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Abstract

We present a theoretical analysis of the relativistic theory of spin and how it can be
used to understand the principles behind the recent Muon g − 2 (E989) experiment
at Fermilab. First, we discuss a covariant generalization of spin and its equation
of motion in the presence of electromagnetic fields, the Thomas-Bargmann-Michel-
Telegdi equation. We then generalize this equation to account for an electric dipole
moment and a general curved spacetime. Finally, after showing why the g-factor is
predicted to be g = 2 by the Dirac equation, we focus on the E989 experiment at
Fermilab and how the anomalous magnetic moment of the muon a = g−2

2 is actually
measured.
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1 Introduction

For several decades the Standard Model (SM) of particle physics has been one of
the pillars of our understanding of the universe, describing three out of the four
(known) fundamental forces and all the particles composing ordinary matter. In
the hope of unveiling unknown phenomena, physicists have been testing the SM for
years with many different experiments, without however obtaining clear evidence of
its violation.

Some of the experiments where the SM has shown its predictive power at its best are
the measurements of the anomalous magnetic dipole moments of leptons. While in
relativistic quantum mechanics these particles are described by the Dirac equation
and are thus predicted to have a g-factor g = 2, quantum field theory predicts a
non-zero value for the anomalous magnetic moment a = g−2

2 due to what can be
interpreted as the interactions of the leptons with virtual particles. In particular,
the g-factor ge of the electron has been measured with a precision better than a part
per trillion [1]1 in what is – as of today – one of the most precise measurement ever
made in particle physics.

While measuring aµ and aτ experimentally is harder than measuring ae since muons
and taus are unstable, in many SM extensions the contribution of “new physics” of
energy scale Λ to the anomalous magnetic moment aℓ of a lepton ℓ is expected to scale
as m2

ℓ/Λ
2, where mℓ is the mass of the lepton. As a consequence of this trade off,

experiments on muons – even if with a larger uncertainty than the ones on electrons
– have achieved a high enough precision to be the best candidates for the search of
new physics in the anomalous magnetic moments of leptons. In particular, in a series
of recent papers released earlier this year [5, 6, 7, 8] the Muon g − 2 Collaboration,
behind the E989 experiment at Fermilab, announced the measurement2 of the muon
aµ with a precision of 0.46 ppm, confirming a previous result obtained by the E821
experiment at Brookhaven National Laboratory in the early 2000s [9] and increasing
the discrepancy with the SM prediction to 4.2 σ [10]. While this result is only relative
to Run-1 of E989 and is not yet at the 5 σ confidence level, it strongly hints at new
physics beyond the SM. On the other hand, a recent lattice QCD result weakens the
discrepancy between the SM prediction and experiments [11].

Even though the theoretical prediction of the muon anomalous magnetic moment
requires the use of quantum field theory (for a concise review see [12]), the principles
behind the E989 experiment can be understood with a simple relativistic theory of
spin. This theory can be constructed by replacing the three-dimensional spin of

1 There are currently some problems regarding the comparison of the theoretical prediction of
ge with its experimental value, since there are two different measurements of the fine-structure
constant α [2, 3] which differ by more than 5 σ and thus yield different theoretical values for ge [4].

2 The E989 experiment is still running – aiming to obtain an uncertainty of around 140 ppb –
and has only released data from its first run, already reaching a higher precision than Brookhaven
E821 and with an uncertainty dominated by the statistical error.
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the particle with a four-dimensional vector called four-spin, satisfying a covariant
equation of motion called the Thomas-Bargmann-Michel-Telegdi (TBMT) equation.

In section 2 we will therefore briefly introduce the concept of spin and discuss dif-
ferent ways to obtain a relativistic equation for its motion, focusing in particular on
deriving the phenomenon of Thomas precession and the TBMT equation, loosely
following the approach given by Jackson in [13]. In section 3 we will analyze some
of the possible generalizations of the TBMT equation. First we will discuss an al-
ternative formulation of the TBMT equation for the spin tensor Sµν (defined in a
way similar to the relativistic angular momentum tensor Lµν) and its relation to Sµ;
we will then modify the regular TBMT equation for the four-spin to account for the
presence of an electric dipole moment associated to the spin, another quantity that
can be measured in the search for SM violations. We will also obtain a generalized
expression of the TBMT equation which is valid in curved spacetime through the
introduction of the Fermi-Walker derivative, in an attempt to extend the concepts
of Thomas precession and of particle rest frame to general relativity. In section 4
we will discuss the theoretical explanation of why the g-factor is predicted to be
g = 2 for a spin-12 particle described by the Dirac equation, briefly introducing
the operators associated to angular momentum and the minimal coupling with the
electromagnetic field. Finally in section 5 we will discuss the experimental setup
of the E989 experiment, how aµ is actually determined and some of the systematic
corrections that must be taken into account to obtain an accurate measurement of
aµ. Our conclusion will be drawn in section 6.

