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Abstract

Aerodynamic optimizations of axial-flow turbomachinery have been
widely explored by many researchers. Typical procedures involve the use of
Computational Fluid Dynamics (CFD) simulations, which give accurate re-
sults but require high computational time and resources. In order to tackle
these challenges, a procedure that couples a meanline solver and a genetic
algorithm is here proposed.

The meanline solver Systematic Analysis of TURbofaN (SATURN), de-
veloped by the COMETES research group at University of Padua, is pre-
sented in Chapter 2, together with its validation on experimental data of
the transonic compressor rotor NASA Rotor 37, which has been chosen as
test case. The optimization is reported in Chapter 3: the results show a
significant increase in pressure ratio at design condition, against an almost
unchanged isentropic efficiency and operating range. Then, the method-
ology adopted to build a three-dimensional model starting form meanline
parameters is described. A series of CFD simulations have been used to
verify solver prediction on the optimized geometry. Mesh, settings and
results of the simulations are shown in Chapter 4: the increase in pressure
ratio has been confirmed, as for the prediction on efficiency. However, a
different operating range has been calculated. Finally, an Artificial Neu-
ral Network (ANN) has been trained on meanline outputs, as explained in
Chapter 5, and it has been used to predict the performance of the compres-
sor in an optimization process analogous to the one described in Chapter
3. The optimized individual has been simulated using the meanline solver,
and a good matching between ANN prediction and SATURN calculation is
shown. The use of a surrogate model helped to further reduce the time
required to complete the optimization procedure.
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1 | Introduction

After a brief overview on Computational Fluid Dynamics (CFD) methods, aerody-
namic optimization problems using CFD are described. A solution that replaces CFD
with a one-dimensional meanline solver is then proposed, in order to reduce computa-
tional time needed. The test case is finally introduced.

1.1 State-of-the-art CFDMethods
The behaviour of a fluid is one of the most fascinating topics in science. Using
Netwon’s second law of dynamics together with fundamental principles of mass,
momentum and energy conservation, it is possible to describe the motion of a
general viscous fluid by means of Navier-Stokes (NS) equations. These equations
are one of the pillars of fluid mechanics, but proving that a smooth and globally
defined solution to these equations exists has never been done. Many scientists
tried in vain to solve NS existence and smoothness problem (Otelbaev [1] is just
an example), but today it still remains an unsolved Millenium Prize Problem.
NS equations consist of a system of four second-order non-linear partial differen-
tial equations: finding an analitycal solution is possible just in few particular cases,
say for inviscid and incompressible flow, and so a numerical solution in required
in almost every application. NS equations have the following expression:

∂ρ
∂t + ∇⃗ ·

(
ρV⃗

)
= 0

ρ
[
∂V⃗
∂t + (V⃗ · ∇⃗)V⃗

]
= ρg⃗ − ∇⃗p+µ∇2V⃗ + (λ+µ) ∇⃗

(
∇⃗ · V⃗

) (1.1)

All the features of the flow motion are described, from larger eddies to tur-
bulence. It could seems obvious, at this point, that the most simple way to get
a numerical solution of a turbulent flow is to discretize NS equations in time
and space. This particular technique of CFD is called Direct Numerical Simula-
tion (DNS).
As DNS simply discretizes Equations 1.1, discretization must be so fine to capture
every aspect of turbulence in order to get an accurate result: because of this aspect,

1
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DNS is extremely heavy in terms of computational costs, but on the other side its
results are comparable to those given by an experiment. To have a quantitative
idea, consider the DNS of the water flow through a common house tap with a di-
ameter equal to 15mm. Using non-dimensional analysis, it is possible to demon-
strate that if the characteristic Reynolds number of the flow is Re1 = 6× 103, the
time required for the solution to converge would be ttot,1 ∝ Re13 ≃ 1hour on a
modern multicore Intel Xeon 64GB RAM 2.00GHz workstation (Picano [2]).
Consider now the water flow through a commercial tube with a 2m diameter
characterized by a Reynolds number Re2 = 6× 106. The computational time
required can be calculated from the following equation:

ttot,2
ttot,1

=
(
Re2
Re1

)3
, (1.2)

from which it follows that

ttot,2 = 10003 · ttot,1 = 1× 109hours,

that is approximately equal to 100000 years. This type of calculation is never
used in industrial applications for obvious reasons and it is mainly used within aca-
demic research to investigate some particular aspects of turbulence. Nowadays,
even the most powerful supercomputers can’t afford to compute a DNS rapidly.
Probably this scenario will change once the enhanced computational performance
of quantum supercomputers will be state of the art (Arute et al. [3]).

It is clear that a faster CFD methodology is necessary. Under an engineering
point of view, the relevant properties of a flow can often be extracted from the sta-
tionary solution: for example, an aircraft engineer can be interested in the overall
effect that the fuselage has on the performance of the aircraft itself, rather than
solving the small scale flow features. If so, it is sufficient to consider average veloc-
ity fields, rather than the instantaneous ones. Reynolds-Averaged Navier-Stokes
equations (RANS) methodology fulfills this purpose by modifying NS equations
using the so-called Reynolds average. A series of benefits are consequence of this
assumption: is it possible to use symmetry properties as time-dependent prop-
erties are lost, less discretized grids can be employed because the focus of the
analysis is on the large-scale aspects of the flow and the computational time is
drastically reduced if compared to the one required by a DNS. With RANS, how-
ever, come also some negative aspects. First of all, it is not possible to capture
turbulence, as it is an unsteady phenomenon. Second of all, the formulation of
the problem requires further equations in additions to the Reynolds-averaged
Equations 1.1 to achieve the closure of the mathematical system. A number of
additional equations is then used to model turbulence behaviour depending on
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(a) RANS (b) LES (c) DNS

Figure 1.1. Different CFD simulations of the same turbulent flow (Cuenot [4]).
Notice how DNS captures the smallest eddies, while averaged flow features are
captured by RANS. LES stands in-between RANS and LES

the turbulence model adopted. As a result, the output of the simulation is de-
pendent from these parameters, and so it is highly recommended to use RANS
technique only with the support of some experimental data on which the nu-
merical model can be validated. The turbulence model used in this thesis is a
two-equations model called k −ω Shear Stress Transport (SST).

Nevertheless sometimes it could be necessary to capture the large-scale as-
pects of turbulence. With this goal, a technique that is in between the extreme
accuracy of DNS and the averaged results of RANS simulation stands in the Large
Eddy Simulation (LES). LES methodology is more advanced than RANS method-
ology, as it is based on the concepts of K41 theory of Kolmogorov, according to
which smallest aspects of turbulence are universal while the biggest ones depend
on the specific case and geometry. Following this idea, the discretization required
for a LES is coarser than the one of a DNS, but more refined than the one used
in a RANS: this is not to capture smallest eddies, but only the ones dependent on
the particular flow in exam.

To conclude, RANS methodology is the faster way to simulate a fluid flow
and is currently the most widely used CFD technique in engineering applications,
while DNS remains confined in academics contexts and LES finds application in
specific fields, as in meteorology.
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1.2 Aerodynamic Optimizations using CFD

Aerodynamic optimizations of axial-flow turbomachinery based on CFD have
been extensively explorated by many researchers.

A common optimization procedure is to couple a bio-inspired algorithm and
CFD simulations. Typically, the baseline geometry is modified by means of an
arbitrary parametrization and it is then simulated using a RANS solutor. The
process is usually driven by a genetic algorithm, for example, and it is repeated
until convergence criteria are reached. Consider the time required for a single
solution to converge being 8 hours for each individual on an Intel Pentium IV
CPU of 3.00GHz speed, like for the transonic compressor blade analyzed by
Samad and Kim [5]. The analysis must be then repeated for each individual
of each generation at each different operating condition. The total CPU time
required is then

ttot ∝ 8×Nind ×Ngen ×Noc hours, (1.3)

being Nind the number of individuals, Ngen the number of generations and Noc
the number of different operating conditions. Using this approach, however,
Nind and Ngen must be low enough to keep calculation times within reasonable
limits. This is a drawback aspect of such methodology, because the limitation of
the number of generations and individuals prevents to perform a thorough explo-
ration of the design space, and the identification of the absolute optimum is not
guaranteed. For example, Abate [6] proposed the optimization of a transonic fan
by coupling an evolutionary optimization algorithm and CFD in order to maxi-
mize isentropic efficiency and pressure ratio. The process required 7days on an
Intel Xeon 64GB RAM 2.00GHz speed quadcore workstation. Generations
number and individuals number have been respectively set to 10 and 6.
Asghari et al. [7] presented an evolutionary algorithm optimization process of
the transonic rotor Rotor 37 based on the modification of the stacking line of the
blade, which led to a slight improvement of the adiabatic efficiency. The number
of generations and individuals was respectively set to 8 and 20. A number of
73 CFD simulations have been carried out, since some geometries have not been
simulated as they were preserved through generations because of elitism. The
computational time required has not been specified by the authors, but the high
number of CFD simulations led to high computational time.

