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Abstract
ITER, the international fusion reactor project, entered the construction phase in 2013, next to
Cadarache in south France. The university of Padua, partner of the consorzio RFX, participates
in the construction of one of the main parts: the neutral beam injector. This work regards the
NIO1 experiment, a prototype of the plasma source of the injector and an ideal test bench
for the project. In this thesis an analytical and adimensional model of the accelerating beam
is presented. It agrees with experimental datas, shows precisely the maximum obtainable
performances but foremost, with this model, it is possible to generalize those results for any
given particle, at any energy level and scale.

The first section of this thesis introduces the physics behind the nuclear fusion and the tech-
nologies required in the process. Then the Richardson’s and Child’s laws are recalled since
they provide the basins to understand the hypothesis and the developments of the theory pre-
sented in the second section and the results showed in the third. In the second section, the
monodimensional model of a charged particle beam which accelerates under the influence of the
electric field between two grids is presented. Thanks to the analytical solution of the model’s
equations it is possible to describe the steady state beam behavior as a function of time or
space. This applies to particles with any mass and any initial speed. Furthermore, the model
is generalized to a two particle case, as it is between the first two grids of the typical negative
ion accelerator.

The last section compares the experimental results with the model and proposes an explana-
tion of the saturation phenomenon seen at maximum extraction voltage through a thermionic
emission analogy.
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Sommario
ITER, il progetto internazionale di reattore a fusione nucleare è in costruzione dal 2013 nel sud
della Francia. L’università di Padova, una dei soci del consorzio RFX partecipa alla costruzione
di una sua parte fondamentale: l’iniettore di fasci neutri. Questo lavoro si pone nell’ambito
dell’esperimento NIO1, un prototipo della sorgente dell’iniettore, banco prova ideale per mi-
gliorare il progetto. In particolare, è presentato un modello analitico e adimensionale del fascio
durante le fasi di accelerazione, capace non solo di confermare i dati sperimentali e di conosce-
re con precisione le massime prestazioni ottenibili ma anche di generalizzare tali risultati per
particelle qualsiasi ed esperimenti ad energie e scale arbitrarie.

Questa tesi si apre con un capitolo introduttivo in cui, oltre ad una breve panoramica sulla
fisica della fusione e degli apparati richiesti, sono richiamate le leggi di Richardson e di Child.
Queste ultime sono un punto di partenza necessario per comprendere le premesse e gli sviluppi
della teoria presentata nel secondo capitolo e i risultati contenuti nel terzo.

Nel secondo capitolo è presentato il modello monodimensionale di un fascio di particelle ionizzate
che viene accelerato dal campo elettrico presente tra due griglie. Attraverso la soluzione analitica
delle equazioni che compongono il modello è possibile descrivere il comportamento del fascio
in regime stazionario in funzione del tempo o della posizione, per particelle di massa qualsiasi
e per velocità di ingresso positive o nulle. Successivamente, il modello viene esteso al caso in
cui sono presenti due portatori di carica come avviene tra le prime due griglie di un tipico
acceleratore di ioni negativi.

L’ultimo capitolo confronta i risultati sperimentali con gli andamenti teorici predetti dal mo-
dello e propone una spiegazione al fenomeno di saturazione osservato alle massime tensioni di
estrazione attraverso un’analogia con l’emissione termoionica.
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1 Introduction

1.1 Power from fusion

Regular stars are natural fusion reactors, fueled by the most common chemical elements of the
universe. They sustain the same reactions for billions of years, slowly converting some of their
mass into energy and light. These reactions were discovered almost a century ago and since
then, nations, scientists, engineers, and more recently businessmen started to dream to steal
this prometheus fire.

History teaches us that energy availability is one of the strongest factors that influences social
and scientific advancement. Currently, our energy needs are growing and highly expensive,
nevertheless some nations, Italy for instance, depend on others’ resources.

Nuclear fission energy has secured the most advanced nations’ growth during the last half cen-
tury. AIEA estimates that the worldwide nominal power will increase from the existing 374
GW to at least 453 GW by 2020. In Europe though, this trend will be probably weaker, due to
political reasons, Germany and Switzerland have planned the decommissioning of their power
plants, like Spain and Belgium did with some old sites.

In the meantime, energy from renewables sources kept climbing the EU electricity mix, and
now it is beyond 30%. A doubling of its share is unlikely, because of grid stability issues, but
it is not impossible [1]. In 2014 for example, 43.1% of italian electricity demand was covered
by renewables, and only 4.6% by nuclear fission [2] [3]. Under a more economic perspective,
intermittent and unpredictables power sources currently rely on strong grids, and baseline
production is made cheap by big fossil fuels power plants. A solution that helps replacing
these sources with a low-carbon electric power production, can be represented by the nuclear
fusion.
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Figure 1: Binding Energy of nuclei vs Atomic number, abscissae in log scale.
Higher energy gap means more energy-per-nucleons involved in the nuclear reaction.

As with fission, nuclear fusion produces energy by freeing the binding energy of atomic nuclei.
In this case though, two light nuclei can be bound together to create a heavier nucleus. Because
of their positive charge, the Coulomb repulsion between nuclei is very strong and particles need
to reach high energy to get close enough for the fusion. At quantum scales, Strong Interaction
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overcomes the electrostatic force, and the Tunnel Effect allows the fusion of the nuclei even if the
average kinetic energy is lower than the potential barrier. Several exothermic fusion reactions
are known: the present fusion research is focused on the deuterium-tritium (D-T) reaction due
to the higher cross section compared to other reactions. The total energy is divided between
helium and neutron kinetic energy, as reported in the following equation:

2
1D + 3

1T→ 4
2He (3.5 MeV) + n (14.1 MeV)

While tritium is available in water, lithium is an unstable isotope with a short lifetime (about
12 years). However, tritium can be produced from lithium, which is widespread on the earth
crust. This element easily reacts with the incoming neutrons as follows:

6
3Li + n→ 3

1T + 4
2He + 4.78 MeV

7
3Li + n→ 3

1T + 4
2He + n− 2.47 MeV

There are currently many lines of research regarding the plasma confinement technology and
the nuclear reactants, some supported by private industries and investors and others financed
by government and international partnerships. Among them, the Tokamak configuration was
developed in USSR in 1950’s and due to the remarkable performances reached, it is considered
the most promising configuration to achieve nuclear fusion for energy purposes.

Tokamaks are toroidal machines in which plasmas are confined by a strong toroidal magnetic
field and a lower poloidal field to avoid drifts that can lead to a separation of species and loss
of plasma. The former is produced by several toroidal coils, while the latter is induced by an
axial coil. In a toroidal configuration, produced Helium nuclei are supposed to cede energy to
deuterium or tritium nuclei through collisions, while neutrons, that can not be magnetically
confined due to their neutral charge, will cede their energy to the blanket. In this way, kinetic
energy is transformed into thermal energy which will be further converted in electricity and
sold in future commercial fusion power plants.

1.2 Plasma heating and ignition

Every power plant needs some auxiliary power in order to stay operational. Usually this power
accounts for few percents of the net produced power. For a thermoelectric plant, this power
is needed for pumps, compressors, and control drives while, for a fusion reactor like ITER,
auxiliary power takes much more of the share. Although the toroidal and poloidal fields are
created by currents in superconducting inductors, a considerable amount of power is spent to
keep the Nb3Sn coils at 5 K (very near to a hotter-than-stars plasma) and additional losses can
be localized in the power supply. [4]

However, the true power consumption of any fusion reactor (50 MW for ITER) is due to the
plasma heating system. In order to reach and maintain the fusion temperature inside the
Tokamak, reactors around the world use several techniques, some of which are:

• Ohmic heating. Electrical currents are induced via transformer action in the plasma and
produce Joule losses. This method has two limitations: it is pulsed and its effectiveness
decreases as the plasma heats up because plasma resistivity depends on temperature as
T−3/2. For this reason it is used only during the pre-heating phase and power up to few
MW.

• Radio-Frequency heating. As the plasma particles rotate around magnetic field lines
in the chamber, electromagnetic waves can selectively damp or resonate with the motion,
changing the kinetic energy of some particles. Switching losses in the power source limit
the RF power that can be sent to the plasma to few tens of MW. ITER uses three RF
systems at different frequencies: the 30-100 MHz module heats ions while the others are
focused on electrons at frequency bands of 1-8 GHz and 100-200 GHz.
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• Neutral beam heating. To penetrate the strong magnetic field in the chamber, a beam
of fast moving neutral atoms is aimed at the plasma where it loses electrons, merges with
the confined ions and transfers kinetic energy to them. The only way to create such beam
is to produce a large amount of ions first, then accelerate them in an electric field up to
the desired speed and finally neutralize them with electrons.
Consorzio RFX was called to develop the prototype of injectors that will be used in ITER:
for this purpose, PRIMA (Padova Research ITER Megavolt Accelerator) facility has been
established. It will host two experiments: SPIDER (Source for the Production of Ion of
deuterium Extracted from an RF plasma), which is the prototype of the ion source that
will be used for the complete injector, and MITICA (Megavolt ITER Injector and Concept
Advance) which is the actual complete injector. [5]
ITER shall require 16.5 MW of power, so a 40 A deuterium ions current needs to be
extracted. To achieve this extracted current, it is expected to obtain a current density of
280 A/m2, accelerated up to an energy of 1 MeV.

Figure 2: Different sources of heating in a Tokamak. Image courtesy of [6]

In conclusion, a useful parameter to evaluate the ratio between gross power produced by the
fusion and power needed to the heat the plasma is called energy gain factor:

Q =
Pfusion

Pheat
' 1

η fre

The condition in which Q = 1, named break-even, happens when the energy produced in
fusion reaction exactly matches the external heating power. Considering typical efficiency η of
the double energy transformation and the fraction fre of the total power that is recirculating
through the heating system, Q should be between 15 and 30 for practical reactors.

Ignition of plasma is reached when all the thermal energy needed to sustain the reaction comes
from the fusion itself, so Pheat → 0, Q → ∞. The ignition is the most convenient regime for
a thermonuclear reactor, however it is not strictly needed as an external heating system helps
keeping plasma stability. Currently, the only known man-made item that achieved Q > 1 is the
Ivy Mike hydrogen bomb.

