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Introduction

Collecting observations of gene expression levels over time has become cheaper and
faster in the last decades, due to significant developments in DNA microarray technol-
ogy. Time-series data provide a deeper insight on the biological process under study. A
time-course experiment implies that each sample is followed over time and observations
are taken at different time steps. It is of interest to unravel the dependencies and the re-
lationships among genes, both on a contemporary basis and the time-delayed ones. This
can be achieved with a gene regulatory network (GRN), a visual instrument that explains
in an intuitive way the gene interactions. GRNs can be useful to biologists to understand
the underlying biological process. Sima et al. (2009) present a survey of study on models
for GRNs for time series data.

There are two major approaches to the study of networks, according to whether observa-
tions are on the links or on the vertices of the network. The former, network models (e.g.,
Exponential Random Graph Models) are usually applied to social networks, for instance.
The latter approach, which will be used in this thesis, can be referred to as graphical mod-
els. A thorough overview on graphical models can be found in Lauritzen (1996).

Most of the graphical models literature focuses on Gaussian Graphical Models (GGM),
where the observed data are assumed to be normally distributed. The Time Series Chain
Graphical Model (TSCGM) by Abegaz and Wit (2013), which extends GGMs to the time
series framework, imposes the same assumption. GGMs for time series data have also
been tackled by Dahlhaus and Eichler (2003) and Gao and Tian (2010). However, often
the normal assumption is coarse as gene expression levels are usually not normally dis-
tributed. This work can be considered as an extension of the TSCGM, since we aim to
tackle the issue of non-normality using the Gaussian copula. Our approach only imposes
a multivariate normal assumption for a set of latent variables which are in a one-to-one
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correspondence with the set of observed variables. The relationship between the latent and
the observed process is the Gaussian copula. The latter allows to model multivariate as-
sociations and dependencies separately from the univariate marginal distributions of the
observed variables. Nelsen (2007) covers all fundamental aspects of copulas. The Gaussian
copula can be thought of as a transformation of the observed variables, which involves the
unknown marginal distributions. We propose various nonparametric methods to estimate
the unknown distributions. In this way, we are able to retrieve the latent Gaussian process
without making any assumption on the distribution of the observed variables, except that
they have to be continuous.

We use a likelihood approach, assuming that the latent process follows a Markovian dy-
namics, which can be translated into a vector autoregressive process of order 1 (VAR(1)).
However, the method can be easily extended to account for higher order processes. The
aim is to estimate the autoregressive matrix and the variance covariance matrix, which
provide all the information to create the graphs for delayed and contemporaneous interac-
tions among the variables, respectively.

GRNs are known to be sparse: this implies that the true graph will have very few edges
compared to the full graph. To account for this, we add a lasso penalty to the likelihood in
order to obtain sparse estimates. The estimation is accomplished via a two-stage iterative
procedure taking the idea from the Multivariate Regression with Covariance Estimation
(MRCE) method by Rothman et al. (2010). The regularization parameters of the lasso
penalty have to be tuned: model selection criteria like AIC, BIC or extended BIC are used
to that purpose.

We applied our method to two datasets of gene expression levels from:

• the plant Arabidopsis thaliana. The goal is to understand the interactions among
genes whose expressions are related to the day/night cycle of the plant;

• the bacteria Neisseria gonorrhoeae, aiming to recover the dependence structure of
the genes involved in the transcriptional repressor FarR.

The structure of the thesis is as follows. In Chapter 1 we give an overview of the models
and methods on which we refer to develop the proposed model, such as graphical models,
TSCGM, Gaussian copula and lasso. Chapter 2 is devoted to describing the theory of
the proposed Copula VAR Model. In Chapter 3, inference and estimation methods can
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be found. Chapter 4 regards the model selection criteria. In Chapter 5, simulations and
applications to real data are presented. In the appendix, the R code is provided.



Chapter 1

Background

1.1 Graphical models

A graph is a pair G = (V,E), where V is a finite set of vertices and the set of edges
E is a subset of the set V × V of ordered pairs of distinct vertices. Edges (α, β) ∈ E with
both (α, β) and (β, α) in E are called undirected, whereas an edge (α, β) with its opposite
(β, α) not in E is called directed. If the graph has only undirected edges it is an undirected
graph and if all edges are directed, the graph is said to be directed. A basic feature of the
notion of a graph is that it is a visual object. It is conveniently represented by a picture,
where a dot is used for a vertex and a line or an arrow between vertices is used for an
undirected or directed edge, respectively (Lauritzen, 1996).
We will connect the graph syntax to describe conditional independence relationships for a
random vector X.
Formally, if X, Y, Z are continuous random variables which admit a joint distribution, we
say that X is conditionally independent of Y given Z, and write X ⊥⊥ Y | Z, if

fXY | Z(x, y | z) = fX | Z(x | z)fY | Z(y | z).

A graph G is called a conditional independence graph with respect to X, if

• the components of X can be associated with the vertices of V , i.e. X = (Xα)α∈V ;

• Xα ⊥⊥ Xβ | V \ {α, β} ⇔ (α, β) 6∈ E: the absence of an edge between Xα and Xβ

corresponds with the conditional independence of these two random variables given
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the remaining variables.

The latter is referred to as the pairwise Markov property.

1.2 Time series chain graphical models

Dahlhaus and Eichler (2003) and Abegaz and Wit (2013) introduced a Time Series
Chain Graphical Model (TSCGM) to model dynamic interactions among variables.
Suppose that we have longitudinal data, for example microarray data, in which n repli-
cations indexed by i = 1, . . . , n of continuous measurements across p genes indexed by
j = 1, . . . , p are repeated T times. That is, xijt is the j-th gene expression level at time t
for the i-th replicate; it represents the i-th realization of the univariate random variable
Xjt. The vector xit = (xi1t, . . . , xipt) contains the observations of the p gene expression lev-
els for the i-th individual at time t. Moreover, xit is a realization of the p-variate random
variable Xt.

The aim is to model both contemporaneous and dynamic (delayed) relationships among
the genes. This is accomplished with a time series chain graph G = (V,E), where V is a
finite set of vertices and the set of edges E is a subset of the set V × V of ordered pairs
of distinct vertices. The time series chain graph is based on the partitioning of V into a
number of blocks

⋃T
t=1 Vt. In this context, interpretation of links differs between within and

across time steps. Links within a time step, Vt, are undirected as in an ordinary graphical
model and represent the contemporaneous interactions among genes. Links across time
steps are directed and point from the previous, Vt−1, to the current time step, Vt; they
represent dynamic or delayed interactions between genes in time (Abegaz and Wit, 2013).
Those delayed interactions follow the Markov property: the vector of gene expressions at
time t only depends on that of time t−1, although extension to a Markov property of order
d ≥ 2 is straightforward. Let Xt = (X1t, . . . Xpt) be a p-variate random variable associated
to the nodes in Vt. Hence, the joint probability density of X1, . . . ,XT can be decomposed
as

f(X1, . . . ,XT ) = f(X1)f(X2 |X1)× · · · × f(XT |XT−1).

It is assumed that Xt follows a Markovian dynamics, which can be translated into a vector
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autoregressive process of order 1 (VAR(1)):

Xt = ∆Xt−1 + εt. (1.1)

In the Gaussian TSCGM setting, the following normality assumption is made:

Xt |Xt−1 ∼ Np(∆Xt−1,Ω
−1). (1.2)

According to Dahlhaus and Eichler (2003), the matrices ∆ and Ω contain all the infor-
mation about the dependencies among the variables. In particular, given the time series
chain graph G = (V,E) where E includes both direct and undirected edges, the directed
edges in the graph reflect the recursive structure of the time series, summarized in ∆:

(α, β) ∈ Vt−1 × Vt ⇔ ∆αβ 6= 0,

i.e. non-zero entries in ∆ are equivalent to directed edges. Likewise, contemporaneous
interactions (undirected edges) are related to non-zero entries of the concentration matrix,
also known as precision matrix, Ω:

(α, β) ∈ Vt × Vt ⇔ Ωαβ 6= 0.

However, in this thesis we want to tackle the issue of non normality: our aim is to make
no assumption about the distribution of gene expressions. Particularly, in order to relax
the Gaussian assumption on Xt |Xt−1, we will exploit the Gaussian copula.

1.3 The Gaussian copula

Copulas are functions that join or "couple" multivariate distribution functions to their
one-dimensional marginal distribution functions. Alternatively, copulas are multivariate
distribution functions whose one-dimensional margins are uniform on the interval (0, 1)

(Nelsen, 2007).
Consider a collection of random variables (X1, . . . , Xp) with marginal Cumulative Distri-
bution Functions (CDFs) Fj(xj) = P[Xj ≤ xj], for j = 1, . . . , p: let us suppose that those
marginal CDFs are continuous. Consider also the joint distribution function F (x1, . . . , xp) =
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P[X1 ≤ x1, . . . , Xp ≤ xp]. By applying the CDF to each component, the random vector

(U1, . . . , Up) = (F1(X1), . . . , Fp(Xp))

has uniformly distributed marginals in (0, 1). The copula of (X1, . . . , Xp) is defined as the
joint cumulative distribution function of (U1, . . . , Up):

C(u1, . . . , up) = P[U1 ≤ u1, . . . , Up ≤ up]. (1.3)

In other words, each ordered vector (x1, . . . , xp) of real numbers leads to a point
(F1(x1), . . . , Fp(xp)) in (0, 1)p, and this ordered vector in turn corresponds to a number
F (x1, . . . , xp) in (0, 1). This correspondence, which assigns the value of the joint distribu-
tion function to each ordered vector of values of the individual distribution functions, is
indeed a function: such functions are copulas (Nelsen, 2007).
The copula C contains all information on the dependence structure between the compo-
nents of (X1, . . . , Xp) while the marginal cumulative distribution functions Fj contain all
information on the marginal distributions. The formula in (1.3) for the copula function can
be rewritten as follows:

C(u1, . . . , up) = P[X1 ≤ F−1
1 (u1), . . . , Xp ≤ F−1

p (up)].