Recently, some researchers tried to reduce computational time by using sur-
rogate models to find optimal solutions, instead of CFD.
Samad and Kim [5] proposed the optimization of a transonic axial compressor
rotor blade using Response Surface Method. Ghalandari et al. [8] presented the
optimization process of an axial compressor blade using an ANN trained on ex-
perimental data. In both cases, CFD has been used just as a verification tool and
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computational time required has been of few hours.
Joly et al. [9] proposed a threefold optimization approach based on machine learn-
ing and genetic algorithm, which involved the dynamic selection and self-tuning
among several surrogate models, the classification to anticipate failure of the per-
formance evaluation and the adaptive selection of new candidates to perform CFD
evaluation for updating the surrogate models, in order to facilitate design space
exploration and to reduce surrogate models uncertainty. The calculations have
been carried out on a 100 CPUs cluster and they required 48hours, including
360 CFD simulations of the transonic rotor Rotor 37. Notice that CPU time is
within reasonable limits, but very high computational power has been employed.
The same process would have required about 120 days on an Intel Pentium IV
CPU of 3.00GHz speed, like the one used by Samad and Kim [5].
Duan et al. [10] used a data mining technique based on Proper Orthogonal De-
composition combined with a particle swarm algorithm to optimize the perfor-
mance of the Rotor 37. In the first phase of the process, the creation of a database
using the particle swarm algorithm has been required, and performance of each
particle have been then evaluated using CFD. Since 80 particles have been cre-
ated, 80 CFD simulations have been carried out. Consequently, high computa-
tional time is required by this approach too.
Mondal et al. [11] analyzed a surrogate-assisted optimization of the Rotor 37.
They trained multi-fidelity surrogate models with fewer high-fidelity CFD pre-
dictions and more rapid and inexpensive lower-fidelity CFD evaluations. The
approach yielded significant increase in performance within a dozen of CFD sim-
ulations, so that computational time has been kept within reasonable limits.

In this work, an optimization process based on a meanline solver is proposed,
as explained in the next chapters. The aim is to reduce the use of CFD to ver-
ification purposes. The meanline solver has been developed by the COMETES
research group at University of Padua and it has been extensively validated on
several turbomachinery used in aeronautical propulsion systems, including the
Rotor 37, developed by National Aeronautics and Space Administration (NASA),
which has been chosen as test case.
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1.3 NASARotor 37
The Rotor 37 is a low aspect ratio inlet rotor for an axial transonic core compressor
developed by NASA Lewis Research Center. Figure 1.2 shows its meridional
section.

The Rotor 37 was designed and initially tested in the 1970s as part of a re-
search programme involving four axial-flow compressor stages; one of them, the
Stage 37, involved actually the Rotor 37. These stages were intended to cover a
range of design parameters typical of aircraft turbine engine high-pressure (core)
compressor inlet stages. Some design information and overall performance of
Stage 37 came from Reid and Moore [12], but more detailed measurement data
were provided by the same two years later (Moore and Reid [13]).

After those tests, the Rotor 37 was tested again as an isolated component. A
brief description of the related test facility was given by Suder [14], while Figure
1.2 shows the axial location of some measurement stations used to compute com-
pressor performance. Measurement data have been published by many authors
and are used to validate numerical models for transonic compressor rotors (Suder
[14]; Ameri [15]). Design specifications for the Rotor 37 are reported in Table
1.1.
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Figure 1.2. Meridional section of the Rotor 37 and survey stations
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Table 1.1. Design specifications of the Rotor 37 (Suder [14])

Mass flow rate [kgs−1] 20.188
Rotational speed [rads−1] 1800
Total pressure ratio 2.106
Total temperature ratio 1.270
Isentropic efficiency 0.877
Inlet tip relative Mach number 1.400
Inlet hub relative Mach number 1.130
Tip solidity 1.288
Aspect ratio 1.190
Tip clearance gap [mm] 0.356
Number of blades 36

More in detail, pressure ratio and isentropic efficiency are calculated as

PR =
p04
p01

and ηis =
PR

k−1
k − 1

T 0
4
T 0
1
− 1

. (1.4)

The subscript indicates the measurement station, while the superscript indi-
cates stagnation quantities. In following chapters, two more quantities will be
considered, these are surge margin SM and choking margin CM. They’re defined
as follows:

SM =
ṁdesign − ṁsurge

ṁdesign
and CM =

ṁchoking − ṁdesign

ṁdesign
. (1.5)

In the optimization process explained in Chapter 3, PR and ηis calculated at
design mass rate flow will be treated as optimization objectives, while SM and
CM will be treated as optimization constraints. SM and CM values of Rotor 37
are respectively 0.038 and 0.074.

Experimental performance maps and spanwise plots are reported in Figure
1.3 and in Figure 1.4. It is possible to observe a severe reduction of isentropic
efficiency over the span 80%, associated with an increment of total temperature
ratio. This is a typical negative feature of transonic axial flow compressor rotors,
as a result of the irreversibilities that occur at the tip endwall region; these are
mainly due to intense tip clearance flows, the presence of strong shock waves and
casing boundary layer, as well as to their detrimental interaction (Biollo [16]).
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Figure 1.3. Performance maps of the Rotor 37. Experimental data from Suder [14]
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2 | Meanline Solver

The meanline solver adopted in this work is here presented, together with its valida-
tion on the experimental data of the Rotor 37. Motivation, settings and results of a
Sensitivity Analysis (SA) based on solver’s outputs are then explained.

2.1 SATURN

Systematic Analysis of TURbofaN (SATURN) is a one-dimensional meanline
code developed in a C++ environment by COMETES research group at Univer-
sity of Padua. It predicts design and off-design performance of axial turboma-
chinery using fundamental equations of conservation of mass, momentum, and
energy, as well as isentropic flow equations, pressure loss and deviation models
for design and off-design conditions: solving these equations together on differ-
ent spanwise locations (specifically, 10%, 50% and 90%), it determines the air
flow unknowns. The blade-to-blade geometrical properties of the airfoil at each
span given as input to SATURN and used in this work are defined by means of 5
variables, which are reported in Table 2.1.
SATURN is able to predict the performance of several turbomachineries used in

aeronautical applications, including the transonic axial compressor Rotor 37.

Table 2.1. Geometrical properties used in SATURN to define the blade-to-blade section
of the airfoil at each span

Definition Variable Name
Inlet blade angle angBladeIn
Outlet blade angle angBladeOut
Chord length chord
Curvature radius of leading edge radCurvIn
Maximum thickness-to-chord ratio thickMaxChordRatio

9
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The operating conditions, in terms of mass flow rate ṁ and rotational speed
ω, are specified by the user, together with the boundary conditions at the inlet of
the machine, in terms of inlet total pressure p01, inlet total temperature T01 and
absolute inlet flow angle α1. If the bladed row is rotating, relative flow quantities
are used. Inlet duct and outlet ducts are also considered.

A fundamental role in the solver is played by loss models. These include:

– Shock losses: they are consequence of the transonic flow regime established
in the streamtube, especially at the tip, where relative velocity of the flow
is higher and where shock waves are more intense. As known, entropy
increases after the generation of a shock wave and a total pressure loss
happens. Shock loss models account for this phenomenon;

– Blade profile losses: include losses caused both by the streamtube contrac-
tion, typical of compressors, and by the effect of the boundary layer on the
suction side and pressure side of the blade, which creates drag. These losses
are typical of viscid fluids;

– Off-design losses: occur when the machine works in a condition different
than the design one, and so different incidence angles cause lower effi-
ciency;

– Endwall losses: they are consequence of the secondary flows forcing the
wall boundary layer toward the suction side of the rotor, where mixing of
blade and wall boundary layers takes place;

– Secondary losses: they consider secondary flow losses and tip-clearance
losses;

– Inlet and outlet ducts losses: an empirical loss model has been formulated
using high-fidelity CFD results.

