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Introduction

Records and extremes are fascinating us in all areas of life and they are of a big importance. We

are constantly interested in knowing how big, how small, how rainy, how hot things may possibly

be. In many cases, these questions relate to very variable and highly unpredictable phenomena.

A look at historical data can help: given the past observations, what can we say about what to

expect in the future? Of course, a look at the data will reveal no obvious rules, hence we have to

model them as a stochastic process and hence our predictions on the future will be statistical: we

have to make assertions on the probability of certain events. These events, however, are rather

particular. In fact, they will be rare events and related to the worst things that may happen, in

other words, to extremes. This is why a big branch of statistics, extreme value statistics, has been

developed and studied throughout the years.

In this thesis we will focus on the analysis of extremes in the branching Brownian motion

(BBM). We are interested in a model in which particles are independent, move in space according

to some Markovian process and branch. Branching Brownian motion in R can be thought as a par-

ticle that starts at a point x ∈ R and moves according to a Brownian motion. After a random time

distributed as an exponential random variable, the particle splits into daughter particles, which

start to move as independent Brownian motions, that in turn split after independent exponential

lifetime, and so on.

BBM has been introduced for the first time in the second half of XX century and then studied

over the last 50 years. It has been very important in the study of the Kolmogorov equation,

or Fisher-Kolmogorov, Petrovsky, Piskunov (F-KPP) equation, the basic prototype of parabolic

differential equations. It appears as a model in ecology, population genetics, epidemiology. The F-

KPP equation has had a central place in the study of wave-like phenomena and has aroused great

interest in the physicists, since it is one of the simplest example of a semilinear parabolic equation
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that admits traveling waves. The equation was first considered in 1937 by Fisher in The advance

of advantageous genes and by Kolmogorov, Petrovsky and Piskunov in Étude de l’équation de la

diffusion avec croissance de la quantité de matière et son application à un problème biologique.

Over the years, this equation has been studied by many authors, such as Kolmogorov, Skorokhod,

McKean, Bramson, both analytically and probabilistically. In particular, McKean in [14] provided

a representation of solutions of the F-KPP equation in terms of BBM and started studying the

asymptotics of position of the rightmost particle, whose centering term was found by Bramson in

[6]. In the following years, many authors refined Bramson’s results on the convergence in distri-

bution of the maximum in different ways. For example, Harris and Hardy in A new formulation

of the spine approach to branching diffusions in 2006 and Harris and Roberts in The many-to-few

lemma and multiple spines in 2011 used spine decompositions and their relation to probability

tilting to study the convergence in distribution of the maximum, while Roberts in A simple path to

asymptotics for the frontier of a branching Brownian motion in 2011 approached differently, trying

to simplify the study by counting only particles that stay below a certain line. The final result

always concerned the law of the maximum of the BBM, which has been proven to be a random

shift of the Gumbel distribution.

Recently, the field has experienced a revival with many remarkable contributions and repercussions

into other areas, such as Gaussian free fields, like Zeitouni dealt in [15]. In particular, the study of

BBM has started focusing not only on the position of the rightmost particle, but on the whole point

process formed by the rightmost particles, namely the extremal process of the branching Brownian

motion. A full convergence result has been obtained independently by Arguin, Bovier and Kistler

in [1], [2], [3] on the one hand, and by Aidekon, Berestycki, Brunet and Shi in Branching Brownian

motion seen from its tip on the other. Many of these results have been proven for the branching

random walk as well, see for example Madaule in Convergence in law for the branching random

walk seen from its tip.

In the last years, mathematicians have started studying modified branching random walks and

branching Brownian motions: they introduced the selection mechanism. By selection we mean the

process of killing particles, which can be interpreted as the effect of natural selection on a popu-

lation, or viewed in the framework of fronts under the effect of noise. Indeed, real life systems are

well approximated by introducing a noise, that causes a tremendous change in the results obtained

in the classic versions of branching random walks and branching Brownian motions.
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In the first chapter we will state some basic definitions and facts on extreme value theory. In

particular we will introduce Poisson point processes and Laplace functionals, that will be central

in the study of two basic models of disordered systems: the REM and the GREM. The REM, or

random energy model, was introduced by Derrida in 1980 as a basic model for particle systems.

Indeed, the REM is defined by an Hamiltonian in which there are 2N independent variables,

distributed as standard normal variables. If the random variables we are considering are correlated,

we have to deal with the GREM, or generalized random energy model. As we will underline, the

study of the partition function of these models and the description of the asymptotic behaviour

are very similar to the study of the extremes of our BBM.

In the second chapter we will give the basic definitions of graph theory, since this will be the

structure on which we will construct branching random walks and the branching Brownian motion.

After that, we will define branching random walks, the discrete counterpart of BBM, and state the

main results on the maximal displacement and the expectation. In particular, we will prove the

convergence in distribution of the maximum and obtain from that a law of large numbers. We will

focus on the proof of these results, providing upper and lower bounds for Mn
n , where Mn denotes

the maximum over n variables.

In the third chapter we will rigorously define the branching Brownian motion and state and prove

all the results on the maximal displacement. In particular we will prove that the probability that

the maximum stays under a certain value is a solution of the F-KPP equation. After that we

will study the convergence in distribution of Mt −mt, where the centering term mt is of the form
√

2t− 3
2
√

2 +C + o(1). We will then introduce the main object of this thesis: the extremal process

of branching Brownian motion. The aim of this section will be to prove that the extremal process

converges weakly to a cluster Poisson point process. In order to do this, we will define a point

process Et that encodes the statistics of the extremal particles of the BBM. We will first prove the

existence of its limiting process and then we will introduce an auxiliary process Πt, proving that

it is a Poisson point process and that it is equal in law to the process Et.

In the last chapter, we will characterize the paths of the extremal particles throughout three

theorems and a corollary, that will enable us to visualize the extremal process through a quite

precise graph. We will prove that extremal particles cannot fluctuate too wildly in the upward

direction: they stay below the so-called upper envelope, that we will define. After that we will

prove that the paths lie well below the interpolating line s 7→ s
tmt. In this way, also unconstrained

paths does not hit the upper envelope. In fact, they stay with high probability under the entropic

3



envelope. Finally, we will introduce the lower envelope and prove that extremal paths lie above

it. As a result, we will find a tube, a region in which extremal particles spend most of their time

with overwhelming probability. Localization of paths leads us to a final theorem on genealogy of

extremal particles: in the large t-limit, ancestors of such particles split either within a distance of

order 1 from time 0 or within a distance of order 1 from time t.
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Chapter 1

Extreme value theory

In this chapter, we are going to introduce some basic ideas on extreme value theory. We will study

extremal processes in the iid case and we will try to generalize towards more complicated models.

We will introduce a toy model in order to better understand how to study the extremal processes

of branching random walks and branching Brownian motion.

1.1 Extreme value distribution of iid sequences

We start working with a family of real valued, independent and identically distributed random

variables Xi, i ∈ N, with the following distribution function: F (x) = P[Xi ≤ x]. We are interested

in the extremal distribution of this collection of random observations from the same distribution.

Setting Mn = maxni=1Xi, it is easy to observe that

P[Mn ≤ x] = (F (x))n.

Taking the limit,

lim
n→∞

(F (x))n =

 0 if F (x) < 1

1 if F (x) = 1

This means that any value that the variables Xi can exceed with positive probability will be

eventually exceeded after sufficiently many independent trials.

To get something more interesting, we must rescale the random variable Mn. We would like to
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find two sequences an and bn and a distribution function G(x), such that

lim
n→∞

P[an(Mn − bn)] = G(x).

The distributions we are looking for arise as limits of the form Fn(anx + bn) → G(x), where Fn

is the n-th convolution of F . We want such limits to have particular properties, for example we

will require max-stability. Let us start by being as general as possible with regard to the allowed

distributions F . We are going to classify all max-stable distributions modulo the equivalence below

and to determine their domains of attraction. We need some basic definitions.

Definition 1.1. Two distributions F and G are said to be equivalent(or of the same type) if

∃a > 0, b ∈ R such that

F (ax+ b) = G(x). (1.1)

Definition 1.2. A distribution function G is max-stable if, for all n ∈ N, there exist an > 0 and

bn ∈ R, such that, for all x ∈ R,

Gn(a−1
n x+ bn) = G(x), (1.2)

where Gn is the n-th convolution of G.

Definition 1.3. A sequence Fn, n ∈ N, of probability distribution functions converges weakly

to a probability distribution function F , namely Fn
w−→ F , if

lim
n→∞

Fn(x) = F (x) (1.3)

for all points x where F is continuous.

We can now observe that different choices of the scaling sequences an and bn can lead only

to equivalent distributions G∗(x) = G(ax + b), with a > 0, b ∈ R. This is known as Khintchine’s

theorem:

Theorem 1.4. Let Fn, n ∈ N, be distribution functions and let G be a non degenerate distribution

function. Let an > 0 and bn ∈ R be sequences such that

Fn(anx+ bn) w−→ G(x). (1.4)

Then there are constants αn > 0 and βn ∈ R, and a non-degenerate distribution function G∗, such
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that

Fn(αnx+ βn) w−→ G∗(x) (1.5)

if and only if

a−1
n αn → a,

βn − bn
an

→ b (1.6)

and

G∗(x) = G(ax+ b), (1.7)

where a > 0, b ∈ R.

We are now going to state a proposition that shows us that the only distributions that can

occur as extremal distribution are max-stable distributions and that, viceversa, any max-stable

distribution is the limit of a suitable extremal distribution.

Proposition 1.5. (i) A probability distribution G is max-stable if and only if there exist prob-

ability distribution functions Fn and constants an > 0 and bn ∈ R, such that, for all k ∈ N,

Fn(a−1
nk + bnk)

w−→ G
1
k . (1.8)

(ii) G is max-stable if and only if there exist a probability distribution function F and constants

an > 0 and bn ∈ R such that

Fn(a−1
n x+ bn) w−→ G(x). (1.9)

We have seen that the only distributions that can occur as extremal distributions are max-stable

distributions. We will now classify these distributions:

Theorem 1.6. Any max-stable distribution is of the same type as one of the following:

(i) The Gumbel distribution,

G(x) = e−e
−x (1.10)

(ii) The Fréchet distribution with parameter α > 0,

G(x) =

 0 if x ≤ 0

e−x
−α if x > 0

(1.11)
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(iii) The Weibull distribution with parameter α > 0,

G(x) =

 e−(−x)α if x < 0

1 if x ≥ 0
(1.12)

Corollary 1.7. Let Xi, i ∈ N, be a sequence of iid random variables. Let us assume that there

exist sequences an > 0, bn ∈ R, and a non-degenerate probability distribution function G, such that

P[an(Mn − bn) ≤ x] w−→ G(x). (1.13)

Then G(x) is of the same type as one of the three max-stable distributions.

Now we would like to find some criteria to decide for a given distribution F to which distribution

the maximum of iid variables with this distribution corresponds.

Definition 1.8. Let Xi, i ∈ N be a sequence of iid random variables, distributed according to F .

If 1.13 holds with G extremal distribution, we say that F belongs to the domain of attraction

of G.

Theorem 1.9. Let xF = sup{x : F (x) < 1}. The following conditions are necessary and sufficient

for a distribution function F to belong to the domain of attraction of the three extremal types:

(i) Fréchet:

xF =∞, (1.14)

lim
t→∞

1− F (tx)
1− F (t) = x−α, (1.15)

for every x > 0, α > 0.

(ii) Weibull:

xF <∞, (1.16)

lim
h→0

1− F (xF − xh)
1− F (xF − h) = xα, (1.17)

for every x > 0, α > 0.

(iii) Gumbel:

∃g(t) > 0, (1.18)

lim
t→xF

1− F (t+ xg(t))
1− F (t) = e−x, (1.19)
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for every x.

Once we know how the maximum behaves, we are allowed to ask for more. What is the joint

distribution of the maximum, the second largest, the third largest...?

We will state basic results on the variable Mk
n , that represents the value of the k-th largest of the

first n variables Xi.

Definition 1.10. Let n ∈ N and X1, . . . , Xn be real numbers. We denote by M1
n, . . . ,M

n
n its

order statistic, that is, for some permutation π of n numbers, Mk
n = Xπ(k) and

Mn
n ≤Mn−1

n ≤ . . . ≤M2
n ≤M1

n = Mn. (1.20)

We also denote by Sn(u) = #{i ≤ n : Xi > u} the number of exceedances of the level u.

Observe that according to this notation we have

P[Mk
n ≤ u] = P[Sn(u) < k]. (1.21)

Theorem 1.11. Let Xi, i ∈ N, be a sequence of iid random variables with distribution F . If there

exists a sequence un such that

n(1− F (un)) −→ τ, (1.22)

with 0 < τ <∞, then

P[Mk
n ≤ un] = P[Sn(un) < k] −→ e−τ

k−1∑
s=0

τ s

s! , (1.23)

hence the k-th largest of the first n variables Xi is distributed as a Poisson random variable as

n→∞.

Theorem 1.12. Let u1
n > u2

n > . . . > urn be such that, for all ` ∈ N, n(1 − F (u`n)) → τ`, with

0 < τ1 < τ2 < . . . < τr <∞.

Then, under the assumptions of Theorem 1.11, with Sin = Sn(uin),

P[S1
n = k1, S

2
n − S1

n = k2, . . . , Srn − Sr−1
n = kr]→

τk1
1
k1!

(τ2 − τ1)k2

k2! . . .
(τr − τr−1)kr

kr!
e−τr , (1.24)

namely the joint distribution of the variables Sn is the product of Poisson distribution functions.
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1.2 Extremal processes

We are now going to develope the theory of extremal values studying point processes, that are

useful to describe the probabilistic structure of point sets in some metric space. We will work in

the space Rd. A convenient way to represent a collection of points xi in Rd is by associating to

them a point measure. We start by recalling some facts about point processes.

Definition 1.13. A point measure is a measure µ on Rd such that there exists a countable

collection of points,
{
xi ∈ Rd, i ∈ N

}
, such that,

µ =
∞∑
i=1

δxi , (1.25)

where

δxi(A) =

 1 if xi ∈ A

0 if xi /∈ A
(1.26)

is the Dirac measure, ∀A ∈ B, where B is the Borel sigma−algebra.

Definition 1.14. The support of µ is the set

Sµ =
{
x ∈ Rd : µ(x) 6= 0

}
. (1.27)

Definition 1.15. A simple point measure is a point measure µ, such that for all x ∈ Rd, we have

µ(x) ≤ 1.

Let Mp(Rd) be the set of all point measures on Rd and Mp(Rd) the smallest sigma-algebra that

contains all subsets of Mp(Rd) of the form

{
µ ∈Mp(Rd) : µ(F ) ∈ B,with F ∈ B(Rd), B ∈ B ([0,∞))

}
.

Definition 1.16. Let F be a sigma-algebra and let N : (Ω,F ,P) −→ (Mp(Rd),Mp(Rd) be a

measurable map from a probability space to the space of point measures, i.e. a random variable

taking values in Mp(Rd). Then N is called a point process.

Definition 1.17. The intensity measure λ of a point process is the following quantity

λ(A) = E[N(A)], (1.28)
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for A ∈ B.

Definition 1.18. Let Q be a probability measure on (Mp,Mp). The Laplace transform of Q

is a map ψ from non-negative Borel functions on Rd to R+, defined as

ψ(f) =
∫
Mp

exp
(
−
∫
Rd
f(x)µ(dx)

)
Q(dµ). (1.29)

Definition 1.19. Denote by PN the law of N : (Ω,F ,P) −→ (Mp(Rd),Mp(Rd), point process,

and let ω ∈ Ω. The Laplace functional of N is:

ψN (f) = E[e−N(f)] =
∫
e−N(ω,f)P(dω) =

=
∫
Mp

exp
(
−
∫
Rd
f(x)µ(dx)

)
PN (dµ) (1.30)

We will now give the definition of Poisson point processes and a characterization in terms of

Laplace functionals.

Definition 1.20. Let λ be a σ-finite and positive measure on Rd. A Poisson point process

with intensity measure λ is a point process N such that

(i) For any A ∈ B(Rd) and k ∈ N,

P[N(A) = k] =

 e−λ(A) (λ(A))k
k! if λ(A) <∞

0 if λ(A) =∞
(1.31)

(ii) If A,B ∈ B are disjoint sets, then N(A) and N(B) are independent random variables.

A Poisson point process with intensity measure λ is usually denoted by Pλ.

Lemma 1.21. A point process N on Rd is a Poisson point process with intensity measure λ if

and only if

ψN (φ) = exp
(
−
∫

(e−φ(x) − 1)λ(dx)
)
, (1.32)

for all continuous functions φ with compact support.

Remark 1.22. The clustering operation is performed when each point of some point process is

replaced by another point process. If the original process is a Poisson point process, the resulting

one is called Poisson cluster point process.
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Remark 1.23. Instead of working in Rd we can handle with a more general setting. Let M be

the space of Radon measures on R. Elements of M are in correspondence with the positive linear

functionals on Cc(R), the space of continuous functions on R with compact support. The space

M is endowed with the vague topology: µn → µ in M if for any φ ∈ Cc(R),
∫

Φdµn →
∫
φdµ.

In this setting, we define a point process as a random measure that is integer-valued almost surely.

A sufficient condition for their convergence is the convergence of Laplace functionals.

We now formulate the first theorem on Poisson convergence in terms of triangular arrays, since

this will be convenient for the application to the REM. As the REM is an iid model, we need

results on iid variables.