Sklar’s theorem (Sklar, 1959) elucidates the role that copulas play in the relationship be-
tween multivariate distribution functions and their univariate margins. It provides the the-
oretical foundation for the application of copulas and justifies the importance of copulas in
modeling the distribution of multivariate random variables. Sklar’s theorem states that ev-
ery multivariate cumulative distribution function F (x1, . . . , xp) = P[X1 ≤ x1, . . . , Xp ≤ xp]

of a random vector (X1, . . . , Xp) can be expressed in terms of its marginals
Fj(x) = P[Xj ≤ x] and a copula C as follows:

F (x1, . . . , xp) = C (F1(x1), . . . , Fp(xp)) .

If F1, . . . , Fp are all continuous (as in our case), then C is unique.
The information in the joint distribution is decomposed into those in the marginal distribu-
tions and that in the copula function, where the latter captures the dependence structure
between the variables.
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Given correlation matrix P , we define the Gaussian copula as follows:

F (x1, . . . , xp) = ΦP

(
Φ−1(F1(x1)), . . . ,Φ−1(F1(xp)

)
,

where ΦP is the p-variate Gaussian CDF with mean 0p and covariance matrix P and Φ−1

is the univariate standard Gaussian quantile function. Thus, the corresponding copula is

C(u1, . . . , up) = ΦP

(
Φ−1(u1), . . . ,Φ−1(up)

)
.

Copulas are popular in high-dimensional statistical applications as they provide the
theoretical framework in which multivariate associations and dependencies can be modeled
separately from the univariate distributions of the observed variables (Dobra and Lenkoski,
2009).

1.4 Penalized inference and lasso

Genetic networks are known to be sparsely connected. In order to account for this, a
penalty function can be subtracted to the the objective function to maximize (the likeli-
hood, in our case). One can think of the penalization term as

pλ,q(β) = λ

p∑
k=1

|βk|q, (1.4)

where β = (β1, . . . βp) are the parameters under consideration. q = 1 corresponds to
shrinking the coefficients by their l1 norm; this method is called lasso. q = 2 results in the
l2 norm, and the method is known as ridge. The value q = 0 coincides with the variable
subset selection in the context of regression, as the penalty simply counts the number of
non-zero parameters.
The choice of the shrinkage method should reflect the need to set some coefficient exactly
at zero. The lasso has this special property: constraining the coefficients by their l1 norm
induces sparsity in the estimates. This is not true with the ridge penalty, for instance
(Tibshirani, 2015). In fact, with q > 1, |βk|q is differentiable at zero, and so does not share
the ability of lasso for setting coefficients exactly at zero (i.e., it does not provide sparse
estimates). On the other hand, the case q = 1 is the smallest q such that the constraint
region is convex: nonconvex constraint regions, given by q < 1, make the optimization
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problem computationally difficult (Friedman et al., 2001). For this reasons we choose the
lasso penalty, as it is a good compromise between sparsity and computational feasibility
(being a convex problem).
Note that the shrinkage methods as the ones mentioned above reduce the variance of our
estimate, at the expense of (likely) introducing bias.
The lasso penalty is not the only possibility. In the context of convex optimization, the
following elastic-net penalty introduced by Zou and Hastie (2005) might also be used:

pEN
λ (β) = λ

p∑
k=1

(αβ2
k + (1− α)|βk|),

which is a compromise between lasso and ridge. The parameter α determines the mix of
the penalties. Elastic-net preserves the sparsity property of lasso.
Shifting to nonconvex problems, one can modify the lasso penalty function so that larger
coefficients are not excessively penalized. In fact, the lasso penalty increases linearly in
the magnitude of its argument: as a result, it produces substantial biases in the estimates
for large coefficients. The Smoothly Clipped Absolute Deviation (SCAD) penalty was intro-
duced by Fan and Li (2001) to address this issue. In SCAD, the penalization term pλ(β)

in (1.4) is replaced by
∑p

k=1 p
SCAD
λ (βk), where

pSCAD
λ (βk) =


λ|βk| if |βk| ≤ λ,

−
[
|βk|2−2aλ|βk|+λ2

2(a−1)

]
if λ ≤ |βk| ≤ aλ,

(a+1)λ2

2
if |βj| ≤ aλ.

SCAD has been largely used it the context of genetic networks estimation: see, for instance,
Fan et al. (2009) and Abegaz and Wit (2013). For further in-depth analysis of nonconvex
penalty functions, see Breheny and Huang (2011) and Loh and Wainwright (2013).

Many algorithms are available to generate the whole path of lasso solutions.
The Least Angle Regression (LARS), introduced by Efron et al. (2004), is a computa-
tionally efficient algorithm for fitting linear regression by successive orthogonalization. An
interesting property is that a simple modification of the LARS algorithm implements the
entire sequence path of lasso, maintaining the same order of magnitude of computations
as the least squares fit (Azzalini and Scarpa, 2012).
Another interesting algorithm is the graphical lasso (glasso) introduced by Friedman et al.
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(2008), which was designed to estimate sparse graphs by a lasso penalty applied to the in-
verse covariance matrix. To the same purpose, Hsieh et al. (2014) introduced the QUadratic
approximation for sparse Inverse Covariance estimation (QUIC) algorithm. The latter is
based on Newton’s method and employs a quadratic approximation. In their paper, Hsieh
et al. (2014) demonstrate the considerable improvements in performance compared to al-
ternative methods like glasso: therefore, in section (3.3), we will use QUIC to estimate the
precision matrix.



Chapter 2

Copula VAR Model (CVM)

Going back to section (1.2), let us consider the longitudinal data xit = (xi1t, . . . , xipt),
and the corresponding p-variate random variables Xt = (X1t, . . . , Xpt), for i = 1, . . . , n,
t = 1, . . . , T .
Our aim is to extend the TSCGM, not making any assumption on the distribution of the
observed variables Xt: therefore, the assumptions in (1.1) and (1.2) do not hold anymore.

Instead, we assume that the multivariate dependence pattern among the variables
X1t, . . . , Xpt is given by the Gaussian copula with covariance matrix Σt with dimensions
p× p:

F (X1t, . . . , Xpt) = ΦΣt

(
Φ−1(F1t(X1t)), . . . ,Φ

−1(Fpt(Xpt)
)
, (2.1)

where:

• ΦΣt is the CDF of a multivariate Gaussian distribution with covariance matrix Σt,
Np(0,Σt);

• Σt = Γt−1Θ−1(Γt−1)>+ Γt−2Θ−1(Γt−2)>+ · · ·+ Θ−1, where Θ is positive definite and
Γ any matrix, both of them with dimension p× p;

• Φ−1 is the quantile function of the univariate standard normal N (0, 1);

• Fjt is the marginal CDF of gene j at time t, ∀ j = 1, . . . , p, t = 1, . . . , T .

The Gaussian copula model can also be constructed by introducing a p-variate latent
variable Zt = (Z1t, . . . , Zpt). As in Dobra and Lenkoski (2009), let us also consider the
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p-variate variable Z∗t = (Z∗1t, . . . , Z
∗
pt) which is nothing but the unscaled version of Zt. Zt

and Z∗t follow a dynamics similar to that in (1.1):

Z∗t = ΓZt−1 + ηt, where ηt ∼ Np(0,Θ−1). (2.2)

Given a covariance matrix Σt, the marginal distribution of Z∗t is

Z∗t ∼ Np(0,Σt).

For example, if Z1 ∼ Np(0,Θ−1), then Z∗2 ∼ Np(0,Θ−1 + ΓΘ−1Γ>).
We consider the unit variance scaling of Z∗t :

Zjt =
Z∗jt√
σjt

, for j = 1, . . . , p, t = 1, . . . , T,

where σjt is the j-th diagonal element of Σt. As a consequence, the marginal distribution
of the latent variables Zjt is N (0, 1), ∀ j = 1, . . . , p, t = 1, . . . , T .
The latent variables in Zt are related to the observed variables Xt as the following one-to-
one transformation:

Zt = g(Xt) = (g1(X1t), . . . , gp(Xpt))

Zjt = gj(Xjt) = Φ−1(Fjt(Xjt)), for j = 1, . . . , p, t = 1, . . . , T,
(2.3)

where Xjt is the variable which represents the gene expression level for gene j at time t.
To sum up, we consider what follows:


Z∗t = ΓZt−1 + ηt, ηt ∼ Np(0,Θ−1)

Zjt =
Z∗jt√
σjt
, σjt = V ar(Z∗jt)

Xjt = F−1
jt (Φ(Zjt)).

for j = 1 . . . , p, t = 1, . . . , T . Figure (2.1) clarifies this pattern.

It is possible to define the model in alternative ways, which avoid the explicit introduction
of Z∗t :

• make the Γ and Θ time-dependent, accounting for the appropriate rescaling;
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time

latent (Gaussian) Zt−1 Z∗
t Zt

observed Xt−1 Xt

g−1 g−1

Figure 2.1: Diagram which represents the relationship between the observed process and the
latent normal process through the Gaussian copula transformation g.

• make the copula transformation time-dependent: this can be accomplished by con-
sidering Φ−1

σjt
, the CDF of a univariate normal distribution with mean 0 and variance

equal to σjt, instead of Φ−1 in (2.1).

Our aim is to infer the graphical structure defined by the latent process Zt. This structure
is contained in the non-zero pattern of the matrices Θ and Γ. In particular:

• non-zero entries of Θ represent contemporaneous interactions and will be represented
by undirected links within a time step;

• non-zero entries of Γ correspond to direct links between time steps and explain dy-
namic interactions between genes across time.

Figure (2.2) shows an example of this structure.

2.1 Full Likelihood

The joint probability density function of Xt |Xt−1 is given by

f(Xt|Xt−1,Γ,Θ) = (2π)−p/2|Θ|1/2 exp

{
−1

2

[
g(Xt)−Γg(Xt−1)

]>
Θ
[
g(Xt)−Γg(Xt−1)

]} p∏
j=1

djt.