Another aspect that has been considered is the blockage: a model has been used
to account for the reduction of the effective passage area caused by the presence
of boundary layer both over the hub and the shroud. An empirical model has
been employed, as the exact calculation of blockage factor would require the de-
termination of boundary layers height. Furthermore, surge is detected by means
of another empirical model. Finally, solver divergence for ṁ > ṁdesign has been
considered for the detection of the choking condition.
A final calibration on experimental data is required to account for models error
propagation.

A complete list of the the models implemented in SATURN, together with
references, is reported in Table 2.2.
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Table 2.2. List of the empirical models implemented in SATURN

Model Reference
Blockage Smith [17]
Reference incidence angle Çetin et al. [18]
Reference deviation angle Çetin et al. [18]; Carter and Huges [19]
Off-design deviation angle Carmody and Creveling [20]
Blade profile losses Lieblein [21]; Koch and Smith [22]
Shock losses Koch and Smith [22]; Miller et al. [23]
Endwall losses Koch and Smith [22]
Secondary losses Tournier and El-Genk [24]; Yaras and Sjolan-

der [25]
Off-design losses Carmody and Creveling [20]
Surge detection White et al. [26]
Choking detection Solver divergence for ṁ > ṁdesign

The outputs of SATURN are perfomance maps (Figure 2.1) and spanwise plots
of pressure ratio, isentropic efficiency and temperature ratio (Figure 2.2). The
time required for the calculation of three different speedlines is about 50 s on a
laptop with 8GB RAM and an Intel i7-8550u 1.80GHz speed processor. Calcu-
lation time reduce to 0.10 s for prediction of the performance at design condition.

Despite the simplicity of the low-order meanline code, compressor maps pre-
dictions show satisfactory accuracy, especially for pressure ratio (Figure 2.1(a)).
A fine matching has been obtained at design point. Furthermore, spanwise plots
of Figure 2.2 show some important aspects, as the loss in efficiency that occurs
for high spans as consequence of strong shock waves and tip clearance flows.

To conlude, notice that the spanwise-average of a general quantity, x, is com-
puted as

x̄ = 0.2 · xspan 10% +0.6 · xspan 50% +0.2 · xspan 90%. (2.1)

This will help in understanding some results of the SA explained in the next Sec-
tion.
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ṁ [kgs−1]

PR
[-

]

Design point
SATURN

(a) Pressure Ratio

10 15 20

0.8

0.9

1
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2.2 Sensitivity Analysis
To understand the importance of design variables listed in Table 2.1 with respect
to optimization objectives and constraints (see Equation 1.4 and Equation 1.5),
a SA based on Student’s t-test has been conducted. This step has been fundamen-
tal for two reasons. Firstly, it helped with the debugging of the meanline code
itself, as in a first instance some incongruities with theoretical expectations arose.
Secondly, it allowed to decide whether it was possible to exclude some variables
from the optimization process because of their small statistical significance.

2.2.1 Sampling method
The first step of the analysis has been the determination of the exploration space.
It has been considered reasonable to define a range of variation for each decision
variable of ±7.5% centered on the Rotor 37 baseline values. This was to under-
stand the behaviour of compressor rotors that are similar to the baseline one. Big
improvements with respect to the Rotor 37 performance were not expected, since
this compressor rotor was already optimized during the design phase.

In defining the exploration space, the sampling methodology adopted is very
important to properly find a non-clustered distribution of samples. Various sam-
pling methods exist. Random sampling is a completely stochastic method that,
as obvious, choose value of variables in the specified exploration space randomly.
Another method is called Latin Hypercube Sampling (LHS), which is similar
to a random sampling but avoids any possibility of samples clustering around a
specific point in the exploration space by means of a deterministic algorithm, al-
lowing to get a more homogeneous distribution of samples. It is possible to appre-
ciate the difference between the two sampling methods in Figure 2.3. Note how
in Figure 2.3(a) some clusters of points have been generated in the center-right
and in the bottom-right part of the plot, while the points are better distributed
in Figure 2.3(b).
In this SA, an arbitrary number of 300 samples have been generated for each
variable trough LHS.

2.2.2 Setup and results
The analysis has been conducted in MATLAB environment. The outputs of SATURN
have been used to conduct both cross-correlation tests and Student’s t-test.

Student’s t-test is based on the definition of a parameter, t, that is a measure
of the importance of a single variable with respect to a single objective (or con-
straint). The higher the value of t and the higher is the influence of the variable
on the objective (or constraint).
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Figure 2.3. Comparison between Random sampling and Latin Hypercube sampling
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The procedure adopted to determine angBladeIn significance on pressure ratio
at a generic span is described below as an example. The same applies to other
combinations of variables and objectives.

1. Definition of the input matrix Min: it is a n ×m matrix, where m is the
number of variables listed in Table 2.1 and n is number of samples (300).
Columns of Min contain sampled data of each variable. Rows of Min con-
tain variables in the same order as they appear in Table 2.1. The first col-
umn of Min contains 300 samples of angBladeIn;

2. Definition of the output matrix Mout: it is a n×4 matrix. Its rows contain
perfomance of compressor rotors defined by geometric variables in the rows
ofMin. Perfomance stored in the output matrix are, in order, pressure ratio,
isentropic efficiency, surge margin and choking margin. The first column
of Mout contains pressure ratio values of 300 compressor rotors;

3. The first column of Mout has been taken into account. Then, rows contain-
ing a value of PR greater than the baseline one have been marked with a +,
while rows with smaller values have been marked with a −;

4. The first column of Min has been considered. Rows have been separated
according to + and −marks of the first column of Mout. Two vectors have
been defined, respectively x⃗1+ and x⃗1−. For clarity’s sake, items in x⃗1+ are
those values of angBladeIn to which it corresponds a pressure ratio higher
than the baseline one;
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5. Student’s t-parameter is defined as

t1 =
x⃗1+ − x⃗1−√
s2x1+
m1+

+
s2x1−
m1−

(2.2)

where x⃗1+ and x⃗1− are mean values of x⃗1+ and x⃗1−, s2x1+ and s2x1− are x⃗1+
and x⃗1− standard deviations andm1+ andm1− are the number of elements
in x⃗1+ and x⃗1−.

The procedure above has been repeated for each variable and each objective and
constraint at each span. Significance level has been then normalized for each
objective and constraint, so that

m∑
j=1

tj = 1, (2.3)

being m the number of variables. Significance level has been classified as low if
t ≃ 0 and as high if t approaches unity. Figure 2.4 shows significance of variables
with respect to compressor performance. Note that there are no variables with
much greater significance than others: they are all of the same order of magnitude.
Moreover, some theoretical expectations have been confirmed.

First of all, is it possible to appreciate the important influence of the geome-
try of the blade by means of angBladeIn and angBladeOut on pressure ratio and on
isentropic efficiency. The geometry of the blade contributes both to shock wave
pattern and to boundary layer separation. However, blade angles are the most
significant variables even for surge and choking margin. Second of all, notice
that angBladeIn at span 50% is the most influential variable on isentropic effi-
ciency. This is due a variation in incidence and isentropic efficiency changes as a
consequence. radCurvIn at span 90% is also important for efficiency, as it is con-
nected to the shock wave geometry at the tip. Notice, in addition, that variables
at span 90% are the most significant for surge margin. It is known that the tip
of the blade is critical when it comes to stall of compressors. SATURN predictions
confirm this aspect.
Moreover, angBladeIn at span 50% has big influence on choking margin, as the
solver finds difficult to reach convergence when incidence increases. Physically,
on the other hand, this is related to a change in the throat area and, consequently,
in the choking mass flow rate.
Generally, because of Equation 2.1, variables at span 50% have greater signifi-
cance with respect to the same variables at the other spans (except for significance
on surge margin).
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Cross correlation analysis has been performed too, but only one strong corre-
lation arose, that is the one between pressure ratio and isentropic efficiency. As
known, in fact, PR and ηis are linked by Equation 2.1.

To conclude, no variables will be excluded from the optimization process
because, for one or the other objective or constraint, their significance is of the
same order of magnitude. It is not possible to reduce the number of variables
and, therefore, the number of individuals will be set high enough to guarantee
good genetic diversity, as explained in the next Chapter.



3 | Optimization

Firstly, an introduction on genetic algorithms is presented in this chapter. Later, opti-
mization process is described. Finally, the procedure used to build a three-dimensional
geometry starting from optimized geometrical variables given by SATURN is explained.