Theorem 1.24. Let Xn
i be a triangular array of random variables with support in R+. Assume

that for any n ∈ N, all the Xn
i , i ∈ N are iid. Let ν be a σ-finite measure on (R+,B(R+)), such

that ν([x0,∞)) < ∞, for some x0 ∈ [0,∞). Assume that, for a given sequence an → ∞, we have

the following convergence in probability at all continuity points of ν:

anP[Xn
1 > x] p→ ν((x,∞)). (1.33)

Then the following hold:
[an]∑
i=1

δXn
i
→Pν , (1.34)

and ∑
i∈N

δ( i
an
,Xn
i ) →Pdx×ν . (1.35)

Proof. Let φ be a continuous non-negative function with compact support. Then

ψn(φ) = E
[
exp

{
−
∞∑
i=1

φ

(
i

an
, Xn

i

)}]
(1.36)

=
∞∏
i=1

E
[
exp

{
−φ

(
i

an
, Xn

i

)}]

=
∞∏
i=1

(
1 + E

[
exp

{
−φ

(
i

an
, Xn

1

)}
− 1

])
.
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Since φ has compact support, all sums and products are finite. Notice that

lim
n→∞

∞∏
i=1

(
E
[
exp

{
−φ

(
i

an
, Xn

1

)}
− 1

])

= exp
{

lim
n→∞

1
an

∞∑
i=1

anE
[
e−φ

(
i
an
,Xn

1
)
− 1

]}
. (1.37)

By hypothesis, we have

anP[Xn
1 > x] p→ ν((x,∞)). (1.38)

Using partial integration and the previous convergence in probability, we obtain, for a differentiable

φ

lim
n→∞

anE
[
e−φ(y,Xn

1 ) − 1
]

=
∫ (

e−φ(y,x) − 1
)
dν(x) (1.39)

and since the sum over i turns into the Lebesgue integral, we conclude that

lim
n→∞

ψn(φ) = exp
{∫ (

e−φ(y,x) − 1
)
dν(x)dy

}
, (1.40)

which is the Laplace functional of the Poisson point process. Notice that we can extend the proof

to continuous φ by a standard approximation argument.

Notice that in order to prove the previous theorem, we used Laplace functionals. This will be

the same method we will apply to branching Brownian motion.

What happens if we introduce sums of independent random variables? Let us state two classical

results before studying the particular case of triangular arrays.

Theorem 1.25. Let Xi be iid random variables with support in R+ and assume that there exists

α ∈ (0, 1) such that

nP[X1 > n
1
αx]→ cx−α (1.41)

with c > 0.

Then

Sn(t) = n−
1
α

[tn]∑
i=1

Xi → Vα,c(t), (1.42)

where Vα,c(0, 0, να,c) is a stable Lèvy subordinator, with

να,c(dx) = cαx−α−1Ix>0dx (1.43)
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and convergence is in law with respect to the Skorokhod (J1)-topology.

Theorem 1.26. Let Xi be iid random variables and assume that

(i) E[X1] = µ exists and it is finite,

(ii) there exists α ∈ (1, 2) such that

nP[X1 > n
1
αx]→ c+x

−α (1.44)

and

nP[X1 < −n
1
αx]→ c−x

−α (1.45)

with c+, c− > 0,

then

n−
1
α

[tn]∑
i=1

(Xi − E[XiI|Xi|≤n 1
α

])→ Vα,c+,c−(t), (1.46)

where Vα,c+,c−(0, 0, να,c+,c−) is a stable Lèvy process, with

να,c+,c−(dx) = c+αx
−α−1Ix>0dx+ c−α(−x)−α−1Ix<0dx (1.47)

and convergence is in law with respect to the Skorokhod (J1)-topology.

The special cases α = 2 and α = 1 require some extra care.

Theorem 1.27. Assume that the hypothesis of theorem 1.26 are satisfied and α = 2. Then

1√
c++c−

2 n lnn

[nt]∑
i=1

(Xi − µ)→ Bt, (1.48)

where Bt is a standard Brownian motion.

Theorem 1.28. Assume that the hypothesis of Theorem 1.25 are satisfied and α = 1. Then

1
cn lnn

[nt]∑
i=1

Xi → t. (1.49)

As we noticed before, we will need to formulate the results in terms of triangular arrays.
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Theorem 1.29. Let Xn
i be a triangular array of random variables with support in R+. Assume

that for any n ∈ N, all the Xn
i , i ∈ N are iid. Assume that there exist α ∈ (0, 1) and sequences

an →∞ such that

anP[Xn
1 > x]→ x−α. (1.50)

Assume that

lim
ε→0

lim sup
n→∞

anE[IXn
1 ≤εX

n
1 ] = 0, (1.51)

then

Sn(t) =
[tan]∑
i=1

Xn
i → Vα(t), (1.52)

where Vα(0, 0, να) is a stable Lèvy subordinator, with

να(dx) = αx−α−1Ix>0dx (1.53)

and convergence is in law with respect to the Skorokhod (J1)-topology.

Proof. We decompose Sn(t) into the central and extreme parts:

Sn(t) =
[ant]∑
i=1

Xn
i IXn

i ≤ε +
[ant]∑
i=1

Xn
i IXn

i >ε
= Sn(t)≤ + Sn(t)>. (1.54)

From Theorem 1.24, we get that

Sn(t)> →
∫ ∞
ε

∫ t

0
xP(dx, ds), (1.55)

where P is the Poisson point process with intensity αx−α−1dxds. Therefore

lim
ε→0

lim
n→∞

Sn(t)> = Vα(t). (1.56)

The control of the other term Sn(t)≤ is given by the assumption 1.51

Theorem 1.30. Let Xn
i be a triangular array of random variables with support in R+. Assume

that for any n ∈ N, all the Xn
i , i ∈ N are iid. Assume that there exists α ∈ (1, 2) and sequences
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an such that

anP[Xn
1 ] → c+x

−α (1.57)

anP[Xn
1 < −x] → c−x

−α, (1.58)

where c+, c− > 0.

Assume that

lim
ε→0

lim sup
n→∞

anE[I|Xn
1 −E[Xn

1 ]|≤ε(Xn
1 − E[Xn

1 ])2] = 0. (1.59)

Then

Sn(t) =
[tan]∑
i=1

(Xn
i − E[Xn

i I|Xn
i |≤1])→ Vα,c=,c−(t), (1.60)

where Vα,c=,c−(0, 0, να) is a stable Lèvy process, with

να(dx) = c+αx
−α−1Ix>0dx+ c−α(−x)−α−1Ix<0dx (1.61)

and convergence is in law with respect to the Skorokhod (J1)-topology.

Proof. Fix ε > 0.

[ant]∑
i=1

(
Xn
i − E

[
Xn
i IXn

i ≤ε
])

=
[ant]∑
i=1

(
Xn
i I|Xn

i |≤ε − E
[
Xn
i I|Xn

i |≤ε
])

+
[ant]∑
i=1

(
Xn
i IXn

i >ε
− E

[
Xn
i I1≥Xn

i >ε

])

+
[ant]∑
i=1

(
Xn
i IXn

i <−ε − E
[
Xn
i I−1≤Xn

i <−ε
])

= Sn(t)≤ +
(
Sn(t)+ − E

[
Sn(t)+

])
+

(
Sn(t)− − E

[
Sn(t)−

])
. (1.62)

From condition 1.59, we can observe that Sn(t)≤ → 0 in probability, as n → ∞ and ε → 0. The

other two terms reconstruct a pure jump Lévy process:

(
Sn(t)+ − E

[
Sn(t)+

])
→
∫ ∞
ε

∫ t

0
x (P(dx, ds)− Ix≤1ν(dx)dt), (1.63)

where ν(dx) = c+αx
−α−1dx. The same holds for Sn(t)−. Putting all together, we get the thesis.
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Theorem 1.31. Let Xn
i be a triangular array of random variables with support in R+. Assume

that for any n ∈ N, all the Xn
i , i ∈ N are iid. Assume that there exists a sequence an such that

anP[Xn
1 > x]→ c+x

−2, (1.64)

anP[Xn
1 < −x]→ c−x

−2. (1.65)

Then
1√

(c+ + c−) (ln an)
2

[tan]∑
i=1

(Xn
i − E[Xn

i ])→ Bt, (1.66)

where Bt is a standard Brownian motion.

If Xn
i ≥ 0 and there exists a sequence an, such that

anP[Xn
1 > x]→ x−1, (1.67)

then
1

ln an

[tan]∑
i=1

Xn
i → t. (1.68)

Proof. In both cases, normalizing with the extra logarithm kills the large terms in the sum. For

the rest of the proof we need to compute moments. The first and the second ones diverge, while the

truncated moments produce the factors ln an. All higher moments do not have extra logarithms,

hence we end up with the moments of the constants and of the Gaussian random variables.

1.3 Disordered systems and the REM

Extreme value theory is fundamental in the analysis of the REM, the random energy model, that

is one the most simple model of a disordered system.

Disordered systems are studied in statistical mechanics and they have to do with probability. In

fact, one of the basic axioms is that the properties of a system can be described by defining a

probability measure on the space of configurations, namely {−1,+1}Z
d

. The proper measure to

choose is the so called Gibbs measure, which is defined through an Hamiltonian H, that represents

the energy of the system. Let σ = {σx}x∈Zd be a configuration, Zβ a normalizing constant, ρ the

17



uniform measure on the configuration space. We define the Hamiltonian H

H(σ) = −
∑

x,y∈Zd,||x−y||1=1
σxσy − h

∑
x∈Zd

σx, (1.69)

and the Gibbs measure

µ(σ) = 1
Zβ

e−βH(σ)ρ(σ). (1.70)

To give sense to these two expressions we first need to start from a finite set Λ instead of Zd.

The measure ρ on the finite space {−1, ,+1}Λ in finite volumes is the product Bernoulli measure:

ρΛ(σΛ = sΛ) =
∏
x∈Λ

ρx(σx = sx), (1.71)

with ρx(σx = +1) = ρx(σx = −1) = 1
2 .

We can extend this to infinite volumes. We give S = {−1,+1}Z
d

the structure of a measure space,

with the product topology of the discrete topology on {−1,+1} . The sigma-algebra F on S is

just the product sigma-algebra.

Let now Aλ be a cylinder event. Then we observe that

ρ(Aλ) = ρλ(Aλ). (1.72)

We then have an a-priori probability space, (S ,F , ρ).

What about the Hamiltonian? It is natural to define it as the energy of an infinite-volume config-

uration within a finite volume Λ:

HΛ(σ) = −
∑

x∨y∈Λ,||x−y||1=1
σxσy − h

∑
x∈Λ

σx. (1.73)

Notice that this expression, in contrast to 1.69, contains the energy corresponding to the interac-

tions between spins in Λ with those outside Λ.

There are classical results that ensure that there exists probability measures µβ on (S ,F ) and

they are Gibbs measures for the Hamiltonian H and inverse temperature β.

To study disordered systems we would like to have simple models with an easy to study Hamil-

tonian. The REM is a model in which the corresponding Gaussian process whose Hamiltonian is

an iid field. We will work on the state space SN = {−1,+1}N . The Hamiltonian of this model is

18



given by

HN (σ) = −
√
NXσ, (1.74)

where Xσ, with σ ∈ SN , are 2N iid standard normal random variables.

We are now ready to compute the partition function of the REM. We need this more general

result first:

Theorem 1.32. Let Zi be iid random variables in the domain of attraction of the Gumbel distri-

bution. Then, for a given sequence an →∞, there exist sequences bn and cn such that

anP[Z1 > b−1
n (ln cn + z)]→ e−z. (1.75)

Assume that, for s > 1,

∫ 0

−∞
eszanP[Z1 > b−1

n (ln cn + z)]dz →
∫ 0

−∞
e(s−a)xdx. (1.76)

Set Xn
i = c

− 1
α

n eα
−1bnZi . Then:

(i) For α ∈ (1, 2),
[tan]∑
i=1

(Xn
i − E[Xn

i IXn
i ≤1])→ Vα, (1.77)

where Vα(0, 0, να) is the α-stable Lèvy process, with

να(dx) = αx−1−αdxIx>0. (1.78)

(ii) For α ∈ (0, 1),
[tan]∑
i=1

Xn
i → Vα, (1.79)

where Vα(0, 0, να) is the α-stable Lèvy subordinator, with

να(dx) = αx−1−αdxIx>0. (1.80)

(iii) For α = 2,
1√

1
2 ln an

[tan]∑
i=1

(Xn
i − E[Xn

i ])→ Bt, (1.81)
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where Bt is the standard Brownian motion.

(iv) For α = 1,
1

ln an

[tan]∑
i=1

Xn
i → t. (1.82)

Proof. We only have to verify conditions 1.50 and 1.57.

P
[
c
− 1
α

n exp
{
α−1bnZ1

}
> x

]
= P

[
Z1 > b−1

n (ln cn + ln xα)
]
. (1.83)

Set α = 1 and ln x = z. Since Z1 is in the domain of attraction of the Gumbel distribution by

hypothesis, there exist sequences bn, cn such that

anP
[
Z1 > b−1

n (ln cn + z)
]
→ e−z. (1.84)

Then

anP
[
Z1 > b−1

n

(
ln c

1
α
n + z

)]
= nP

[
Z1 > b−1

n (ln cn + αz)
]

(1.85)

−→ e−αz = x−α.

By condition 1.76, all computations and limits can be passed through integrals and consequently

we can control the terms corresponding to the Z≤n parts of the sums.

The particular case when the random variables are Gaussian corresponds to the computation

of the partition function of the random energy model(REM):

Theorem 1.33. Denote by P the Poisson point process on R with intensity measure e−xdx.

The partition function of the REM has the following fluctuations:

(i) If β <
√

ln 2
2 , then

e
N
2 (ln 2−β2) ln Zβ,N

E[Zβ,N ]
d−→ N (0, 1). (1.86)

(ii) If β =
√

ln 2
2 , then

e
N
2 (ln 2−β2) ln Zβ,N

E[Zβ,N ]
d−→ N (0, 1

2). (1.87)
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(iii) If
√

ln 2
2 < β <

√
2 ln 2, then

exp N2 (
√

2 ln 2− β)2 + 1
2α [ln (N ln 2) + ln 4π] ln Zβ,N

E[Zβ,N ]
d−→
∫ ∞
−∞

eα
−1z(P(dz)− e−zdz). (1.88)

(iv) If β =
√

2 ln 2, then

exp 1
2[lnN ln 2 + ln 4π]( Zβ,N

E[Zβ,N ] −
1
2 + lnN ln 2 + ln4π

4
√
πN ln 2

)

d−→
∫ 0

−∞
ez(P(dz)− e−zdz) +

∫ ∞
0

ezPdz. (1.89)

(v) If β >
√

2 ln 2, then

exp−N [β
√

2 ln 2− ln 2] + 1
2α [ln (N ln 2) + ln 4π]Zβ,N

d−→
∫ ∞
−∞

eα
−1zP(dz). (1.90)

Once we get these results on the partition function, we can try to describe the asymptotic

behaviour of the Gibbs measure. Since we are looking for a result on the convergence in distribution

of random measures, we need a topology on the spin configuration space, in order to make it

uniformly compact. We map the hypercube SN into the interval (0, 1], through the map f :

f : SN → (0, 1]

σ 7→ rN (σ) = 1−
N∑
i=1

(1− σi)2−i−1 (1.91)

and define the point measure µ̃β,Non (0, 1]:

µ̃β,N =
∑
σ∈SN

δrN (σ)µβ,N (σ). (1.92)

The results we are going to state hold with respect to this topology. They are interesting for

physicists since they describe the behaviour at the high and at the low temperature.

At the high temperature phase, namely when β ≤
√

2 ln 2, the limit is the same as for β = 0,

whereas at the low temperature we need to introduce a Poisson point process R on the strip
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(0, 1]×R, with intensity measure 1
2dy× e

−xdx. Denote the atoms of this process by (Yk, Xk). For

α > 1, define a new point process Mα on (0, 1]× (0, 1], whose atoms are (Yk, wk), where

wk = eα
−1
Xk∫

R(dy, dx)eαx . (1.93)

The followings hold:

Theorem 1.34. Let λ be the Lebesgue measure on [0, 1]. If β ≤
√

2 ln 2, then

µ̃β,N −→ λ, a.s.. (1.94)

Theorem 1.35. If β >
√

2 ln 2 and α =
√

2 ln 2
β , then

µ̃β,N
d→ µ̃β =

∫
(0,1]×(0,1]

Mα(dy, dw)δyw. (1.95)

1.4 The GREM

If we try to generalize the case in which the random variables we are considering are iid, the next

step is to study the correlated case. This gives rise to the GREM (Generalized Random Energy

model).

Assume that A is the distribution function of a measure, whose support is a finite number n of

points x1, . . . , xn ∈ [0, 1]. Let ai be the mass of the atoms xi and set lnαi = (xi − xi−1) ln 2, for

i = 1, . . . , n, with x0 = 0, such that
∑n
i=1 ai = 1 and

∏n
i=1 αi = 2.

Let Xσ be a Gaussian process. We can find an explicit representation of it.

Set σ = σ1σ2 . . . σn, where σi ∈ S
N

lnαi
ln 2

and assume that x1 > 0, xn = 1 and ai > 0 for all i. Let

Xσ1 , Xσ1σ2 , . . . , Xσ1···σn be independent standard Gaussian variables, where σi ∈ S
N

lnαi
ln 2

. Then

the Gaussian process can be constructed in the following way:

Xσ =
√
a1Xσ1 +

√
a2Xσ1σ2 + . . .+

√
anXσ1σ2···σn . (1.96)

Following the construction we did in the case of the REM, we can start studying the case in which

n = 2 and then we can generalize. We obtain the following

Theorem 1.36. Let 0 < ai < 1, αi > 1, i = 1, 2, . . . , n, such that
∑n
i=1 ai = 1. Set ᾱ =

∏n
i=1 αi.
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Then the following point process

∑
σ

δu−1
ᾱ,N (√a1Xσ1+√a2Xσ1σ2+...+√anXσ1σ2···σn ) (1.97)

converges weakly to the Poisson point process P on R with intensity measure Ke−xdx, K ∈ R if

and only if

ai + ai+1 + . . .+ an ≥
ln (αiαi+1 . . . αn)

ln ᾱ (1.98)

for all i = 2, 3, . . . , n, or equivalently if A(x) ≤ x, for all x ∈ (0, 1).

Moreover, if all inequalities in 1.98 are strict, then K = 1. If some of them are equalities, then

0 < K < 1.