In this formulation, djt =
∣∣∣φ−1

(
Fjt(Xjt)

)
fjt(Xjt)

∣∣∣ is the absolute value of the derivative of
the transformation (2.3) where:
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Z1,t−2

Z2,t−2

Z3,t−2

Z1,t−1

Z2,t−1

Z3,t−1

Z1,t

Z2,t

Z3,t

non-zero
entry

of Γ

n
o
n
-zero

en
try

o
f
Θ

time

Figure 2.2: Example of graphical structure of a Copula VAR model of order 1 for p = 3 variables
(genes) and T = 3 time points. Directed edges represent non-zero entries of Γ and
undirected edges (dashed links) characterize the non-zero entries of Θ.

• φ−1 is the quantile density function of the univariate normal distribution N (0, 1).
The explicit formula can be obtained by implicit differentiation:

φ−1(x) =
d

dx
Φ−1(x) =

1

φ
(
Φ−1(x)

) ,
where φ is the standard normal density function;

• Fjt is the unknown marginal CDF of gene j at time t;

• fjt is the unknown marginal density function of gene j at time t.

The log-likelihood for n replicates each at T time steps is defined as

`(Γ,Θ) = −npT
2

log(2π) +
nT

2
log
∣∣Θ∣∣− nT

2
Tr(SΓΘ) +D, (2.4)
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where:

D =
n∑
i=1

p∑
j=1

T∑
t=1

log
∣∣∣φ−1

(
Fjt(xijt)

)
fjt(xijt)

∣∣∣,
SΓ =

1

nT

n∑
i=1

T∑
t=1

(g(xit)− Γg(xi,t−1))(g(xit)− Γg(xi,t−1))>

= Cx − Cxx_Γ> − ΓC>xx_ + ΓCx_Γ>,

Cx =
1

nT

n∑
i=1

T∑
t=1

g(xit)g(xit)>,

Cxx_ =
1

nT

n∑
i=1

T∑
t=1

g(xit)g(xi,t−1)>,

Cx_ =
1

nT

n∑
i=1

T∑
t=1

g(xi,t−1)g(xi,t−1)>.

2.2 Pseudo-likelihood

Following the idea from Genest et al. (1995), to estimate the parameter matrices Γ and
Θ, two approaches could be contemplated.
If valid parametric distributions are already available for the marginals fjt, then it is
straightforward in principle to maximize the likelihood in (2.4). The resulting estimate for
the parameters would then be margin-dependent, just as the estimates of the parameters
involved in the marginal distributions would be indirectly affected by the copula.
However, we aim not to make any assumption about the marginal distributions of the
genes. To do so, we will contemplate nonparametric estimates for the marginals CDFs. We
reduce our model parameters to the correlation and autoregressive matrices of the latent
process: inference about those parameters will be margin-free. This means that we focus
on the joint distribution of the latent variables Zt, ∀ t = 1, . . . , T , whose relationships with
the observed variables Xt are given by (2.3). Our semiparametric estimation strategy is
to plug-in a nonparametric estimation of the CDFs Fjt in (2.3) in order to obtain pseudo-
data which will be used to estimate the matrices Γ and Θ separately from the marginal
distributions.
Practically, this allows us to neglect the term D in (2.4) since, in the pseudo-likelihood
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framework, D is an additive term which does not involve the parameters.
In conclusion, the pseudo-likelihood which will be considered from now on is the following:

`PS(Γ,Θ) = −npT
2

log(2π) +
nT

2
log
∣∣Θ∣∣− nT

2
Tr(SΓΘ). (2.5)



Chapter 3

Inference of Copula VAR Model

3.1 Nonparametric CDF estimation

In order not to make any assumption about the marginal distributions of the observed
gene expression levels, the CDFs Fjt necessary to create the pseudo-data in (2.3) will be
estimated in a nonparametric fashion.
Let X1, . . . , Xn be a sequence of independent and identically distributed (i.i.d.) random
variables with common CDF F . Then the empirical distribution function Fn is defined as

Fn(x) =
1

n

n∑
i=1

1{Xi ≤ x} (3.1)

where 1 is the indicator function, namely 1{Xi ≤ x} is 1 if Xi ≤ x and 0 otherwise. For
i.i.d. variables, the Glivenko-Cantelli theorem states that Fn converges uniformly to the
real CDF F .
Liu et al. (2009) and Liu et al. (2012) use a truncated form of the ECDF, introducing an
additional truncation parameter to be tuned. Chen and Fan (2006), in their copula-based
semiparametric time series models, use a rescaled version of the empirical distribution
function.
One obvious drawback of Fn is that even when the real F is continuous, Fn is not: the
latter is a step function, with flat plateaus. Further smoothing of the CDF F estimate can
be an advantage.
In this section, we propose various nonparametric method to estimate the CDFs.
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3.1.1 Modified ECDF

Let us assume that the CDFs Fjt are constant across time, i.e. Fjt = Fj. We will use
the following modified version of the ECDF, which avoids extreme values maintaining the
good properties of the ECDF:

F e
j (x) =

1

nT + 1

(
T∑
t=1

n∑
i=1

1{xijt ≤ x}+
1

2

)
, for j = 1, . . . , p. (3.2)

3.1.2 Kernel density estimation

Kernel density estimation is a nonparametric method to estimate the density function
of a random variable: it was first introduced by Rosenblatt (1956) and Parzen (1962). Fol-
lowing the definition by Azzalini (1981), for i.i.d. variables X1, . . . , Xn, the kernel estimator
of the density f at a given point x is

f̃h(x) =
1

nh

n∑
i=1

w

(
x−Xi

h

)
(3.3)

where w is some bounded density function called kernel. w has to be symmetric, namely
w(k) = w(−k). The smoothing parameter h is known as the bandwidth and has to be
carefully chosen.
The corresponding estimate for the CDF F is

F̃h(x) =
1

n

n∑
i=1

W

(
x−Xi

h

)
where

W (k) =

∫ k

−∞
w(u)du.

The choice of the kernel is not as crucial as the bandwidth. A popular choice for w is the
following Gaussian kernel:

w(k) =
1√
2π

exp

(
−k

2

2

)
which is the density function of the standard normal distribution.
Assuming that the CDFs are constant across time, we will use in our longitudinal framework
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the following estimate:

F̃j(x) =
1

nT

T∑
t=1

n∑
i=1

W

(
x− xijt
hj

)
. (3.4)

We will use the R package ks which provides a function to estimate the CDF, pkde. Accord-
ing to the results of the simulations, the default values for the bandwidth are satisfying.

3.1.3 Dynamic kernel density estimation

We would like to take into account that the density might change over time. In order to
estimate a time varying density, Harvey and Oryshchenko (2012) introduced a weighting
scheme into the kernel estimator in (3.3). The set of weights that they use takes the form
of an exponentially weighted moving average (EWMA). We will use the same idea, with a
different weighting scheme. In our specification, weights exponentially decay to zero as the
time interval becomes larger: i.e., in order to estimate the CDF in a time point for a gene,
we use observations from the present, from the future and from the past for the same gene
giving more importance to those observations closer in time. Hence, the CDF estimate for
the j-th gene at time t is

F̂jt(xijt) =
T∑
l=1

n∑
k=1

Φ

(
xijt − xkjl

hj

)
wtl, (3.5)

where:

•
∑T

l=1

∑n
k=1wtl = 1;

• wtl = 1
n

ω|t−l|∑T
j=1 ω

|t−j| , where ω is a constant which determines the decay velocity. The
latter is a parameter which should be tuned: however, for the sake of simplicity, we
choose ω = 0.925;

• Φ is the CDF of the standard normal (which is the chosen kernel);

• hj is the bandwidth parameter (different for each gene).

3.1.4 Bandwidth selection

In order to choose the bandwidth, a criterion to be optimized has to be chosen.
In the second chapter of his book, Scott (2015) discusses error criteria for density estimates:
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what follows is a brief summary of that chapter.
The kernel density estimator is known to be biased, namely

Bias[f̃h(x)] = E[f̃h(x)]− f(x) 6= 0,

where E[·] denotes the expected value. When approximating parameters with biased esti-
mators, the mean squared error (MSE) criterion is usually adopted:

MSE(x, h) = E[f̃h(x)− f(x)]2 = V ar[f̃h(x)] +Bias2[f̃h(x)]

The application in practice is difficult, since the formula depends on the unknown density
function f both in the variance and the squared bias term. In addition, the MSE measures
the squared deviation of the estimate f̃h(x) from the true f(x) at a single point x. If we are
interested in how well we estimate the entire density surface, we might use global measures
of closeness of the estimate to the true curve f .
The integrated standard error ISE is a global discrepancy measure:

ISE(h) =

∫ [
f̃h(x)− f(x)

]2

dx.

The latter is a complicated random variable that still depends on f . Furthermore, it is a
function of the particular realization on n points, therefore different samples will produce
different ISE values. Let’s examine the average of the ISE over these realizations, the mean
integrated standard error MISE:

MISE(h) = E[ISE(h)] = E

{∫ [
f̃h(x)− f(x)

]2

dx

}
which is not a random variable.
Taking a Taylor’s series expansion and omitting higher order terms leaves the asymptotic
mean integrated squared error (AMISE). Scott (2015), in the sixth chapter, obtains the
following formula of the AMISE for the estimator in (3.3):

AMISE =
R(w)

nh
+

1

4
σ4
wh

4R(f ′′)
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where w is the chosen kernel, σ2
w =

∫
x2w(x)dx and R(w) is the squared L2 norm: R(w) =∫

w(x)2dx. The optimal bandwidth minimizing this function is

h =

[
R(w)

nσ4
wR(f ′′)

] 1
5

. (3.6)

The plug-in bandwidth in (3.6) is implemented in the R package kedd. This bandwidth
is supposed to be used in the classical kernel density estimator in (3.3) and may not be
appropriate in the weighted version in (3.5); however, for the sake of simplicity, we use it
our framework.