2 Thomas precession and the TBMT equation for the
four-spin

2.1 Introduction to spin

The concept of spin was introduced by Uhlenbeck and Goudsmit [14] in 1925 while
studying atomic spectra, in order to explain fine-structure intervals and the anoma-
lous Zeeman effect. They hypothesized that an electron possesses an intrinsic an-
gular momentum s called spin, whose value when measured along an axis can only
be s · n̂ = ±ℏ/2. This quantized behaviour shows that spin is a fundamentally
quantum mechanical phenomenon, and in the case of a non-relativistic electron (or
other spin-12 particles) it can be described in terms of Pauli matrices by s = ℏ

2σ. In
order to find a relativistic generalization of spin it is however easier to consider s as
a three-dimensional vector rather than an operator.

Since a classical particle with angular momentum ℓ has an associated magnetic
moment µℓ = e

2mℓ, it is possible to associate a magnetic moment to the spin with
the similar relation

µs = g
e

2m
s, (2.1)

where the g-factor is a constant that distinguishes the behaviour of the spin magnetic
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moment from the angular magnetic moment.
Given that the torque on the angular magnetic moment in a magnetic field B is
µℓ ×B and its associated energy is −µℓ ·B, it is possible to obtain – extending the
analogy – the equation of motion for the spin s in the rest frame of the particle and
its associated energy

ds

dt
=

e

m

g

2
s×B

U = − e

m

g

2
s ·B.

(2.2)

In order to extend these equations to a relativistic moving particle and thus express
ds
dt in terms of the electric and magnetic field seen by laboratory, we might be
tempted to follow a naive approach: we simply replace in the above equation the
time t of the rest frame with the proper time τ of the moving particle and B with the
magnetic field B′ in an instantaneous reference frame co-moving with the particle.
This reference frame is obtained via a single boost from the laboratory frame; since
the Lorentz transformations for the electromagnetic fields are

E′ = γ (E + β ×B)− γ2

γ + 1
(β ·E)β

B′ = γ (B − β ×E)− γ2

γ + 1
(β ·B)β,

(2.3)

the equation of motion for the spin s as a function of the laboratory time t would
then become

ds

dt
=

e

γm

g

2
s×B′. (2.4)

Moreover, if we consider a non-relativistic electron with charge −qe orbiting around
a nucleus with a radial electric field E = −r̂ dV (r)

dr , we can approximate to first order
in β the energy and obtain

U =
gqe
2m

s ·
(︃
B − ℓ

mr

dV

dr

)︃
, (2.5)

with ℓ = mr×β the orbital angular momentum. This expression correctly predicts
the anomalous Zeeman effect if g = 2 but gives a spin-orbit contribution that is
twice as large as what is observed experimentally.

2.2 The particle rest frame

As shown by Thomas [15], the partially incorrect conclusions of this naive approach
(equations (2.4) and (2.5)) are not due to the fact that we have not used operators
to describe the spin, but are instead caused by a relativistic effect, nowadays called
the Thomas precession.
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In particular the problem in our previous argument lies in the definition of the rest
frame of the particle, in which (2.2) holds true. Let us define the rest frame of the
particle as the succession of reference frames where the particle is instantaneously
at rest, with each frame obtained from the previous one via a pure (infinitesimal)
boost.

To be more concrete, let us consider a particle moving with velocity β at time t.

A generic Lorentz transformation can be written as Λ = e−
i
2
ωµνJµν

, with ωµν =
−ωνµ the six parameters determining the transformation, and Jµν = −Jνµ the
representatives of the basis of so(1, 3) on the generic vector space V in which the
Lorentz transformations acts, satisfying the commutation relation [16]3[︂

Jµν , Jαβ
]︂
= 2i

(︂
Jα[µgν]β − Jβ[µgν]α

)︂
. (2.6)

In three-dimensional notation, it is possible to identify ηi = ω0i as the rapidity of
the boost, θi = −1

2ϵ
ijkωjk as the angle of rotation, Ki = J0i and Ri = 1

2ϵ
ijkJ jk the

generators of boosts and rotations respectively, satisfying[︁
Ri, Rj

]︁
= iϵijkRk,

[︁
Ri,Kj

]︁
= iϵijkKk,

[︁
Ki,Kj

]︁
= −iϵijkRk. (2.7)

The Lorentz transformation from the lab frame to the rest frame of the particle at
time t is therefore Λ(t) = eiη·K , where η =

(︁
tanh−1 β

)︁
β̂ is the particle rapidity.