Theorem 1.37. Let αi ≥ 1 and set ᾱ =
∏k
i=1 αi. Let Yσ1 , Yσ1σ2 , . . . , Yσ1···σk be identically dis-

tributed random variables, such that the following vectors are independent:

(Yσ1)
σ1∈{−1,1}N

lnα1
ln ᾱ

, . . . , (Yσ1σ2···σk)
σk∈{−1,1}N

lnαk
ln ᾱ

. (1.99)

Define vN,1(x), . . . , vN,k(x), functions on R, such that we have these weak convergences:

∑
σ1

δvN,1(Yσ1 ) → P1 (1.100)∑
σ2

δvN,2(Yσ1σ2 ) → P2 ∀σ1 (1.101)

. . .∑
σk

δvN,k(Yσ1σ2···σk ) → Pk ∀σ1, · · · , σk−1, (1.102)

where P1, . . . ,Pk are Poisson point processes on R with intensity measures K1e
−xdx, . . . ,Kke

−xdx,

for some constants K1, . . . ,Kk. Then the point process on Rk

P
(k)
N =

∑
σ1,··· ,σk

δ(vN,1(Yσ1 ),vN,2(Yσ1σ2 ),··· ,vN,k(Yσ1σ2···σk )) (1.103)

converges weakly to a point process P(k) on Rk.

Definition 1.38. The point process P(k) is called Poisson cascades with k levels.

Combining these two previous theorems we get:
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Theorem 1.39. Let αi ≥ 1, 0 < ai < 1, such that
∏n
i=1 αi = 2 and

∑n
i=1 ai = 1. Let

J1, J2, . . . , Jm ∈ N be indexes such that 0 = J0 < J1 < J2 < . . . < Jm = n.

Denote by āl =
∑Jl
i=Jl−1+1 ai and by ᾱl =

∏J−l
i=Jl−1+1 αi, for l = 1, 2, . . . ,m. Set

X̄
σ1···σJl−1
σJl−1+1σJl−1+2σJl

= 1√
āl

Jl−Jl−1∑
i=1

√
aJl−1+iXσJ1 ···σJl−1+i . (1.104)

Assume that for all l = 1, 2, . . . ,m and all k such that Jl−1 + 2 ≤ k ≤ Jl

(ak + ak+1 + . . .+ aJl−1 + aJl)
āl

≥
ln (αkαk+1 . . . αJl−1αJl)

ln (ᾱl)
. (1.105)

Then the point process

P
(m)
N =

∑
σ

= δ(
u−1
ᾱ1,N

(X̄σ1···σJ1
),··· ,u−1

ᾱm
,N

(
X̄
σ1···σJm−1
σJm−1+1···σJm

)) (1.106)

converges weakly to the process P(m) on Rm defined in Theorem 1.37, with constants K1, . . . ,Km.

If all Jl−Jl−1−1 inequalities in 1.105, for k = Jl−1 +2, . . . , Jl are strict, then Kl = 1. 0 < Kl < 1

otherwise.

We have constructed all possible point processes. We now find the extremal process by choosing

the one that yields the largest values.

Set γl =
√
āl√

2 ln ᾱl
, for l = 1, 2, . . . ,m. Observe that γ1 > γ2 > . . . > γm. Define the function UJ,N :

UJ,N (x) =
m∑
l=1

(√
2Nāl ln ᾱl −N−

1
2γl

(ln (N(ln ᾱl)) + ln 4π)
2

)
+N−

1
2x (1.107)

and the point process

En =
∑

σ∈{−1,1}N
δU−1

J,N
(Xσ). (1.108)

Theorem 1.40. (i) As N →∞, the point process En converges weakly to the point process

E =
∫
Rm

P(m)(dx1, . . . , dxm)δ∑m

l=1 γlxl
, (1.109)

where P(m) is the Poisson cascade of Theorem 1.39.

(ii) E exists since γ1 > . . . > γm. It is the cluster point process on R containing an almost surely
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finite number of points in any interval of the form [b,∞), b ∈ R. The probability that there

exists at least one point of E in the interval [b,∞) is decreasing exponentially as b→∞.

As we did in the REM, we could now try to compute the asymptotics of the partition function

and the asymptotic behaviour of the Gibbs measure, but we’re not going to state any theorem

since the proofs, the computations and the notation are heavy and technical.
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Chapter 2

Branching random walks

2.1 Setting and definitions

Branching random walks (BRWs) and their continuous time version, branching Brownian motions

(BBMs), are models that try to describe the evolution of a population of particles where spatial

motion is present. To introduce these models we need a spatial structure that will help us to better

understand them: trees. We will now give some basic definitions and results on graph theory.

Definition 2.1. An oriented graph G is a pair (V,E), where V is a finite set and E ⊆ V × V .

A non-oriented graph G is a pair (V,E), where V is a finite set and E is a set of non ordered

pairs (v1, v2), such that v1, v2 ∈ V .

The elements of V are called vertices and the elements of E are said to be the edges.

Definition 2.2. Let G = (V,E) be an oriented graph. A direct path is a sequence of vertices

(v0, v1, . . . , vk) such that (vi, vi+1) ∈ E, ∀i = 0, 1, . . . , k − 1.

k is the length of the path.

A path is said to be simple if no vertex, apart from v0 and vk, is repeated.

A path is said to be closed if v0 = vk.

A path is a cycle if it is simple and closed.

Definition 2.3. Let G = (V,E) be an oriented graph. A non-direct path is a sequence of

vertices (v0, v1, . . . , vk) such that (vi, vi+1) ∈ E, or (vi+1, vi) ∈ E, ∀i = 0, 1, . . . , k − 1.

Definition 2.4. An oriented graph is said to be connected if for any pair of vertices v andw ∈ V ,

there exists a non-direct path connecting v and w.
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Definition 2.5. Let G = (V,E) be an oriented graph. The degree of a vertex v is the number of

edges that touch v.

The degree of the graph is defined as

deg(G) = max {deg(v)|v ∈ V } (2.1)

Definition 2.6. Let τ be an oriented graph. τ is said to be an oriented tree if

(i) τ is connected,

(ii) τ has no non-oriented cyles.

Remark 2.7. Vertices of a tree are also called nodes.

Remark 2.8. Observe that Definition 2.6 implies that in a tree, given any two vertices v and

w ∈ V , there is a unique path connecting v and w.

Definition 2.9. A rooted tree is a tree in which one vertex has been designated to be the root.

We will denote the root ∅.

Definition 2.10. A k−ary tree is a rooted tree in which each vertex has no more than k children.

Definition 2.11. The distance |v| of a vertex v from the root is the length of the shortest path

from v to the root, which is unique, by Remark 2.8

We write ∅ ↔ v for the collection of vertices, or edges, on this path.

If v, w ∈ V , we denote by ρ(v, w) the length of the shortest path connecting v and w and we write

v ↔ w for the collection of vertices on this path.

We now have the tools to introduce our first model, the branching random walk.

Let τ be an oriented tree rooted at a vertex ∅, with vertex set V and edge set E.

The collection Dn := {v ∈ V : |v| = n} represents the n-th generation, while for v ∈ Dm and

n > m, we can define the collection of descendants of v in Dn: Dv
n = {w ∈ Dn : ρ(w, v) = n−m}.

Definition 2.12. Let {Xe}e∈E be a family of real valued independent real valued random variables

associated to the edges of the tree τ with the following assumptions:

(i) The variables Xe are independent and identically distributed with common law µ,

(ii)

Eµ[eλXe ] =: eΛ(λ) <∞, λ ∈ R, (2.2)
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(iii) the tree τ is a k-ary tree.

Set Sv =
∑
e∈∅↔vXe, for v ∈ V . The branching random walk (BRW) is the collection of

random variables {Sv}v∈V .

We also introduce the large deviation rate function, associated with Λ:

I(x) = sup
λ∈R

(λx− Λ(λ)), (2.3)

where Λ(λ) = logE[eλXe ].

Remark 2.13. Let x∗ be the unique point such that x∗ > Eµ[Xe] and I(x∗) = log k. Then

I(x∗) = λ∗x∗ − Λ(λ∗), with x∗ = Λ′(λ∗) and I ′(x∗) = λ∗.

2.2 Main results on the maximal displacement

In this section we will focus on some results on the maximal displacement of the BRW:

Mn = max
v∈Dn

Sv. (2.4)

In order to do this we need to first study the independent case. This means we have to consider the

following collection of i.i.d. random variables, {S̃v}v∈Dn , where S̃v ∼ Sv. M̃n will be the maximum

over these variables, namely M̃n = maxv∈Dn S̃v.

As a first step, we are going to prove the convergence in distribution of M̃n − m̃n, where

m̃n = nx∗ − 1
2I ′(x∗) logn. (2.5)

Theorem 2.14. There exists a constant C such that

P[M̃n ≤ m̃n + x]→n→∞exp {−Ce−I′(x∗)x}. (2.6)

Proof. Let an = o(
√
n). For a large deviation estimate we have

P[S̃v > nx∗ − an] ∼ C√
n

exp
{
−nI

(
x∗ − an

n

)}
, (2.7)

where with ∼ we denote the same asymptotic behaviour. I is smooth at x∗, by definition, since
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x∗ is in the interior of the domain of I, hence, using Taylor expression at the second order,

nI

(
x∗ − an

n

)
= nI(x∗)− I ′(x∗)an + o(1). (2.8)

We recall that I(x∗) = ln k. Substituting this and 2.8 in 2.7, we obtain

P[M̃n ≤ nx∗ − an] =
(
1− P[S̃v > nx∗ − an]

)kn
(2.9)

∼
(

1− C

kn
√
n
eI
′(x∗)an+o(1)

)kn
(2.10)

∼ exp
{
−CeI′(x∗)an+o(1)

√
n

}
(2.11)

We can now choose an = ln n
2I′(x∗) − x and obtain

P[M̃n ≤ m̃n + x] ∼ exp
{
−Ce−I′(x∗)x + o(1)

}
(2.12)

Remark 2.15. We can deduce from 2.14 that

M̃n

n
−→
n→∞

x∗, (2.13)

almost surely.

Our current aim is to show that the same result holds also for Mn. We are going to prove that

Theorem 2.16.
Mn

n
−→
n→∞

x∗, (2.14)

almost surely.

Proof. Let c be a constant. It is easy to check that Mn
n −→

n→∞
c almost surely. In fact, associate

each vertex in Dn with a word a1, . . . , an, where ai ∈ {1, . . . , k}. Introduce an arbitrary order on

the vertices of Dn and define

v∗m = min {v ∈ Dm : Sv ≥ max
w∈Dm

Sw}. (2.15)
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For n > m, we denote by

Dv∗m
n = {w ∈ Dn : ρ(w, v∗m) = n−m} (2.16)

the collection of descendants of v∗m. Let also

Mm
n = max

w∈Dv
∗
m
n

Sw − Sv∗m . (2.17)

From the definitions we gave, we have that Mn ≥ Mm + Mm
n . Observe also that Mn has all

moments. This means that we can apply the subadditive ergodic theorem, obtaining

Mn

n
→ c,

almost surely, for some constant c. We now have to identify c.

We would like to find an upper and a lower bound for Mn
n . We start by defining Z̄n =

∑
v∈Dn I{Sv>n(1+ε)x∗}.

Applying the definition of expectation in the first inequality and Chebychev’s inequality in the last

one, we obtain

E[Z̄n] ≤ knP[Sv > n(1 + ε)x∗] ≤ kne−nI((1+ε)x∗). (2.18)

Since I is strictly monotone at x∗, we get E[Z̄n] ≤ e−nc(ε), for some c(ε) > 0. Then,

P[Mn > n(1 + ε)x∗] ≤ E[Z̄n] ≤ e−c(ε)n. (2.19)

It follows that

lim sup
n→∞

Mn

n
≤ x∗, almost surely. (2.20)

A natural way to proceed to obtain a lower bound would have been to define

Zn =
∑
v∈Dn

I{Sv>n(1−ε)x∗} (2.21)

and to show that Zn ≥ 1 with high probability. However, the correlation between the events

{Sv > n(1− ε)x∗} and {Sw > n(1− ε)x∗}, when v 6= w, is too large and so it is useful to find other

events whose probability is similar, but whose correlation is much smaller and easy to handle.

Recall that, for v ∈ Dn and t ∈ {0, . . . , n}, the ancestor of v at t is vt = {w ∈ Dt : ρ(v, w) = n− t}.
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Set Sv(t) = Svt , where Sv = Sv(n) for v ∈ Dn. Define the event

Bε
v = {|Sv(t)− x∗t| ≤ εn, t = 1, . . . , n}, (2.22)

and

Zn =
∑
v∈Dn

IBεv . (2.23)

We recall a basic large deviation result:

Lemma 2.17. Under the assumptions 2.2,

lim
ε→0

lim sup
n→∞

1
n

lnP[Bε
v] = lim

ε→0
lim inf
n→∞

1
n

lnP[Bε
v] = −I(x∗). (2.24)

By Theorem 2.17 and the strict monotonicity of I at x∗ we obtain a lower bound,

E[Zn] ≥ e−c(ε)n. (2.25)

Fix now a pair of vertices v, w ∈ Dn with ρ(v, w) = 2r. The number of such ordered pairs is

kn+r−1(k − 1).

P[Bε
v ∩Bε

w] = P[|Sv(t)− x∗t| ≤ εn, t = 1, . . . , n− r]

· E[P[|Sv(t)− x∗t| ≤ εn, t = n− r + 1, . . . , n|Sv(n− r)]]2

≤ P[|Sv(t)− x∗t| ≤ εn, t = 1, . . . , n− r]

· P[|Sv(t)− x∗t| ≤ 2εn, t = 1, . . . , r]2,

where we used independence in the first equality and homogeneity in the second inequality. Ap-

plying Theorem 2.17 on the two factors, we obtain

P[Bε
v ∪Bε

w] ≤ e−(n−r)I(x∗)−2rI(x∗)+c(ε)n, (2.26)

where c(ε) ε→0−→ 0. It also holds that

E[Z2
n] ≤

n∑
r=0

kn+re−(n+r)I(x∗)+c(ε)n = ec(ε)n. (2.27)
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Recall that, from Cauchy-Schwartz, for any non-negative, integer valued random variable Z,

P[Z ≥ 1] ≥ (E[Z])2

E[Z2] . (2.28)

From equations 2.25 and 2.28, we have that, for any δ > 0,

P[∃v ∈ Dn : Sv ≥ n(1− δ)x∗] ≥ e−o(n). (2.29)

Fix now ε > 0 and pick a value x such that P[Xe > x] > 1
k , and consider the tree τε of depth

εn. This tree corresponds to independent bond percolation on τ in levels, 1, . . . , εn, where we kept

only those edges e such that Xe > x. Since kP[Xe > x] > 1, the percolation is supercritical and

there exists a constant C, independent of ε, such that

P[{|τε ∪Dnε| > eεCn}}] > Cx > 0,

with Cx
x→−∞−→ 1. By independence, we can conclude that

P[Mn ≥ n(1− ε)x∗ + nεx] ≥ Cx(1− (1− e−o(n))eεCn ) n→∞−→ Cx. (2.30)

We can now take n→∞, ε→ 0 and x→ −∞ and obtain

lim inf
n→∞

Mn

n
≥ x∗, almost surely. (2.31)

We have

lim sup
n→∞

Mn

n
≤ x∗ ≤ lim inf

n→∞
Mn

n
(2.32)

and thus we can conclude obtaining 2.14.

2.2.1 Expectation

We have just provided a sort of law of large numbers for Mn. It could be interesting to know what

is the behaviour of the expectation of Mn.

Theorem 2.18.

E[Mn] = nx∗ − 3
2I ′(x∗) logn+O(1) (2.33)

We are not proving the theorem we just stated since the proof is long and technical. A complete
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proof can be found in [15], which is based on well-known Bramson’s results([5]). The idea is to find

a lower and upper bounds on the right tail of Mn, using a second moment method. This allows us

to find an upper bound for the expectation. It is also possible to find a lower bound for E[Mn],

through a first moment method. Upper and lower bounds together give the result we are looking

for.

34



Chapter 3

Branching Brownian motion

3.1 Setting and definitions

In this chapter, we will describe a model, whose aim is to study a system of particles that are inde-

pendent (they don’t interact), move in space according to some process and branch. A branching

Brownian motion can be described as follows: a particle starts at a certain point x ∈ R and moves

according to a Brownian motion. After a random time, represented by an exponential random

variable with parameter β, the particle splits and it is replaced by daughter particles, which also

start to move according to independent Brownian motions and split after independent exponential

random times and so on.

As we did in the study of branching random walks, we are going to use the structure of a tree to

formally define branching Brownian motion.

Let τ be a rooted oriented k-ary tree. We set

U =
∞⋃
n=0

Nn and Ū = U ∪ N∞,

with the convention that N0 = {∅}, and think of an element u ∈ U , that is a sequence u =

(u1, u2, . . . , un) of integers, as the label of a node of our tree τ at the n−th branch. For example

u = (1, 2, 3) represents the third child of the second child of the first child of the root ∅.

We also define a map

p : U\∅ → U (3.1)

(u1, u2, . . . , un) → (u1, u2, . . . , un−1),
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that defines the parent of u.

We also introduce a reproduction mechanism: when a particle splits, it splits into k ≥ 1 particles

with probabilities µk, where the following hold:

(i)
∑∞
k=1 µk = 1,

(ii)
∑∞
k=1 kµk = 2,

(iii) K =
∑∞
k=1 k(k − 1)µk <∞ .

We now need to enrich our tree τ associating to each u ∈ τ a lifetime σu ≥ 0, where the σu’s are

exponential random variables. We then define the birth-time of u:

bu =
∑
v<u

σv, (3.2)

where v < u means that v is an ancestor of u, that is p(u) = v. The death-time of u is:

du = bu + σu. (3.3)

Furthermore, we require that each particle u performs a Brownian motion

Yu : R+ → E,

where E is the space in which the particles are living. Without loss of generality, we can think of

E as a subset of R, E ⊆ R.

The tree we are now working on is defined as the triplet

t = (τ, σ, Y ) = (τ, {σu, (Yu(s), s ≥ 0), u ∈ τ}). (3.4)

Let now Nt = {u ∈ τ : bu ≤ t ≤ du} ⊆ U be the set of particles that are alive at time t and let

ω = (τ, (σu, Yu)u∈τ ). We can define inductively the position in E of the particle u at time t:

Xu(t) = Xu(t, ω) := Yu(t− bu) +Xp(u)(b−u ). (3.5)

Definition 3.1. We define

X(t) = (Xu(t), u ∈ Nt) (3.6)
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to be the branching Brownian motion process, whose natural filtration is

Ft = σ{X(s), s ≤ t}. (3.7)

Definition 3.2. The standard (or dyadic) branching Brownian motion is obtained with the fol-

lowing choices:

(i) τ is a regular binary tree,

(ii) the σu are independent and identically distributed:

σu ∼ exp(1),

(iii) the Yu are standard Brownian motions.