Once the CDFs for each gene have been estimated, the values of the latent variable, or
pseudo-data, can be estimated as follows:

zijt = Φ−1(F̂jt(xijt)), for i = 1, . . . , n, j = 1, . . . , p, t = 1, . . . , T.

3.2 Penalized likelihood

Since both Θ and Γ are supposed to be sparse, two l1 penalties are subtracted to
the pseudo-likelihood in (2.5). Hence, the objective function for optimization is defined as
follows:

`PS
PEN(Γ,Θ) = −npT

2
log(2π) +

nT

2
log
∣∣Θ∣∣− nT

2
Tr(SΓΘ)− λ1

p∑
i 6=j

|θij| − λ2

p∑
i 6=j

|γij|, (3.7)

where θij and γij are the entries of Θ and Γ. λ1 and λ2 are the tuning parameters : the
bigger the value of the tuning parameters, the more shrinkage is applied to the estimated
parameters. Note that the l1 penalty is only applied to the off-diagonal elements of both Θ

and Γ, following the idea from Yuan and Lin (2007). Penalizing the inverse of the variance
coefficients is unnatural; it just results in shrinking the scale of the variables, which is not
our aim. As regards the diagonal of Γ, we assume that it is biologically plausible that a gene
influences itself across time, therefore we do not penalize the corresponding coefficients.
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3.3 Joint sparse estimation of parameter matrices

The optimization problem that gives sparse estimates of Θ and Γ is the solution of

(
Θ̂, Γ̂

)
= argmax

Θ,Γ

{
log
∣∣Θ∣∣− Tr(SΓΘ)− λ1

p∑
i 6=j

|θij| − λ2

p∑
i 6=j

|γij|
}
. (3.8)

As in Abegaz and Wit (2013), the estimation is accomplished via a two stage iterative pro-
cedure. We adopt the algorithm by Rothman et al. (2010), called Multivariate Regression
with Covariance Estimation (MRCE). The method assumes predictors are not random;
however, the resulting formulas for the estimates are the same with random predictors, as
in our case. Despite the optimization problem in (3.8) is not convex, solving for either Γ

or Θ with the other fixed is convex.
Solving (3.8) for Θ with Γ fixed yields the following optimization problem:

Θ̂Γ = argmax
Θ

{
log
∣∣Θ∣∣− Tr(SΓΘ)− λ1

p∑
i 6=j

|θij|
}

with Γ fixed. (3.9)

The latter is exactly the problem of estimating sparse undirected graphical models through
the use of lasso regularization applied to the inverse covariance matrix, glasso, considered
by Friedman et al. (2008). The QUadratic approximation for sparse Inverse Covariance
estimation (QUIC) algorithm by Hsieh et al. (2014) implemented in the R package QUIC
is used to solve (3.9).
Solving (3.8) for Γ with Θ fixed yields the following optimization problem:

Γ̂Θ = argmax
Γ

{
− Tr(SΓΘ)− λ1

p∑
i 6=j

|γij|
}

with Θ fixed, (3.10)

which is convex if Θ is positive definite. Rothman et al. (2010) propose a solution computed
using cyclical-coordinate descent analogous to that used for solving the single output lasso
problem (Friedman et al., 2007). The algorithm is implemented in the function rblasso
from the R package MRCE.
The algorithm that we use to jointly estimate sparse Γ and Θ iteratively is shown in
algorithm 1.
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Algorithm 1 Iterative estimate
1: Initialization of maximum number of iterations Imax and threshold to determine con-

vergence
2: Γ̂0 ← diagonal matrix with dimensions p× p
3: k ← 0
4: repeat
5: SΓ̂k

← Cx − Cxx_Γ̂>k − Γ̂kC
>
xx_ + Γ̂kCx_Γ̂>k

6: k ← k + 1
7: if k = 1 then
8: estimate Θ̂k with QUIC, SΓ̂k−1

fixed
9: force Θ̂k to be a correlation matrix

10: Σ̂k ← Θ̂−1
k

11: estimate Γ̂k with rblasso, Θ̂k fixed
12: if k > 1 then
13: estimate Θ̂k with QUIC using Θ̂k−1 as a "warm" start, SΓ̂k−1

fixed
14: force Θ̂k to be a correlation matrix
15: Σ̂k ← Θ̂−1

k

16: estimate Γ̂k with rblasso using Γ̂k−1 as initial value, Θ̂k fixed
17: if Γ̂k − Γ̂k−1 < threshold then Convergence = true
18: until Convergence = true or k > Imax
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Model Selection

The sparsity of the estimate is controlled by the tuning parameters λ1 and λ2: the latter
have to be carefully chosen. This can be accomplished by choosing the couple of parameters
(λopt

1 , λopt
2 ) which optimize a model selection criterion.

First of all, a range of values for λ1 and λ2 to choose from has to be set. Friedman et al.
(2010), in the lasso framework where just one parameter λ has to be tuned, suggest to
choose a range (λmin, λmax) where λmax is the smallest value for which the entire vector of
estimated parameters are zero. The choice of λmin and the number of grid points N is less
rigorous: the minimum value for the tuning parameter is chosen as λmin = ελmax. Typical
values are ε = 0.001 and N = 100. The sequence of N values is constructed starting from
λmax, decreasing to λmin on the log scale.
Abegaz and Wit (2013) used the same strategy, modified to fit the longitudinal context
with two tuning parameters, and implemented it in the package sparseTCSGM. We applied
the latter strategy to the copula VAR model; however, simulation studies suggested that
this method selects ranges of values for λ1 and λ2 too large, which lead to too sparse
estimates. Therefore, in the simulations and applications we choose a range of parameters
to choose from empirically. The choice was made so as to comprise the two extreme cases:
we included values large enough to give completely sparse estimates (Γ and Θ diagonal),
and small enough not to give sparse estimates. This information was retrieved from the
lasso coefficients paths plots (see figure (5.1) in Chapter 5). We end up with two vectors
of parameters to choose from with length N = 50: (λmin

1 , . . . , λmax
1 ) and (λmin

2 , . . . , λmax
2 ).

Secondly, a model selection criterion should be chosen. In the framework of model selection,



25

cross-validation is the gold standard. In order to perform K-fold cross-validation, one needs
first of all to split the data into K parts. For the k-th part, one should fit the model to the
other k−1 parts of the data, and calculate the loss function of the fitted model when fitting
the k-th part of the data. This has to be done for k = 1, . . . , K; then, the K loss functions
have to be combined (Friedman et al., 2001). The case K = n is called leave-one-out cross-
validation. In our case, the deviance can be considered as the loss function. Let us denote
with Γ̂−kλ and Θ̂−kλ the estimated parameter matrices using the k − 1 parts of the data,
given a couple of tuning parameters λ = (λ1, λ2). `k(Γ̂−kλ , Θ̂−kλ ) is the pseudo-likelihood in
(2.5) calculated on the k-th part of the data and on the parameters estimated on the k− 1

remaining parts of the data. We define the deviance for the k-th part as follows:

Dk(λ) = −2`k(Γ̂−kλ , Θ̂−kλ ).

The cross-validation criterion is the following:

CV(λ) =
K∑
k=1

Dk(λ). (4.1)

The latter criterion is computed on a tuning parameters matrix constructed as follows:(λmin
1 , λmin

2 ) . . . (λmin
1 , λmax

2 )
... . . . ...

(λmax
1 , λmin

2 ) . . . (λmax
1 , λmax

2 )


Finally, the couple of tuning parameters which minimizes the criterion in (4.1) is chosen
as optimal.

In the longitudinal framework, particular attention should be paid to how the data are
split. In fact, when applying cross-validation, we are assuming that the K parts into which
the data are split are independent from each other. This is maintained if we split with
respect to the n individuals; however, sometimes, n is very small and this kind of cross-
validation is unfeasible. It is possible to apply cross-validation splitting with respect to the
time dimension: leave-one-out cross-validatory methods for dependent data were proposed
by Burman et al. (1994) and Racine (2000). The idea is to reduce the training set by
removing some observations preceding and following the observation in the test set. This
results in leaving a gap between the test sample and the training samples, on both sides
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of the test sample in order to achieve approximate independence between the training and
the test data.
However, in our case, even if we are dealing with dependent observations, in the likelihood
we consider conditional distributions. Once we condition on the previous observation in
time, the conditional distribution is independent from the previous one:

f(Xt |Xt−1 = xt−1,Γ,Θ) ⊥⊥ f(Xt−1 |Xt−2 = xt−2,Γ,Θ).

Therefore, in our case, splitting can be done both with respect to the sample size n and
the time dimension T .

Cross-validation is computationally burdensome: it requires the fitting ofK models for each
element of the tuning parameters matrix. Less computationally expensive model selection
criteria are available. These include:

• the Bayesian Information Criterion (BIC) by Schwarz (1978), which is defined as
follows:

BIC(λ) =− 2`PS(Γ̂λ, Θ̂λ) + log(nT )(an/2 + bn + p)

=npT log(2π)− nT log
∣∣Θ̂λ

∣∣+ nT Tr(SΓ̂λ
Θ̂λ) + log(nT )(an/2 + bn + p),

where an is the number of non-zero off-diagonal elements of Θ̂λ and bn is the number
of non-zero elements of Γ̂λ;

• the following Akaike Information Criterion (AIC) developed by Akaike (1998):

AIC(λ) =− 2`PS(Γ̂λ, Θ̂λ) + 2(an/2 + bn + p)

=npT log(2π)− nT log
∣∣Θ̂λ

∣∣+ nT Tr(SΓ̂λ
Θ̂λ) + 2(an/2 + bn + p).

These criteria were introduced for different purposes. AIC aims to minimize the Kullback-
Leibler divergence between the distribution of the true model and that of the estimated
one. On the other hand, BIC attempts to select a model that maximizes the posterior model
probability, given the data. Hence, they have different properties: in general, AIC is optimal
for prediction accuracy while BIC is consistent in selecting the true graph (Yang, 2005).
However, the consistency of BIC is intended in the setting of a fixed number of variables
p and growing sample size. When p > n, this does not hold. Foygel and Drton (2010)
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introduced the following Extended Bayesian Information Criterion (EBIC) for graphical
models:

BICγ = −2`PS(Γ̂λ, Θ̂λ) + log(nT )(an/2 + bn + p) + 4(an/2 + bn + p)γ log p.