3.1 Genetic Algorithms
Genetic algorithms were been successfully used by many authors to find optimal
solutions to a non-linear optimization problem (Benini and Toffolo [27]; Shah-
par et al. [28]). In particular, in aerodynamic and structural problems, where
an high degree of non-linearity is usually present, other optimization algorithms
don’t perform as good as an evolutionary algorithm (Skinner and Zare-Behtash
[29]).

A genetic algorithm is a bio-inspired optimization procedure that can be de-
fined as an heuristic search inspired by Charles Darwin’s theory of natural evo-
lution. This algorithm reflects the process of natural selection where the fittest
individuals are selected for reproduction in order to create offspring of the next
generation.

The process of natural selection starts with the selection of fittest individuals
from a population. They produce offspring which inherit the characteristics of
the parents and will be added to the next generation. It is expected that offspring
have better characteristics than parents, so generations keep improving along an
iterative process and, at the end, a generation with the fittest individuals will be
found. This notion can be applied for optimization problems of highly non-linear
functions, where analytic solutions are impossible to find. Moreover, genetic
algorithms are very robust in finding optimal solutions to complex problems and
for this reason they’re widely used in engineering optimization processes.

Six phases are considered in a genetic algorithm: initialization of initial pop-
ulation, fitness function definition, selection of the fittest, individual crossover,
individual mutation and elitism.

19
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3.1.1 Initialization of initial population
Initial population, or generation, is composed by an arbitrary number of individu-
als. A good-practice rule is to use a number of individuals equal to 2m÷4m, with
m the number of design variables. An individual is a binary string composed by
q bits, that are the genes of the individual. The number of bits q determines the
accuracy of the conversion from natural numbers to binary string: the higher the
value of q, the higher the accuracy. It is important that individuals are uniformly
distributed in the design variables exploration space: this is to help the algorithm
in the research of different local minima.

3.1.2 Fitness function definition
Fitness function is defined as the function to be minimized in during the opti-
mization process. The value of this function, that is the fitness of an individual, is
used to determine which will reproduce and survive into the next generation, that
is relevant to the objective functions to be optimized. The fitness of an individual
represents the probability of its survival. The greater the fitness, the greater the
probability it will survive.

3.1.3 Selection
Selection is the stage of a genetic algorithm in which individuals are chosen from
a population for later breeding. One of the most common selection methods used
is known as Tournament Selection (Figure 3.1). A random number of individuals
are chosen from current generation and those with the highest fitness are selected
for reproduction, so that only the best genetic makeups will survive to the next
generation.
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Figure 3.1. Schematisation of tournament selection procedure
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3.1.4 Crossover
Crossover is a genetic operator used to mix the genetic information of two parents
to generate new offspring. It is used to stochastically generate new individuals
from an existing population, and analogous to the crossover that happens during
sexual reproduction in biology. Different crossover methodologies exist. Single
point crossover is shown in Figure 3.2.

0 1 0 1 1 0

0 0 1 0 1 0

Randomly	choose	crossover	point

0 1 0 1 1 0

0 0 0 1 1 00 1 1 0

1 0 1 0

Parents Children

Figure 3.2. Crossover between two individuals

3.1.5 Mutation
Mutation is a genetic operator used to preserve genetic diversity from one gen-
eration to the next. It is analogous to biological mutation. Mutation alters one
or more gene values in a chromosome from its initial state. In mutation, the so-
lution may change entirely from the previous solution. Hence the algorithm can
come to a better solution by using mutation. Mutation occurs during evolution
according to a user-definable mutation fraction (or probability), that should be
set low to avoid falling back into a primitive random search.

0 1 0 0 1

0 1 0 1 1

0

0

Figure 3.3. Mutation of a gene

3.1.6 Elitism
Elitism involves copying a small proportion of the fittest candidates, unchanged,
into the next generation. Candidate solutions that are preserved unchanged
through elitism remain eligible for selection as parents.
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3.2 Optimization Setup
Two optimization objectives have been identified, as introduced in Section 1.3:
total pressure ratio PR and isentropic efficiency ηis, both calculated at design
condition. The first one is important because it allows to produce more specific
work by keeping unchanged overall dimensions of the machine. The second one,
instead, is important for obvious reasons: the greater the isentropic efficiency and
the lower the amount of work that need to be given by a turbine to the compressor.
Moreover, two constraints have been introduced in order to preserve the original
operating range of the compressor: surge margin SM and choking margin CM.

The optimization has been carried out using the multi-objective genetic algo-
rithm gamultiobj, which belongs to the Global Optimization Toolbox of MATLAB
and extensively described by Konak et al. [30]. The algorithm requires the for-
mulation of a fitness function to be minimized. For this reason, objectives have
been defined as:

y1 =
1

PR
and y2 =

1
ηis
. (3.1)

Two external penalty function have been used to account for constraints. Equa-
tions of constraints are defined as follow:

g1 (x⃗) = 0.9− SM
SMRotor 37

≤ 0 (3.2)

g2 (x⃗) = 0.9− CM
CMRotor 37

≤ 0. (3.3)

where x⃗ is a vector containing optimization variables. Penalty functions, then,
are

Gj (x⃗) = max
[
0, gj (x⃗)

]
, j = 1,2. (3.4)

Penalty functions assume that particular formulation because it has been consid-
ered acceptable to have a decrease by 10% of SM and CM baseline values. Mar-
gins lower than these values are not accepted and the fitness of the individual gets
penalized: the lower the margins and the higher the penalization. Penalization
is zero when margins are greater than the baseline ones.

Finally, the fitness function has been formulated as

φ (x⃗) = y⃗ (x⃗) +C · (G1 (x⃗) +G2 (x⃗)) , (3.5)

where y⃗ (x⃗) = (y1(x⃗), y2(x⃗)) and C is a coefficient used to weight the constraints
and that varies during generations following a cubic function. By doing this, the
constraints will be more flexible for initial generations and more rigid with the
advancement of generations number.
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Table 3.1. Setup of the optimization trials. Calculations have been carried out on a
laptop with 8GB RAM and an Intel i7-8550u 1.80GHz speed processor

Optimization ID opt1 opt2 opt3 opt4
Generations 30 35 50 90
Individuals 15 45 50 50
Crossover fraction 0.75 0.75 0.75 0.8
Mutation fraction 0.24 0.24 0.24 0.2
Elitism fraction 0.01 0.01 0.01 0

Once defined the fitness function, 4 different optimization trials have been
set. The initial population has been sampled through LHS and Rotor 37 has been
included in it to help the algorithm in its optimum research. On the other side,
the trials differ in some aspects. To begin with, opt1 is an optimization trial
where optimization variables are only those at 50% span, as the SA proved that
they have a slightly higher significance than other variables with respect to op-
timization objectives. For opt1, the number of generations has been kept low
because a low CPU time has been preferred instead of high performance im-
provements. For opt2, opt3 and opt4, on the other side, all spanwise positions
have been considered. Lower and upper limits of variables are respectively −7.5%
and +7.5% with respect to Rotor 37 values. Secondly, trials differ in generations
and individuals number. The number of individuals is linked to the number of
optimization variables. Generally, it is approximately equal to three times the
number of variables. Generations number is different too, and this is to find the
right trade-off between CPU time and performance improvement. Mutation
fraction has been set relatively high to widely explore possible local minima for
each optimization trial. Detailed data of optimization trials are reported in Table
3.1. The whole procedure has been implemented in MATLAB environment and
it is reported in Figure 3.4.

START

Boundary
Conditions

if	convergence
non	achieved

STOP

gamultiobj

Geometry

SATURN Performance

Figure 3.4. Workflow of the optimization algorithm
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3.3 Optimization Results
The results of a multi-objective optimization are expressed in term of Pareto front.
A Pareto front is defined as a set of non-dominated solutions of an optimization
problem. Consider two individuals on the Pareto front of a two-objectives (y1
and y2) optimization problem. The first individual is better than the second one
for what it concerns objective y1, but it is worst for y2. Then, it is impossible to
state which of the two individuals is better than the other one: the two individuals
are two non-dominated solutions of the optimization problem. In this specific
work, however, the objectives are linked by Equation 1.4 and a strong correlation
between them exists. As a result, Pareto front degenerates in a single point for
each optimization trial. Results are reported in Table 3.2.