In other words we can think of branching Brownian motion as a cloud of particles, growing in

size and shape, that starts from a single particle u which performs a Brownian motion Xu(t), such

that Xu(0) = 0, that continues for an exponential holding time T with parameter β independent

of Xu, with P[T > t] = e−βt. At time T , the particle splits independently of Xu and T into k

offsprings with probabilities µk.

Remark 3.3. In the dyadic case, we have µ2 = 1.

Each of these particles continue performing independent Brownian motions starting at Xu(T )

and they are subject to the same splitting rule. After a time t, the resulting tree has a random

number of particles, n(t), such that E[n(t)] = et.

Notice that, at time t, each particle u is at position Xu(t), which is a centered Gaussian variable

with variance t, exactly like a Brownian motion.

Remark 3.4. The Xu(t)’s are not independent, since they are correlated by their genealogical

history.

3.2 Main results on the maximal displacement

Let X be a branching Brownian motion with reproduction law (µk)k≥0 and branching rate β. We

start the study of our model by looking at the position of the rightmost particle, namely

Mt = max
u∈Nt

Xu(t). (3.8)
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Figure 3.1: A realization of a dyadic Brownian motion

For simplicity, from now on, we are going to deal with standard Brownian motions (β = 1 and µ2 =

1). The position of the rightmost particle can be studied through the analysis of the F-KPP

equation, that we will briefly introduce.

3.2.1 F-KPP equation

We introduce the following partial differential equation, the Kolmogorov equation or F-KPP (Fisher

or Kolmogorov-Petrovsky-Piscounov) equation :

ut = 1
2uxx + g(u), (3.9)

where u = u(t, x) : R+ × R → [0, 1] and g ∈ C1[0, 1], such that g(0) = g(1) = 0, g(u) > 0 for

u ∈ (0, 1) and g′(0) = β > 0, g′(u) ≤ β for u ∈ (0, 1]. In our study, we will always consider the

case g(u) = βu(1− u), that is equal to u− u2 in the dyadic case, with Heavyside initial condition

u(0, x) =

 1 if x ≥ 0

0 if x < 0
(3.10)

F-KPP equation has been well studied through the years and it appears in several models

related to reaction-diffusion phenomena and front propagation, since it is one of the simplest
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example of a semilinear parabolic equation which admits traveling wave solutions. It will be useful

also in our model: let us state some basic results on this equation. First, notice that F-KPP is

sufficiently well behaved so that we can establish existence and uniqueness of the solution under

measurable data. What about the asymptotic behaviour of solutions?

Theorem 3.5. Let u be a solution of 3.9 such that 0 ≤ u(0, x) ≤ 1. Then

u(t,mt + x)→ w(x), uniformly in x as t→∞, (3.11)

where the centering term mt =
√

2t − 3
2
√

2 ln t + C + o(1), and w is the unique solution of the

ordinary differential equation
1
2w
′′ +
√

2w′ − w2 + w = 0. (3.12)

if and only if

(i) for some h > 0, lim supt→∞ 1
t ln

∫ t(1+h)
t u(0, y) ≤ −

√
2,

(ii) for some ν > 0, M > 0, N > 0,
∫ x+N
x u(o, y)dy > ν for all x ≤ −M .

Remark 3.6. Any function w that solves 3.12 is called a traveling wave solution of 3.9 with speed
√

2. Indeed it is easily checked that u(t, x) = w(x−
√

2t) is a solution of 3.9.

More in general, if wλ solves
1
2w
′′ + λw − w2 + w = 0, (3.13)

then u(t, x) = w(x− λt) is also a solution.

3.2.2 Maximum of the BBM

Here we state the main results on the maximal displacement of branching Brownian motion.

Theorem 3.7. Let u(t, x) = P0[Mt ≤ x]. Then u satisfies 3.9 with Heavyside initial condition.

Proof. Recall that we are in the dyadic case, namely with β = 1 and p2 = 1.

We need to compute u(t+dt, x)−u(t, x) up to terms of order o(dt), where dt is small. We decompose

the interval of time [0, dt], according to what happens to the branching Brownian motion.

With probability (1− dt) + o(dt), the branching Brownian motion doesn’t branch. Conditionally

to this event

P[Mt+dt ≤ x] = P[Mt ≤ x−Bdt] = u(t, x−Bdt), (3.14)
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where B is a branching Brownian motion.

With probability dt+ o(dt), there exists exactly one branching event. Conditionally to this event

P[Mt+dt ≤ x] = (P[Mt ≤ x−Bdt])(P[Mt ≤ x−B′dt]) (3.15)

= (P[Mt ≤ x])2 + o(1), (3.16)

where B and B′ are correlated Brownian motions. We have

P[Mt+dt ≤ x]− P[Mt ≤ x] = (1− dt)P[Mt ≤ x−Bdt]

+ dtu2(t, x) + o(dt)− u(t, x)

= E[u(t, x−Bdt)]− u(t, x)

+ dt[u2(t, x)− u(t, x)] + o(dt)

+ dt(u(t, x−Bdt) + u(t, x))

= E[u(t, x−Bdt)]− u(t, x)

+ dt[u2(t, x)− u(t, x)] + o(dt). (3.17)

Recall that if g is a smooth enough function, v(t, x) = E[g(Bdt)] solves the heat equation vt = 1
2vxx

and so, if we write g(z) = u(t, z), then E[u(t, x−Bdt)] = Ex[g(Bdt)] and

lim
dt→0

E[u(t, x−Bdt)]− u(t, x)
dt

= 1
2
δ2

δx2u(t, x). (3.18)

Hence we obtain

lim
dt→0

u(t+ dt, x)− u(t, x)
dt

= 1
2
δ2

δx2u(t, x) + [u2(t, x)− u(t, x)], (3.19)

which concludes the proof.

From the previous theorem we can characterize the behaviour of the maximum in the limit of

large times.

Theorem 3.8. Almost surely,

lim
t→∞

Mt

t
=
√

2 (3.20)
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and

lim
t→∞

Mt −
√

2t = −∞. (3.21)

Proof. In order to prove the previous theorem, we need to change probability measure, using a

new one, easier to handle and to introduce dyadic Brownian motion with spine.

Definition 3.9. A spatial tree with spine is a pair (t, ξ), where t = (τ, σ, Y ) is a spatial tree and

ξ ⊂ U such that

(i) |{ξ ∩Nt}| ≤ 1, ∀t ≥ 0,

(ii) u ∈ ξ ⇒ v ∈ ξ, for each v < u.

In other words, a spine is a distinguished line of descent in a tree. For v ∈ ξ ∩ Nt, denote by

ξt = v the label of the spine, and Ξ(t) = Xξt(t) for the position of the spine particle. We can define

a law P̃ on the space of marked trees, such that if the pair (t, ξ) has law P̃ then t is a standard

Brownian motion. We also introduce

Gt = σ(Ξ(s), s ≤ t), t ≥ 0, (3.22)

the natural filtration of Ξ.

Given a functional of continuous paths F : C[0,t) → R, we define the following quantities:

ζ(t) = F (Ξ(s), s ≤ t), (3.23)

ζu(t) = F (Xu(s), s ≤ t) for u ∈ Nt, (3.24)

Z(t) = e−t
∑
u∈Nt

ζu(t). (3.25)

Suppose we choose a path functional F such that Z(t) is positive and with mean one. We can

apply Girsanov theorem and define a new probability measure Q on τ by the relation

dQ
dP

∣∣∣∣
Ft

= Z(t). (3.26)

Observe that if Q and P are equivalent, then almost sure events under Q are also almost sure

events under P.

Let now λ ∈ R, cλ = λ
2 + mβ

2 . If we use ζ(t) = e−λΞ(t)−λ2 t
2 , Z(t) turns out to be the so-called
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additive exponential martingale

Wλ(t) =
∑
u∈Nt

e−λ(Xu(t)+cλt). (3.27)

Chauvin and Rouault in [10] proved that, under Q, the process Ξ(t) is a Brownian motion with

drift −λ and so, almost surely, lim inf Mt
t ≥ lim inf Ξ(t)

t = λ. Define now λ∗ =
√

2βm that it is

equal to λ∗ =
√

2 in the dyadic case. Observe that the function λ 7→ cλ has its maximum on

(−∞, 0) at −λ∗ and its minimum on (0,∞) at λ∗. We need also the following theorem :

Theorem 3.10. The limit Wλ = limt→∞Wλ(t) exists P-almost surely and

(i) If |λ| ≥ λ∗, then W (λ) = 0 P-almost surely,

(ii) if |λ| ∈ [0, λ∗), then W (λ) is a L1(P) limit and P[Wλ > 0] = 1.

For the proof of this theorem, see [4].

Denote now c∗ = cλ∗ = λ∗. By this theorem, we can say that all the martingales defined as in

3.27 converge. Furthermore Wλ(t) → 0, P-almost surely as soon as |λ| ≥ λ∗. Notice also that

eλ
∗(Mt+c−λ∗ t) ≤W−λ∗(t)→ 0 as soon as |λ| ≥ λ∗. Observe that c−λ∗ = −c∗. Thus

Mt + c−λ∗t = Mt − c∗t→ −∞ (3.28)

that is our thesis (note that c∗ =
√

2 in the dyadic case).

Furthermore lim sup Mt
t ≤ c

∗. We now need to prove the converse bound. Qλ and P are equivalent,

when λ ∈ (−λ∗, 0]. We know, from previous observations, that under Qλ the process Ξ(t) is a

Brownian motion with drift −λ and so lim inf Mt
t ≥ |λ|, Qλ-almost surely and so P-almost surely

as well. Since λ is arbitrary in (−λ∗, 0], we obtain lim inf Mt
t ≥ λ

∗, P-almost surely. Hence, in the

standard case,

lim sup Mt

t
≤
√

2 ≤ lim inf Mt

t
⇒ lim Mt

t
=
√

2. (3.29)

Theorem 3.11. Let mt =
√

2t− 3
2
√

2 ln t+o(1). Then Mt−mt converges in distribution and there

exists a random variable Z such that

P[Mt −mt ≤ y]→ E[exp−cZe
√

2y], as t→∞ (3.30)
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where c is a constant, c > 0.

Proof. Let M̂t = Mt−mt. Observe that, for each u ∈ Nt, Mt = Mt−s+Xu(s) and mt = mt−s+0(1).

We have

P[M̂t ≤ y] = E[P[M̂t ≤ y|Fs]]

= E[
∏
u∈Ns

P[Mt−s ≤ mt + y −Xu(s)|Xu(s)]]

= E[
∏
u∈Ns

(1− P[Mt−s > mt−s + y − (Xu(s)−
√

2s) + o(1)|Xu(s)])].

From 3.21, we know that Ms−
√

2s→ −∞ as s→∞. This means that we should have y−(X(s)−
√

2s)� 1, for all u ∈ Ns. Hence we can use the following lemma, that we are not going to prove:

Lemma 3.12. There exists a constant c such that

P[Mt > mt + y] ∼ cye−
√

2y, as y →∞. (3.31)

Let Zs =
∑
u∈Ns (

√
2s−Xu(s))e−

√
2(
√

2s−Xu(s)).

P[M̂t ≤ y] ∼t E[
∏
u∈Ns

(1− c(y +
√

2s−Xu(s))e−
√

2(y+
√

2s−Xu(s)))]

∼s E[exp {−cZse−
√

2y}].

Hence we proved that

lim
t→∞

P[Mt −mt ≤ y] ∼ E[exp {−cZse−
√

2y}] as s→∞. (3.32)

Notice that the left-hand side does not depends on s. This means that the right-hand side must

have a limit for s→∞. Hence Zs → Z in distribution. So we obtain 3.30

3.2.3 Refinements

From Theorem 3.11 we can say that the law of the maximum of branching Brownian motion is a

random shift of the Gumbel distribution. As we observed before, Lalley and Sellke in [12] provided

a characterization of the limiting law of the maximal displacement. Let us define the so-called
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derivative martingale:

Z(t) =
∑
u∈Nt

(
√

2t−Xu(t)) exp (−
√

2(
√

2t−Xu(t))). (3.33)

They proved that Z(t) converges almost surely to a strictly positive random variable Z, that is

the one of Theorem 3.11. If we admit this we get

w(x) = E[exp (−cZe−
√

2x)]. (3.34)

We can obtain a result also on the expectation of Mt:

Theorem 3.13.

E[Mt] =
√

2t− 3
2
√

2
ln t+ o(1) as t→∞. (3.35)

Proof. We only sketch the proof. Details can be found in [15]. The aim is to find an upper

bound and a lower bound for the expectation. From the estimate 2.7 we obtain the upper bound

E[Mt] ≤
√

2t− 3
2
√

2 ln t+ o(1). The corresponding lower bound can be obtained once we show

lim
z→−∞

lim sup
t→∞

∫ z

−∞
P[Mt ≤ mt + y]dy. (3.36)

3.3 The extremal process of the branching Brownian motion

We have precise information on the maximum of branching Brownian motion, while less is known

on the full statistics of the particles close to the maximal one.

Let X(t) be the branching Brownian motion process and call N(t) the number of particles alive

at time t, namely N(t) = |Nt|. Let X1(t) ≤ X2(t) ≤ . . . ≤ XN(t)(t) be their positions enumerated

from left to right. The statistics of such particles are completely encoded in the following extremal

process:

Et =
∑

k≤N(t)
δXk(t)−mt . (3.37)

We are going to study the extremal process in the limit of large times. In Chapter 1, we have

studied classical results for extremal processes of correlated random variables, like the GREM.

However these models have a rather simple hierarchical structure that involves only a finite number

44



of hierarchies, while our BBM has infinite levels of branching. Fortunately, branching Brownian

motion is just at the borderline where correlations start to effect the extremes, so we can go beyond

the simple Poisson structures and open the way towards the rigorous study of complex extremal

structures.

Our aim is to prove that the extremal process of branching Brownian motion, in the limit of large

times, converges weakly to a cluster point process: the limiting process is a randomly shifted

Poisson cluster point process, where the position of the clusters is a Poisson process with intensity

measure with exponential density.

Theorem 3.14. Let

PZ =
∑
i∈N

δpi
law= PPP (cZ

√
2e−

√
2xdx), (3.38)

and let {D(i), i ∈ N} be a family of independent copies of the following gap-process on (−∞, 0]:

D =
∑
j

δ∆j
, (3.39)

where ∆j = ξj−maxi ξi and the ξi’s are atoms of the limiting point process of Ēt =
∑
k≤N(t) δXk(t)−

√
2t.

Then the point process Et =
∑
k≤N(t) δXk(t)−mt converges in law as t → ∞ to a Poisson cluster

point process E:

E = lim
t→∞
Et

law=
∑
i,j

δ
pi+∆(i)

j

. (3.40)

In order to prove this theorem, we need some intermediate steps. We first prove the existence

of the limiting process of Et and then we introduce an auxiliary point process Πt (see 3.53), proving

that this is a Poisson point process. Finally we prove that our original process Et is equal in law

to the process Πt.

3.3.1 Existence of the limit

Theorem 3.15. The point process Et =
∑
k≤N(t) δXk(t)−mt converges in law to a point process E.

Proof. We need to show that the Laplace functional of the extremal process Et of our branching

Brownian motion converges.

Let φ ∈ CC(R). We define such functional:

ψt(φ) = E
[
exp

{
−
∫
φ(y)Et(dy)

}]
. (3.41)
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In [1] it has been proved that, for any bounded measurable set B ⊂ R,

lim
N→∞

lim
t→∞

P[Et(B) > N ] = 0. (3.42)

This means that the limiting process must be locally finite.

Denote now by max Et = maxk≤N(t)Xk(t)−mt and let δ > 0. Define

v(t, δ +mt) = E

N(t)∏
k=1

I{Xk(t)−mt≤δ}

 = P[max Et ≤ δ]. (3.43)

Applying Theorem 3.5 to this function v, it holds that

lim
δ→∞

lim
t→∞

1− v(t, δ +mt) = lim
δ→∞

w(δ) = 0. (3.44)

We write

E
[
exp

{
−
∫
φdEt

}]
= E

[
exp

{
−
∫
φdEt

}
I{max Et≤δ}

]
+ E

[
exp

{
−
∫
φdEt

}
I{max Et>δ}

]
. (3.45)

In order to prove convergence, we want to show that this quantity, in the limit, is strictly smaller

than 1.

By 3.44, the second term of the right hand side goes to 0. In fact:

lim sup
δ→∞

lim sup
t→∞

E
[
exp

{
−
∫
φdEt

}
I{max Et>δ}

]
≤ lim sup

δ→∞
lim sup
t→∞

P[max Et > δ] = 0. (3.46)

Denote now by ψδt (φ) the first term of the right hand side:

ψδt (φ) = E
[
exp

{
−
∫
φdEt

}
I{max Et≤δ}

]
. (3.47)

Our aim is to show that the limit limδ→∞ limt→∞ ψ
δ
t (φ) = ψ(φ) exists and it is strictly smaller

than 1. Set gδ(x) = e−φ(x)I{x≤δ} and

uδ(t, x) = E

 ∏
k≤N(t)

gδ(−x+Xk(t))

 . (3.48)
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By Lemma 5.6, uδ turns out to be solution of the F-KPP equation 3.9 with u(0, x) = gδ(−x).

Moreover, gδ(−x) = 1 for x large enough in the positive, gδ(−x) = 0 for x large enough in the

negative. Hence conditions of Theorem 3.5 are satisfied. By Theorem 3.5,

uδ(t, x+mt) = E

N(t)∏
k=1

gδ(−x+Xk(t)−mt)

 (3.49)

converges as t→∞ uniformly in x. We have

ψδt (φ) = E
[
exp

{
−
∫
φdEt

}
I{max Et≤δ}

]

= E

 ∏
k≤N(t)

exp {−φ(Xk(t)−mt)}I{Xk(t)−mt≤δ}


= E

 ∏
k≤N(t)

gδ(Xk(t)−mt)

 = uδ(t, 0 +mt).