1.3 Ion production

Currently, there are several ion sources available to scientists: every one has its own pros and
cons which defines the most suitable application, e.g. plasma sources excite matter to its fourth
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state in order to create ions. Among them, inductively coupled plasma (ICP) and hot
cathode sources are the most used in ion accelerators around the world. The former excites
molecules with fast changing (GHz range) electromagnetic field thus it creates a hot spot at the
coil center where fast electrons are produced. The latter makes use of a hot cathode that emits
slow electrons by thermionic effect. This technology is simpler, but the cathode must withstand
temperature as high as 1800-2400 K in order to reach the desired current and is coated with rare
and expensive materials like thorium or lanthanum. Lastly, while the ICP source is physically
separated from the plasma it produces, the hot cathode must be inside the chamber exposed
to ion bombardment and oxidation. Also, it can release impurity and eventually, it has to be
replaced.

The remarkable requirements for the ITER Neutral Beam forced designers not only to focus on
negative Ion because of their larger cross section during the neutralization process, but also to
choose an ICP source instead of thermionic emission because the best reliability and the longest
lifespan are needed. [7]

ICP, in particular, offers two kinds of ion production:

• Volume production takes place inside the plasma and it can be divided into two steps:
first H2 molecules are vibrationally excited by collisions with fast electrons (E > 20
eV), then negative ions are produced by dissociative attachment between those excited
molecules and cold electrons (E < 2 eV). [8]

H2 + efast → H∗2 + e, H∗2 + eslow → H− + H0

Although, there are several processes that lead to the neutralization of such ions, in
particular detachment is dominant at electron energy above 1 eV. To reduce H− losses,
the plasma chamber is divided in two volumes by a vertical magnetic field: the hotter
region witch is under the influence of the RF heating system that produces fast electrons
and excites molecules, and the extraction zone witch is unreachable by fast electrons,
and where negative ions are produced.
Numerical studies by Vetri et al. [9] confirmed that in NIO1 only H− produced in the
extraction region, eventually reach the grid and they are extracted as such. The others
that are produced in the far left region are soon and easily neutralized by fast electrons.
The overall ionization degree in the two regions is under 1% with its maximum at the
center of the RF coils. This means that only 1 particle out of 100 is ionized (positively
or negatively) and for this reason the plasma is said cold.

• Surface production. It has been demonstrated [8] that caesium vapor deposition in the
source chamber causes a 3-10 times enhancement of negative ion production. Caesium
produces a thin layer over the walls, thus causing a lowering of the work function. Ion
production has to be improved especially close to the grids, where the H−, produced by
the collisions of H0 with the source walls and plasma grid, can be promptly extracted. It
has been calculated that with such deposition in the NIO1 chamber, H0 atoms near the
PG have a 30% chance of becoming H− thus increasing dramatically the maximum ion
current.

Negative ions sources usually prevent charged particles from hitting the walls by a technique
called magnetic bottle: permanent magnets placed behind the walls of the source bend magnetic
field lines to form an array of cusps and domes that force charged particles towards the center
of the camber.
Another common feature is that the electric potential of the source body must be kept negative
with respect to the grounded forward sections of the accelerator. By doing so, the highest
voltage is located in a relatively small and closed section of the experiment, increasing safety
and reducing electrostatic losses at the same time.

Consequently, ICP plasma chambers are basically like the one in figure 3. In particular, design-
ers of NIO1 came up with the design shown in figure 4 and 5.
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Figure 3: Conceptual representation of a negative ion source. The presence of two zones separated by the filter
field can be noticed.

Figure 4: Cutaway of the NIO1 source. It features the same concept of the ITER source at smaller scale,
allowing designers to improve the project faster.

1.4 Acceleration

Negative ions produced by the source have to be extracted and accelerated in order to form the
ion beam. At the same time electrons must be removed from the beam in order to obtain high
ion current and proper beam profile. If not, their charge increases the beam divergence and ion
neutralization.
In ITER, the negative ions produced in the extraction zone have to be accelerated up to high
energy, then they pass through the neutralization zone eventually reaching the fusion chamber.
High energy accelerators are typically equipped with multi-stage grid systems that can handle
voltages in the order of 1 MV. To limit the electrostatic repulsion between the accelerating ions,
fine tuned elements called Kerbs are placed between the grids. They allow the electrostatic
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focusing of the beam by tailoring the E-field equipotential lines.

As the design particle energy in NIO1 is only 60 keV, the grid system of NIO1 is composed by
three elements, each with a central array of 3x3 apertures that defines the beam:

• the plasma grid (PG) divides the volume of the source from the beam vessel and its
holes are accurately shaped to guarantee the best optics specifications. In order to prevent
electron extraction, a recent upgrade allows to positively bias the PG (up to 20 V) with
respect to the source body. Recently, an additional plate connected to the source body
called Bias Plate was introduced in front of the PG to further reduce the electron density
near the apertures. The PG can be charged up to -60 kV with respect to the ground.

• the extraction grid (EG) is the second electron barrier, it is charged at few kV above
the PG and it is placed at the distance of 5 mm. In addition to the strong E-field between
PG and EG, a vertical magnetic field is created by four permanent magnets that bend
the electron trajectories until they collide with the EG itself because of the Lorentz force.
In this way the majority of the electrons are taken apart from the beam because of their
smaller mass. Their energy is transferred during the constant bombardment to the water
cooled EG and their charge is given back to the source by using the regulated power
supply.

• the post acceleration grid (PA) is placed 25 mm after the EG and it is kept at ground
potential. PA gives the negative ions the main push. This time though, incoming velocity
cannot be neglected and the ion trajectories are described by the equation presented in
section 2. After the PA an additional repeller electrode prevents positive ions that can
form at the end of the beam vessel from being accelerated back to the source.

Figure 5: NIO1 source chamber and grids.

In the extraction zone near the PG, electric potential lines define a set of surfaces facing the
apertures. The region that has the same potential of the source’s walls is called meniscus, it has
the shape of a convex lens and the thickness of less than 10 Debye length (about 2 mm).

1.5 The space charge

The space charge is an excess of electric charges distributed over a region of space, usually in
vacuum. The discovery of this phenomenon dates back to the early years of ’900 when, thanks
to Richardson’s studies, it was understood that thermionic emission is limited by the formation
of a cloud of electrons around the hot cathode. Using classical notions of electrodynamics,
he found that both the increasing in the temperature of the cathode and the enhancing of
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the filament surface positively affects the maximum current limit in a fashion that resembles
the Arrhenius equation, later called the “T 1/2 form”. However, by 1928, further experimental
discoveries with enhanced filaments and higher vacuum, proved classical theories to be wrong
while the quantistic theory allowed to explain the enhancing mechanism and led Richardson to
win the Nobel prize thanks to the law named after him:

JR = A0 T
2 exp

[−W
kT

]
[A/m

2
] (1)

In 1911 Child discovered that, beside cathode temperature, the accelerating field plays a critical
role defining the emitted current. More precisely, he found that, for hot enough cathode, the
maximum extracted ion current is proportional to the anode-to-cathode voltage to the power
of 3/2 and proportional to the inverse square of the distance between the electrodes:

JCL =
4ε0
9d2

√
2q

m
V 3/2
a [A/m

2
] (2)

This relation was later called Child-Langmuir (CL) limit current, because of independent studies
by Langmuir on electron current in cylindrical valves.

Both laws are useful when it comes to predict the emission of hot cathodes: the current limit is
defined as a function of the anode voltage by the smaller of the two. Increasing the voltage, the
transition between Child’s and Richardson’s law occurs smoothly as the space charge changes
its shape in the 3D space.

Va

I a

T1

T2>T1

Figure 6: Hot cathode emitted current. At high voltages the Richardson law causes saturation because of the
production emission deficiency, higher temperature allow more current. At low voltages, space charge

accumulates near the filament limiting the emitted current.

In the following pages, Dushman formulation of Richardson’s law and the classical derivation
of Child-Langmuir current limit are presented. The following reference images are taken from
[10].

Richardson’s law

Let two planar metallic surfaces face each other at distance x in a vacuum chamber, if one of
them is heated to sufficiently high temperature, some free electrons get enough energy to escape
the potential barrier and leave the metal with an average velocity vx normal to the surface.
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The surface current density can be written as:

Jx =

∫
q n[E] vx[E] dE (3)

where q = 1.6022 × 10−19 C is the electron charge, n[E] is the electron volumetric density for
a single excitation state measured in J−1 m−3 and the integral is taken over all the electron
energies needed for leaving the potential barrier in x direction. Density can be written as a
two functions product: the states density g[E] and f [E] the probability for a given state with
energy E. Fermi-Dirac statistics poses:

g[E] = 4π

√
8m3E

h3

f [E] =
1

1 + exp
[
E−EF

kT

]

where h and k are the Planck’s and Boltzmann’s constants, EF is the Fermi level that is
the highest energy of electron in constant confining potential U . Only electrons with energies
E >> EF can escape from the cathode. In this case f [E] approaches the Maxwell-Boltzmann’s
distribution:

f [E] ' exp

[
− E − EF

kT

]

If the electron kinetic energy is defined as E, it becomes possible to rewrite eq. (3) by replac-
ing:

E =
1

2
mv2 ⇒

√
E dE =

1√
2
m3/2v2 dv ⇒ n[E] dE =

8πm3

h3
exp

[
− E − EF

kT

]
v2 dv

Jx =

∫
q vx[E]

8πm3

h3
exp

[
− E − EF

kT

]
v2 dv

= q
2m3

h3
exp

[
EF
kT

] ∫
vx[E] exp

[−E
kT

]
4πv2 dv
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Figure 5.4: Electrons in the metal experience a constant confining potential of depth U .
Possible quantum mechanical states for these electrons are displayed as horizontal lines.
Electrons fill all the available states up to the Fermi energy, EF . The work function, W ,
is defined at the minimum energy needed to remove an electron from the metal. As shown
above: W = U − EF .

volume of that velocity-space region divided by (2π!/mL)3. Hence:

number of states with velocity between v and v + ∆v =
∆vx∆vy∆vz

(2π!/mL)3
(5.49)

number of states per volume with velocity between v and v + ∆v =
∆vx∆vy∆vz

(2π!/m)3

=
( m

2π!