After a time δt – in the lab frame – the particle gains a velocity δβ′ (and a rapidity
δη′) in its rest frame and the Lorentz transformation from the lab to its rest frame at
time t+δt is thus, according to our definition of rest frame, Λ(t+δt) = eiδη

′·Keiη·K ,
with eiδη

′·K ≈ 1 + iδη′ ·K.

The key point is that, since Lorentz transformations do not commute, the transfor-
mation Λ(t + δt) is not a pure boost from the lab frame, but is a combination of
a boost and a rotation, contrary to what was assumed when obtaining (2.4); if the
transformation were a pure boost, it would simply be Λ′(t+ δt) = ei(η+δη)·K , with
η + δη the particle rapidity in the lab frame at time t + δt. Both Λ(t + δt) and
Λ′(t + δt) are transformations from the lab frame to a frame moving with velocity
β+ δβ (with respect to the lab), therefore they can only differ by a rotation which
can be computed by determining ∆ = Λ(t+ δt)Λ′−1(t+ δt).

2.3 Thomas precession

In order to evaluate this relative transformation, it is convenient to rewrite Λ′−1 as
Λ′−1 = e−iη·KA for some matrix A, so that ∆ = (1 + iδη′ ·K)A. Expanding the
matrix exponential as a power series and keeping only the terms up to first order in

3 We are following the sign convention on the exponential and thus on the commutators used in
[16], together with the metric signature

(︁
+,−,−,−

)︁
. For a more in depth yet not too technical

analysis on SO(1, 3) see [17].
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δη yields

e−i(G+δG) =
∞∑︂
n=0

(−i)n

n!
[Gn +Gn−1(δG) +Gn−2(δG)G+

· · ·+G(δG)Gn−2 + (δG)Gn−1
]︁
,

(2.8)

where G = η·K and δG = δη·K have been introduced for convenience. It is possible
to prove – by repeatedly exchanging δG and G with the help of their commutator –
that the following relation holds for the n-th term in the square brackets:

[. . . ]n =

(︃
n

0

)︃
Gn +

(︃
n

1

)︃
Gn−1(δG) +

(︃
n

2

)︃
Gn−2[δG,G]+(︃

n

3

)︃
Gn−3[[δG,G], G] +

(︃
n

4

)︃
Gn−4[[[δG,G], G], G]

+ · · ·+
(︃
n

n

)︃
[[. . . [δG,G], . . . G], G].

(2.9)

Finally, isolating the terms with a different number of (nested) commutators and
recomposing the matrix exponentials (by changing the summation index) yields

e−i(G+δG) = e−iG
(︃

1 − iδG+
(−i)2

2!
[δG,G] +

(−i)3

3!
[[δG,G], G] + . . .

)︃
. (2.10)

The commutators can be easily computed by recursion using (2.7):

[δG,G] = −i (δη) · (η ×R)

[[δG,G], G] = (δη · η)G− η2 (δG)

[[[δG,G], G], G] = −η2[δG,G].
(2.11)

By recognizing the Taylor series at η = 0 of cosh η and sinh η when plugging (2.11)
into (2.10), we can express the matrix A as

A = 1 − i

(︃
sinh η

η

)︃
δη ·K + i

sinh η − η

η3
(δη · η)η ·K + i

cosh η − 1

η2
δη · (η ×R) .

(2.12)

The last step in order to obtain ∆ is to express η, δη and δη′ in terms of β and
δβ. Considering only terms up to first order – as done previously – δη′ = δβ′; δβ′

can be obtained from the velocity β + δβ thanks to the formula for the relativistic
addition of velocities, and therefore δβ′ = γ

(︁
δβ⊥ + γδβ∥

)︁
. By variation of the

definition of rapidity, δη = η
βδβ⊥ + γ2δβ∥. Finally combining all these relations

together yields, after some algebra,

∆ = 1 + i
γ2

γ + 1
(δβ⊥ × β) ·R = 1 + iδΩ ·R. (2.13)
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What we have defined as the rest frame of the particle is therefore rotating with
respect to the laboratory frame with angular velocity

ωT =
δΩ

δt
=

γ2

γ + 1

dβ

dt
× β, (2.14)

a phenomenon now called Thomas precession. This means that the result (2.4)
obtained earlier is valid for a reference frame which is stationary with respect to
the lab, but which is also rotating. The correct equation of motion for the spin is
therefore

ds

dt
=

(︃
ds

dt

)︃
rot

+ ωT × s = s×
(︃

e

γm

g

2
B′ − ωT

)︃
. (2.15)

If we now consider a particle moving in an electromagnetic field with no other
external forces and ignore the contribution to the force due to a magnetic dipole
moment in a non-uniform field, its equation of motion dp

dt = e (E + β ×B) can be
expressed as

dβ

dt
=

e

γm
[E + β ×B − β (β ·E)] . (2.16)