Hence limt→∞ ψ
δ
t (φ) = limt→∞ uδ(t, 0 +mt) = ψδ(φ) exists.

Moreover, the function δ 7→ ψδ(φ) is increasing and bounded by construction and therefore

limδ→∞ ψ
δ(φ) exists. Since the maximum is an atom of Et and φ is non-negative, there is also

the following bound:

E
[
exp

{
−
∫
φdEt

}
I{max Et≤δ}

]
≤ E

[
exp {−φ(max Et)}I{max Et≤δ}

]
. (3.50)

The limit for t → ∞ and δ → ∞ of the right-hand side exists and it is strictly smaller than 1,

since the re-centered maximum converges in law to w(x), by Theorem 3.5. Hence

ψ(φ) = lim
δ→∞

lim
t→∞

ψδt (φ) < 1. (3.51)

3.3.2 The auxiliary process

At this point, we need to define an auxiliary process. Introduce a new probability space (Ω′,F ′, P )

and denote by E the expectation with respect to P . Let Z : Ω′ → R+ be a random variable

with distribution as that of the limit of the derivative martingale 3.33. Recall that the law of the

standard BBM is denoted by P.
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Let η be a Poisson point process on (−∞, 0), shifted by 1√
2 lnZ, with intensity measure

√
2
π

(−x)e−
√

2xdx, (3.52)

and (ηi, i ∈ N) its atoms. For each i ∈ N, we consider independent BBMs on (Ω′,F ′, P ) with drift

−
√

2, namely {X(i)
k (t)−

√
2t; k ≤ N (i)(t)}, where N (i)(t) is the number of particles of the BBM i

at time t.

The auxiliary point process that we need is the superposition of these iid BBMs with drift and

shifted by ηi + 1√
2 lnZ:

Πt =
∑
i,k

δ 1√
2

lnZ+ηi+X(i)
k

(t)−
√

2t. (3.53)

Proposition 3.16. Let Πext
t be the point process obtained by retaining from Πt the maximal par-

ticles of the BBMs, namely

Πext
t =

∑
i

δ 1√
2

lnZ+ηi+maxkX
(i)
k

(t)−
√

2t. (3.54)

Then

lim
t→∞

Πext
t

law= PPP (cZ
√

2e−
√

2xdx) (3.55)

as a point process on R. In particular, the maximum of the cluster-extrema has the same law of

the limit law of the maximum of BBM.

Proof. Let η = (ηi) be a Poisson process on (−∞, 0) with intensity measure
√

2
πe
−
√

2ydy and let

M (i)(t) = maxkX
(i)
k (t). We want to show that

lim
t→∞

E
[
exp

{
−
∑
i

φ(ηi +M (i)(t)−
√

2t)
}]

= exp
{
−C

∫
R

(1− e−φ(a))
√

2e−
√

2ada

}
. (3.56)

Since η is a Poisson process and the M (i)’s are iid, we obtain

E
[
exp

{
−
∑
i

φ(ηi +M (i)(t)−
√

2t)
}]

= exp
{
−
∫ 0

−∞
E
[
1− e−φ(y+Mt−

√
2t)
]√ 2

π
(−y)e−

√
2ydy

}
, (3.57)
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where Mt is distributed as M (i)(t). If we set h(x) = 1 − e−φ(x) and take the limit, we obtain the

thesis applying Lemma 5.2.

Theorem 3.17. Let Et be the extremal process defined as in 3.37. Then

lim
t→∞
Et

law= lim
t→∞

Πt. (3.58)

Proof. From Proposition 3.16, we know that Πt is a Poisson point process. Thus, we can use the

form of the Laplace functional of a Poisson process:

E
[
exp {−

∫
φ(x)Πt(dx)}

]

= E

exp { −
∫ 0

−∞

1− E

exp {−
∑

k≤N(t)
φ(x+Xk(t)−

√
2t+ 1√

2
lnZ)}


·
√

2
π

(−x)e−
√

2xdx }
]

(3.59)

Setting

u(t, x) = 1− E

exp

− ∑
k≤N(t)

φ(−x+XK(t))


 , (3.60)

we can write 3.59 as

E
[
exp

{
−
√

2
π

∫ ∞
0

u(t, x+
√

2t− 1√
2

lnZ)xe
√

2xdx

}]
.

By Lemma 5.8,

lim
t→∞

√
2
π

∫ ∞
0

u(t, x+
√

2t− 1√
2

lnZ)xe
√

2xdx

= Z

√
2
π

lim
t→∞

∫ ∞
0

u(t, x+
√

2t)xe
√

2xdx,

and the limit exists and it is strictly positive by Lemma 5.9. This implies that the Laplace

functionals of limt→∞Πt and of the extremal process of the BBM are equal.
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3.3.3 Proof of the main theorem

Proof. We have to show that, given φ : R→ R+ continuous and with compact support, the Laplace

functional ψt(φ) of the extremal process Et of the BBM satisfies the following equivalence:

lim
t→∞

ψt(φ) = E
[
exp

{
−CZ

∫
R
E
[
1− e−

∫
φ(y+z)D(dz)

]√
2e−

√
2ydy

}]
, (3.61)

where D is the point process of Corollary 5.4.

By Theorem 3.17, it holds

lim
t→∞

ψt(φ) = lim
t→∞

E

exp

−∑
i,k

φ(ηi + 1√
2

lnZ +X
(i)
k (t)−

√
2t)


. (3.62)

Since η is a Poisson point process, we can write

lim
t→∞

E

exp

−∑
i,k

φ(ηi + 1√
2

lnZ +X
(i)
k (t)−

√
2t)




= E [ exp { − Z lim
t→∞

∫ 0

−∞
E
[
1− exp

{
−
∫
φ(x+ y)Ēt(dx)

}]
·√

2
π

(−y)e−
√

2ydy } ] . (3.63)

Let now Dt be the gap process defined in 5.5. It holds

lim
t→∞

∫ 0

−∞
E
[
1− exp {−

∫
φ(x+ y)Ēt(dx)}

]
= lim

t→∞

∫ 0

−∞
E
[
f

(∫
{Ty+max Ētφ(z)}Dt(dz)

)]√ 2
π

(−y)e−
√

2ydy,

where Txφ(y) = φ(y + x) and f is a function that is continuous, bounded on [0,∞) and such that

f(x) = 1− e−x. Notice that f(0) = 0.

By Proposition 5.1, there exist A1 and A2 such that

∫ 0

−∞
E
[
f

(∫ {
Ty+max Ētφ(z)

})]√ 2
π

(−y)e−
√

2ydy

= Ωt(A1, A2) +
∫ −A1

√
t

−A2
√
t
E
[
f

(∫ {
Ty+max Ētφ(z)

})]√ 2
π

(−y)e−
√

2ydy, (3.64)
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where Ωt(A1, A2) is the error term that satisfies

lim
A1→0,A2→∞

sup
t≥t0

Ωt(A1, A2) = 0. (3.65)

Let now mφ be the minimum of the support of φ. Notice that

f

(∫ {
Ty+max Ētφ(z)

})
= 0 when y + max Ēt < mφ. (3.66)

Moreover P
[{
y + max Ēt = mφ

}]
= 0. Hence

E
[
f

(∫ {
Ty+max Ētφ(z)

}
Dt(dz)

)]
= E

[
f

(∫ {
Ty+max Ētφ(z)

}
Dt(dz)

)
I{y+max Ēt>mφ}

]
[
f

(∫ {
Ty+max Ētφ(z)

}
Dt(dz)

) ∣∣∣y + max Ēt > mφ

]
P
[
y + max Ēt > mφ

]
. (3.67)

By Corollary 5.4, the conditional law of
{

(Dt, y + max Ēt)
∣∣∣y + max Ēt > mφ

}
exists in the limit

and the convergence is uniformly in y ∈ [−A1
√
t,−A2

√
t]. The convergence applies to the random

variable
∫ {

Ty+max Ētφ(z)
}
Dt(dz), by Lemma 5.5. Therefore

lim
t→∞

E
[
f

(∫ {
Ty+max Ētφ(z)

}
Dz(dz)

) ∣∣∣y + max Ēt > mφ

]
=
∫ ∞
mφ

E
[
f

(∫
(Tyφ(z))D(dz)

)] √2e−
√

2ydy

e−
√

2mφ
. (3.68)

By Proposition 5.1 and Lemma 5.2, it holds that

∫ −A1
√
t

−A2
√
t
P
[
y + max Ēt > mφ

]√ 2
π

(−y)e−
√

2ydy = Ce−
√

2mφ + Ωt(A1, A2). (3.69)

Combining equations 3.67, 3.68, 3.69, we obtain that 3.63 converges to

E
[
exp

(
−CZ

∫
R
E
[
1− e−

∫
φ(y+z)D(dz)

]√
2e−

√
2ydy

)]
, (3.70)

that is the limiting Laplace transform of the extremal process of the BBM by 3.61.
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3.4 Related models and applications

Starting from the branching random walks and the branching Brownian motions we defined, it is

possible to study models that are more similar to the systems we find in real life. In a population,

we do not have an exponential growth of the individuals: by selection we mean the process of

killing particles, which can be interpreted as the effect of natural selection. We will now briefly

introduce two selection mechanisms: the BBM with absorption and the N -BBM.

3.4.1 Branching Brownian motion with absorption

Let (X(t), t ≥ 0) be a usual branching Brownian motion with drift µ started from x > 0 and let

N (t) be the set of particles alive at time t for this full BBM. We want to kill particles when they

hit the origin. Define

Nabs(t) =
{
u ∈ Nt : inf

s≤t
Xu(s) > 0

}
. (3.71)

Then ({Xu(t), u ∈ Nabs(t)} , t ≥ 0) is the branching Brownian motion with absorption: we just

kept all the particles whose path has not touched 0. Obviously we could also kill particles when

they hit a generic line.

The first question we may ask about is whether this process survives or not. Kesten in 1978

in Branching Brownian motion with absorption proved the following result:

Theorem 3.18. Let ξ = inf {t ≥ 0 : Nabs(t) = ∅} be the extinction time of the BBM with absorp-

tion. Then P [ξ <∞] = 1 if and only if µ ≤ −
√

2.

From this first result, mathematicians started studying the process of absorption, finding a

criterion for almost sure extinction also for branching random walks. This process has recently

aroused interest because of David Aldous’ conjecture. He conjectured that E [Z lnZ] =∞, where

Z is a random variable that denotes the number of particles with critical drift that cross the origin

for the first time. Aldous and Pemantle provided an incomplete proof, while Aidekon and Maillard

tried to refine the result.

3.4.2 N-BBM

We will first introduce the N -BRW. We have a population of size N with asexual reproduction.

Each individual i ≤ N is completely characterized by a number xi ∈ R which represents its selection
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advantage, that we can interpret as his fitness. At a given time the population is a collection of

N points on the real line. Time is discrete and at each generation the whole population is entirely

renewed according to this mechanism:

(i) Reproduction-mutation: each individual has k offsprings (after this step we momentarily

have kN particles) and the relative positions with respect to their parents are given by iid

copies of a certain displacement law ρ.

(ii) Selection: we just keep the N rightmost particles among the kN just created.

Brunet and Derrida found an interesting conjecture on the speed of the system. Let us denote

X1(t) ≤ X2(t) ≤ . . . ≤ XN (t) the positions of the particles at time t. We have that

lim
t→∞

X1(t)
t

= lim
t→∞

XN (t)
t

= vN (3.72)

for a certain velocity vN , which depends on N .

Conjecture 3.19. It holds that

vN → v∞ <∞ (3.73)

as N →∞ and

v∞ − vN = c

2(lnN)2 − c
3 ln lnN
(lnN)3 + · · · (3.74)

where c is a constant which is explicitly determined in terms of the displacement law.

The first order of this correction has been proved by Bérard and Gouéré in Brunet-Derrida

behaviour of branching-selection particle systems on the line.

It should be possible to extend this result also to the case of the N -BBM.

In the continuous case, we still have a cloud of N particles. The evolution of the population is

following the same steps as the discrete case:

(i) Reproduction-mutation: each particle moves in R according to an independent Brownian

motion and branches at rate β into k new particles, with probabilities pk which then start to

follow the same behaviour and so on. At this stage we have the general branching Brownian

motion.

(ii) Selection: at each branching event, we kill the leftmost particles to keep the population size

constant.
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We are going to state the Brunet and Derrida’s other conjecture, but first we have to briefly

introduce Λ-coalescents.

Suppose we have a countable population of individuals i = 1, 2, . . . for which you can follow their

ancestral lines of descendance. At the time of the most recent common ancestor of two individuals,

i and j for instance, their lineage coalesce. So if we look at the k first individuals, their ancestral

lineages trace a tree with k leaves. The coalescent is a Markov process which describes how the

lineages merge when we go backward in time.

Definition 3.20. In a Λ-coalescent, there is a point process (ti, pi) in R+ × [0, 1] with intensity

dt⊗p−2Λ(dp), where Λ is a finite measure on [0, 1]. At time ti of an atom, we select by independent

coin flipping a proportion p of the active lineages and merge them in a single one.

In particular, a Bolthausen-Snitzman coalescent is the Λ-coalescent we obtain when Λ(dp) =

dpI{p∈[0,1]}.

Conjecture 3.21. Let Tp be the time of the most recent common ancestor of p individuals, the

statistics E[Tp]
E[T2] converge to the values which are the same as those obtained for the Bolthausen-

Snitzman coalescent. The sequence E[Tp]
E[T2] characterizes the distribution Λ.

This conjecture can be reformulated by saying that on a timescale of order (logN)3, the ge-

nealogy of a population converges to a Bolthausen-Snitzman coalescent.

Despite the simplicity of the N -BBM, it is very difficult to analyze it rigorously, because of the

strong interaction between the particles, the impossibility to describe it exactly through differential

equations and the fact that the shifts in the position of the system do not occur instantaneously

but gradually over the timescale log2N . This is the reason why several results have been obtained

by an approximation of the N -BRW and the N-BBM with absorption at a linear barrier.
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Figure 3.2: A branching Brownian motion

Figure 3.3: A branching Brownian motion with absorption
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Figure 3.4: A N -BBM, where N = 6
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Chapter 4

Localization of paths

We can say something more about extremal particles and their genealogical distance. Visualizing

the paths that the particles perform during their lifetime would be helpful and that is why we are

going to try to draw a picture of such paths.

4.1 Upper envelope

As a first step, we prove that extremal particles cannot fluctuate too wildly in the upward direction.

Let γ > 0 and set

ft,γ(s) =

 sγ if 0 ≤ s ≤ t
2

(t− s)γ if t
2 ≤ s ≤ t

(4.1)

Define the upper envelope Ut,γ as

Ut,γ(s) = s

t
mt + ft,γ(s), (4.2)

where we recall that mt =
√

2t− 3
2
√

2 ln t+ o(1).

Theorem 4.1. Let 0 < γ < 1
2 . Let y ∈ R and ε > 0 be fixed. There exists ru = ru(γ, y, ε) such

that for r ≥ ru and for any t > 3r,

P[∃k ≤ N(t) : Xk(s) > y + Ut,γ(s) for some s ∈ [r, t− r]] < ε. (4.3)
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Proof. To prove this theorem, we are going to find an upper bound to the probability

P[∃k ≤ N(t) : Xk(s) > y +ms + ft,γ(s) for some s ∈ [r, t− r]]. (4.4)

An upper bound for the probability we just introduced implies an upper bound for the probability

in 4.3: in fact, for s > e, we have that ln s
s > ln t

t and the function lnx
x is decreasing for x > e.

Hence s
tmt > ms and so

Ut,γ(s) = s

t
mt + ft,γ(s) > ms + ft,γ(s) (4.5)

which implies

P[∃k ≤ N(t) : Xk(s) > y +ms + ft,γ(s) for some s ∈ [r, t− r]]

≤ P[∃k ≤ N(t) : Xk(s) > y +ms + ft,γ(s) for some s ∈ [r, t− r]]. (4.6)

We first prove that the maximum of the process at integer times doesn’t cross the upper envelope

and then we will extend the result to all times.

Denote by dse the smallest integer greater or equal to s. Our current aim is to prove the following

result:

Lemma 4.2. Let 0 < γ < 1
2 . For any y ∈ R and ε > 0, there exists r′(γ, y, ε) such that for
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r > r′(γ, y, ε) and t > 3r, it holds that

P[∃s ∈ [r, t− r] : max
k≤N(s)

Xk(dse) ≥ y +m(dse) + ft,γ(dse)] < ε. (4.7)

We can write {
∃s ∈ [r, t− r] : max

k≤N(s)
Xk(dse) ≥ y +m(dse) + ft,γ(dse)

}
(4.8)

=
⋃
j

{
max
k≤N(j)

Xk(j) ≥ y +m(j) + ft,γ(j)
}
,

where j = dre , dre + 1, dt− re. Choose r large enough so that y + ft,γ(r) > 0. We now use the

following estimate on the right tail of the maximal displacement, obtained by Bramson in [5]:

P[ max
k≤N(t)

Xk(t) ≥ mt + Y ] ≤ κ(1 + Y )2e−
√

2Y , (4.9)

with 0 < Y <
√
t and κ > 0 a numerical constant.

We apply the previous estimate on the event 4.8, choosing t = j and Y = y+ ft,γ(j) and using the

symmetry of the curve ft,γ . We get

P[∃s ∈ [r, t− r] : max
k≤N(s)

Xk(dse) ≥ y +m(dse) + ft,γ(dse)]

≤ 2κ
d t2e+1∑
j=dre

(1 + (jγ + y))2 exp
{
−
√

2(jγ + y)
}

. (4.10)

The right-hand side is summable, hence the probability can be made arbitrarily small by taking

the limits t→∞ and then r →∞ and we obtain the claim.