Firstly, notice that every trial produced a considerable increment on pressure
ratio and on isentropic efficiency. Secondly, constraints have been respected, even
if opt1, opt3 and opt4 have lower surge margin with respect to Rotor 37 value.
Furthermore, opt1 has also a lower choking margin. A good trade-off between
CPU time and performance improvement has been found, that is opt3. Note,
in fact, that despite a higher calculation time, the performance of opt4 is not so
much better than the one of opt3, so opt3 has been preferred. Optimization trials
have recommended to significantly reduce by 7% the variable angBladeOut at span
50%, so that its value is very close to the lower bound of angBladeOut. Other
optimized values, instead, place more distant from their upper and lower bounds,
giving more value to the optimization process. As for the variable radCurvIn, it is
almost unchanged in every trial. Moreover, camber angle of airfoils is increased
at every spanwise location: probably, the increase in pressure ratio is caused by
these variations, but confirmation will be given by CFD simulations of the next
Chapter. Finally, shifting the attention to opt3, notice how the result of the
optimization is a blade with lower thickness with respect to Rotor 37 (Table 3.3).
Perfomance maps of opt3 are reported in Figure 3.5.

Table 3.2. Results of the optimization trials. Improvements are referred to perfor-
mance of the Rotor 37

Optimization ID opt1 opt2 opt3 opt4
∆PR [%] 3.18 3.23 4.75 4.96
∆ηis [%] 0.62 0.71 1.31 1.36
∆SM [%] −1.33 2.62 −7.96 −5.32
∆CM [%] −1.41 2.71 5.69 1.25
CPU Time [h] 3.35 9.45 13.52 23.82
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Table 3.3. Geometrical properties of opt3

Variable Name Span [%] Rotor 37 opt3 ∆ [%]
10 52.37° 53.83° 2.79

angBladeIn 50 56.53° 58.14° 2.85
90 60.76° 61.08° 0.53

10 22.68° 21.83° −3.75
angBladeOut 50 38.87° 36.10° −7.13

90 48.18° 47.09° −2.26

10 56.04mm 58.03mm 3.55
chord 50 55.70mm 53.97mm −3.11

90 56.03mm 57.13mm 1.96

10 0.24mm 0.25mm 0.48
radCurvIn 50 0.19mm 0.19mm 0.50

90 0.14mm 0.14mm 0.29

10 0.0758 0.0733 −3.32
thickMaxChordRatio 50 0.0544 0.0517 −4.90

90 0.0355 0.0347 −2.27

10 15 20
1

1.5

2

ṁ [kgs−1]

PR
[-

]

opt3
Rotor 37

(a) Pressure Ratio

10 15 20

0.8

0.9

1
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Figure 3.5. Performance maps of the Rotor 37 and of opt3 predicted by SATURN
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3.4 Optimized Blade Geometry
The outputs of the optimization are expressed in terms of geometrical proper-
ties of the blade at different spanwise locations. It is necessary, then, to convert
those properties into a three-dimensional model of the blade which is going to
be simulated using CFD for the verification of its performance. The first step is
the parametrization of the baseline blade airfoil shape at span 10%, 50% and
90%. These airfoils will then be modified according to values listed in Table 3.3
to obtain the optimized blade.

3.4.1 Baseline blade parametrization
The geometry of the Rotor 37 is found in ANSYS Turbogrid example files and it
is expressed in terms of .curve files. Such files contains the cartesian coordinates
x,y,z of the airfoil at 6 different spanwise locations: 0%, 20%, 40%, 60%,
80% and 100% of the blade height. Airfoils at intermediate locations have
been obtained through linear interpolation. Then, cartesian coordinates have
been converted to cylindrical coordinates r,ϑ,z to facilitate the parametrization
process.

Different methods exist to uniquely define an airfoil shape: in this work,
parametrization will be done by means of the definition of its camber line and
its thicknesses distribution. Consider for example the Rotor 37 airfoil shape at
span 10% (Figure 3.6(a)).
Camber line is defined as the line that joins the leading and trailing edges and
that is equidistant from the suction side and the pressure side of the airfoil. Once
calculated, it has been parametrized through a Bézier curve. Bézier curves are of-
ten used when it comes to parametrize a curve, since the shape of the curve can
be easily modified by editing control points. Bézier curve B(x) is defined by the
following equation:

B(x) =
n∑
i=0

(
n
i

)
(1− x)n−i xiPi , (3.6)

where Pi are the coordinates of the control points. In this work, camber line has
been parametrized using 5 control points (Figure 3.6(b)). Control points coordi-
nates have been found by means of a genetic algorithm that has minimized the
discrepancy between real camber line and interpolated camber line.
Thickness, instead, is defined as the perpendicular distance between a point on
the camber line and a point on the suction (or pressure) side. Thickness distribu-
tion of the airfoil at span 10% is reported in Figure 3.6(c) ¹.

¹m′ =
√
∂r∂r+∂z∂z

R is the radius normalized distance along meridional curve
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Figure 3.6. Parametrization of the baseline airfoil at span 10%
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3.4.2 Optimized blade reconstruction
Starting from the curves of Figure 3.6, the optimized blade has been recon-
structed by following the opposite process. First of all, geometrical parameters of
the blade have been adjusted according to Table 3.3. Then, camber line and thick-
ness distribution curves have been imported into ANSYS BladeGen to build a
three-dimensional geometry.

The parametrization of the camber line by means of a Bézier curve allowed
to easy modify the values of chord, angBladeIn and angBladeOut. With respect to
Figure 3.6(b), it should be noted that the Bézier curve is tangent to the segments
that join P1 to P2 and P4 to P5.

First of all, chord length has been modified. Call∆c = chordopt3−chordRotor 37,
Qi the control points of the optimized camber line and ψ the angle defined by

tanψ =
yP5 − yP1
xP5 − xP1

, (3.7)

then points Q1 and Q5 have been calculated as:
xQ1

= xP1 − 0.5 ·∆c · cosψ
yQ1

= xP1 − 0.5 ·∆c · sinψ
xQ5

= xP5 +0.5 ·∆c · cosψ
yQ5

= xP5 +0.5 ·∆c · sinψ.

(3.8)

Second of all, Q2 andQ4 have been set according to angBladeIn and angBladeOut
optimized values. More in detail, since angBladeIn is defined by the tangent to
the camber line from the leading edge, Q2 coordinates are such as to respect the
following condition:

tan
(
angBladeInopt3

)
=
yQ2
− yQ1

xQ2
− xQ1

. (3.9)

By doing so, once xQ2
has been arbitarly fixed, the value of yQ2

is calculated.
Similarly, Q4 coordinates have been calulated according to

tan
(
angBladeOutopt3

)
=
yQ5
− yQ4

xQ5
− xQ4

. (3.10)

Finally, the position ofQ3 has been set such that the camber line had a reasonable
curvature: xQ3

= xQ2
+0.5 ·

(
xQ4
− xQ2

)
yQ3

= yQ2
+3 ·

[(
yQ2
− yP2

)
+
(
yQ4
− yP4

)] (3.11)
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Optimized thickness distribution topt(m′) has been calculated using the follow-
ing equation:

topt(m
′) =

(
chordopt3

chordRotor 37

)(
thickMaxChordRatioopt3

thickMaxChordRatioRotor 37

)
· tRotor 37(m

′). (3.12)

As for the variables radCurvIn, they’ve not been considered as they’ve remained al-
most unchanged during the optimization process. Procedure described above has
been applied for each spanwise location. Optimized airfoil shapes are reported
in Figure 3.7.
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Figure 3.7. Comparison between baseline and optimized airfoil shapes
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Finally, optimized thickness distributions topt(m′) and optimized camber lines
descibed by the curve ϑ(m′) have been imported into ANSYS BladeGen, so that
to build a three-dimensional geometry (Figure 3.8).

Figure 3.8. 3D geometry of opt3. Rotation axis is +z
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The optimized geometry has been simulated through CFD using a 3D compressible flow
RANS solver, that is ANSYS CFX, and a comparison whith the prediction of the mean-
line code is made. The creation of the mesh, the setup of the simulations and the post
processing of the results are described in this chapter. An hybrid solution with higher
efficiency is finally proposed.