The drawback of this method is that it includes an additional parameter γ to be tuned.
Note that when γ = 0, the classical BIC is recovered. Numerical results in Foygel and
Drton (2010) demonstrate that positive values of γ lead to improved graph inference when
the number of variables and the sample size are of comparable size. Upon suggestion from
the author, we fix γ at 0.5.



Chapter 5

Results

5.1 Simulations

In order to assess the performance of the copula VAR model and to compare it with the
TSCGM, we conducted some simulation studies. We stress the fact that the TSCGM was
designed specifically for normal data. The aim of the simulations was to establish whether:

• CVM performs comparably to the TCSGM in case of normal data;

• CVM performs better than the TSCGM in case of non normal data;

• which nonparametric estimate of the CDF performs better.

The first step in the simulation process is to generate the sparse autoregressive matrix and
precision matrix. Algorithms (2) and (3) explain in detail the method we used, which is
similar to that in Yin and Li (2011). In the simulations, we choose as sparsity level 1/3,
which means that one third of the elements of both Γ and Θ are different from zero.
Once we have the true coefficient matrices Θ and Γ, we simulate the longitudinal data
according to the following distributions:

• Normal;

• Log normal;

• Exponential;

• Exponential with time-varying rate.
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Algorithm 2 Generation of sparse Θ

1: Initialization of the sparsity level desired, spars
2: function ThetaGenerate(spars)
3: ΘO ← 0 matrix with dimensions p× p
4: for each element of ΘO, θOij , i, j = 1, . . . , p do
5: tmp1 ← 1 with probability spars, 0 otherwise
6: if tmp1=0 then
7: θOij ← 0
8: else if tmp1=1 then
9: tmp2 ← 0 or 1 with equal probability

10: if tmp2=0 then
11: θOij ← random uniform in the interval (−1,−0.5)
12: else if tmp2=1 then
13: θOij ← random uniform in the interval (0.5, 1)

14: Force ΘO to be positive definite
15: θOii ← 1, ∀i = 1, . . . , p
16: ΣO ← (ΘO)−1

17: ΣN ← corresponding correlation matrix of ΣO

18: ΘN ← (ΣN)−1

19: return ΘN

Algorithm 3 Generation of sparse Γ

1: Initialization of the sparsity level desired, spars
2: function GammaGenerate(spars, Θ)
3: Γ← 0 matrix with dimensions p× p
4: mv← min(θij),∀θij 6= 0, i, j = 1, . . . , p
5: for each element of Γ, γij, i, j = 1, . . . , p do
6: tmp1 ← 1 with probability spars, 0 otherwise
7: if tmp1=0 then
8: γij ← 0
9: else if tmp1=1 then

10: tmp2 ← 0 or 1 with equal probability
11: if tmp2=0 then
12: γij ← random uniform in the interval (−1,−vm)
13: else if tmp2=1 then
14: γij ← random uniform in the interval (vm, 1)

15: γii ← 0.1, ∀i = 1, . . . , p
16: return Γ
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5.1.1 Simulation setting

We first simulate the latent process zt, for t = 1, . . . , T . The first time component z1

is generated as a realization of a Np(0,Θ−1). The following unscaled time component is
generated as z∗2 = Γz1 + η2, where η2 ∼ Np(0,Θ−1). Then, each component of z∗2 is scaled
in order to have unit variance: zj2 =

z∗j2√
σj
,for j = 1, . . . , p, where σj is the j-th diagonal

element of Σ = Θ−1 + ΓΘ−1Γ>. We obtain in this way z2. This is repeated for t = 1, . . . , T ,
which gives a time series dataset for p variables (genes): (z1, . . . , zT ). The process is re-
peated n times to obtain n i.i.d. replicates.
For the normal simulation, the latter is considered as observed and used directly. For
the non normal simulations, a further step is necessary. When generating zt, each com-
ponent is transformed according to the inverse of the Gaussian copula transformation:
xjt = F−1(Φ(zjt)). F can be any continuous CDF; we choose the exponential distribution
with rate 1 and the log normal distribution with mean and variance of the logarithm equal
to 0 and 1, respectively. Moreover, we simulated exponential data with time-changing rate:
at the first time point the rate is γ = 0.5, then it increases as γ = t/2, for t = 2, . . . , T .
Once we obtain the simulated data, we apply both the TSCGM and the CVM with various
CDF nonparametric estimators. "CVM ecdf" refers to the ECDF estimator in (3.2); "CVM
kde" is the kernel estimator in (3.4); "CVM kde t.v." corresponds to the time-varying es-
timator in (3.5). We apply the lasso penalty in all cases. Figure (5.1) shows an example of
the lasso coefficient paths for the estimated parameters.

5.1.2 Simulation results

Figures (5.2), (5.3), (5.4), (5.5) show the ROC curves for both the CVM and the
TSCGM in various settings, obtained with just one simulation per each case. The per-
formance of the model has also been assessed using specificity (Spe=TN/(TN + FP)),
sensitivity (Sen=TP/(TP + FN)), and F1 score (F1=2TP/(2TP + FP + FN)), where TP,
TN, FP, and FN are the numbers of true positives, true negatives, false positives, and false
negatives in identifying the non-zero elements in the matrices Γ and Θ. The results did
not change considerably according to whether the AIC, BIC or extended BIC criterion was
used; therefore, we only report the results for the BIC criterion. The results are presented
in tables (5.1), (5.2), (5.3), (5.4) for different settings, and they refer to only one simulation
per each case. The first row of each table represents the results of the TSCGM when the
tuning parameters are chosen with the BIC criterion. "Oracle" indicates the results ob-
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Figure 5.1: Lasso coefficient paths for the CVM: plot of coefficient profiles for Θ (left) and Γ
(right), as a function of log(λ1) log(λ2), respectively. Log normal simulated data with
n = 20, t = 10, p = 10.
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Figure 5.2: ROC curves for Θ (left) and Γ (right), Normal simulated data with n = 20, t = 10,
p = 10.
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Figure 5.3: ROC curves for Θ (left) and Γ (right), Exponential simulated data with n = 20,
t = 10, p = 10.
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Figure 5.4: ROC curves for Θ (left) and Γ (right), Log normal simulated data with n = 20, t = 10,
p = 10.
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Figure 5.5: ROC curves for Θ (left) and Γ (right), Exponential simulated data with time-varying
rate, n = 20, t = 10, p = 10.

tained applying the CVM and choosing the tuning parameters which provide the highest F1
score. The results in the tables suggest that sometimes the BIC criterion did not accurately
select the true structure of the data when the CVM is applied, especially for Θ. However,
the oracle results show that the method works and it improves the existing TSCGM. Of
course, choosing the tuning parameters that provide the highest F1 score is not feasible
with real data, as the true structure is not known. Therefore, an efficient model selection
criterion has to be sought. The ROC curves show that, in general, the CVM with non time-
varying estimators perform better than the TSCGM and the CVM with the time-varying
kernel estimator. In the time-varying exponential rate simulation, the time-varying kernel
estimator still performs worse than the non time-varying estimators. It is worthwhile to
note that, also in case of normal data, the proposed method performs comparably to the
TSCGM. In addition, both the CVM and the TSCGM estimate better the Γ matrix rather
than the Θ matrix in all settings.
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Θ Spe Sen F1
TSCGM, BIC 0.86 0.62 0.68
CVM kde t.v., BIC 1.00 0.24 0.39
CVM kde t.v., oracle 0.59 0.81 0.68
CVM kde, BIC 0.48 0.91 0.69
CVM kde, oracle 0.76 0.86 0.78
CVM ecdf, BIC 0.45 0.91 0.68
CVM ecdf, oracle 0.79 0.86 0.80

Γ Spe Sen F1
TSCGM, BIC 0.95 0.71 0.80
CVM kde t.v., BIC 1.00 0.23 0.37
CVM kde t.v., oracle 0.89 0.64 0.72
CVM kde, BIC 0.98 0.82 0.89
CVM kde, oracle 0.95 0.96 0.94
CVM ecdf, BIC 0.96 0.82 0.88
CVM ecdf, oracle 0.95 0.93 0.93

Table 5.1: Results from one simulation where n = 20, t = 10, p = 10. Normal data.

Θ Spe Sen F1
TSCGM, BIC 0.83 0.38 0.47
CVM kde t.v., BIC 0.03 0.95 0.56
CVM kde t.v., oracle 0.59 0.62 0.57
CVM kde, BIC 0.48 0.91 0.69
CVM kde, oracle 0.72 0.81 0.74
CVM ecdf, BIC 0.41 0.91 0.67
CVM ecdf, oracle 0.76 0.86 0.78

Γ Spe Sen F1
TSCGM, BIC 0.66 0.59 0.58
CVM kde t.v., BIC 1.00 0.23 0.37
CVM kde t.v., oracle 0.21 0.97 0.66
CVM kde, BIC 0.96 0.86 0.91
CVM kde, oracle 0.96 0.86 0.91
CVM ecdf, BIC 0.79 0.93 0.85
CVM ecdf, oracle 0.95 0.91 0.92

Table 5.2: Results from one simulation where n = 20, t = 10, p = 10. Exponential data.

Θ Spe Sen F1
TSCGM, BIC 0.90 0.38 0.50
CVM kde t.v., BIC 0.00 1.00 0.57
CVM kde t.v., oracle 0.28 0.91 0.62
CVM kde, BIC 0.14 1.00 0.63
CVM kde, oracle 0.69 0.86 0.75
CVM ecdf, BIC 0.41 0.91 0.67
CVM ecdf, oracle 0.72 0.86 0.77

Γ Spe Sen F1
TSCGM, BIC 0.66 0.52 0.53
CVM kde t.v., BIC 1.00 0.23 0.37
CVM kde t.v., oracle 0.86 0.59 0.67
CVM kde, BIC 0.88 0.93 0.89
CVM kde, oracle 0.88 0.96 0.90
CVM ecdf, BIC 0.95 0.91 0.92
CVM ecdf, oracle 0.95 0.91 0.92

Table 5.3: Results from one simulation where n = 20, t = 10, p = 10. Log normal data.