We now want to extend the result to all s ∈ [r, t− r]. Observe that we have this dichotomy:

max
k≤N(dse)

Xk(dse) < m(dse) + ft, γ2 (dse), (4.11)

or

max
k≤N(dse)

Xk(dse) ≥ m(dse) + ft, γ2 (dse). (4.12)
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It follows that

P
[
∃s ∈ [r, t− r] : max

k≤N(s)
Xk(s) > y +ms + ft,γ(s)

]

≤ P
[
∃s ∈ [r, t− r] : max

k≤N(s)
Xk(s) > y +ms + ft,γ(s) ,

max
k≤N(dse)

Xk(dse) ≥ m(dse) + ft, γ2 (dse)

]

+P
[
∃s ∈ [r, t− r] : max

k≤N(s)
Xk(s) > y +ms + ft,γ(s) ,

max
k≤N(dse)

Xk(dse) < m(dse) + ft, γ2
(dse)

]
. (4.13)

We have that

P
[
∃s ∈ [r, t− r] : max

k≤N(s)
Xk(s) > y +ms + ft,γ(s) ,

max
k≤N(dse)

Xk(dse) ≥ m(dse) + ft, γ2 (dse)

]
≤ P[∃s ∈ [r, t− r] : max

k≤N(dse)
Xk(dse) ≥ m(dse) + ft, γ2 (dse)] (4.14)

≤ ε

2 ,

where the last inequality holds from 4.2, by choosing r > r′(y, γ2 ,
ε
2). So it remains to bound

P
[
∃s ∈ [r, t− r] : max

k≤N(s)
Xk(s) > y +ms + ft,γ(s) ,

max
k≤N(dse)

Xk(dse) < m(dse) + ft, γ2
(dse)

]
. (4.15)

We define the stopping time S, where we choose r = 1 to avoid technicalities:

S = inf
{
s ∈ [1, t− 1] : max

k≤N(s)
Xk(s) > y +ms + ft,γ(s)

}
. (4.16)
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We can rewrite the probability 4.15, conditioning on S:

P
[
∃s ∈ [r, t− r] : max

k≤N(s)
Xk(s) > y +ms + ft,γ(s) ,

max
k≤N(dse)

Xk(dse) < m(dse) + ft, γ2
(dse)

]
(4.17)

=
∫ t−r

r
P[ max
k≤N(ds′e)

Xk(
⌈
s′
⌉
) < y +m(

⌈
s′
⌉
) + ft, γ2

(
⌈
s′
⌉
) | S = s′]P[S ∈ ds′].

Without loss of generality, we can assume r > 2. We have that r > dre−1 and t−r < dte−dre+1.

Hence

∫ t−r

r
P[ max
k≤N(ds′e)

Xk(
⌈
s′
⌉
) < y +m(

⌈
s′
⌉
) + ft, γ2

(
⌈
s′
⌉
) | S = s′]P[S ∈ ds′]

<

dte−dre+1∑
j=dre

∫ j+1

j
P
[

max
k≤N(ds′e)

Xk(
⌈
s′
⌉
) < y +m(

⌈
s′
⌉
) + ft, γ2

(
⌈
s′
⌉
) | S = s′

]
×P[S ∈ ds′]. (4.18)

This means that it remains to show that

P[ max
k≤N(ds′e)

Xk(
⌈
s′
⌉
) < y +m(

⌈
s′
⌉
) + ft, γ2

(
⌈
s′
⌉
) | S = s′]→ 0, (4.19)

uniformly in s′, as r → ∞. By the definition of S, this probability is bounded by the probability

that the offspring at time ds′e of the maximum at time s′, make a jump smaller than

m(
⌈
s′
⌉
)−m(s′) + ft, γ2

(
⌈
s′
⌉
)− ft,γ(s′). (4.20)

By the Markov property of the BBM, this is exactly

P[ max
k≤N(ds′e−s′)

Xk(
⌈
s′
⌉
− s′) < m(

⌈
s′
⌉
)−m(s′) + ft, γ2

(
⌈
s′
⌉
)− ft,γ(s′)]. (4.21)

Hence

P[ max
k≤N(ds′e)

Xk(
⌈
s′
⌉
) < y +m(

⌈
s′
⌉
) + ft, γ2

(
⌈
s′
⌉
) | S = s′] (4.22)

≤ P[ max
k≤N(ds′e−s′)

Xk(
⌈
s′
⌉
− s′) < m(

⌈
s′
⌉
)−m(s′) + ft, γ2

(
⌈
s′
⌉
)− ft,γ(s′)] .
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Recall that the expected number of offsprings at time t is et and let X be a standard Brownian

motion. By Markov’s inequality we have that

P
[

max
k≤N(ds′e−s′)

Xk(
⌈
s′
⌉
− s′) < m(

⌈
s′
⌉
)−m(s′) + ft, γ2

(
⌈
s′
⌉
)− ft,γ(s′)

]
≤ eds′e−s′P[X(

⌈
s′
⌉
− s′) < m(

⌈
s′
⌉
)−m(s′) + ft, γ2

(
⌈
s′
⌉
)− ft,γ(s′)]. (4.23)

Observe that, since ds′e − s′ < 1,

eds
′e−s′ < e (4.24)

and, by the definition of mt,

m(
⌈
s′
⌉
)−m(s′) <

√
2. (4.25)

Moreover, from the definition of ft,γ 4.1, we get that, for r ≤ s′ ≤ t
2 ,

ft, γ2
(
⌈
s′
⌉
)− ft,γ(s′) = −s′γ

(
1− ds

′e
γ
2

s′γ

)
≤ −1

2r
γ , (4.26)

where we choose r large enough to get the factor 1
2 . On the other hand, for t

2 ≤ s
′ ≤ t− r, it holds

ft, γ2
(
⌈
s′
⌉
)− ft,γ(s′) = −(t− s′)γ

(
1− (t− ds′e)

γ
2

(t− s′)γ

)
≤ −1

2r
γ . (4.27)

Hence, by 4.24, 4.25, 4.26, 4.27, we obtain

eds
′e−s′P[X(

⌈
s′
⌉
− s′) < m(

⌈
s′
⌉
)−m(s′) + ft, γ2

(
⌈
s′
⌉
)− ft,γ(s′)]

≤ eP
[
X(
⌈
s′
⌉
− s′) <

√
2− 1

2r
γ
]

. (4.28)

This probability tends to 0 as r →∞,uniformly in s′, since X(ds′e−s′) is by definition a Gaussian

variable of variance ds′e − s′ ≤ 1.

Thus, by 4.22, we obtain 4.19.

This theorem tells us that almost all the paths of the extremal particles never cross the upper

envelope, but due to the strong fluctuations of the unconstrained paths, particles that at some

point are close to the line s 7→ s
tmt have plenty of chances to hit the upper envelope in the

remaining time. We are going to state a theorem that ensures that the paths lie well below the

interpolating line for most of the time: the upper envelope can be replaced by a lower entropic
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envelope, under which paths of extremal particles lie with high probability.

Let f be as in 4.1 and α > 0. Define the entropic envelope Et,α(s) as

Et,α(s) = s

t
mt − ft,α(s). (4.29)

Theorem 4.3. Let D ⊂ R a compact set and 0 < α < 1
2 . Set D̄ = sup{x ∈ D}. For any ε > 0,

there exists re = re(α,D, ε) such that for r ≥ re and t > 3r,

P[∃k ≤ N(t) : Xk(t) ∈ mt +D, but ∃s ∈ [r, t− r] : Xk(s) ≥ D̄ + Et,α(s)] < ε. (4.30)

Proof. In order to prove this theorem, we start by choosing 0 < γ < α < 1
2 . Denote by D =

inf {x ∈ D}. Taking y = D in Theorem 4.1, we know that paths of extremal particles must remain

below the upper envelope Ut,γ for most of the time. This means that it suffices to show that

P [∃k ≤ N(t) : Xk(t) ∈ mt +D,Xk(s) ≤ D + Ut,γ(s)∀s ∈ [r, t− r],

but ∃s ∈ [r, t− r] : Xk(s) ≥ D̄ + Et,α(s)
]
→ 0, (4.31)

as r → ∞, uniformly in t > 3r, where we recall that D̄ = sup{x ∈ D}. Applying Markov’s
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inequality and observing that E[N(t)] = et, we obtain

P [∃k ≤ N(t) : Xk(t) ∈ mt +D,Xk(s) ≤ D + Ut,γ(s)∀s ∈ [r, t− r],

but ∃s ∈ [r, t− r] : Xk(s) ≥ D̄ + Et,α(s)
]

≤ etP [X(t) ∈ mt +D,X(s) ≤ D + Ut,γ(s)∀s ∈ [r, t− r],

but∃s ∈ [r, t− r] : X(s) ≥ D̄ + Et,α(s)
]

= etP
[
X(t) ∈ mt +D,X(s) ≤ D + s

t
mt + ft,γ(s)∀s ∈ [r, t− r],

but ∃s ∈ [r, t− r] : X(s) ≥ D̄ + s

t
mt − ft,α(s)

]
, (4.32)

where we used the definitions of Ut,γ and Et,α.

Consider now the event {X(t) ∈ mt +D}. We can rewrite it as {X(t) ∈ mt +D} = {X(t)− D̄ ≤

mt ≤ X(t) − D}. With this observation we can replace the condition on the paths in the above

probability:

X(s) ≤ D + s

t
mt + ft,γ(s)∀s ∈ [r, t− r] (4.33)

can be written as

X(s) ≤ D + s

t
(X(t)−D) + ft,γ(s)

= D̄
t− s
t

+ s

t
X(t) + ft,γ(s)∀s ∈ [r, t− r] (4.34)

and

∃s ∈ [r, t− r] : X(s) ≥ D̄ + s

t
X(t)− ft,α(s) (4.35)

is the same as saying that

∃s ∈ [r, t− r] : X(s) ≥ D̄ + s

t
(X(t)− D̄)− ft,α(s)

= D̄
t− s
t

+ s

t
X(t)− ft,α(s). (4.36)

Combining 4.34 and 4.36 and recalling that X(t) is independent of the Brownian bridge ξt(s), 0 ≤

64



s ≤ t, we get

etP
[
X(t) ∈ mt +D,X(s) ≤ D + s

t
mt + ft,γ(s)∀s ∈ [r, t− r],

but ∃s ∈ [r, t− r] : X(s) ≥ D̄ + s

t
mt − ft,α(s)

]
,

≤ etP
[
X(t) ∈ mt +D,X(s)− s

t
X(t) ≤ D̄ t− s

t
+ ft,γ(s)∀s ∈ [r, t− r]

but ∃s ∈ [r, t− r] : X(s)− s

t
X(t) ≥ D̄ t− s

t
− ft,α(s)

]
= etP [X(t) ∈ mt +D]

×P
[
ξt(s) ≤ D̄

t− s
t

+ ft,γ(s)∀s ∈ [r, t− r]

but ∃s ∈ [r, t− r] : ξt(s) ≥ D̄
t− s
t
− ft,α

]
. (4.37)

Using the same tail estimation we applied in the proof of 4.1 ([5]), we observe that

etP [X(t) ∈ D +mt] ≤ κt
∫
D

exp
{√

2x
}
dx (4.38)

for some κ > 0 and t ≥ 2. Hence, by the bounds 4.32, 4.37, 4.38, the claim of the Theorem will

follow if we show that

tP
[
ξt(s) ≤ D̄

t− s
t

+ ft,γ(s)∀s ∈ [r, t− r],

but ∃s ∈ [r, t− r] : ξt(s) ≥ D̄
t− s
t
− ft,α(s)

]
→ 0 (4.39)

as r →∞ uniformly in t > 3r, that is what we are going to prove now. Observe that, by definition

of complement of a set,

{
∃s ∈ [r, t− r] : ξt(s) ≥ D̄

t− s
t
− ft,α(s)

}C
⊆
{
ξt(s) ≤ D̄

t− s
t

+ ft,γ(s)∀s ∈ [r, t− r]
}
. (4.40)

65



Hence

tP
[
ξt(s) ≤ D̄

t− s
t

+ ft,γ(s)∀s ∈ [r, t− r],

but ∃s ∈ [r, t− r] : ξt(s) ≥ D̄
t− s
t
− ft,α(s)

]
= t

(
P
[
ξt(s) ≤ D̄

t− s
t

+ ft,γ(s)∀s ∈ [r, t− r]
]

−P
[
ξt(s) ≤ D̄

t− s
t
− ft,α(s)∀s ∈ [r, t− r]

])
. (4.41)

We now need to define the following functions:

f(s) = D̄
t− s
t

, (4.42)

F (s) = f(s) + ft,γ(s), (4.43)

F̄ (s) = f(s) + ft,α(s), (4.44)

F (s) = f(s)− ft,α(s). (4.45)

Using these definition and the same notation as in Subsection 5.1, we rewrite 4.41:

t

(
P
[
ξt(s) ≤ D̄

t− s
t

+ ft,γ(s)∀s ∈ [r, t− r]
]

−P
[
ξt(s) ≤ D̄

t− s
t
− ft,α(s)∀s ∈ [r, t− r]

])
= t

(
P 0
[
BF [r, t− r]

]
− P 0

[
BF [r, t− r]

])
= tP 0

[
B0[r, t− r]

] P 0
[
BF [r, t− r]

]
P 0 [B0[r, t− r]]

1−
P 0
[
BF [r, t− r]

]
P 0 [BF [r, t− r]]

 . (4.46)

By the definitions 4.43, 4.44, 4.45, it is clear that F ≤ F ≤ F̄ . Moreover, we can choose r large

enough to get F ≤ 0 ≤ F on the interval [r, t− r]. By Lemma 5.12, we obtain

P 0
[
BF [r, t− r]

]
≤ P 0

[
B0[r, t− r]

]
≤ P 0

[
BF [r, t− r]

]
≤ P 0

[
BF̄ [r, t− r]

]
. (4.47)
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Hence,

P 0
[
BF [r, t− r]

]
P 0
[
BF̄ [r, t− r]

] ≤ P 0
[
BF [r, t− r]

]
P 0 [BF [r, t− r]] ≤ 1 ≤

P 0
[
BF [r, t− r]

]
P 0 [B0[r, t− r]]

≤
P 0
[
BF̄ [r, t− r]

]
P 0 [BF [r, t− r]] . (4.48)

Thus, by the bounds we just showed,

tP 0
[
B0[r, t− r]

] P 0
[
BF [r, t− r]

]
P 0 [B0[r, t− r]]

1−
P 0
[
BF [r, t− r]

]
P 0 [BF [r, t− r]]


≤ tP 0

[
B0[r, t− r]

] P 0
[
BF̄ [r, t− r]

]
P 0 [BF [r, t− r]]

1−
P 0
[
BF [r, t− r]

]
P 0
[
BF̄ [r, t− r]

]
 . (4.49)

Moreover, the Brownian bridge is symmetric around the x axis, and so we have

P 0
[
BF [r, t− r]

]
P 0
[
BF̄ [r, t− r]

] =
P 0 [B−F [r, t− r]

]
P 0
[
B−F̄ [r, t− r]

]
= P [ξt(s) > −f(s) + ft,α(s), r ≤ s ≤ t− r]

P [ξt(s) > −f(s)− ft,α(s), r ≤ s ≤ t− r] , (4.50)

where in the second row we just used the definition of P 0 [B] as in Subsection 5.1. Recall that our

aim is to show that 4.39 converges to 0 as r → ∞ uniformly in t. By the previous observations

this will follow if we show that 4.49 converges to 0 as r →∞ uniformly in t.

Observe that Lemma 5.14 implies

lim
r→∞

lim
t→∞

tP 0
[
B0[r, t− r]

]
= +∞. (4.51)

Hence we need to find uniform bounds on 4.50 to compensate 4.51, otherwise we can not obtain

the convergence we are looking for.

We introduce the function

βr,t(s) =



2rα−1s, 0 ≤ s ≤ r,

2sα, r ≤ s ≤ t
2

2(t− s)α, t
2 ≤ s ≤ t− r,

2rα−1(t− s), t− r ≤ s ≤ t,

(4.52)
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assuming, without loss of generality, that t > 3r. Hence we can rewrite the numerator of equation

4.50 using the function just introduced:

P [ξt(s) > −f(s) + ft,α(s), r ≤ s ≤ t− r]

= P [ξt(s)− βr,t(s) > −f(s)− ft,α(s), r ≤ s ≤ t− r] . (4.53)

We now need to use a change of measure.

Recall that if Pa is the law of the Brownian bridge on [0, t] with drift a(s) ∈ L2[0, t] and A ⊂ C[0, t]

is a Borel set, Girsanov’s formula says that

Pa[A] = E
[
exp

{∫ t

0
a(s)dξt(s)−

1
2

∫ t

0
a2(s)ds+ 1

2t

(∫ t

0
a(s)ds

)2}
;A
]
. (4.54)

The process ξt(s)− βr,t(s) is a diffusion with drift a(s) = −β′r,t(s). Set

Ar,t = {ξ : ξt(s) > −f(s)− ft,α(s), s ∈ [r, t− r]}. (4.55)

We can apply Girsanov’s formula:

P [ξt(s)− βr,t(s) > −f(s)− ft,α(s), r ≤ s ≤ t− r]

= E
[
exp

{
−
∫ t

0
β′r,t(s)dξt −

1
2

∫ t

0
β′r,t(s)2ds− 1

2t

(∫ t

0
β′r,t(s)ds

)2}
: Ar,t

]

= E
[
exp

{
−
∫ t

0
β′r,t(s)dξt −

1
2

∫ t

0
β′r,t(s)2ds

}
;Ar,t

]
, (4.56)

since
∫ t

0 β
′
r,t(s)ds = 0.