)3
∆vx∆vy∆vz = N∆vx∆vy∆vz (5.50)

where N is the (constant) density of states in velocity space.

Quantum Theory: Fermi Energy

Fermions (half-integer spin particles), in contrast to bosons (integer spin particles), cannot
group together. Since the electron is “spin 1

2”, each of the above states can hold at most 2
electrons: one spin up and one spin down. The probability that a particular fermion state
with energy E will be occupied is given by a generalization of the Boltzmann factor called
Fermi-Dirac statistics:

f(E) =
1

1 + exp
(

E−EF
kT

) (5.51)

where EF is called the Fermi energy. The Fermi energy is basically a disguise for the number
of electrons, as, approximately speaking, it is the dividing line between occupied states and
unoccupied states. (If the Fermi energy is high, there must be lots of occupied states and
hence lots of electrons.) Note that if E ≫ EF , the exponential factor is huge and we can
neglect the “+1” in the denominator so

f(E) ≈ exp

(
− E − EF

kT

)
(5.52)

(a) Valence electrons inside the cathode fill all the free
states over the Fermi level. Bounding electrons with
maximum energy need exactly W in order to leave

the metal and escape the mirror-image pull.

110 Thermionic Emission

A

vx ∆t

Figure 5.5: Consider just those electrons with some particular x-velocity, vx. In order to
hit the wall during the coming interval ∆t, an electron must be sufficiently close to the
wall: within vx∆t. The number of such electrons that will hit an area A will be equal to
the number of such electrons in the shaded volume (which is the perpendicular extension
of A a distance vx∆t into the volume). Note that many electrons in that volume will not
hit A because of large perpendicular velocities, but there will be matching electrons in
neighboring volumes which will hit A. To find the total number of hits, integrate over all
possible vx.

that is, if E ≫ EF Fermi-Dirac statistics approximate the Boltzmann factor.

Classical Theory: Electron Escape

The density of states combined with the Boltzmann factor gives us the number of free
electrons per unit volume with a particular velocity. In order for an electron to escape
during some time ∆t, it must have vx sufficient to overcome the image-charge barrier and it
must be sufficiently close to the wall. All the electrons with vx >

√
2U/m within a distance

vx∆t, will escape, where U is the depth of the potential well for the electrons. Thus the
number of electrons escaping through area A during ∆t is:

∫ ∞
√

2U/m
dvx

∫ ∞

−∞
dvy

∫ ∞

−∞
dvz 2N f(E) Avx∆t

= 2N eEF /kT A∆t

∫ ∞
√

2U/m
e−mv2

x/2kT vxdvx

∫ ∞

−∞
e−mv2

y/2kT dvy

∫ ∞

−∞
e−mv2

z/2kT dvz

=
4πm(kT )2

(2π!)3
A∆t exp

(
−(U − EF )

kT

)
(5.53)

where we have used the Gaussian integral:
∫ ∞

−∞
e−αz2

dz =

√
π

α
(5.54)

The electric current density is the electric charge escaping per time per area:

J =
e × number escaping

A∆t
=

4πem(kT )2

h3
exp

(
− W

kT

)
(5.55)

which is Richardson’s equation, with work function W given by U − EF .

(b) Among the electrons with sufficient
velocity vx, all electrons in the shaded volume
hit the surface A during ∆t. Electrons with
larger perpendicular velocity does not hit A
but they are matched by ones in neighboring

volumes.
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Velocity can be divided in its three spatial components, the integral taken along the x direction
starts from electrons at the Fermi level, v = vx min, while the integrals along the other directions
extend at all velocity:

U =
1

2
mv2x min ⇒ vx min =

√
2U

m

Jx =
2em3

h3
exp

[
EF
kT

] ∫ ∞

vx min

vx exp

[−mv2x
2kT

]
dvx

∫ ∞

−∞
exp

[−mv2y
2kT

]
dvy

∫ ∞

−∞
exp

[−mv2z
2kT

]
dvz

Those integrations can be easily computed by remembering the Gauss integral:

∫ ∞

−∞
exp[−Cx2] dx =

√
π

C

that finally leads to:

Jx =
2em3

h3
exp

[
EF − U
kT

]
kT

m

√
2πkT

m

√
2πkT

m

=
4πemk2

h3
T 2 exp

[
EF − U
kT

]

= A0 T
2 exp

[−W
kT

]
(4)

where A0 = 1.2 × 106 A/m2K2 is the Richardson’s constant and W the characteristic work
function of the cathode metal.

Child’s law
102 Thermionic Emission

metal

vacuum anodecathode

x
x = bx = 0

accelerating
electrons

electric current
density JA

VAV = 0

Figure 5.1: A planar cathode and a planar anode are separated by a distance b. A positive
potential difference VA attracts electrons from the cathode to the anode, so the speed of the
electrons v(x) increases as they approach the anode. The moving electrons constitute an
electric current from anode to cathode. The resulting steady current density is called JA.

is called Child’s law1 (or the Child-Langmuir law, including Langmuir who independently
discovered it while working at G.E.). In this experiment you will measure both Child’s Law
and the Richardson Effect.

Child’s Law

Consider a planar interface between a metal (x < 0) and “vacuum” (x > 0). Vacuum is
in quotes because this region will contain escaped electrons—a ‘space charge’—rather than
being totally empty2. The number of electrons per volume (i.e., the number density) is
denoted by n.

In this experiment, the metal will be heated (i.e., its a ‘hot cathode’ or filament) which will
result in a supply of electrons ‘evaporated’ from the metal into the vacuum. An additional
conducting sheet (the anode) is located at x = b. A positive potential difference, VA,
between the cathode and the anode plane provides a force pulling these electrons from the
vicinity of the cathode towards the anode. The result is a stream of moving electrons (a
current); the number density n(x) and speed v(x) of these electrons will depend on location,
x, between the plates. The negatively charged electrons moving to the right constitute a
steady electric current density to the left, i.e., a steady conventional electric current from
the anode to the cathode:

J = −en(x)v(x) = −JA (5.2)

Since the electrons leave the metal with (nearly) zero speed at zero potential, we can
calculate their speed along the path to the anode using conservation of energy:

1

2
mv2 − eV (x) = 0 (5.3)

v =

√
2e

m
V (x) (5.4)

1Clement Dexter Child (1868–1933) Born: Madison, Ohio, A.B. Rochester, Ph.D. Cornell
2In fact a perfect vacuum is not possible, so the word “vacuum” actually refers simply to a region with

relatively few particles per volume

Starting from the same planar interface used for the derivation of Richardson’s law, one should
know by now, that the space between x = 0 and x = b is not really empty, instead it is populated
by electrons that escape the cathode, forming a cloud with density n. If a voltage Va between
anode and cathode is applied, electrons are accelerated by this external electric field, creating
a positive current JA conventionally directed from anode to cathode, whose density is:

JA = q n[x] v[x] = −J

Climbing the potential well electrons lose kinetic energy so, once they start to accelerate under
the external field, their energy is almost zero. This is an important assumption, because in
cases where the initial speed cannot be neglected1 the current limit increases dramatically. For
this example though, assuming the cathode temperature around 2000 K, the electrons have an
average thermal energy near 0.3 eV that becomes small for anodic potential over few tens of

1This is the non-zero initial velocity CL law generalization shown in section 2.
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Volt. Using the conservation of energy a second time, one can write the expression of their
velocity as a function of the potential V [x]:

1

2
mv2 − qV [x] = 0 ⇒ v =

√
2q

m
V [x]

Charge conservation in steady state assures that the current density does not depend on the
position x, thus n[x] must decrease as the electrons accelerate towards the anode. The space
charge influences the potential following the Poisson’s equation:

∂2V [x]

∂x2
=
q n[x]

ε0
=

JA

ε0
√

2qV [x]/m
= a V −1/2

In order to solve this second order differential equation, two boundary conditions are needed:
the first one comes from fixing the cathode potential while the second one means that the
charge density around the cathode is so high that the E-field in x = 0 becomes zero and no
more current can be extracted:

V [0] = 0,
dV [x]

dx

∣∣∣∣
x=0

= 0

The integration can be done by separation of variables:

dV [x]

dx

d2V [x]

dx2
= aV −1/2

dV [x]

dx

∫
d

[
1

2

(
dV

dx

)2]
=

∫
a V −1/2 dx

1

2

(
dV

dx

)2

= 2a V 1/2 + c1

integration constant c1 must be zero because of the second boundary condition,

∫
V −1/4 dV =

∫ √
4a dx

V [x] =

(
3

4

√
4a x

)4/3

+ c2

constant c2 must also be null, as a result, the potential along x is written as:

V [x] =

(
9

4

JA

ε0
√

2q/m

)2/3

x4/3

finally, calling the anodic voltage VA = V [b] and inverting the relation, leads to the Child’s
law:

JA =
4ε0
9b2

√
2q

m
V

3/2
A (5)
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2 Parametric model description

The principal outcome of this work is a theoretical model of an interface similar to those seen
in section 1.5. Instead of relying on the thermionic emission phenomenon, the present model
assumes the presence of a generic source of electrical charges. Particles which are created at the
beginning of the interface, can have initial kinetic energy, they are accelerated towards the end
of the interface forming a particle beam which trajectory is mainly determined by the external
E-field and the beam current intensity.

The proposed model is firstly introduced for a source capable of producing one type of particle,
then it is generalized to a two particles source. Both of them are needed to accurately describe
the extraction of the beam from the source and its acceleration.

Moreover, this model defines a current intensity limit that is the generalization of the classical
CL law.

Due to the frequent use of partial derivatives in this section, the notation will be shorted as
follows:

∂n

∂xn

[
f [x]

]
:= ∂nxf [x]

2.1 Hypothesis

• The interface is monodimensional. The beam diameter is assumed to be small compared
to its length, however this is not quite true for NIO1. Grids apertures have a diameter
of 6 mm while the distance between the Plasma Grid and the Extraction Grid is only 5
mm. As a consequence, this model can’t describe accurately the beam optics.