Θ Spe Sen F1
TSCGM, BIC 0.97 0.24 0.37
CVM kde t.v., BIC 0.00 1.00 0.59
CVM kde t.v., oracle 0.21 0.91 0.60
CVM kde, BIC 0.14 1.00 0.62
CVM kde, oracle 0.93 0.57 0.69
CVM ecdf, BIC 0.03 1.00 0.60
CVM ecdf, oracle 0.90 0.57 0.67

Γ Spe Sen F1
TSCGM, BIC 0.50 0.64 0.56
CVM kde t.v., BIC 1.00 0.23 0.37
CVM kde t.v., oracle 0.32 0.89 0.65
CVM kde, BIC 0.82 0.77 0.77
CVM kde, oracle 0.73 0.96 0.83
CVM ecdf, BIC 0.80 0.91 0.84
CVM ecdf, oracle 0.80 0.91 0.84

Table 5.4: Results from one simulation where n = 20, t = 10, p = 10. Exponential data with
time-varying rate.
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5.2 Applications to gene expression data

In this section, the application of the CVM to time course gene expression datasets is
shown. In particular, we considered the study of genes involved in the circadian regulation
in a plant and the genes related to the transcriptional repressor farR in a bacteria. When
representing the dynamic networks in figures (5.8) and (5.11), the self loops have been
omitted for a more clear representation.

5.2.1 Application to Arabidopsis thaliana dataset

A. thaliana is a small flowering plant which is a widely used model for plant biology;
it was the first plant to have its genome sequenced. We used a dataset that can be found
in GEO data repository (https://www.ncbi.nlm.nih.gov/geo/, GEO accession: GSE3416).
The gene expression levels were measured with Affymetrix microarrays. Data were collected
with an interval of 4 h: the T = 6 time points are 0 h, 4 h, 8 h, 12 h, 16 h, and 20 h.
n = 3 biological replicates were analyzed. The aim of the experiment was to understand
the plant’s circadian cycle and how the transcript levels of leaf-expressed genes change in
a normal day-night cycle. We focused on the contemporaneous and dynamic interactions
among the genes involved in circadian regulation. Figure (5.6) shows the circadian clock
model known in biology. We considered the subset of nine genes that are known in the
literature to be involved in circadian regulation, as in Abegaz and Wit (2013), Grzegorczyk
and Husmeier (2010) and Grzegorczyk and Husmeier (2011). Those genes can be divided in
two groups, according to whether their expression peaks in the morning or in the evening:
morning genes, including LHY, CCA1, PRR9, and PRR5 and evening genes, which include
TOC1, ELF4, ELF3, GI, and PRR3. The longitudinal data are shown in figure (5.7).
We then applied the CVM tuning the lasso parameters with BIC. We used the non time-
varying kernel estimator. The range of parameters to choose from was (0.01, 1) with length
30, for both λ1 and λ2. BIC chose λopt1 = 0.01 and λopt2 = 0.22. Figure (5.8) represents
the estimated networks. The density of the estimated dynamic network is 0.47 while the
density of the contemporaneous one is 0.26.

5.2.2 Application to Neisseria gonorrhoeae dataset

Neisseria is a bacteria responsible for the sexually transmitted disease gonorrhea. We
are interested in detecting interactions among the 60 genes related to the transcriptional
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Figure 5.6: Model of the Arabidopsis thaliana circadian clock, from Greenham and McClung
(2015).
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Figure 5.7: Time series of the 9 genes considered for A. thaliana. The different shapes (triangle,
circle and plus) represent the replicates.
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Figure 5.8: Contemporaneous (left) and dynamic (right) networks corresponding to the estimates
of Θ and Γ, respectively, from A. thaliana. The dynamic network refers to 4-hour
relations. Morning genes are represented by yellow vertices, evening genes by blue
vertices.
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Figure 5.9: Time series of 9 genes among the 60 genes from Neisseria. The different shapes (tri-
angle and circle) represent the replicates.
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repressor FarR. In molecular genetics, a transcriptional repressor is a DNA- or RNA-binding
protein that inhibits the expression of one or more genes.
The data available concern n = 2 biological replicates observed across T = 20 time points
with intervals of 10 hours. Figure (5.9) shows the time series of 9 genes from the dataset. We
applied the CVM with non time-varying kernel estimator and, as in the previous example,
we first tried to tune the lasso parameters with BIC. From the range (0.01, .8) with length
20, BIC choose λopt1 = λopt2 = 0.8, resulting in too sparse estimates, i.e. Θ̂ and Γ̂ almost
diagonal. Figures (5.10) and (5.11) represent the resulting networks when λ1 = 0.15 and
λ2 = 0.1 are chosen in order to obtain networks with density similar to those known to
biologists (densities: 0.06 for the contemporaneous network, 0.09 for the dynamic network).
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Figure 5.10: Contemporaneous network corresponding to the estimate of Θ from Neisseria.
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Figure 5.11: Dynamic network of 10-hour relations among genes. It corresponds to the estimate
of Γ from Neisseria.



Conclusion

In this thesis, we developed an extension of the TSCGM proposed by Abegaz and Wit
(2013) for non normal data. Applications of the proposed method can be to longitudinal
genetic dataset as well as any generic longitudinal dataset, on the condition that the mea-
sured variables are continuous.
We assumed that there exist a latent normally distributed VAR process, related to the
observed process as a one-to-one transformation called Gaussian copula. Since this trans-
formation involves the unknown marginal distributions, various nonparametric methods
to estimate the latter have been proposed. This allowed us to estimate the latent process
and treat it as observed. We used a pseudo-likelihood approach, in that we approximate
the full likelihood neglecting the derivative of the Gaussian copula transformation: this is
the standard approach when the Gaussian copula is used, as there is little information in
it anyway. The parameters to estimate are the covariance and autoregressive matrices of
the latent process. Non-zero entries of the autoregressive matrix correspond to edges in
the dynamic network, which explains delayed interactions among the variables. Likewise,
non-zero entries of the covariance matrix are related to edges in the undirected network,
which shows contemporaneous relations. We suppose that those networks are sparse: to
account for this, two lasso penalties are added to the pseudo-likelihood. The estimation
is achieved with a two-stage iterative procedure using the MRCE algorithm by Rothman
et al. (2010). The tuning parameters of the lasso penalties have to be chosen: we considered
the AIC, BIC and extended BIC criteria.
Simulation studies have been conducted to assess the performance of the proposed method
compared to the TSCGM in case of normal and non normal data. The results showed
that, in the evaluated settings, the proposed method outperforms the TSCGM when the
data are non normal, and performs comparably to the TSCGM in case of normal data.
However, the model selection criteria considered are sometimes not accurate in selecting
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the true structure of the network when the proposed model is applied.

More extensive simulation studies could be done in future research to seek a more accurate
model selection criterion, cross-validation being a possible choice. The Kullback–Leibler
Cross Validation (KLCV) criterion by Vujačić et al. (2015) might also be considered, which
is a computationally fast alternative to cross-validation. However, KLCV was designed for
graphical models with a single penalty; in order to be applied to the copula VAR model,
an extension of the method is needed to account for the additional penalty for the autore-
gressive matrix.
So far we have made the rather strict assumption of considering the autoregressive and
covariance matrices constant across time. A possible topic of further research might be to
allow those matrices to change over time, identifying the changes with changepoint detec-
tion.
Another limiting assumption that we made is that the variables have to be continuous;
extensions of the model could allow for discrete variables. In that case, the extended rank
likelihood approach by Hoff (2007) is suggested and has been extensively applied when
dealing with discrete variables in Gaussian copula graphical models (Dobra and Lenkoski,
2009; Abegaz and Wit, 2015).



Appendix

R code

In what follows, the R code to apply the proposed copula VAR model to a longitudinal
dataset is presented. The functions for the simulations are also provided.
Many functions are modifications of those in the package SparseTSCGM by Fentaw Abegaz.

# required packages:

library(QUIC)

library(longitudinal)

library(MRCE)

library(SparseTSCGM)

library(glasso)

library(network)

library(compositions)

library(ks)

The following functions compute the the Gaussian copula transformation with various
nonparametric methods.