Consider

A1
r,t = Ar,t ∪ {ξ : ξt(s) > Λt(s), r ≤ s ≤ t− r} ⊂ Ar,t, (4.57)

where

Λ(s) =

 2sθ, 0 ≤ s ≤ t
2 ,

2(t− s)θ, t
2 ≤ s ≤ t,

(4.58)

with 1
2 < θ < 1− α. We would like to control the behaviour of our Brownian bridge on A1

r,t.
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We start by estimating
∫ t

0 β
′
r,t(s)dξt(s). Observe that

β′r,t(s) =



2rα−1, 0 ≤ s ≤ r,

2αsα−1, r ≤ s ≤ t
2

−2α(t− s)α−1, t
2 ≤ s ≤ t− r,

−2rα−1(t− s), t− r ≤ s ≤ t,

(4.59)

Moreover, −β′′ ≥ 0 and ξt(s) ≤ Λt(s). Hence, using integration by parts, we obtain

∫ t

0
β′r,t(s)dξt(s) = −

∫ t−r

r
β′′r,t(s)ξt(s)ds ≤ −

∫ t−r

r
β′′r,t(s)Λt(s)ds. (4.60)

Define now

lr,t(s) =



2rθ−1s, 0 ≤ s ≤ r,

2sθ, r ≤ s ≤ t
2

2(t− s)θ, t
2 ≤ s ≤ t− r,

2rθ−1(t− s), t− r ≤ s ≤ t,

(4.61)

Using again integration by parts, we have

∫ t

0
β′r,t(s)dlr,t(s) = −

∫ t−r

r
β′′r,t(s)Λt(s)ds. (4.62)

Thus, combining 4.60 and 4.62,

−
∫ t

0
β′r,t(s)dξt(s) ≥ −

∫ t

0
β′r,t(s)dlr,t(s). (4.63)

It can be checked that

−
∫ t

0
β′r,t(s)dlr,t(s) ≥ −κ1r

α+θ−1, (4.64)

for some κ1 > 0 and

− 1
2

∫ t

0
β′r,t(s)2ds ≥ −κ2r

2α−1, (4.65)

for some κ2 > 0. Therefore 4.56 is bounded from below:

E
[
exp

{
−
∫ t

0
β′r,t(s)dξt −

1
2

∫ t

0
β′r,t(s)2ds

}
;Ar,t

]
≥ exp

{
−κ3r

α+θ−1
}
P
[
A1
r,t

]
, (4.66)

for some constant κ3 > 0. Notice that exp
{
−κ3r

α+θ−1
}
→ 1 for r large, since for our choice
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α+ θ − 1 < 0.

Recall that we were looking for uniform bounds on 4.50. We reduced this problem to showing that

P
[
A1
r,t

]
P [Ar,t]

→ 1 (4.67)

as r →∞, uniformly in t. Firstly, observe that

P
[
A1
r,t

]
P [Ar,t]

= P [ξt(s) < Λt(s), r ≤≤ t− r | Ar,t] . (4.68)

Since f(s) = t−s
t D̄, there exists a r0 = r0(D̄, C, α) such that

− f(s)− ft,α(s) < 0 for r ≤ s ≤ t− r, (4.69)

for r ≥ r0.

Therefore we can apply Lemma 5.12: for all r ≥ r0

P [ξt(s) < Λt(s), r ≤≤ t− r | Ar,t]

≥ P [ξt(s) < Λt(s), r ≤ s ≤ t− r | ξt(s) > 0, r ≤ s ≤ t− r]

= P 0
[
BΛt [r, t− r] | B0[r, t− r]

]
≥ 1− κ4

∞∑
k=r

k exp
{
−Ck2θ−1

}
= 1− κ4

∞∑
k=r

k exp
{
−Ck1−2α

}
, (4.70)

for some κ4 > 0, where the second inequality comes from Lemma 5.13. We obtained a lower bound

on 4.50. Therefore 4.49 is, up to numerical constants, smaller than

tP 0
[
B0[r, t− r]

] ∑∞
k=r k exp

{
−Ck1−2α}

1−
∑∞
k=r k exp {−Ck1−2α}

≤ tP 0
[
B0[r, t− r]

] ∫∞
r x exp

{
−Cx1−2α}dx

1−
∫∞
r x exp {−Cx1−2α}dx

≤ t
2r

t− 2r

∫∞
r x exp

{
−Cx1−2α}dx

1−
∫∞
r x exp {−Cx1−2α}dx

, (4.71)

where the last inequality holds for Lemma 5.14. The integral in the last term converges to 0 as

r →∞, since for our choice α < 1
2 . Hence the whole expression converges to 0 as r →∞, uniformly

in t, which was our claim.

70



4.2 Lower envelope and the tube

We need another piece of information about paths of extremal particles : they cannot lie too low.

The following theorem ensures this result:

Theorem 4.4. Let D ⊂ R be a compact set and let 1
2 < β < 1. Set D̄ = sup{x ∈ D}. For any

ε > 0 there exists rl = rl(β,D, ε) such that for r ≥ rl and t > 3r,

P[∃k ≤ N(t) : Xk(t) ∈ mt +D, but ∃s ∈ [r, t− r] : Xk(s) ≤ D̄ + Et,β(s)] < ε. (4.72)

Proof. Let α be such that 0 < α < 1
2 < β and set D = inf {x : x ∈ D}. By Theorem 4.3, we know

that particles have to stay below the entropic envelope. Hence, to prove the theorem, it suffices to

show that

P [∃k ≤ N(t) : Xk(t) ∈ mt +D,Xk(s) ≤ D + Et,α(s)∀s ∈ [r, t− r]

but ∃s ∈ [r, t− r] : Xk(s) ≤ D̄ + Et,β(s) ]→ 0 (4.73)

as r →∞, uniformly in t > 3r.

Let now ξt(s) = X(t)− s
tX(s), 0 ≤ s ≤ t be a Brownian bridge independent of X(t). Recall that

on the event {X(t) ∈ mt +D}, we have that X(t)− D̄ ≤ mt ≤ X(t)−D. Using this fact and by

Markov’s inequality, we get

P [∃k ≤ N(t) : Xk(t) ∈ mt +D,Xk(s) ≤ D + Et,α(s)∀s ∈ [r, t− r]

but ∃s ∈ [r, t− r] : Xk(s) ≤ D̄ + Et,β(s) ]

≤ etP [X(t) ∈ mt +D]

×P
[
ξt(s) ≤

{
D̄ − s

t
D

}
− ft,α(s)∀s ∈ [r, t− r]

but ∃s ∈ [r, t− r] : ξt(s) ≤
{
D̄ − s

t
D

}
− ft,β(s)

]
. (4.74)

Since X(t) is Gaussian, we have that

etP [X(t) ∈ D] ≤ κ1t

∫
D
e−
√

2xdx (4.75)
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for some κ1 > 0. Moreover, if we set diam(D) = |D̄|+ |D|, we obtain

P
[
ξt(s) ≤

{
D̄ − s

t
D

}
− ft,α(s)∀s ∈ [r, t− r]

but ∃s ∈ [r, t− r] : ξt(s) ≤
{
D̄ − s

t
D

}
− ft,β(s)

]
≤ P [ξt(s) ≤ diam(D)− ft,α(s)∀s ∈ [r, t− r]

but ∃s ∈ [r, t− r] : ξt(s) ≤ diam(D)− ft,β(s)] . (4.76)

By the previous inequalities, the claim of the theorem will follow if we prove that

κ1t

∫
D
e−
√

2xdxP
[
ξt(s) ≤

{
D̄ − s

t
D

}
− ft,α(s)∀s ∈ [r, t− r]

but ∃s ∈ [r, t− r] : ξt(s) ≤
{
D̄ − s

t
D

}
− ft,β(s)

]
→ 0

as r →∞, uniformly in t > 3r, that is the same as asking

tP
[
ξt(s) ≤

{
D̄ − s

t
D

}
− ft,α(s)∀s ∈ [r, t− r]

but ∃s ∈ [r, t− r] : ξt(s) ≤
{
D̄ − s

t
D

}
− ft,β(s)

]
→ 0

as r →∞, uniformly in t > 3r.

Without loss of generality, we can take 0 < a < 1 such that 2aβ − 1 > 0. Let D ⊂ R be a given

compact. We can find r̃ = r̃(α, β,D, a) such that for r ≥ r̃we have

diam(D)− ft,α(s) ≤ 0 (4.77)

and

diam(d)− ft,β(s) ≤ −ft,aβ(s) (4.78)

for all s ∈ [r, t− r]. Thus, recalling also that the Brownian bridge is symmetric around the x-axis,

tP
[
ξt(s) ≤

{
D̄ − s

t
D

}
− ft,α(s)∀s ∈ [r, t− r]

but ∃s ∈ [r, t− r] : ξt(s) ≤
{
D̄ − s

t
D

}
− ft,β(s)

]
≤ tP [ξt(s) ≤ 0∀s ∈ [r, t− r] but ∃s ∈ [r, t− r] : ξt(s) ≤ −ft,aβ(s)]

= tP [ξt(s) ≥ 0∀s ∈ [r, t− r] but ∃s ∈ [r, t− r] : ξt(s) ≥ ft,aβ(s)] . (4.79)
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Moreover

tP [ξt(s) ≥ 0∀s ∈ [r, t− r] but ∃s ∈ [r, t− r] : ξt(s) ≥ ft,aβ(s)]

= t (P [ξt(s) ≥ 0∀s ∈ [r, t− r]]− P [0 ≤ ξt(s) ≤ ft,aβ(s)∀s ∈ [r, t− r]])

= tP 0 [B0[r, t− r]]
(
1− P 0

[
Bft,aβ [r, t− r] | B0

])
≤ κtP 0 [B0[r, t− r]]

∫ ∞
r

xe−x
δ
dx, (4.80)

where the last inequality holds by Lemma 5.13 and κ > 0, and δ = 2aβ − 1. By Lemma 5.14, we

have

tP 0 [B0[r, t− r]] ≤ κ rt

t− 2r (4.81)

and
rt

t− 2r < κr (4.82)

if t > 3r. Moreover
∫∞
r xe−x

δ tends to 0 faster than any power of r, as r → ∞. Hence we obtain

that 4.80 tends to 0 as r →∞, uniformly on t > 3r, which proves the theorem.

Theorems 4.3 and 4.4 provide an explicit characterized tube, a space-time region, where paths

of extremal particles spend most of their time with overwhelming probability:

Corollary 4.5. Let D ⊂ R be a compact set. Let 0 < α < 1
2 < β < 1. For any ε > 0 there exists

r1 = r1(α, β,D, ε) such that for r ≥ r1 and t > 3r,

P[∀k ≤ N(t) : Xk(t) ∈ mt +D,

D̄ + Et,β(s) ≤ Xk(s) ≤ D̄ + Et,α(s)∀s ∈ [r, t− r]] ≥ 1− ε.
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4.3 Genealogy of extremal particles

The localization of paths is very useful also for proving the following strong result on genealogy

of extremal particles: we prove that in the large t-limit, such particles descend with overwhelming

probability from ancestors having split either within a distance of order 1 from time 0, or within

a distance of order 1 from time t.

Let u, v ∈ Nt. Recall that, conditionally upon the branching mechanism, it holds

E[Xu(t)Xv(t)] = Qt(u, v), (4.83)

where Qt(u, v) = sup{s ≤ t : Xu(s) = Xv(s)} is the time of first branching.

Theorem 4.6. For any compact set D ⊂ R,

lim
r→∞

sup
t>3r

P[∃u, v ∈ Nt(D) : Qt(u, v) ∈ (r, t− r)] = 0 (4.84)

74



Proof. Let D ⊂ R be a compact set. By definition of compactness, there exists D ≤ D̄ ∈ R such

that D ⊂ [D, D̄]. In order to prove the theorem, we need to find r0(D, ε) and t0 = t0(D, ε) such

that for r ≥ r0 and t > max {t0, 3r} we have

P [∃i, j ≤ N(t) : Xi(t), Xj(t) ∈ mt +D and Qt(i, j) ∈ [r, t− r]] < ε. (4.85)

Corollary 4.5 tells us that there exists r=r1(D, ε) such that the extremal particles that reach D at

time t satisfy, for t > 3r1,

D̄ + s′

t
mt − ft,β(s′) ≤ Xi(s)

≤ D̄ + s′

t
mt − ft,α(s′)∀s′ ∈ [r1, t− r1] (4.86)

with probability at least 1 − ε. Denote by ΞD,t the set of paths X(s′) satisfying 4.86 and X(t) ∈

mt + D. Moreover, denote by Ξ[s,t−r1]
D,t the set of paths that satisfy 4.86 for all s′ ∈ [s, t − r1], for

s ≥ r1 and X(t) ∈ mt +D.

Let now K =
∑
k pkk(k−1), where {pk} is the offspring distribution. We need the following lemma

([5]):
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Lemma 4.7. Let µs be the Gaussian measure of variance s. It holds

E[|{(i, j) : Xi, Xj ∈ ΞD,ti 6= j}|] (4.87)

= Ket
∫ t

0
et−sds

∫ ∞
−∞

dµs(y)P[X ∈ ΞD,t|X(s) = y]P[X ∈ Ξ[s,t−r1]
D,t |X(s) = y].

In our case, the event considered includes a condition on Qt(i, j) and so the statement changes:

E[|{(i, j)i 6= j : Xi, Xj ∈ ΞD,t, Qt(i, j) ∈ [r, t− r]}|] (4.88)

= Ket
∫ t−r

r
et−sds

∫ ∞
−∞

dµs(y)P[X ∈ ΞD,t|X(s) = y]P[X ∈ Ξ[s,t−r1]
D,t |X(s) = y].

Our aim is to prove that there exists r0 = r0(D, ε) and t0 = t0(D, ε), such that, for r > r0 and

t > max {t0, 3r}, 4.88 is smaller than ε. By Markov’s inequality and Corollary 4.5, with r0 > r1,

will imply 4.85. We want to bound the term P
[
x ∈ Ξ[s,t−r1]|X(s)=y

D,t

]
, uniformly in y.

Observe that

s′ 7→ D̄ + s′

t
mt − ft,α(s′) (4.89)

is a convex function and equals mt + D̄ at time t:

D̄ + t

t
mt − ft,α(t) = mt + D̄. (4.90)

From the picture below we can see that

{
X(s′) ≤ D̄ + s′

t
mt − ft,α(s′)∀s′ ∈ [s, t− r1]

}
(4.91)

⊆
{
X(s′) ≤ D̄ +

(
1− s

t

)
mt + ft,α(s′)
t− s

(s′ − s)+

D̄ + s

t
mt + ft,α(s)− y∀s′ ∈ [s, t− r1]

}
. (4.92)

Set

a = D̄ + s

t
mt − ft,α(s)− y (4.93)

and

b =
(
1− s

t

)
mt + ft,α(s)
t− s

. (4.94)
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We now subtract X(s) and s′−s
t−s X(t) from X(s′) and shift the time s′ by s, obtaining

P
[
X ∈ Ξ[

D,ts, t− r1]|X(s) = y
]

≤ P
[
X(s′)− s′

t− s
X(t− s) ≤ a+ bs′ − s′

t− s
X(t− s),∀s′ ∈ [0, t− s− r1],

X(t− s) ∈ mt − y +D] . (4.95)

Recall that D ⊆ [D, D̄]. Set Z1 = D̄ + s
tmt − ft,α(s)− y and Z2 = D̄ −D. We find the following

upper bound

P
[
X(s′)− s′

t− s
X(t− s) ≤ a+ bs′ − s′

t− s
X(t− s), ∀s′ ∈ [0, t− s− r1],

X(t− s) ∈ mt − y +D]

≤ P
[
X(s′)− s′

t− s
X(t− s) ≤

(
1− s′

t− s

)
Z1 + s′

t− s
Z2, ∀s′ ∈ [0, t− s− r1],

X(t− s) ≥ mt − y +D] . (4.96)

By definition, X(s′) − s′

t−sX(t − s) is a Brownian bridge ξt−s(s′). Hence, by the independence
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property of it,

P
[
X(s′)− s′

t− s
X(t− s) ≤

(
1− s′

t− s

)
Z1 + s′

t− s
Z2,∀s′ ∈ [0, t− s− r1],

X(t− s) ≥ mt − y +D]

= P
[
ξt−s(s′) ≤

(
1− s′

t− s

)
Z1 + s′

t− s
Z2∀s′ ∈ [0, t− s− r1]

]
×P [X(t− s) ≥ mt − y +D] . (4.97)

Moreover, by Lemma 5.14, it holds

P
[
ξt−s(s′) ≤

(
1− s′

t− s

)
Z1 + s′

t− s
Z2∀s′ ∈ [0, t− s− r1]

]
≤ 2Z1
t− s− r1

(
r1
t− s

Z1 +
(

1− r1
t− s

)
Z2 +

√
r1

)
. (4.98)

Recall now the X(s) = y lies between the entropic and the lower envelope, by Corollary 4.5.

Consequently

D̄ + s

t
mt − ft,β(s)− ft,α(s) ≤ X(s) ≤ D̄ + s

t
mt − ft,α(s) (4.99)

and thus

0 ≤ Z1 ≤ ft,β(s)− ft,α(s) ≤ κft,β(s), (4.100)

for some κ > 0, independent of t and r.

Recall that we are looking for a r0 = r0(D, ε) and t0 = t0(D, ε) such that for r ≥ r0 and t >

max {t0, 3r}, the thesis of the theorem holds. We would like to specify the choice of r0 to make

4.98 small. Observe that in the integral 4.88, r ≤ t − s. Hence, if we choose r > 2r1, we obtain
1

t−s−r1 ≤
2
t−s . So, we require r0 > 2r1. Moreover, by 4.98,

r1Z1
t− s

≤ r1κft,β(s)
t− s

≤ κr1(t− s)β−1, (4.101)

where, since r ≤ t− s, we can choose r1−β
0 > r1, so that r1Z1

t−s < 1. Without loss of generality, we

can also require √r0 ≥ max {Z2, 1}. Thus we obtain

2Z1
t− s− r1

(
r1
t− s

Z1 +
(

1− r1
t− s

)
Z2 +

√
r1

)
≤ κ
√
rZ1

t− s
≤ κ
√
rft,β(s)
t− s

. (4.102)
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We now want to bound P[X(t − s) ≥ mt − y + D]. Since y ≤ s
tmt − ft,α and X is Gaussian, we

can use a well-known estimate of the Gaussian density, obtaining

P[X(t− s) ≥ mt − y +D] ≤ κe
−(t−s)e

3
2
t−s
t

ln te−
√

2ft,α(s)

(t− s)
1
2

. (4.103)

Finally, putting together 4.102 and4.103, we find what we were looking for:

P
[
X ∈ Ξ[s,t−r1]

D,t |X(s) = y
]
≤ κ
√
r
e−(t−s)e

3
2
t−s
t

ln te−
√

2ft,α(s)

(t− s)
3
2

. (4.104)

We can now bound the whole expression in 4.88:

Ket
∫ t−r

r
et−sds

∫ ∞
−∞

dµs(y)P[X ∈ ΞD,t|X(s) = y]P[X ∈ Ξ[s,t−r1]
D,t |X(s) = y]

≤ κetP[X ∈ ΞD,t]
√
r

∫ t−r

r

e−(t−s)e
3
2
t−s
t

ln te−
√

2ft,α(s)

(t− s)
3
2

ds. (4.105)

We have to show that this can be made arbitrarily small by taking r0 large.

