in section 3.4, the algorithm behaves linearly with respect

to the total number of collision boxes, as shown in őgure 4.15. This is a good feature, in

particular, confronted with the double exponential complexity of the CAD-based method as

presented in section 2.3. The highest times recorded are:

• 7.89 s for Dallara, in patch-mould

• 8.01 s for Baltico, in patch-mould

• 13.64 s for DLR, in patch-mould

These values correspond to the highest discretization tested. Actually, we can reach a high

CF consistently in around 2 seconds in all the use-cases. DLR appears to have a higher

computational time compared to Dallara and Baltico, as the workcell is bigger, and thus

more boxes are generally instantiated in order to compose the volume. This implies that,

during the jointspace exploration step, the robot links are tested to collide with a larger

amount of boxes, thus increasing the computational time as predicted by equation 3.3.
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Having a linear complexity is a good feature, as theoretically we could meet any time speciőcs

provided a powerful enough hardware. The whole computational time is composed of the

time to generate the volume and the time to compute one boundary pair for each point in

the nominal path. As there’s no conŕict between computing the upper boundary and the

lower boundary, the two processes could be performed in parallel, although this hasn’t been

tested in the current work.

We begin to identify the close relationship between CF, computational time, and discretiza-

tion.

Observing 4.16 we could take 15000 collision boxes and up as a safe parameter for the algo-

rithm in the Dallara use-case, while approximately 18000 and up should be available for the

Baltico use-case. In the latter, we can observe a slight instability in the performance, par-

ticularly in the home-patch path, which is the one with the highest overall proximity to the

obstacles. Nonetheless, the CF stably stays above 99%. With regard to DLR, a discretiza-

tion corresponding to 15000 collision boxes should suffice, in the limits of its performance

compared to the previous use cases.

It could be argued, as the CF is always above 90% in any scenario, that an "experienced"

user could be őne also with the low discretization of the height-map, obtaining an almost in-

stantaneous computation of the boundaries. It is possible to draw some qualitative patterns

in how the boundaries are formed, and this could also come intuitive to the human operator

given enough practice.

Considering őgures 4.4 to 4.10 we can notice how the őrst joint is usually kept in a tight

range. Figure 4.6 could appear as an exception, but, actually, it’s just that the initial and

the őnal values for this joint are quite close and so the plot appears magniőed. As the őrst

joint commands what the robot is facing, a tight range implies that the őnal boundaries

try to keep the robot aligned with the goal, and this is indeed the case for the home-mould

path. The second joint’s boundaries have the tendency to widen closer to the goal, allowing

some freedom to deform the nominal trajectory. This enhances the adaptability of the robot

next to the patch or to the mould, as we can expect those are the regions where the human

operator would introduce the most signiőcant deformation of the nominal trajectory. The

only exception is in őgure 4.10 where the boundary gets wide also at the home point. In

the home-patch and patch-mould paths, the third joint’s boundaries follow the nominal di-

rections or stay approximately the same, as here the aim is that of not allowing the robot to

crash towards the goal obstacle. On the other hand, when the path ends at the home point

more freedom is allowed.

As we can observe from őgures 4.12 to 4.14, the boundaries behave similarly in DLR, but we

can notice, particularly for the őrst two joints, that they get even tighter than before when

we get close to the obstacles, sometimes being almost equal to the nominal values. This is

likely due to the proximity of the linear axis to the obstacles.

The evolution of the boundaries during the trajectory is just one possible way to use them,

based on the fact that the joints’ states in output from the global planner are linearly con-
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Chapter 5

Conclusion

We began our discourse by presenting in Chapter 1 the DrapeBot project, suggesting that

we wanted to develop a way to improve the robot’s adaptability to the human operator’s

presence. In Chapter 2 we started by analyzing some MPC based approaches to similar

problems, noticing how those were at best oriented to the improvement of human safety

rather than our interest. As well, APF didn’t seem to provide a better solution considering

its reactionary use could have produced uncontrollable results with the complex movements

of a human being. Then we relied on the possibility of őnding suitable subspaces of the

jointspace, but the techniques already present in the literature seem to have performance

issues, the main reason being they’re typically used for very different purposes, such as

analyzing a robot system rather than affecting its mobility.

In Chapter 3, we developed a solution suitable to our scenario, based on the idea of placing

virtual obstacles around the nominal path and testing which joints’ values give raise to

collision with such obstacles in order to deőne boundaries in the jointspace. The solution is

tested in the 3 use-cases provided by the DrapeBot project: Dallara, Baltico, DLR. We now

ask ourselves how the solution could be improved and how it could be further generalized.

5.1 Future Works

In the volume generation, it was decided to do not to instantiate any volume outside the

volume reach, as this couldn’t inŕuence robot motion. Is it possible to further decrease the

amount of instantiated collision boxes? This would further speed up the algorithm. One

simple approach could be to eliminate a given percentage of the boxes, choosing the boxes

randomly. But what could be a reasonable percentage? Would it be signiőcantly different

use-case by use-case, path by path? This could be found with some simple optimization

algorithm.

In DLR we assumed to bound the linear axis by itself and then repeat the same process of

the previous use-cases to the other joints. What if we treated the linear axis as the other

joints? Would the result be very different? This solution was discarded as it would have

doubled the computational time, but it could still be viable.

In general, could the algorithm be used with n-DOF systems? At which point would it
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start to perform badly, and would it just be issues related to the number of computations or

would robot structures take relevance? We have reason to think it’s possible to generalize

the algorithm to n-DOF systems, in the use-cases tested we didn’t őnd particular difficulties

handling both revolute and prismatic joints. Also, nothing in the abstract version of the

algorithm denies the possibility of adding more iterations to perform computations over

an increased number of joints. There could be some computational complications if the

number of joints becomes too high, but we could adopt analytical techniques such as the

one performed in Chapter 3 (see Tables 3.1 to 3.1) in order to simplify joints relationship or

discard certain joints which would appear to do not carry signiőcant spatial information.

In order to answer most of these questions, the algorithm should be tested in new scenarios,

implying different use-cases from the ones tested in this work. As this is not available for

the current project, these questions cannot be empirically addressed. From the theoretical

point of view, each time we increase the DOF we double the amount of computation, so an

upper limit certainly exists. On the other hand, most industrial applications do not require

more than 6 or 7 degrees of freedom, thus we feel conődent that the algorithm as described

and tested so far can be adopted in many different scenarios.
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