# modified ecdf

my.ecdf <- function (x)

{

x <- sort(x)

n <- length(x)
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if (n < 1)

stop(" ’ x ’ must have 1 or more non−mis s i ng va l u e s ")
vals <- unique(x)

rval <- approxfun(vals , (cumsum(tabulate(match(x, vals))) + .5)/(

n + 1),

method = " con s t an t ", f = 0, ties = " o rde r ed ")
class(rval) <- c(" e cd f ", " s t ep f un ", class(rval))

assign(" nobs ", n, envir = environment(rval))

attr(rval , " c a l l ") <- sys.call()

rval

}

# univariate time -varying kernel estimation , Gaussian kernel

weight <- function(x, y, omega)

{

if((omega > 1) | (omega <= 0)) stop("omega must be in ( 0 , 1 ] \ n")
w.tmp <- omega^abs(x[2,] - y[2])

w.sum <- sum(w.tmp)

w.tmp/w.sum

}

my.kde <- function(x, omega , time.vec , bw)

{

x2 <- rbind(x, time.vec)

cdfest <- apply(x2, 2, function(y) sum(pnorm(abs(y[1] - x2[1,])/

bw)*weight(x2, y, omega)))

list(Fhatj=t(cdfest))

}

# Gaussian copula transformation

fp <- function(x, npest , omega =.925)

{

p <- ncol(x)

nT <- nrow(x)
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out2 <- array(NA, dim=c(nT, p))

time.vec <- rep(attr(x, " t ime "), attr(x, " r e p e a t s "))
for(i in 1:p)

{

if(npest==" tvkde ")
{

h.tmp <- kedd::h.amise(x[,i], kernel=" gau s s i an ")
result <- my.kde(x=x[,i], omega=omega , time.vec=time.vec , bw=

h.tmp$h)

out2[,i] <- result$Fhatj

}

else if(npest=="kde")
{

fhat <- kde(x=x[,i], binned=TRUE)

out2[,i] <- pkde(x[,i], fhat)

}

else if(npest==" e cd f ")
{

for(j in 1:nT)

{

out2[j,i] <- my.ecdf(x[,i])(x[j,i])

}

}

}

list(Fhat=out2)

}

transf.cvm <- function(stimade , p_num , time , n_obs)

{

xy.Fhat <- array(NA, c(time , p_num , n_obs))

for (i in 1:n_obs)

{

for (t in 1:time)

{

cc <- 1 + (t - 1) * n_obs + (i - 1)

xy.Fhat[t, , i] <- stimade$Fhat[cc, ]
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}

}

out.z <- array(NA, c(time , p_num , n_obs))

set.seed (1234)

for(i in 1:n_obs)

{

for(t in 1:time)

{

for(j in 1:p_num)

{

out.z[t, j, i] <- qnorm(xy.Fhat[t, j, i])

}

}

}

out.z

}

pre.cvm <- function(xy.z=xy.z, time=time , model=c(" ar1 "," ar2 "))
{

model = match.arg(model)

if (model==" ar1 ") {

X <- xy.z[1:time -1,,,drop=FALSE]

Y <- xy.z[2:time ,,,drop=FALSE]

}

else if (model==" ar2 ") {

t1=time -1

t2=time -2

Y <- round(xy.z[3:time ,,,drop=FALSE],3)

X1 <- round(xy.z[2:t1 ,,,drop=FALSE],3)

X2<- round(xy.z[1:t2,,,drop=FALSE],3)

X <- abind(X1, X2,along = 2 )

}

T <- dim(Y)[1]

p <- dim(X)[2]

n <- dim(Y)[3]

q <- dim(Y)[2]
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xtyi <- array(NA, c(p,q,n))

xtxi <- array(NA, c(p,p,n))

ytyi <- array(NA, c(q,q,n))

for(i in 1:n){

XX <- X[,,i]

YY <- Y[,,i]

XX2 <- X[,,i]^2

YY2 <- Y[,,i]^2

xtyi[,,i]= crossprod(XX,YY)

xtxi[,,i]= crossprod(XX)

ytyi[,,i]= crossprod(YY)

}

xty=apply(xtyi , c(1,2), sum) # C_xx_

xtx=apply(xtxi , c(1,2), sum) # C_x_

yty=apply(ytyi , c(1,2), sum) # C_x

xtxt=apply(xtxi , c(1,2), sum)/(n*T)

xtx2=(n*T)*colMeans(apply(XX2 , c(1,2), sum))

yty2=(n*T)*colMeans(apply(YY2 , c(1,2), sum))

out.data <- list(xty=xty , xtx=xtx , yty=yty , xtxt=xtxt , xtx2=xtx2 ,

yty2=yty2 ,p=p, T=T, n=n, q=q)

return(out.data)

}

compute.cvm is the function for the two-stage iterative estimation method.

compute.cvm <- function(stimade , model = c(" ar1 ", " ar2 "), T=T, n=n,

p=p, q=q, time=time , tps=tps , xty = xty ,

xtx = xtx , yty = yty , xtxt = xtxt ,

xtx2 = xtx2 , yty2 = yty2 , lam1=lam1 ,

lam2=lam2 , optimality = c("NULL"," b i c "," b i c _
ext "," a i c "), setting=setting)

{

nlam=(n*T)*lam2

lam11 <- lam1*(1-diag(q))

old.B <- diag(p)
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k=0

mab = sum(sum(abs(old.B)))

while (1) {

k = k + 1

samp.cov = (yty - t(xty) %*% old.B - t(old.B) %*%

xty + t(old.B) %*% xtx %*% old.B)/(n * T)

if (k == 1) {

g.out = QUIC(S = samp.cov , rho = lam11 , tol = 1e-04,

msg = 0, maxIter = 10000)

old.om.i <- cov2cor(g.out$W)

old.om <- solve(old.om.i)

old.om <- round(old.om, digits =8)

}

if (k > 1) {

old1.om = old.om

old1.om.i = old.om.i

g.out1 = QUIC(S = samp.cov , rho = lam11 , tol = 1e-04,

msg = 0, maxIter = 10000, X.init = old1.om ,

W.init = old1.om.i)

old.om.i <- cov2cor(g.out1$W)

old.om <- solve(old.om.i)

old.om <- round(old.om, digits =8)

}

if (!is.numeric(old.om))

old.om <- diag(q)

xtyom = (xty %*% old.om)

wt1 <- matrix(lam2 , nrow = p, ncol = q)

rho2 <- wt1 * (n * T)

diag(rho2) <- 0

warmstart = 1

if (k == 1)

warmstart = 0

B = MRCE ::: rblasso(s = xtx , m = xtyom , om = old.om, nlam = rho2

,
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tol = 1e-05, sbols = mab , maxit = setting$maxit.in,

warm = warmstart , B0 = old.B)

bdist = sum(sum(abs(B - old.B)))

if (!is.numeric(B))

B <- matrix(0, p, q)

old.B = B

if ((bdist < setting$tol.out * mab) | (k > setting$maxit.out))

break

cat("Outer i t e r a t i o n s : ", k, "\n")
cat(" lambda1=", lam1 , "\n")
cat(" lambda2=", lam2 , "\n")
cat("S_ lambda=", as.matrix(samp.cov), "\n")

}

if(setting$silent ==FALSE) cat("Tota l ou t e r i t e r a t i o n s f o r cvm :
", k, "\n")

return(list(gamma=old.B, theta=old.om))

}

cvm.bic tunes the lasso parameters with AIC, BIC or extended BIC, given a range of
tuning parameters.

cvm.bic <- function (stimade , model = c(" ar1 ", " ar2 "), T=T, n=n,

p=p, q=q, time=time , tps=tps , xty = xty , xtx =

xtx , yty = yty , xtxt = xtxt , xtx2 = xtx2 ,

yty2 = yty2 , lam1=lam1 , lam2=lam2 ,

optimality = c("NULL", " b i c "," b i c _ ext "," a i c "
), setting=setting)

{

lam.vec.1 = lam1

lam.vec.2 = lam2

lamR = length(lam.vec.1) * length(lam.vec.2)

BICh = matrix(NA, lamR , 1)

lam1h = matrix(NA, lamR , 1)

lam2h = matrix(NA, lamR , 1)

uv <- 0
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for (u in 1: length(lam.vec .1)) {

for (v in 1: length(lam.vec.2)) {

uv <- uv + 1

outlasso_s <- compute.cvm(stimade=stimade , model = model ,

T = T, n = n, p = p, q = q,

time=time , tps=tps , xty = xty ,

xtx = xtx , yty = yty , xtxt = xtxt ,

xtx2 = xtx2 , yty2 = yty2 ,

lam1 = lam.vec.1[u], lam2 = lam.vec.2[v],

optimality = "NULL", setting = setting)

PO = outlasso_s$theta

PB = outlasso_s$gamma

WS = (yty - t(xty) %*% PB - t(PB) %*% xty + t(PB) %*%

xtx %*% PB)/(n * T)

lik1 = determinant(PO)$modulus [1]

lik2 <- sum(diag(PO %*% WS))

diag(PO) = 0

pdO = sum(sum(PO != 0))

pdB = sum(sum(PB != 0))

LLk <- (n * T/2) * (lik1 - lik2)

LLk0 <- (n * T/2) * (-lik2)

if (optimality == " b i c ") {

BICh[uv, 1] <- -2 * LLk + (log(n * T)) * (pdO/2 +

q + pdB)

}

else if (optimality == " b i c _ ext ") {

BICh[uv, 1] <- -2 * LLk + (log(n * T)) * (pdO/2 +

q + pdB) + (pdO/2 + q + pdB) * 4 * 0.5 *

log(q + p)

}

else if (optimality == " a i c ") {

BICh[uv, 1] <- -2 * LLk + 2 * (pdO/2 + q + pdB)

}

lam1h[uv, 1] <- lam.vec.1[u]

lam2h[uv, 1] <- lam.vec.2[v]

}
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}

res.lasso <- cbind(lam1h , lam2h , BICh)

bicid <- which.min(res.lasso[, 3])

lam1.opt <- res.lasso[bicid , 1]

lam2.opt <- res.lasso[bicid , 2]

bicm <- res.lasso[bicid , 3]

tmp.out = compute.cvm(stimade=stimade , model = model , T = T,

n = n, p = p, q = q, time=time , tps=tps ,

xty = xty , xtx = xtx , yty = yty ,

xtxt = xtxt , xtx2 = xtx2 ,

yty2 = yty2 , lam1 = lam1.opt ,

lam2 = lam2.opt , optimality = "NULL",
setting = setting)

best.B = tmp.out$gamma

best.theta = tmp.out$theta

d.gamma <- tmp.out$gamma

diag(d.gamma) <- 0

s.gamma = sum(abs(d.gamma) > 0)/(p^2)

d.theta <- tmp.out$theta

diag(d.theta) <- 0

s.theta = (0.5 * sum(abs(d.theta) > 0))/(0.5 * q * (q - 1))

tun.ic <- res.lasso

lam1s <- lam.vec.1

lam2s <- lam.vec.2

min.ic <- bicm

colnames(tun.ic) <- c("Lambda1", "Lambda2", "IC")
return(list(gamma = best.B, theta = best.theta ,

lam1.opt = lam1.opt , lam2.opt = lam2.opt ,

lam1.seq = lam1s , lam2.seq = lam2s , min.ic = min.ic,

tun.ic = tun.ic, s.gamma = s.gamma ,

s.theta = s.theta))