Let t > 3r, which ensures that t ≥ 3r1. Using the definition of ΞD,t and the bounds on D, we

obtain

P[X ∈ ΞD,t] ≤ P
[
X(s) ≤ s

t
mt + D̄∀s ∈ [r1, t− r1], X(t) ∈ mt +D

]
≤ P

[
ξt(s) ≤ D̄∀s ∈ [r1, t− r1]

]
P [X(t) ≥ mt +D] . (4.106)

By Lemma 5.14 and the fact that t ≥ 3r1, we have

ξ≈(∼) ≤ D̄∀∼ ∈ [r1,≈−r1] ≤ κ r1
t− 2r1

≤ κr1
t
. (4.107)

Moreover,

P [X(t) ≥ mt +D] ≤ κte−t. (4.108)

Hence the term etP [X ∈ ΞD,t] ∼ r1, uniformly for t ≥ 3r1. We now concentrate on the integral

in 4.105. We split the domain of integration into the intervals
[
r, t2

]
and

[
t
2 , t− r

]
. In the first
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interval we have:

κ
√
r

∫ t
2

r

e−(t−s)e
3
2
t−s
t

ln te−
√

2ft,α(s)

(t− s)
3
2

ds

≤ κ
√
r

∫ ∞
r

sβe−(
√

2)sαds ≤ κκ′r
3
2 e−r

α
, (4.109)

for some κ′ = κ′(α).

κκ′r
3
2 e−r

α → 0, (4.110)

as r →∞. On the second interval, we change variable s 7→ t− s:

κ
√
r

∫ t

t
2

e−(t−s)e
3
2
t−s
t

ln te−
√

2ft,α(s)

(t− s)
3
2

ds = κ
√
r

∫ t
2

r

e
3
2
s
t

ln tsβe−
√

2sα

s
3
2

ds. (4.111)

Now we can split again the integration domain into [r, tδ] and [tδ, t2 ], with 0 < δ < 1. For t large

enough we have

κ
√
r

∫ tδ

r

e
3
2
s
t

ln tsβe−
√

2sα

s
3
2

ds ≤ κ
√
r

∫ ∞
r

sβe−
√

2sα

s
3
2

ds ≤ κ
√
re−r

α
. (4.112)

This goes to 0 as r →∞. On the second interval

κ
√
r

∫ t
2

tδ

e
3
2
s
t

ln tsβe−
√

2sα

s
3
2

ds (4.113)

≤ κ
√
rt

3
4

∫ t
2

tδ

sβe−
√

2sα

s
3
2

ds ≤ κ
√
rt

7
4 e−t

αδ ≤ κt
13
4 e−t

αδ
,

which can be made arbitrarily small for t0 large enough, since t > max {t0, 3r}. The claim

follows.
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Chapter 5

Appendix

Let X(i)(t) be a family of iid branching Brownian motion processes, defined as in Chapter 3 and

let Z = limt→∞ Z(t), where Z(t) is the derivative martingale defined as in 3.33. Let η be a Poisson

process, defined on (−∞, 0] and shifted by 1√
2 lnZ, with intensity

√
2
π

(−x)e−
√

2xdx,

and let (ηi, i ∈ N) be its atoms.

Proposition 5.1. Let y ∈ R and ε > 0 be given. There exist two constants A1 and A2 with

0 < A1 < A2 <∞ and t0, depending only on y and ε, such that

sup
t≥0

P[∃i, k : ηi +X
(i)
k (t)−

√
2t ≥ y, ηi /∈ [−A1

√
t,−A2

√
t] < ε. (5.1)

Lemma 5.2. Let b ∈ R and h(x) = I[b,∞)(x), x ∈ R. Let C be a constant in R. Then

lim
t→∞

∫ 0

−∞

{∫
R
h(x)P[y + max

i
Xi(t)−

√
2t ∈ dx]

}√ 2
π

(−y)e−
√

2ydy = Ce
√

2b. (5.2)

Moreover, the convergence also holds for a continuous function h(x) that is bounded and is zero

when x is small enough:

lim
t→∞

∫ 0

−∞

{∫
R
h(x)P[y + max

i
Xi(t)−

√
2t ∈ dx]

}√ 2
π

(−y)e−
√

2ydy

=
∫
R
h(z)
√

2Ce−
√

2zdz. (5.3)
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Theorem 5.3. Let x = a
√

2t+ b for some a < 0, b ∈ R. The point process

∑
k≤N(t)

δx+Xk(t)−
√

2t conditioned on the event {x+ max
k

Xk(t)−
√

2t > 0} (5.4)

converges in law as t→∞ to a well-defined point process Ē. The limit does not depend on a and

b, and the maximum of Ē has the law of an exponential random variable.

Corollary 5.4. Let D as in 3.39 and Ē the point process obtained in Theorem 5.3. Let x = a
√
t,

a < 0. In the limit t→∞, the random variables

Dt =
∑
i

δXi(t)−maxj Xj(t) (5.5)

and x + max Ē are conditionally independent on the event {x + max Ē > b} for any b ∈ R. More

precisely, for any bounded continuous function f, h and φ ∈ CC(R), it holds

lim
t→∞

E
[
f

(∫
φ(z)Dt(dz)

)
h(x+ max Ēt) | x+ max Ēt > b

]
(5.6)

= E
[
f

(∫
φ(z)D(dz)

)] ∫ ∞
b

h(y)
√

2e−
√

2ydy

e−
√

2b
. (5.7)

Moreover, convergence is uniform in x = a
√
t for a belonging to a compact set.

Lemma 5.5. Let M be the space of Radon measures on R. Let (µt, Xt) be a sequence of random

variables on (M×R,P) that converges to (µ,X), that is: for any bounded continuous function f, h

on R and any φ ∈ CC(R) it holds

E
[
f

(∫
φ(y)µt(dy)

)
h(Xt)

]
→ E

[
f

(∫
φ(y)µ(dy)

)
h(X)

]
. (5.8)

Then, for any φ ∈ CC(R) and g : R→ R bounded and continuous,

E
[
g

(∫
φ(y +Xt)µt(dy)

)]
→ E

[
g

(∫
φ(y +X)µ(dy)

)]
. (5.9)

Lemma 5.6. Let f : R→ [0, 1]. The function

v(t, x) = E

N(t)∏
k=1

f(x+Xk(t))

 (5.10)
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is a solution of the F-KPP equation 3.9 with initial condition v(0, x) = f(x).

Proposition 5.7. Let u be a solution of the F-KPP equation 3.9 with initial condition satisfying

the assumption of Theorem 3.5 and

y0 = sup {y : u(0, y) > 0} <∞. (5.11)

Define

ψ(r, t,X +
√

2t) = e−
√

2X√
2π(t− r)

∫ ∞
0

u(r, y′ +
√

2r)ey′
√

2e
− (y′−X)2

2(t−r) (5.12)(
1− e−2y′

X+ 3
2
√

2 ln t
t−r

)
dy′. (5.13)

Then

lim
t→∞

ex
√

2 t
3
2

3
2
√

2 ln t
ψ(r, t, x+

√
2t) =

√
2
π

∫ ∞
0

u(r, y +
√

2r)yey
√

2dy. (5.14)

Lemma 5.8. Let u be a solution of the F-KPP equation 3.9 with initial condition satisfying the

assumption of Theorem 3.5 and

y0 = sup {y : u(0, y) > 0} <∞. (5.15)

Let

C = lim
r→∞

√
2
π

∫ ∞
0

yey
√

2u(r, y +
√

2r)dy, (5.16)

whose existence is ensured by Proposition 5.7. Then, for any x ∈ R it holds

lim
r→∞

√
2
π

∫ ∞
0

yey
√

2u(r, x+ y +
√

2r)dy = Ce−
√

2x. (5.17)

Lemma 5.9. Let φ : R → [0,∞) be a non-negative continuous function with compact support.

Let u(t, x) and uδ(t, x) be solutions of the F-KPP equation 3.9, with initial condition u(0, x) =

1− e−φ(−x) and uδ(0, x) = 1− e−φ(−x)I{−x≤δ} respectively. Set

C(δ, φ) = lim
t→∞

√
2
π

∫ ∞
0

uδ(t, y +
√

2t)ye
√

2ydy (5.18)
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Then limδ→∞C(δ, φ) exists and

C(φ) = lim
δ→∞

C(δ, φ) = lim
t→∞

√
2
π

∫ ∞
0

u(t, y +
√

2t)ye
√

2ydy. (5.19)

Moreover

lim
t→∞

u(t, x+mt) = 1− E
[
exp

{
−C(φ)Ze−

√
2x
}]
, (5.20)

where we recall that mt =
√

2t− 3
2
√

2 ln t+ o(1).

5.1 Brownian bridges and their properties

In this subsection we set some notations and facts on Brownian bridges.

Denote by {X(s), s ≥ 0} a standard Brownian motion.

Definition 5.10. A Brownian bridge is defined as

ξt(s) = X(s)− s

t
X(t), 0 ≤ s ≤ t, (5.21)

that is a new Gaussian process starting and ending at time t in 0.

We assume that both X and ξt are defined on C([0, t],B), where B is the Borel σ-algebra.

Denote by P 0 the corresponding measure of ξt on C([0, t],B).

Let l : [s1, s2]→ R be a curve. We denote by Bl[s1, s2], or just Bl if there is no risk of confusion,

the set of paths lying strictly above l on the interval [s1, s2] and by Bl[s1, s2], or simply Bl, the

set of paths lying strictly below l.

In this setting, we can now state some useful facts concerning Brownian bridges.

Lemma 5.11. Let ξt(s) be the Brownian bridge defined in 5.10. Then

(i) ξt(s) is a strong Markov process;

(ii) ξt(s) is independent of X(t), for 0 ≤ s ≤ t.

Lemma 5.12. Let l1, l2 and Λ be curves such that l1(s) ≤ l2(s) ≤ Λ(s) for all s ∈ [0, t] and

P 0[Bl2 [0, t]] > 0. Then

P 0[BΛ | Bl1 ] ≥ P 0[BΛ | Bl2 ] (5.22)

and

P 0[BΛ | Bl1 ] ≤ P 0[BΛ | Bl2 ]. (5.23)
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The following theorem gives us uniform bounds on conditional probabilities of a Brownian

bridge to stay below a certain curves and allows us to compare probabilities that the Brownian

bridge hits curves that are close to one another.

Lemma 5.13. Set

Λt(s) =

 Csε for 0 ≤ s ≤ t
2

C(t− s)ε for t
2 ≤ s ≤ t

with ε > 1
2 and C > 0. Then

P 0[BΛt [r, t− r] | B0[r, t− r]]→ 1, (5.24)

uniformly in t > 3r as r →∞. More precisely, if a is a fixed constant a > 0, and δ = 2ε− 1 > 0,

it holds

P 0[BΛt [r, t− r] | B0[r, t− r]] ≥ 1− 2aC
∞∑
k=r

ke−Ck
δ
. (5.25)

Lemma 5.14. Let Z1, Z2 ≥ 0 and r1, r2 ≥ 0. Set Z(r1) =
(
1− r1

t

)
Z1 + r1

t Z2 and Z(r2) =
r2
t Z1 +

(
1− r2

t

)
Z2. Then, for t > r1 + r2,

P
[
ξt(s) ≤

(
1− s

t

)
Z1 + s

t
Z2, r1 ≤ s ≤ t ≤ t− r2

]
≤ 2
t− r1 − r2

∏
i=1,2

(Z(ri) +
√
ri) . (5.26)

5.2 Simulations

In this section we will present a Matlab code, that represents the BBM. We start with a certain

number of particles, which we choose distributed according to a Poisson process in the plane with

the scaled Lebesgue mean measure. Each particle performs a Brownian motion in the plane and

has a lifetime that is distributed as an exponential random variable. When the lifetime ends,

the particles either divides into two daughter particles with probability 1−van pr or dies with

a probability van pr. If we set van pr= 0, we are choosing a BBM without selection: particles

never die and we can see that the resulting graph is a cloud of particles that keep growing in size

and shape (fig.5.1). Otherwise we can add a noise, asking that particles can die with a certain

probability. The resulting graph (fig.5.2) shows a significant difference in the number of alive

particles.
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Figure 5.1: A BBM is a cloud of particles growing in size and shape

Figure 5.2: A BBM with selection
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1 function [pt_conf , fmat ]= multibbm (nu , lambda , van_pr , maxt , dt , ...
2 domain )
3 % MULTIBBM Simulate a branching Brownian motion in the plain and make
4 % an animation .
5 %
6 % Initially particles are distributed according to a Poisson
7 % process in the plain with the scaled Lebesgue mean measure . The
8 % particle follows a Brownian motion in the plane and has
9 % exp( lambda ) distributed lifetime . When the lifetime ends , the

10 % particle either divides into two particles with probability 1- van_pr
11 % or dies with probability van_pr .
12 %
13 % [ pt_conf ]= multibbm (nu , lambda , van_pr , maxt
14 % [, dt , domain ])
15 %
16 % Inputs :
17 % nu - intensity of the Poisson process for the initial
18 % configuration
19 % lambda - parameter of the exponential distribution
20 % of the lifetime (note that expectation =1/ lambda )
21 % van_pr - probability for a particle to vanish
22 % maxt - time interval
23 % dt - time discretisation step. Optional , default dt =0.01.
24 % domain - bounds for the region . A 4- dimensional vector in
25 % the form [ x_min x_max y_min y_max ]. Optional , default value
26 % [0 10 0 10].
27 %
28 % Outputs :
29 % pt_conf - " configuration of the particles ". A cell array
30 % describing the system dynamics . An element k is a N_k x 2
31 % matrix with the coordinates of the particles alive after time
32 % k*dt.
33 %
34
35 % Authors : R.Gaigalas , I.Kaj
36 % v1 .8 Created 07-Nov -01
37 % Modified 24-Nov -05 Changed variable names and comments
38 % Modified 10-Jan -06 Corrected the bug with maxt and
39 % parenthesis in l114
40
41 if (nargin <1) % default parameter values
42 nu = 0.7; % intensity of the Poisson process
43 lambda = 20.0; % parameter of the lifetime distribution
44 van_pr = 0.5; % probability to vanish
45 maxt = 0.7; % time interval
46 end
47
48 if (nargin <5) % default parameter values
49 dt = 0.01;
50 domain = [0 10 0 10];
51 end
52
53 disp (’Generating BBM ’);
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54
55 xmin = domain (1); % bounds of the initial domain
56 xmax = domain (2);
57 ymin = domain (3);
58 ymax = domain (4);
59 clear domain ;
60
61 % initial number of particles Poisson distributed
62 % with intensity proportional to the area
63 area = (xmax -xmin )*( ymax -ymin );
64 ini_part = poissrnd (nu*area)
65
66 % g i v e n the number of particles , coordinates are uniformly
67 % distributed in the plain
68 pt_coor = rand (ini_part , 2);
69 pt_coor (:, 1) = pt_coor (:, 1)*( xmax -xmin )+ xmin;
70 pt_coor (:, 2) = pt_coor (:, 2)*( ymax -ymin )+ ymin;
71
72 % remaining lifetime - exp( lambda ) distributed
73 pt_life = -1/ lambda *log( rand (ini_part , 1));
74 % create the first frame for the movie
75 pt_conf = cell (1, 1);
76 pt_conf {1} = pt_coor ;
77
78 extinct = 0; % flag for the whole process
79 nsteps = round (maxt/dt )+1;
80
81 c_step = ceil ( nsteps /100);
82
83 for t=2: nsteps
84
85 % shorten the remaining lifetime by dt
86 pt_life = pt_life -dt;
87
88 % generate new coordinates for the particles alive :
89 % add the increment of BM
90 i_alive = find (pt_life >0);
91 pt_coor (i_alive , :) = pt_coor (i_alive , :) ...
92 + randn ( length ( i_alive ), 2)* dt ˆ0.5;
93
94 % find dying particles and decide if they will die
95 % or will divide
96 i_dying = find (pt_life <=0);
97 runi = rand (1, length ( i_dying ));
98 % set the vanished particles to NaN
99 pt_life ( i_dying ( find (runi <= van_pr ))) = NaN;

100
101 % replicate the particles that need that
102 i_rep = i_dying ( find (runi > van_pr ));
103 nrep = length ( i_rep );
104 % generate new lifetimes for the parents
105 pt_life ( i_rep ) = -1/ lambda *log( rand (nrep , 1));
106 % generate lifetimes for the children and add to the array
107 pt_life = [ pt_life ; -1/ lambda *log( rand (nrep , 1))];
108
109 % add the coordinates of one of the newborn particles to the
110 % array
111 pt_coor = [ pt_coor ; pt_coor (i_rep , :)];
112
113 % create a new frame
114 pt_conf = [ pt_conf cell (1, 1)];
115 % add the particles alive and the " second child " particles
116 pt_conf {t} = [ pt_coor (i_alive , :); pt_coor (i_rep , :)];
117
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118 % test if there are any particles alive
119 if all( isnan ( pt_life ))
120 extinct = 1;
121 break ;
122 end
123
124 % display the progress
125 if (rem(t, c_step )==0)
126 fprintf (’\r %i%% done ’, t/ c_step );
127 end
128 end
129
130 fprintf (1, ’\r 100%% done\n’);
131
132 if ( extinct )
133 fprintf (’\ nExtinct after t=%f\n’ ,(t -1)* dt );
134 else
135 fprintf (’\n%d particles alive after t=%f\n’, ...
136 size ( pt_conf { nsteps }, 1), maxt );
137 end
138
139 % animate
140 figure (1)
141 fmat = bbmplot (pt_conf , 1);
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