4.1 Mesh and TurbulenceModel
The first important step when it comes to set-up a CFD analysis is the creation of
the mesh, which consists of a number of finite control volumes where CFD equa-
tions are discretized and solved iteratively. In this work, the mesh has been cre-
ated with ANSYS TurboGrid, as it easily allows to produce high quality meshes
for turbomachinery. The number of mesh elements for a RANS simulation is
related to the turbulence model adopted for the solution by means of the non-
dimensional wall distance y+, which is defined as

y+ =
u∗h
ν

(4.1)

and depends on the placement of the first cell node above the wall (h) and on
the flow features, that are the kinematic viscosity of the fluid (ν) and the friction
velocity calculated at the nearest wall (u∗). Different turbulence models exist.
The most used in engineering applications are called k − ϵ, k −ω and k −ω SST
and they’re employed in different situations:

– y+ < 5: this condition is verified when the first cell node is in the viscous
sub-layer, and k −ω model is used;

– 5 < y+ < 30: no accurate turbulence models exist for this situation, when
the first cell node is found in the buffer layer;

31
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– y+ > 30: the first node is above the buffer layer, and it is found in the log
layer. In this situation, k−ϵ model is used and wall turbulence is modeled
by means of wall functions.

The k−ω SST turbulence model has been used in this work: it is a two-equation
turbulence model that has been developed for the accurate prediction of aero-
nautics flows with strong adverse pressure gradients and flow separation (Menter
et al. [31]). The SST formulation combines the best elements of k − ϵ and k −ω
turbulence models. The model uses a k−ω formulation in boundary layer region,
making the model directly usable all the way down to the wall through the vis-
cous sub-layer, and switches to a k−ϵ behaviour in the free-stream, avoiding the
common k −ω problem that the model is too sensitive to the inlet free-stream
turbulence properties. The Reattachment Modification option has been enabled
within the k −ω SST turbulence model, as it has been proved to be beneficial in
order to reduce excessive flow separation in the suction side surface (Porro [32]).

The use of k−ω SST turbulence model required to have a very fine mesh near
to the walls, so that y+ < 5. Mesh parameters of ANSYS TurboGrid have been
set according to the condition on y+ value. The Topology Set is created with the
Automatic Topology and Meshing (ATM Optimized) with the method Single
Round Round Refined. This topology type enables to create high quality meshes
with minimal effort, and there is no need for control point adjustment. Then,
5 equidistant layers have been used in the spanwise direction to reduce mesh
distortion. The Global Size Factor has been set to 1.31 to have an average element
size of 0.05mm. The size of the elements is progressively reduced near the walls
and in the tip gap, as it has been considered that these regions have a relevant
influence on efficiency losses. The resulting mesh of one blade passage has 0.99
million hexahedral elements and has been validated on Rotor 37 experimental
data (Figure 4.1). The parameter y+ is less than 1 everywhere.
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Figure 4.1. Mesh validation on pressure ratio experimental data of the Rotor 37
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(a) 3D view of the mesh

(b)Mesh topology at the shroud. Note the high mesh density near to the blade to respect the
condition y+ < 5

Figure 4.2. Mesh of the optimized geometry. A single passage is shown
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4.2 Setup of the Simulation
It has been decided to use a commercial 3D compressible flow RANS solver, that
is ANSYS CFX, to carry out the simulation of the nominal speedline. ANSYS
CFX-Pre has been used to setup the simulation. Boundary conditions have been
set as follows:

– rotational speed ω = 1800rads−1;

– inlet total pressure p01 = 101325Pa;

– inlet total temperature T 0
1 = 288.15K;

– to obtain the complete speedline, outlet static pressure p4 varied for each
simulation in order to simulate different mass flow rates ranging from the
choking condition to the surge onset.

Thanks both to geometrical symmetry of the turbomachinery and symmetric
properties of the boundary conditions, it has been possible to simulate one single
blade passage instead of the entire turbomachinery: this allowed to drastically
reduce computational time. Periodic boundary conditions have been set as a con-
sequence of this assumption. The turbulence model has been set to k−ω SST and
a limit of 1000 iterations was imposed. Other parameters are the defaults ones.

Control of the simulation has been carried out using CFX-Solver Manager,
which allowed to select the numerical precision and to choose between the se-
rial and the parallel run mode. For this study, the double precision scheme has
been used, as it generally allows higher numerical accuracy for mathematical op-
erations and reduces numerical errors propagation. The computer used for the
simulation is a laptop with 8GB RAM and an Intel i7-8550u 1.80GHz speed
quadcore processor. Simulations ran in parallel mode and four physical cores
have been used in order to accelerate the convergence process. Each simulation
has been initialized with the results of the previous one. The time required to
reach convergence was about 7 hours for each simulation.

The results file of each simulation has been then loaded into CFX-Post for
the post processing. After the initialization of the results, it is possible to define
the performance of the compressor, isentropic efficiency and pressure ratio, by
defining them in the Expression Tab according to Equations 1.4.

The same setup has been used to validate the mesh. This has been done to
have comparable results. In the following analyses, the parameter y+ has always
been kept less than 1.
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4.3 Performance of opt3
Compressor maps of opt3 have been obtained in a total time of approximately 50
hours (Figure 4.3).

To begin with, note the difference regarding the operating range: surge mar-
gin and choking margin are different to the ones predicted by SATURN (see Fig-
ure 3.5). The reason of this discrepancy is related to the blockage factor ξ, which
accounts for the presence of the boundary layer on the walls and reduces the
effective passage area.

As said in Section 2.1, SATURN uses some empirical models to calculate the
performance of a machine, and one model is used to calculate the blockage factor
(Smith [17]). The solver is then calibrated on experimental data by means of some
coefficients. Blockage factor is finally calculated by SATURN as ξ = ξempirical ·Kξ ,
where ξempirical is calculated according to Smith [17] and Kξ is a calibration
factor. Problems may arise when the geometry of the machine get changed, as
it happened in the optimization process, because the calibration factor remains
constant and loses its meaning. Since the blockage factor is linked to the mass
flow rate by the following equation

ṁ =
Aξp0
√
T 0

√
k
R
M

(
1+

k − 1
2

M2
)− k−1

2(k−1)
, (4.2)

the overall effect of keeping Kξ unchanged is a translation on the x-axis of the
performance curves, which caused the discrepancy. However, the analytic pre-
diction of the blockage factor is challenging, and the use of a model is considered
as an acceptable compromise.

Nevertheless, note that the performance of opt3 is better than the baseline
one. Consider the performance at maximum efficiency mass flow rate for both
the individuals: the optimized compressor has a considerable increase by 6.83%
on pressure ratio and an almost unchanged isentropic efficiency (Table 4.1). The
operating range is slightly narrower in the optimized configuration.

Table 4.1. Comparison between baseline and optimized performance at maximum
efficiency mass flow rate (CFD results)

PR ηis ṁsurge [kgs−1] ṁchoking [kgs−1]

Rotor 37 2.04 0.8613 19.59 20.98
opt3 2.18 0.8614 20.30 21.33
∆ [%] 6.83 0.01 − −
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Figure 4.3. Comparison between baseline and optimized nominal speedline (CFD
results)
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Considering spanwise plots of pressure ratio, temperature ratio and isentropic
efficiency, it is possible to observe that:

– The optimized geometry produce a pressure ratio higher than the baseline
in every spanwise location, and especially at mid-low spans. The optimized
geometry, which is characterized by a greater camber angle, modifies the
shock wave pattern and is capable of producing greater outlet total pressure,
resulting in higher pressure ratio. This is clearly appreciable from total
pressure contours of Figures 4.5 and 4.6;

– Temperature ratio of the optimized blade is higher than the baseline one in
every spanwise location, especially for span greater than 10% of the blade
height;

– The isentropic efficiency of the optimized blade is slightly higher for spans
< 80%, whereas lower values are observed for the tip region. In both
cases, the shock wave is generated at the leading edge and intersects the
next blade at about 60% of the chord. For high spanwise locations, how-
ever, the optimized geometry produces a more intense shock wave whose
interaction with the boundary layer on the blade produces a more marked
separation of the latter on the suction side surface. For this reason, the
isentropic efficiency is lower than the baseline one for high spans. Total
pressure contours of Figures 4.5(a) and 4.6(a) show this aspect. Notice, in
fact, the larger red wake near to the trailing edge of opt3 at span 90%, that
indicates a more consistent separation of the boundary layer.

As a results, the optimized blade has better overall performance, but its efficiency
is lower for high spans. It has been decided, so, to build an hybrid geometry
that has the same geometrical properties of opt3 at spans 10% and 50%, but
whose properties at span 90% are an average between the baseline and optimized
configuration (Table 4.2). In doing so, it has been tried to gain some efficiency
at high spanwise locations, where the baseline geometry performs better.