• Since the beam moves through E and B fields that are constant in time, Maxwell’s equa-
tions are decoupled: ∇× E = 0, ∇×B = µ0J .

• Magnetic field produced by the current of each beamlet is small compared to the external
one that bends the trajectories of electrons: B = Bext.

2.2 Adimensional formulation

An often used strategy, to maintain the widest approach to the subject, makes use of scaled
variables. Following definitions are particularly useful also during numerical computations,
because they remove precision issues that emerge from huge differences between fundamental
constants of physics like the electron mass me = 9.109× 10−31 kg or the vacuum permittivity
ε0 = 8.854× 10−12 F/m. Hence for this section, all the equations are written in their adimen-
sional form, unless otherwise specified.
As said earlier, this model is thought to be dependent on time and on one spatial dimension;
from the following definition of this pair of parameters, important properties are derived:

• the scaled time dimension t is the sum of two terms: the simulation time s, and the delay
τ . The time scaling factor is called T .

t = s+ τ

• the scaled spatial dimension is denoted by the letter x and its scale factor is L. d is the
scaled distance between the two fixed voltage planes (or grids). More precisely, x defines
the position of a particle that entered the domain at the time τ

x = f [s, τ ], x ∈ [0, d]

such strong condition allows to completely ignore the particles outside the domain.
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Of course, all the variables of interest must be scaled accordingly in order to become adimen-
sional. It is very important to point out that the sign of charges involved is, for the moment,
positive. This choice may be confusing at first especially when the relation between E-field and
the potential is used. However, it helps to keep the formulation as general as possible and, at
the end, coming back to unscaled variables with proper electrical charge is a straightforward
task.

Table 1: Scale factors. m and q are the particle’s mass and (positive) electric charge.

scaled variable symbol factor

particle velocity v L
T

potential V m
q

(
L
T

)2

electric field E m
q
L
T 2

charge density ρ m ε0
q

1
T 2

current density J m ε0
q

L
T 3

It will be showed that length scale factor L and time scale factor T can be of arbitrary magnitude
as the mass and the charge of the particle. As a matter of fact, all the scale factors must cancel
out when the equations are converted in physical dimensions if a very adimensional model is
used.

2.3 Single particle model

From the differential form of Maxwell’s equations, under the aforementioned hypothesis, it is
possible to derive three fundamental relations:

Electric charge conservation: ∂tρ− ∂xJ = 0

Momentum conservation under E-field: ∂tv + v∂xv = ∂xV

Poisson’s equation / Gauss flux theorem: ∂2xV = ρ

(6)

where the current density sign is due to the positive definition of the elementary charge used
in this work. In addition to them, other well known relations are implicitly used to complete
the model: electrostatics poses ∂xV = E and kinematics poses ∂tv = x. The experimental
conditions under investigation dictates the following Dirichlet boundary conditions:

v = v0

V = V0

ρ = ρ0





for x = 0

V = 0 for x = d

Speaking of potentials, it is obvious that the meaningful value is the potential difference ∆V .
In fact, a constant value can be summed to the function V when needed (e.g. figure 11).
Before starting the analysis, it might be useful to compute the differential of generic functions
that depends on s and τ , in order to easily recall it when needed, in particular for x and t.

∇sτ
[
t
x

]
=

[
∂st ∂sx
∂τ t ∂τx

]
=

[
1 v
1 ∗

]

While three values of the derivatives in the table above, are quite obvious, one of them needs
some further consideration. Due to the definition of x, all particles start at x = 0 at simulation
time s = 0, whatever delay they have. In other words:

x[0, τ ] = 0 ⇒ ∂τx
∣∣
s=0

= 0
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For all the other (positive) values of s, the partial derivative of x versus τ remains implicit,
due to the definition of x. This is not a problem because at least, when the ion beam is in a
stationary state, ∂τ = 0 always. Of course this ceases to be true when the beam enters the
instability zone, during transients and for some periodic solutions.

At this point, total derivative rules are applied to a generic function f [x, t] in order to easily
recall them when needed. Results are not obvious, instead they provide some hints to link
together the three equations in (6).

∂s[f [x, t]] = ∂xf · ∂sx+ ∂tf · ∂st ⇒ ∂s[ ] = ∂t[ ] + v∂x[ ]

∂τ [f [x, t]] = ∂xf · ∂τx+ ∂tf · ∂τ t ⇒ ∂τ [ ] = ∂t[ ] + (∂τx)∂x[ ]

∂s[ ]− v∂x[ ] = ∂τ [ ]− (∂τx)∂x[ ] ⇒ ∂x[ ] =
∂s[ ]− ∂τ [ ]

v − ∂τx

(7)

Thanks to (6) and (7) a pattern becomes clear, in fact the main variables are linked together
by derivative in x and s:

∂xV = E ∂sx = v

∂xE = ρ ∂sv = E (8)

In order to solve such system of equations one need to choose between the two variables, inte-
grate all the derivatives chain, then apply the boundary conditions. A graphical representation
of this algorithm can be seen in fig. 7. In this case, s is more convenient because if exists a
generic function f [t], 4 times derivable such that:

f ′′′′[t] = f ′′′′[s+ τ ] = ∂sE (9)

then it is possible to write a convenient system of equations in t, in which each function is the
integral over s of the previous one:

E[s, τ ] = f ′′′[s+ τ ] + c1[τ ]

v[s, τ ] = f ′′[s+ τ ] + c2[τ ] + c1[τ ]s

x[s, τ ] = f ′[s+ τ ]− f ′[τ ] + c2[τ ]s+ c1[τ ]
s2

2

(10)

In the last one of (10) c3[τ ] = f ′[τ ] because x[0, τ ] = 0 by definition. The other boundary
conditions apply as follows:

E[0, τ ] = f ′′′[τ ] + c1[τ ] = E0[τ ]

v[0, τ ] = f ′′[τ ] + c2[τ ] = v0[τ ]

x[0, τ ] = f ′[τ ]− f ′[τ ] = 0

Functions c1 and c2 act respectively as E-field and initial speed variations during non-steady op-
erations, they become zero whenever the boundary conditions match the initial conditions.

2.4 Steady-state solutions

One simple and handy solution of the system (10) is obtained when all the variables are inde-
pendent from τ . So, as soon as the beam becomes steady, all the ∂τ become zero and boundary
conditions E0, v0 become constants. From the first of (6) it follows that:

∂xJ = 0 ⇒ ∂sJ = 0
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and from the third of (6) + (9) one can tell that:

∂sE = v∂xE = J

The last identity allows to close the circle seen in (8) so the system (10) can be rewritten and
completed with the final set of equations:

J [s] = J0

E[s] = E0 + J0 s

v[s] = v0 + E0 s+ J0
s2

2

x[s] = v0 s+ E0
s2

2
+ J0

s3

6

V [s] =
1

2

(
v[s]2 − v20

)

ρ[s] = J [s]/v[s]

(11)

A graphical representation of how the model solution is computed is given in fig. 7, please note
that since the model is parametric in s, all the integrations are computationally inexpensive.
Moreover, when the relation between different variables e.g. (extraction current versus extrac-
tion voltage) has to be showed, the system of parametric functions allows to plot the desired
chart at once. The list of parametric charts in section 2.8 is only one example of the flexibility
of this approach.

J E v x

ρ

V

·
·

∫
ds

steady state

∫
ds

momentum c.

∫
ds

kinematics

∫
dxGauss

∫
dxelectrostatics

charge c.

Figure 7: Steady-state single particle model scheme. Connections between the variables are made possible
thanks to the well known physics principles recalled in (6).
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2.5 Child-Langmuir current limit generalization

Steady state equations allow infinite solutions (∞3); fixing the values of grid voltages and
incoming particle velocity, leads to a unique solution J = Jmax. In order to find the explicit
function of Jmax, one has to find first the relation between E0 and v0. In other words, everything
comes down to a conversion from a Dirichlet to a Neumann boundary condition.
If sd is the simulation time needed for every particle to reach d,

x[sd] = d

both the position and the potential in d can be written as:

x[sd] = v0sd + E0
s2d
2

+ J0
s3d
6

= d

V [sd] = Vd =
1

2

(
v[sd]

2 − v20
)

=
1

2

((
v0 + E0sd +

1

2
J0s

2
d

)2
− v20

)

The J = Jmax condition can be seen from different perspectives, in fact it is equivalent to
Vd = Vd,min. This minimum can be found by deriving Vd by E0 once the ∂E0

sd is known. Help
comes once again from x[sd] expression, as:

∂E0x[sd] = v0∂E0sd +
s2d
2

+ E0sd∂E0sd + J0
s2d
2
∂E0sd = 0

⇒ ∂E0sd = −s
2
d

2

1

v[sd]

∂E0
Vd =

(
v0 + E0sd +

1

2
J0s

2
d

)(
sd + E0∂E0

sd + J0sd∂E0
sd

)

= v[sd]
(
sd − E0

s2d
2

1

v[sd]
− J0

s3d
2

1

v[sd]

)

= sd

(
v[sd]− E0

sd
2
− J0

s2d
2

)

= sd

(
v0 + E0

sd
2

)

Finally, steady state Vd minimum is found when ∂E0Vd = 0. After some substitutions, this
leads to the definition of four limit conditions which are mutually exclusive:

E0,max =− 2v0
sd

sd,min = 3

√
6d

J0

Vd,min =− 1

2
v0

3
√

36d2J0 +
1

8

(
36d2J0

)2/3

Jmax =
2

9d2

(
v0 +

√
v20 + 2Vd

)3

(12)

Due to the sole degree of freedom left from the system (11), one can choose to maximize or
minimize only one of this four parameters. The last one in particular, is the CL limit modified
by the initial velocity. The earliest reference to a similar result is the historical article by G.
Jaffé [11], where the normalized initial kinetic energy and the normalized distance between the
electrodes determine the current limit. A more recent but non adimensional approach to this
generalization can be found in [12]. If the physical units form of the generalized CL limit is
required, the expression in (11) must be rewritten as follows:

Jmax[SI] =
2Jscale

9(d[SI]/L)2

(
v0[SI]

vscale
+

√(
v0[SI]

vscale

)2

+ 2
Vd[SI]

Vscale

)3

A/m2
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Of course, all the variables inside the expression are reduced with appropriate scale factors.
Length scale L and time scale T cancel out during substitutions so they can be considered
unitary.