}

The following function can be directly applied by the user to a longitudinal dataset, giving
a range of tuning parameters. One has to choose:

• the model selection criterion among BIC, AIC or extended BIC;
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• the nonparametric estimator for CDFs among empirical cumulative distribution func-
tion (ecdf), time-varying (tvkde) or non time-varying (kde) kernel estimator.

cvm <- function (data = data , lam1 = NULL , lam2 = NULL ,

nlambda = NULL , model = c(" ar1 ", " ar2 "),
optimality = c("NULL", " b i c ", " b i c _ ext ", " a i c "),
npest=c(" tvkde ", "kde", " e cd f "),
control = list())

{

npest = match.arg(npest)

require(longitudinal)

if (is.longitudinal(data) == TRUE) {

n_obs = get.time.repeats(data)$repeats [[1]]

tps = get.time.repeats(data)$time

p_num = dim(data)[2]

time = dim(data)[1]/n_obs

stimade <- fp(data , npest)

}

else {

cat("Data format i s not l o n g i t u d i n a l . ", "\n")
}

model = match.arg(model)

xy.z <- transf.cvm(stimade , p_num , time , n_obs)

data.prep <- pre.cvm(xy.z = xy.z, time = time , model = model)

xty <- data.prep$xty

xtx <- data.prep$xtx

yty <- data.prep$yty

xtxt <- data.prep$xtxt

xtx2 <- data.prep$xtx2

yty2 <- data.prep$yty2

if (model==" ar1 ")
{

T <- length(get.time.repeats(data)$time) - 1

}

else if (model==" ar2 ")



53

{

T <- length(get.time.repeats(data)$time) - 2

}

q <- p_num

optimality = match.arg(optimality)

nobic = (length(lam1) + length(lam2) == 2)

doms = (length(lam1) + length(lam2) > 2)

if (!is.list(control))

stop(" c o n t r o l i s not a l i s t ")
setting <- list(maxit.out = 5, maxit.in = 50, tol.out = 1e-04,

silent = TRUE)

nmsSetting <- names(setting)

setting [(nms <- names(control))] <- control

if (length(noNms <- nms[!nms %in% nmsSetting ]))

warning("unknow names in c o n t r o l : ", paste(noNms , collapse = " ,
"))

if (nobic != 2 & optimality == " n o s e l ")
stop(" Sp e c i f y p o s i t i v e s c a l a r v a l u e s f o r the tun ing paramete r s "

)

if (doms > 2 & optimality != " n o s e l ")
stop(" Sp e c i f y v e c t o r o f p o s i t i v e d e c r e a s i n g va l u e s f o r the

tun ing paramete r s ")
doNULL = nobic & (optimality == "NULL")
dobic = doms & (optimality == " b i c ")
dobic1 = doms & (optimality == " b i c _ ext ")
dobic3 = doms & (optimality == " a i c ")
gamma = NULL

theta = NULL

if (doNULL) {

tmp.out = compute.cvm(stimade=stimade , model = model , T = T,

n = n_obs , p = p_num , q = q, time=time ,

tps=tps , xty = xty , xtx = xtx , yty = yty ,

xtxt = xtxt , xtx2 = xtx2 , yty2 = yty2 ,

lam1 = lam1 , lam2 = lam2 ,

optimality = "NULL", setting = setting)
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}

else if (dobic) {

tmp.out = cvm.bic(stimade=stimade , model = model , T = T,

n = n_obs , p = p_num , q = q, time=time ,

tps=tps , xty = xty , xtx = xtx , yty = yty ,

xtxt = xtxt , xtx2 = xtx2 , yty2 = yty2 ,

lam1 = lam1 , lam2 = lam2 , optimality = " b i c ",
setting = setting)

}

else if (dobic1) {

tmp.out = cvm.bic(stimade=stimade , model = model , T = T,

n = n_obs , p = p_num , q = q, time=time ,

tps=tps , xty = xty , xtx = xtx , yty = yty ,

xtxt = xtxt , xtx2 = xtx2 , yty2 = yty2 ,

lam1 = lam1 , lam2 = lam2 ,

optimality = " b i c _ ext ", setting = setting)

}

else if (dobic3) {

tmp.out = cvm.bic(stimade=stimade , model = model , T = T,

n = n_obs , p = p_num , q = q, time=time ,

tps=tps , xty = xty , xtx = xtx , yty = yty ,

xtxt = xtxt , xtx2 = xtx2 , yty2 = yty2 ,

lam1 = lam1 , lam2 = lam2 , optimality = " a i c ",
setting = setting)

}

gamma = tmp.out$gamma

gamma = gamma * (1 * (abs(gamma) > 0.01))

theta = tmp.out$theta

theta = theta * (1 * (abs(theta) > 0.01))

lam1.opt = tmp.out$lam1.opt

lam2.opt = tmp.out$lam2.opt

lam1.seq = tmp.out$lam1.seq

lam2.seq = tmp.out$lam2.seq

s.gamma = tmp.out$s.gamma

s.theta = tmp.out$s.theta

tun.ic = tmp.out$tun.ic



55

min.ic = tmp.out$min.ic

if (model == " ar1 ") {

colnames(gamma) <- colnames(data)

}

else if (model == " ar2 ") {

colnames(gamma) <- colnames(data)

rownames(gamma) <- c(colnames(data), colnames(data))

}

colnames(theta) <- rownames(theta) <- colnames(data)

out = list(gamma = gamma , theta = theta , lam1.opt = lam1.opt ,

lam2.opt = lam2.opt , lam1.seq = lam1.seq , lam2.seq =

lam2.seq ,

min.ic = min.ic, tun.ic = tun.ic , s.gamma = s.gamma ,

s.theta = s.theta)

class(out) = " s p a r s e . tscgm"
return(out)

}

The following function generates sparse autoregressive and covariance matrices as in algo-
rithms (2) and (3).

gen.sparse.tg <- function(n.var , sparsity=NULL)

{

if(is.null(sparsity))

sparsity <- 1/n.var

# Theta

out1 <- matrix(NA, nrow=n.var , ncol=n.var)

for(i in 1:(n.var))

{

for(j in 1:n.var)

{

tmp <- rbinom(1, size=1, prob=sparsity)

if(tmp ==0)

out1[i, j] <- tmp

else

{

tmp2 <- rbinom(1, size=1, prob =.5)
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if(tmp2 ==0)

out1[i, j] <- runif(1, -1, -.5)

else

out1[i, j] <- runif(1, .5, 1)

}

}

}

for(k in 1:n.var)

{

if(any(!(out1[k,-k]==rep(0, n.var - 1))))

out1[k,-k] <- out1[k, -k] / (1.5*sum(abs(out1[k, -k])))

}

out1 <- Matrix :: forceSymmetric(out1)

diag(out1) <- 1

sigma.old <- solve(out1)

sigma.new <- cov2cor(sigma.old)

prec <- solve(sigma.new)

prec <- round(prec , digits =8)

# Gamma

vm <- min(abs(prec[prec!=0]))

out2 <- matrix(NA, nrow=n.var , ncol=n.var)

for(i in 1:(n.var))

{

for(j in 1:n.var)

{

tmp <- rbinom(1, size=1, prob=sparsity)

if(tmp ==0)

out2[i, j] <- tmp

else

{

tmp2 <- rbinom(1, size=1, prob =.5)

if(tmp2 ==0)

out2[i, j] <- runif(1, -1, -vm)

else

out2[i, j] <- runif(1, vm, 1)
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}

}

}

gamma <- out2

diag(gamma) <- .1

list(theta=as.matrix(prec), gamma=gamma)

}

The following function simulates exponential or log-normal longitudinal data as described
in section (5.1). If normal data are needed, it is sufficient to pick the object zt; otherwise,
one has to choose between exponential or lognormal distribution through the argument
distr. If exponential data with time-varying rate are needed, one needs to set rate=t/2,
for example.

sim.nonn <- function (time = time , n.obs = n.obs , n.var = n.var ,

seed = NULL , prob0 = NULL , prec = NULL ,

gamma1 = NULL , distr=c(" e xpon en t i a l ",
" lognorma l "), ...)

{

distr = match.arg(distr)

t = time

n = n.obs

d = n.var

if (is.numeric(seed))

r = 0

else {

seed = 123

r = round(runif (1), 4) * 10000

}

mu <- rep(0, d)

true_theta <- prec

sigma1 <- round(solve(true_theta), digits =7)

true_gamma <- gamma1

B11 <- true_gamma

varmarg <- sigma1 + B11%*%sigma1%*%t(B11)

cdiag <- diag(varmarg)

xtn <- array(NA, c(t, d, n))
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xtt <- array(NA, c(t, d, 1))

for (i in 1:n) {

z0 <- mvtnorm :: rmvnorm(1, mu, sigma1 , method = " svd ")
x0 <- rep(NA, d)

for(k in 1:d)

{

z0[k] <- z0[k]/(sqrt(cdiag[k]))

if(distr==" e xpon en t i a l ")
x0[k] <- qexp(pnorm(z0[k]), ...)

else if(distr==" lognorma l ")
x0[k] <- qlnorm(pnorm(z0[k]), ...)

}

for (j in 1:t) {

et <- mvtnorm :: rmvnorm(1, mu, sigma1 , method = " svd ")
zt <- z0 %*% B11 + et

xt <- rep(NA, d)

for(k in 1:d)

{

zt[k] <- zt[k]/(sqrt(cdiag[k]))

if(distr==" e xpon en t i a l ")
xt[k] <- qexp(pnorm(zt[k]), ...)

else if(distr==" lognorma l ")
xt[k] <- qlnorm(pnorm(zt[k]), ...)

}

xtt[j, , ] <- xt

z0 <- zt

}

xtn[, , i] <- round(xtt , 3)

}

xy = matrix(aperm(xtn , c(3, 1, 2)), ncol = d)

data1 <- as.longitudinal(xy, repeats = n)

return(list(data1 = data1 , theta = true_theta ,

gamma = true_gamma , sigma = sigma1))

}
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