Table 4.2. Geometrical properties of hybrid compressor at span 90%

Variable Name Rotor 37 opt3 hybrid
angBladeIn 60.76° 61.08° 60.92°
angBladeOut 48.18° 47.09° 47.64°
chord 56.03mm 57.13mm 56.58mm
radCurvIn 0.14mm 0.14mm 0.14mm
thickMaxChordRatio 0.0355 0.0351 0.0347
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(a) Span 90%

(b) Span 50%

(c) Span 10%

Figure 4.5. Total pressure contours of the baseline geometry (Rotor 37)
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(a) Span 90%

(b) Span 50%

(c) Span 10%

Figure 4.6. Total pressure contours of the optimized geometry (opt3)
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4.4 Performance of hybrid
The three-dimensional geometry of the hybrid individual has been reconstructed
by modifying the airfoil shape of opt3 at span 90%. The same procedure adopted
for opt3 and described in Section 3.4 has been used. The hybrid blade is nearly
the same of opt3 for lower spans, while it is modified in its upper part. This has
been done in order to increase its isentropic efficiency.

Perfomance maps and spanwise plots of the hybrid individual are shown in
Figure 4.7 and 4.8.

Despite similar pressure ratio performance curve (Figure 4.7(a)), a small im-
provement in the isentropic efficiency was obtained (Figure 4.7(b)), as a con-
sequence of the modification of the airfoil shape at span 90%. This is related
to a decrease in the total temperature ratio for spanwise positions > 0.8, which
takes on intermediate values   between the baseline individual and the optimized
one (Figure 4.8(b)). Regarding the spanwise pressure ratio, it remains almost
unchanged (Figure 4.8(a)) and, as a results, the isentropic efficiency at high span-
wise locations is similiar to the baseline one (Figure 4.8(c)). The overall results
is an increment of 0.41% on peak isentropic efficiency. Perfomance for spans <
0.5 is unchanged. The operating range is the same of opt3.

Switching the attention to the Relative Mach contour plots of Figure 4.9, it is
possible to appreciate that a weaker shock wave is generated at span 90%, and so
its interaction with the boundary layer is less detrimental compared to opt3. The
wake downstream of the hybrid airfoil is thinner than the wake of opt3, but is still
wider than the baseline one. Moreover, looking at meridional plots of Figure 4.10,
it is possible to appreciate that the relative Mach number downstream the blade
is higher for the baseline geometry, especially at high spans. Nevertheless, the
hybrid configuration shows results which are a compromise between the Rotor 37
and opt3, confirming that it is affected by a weaker shock wave with respect to
opt3, so that its efficiency at high spanwise locations is near to the baseline one.

Table 4.3. Comparison between baseline, optimized and hybrid performance at max-
imum efficiency mass flow rate (CFD results)

PR ηis ṁsurge [kgs−1] ṁchoking [kgs−1]

Rotor 37 2.04 0.8613 19.59 20.98
opt3 2.18 0.8614 20.30 21.33
∆opt3 [%] 6.83 0.01 − −
hybrid 2.17 0.8648 20.30 21.33
∆hybrid [%] 6.44 0.41 − −
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ṁ [kgs−1]
η i
s

[-
]

(b) ηis

Figure 4.7. Comparison between baseline, optimized and hybrid nominal speedline
(CFD results)
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(a)Hybrid

(b) opt3

(c) Rotor 37

Figure 4.9. Comparison of Relative Mach Number contours at span 90%
(blade-to-blade plots)
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(a)Hybrid

(b) opt3

(c) Rotor 37

Figure 4.10. Comparison of Relative Mach Number contours (meridional plots)
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4.4.1 Modal analysis of hybrid
The hybrid configuration is characterized by thinner blades with respect to the
Rotor 37. A preliminary modal analysis has been conducted in order to compare
the first four vibrational modes of the two cases.

The analysis has been carried out using ANSYS Mechanical. First of all, the
single blade geometry has been imported. Then a 350000 hexahedral elements
mesh has been created with the embedded meshing tool by using default param-
eters, but enabling the Face Meshing options, in order to have a structured mesh
on pressure side and suction side surfaces. Following this, a material property has
been assigned to the blade volume. Since no information was found regarding
the materials used for Rotor 37 construction, a titanium alloy was chosen, that is
Ti-6Al-4V, as it is widely used in these applications. Finally, the blade has been
constrained with a fixed joint at its basis to simulate its connection with the hub.
No applied forces have been considered. The first four vibrational modes natural
frequencies are reported in Table 4.4.

Notice how the natural frequencies of hybrid are lower than the Rotor 37
ones. As expected, in fact, this is because of its reduced thickness. These aspects
could be critical for the problem of flutter, a phenomenon of aeroelastic instability
that can lead to the structural failure of the blade. However, for a more detailed
and accurate analysis, it is also necessary to consider the centrifugal forces that act
on the blade istelf and the fluid-structure interaction, that modify the aeroelastic
behaviour of the blade.

Table 4.4. Vibrational modes of the baseline and of the hybrid configuration

Rotor 37 hybrid ∆ [%]
Mode 1 [Hz] 880.90 846.23 −3.94
Mode 2 [Hz] 2471.90 2348.40 −5.00
Mode 3 [Hz] 3158.70 2990.60 −5.32
Mode 4 [Hz] 4721.00 4328.60 −8.31
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A system of ANNs has been trained on SATURN outputs to further reduce the time re-
quired for the optimization process. In this chapter its performances are shown, in
terms of accuracy and calculation speed.

5.1 Introduction on ANNs

Neural networks and deep learning are big topics in Computer Science and en-
gineering. They as of now give the best solutions to many problems, related for
example to autonomous driving vehicles, risk managements in business and con-
verting acoustic patterns of a human voice for vocal assistants.

A neural network, more appropriately called artificial neural network (ANN),
is a computational model inspired by the method through which biological neural
networks collect knowledge about the human brain processes. The basic compu-
tational unit of the brain is a neuron. Many billions of neurons can be found in
in the nervous system of a human, and they’re connected through synapses. The
basic unit of computation in a neural network is the neuron, often called a node
or unit. It receives input from some other nodes and computes an output. Each
input has an associated weight (w), which is assigned on the basis of its relative
importance to other inputs. The node applies a function to the weighted sum
of its inputs. In the biological model, the dendrites carry the signal to the cell
body where they all get summed. If the final sum is above a certain threshold, the
neuron can send a spike along its nerve fiber. In the computational model, the
precise timings of the spikes do not matter, and only the frequency of the firing
communicates information, which is modeled with an activation function (Men-
shawy [33]), through which an output depending on input data is then processed.
According to these facts, the ANN can be used as a transfer function that simu-
lates the physical behavior of the system of interest. Starting from geometrical
data, for example, a suitably trained neural network can replace a CFD simulation,
and so the advantages related to the use of a network are obvious.

45
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Consider the schematzation of the artificial neuron proposed in Figure 5.1.
It is composed by:

– Input nodes: they represent input data. These nodes pass the information
to the next node without doing any calculation. They may also include a
bias. A block of nodes is also called layer;

– Hidden node: it performs computations and then transfer its weighted
output to the following node. Generally, most of the neural networks are
composed by 2 hidden layers (Heaton [34]). All the computation is done
in these layers;

– Connection and weights: the network consists of connections. Each con-
nection transfers the output of a neuron i to the input of a neuron j. In this
sense, i is the predecessor of j and j is the successor of i. Each connection
is assigned a weight wij .

– Output node: it receives the weighted inputs from the previous layer. Then,
outputs are calculated according to the activation function adopted.

– Activation function: it defines if a given node should be activated or not
based on the weighted sum of its inputs, which may depends on the bias
value, and on its threshold. Many activation function exist, as for example
the Sigmoid Function;

– Learning rule: it is an algorithm which modifies the parameters of the neu-
ral network, in order for a given input to the network to produce a desired
output. This learning process, also called training of the network, typically
amounts to modifying the weights and thresholds in order to minimize the
difference between target outputs and calculated outputs. A widely used
learning algorithm is called Back Propagation.
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Figure 5.1. Artifical neuron
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5.2 Training
In this work, four ANNs have been trained to predict the outputs of SATURN.
This was done to further reduce the calculation time of the optimization through
genetic algorithm. If 7 seconds were required for the prediction of performance
of each individual using the meanline code, by using the neural network the same
process would take a fraction of a second, so that the whole optimization would
be completed in few seconds. In order to be used for this purpose, however,
the neural networks must be properly trained. Only in this way, in fact, their
predictions are accurate and can replace the use of SATURN.