2.6 Non steady solutions

As pointed out in [12], the analytical solution of the differential equation system becomes a
formidable task. Even though numerical simulations can be performed using the time dependent
equations showed in 10, it seems that the results are not as useful as the steady state ones, at
least for the NIO1 experiment.

Further works may be focused on the study of pulsating beam that can, in principle, achieve a
transient extracted current greater than the extended CL limit due to the lack of space charge
in front of the pulse.

2.7 Extension of the CL law to simultaneous presence of electrons
and ions

In accelerators such as NIO1 and SPIDER, negative ions are accelerated, so that negative ions
and electrons are extracted through the PG and, between the first two grids, they define the
combined total current. On the other hand, the initial velocity of the particles is almost zero:
in NIO1 initial energy at the PG is less than 10 eV while, near the EG, particles have gained
up to 8 keV. In the proximity of the PG, the space charge heavily affects the potential thus
limiting the maximum current of the entire series of grids. After EG, most of the electrons have
been eliminated from the beam and the current is made only by fast moving ions.

In this section, the presence of two different particles is studied in detail and an analytic model
capable of finding the maximum current density is presented. The formulation of this extended
model is similar to that of the single particle model in steady state: it is still adimensional
and parametric, but one crucial difference is the definition of the spatial dimension parameter
x.

As the mass influences the acceleration under the E-field, two different particles follow different
trajectories hence the speed and the density must be computed separately. In the following
equations, subscript i will be used for ions while e stands for electrons. This assumptions help
keeping the formulation clear but they aren’t needed in order to carry on the computations.
In addition to that, trajectory of ions are selected to be the reference one, meaning that the
variables v, x, ρ regarding ions, take the role of the ones used in the single particle model,
while the electrons variables are calculated as functions of the former. Considering instead the
other particle as the reference one, would have a negative impact on numerical stability because
of the three orders of magnitude between mi and me.

The two species constantly interact with each other so they are energetically bond while moving
inside the same E-field. Calling γ = γi/γe the ratio between ion and electron densities, such that
γi + γe = 1, allows to write the electric potential as the superposition of two potentials:

V [x] = Vi[x] + Ve[x] = V [x](γi + γe)

=
1

2γi
(vi[x]2 − v2i0)

(13)

It is important to note that the properties of the beam, like its charge density, can be separated
in two components only if they are defined as functions of space, (summing two charge densities
pertaining to different times would be absurd). In particular, position, speed and the density
must be rewritten starting from eq. (13).

(v2i [x]− v2i0)
mi

γi
= (v2e [x]− v2e0)

me

γe
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As seen in system (11) vi is a parabola, so vi[x] has, in general, a critical point corresponding
to the minimum where its slope changes sign. For this reason, in the most general case, vi[x]
is defined by two cases: the decelerating arm and the accelerating arm. However, if both the
initial velocities are zero vi[s] and ve[s] are monotonically growing so there is only one solution
for their x-defined counterpart and it is easier to define them.

ve[x] =vi[x]

√
γe mi

γi me

√
1− 1

v2i [x]
(v2i0 − v2e0

γi me

γe mi
)

'vi[x]

√
γe mi

γi me

(
1− 1

2v2i [x]
(v2i0 − v2e0

γi me

γe mi
)

)

The last expression can be verified only under the hypothesis of small initial velocities, thanks
to the Mclaurin expansion truncated at the first element. If vi0 = ve0 = v0 = 0 however, the
expression becomes handy and can be easily used in density computations:

vi[x]

ve[x]

∣∣∣∣
v0=0

=

√
γe mi

γi me
(14)

As a result, the steady-state system (11) can be modified as follows:

J [s] = J0

E[s] = E0 + J0 s

xi[s] = vi0 s+ γiE0
s2

2
+ γiJ0

s3

6

V [x] =
1

2γi

(
vi[x]2 − v2i0

)

ρ[x] = J0
γe
vi[x]

(
vi[x]

ve[x]
+
γi
γe

)

(15)

Differently from the single particle model, one other step is needed before doing further compu-
tations. The inverse expression of xi[s] must be found in order to change the parametrization
of functions: vi[s] to vi[xi] and J [s] to J [xi]. As functions of space, these quantities can be
used to calculate the two densities, the electron velocity and lastly, the potential. Judging by
the xi[s] expression, the inverse function can be found analytically, unless J > Jmax it has
a single solution. However, due to the large number of terms of its expression the inverse is
automatically found with the InverseFunction Mathematica command and it is not shown
here.

In synthesis, the algorithm followed to solve the system is graphically represented in the scheme
of figure 8.

Four limit conditions found can be derived also for the two particle model taking into account
the fraction γi. These expressions are important for their practical utility during experimental
operations and also during the design phase because they define the maximum ratings of the
particle accelerator. The modified expressions can be derived using those in (12) as a reference
and equations from system (15):

E0,max =− 2vi0
γi sd

sd,min = 3

√
6d

J0 γi

Vd,min =− 1

2γi
vi0

3
√

36d2J0 +
1

8γi

(
36d2J0

)2/3

Jmax =
2

γi 9d2

(
vi0 +

√
v2i0 + 2γi Vd

)3

(16)
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γiJ [s] γiE[s] vi[s] xi[s]

s[xi]vi[xi]J [xi]

ve[xi]ρi[xi] V [xi]ρe[xi]

∫
ds

∫
ds

∫
ds

inverse
1
γi

γe
γi

Figure 8: Steady-state two particles model scheme. The increment in complexity compared to fig. 7 is mainly
due to the inverse function.

The last expression is the two particles CL law generalization. The formulation in physical
units is obtained as before:

Jmax[SI] =
2Jscale

9γi(d[SI]/L)2

(
v0[SI]

vscale
+

√(
v0[SI]

vscale

)2

+ 2γi
Vd[SI]

Vscale

)3

A/m2
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2.8 Parametric characteristics

The single particle model (SPM) and the two particles model (TPM) were analytically solved
in section 2.4 and 2.7. In this section their graphical representation is made possible thanks
to a Mathematica code, which can natively manage arrays of parametric expressions. All
the code written for this thesis can be found in the appendix. In particular, each group of
charts completely describe the beam characteristic variables (V, E, v, ρ, J) along the distance
between the two grids, in a very wide range of possible situations.

SPM

• The SPM is firstly shown in figure 9 for v0 = 0 meaning that the initial energy of the
particles is zero, as in the classical CL law. The extraction voltage is parametrized as

VGE = 0.1 i2

where i = {1, 2, . . . , 8}, in order to obtain better spaced lines. Potential, E-field, speed
and density are monotonic functions and for each i, they are multiplied by a specific
constant that can be easily calculated from (12). The bottom left chart of figure 9 shows
the relation between the normalized simulation time and the position of a particle. The
8 lines are, not surprisingly, stacked together because both axes are normalized.

• The SPM is then shown in fig. 10 in its adimensional form at different extraction voltages

VGE = −1.387 + (0.35 i)!

In this way a family of curves describes four cases where the external E-field is braking
incoming particles and other four cases in which particles are eventually accelerated. A
necessary condition is, of course, v0 > 0, which means that some initial kinetic energy can
be spent against either the external E-field or the space charge E-field. As a result, the
formation of a virtual cathode happens at a distance x = xVC inversely proportional to
the limit current. E-field starts negative and grows monotonically crossing zero at xVC.
At the same distance, velocity have their minimum and charge density has its maximum.
The bottom left chart of figure 10 shows the relation between the normalized simulation
time and the position of a particle. This time the lines are not staked because trajectories
are non-linearly dependent on v0.

• The SPM shown in fig. 11 is finally applied on hydrogen ions at different extraction
voltages:

VGE = 250 i/Vscale

In this way, a family of curves describes the particle acceleration under 8 different external
E-field. To give results in physical dimensions, scale factors are applied to each variable.
These are the factors listed in table 1, The transformation must also take into account
the sign of the fundamental charge.
The initial speed selected for this example allows to extract a high H− current, much
more than the v0 = 0 case. As in figure 10, the space charge forms a virtual cathode
at a distance xVC from the PG that increases as the extraction voltage decreases. An
approximate value of the maximum current that can be extracted through the nine 6 mm
apertures of the NIO1 grids, can be obtained by multiplying the value of the last curve
in the bottom right chart by the total section:

500 A/m
2 · 9π · 0.0032 m2 ' 0.127 A

that is very close to the nominal value of 130 mA.
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Figure 9: Some adimensional SPM characteristics as the voltage between the grids increases. This is the
v0 = 0 case.
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Figure 10: Some adimensional SPM characteristics as the voltage between the grids increases. This is the
v0 > 0 case.



22

0 1 2 3 4 5

- 2.0

- 1.5

- 1.0

- 0.5

0.0

x[mm]

V
[k

V
]

0 1 2 3 4 5
- 800

- 600

- 400

- 200

0

200

x [mm]

E
[k

V
/m

]

0 1 2 3 4 5
100

200

300

400

500

600

x [mm]

v
[k

m
/s
]

0 1 2 3 4 5

- 3.0

- 2.5

- 2.0

- 1.5

- 1.0

- 0.5

x

x

[mm]

ρ
10

3
[C
/m

3
]

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

x [mm]

s/
s d

[-
]

0 1 2 3 4 5

- 500

- 400

- 300

- 200

- 100

x [mm]

J
[A
/m

2
]

Figure 11: Some characteristics in SI units for hydrogen ions with v0 > 0 as the voltage between the grids
increases. Note that the fundamental charge here has its negative sign, in fact the potential is increasing with

x and J < 0.
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TPM

• Firstly, the TPM is introduced in figure 12 for v0 = 0 meaning both the initial particles
velocity are zero. Instead of varying the extraction voltage, 9 curves are obtained with
the parametrization of the ratio between ion and electrons:

γi = i/10, i = {1, 2, . . . , 9}

This is made in order to focus the reader’s attention on the effects of a higher ion pro-
duction capability of the source. In this example, the extraction voltage is fixed at 2000
V, a typical value used for the VGE in NIO1.
While potential, E-field, simulation time and current density are variables of the whole
beam, velocity and density are specific for ions and electrons, so they require two addi-
tional charts.
The first important feature that can be seen from this example is that both the poten-
tial and the E-field profiles do not change by varying γi. This was expected because of
the proportionality already discussed in figure 9. As a consequence, all the velocity and
density profiles are familiar with the exception of the logarithmic scale.

One new feature can be seen in the electron density chart where half the lines are stacked:
for high ion density (blue line) ρe is small because the majority of the current is represented
by ρi. As the ion density decreases, the electron density increases until it reaches a
maximum (light-green line) after that it returns to precedent values.
The simulation time s has a chart similar to that in fig. 9. The last chart verifies that
the current density limit is proportional to

√
γi as seen in eq. (16).

• Lastly, figure 13 represents the TPM under the most complex condition: a beam made of
H− ions and electrons, each with proper initial velocity.
The applied extraction voltage is 2 kV as before, while the initial velocity, hence the
energy, of the ions is fixed at 20 km/s. Although this value is unrealistically high for
NIO1, it allows to see all the features of this figure without stacking. The parametrization
in γi is almost the same as before with the exception of potential, E-field and simulation
time charts where only odds i curves are displayed. This is done to distinguish different
curves in close proximity.
The electron initial velocity is found as a consequence of the energy consideration discussed
for eq. 14:

ve0 = vi0

√
γe mi

γi me

The main differences between fig. 13 and fig. 12 regards the smoothed charge density
peak near the cathode and the increased current limit, both caused by the initial velocity.
The current density chart of electrons shows features of fig. 11 and fig. 12 combined.
Potential, E-field and simulation time charts show little deviations from the central curve
because the initial speed is not (proportionally) as big as it is in fig. 11. In particular, the
E-field profile is much less deformed because of the lower amount of initial kinetic energy
that can be spent against the space charge field braking force.



24

0 1 2 3 4 5

- 2.0

- 1.5

- 1.0

- 0.5

0.0

x[mm]

V
[k

V
]

0 1 2 3 4

0

100

200

300

400

500

x [mm]

E
[k

V
/m

]

0 1 2 3 4 5

0

100

200

300

400

500

600

x [mm]

v i
[k

m
/s
]

0 1 2 3 4 5

0

5000

10000

15000

20000

25000

x [mm]

v e
[k

m
/s
]

0 1 2 3 4 5
10- 5

10- 4

10- 3

10- 2

x [mm]

ρ i
[C
/m

3
]

0 1 2 3 4 5
1.×10- 6

5.×10- 6

1.×10- 5

5.×10- 5

x [mm]

ρ e
[C
/m

3
]

0 1 2 3 4

0.0

0.2

0.4

0.6

0.8

1.0

x [mm]

s/
s d

[-
]

0 1 2 3 4 5

- 180

- 160

- 140

- 120

- 100

- 80

- 60

x [mm]

J
[A
/m

2
]

Figure 12: Some characteristics as the fraction γi of ions increases from 0.1 to 0.9.
This is the v0 = 0 case.
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Figure 13: Some characteristics as the fraction γi of ions increases from 0.1 to 0.9.
This is the v0 6= 0 case.
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Initial speed scan

One last example of what the parametric model is capable of regards the effect of the initial
speed on the current limit. In this case, the maximum hydrogen ions current is calculated as
a function of the extraction voltage by varying the initial ion velocity for a discrete number of
values:

vio = {0, 104, 3× 104, 5× 104}
The extraction of hydrogen from the source of the NIO1 experiment, is best described if the
TPM is used. By doing so, one additional parameter, the fraction γi can be expressed. To date,
the experimental data show that γi is very low, mainly because the caesium surface production
cannot be used jet. The selected value for the following simulation is γi = 0.25.
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Figure 14: Effect of the initial speed on the current limit for hydrogen. The lower line represents the zero
initial velocity case.

As the V 3/2 CL law is a straight line in logarithmic scale, figure 14 shows that the hydrogen
ion current deviates from the v0 = 0 curve as the initial speed is increased.
The current density is obtained again by multiplying the current density J by the total surface
of the grid apertures of NIO1.
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3 Experimental data of NIO1

At Consorzio RFX, where the NIO1 experiment is located, a database is updated at every
acquisition session, recording nearly 70 parameters simultaneously. Every session is described
in a diary, along with changes in functionalities, parts of the apparatus and suggestions for
further improvements. This procedure allows to distinguish between datasets with different
operation conditions. The datas used in this sections come from a restriction of the dataset,
where parameter external to the model presented in section 2 are constants, e.g. the bias plate
voltage or the vessel pressure.

Unfortunately, an instruments that can measure all the variables as shown in the charts of
section 2.8 does not exists. The distance between PG and EG is only 5 mm and any physical
probe would interfere with the plasma properties distorting the measurements.
However, NIO1 electrical parameters as grid voltages, currents and electric power can be mon-
itored and varied with precision, their error is about 1%. In this section, the extraction grid
voltage VEG, called also extraction voltage, is the most important parameter: all the following
charts are plotted with said abscissa.

3.1 Perveance

It is common, in the letterature of this field, to find an empirical parameter called perveance.
It relates the beam current to the theoretical maximum defined by the classical CL law. Mul-
tiplying eq. (5) by the surface S defined by the apertures the expression becomes:

ICL =
4Sε0
9d2

√
2q

m
V

3/2
ext = ΠCL V

3/2
ext [A] (17)

the proportionality constant ΠCL is the maximum permeance value, it depends on the experi-
ment geometry and the particle mass and charge. If the current found is lower than the CL limit,
the ratio between the perveance of the beam and ΠCL is called normalized perveance:

Π =
Iext

V
3/2
ext

, π =
Π

ΠCL

The definition of the perveance can be used to roughly estimate the ratio between CL limit
currents for different ions, e.g. the comparison of hydrogen and oxygen tells:

ΠCL,H

ΠCL,O
=

√
mO

mH
' 4

Unfortunately, what has been just found is not empirically verified, in most of the cases, for
different reasons:

• all negative ion sources extract a current composed by both ions and electrons, the per-
veance computation cannot be made exclusively on ion current;

• different ions have different electronegativity, this has an impact on the optics of the beam
and on the maximum γi obtainable.

To obtain a better agreement with the experimental values the TPM should be applied instead
of classical CL in the definition of the permeance. If so, the ratio between the two perveances
becomes:

ΠTPM,H

ΠTPM,O
=

√
mOγH
γOmH

Three cases in which the beamlet is affected by the source parameters and the grid system
parameters are shown in figure 15. The best perveance is the value for which the beam width
is at a minimum. The other two situations in which the beam optics is far from the optimum
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are called under-perveant and over-perveant with the perveance value lower and larger than the
best perveance value respectively. The best perveance is always less than or equal the maximum
perveance.

Figure 15: Beam optics: from the left the over-perveant beam, the optimal beam and the under-perveant
beam. The meniscus can be find at the boundary between the colored areas.

3.2 Extraction voltage scans

To date, the NIO1 experimental apparatus operated only with hydrogen and oxygen. Although
the ITER neutral beam injector will work with deuterium ions, the difference in performance
between the two isotopes is too small to be addressed here.

Hydrogen operations

Experimental evidences from NIO1 show that the H− extracted current follows CL limit only up
to VGE = 0.5 kV at 1 kW RF power, after that, saturation occurs and the perveance decreases.
The physical reason behind the saturation phenomenon will be addressed in the last section.
The electron current, extracted and collected on the EG, follows almost the same trend however
it is remarkably higher. In the zone fitted with the CL law, the hydrogen ion fraction is
approximatively:

γiH = 1.17%

Most of the hydrogen extraction scans were performed at the fixed input power of 1 kW, in
order to avoid source damages the pyrex insulator breakdown happened on May 2016. These
operations were generally performed at higher pressure with respect to oxygen gas, so a direct
comparison is not completely possible.
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Figure 16: Hydrogen electron current at 1 kW RF power, 1.4 Pa.

As shown in figure 17, the hydrogen perveance factor found by interpolation has a magnitude
of 9.852× 10−8 A V−3/2.
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IH = 9.852 × 10-8 V 3/2    [A]
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Figure 17: Hydrogen negative ion current at 1 kW RF power, 1.4 Pa.
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Figure 18: Hydrogen normalized perveance at 1 kW RF power, 1.4 Pa.

Oxygen operations

The data acquisitions with the heavier ion, were conducted at lower source pressure because
oxygen requires less energy than hydrogen to inductively couple with the source, probably
because of its higher electronegativity.
It was found that the extracted O− current follows the CL law up to 1.2 kV at 1 kW RF power.
Then, as for hydrogen, saturation occurs. Unfortunately, the electron current experienced
saturation before the first acquisition point which is at 508 V, so it becomes impossible to
estimate the fraction γiO in the CL region.

As shown in figure 19, the oxygen perveance factor found by interpolation has a magnitude
of 3.2× 10−8 A V−3/2.
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IO = 3.2 × 10-8 V 3/2 [A]
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Figure 19: Oxigen negative ion current at 1 kW RF power, 0.35 Pa.
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Figure 20: Oxigen normalized perveance at 1 kW RF power, 0.35 Pa.
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3.3 Source analysis

The beam model shown in section 2 and the classical CL law both allow to calculate the
space charge current limit assuming that unlimited amount of ions can be produced by the
source. This assumption ceases to be valid if the extraction system outperforms the source
production capacity.

The source of NIO1 has several parameters on which the operator can act in order to change
plasma properties. However, RF power PRF and source pressure p are the main ones: by
increasing input power, more energy is transferred to the plasma particles, while by enhancing
the pressure, higher collision frequency is obtained. Inside particular PRF and p intervals, the
extractable negative ion production is a monotonically growing function:

f [PRF, p]

For low extraction voltages, only particles in the meniscus zone are extracted and the current is
determined by the Child-Langmuir Law. However, the extracted current cannot grow endlessly:
at higher extractions voltages, once all these negative particles have been extracted, a flux from
the inner source region to the PG is necessary induced in order to keep the neutrality in
the meniscus zone. These particles are therefore extracted at a slower pace and the and the
normalized perveance starts to decrease under the unity. Moreover, as the meniscus is pulled
towards the source, the beam optics has to be corrected in order to avoid the under-perveant
situation by increasing the source pressure, the RF power or both.