A large database is necessary for training: starting from the inputs, the learn-
ing algorithm adjusts the weights in order to minimize the gap between the target
outputs (provided by the database) and the outputs calculated by the network. A
database of 1500 individuals has been created for this purpose. LHS has been
used as sampling method for individuals, whose geometrical variables vary by
±7.50% centered on the baseline value. The creation of the database, includ-
ing simulations of individuals with SATURN for the creation of target outputs,
required 3 hours.

Each ANN has been created using the Neural Fitting Toolbox of MATLAB,
which provides a graphical interface that allows the user to train a neural network
in few simple steps. Firstly, the topology of the neural network has been defined.
The input layer is composed by 15 nodes, each one corresponding to a geometrical
variable (see Table 2.1 on page 9). Moreover, it was chosen to use a single hidden
layer consisting of 10 nodes, as recommended by the toolbox parameters. The
output layer of each network, composed by a single node, corresponds to one
of the objectives or constraints of the optimization process. By doing this, one
ANN has been trained to predict pressure ratio, another one to predict isentropic
efficiency, while the remaining two are used to predict surge margin and choking
margin. The Bayesian-regularization algorithm has been chosen for the learning
process, since it is suitable for fitting complex functions. The database has been
divided into 2 parts: 80% of it was used to train the ANN and the remaining
20% was used for testing the prediction of the ANN.

The performance of the neural networks was evaluated in terms of correla-
tion coefficient, R, between target outputs and calculated outputs. The more the
coefficient approached unity, the more accurate the net was considered. Perfor-
mance is reported in Table 5.1. Notice how three of the four networks provided
excellent performance (ANN 1,2 and 3). On the other hand, however, the neural
network trained to predict the choking margin is not so performing. The reason
is attributable to the fact that the choking detection performed by SATURN is
based on the solver divergence rather than on a correlation. Therefore, despite
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Table 5.1. Performance of the ANNs

ANN ID ANN output Rtraining [%] Rtest [%]

1 Pressure ratio 99.38 98.48
2 Isentropic efficiency 99.45 98.16
3 Surge margin 98.78 96.41
4 Choking margin 87.88 79.49

the correct choking prediction of the meanline code itself, the definition of a
transfer function based on the solver divergence for several test cases may not
be straightforward, due to the numerical instability arising close to the choking
mass flow (see Table 2.2 on page 11). As a consequence, the performance of ANN
4 are slightly worse than others, but a reasonable trend is found anyway.

The plots from which the correlation index Rtraining of ANN 1 and of ANN
2 has been calculated are reported in Figure 5.2. The straight line representing
the linear interpolation of the data is called fit, while the line which corresponds
to a correlation factor R = 1 is defined by the equation y = t. Note how, in
Figure 5.2(b), the two lines are clearly misaligned, while in Figure 5.2(a) they’re
are superimposed. Not only that, but also note how the points of Figure 5.2(b)
form a larger cloud, indicating a lower precision of the network in question.
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Figure 5.2. Visualization of coefficient Rtraining related to ANN 1 and ANN 4
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5.3 Optimization and Results
Given the accuracy of the neural networks, it has been decided to conduct an
optimization on the Rotor 37 using genetic algorithm. The algorithm settings,
the optimization variables, the objectives and the constraints are set in the same
way as for opt3, in order to be able to conduct a comparison between the two op-
timizations. The only difference is in how fitness and constraints are calculated:
if the meanline code was used in opt3 to calculate these values, in this optimiza-
tion, optNN, ANNs are used. Total calculation time required by optNN is 1.20
seconds.

Optimization optNN was repeated 100 times, so as to eliminate the random
component from the optimization results. The results, in the space of fitnesses,
are shown in the Figure 5.3: optNN always finds an optimized individual, as
expected, whose fitness values   cluster in an opt3 neighborhood, but in most cases
has better characteristics. Average performance of optNN individuals are shown
in the Table 5.2. Notice how the relative error on objectives is low, while the
one on constraints is higher, as they’re value can vary by ±10% on baseline value.

Finally, an individual has been simulated using SATURN, to further verify the
accuracy of the neural network. Input variables of this individual, indicated in
Figure 5.3 as optNNx, are reported in Table 5.3 where it is possible to appreciate
the comparison with opt3 variables. A fine matching is found. Performance maps
are shown in Figure 5.4. It can be appreciated that performance maps of optNNx
and opt3 are almost identical. This is because the ANNs are not as accurate as the
meanline. To improve the accuracy of neural networks, however, the database
can be integrated with experimental results and outputs of CFD simulations.

This optimization trial has proven to be successful: firstly because it has ex-
tremely reduced the computational times required by the optimization process,
secondly because it has shown that it can replace the meanline code safely and
accurately. Even if the definition of the acpANN can be further improved, the
methodology presented here showed satisfactory results.

Table 5.2. Average performance of optNN individuals at design point

Rotor 37 opt3 optNN
PR 2.11 2.21 2.22± 0.32%
ηis 0.8770 0.8885 0.8879± 1.29%
SM 0.038 0.035 0.04± 5.24%
CM 0.074 0.079 0.07± 4.26%
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Figure 5.3. Results of optNN

Table 5.3. Comparison between geometrical properties of optNNx and opt3

Variable Name Span [%] opt3 optNNx ∆ [%]
10 53.83° 53.72° −0.20

angBladeIn 50 58.14° 57.85° −0.50
90 61.08° 61.77° 1.13

10 21.83° 21.77° −0.27
angBladeOut 50 36.10° 35.98° −0.33

90 47.09° 46.29° −1.70

10 58.03mm 56.48mm −2.66
chord 50 53.97mm 55.49mm 2.83

90 57.13mm 55.10mm −3.55

10 0.25mm 0.24mm −0.41
radCurvIn 50 0.19mm 0.19mm −0.52

90 0.14mm 0.14mm −0.70

10 0.0733 0.0745 1.65
thickMaxChordRatio 50 0.0517 0.0545 5.39

90 0.0347 0.0343 −1.16
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An optimization procedure that couples a one-dimensional meanline solver (SATURN)
with a genetic algorithm has been proposed in this work. The aim is to lower
the required computational time with respect to a more common optimization
methodology, which combines CFD with evolutionary algorithms. If the latter
generally takes a few days to deliver a result, the proposed procedure takes a few
hours. The transonic axial-flow compressor rotor Rotor 37, developed by NASA,
has been chosen as test case.

Various optimization trials have been set-up and a good trade-off between
computational time and increase in performance has been individuated. A re-
markable increase of+4.75% on pressure ratio at design point has been predicted,
against a slightly improved isentropic efficiency (+1.31%) and an almost un-
changed operating range (−2.88%). The procedure required 12 hours. Starting
from optimized geometric properties, the one-dimensional geometry provided by
SATURN has been parametrized to obtain a three-dimensional geometry, which
has been simulated with a CFD anslysis by means of ANSYS CFX.

The comparison between the prediction of the meanline code and CFD results
of the optimized geometry has shown that operating ranges are significantly dif-
ferent. This is attributable to the setting of a parameter used to calibrate the
blockage factor, whose effect on the performance maps is a translation along the
x-axis of the curves. On the other hand, predictions on pressure ratio and isen-
tropic efficiency are quite accurate. The analysis showed that the optimized in-
dividual has a pressure ratio equal to 2.18 (+6.83%) and an isentropic efficiency
equal to 0.8614 (+0.01%) at maximum efficiency mass flow rate. However, the
optimized configuration has a lower isentropic efficiency than the baseline for
high spanwise locations, which is why a hybrid geometry has been identified. Its
airfoils, for span > 0.8, are a trade-off between the baseline configuration and the
optimized configuration. The improvement in terms of isentropic efficiency flow
with respect to the baseline is +0.41% calculated at at maximum efficiency mass
flow rate.

To conclude, a system of ANNs has been trained on the outputs of SATURN,
in order to replace the role of the meanline solver inside the optimization loop to
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further reduce the calculation time. Indeed, the time required by this optimiza-
tion process is equal to 1.2 seconds, and its outputs are in good agreement with
the prediction of the meanline code.

Future works may involve the verification of the prediction of the system of
ANNs with CFD results, as well as the search of a methodology to match the oper-
ating range predicted by SATURN with the one calculated with CFD simulations,
which may be obtained by employing an ANN trained to predict the boundary
layers height.
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