By combining data from oxygen scans at different RF power, it was possible to estimate how
the saturation limit varies at constant pressure. The results are shown graphically in figure 21,
the interpolations are the followings:

I500W = 0.9(1− e−0.949VEG)

I700W = 1.568(1− e−0.997VEG)

I900W = 2.311(1− e−0.705VEG)

I1000W = 2.569(1− e−0.692VEG)

A completely different dataset is also shown in fig. 22 to prove that this saturation is a general
phenomenon. In fact, the Penning source, located at the Rutherford Appleton Laboratory in
UK [13], uses a gas discharge as the negative ion source. Several VEG scans at different discharge
currents was performed in order to find how the saturation limit changes. It was found that
the saturation current is almost proportional to the arc current, with the exception of the curve
at 40 A which is altered because of an anomalous beam divergence. Whatever is the relation
between the source parameter and the extracted current, this findings unequivocally confirms
the concept of the source production bottleneck, in analogy with the thermionic emission.

In figure 6, the typical behavior of the current extracted from a hot cathode that is emitting by
thermionic emission was showed. As the extraction voltage is increased, the transition between
CL law (the space charge limit) and the Richardson’s law (source production limit) happens in
a similar fashion.
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Figure 21: Oxigen negative ion current at different RF power, 0.35 Pa.

Figure 22: Perveance scans of the Rutherford Appleton Laboratory Penning ion source [13].
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4 Conclusions

In the research field of the nuclear fusion, the ITER experiment is one of the most promising
projects which can demonstrate the feasibility of a nuclear fusion power plant. The development
of external heating systems is a fundamental step and requires an international cooperation. The
ITER neutral beam injector prototype, that will operate at Consorzio RFX required preliminary
studies, in order to validate numerical codes and test diagnostic systems. For this purpose, NIO1
a smaller and more flexible negative ion source was developed.

Due to the relative low input power and the absence of caesium oven, the accelerator is not used
at its maximum capability. The extracted electron current is still too high compared to that of
the ions and the beam has an intensity too low for being properly diagnosed. For this reasons
the beam analysis could rely only on electrical measurements. The accelerator was tested using
oxygen and hydrogen gasses.

Due to the restricted availability of data, this thesis developed as a theoretical work capable
of describing the beam acceleration under a very large number of operation conditions. The
fact that it is analytical and adimensional allows to use it for the precise computation of
the maximum obtainable performances of most the planar interface accelerators for any given
particle, at any energy level and scale.

The theoretical basis of this work come from the study of thermionics, with a special focus to the
Richardson’s and Child’s laws. In particular, the Child-Langmuir current limit is generalized
under a novel approach thanks to the parametrization of the model under both the spacial and
the temporal dimensions. The model is then presented in its graphical form because of the
large number of features it can describe.

In the empirical section of this work, the NIO1 experiment was used as a test bench for the
model. The findings suggest that the experimental apparatus operates with a insufficient ion
production capacity. This problem will by partly addressed by installing the caesium oven.
Since the model can agree with the experimental results only for low extraction voltages, in the
last section an explanation of the saturation phenomenon is proposed by a thermionic emission
analogy.
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A Mathematica codes

SPM code

�[�_] �= ��

ψ[�_] �= ψ� + �� �

�[�_] �= �� + ψ� � + �� ���/�

�[�_] �= �� � + ψ� ���/� + �� ���/�

�[�_] �= -(�[�]�� - �� ��)/�

ρ[�_] �= �[�]/�[�]

� = -���������� ��-��� (*���������� �������� ������ (���� ����!) [�]*)

ϵ� = ���������� × ��-��� (*������ ������������ [�/�]*)

� = ������� × ��-��� (*������ ���� ���� ����*)

�� = ������� �� (*���������� �������� ����*)

�� = ������� �� (*���������� ������ ����*)

�� = ��������� × ��-��� (*�������� ����*)

� = ��� (*������ �������� ����*)

������ = �/�� (*�������� ����� ������ [�/�]*)

������ = � ���/(� ���)� (*�������� ��������� ����� ������ [�/�]*)

ψ����� = � �/(� ���)� (*�-����� ����� ������ �� �/� ��*)

ρ����� = � ϵ� /(� ���)� (*������ ������� ����� ������ ��/� � ��*)

������ = � ϵ� �/(� ���)� (*������� ������� ����� ������ ��/� � ��*)

Figure 23: Model definition.

(*���� �� ��� ��� �� ������������� ���� ����� �� �� ������� �� ��� ������������

��������� �� ����� �� ���� �� �������*)

���� = � → �� �� → �� �� → ��� ���� �� → ��������[� �/��]� ψ� → -
� ��

��
� �� →

�

� ��
�� + ������� + � ����

����������[��������������� {���� → ������ ����� → ����� ����������� → ������ ��������� → ����������

�������������� → ���������[���������� ������]}� ��������� → ���]�

{���� @�����[��������������[{�[�]� �[�]} //� ����� {�� �� �� //� ����}� ��������� → {{�� �}� ���}�

���������� → {��/��� ��/�������}� ��������� → ���������[��� �]]� {�� �� �}]�

���� @�����[��������������[{�[�]� ψ[�]} //� ����� {�� �� �� //� ����}� ��������� → {{�� �}� ���}�

���������� → {��/��� ��/�������}� ��������� → ���������[��� �]]� {�� �� �}]�

���� @�����[��������������[{�[�]� �[�]} //� ����� {�� �� �� //� ����}� ��������� → {{�� �}� ���}�

���������� → {��/��� ��/�������}� ��������� → ���������[��� �]]� {�� �� �}]�

���� @�����[��������������[{�[�]� ρ[�]} //� ����� {�� �� �� //� ����}� ��������� → {{�� �}� {�� ��}}�

���������� → {��/��� �ρ/ρ������}� ��������� → ���������[��� �]]� {�� �� �}]�

���� @�����[��������������[{�[�]� �/��} //� ����� {�� �� �� //� ����}� ��������� → {{�� �}� {�� �}}�

���������� → {��/��� ��/���}� ��������� → ���������[��� �]]� {�� �� �}]�

���� @�����[��������������[{�[�]� ��} //� ����� {�� �� �� //� ����}� ��������� → {{�� �}� ���}�

���������� → {��/��� ��/�������}� ��������� → ���������[��� �]]� {�� �� �}]}

Figure 24: Case 1: adimensional for v0 = 0

(*���� �� ��� ��� �� ������������� ���� ����� �� �� ������� �� ��� ������������

��������� �� ����� �� ���� �� �������*)

���� = � → �� �� → � × ���� �� → ��� ���� �� → ��������[� �/��]� ψ� → -
� ��

��
�

�� →
�

� ��
�� + ������� + � ����

����������[��������������� {���� → ������ ����� → ����� ����������� → ������ ��������� → ����������

�������������� → ���������[���������� ������]}� ��������� → ���]�

{���� @�����[��������������[{�[�]� �[�]} //� ����� {�� �� �� //� ����}� ��������� → {{�� �}� ���}�

���������� → {��/��� ��/�������}� ��������� → ���������[��� �]]� {�� �� �}]�

���� @�����[��������������[{�[�]� ψ[�]} //� ����� {�� �� �� //� ����}� ��������� → {{�� �}� ���}�

���������� → {��/��� ��/�������}� ��������� → ���������[��� �]]� {�� �� �}]�

���� @�����[��������������[{�[�]� �[�]} //� ����� {�� �� �� //� ����}� ��������� → {{�� �}� ���}�

���������� → {��/��� ��/�������}� ��������� → ���������[��� �]]� {�� �� �}]�

���� @�����[��������������[{�[�]� ρ[�]} //� ����� {�� �� �� //� ����}� ��������� → {{�� �}� {�� ��}}�

���������� → {��/��� �ρ/ρ������}� ��������� → ���������[��� �]]� {�� �� �}]�

���� @�����[��������������[{�[�]� �/��} //� ����� {�� �� �� //� ����}� ��������� → {{�� �}� {�� �}}�

���������� → {��/��� ��/���}� ��������� → ���������[��� �]]� {�� �� �}]�

���� @�����[��������������[{�[�]� ��} //� ����� {�� �� �� //� ����}� ��������� → {{�� �}� ���}�

���������� → {��/��� ��/�������}� ��������� → ���������[��� �]]� {�� �� �}]}

Figure 25: Case 2: adimensional for v0 6= 0
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(*���� �� ��� ��� �� ������������� ���� ����� �� �� ������� �� ��� ������������

��������� �� ����� �� ���� �� �������*)

���� = � → �� � → �� � → �����/�� �� → � × ��� ������� �� → ��� �/������� �� → ��������[� �/��]�

ψ� → -
� ��

��
� �� →

�

� ��
�� + ������� - � ����

����������[��������������� {���� → ������ ����� → ����� ����������� → ������ ��������� → ����������

�������������� → ���������[���������� ������]}� ��������� → ���]�

���� @��������������������[�]*��� �� (�[�] - �[��])*��-� ������ //� �����

{�� �� �� //� ����}� ��������� → ���� ��������� → ���������[��� �]�

���������� → {��[��]�� �� [��]�}� {�� �� �}�

���� @��������������������[�]*��� �� ψ[�]*��-�
ψ����� //� ����� {�� �� �� //� ����}�

��������� → ���� ��������� → ���������[��� �]� ���������� → {�� [��]�� �� [��/�]�}� {�� �� �}�

���� @��������������������[�]*��� �� �[�]*��-� ������ //� ����� {�� �� �� //� ����}�

��������� → ���� ��������� → ���������[��� �]� ���������� → {�� [��]�� �� [��/�]�}� {�� �� �}�

���� @��������������������[�]*��� �� ρ[�]*��� ρ����� //� ����� {�� �� �� //� ����}�

��������� → ���� ��������� → ���������[��� �]� ���������� → �� [��]�� �ρ⨯��� [�/��]��

{�� �� �}�

���� @��������������������[�]*��� �� �/�� *� //� ����� {�� �� �� //� ����}�

��������� → ���� ��������� → ���������[��� �]� ���������� → {�� [��]�� ��/�� [-]�}� {�� �� �}�

���� @��������������������[�]*��� �� �[�]*������ //� ����� {�� �� �� //� ����}�

��������� → ���� ��������� → ���������[��� �]� ���������� → �� [��]�� �� [�/��]�� {�� �� �}

Figure 26: Case 3: physical dimensions for v0 6= 0



36

TPM code

ψ[�_] �= ψ� + �� �

��[�_] �= ��� � + γ�
ψ�

�
�� +

��

�
��

��[�_] �= ��� + γ� ψ� � +
��

�
�� /� � → ���������������[��][�]

�[�_] �= -
�

� γ�
(��[�]�� - �����)

ρ[�_] �= ��
γ�

��[�]

�

����
γ� ��

γ� ��
 ����� -

�

��[�]��
����� - �����

γ� ��

γ� ��


+
γ�

γ�

��[�_] �= ��[�] ����
γ� ��

γ� ��
 ����� -

�

��[�]��
����� - �����

γ� ��

γ� ��


� = -���������� ��-��� (*���������� �������� ������ (���� ����!) [�]*)

ϵ� = ���������� × ��-��� (*������ ������������ [�/�]*)

� = ������� × ��-��� (*������ ���� ���� ����*)

�� = ������� �� (*���������� �������� ����*)

�� = ������� �� (*���������� ������ ����*)

�� = ��������� × ��-��� (*�������� ����*)

� = ��� (*������ �������� ����*)

������ = �/�� (*�������� ����� ������ [�/�]*)

������ = � ���/(� ���)� (*�������� ��������� ����� ������ [�/�]*)

ψ����� = � �/(� ���)� (*�-����� ����� ������ �� �/� ��*)

ρ����� = � ϵ� /(� ���)� (*������ ������� ����� ������ ��/� � ��*)

������ = � ϵ� �/(� ���)� (*������� ������� ����� ������ ��/� � ��*)

Figure 27: Model definition.
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���� = � → �� � → �� � → �����/�� ��� → �/������� ��� → ���
γ� ��

γ� ��
� �� → ����/�������

�� → ��������[� �/(�� γ�)]� ψ� → -
� ���

γ� ��
� �� →

�

γ� � ��
��� + �������� - � γ� �� 

�� γ� → �/���

γ� → � - γ��

γ → γ� /γ��

����������[��������������� {���� → ������ ����� → ����� ����������� → ������

��������� → ���������� �������������� → ���������[���������� ������]}� ��������� → ���]�

����������[����� {���� → ������ ����� → ����� ����������� → ������ ��������� → ����������

�������������� → ���������[���������� ������]}� ��������� → ���]�

����������[�������� {���� → ������ ����� → ����� ����������� → ������ ��������� → ����������

�������������� → ���������[���������� ������]}� ��������� → ���]�

���� @��������������������*��� �� (�[�] - �[�])*��-� ������ //� ����� {�� �� � //� ����}�

��������� → ���� ��������� → ���������[��� �]� ���������� → {��[��]�� �� [��]�}� {�� �� �� �}�

���� @���������������������[�]*��� �� -ψ[�]*��-�
ψ����� //� ����� {�� �� �� //� ����}�

��������� → ���� ��������� → ���������[��� �]� ���������� → {�� [��]�� �� [��/�]�}� {�� �� �� �}�

���� @��������������������*��� �� ��[�]*��-� ������ //� ����� {�� �� � //� ����}�

��������� → ���� ��������� → ���������[��� �]� ���������� → {�� [��]�� ��� [��/�]�}� {�� �� �}�

���� @��������������������*��� �� ��[�]*��-� ������ //� ����� {�� �� � //� ����}�

��������� → ���� ��������� → ���������[��� �]� ���������� → {�� [��]�� ��� [��/�]�}� {�� �� �}�

���� @������������
-γ� ��

���*��-�
*ρ����� //� ����� �� �� �*��� //� ����� ��������� → ��-�� ��-�

�

��������� → ���������[��� �]� ���������� → �� [��]�� �ρ� [�/��]�� {�� �� �}�

���� @������������
-γ� ��

���*��-�
*ρ����� //� ����� �� �� �*��� //� ����� ��������� → ��-�� ��-�

�

��������� → ���������[��� �]� ���������� → �� [��]�� �ρ� [�/��]�� {�� �� �}�

���� @���������������������[�]*��� �� �/�� *� //� ����� {�� �� �� //� ����}�

��������� → ���� ��������� → ���������[��� �]� ���������� → {�� [��]�� ��/�� [-]�}� {�� �� �� �}�

���� @����������� *������ //� ����� �� �� �*��� //� ����� ��������� → ����

��������� → ���������[��� �]� ���������� → �� [��]�� �� [�/��]�� {�� �� �}

Figure 28: Case 1: physical dimensions for v0 = 0
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���� = � → �� � → �� � → �����/�� ��� → � × ��� ������� ��� → ���
γ� ��

γ� ��
� �� → ����/�������

�� → ��������[� �/(�� γ�)]� ψ� → -
� ���

γ� ��
� �� →

�

γ� � ��
��� + �������� - � γ� �� 

�� γ� → �/���

γ� → � - γ��

γ → γ� /γ��

����������[��������������� {���� → ������ ����� → ����� ����������� → ������

��������� → ���������� �������������� → ���������[���������� ������]}� ��������� → ���]�

����������[����� {���� → ������ ����� → ����� ����������� → ������ ��������� → ����������

�������������� → ���������[���������� ������]}� ��������� → ���]�

����������[�������� {���� → ������ ����� → ����� ����������� → ������ ��������� → ����������

�������������� → ���������[���������� ������]}� ��������� → ���]�

���� @��������������������*��� �� (�[�] - �[�])*��-� ������ //� ����� {�� �� � //� ����}�

��������� → ���� ��������� → ���������[��� �]� ���������� → {��[��]�� �� [��]�}� {�� �� �� �}�

���� @���������������������[�]*��� �� -ψ[�]*��-�
ψ����� //� ����� {�� �� �� //� ����}�

��������� → ���� ��������� → ���������[��� �]� ���������� → {�� [��]�� �� [��/�]�}� {�� �� �� �}�

���� @��������������������*��� �� ��[�]*��-� ������ //� ����� {�� �� � //� ����}�

��������� → ���� ��������� → ���������[��� �]� ���������� → {�� [��]�� ��� [��/�]�}� {�� �� �}�

���� @��������������������*��� �� ��[�]*��-� ������ //� ����� {�� �� � //� ����}�

��������� → ���� ��������� → ���������[��� �]� ���������� → {�� [��]�� ��� [��/�]�}� {�� �� �}�

���� @������������
-γ� ��

���*��-�
*ρ����� //� ����� �� �� �*��� //� ����� ��������� → ��-�� ��-�

�

��������� → ���������[��� �]� ���������� → �� [��]�� �ρ� [�/��]�� {�� �� �}�

���� @������������
-γ� ��

���*��-�
*ρ����� //� ����� �� �� �*��� //� ����� ��������� → ��-�� ��-�

�

��������� → ���������[��� �]� ���������� → �� [��]�� �ρ� [�/��]�� {�� �� �}�

���� @���������������������[�]*��� �� �/�� *� //� ����� {�� �� �� //� ����}�

��������� → ���� ��������� → ���������[��� �]� ���������� → {�� [��]�� ��/�� [-]�}� {�� �� �� �}�

���� @����������� *������ //� ����� �� �� �*��� //� ����� ��������� → ����

��������� → ���������[��� �]� ���������� → �� [��]�� �� [�/��]�� {�� �� �}

Figure 29: Case 2: physical dimensions for v0 6= 0

���� = � → �� � → �� � → �����/�� �� → ���� ���[-�]/������� ��� → ���
γ� ��

γ� ��
�

�� → ��������[� �/(�� γ�)]� ψ� → -
� ���

γ� ��
� �� →

�

γ� � ��
��� + �������� - � γ� �� 

�� γ� → �����

γ� → � - γ��

γ → γ� /γ��

��������������

������� *������� -�� γ� *������*� π*������ *���� //� ����� {�� �� �� ���} /� ��� → ��

������� *������� -�� γ� *������*� π*������ *���� //� ����� {�� �� �� ���} /� ��� → ��� ������ //�

����� ������� *������� -�� γ� *������*� π*������ *���� //� ����� {�� �� �� ���} /�

��� → � × ��� ������ //� �����

������� *������� -�� γ� *������*� π*������ *���� //� ����� {�� �� �� ���} /�

��� → � × ��� ������ //� ����� ������ → ����� ����� → ����� ����������� → ������

��������� → ���������� �������������� → ���������[����� ������]�

���������� → �Δ� [��]�� ������� [��]�� ��������� → ���

Figure 30: Plot of the maximum current with the initial velocity parameter.
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[11] G. Jaffé, “On the currents carried by electrons of uniform initial velocity,” Physical review,
vol. 65, p. 91, 1844. (Cited at page 15)

[12] R. R. Puri, D. Biswas, and R. Kumar, “Generalisation of the child-langmuir law for nonzero
injection velocities in a planar diode,” Physics of plasma, march 2004. (Cited at pages 15
and 16)

[13] S. R. Lawrie, D. C. Faircloth, P. Letchford, O. Whitehead, and T. Wood, “Detailed beam
and plasma measurements on the vessel for extraction and source plasma analyses (vespa)
penning h - ion source,” Review of scientific instruments, vol. 87, p. 02B122, 2016. (Cited
at pages 31 and 32)


	Introduction
	Power from fusion
	Plasma heating and ignition
	Ion production
	Acceleration
	The space charge

	Parametric model description
	Hypothesis
	Adimensional formulation
	Single particle model
	Steady-state solutions
	Child-Langmuir current limit generalization
	Non steady solutions
	Extension of the CL law to simultaneous presence of electrons and ions
	Parametric characteristics

	Experimental data of NIO1
	Perveance
	Extraction voltage scans
	Source analysis

	Conclusions
	Appendix Mathematica codes