Plugging this result into (2.15) yields

ds

dt
=

e

m
s×

[︃(︃
a+

1

γ

)︃
B − a

γ

γ + 1
(β ·B)β −

(︃
a+

1

γ + 1

)︃
β ×E

]︃
, (2.17)

where
a =

g

2
− 1 (2.18)

is called the anomalous magnetic moment. If we now consider a non-relativistic
electron, the correct version of equation (2.5) becomes

U =
qe
m
s ·

(︃
g

2
B − g − 1

2

ℓ

mr

dV

dr

)︃
. (2.19)

Note that this equation correctly predicts both the anomalous Zeeman effect and
fine-structure intervals due to spin-orbit interactions (with g = 2). Note also that
this equation can be also interpreted as the hamiltonian for a non-relativistic quan-
tum mechanical system, by simply replacing ℓ and s with their corresponding oper-
ators; this approach can be used in perturbation theory to study the fine structure
of the hydrogen atom.

2.4 Four-spin

While (2.15) is the correct equation of motion for the spin of a relativistic particle,
the equation itself is not manifestly covariant and it only describes the spin s in the
particle reference frame in terms of other quantities measured in the laboratory. In
order to find a more elegant expression – that clearly holds in every reference frame
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– it is necessary to generalize the three-dimensional vector s to a covariant tensor.
There are two main possible approaches: one consists in generalizing the spin in
analogy to what is done with the non-relativistic angular momentum, defining an
antisymmetric spin tensor Sµν ; the other instead considers a four-vector Sµ called
four-spin. Both Sµν and Sµ must reduce to the ordinary spin s for a particle at rest.
While these two approaches are both valid, we will now concentrate on the latter,
which is by far the most popular (we will discuss the former in section 3.1).

In order for a four-vector Sµ to describe the three-dimensional quantity s, the only
requirement that must be fulfilled is that Sµ reduces to s if the particle is stationary;
this is accomplished if S0 = 0 and Si = si when β = 0 (and the four-velocity
Uµ =

(︁
1, 0, 0, 0

)︁
). This constraint can thus be expressed covariantly as

UµS
µ = 0. (2.20)

It is also expected, since (2.15) shows that the spin precesses but does not change
in magnitude, that the following relation holds:

SµSµ = −s · s = const. (2.21)

It is possible to obtain the component of the four-spin explicitly as a function of s
using a Lorentz transformation:

Sµ =
(︂
γβ · s, s+ γ2

γ+1 (β · s)β
)︂
. (2.22)

2.5 The TBMT equation

Let us now find a relativistic equation of motion for Sµ. As suggested by (2.15), we
expect that the equation is of the form

dSµ

dτ
= A1F

µνSν +A2U
µ
(︂
FαβSαUβ

)︂
+A3U

µ (WνS
ν) , (2.23)

where the first term is suggested by s×B, the second term by s× (β ×E) and the

third by s×
(︂
dβ
dt × β

)︂
; note also that Wµ = dUµ

dτ and A1, A2 and A3 are constants

to be determined4.
Applying the total derivative to condition (2.20), however, implies that dSµ

dτ Uµ +
SµWµ = 0; if we insert (2.23) in this last relation we obtain

(A1 +A2)F
µνUµSν + (A3 + 1)SµUν = 0. (2.24)

This implies that for the equation of motion to satisfy (2.20), A2 = −A1 and A3 =
−1. Finally, A1 can be obtained by comparing (2.23) with the equation (2.2) for s

4 Possible terms like Wµ (UνS
ν) have been discarded as equal to 0 due to the constraint (2.20).
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when the particle is at rest; the correct equation of motion for the four-spin thus
becomes

dSµ

dτ
=

e

m

g

2

[︂
FµνSν + Uµ

(︂
FαβSαUβ

)︂]︂
− Uµ (WνS

ν) . (2.25)

If we neglect the force exerted on the magnetic moment in a non-uniform field, we
can take the equation for a particle in an electromagnetic field

dUµ

dτ
=

e

m
FµνUν , (2.26)

and combine it with (2.25), obtaining the Thomas-Bargmann–Michel–Telegdi equa-
tion [18]

dSµ

dτ
=

e

m

[︂g
2
FµνSν + aUµ

(︂
FαβSαUβ

)︂]︂
. (2.27)

Note that (2.25) satisfies both the constraints (2.20) and (2.21). It is also possible
to show, albeit with quite a bit of algebra and with the help of (2.16) and (2.22),
that the TBMT equation reduces to the relativistic equation of motion (2.17) for
the spin s obtained heuristically in section 2.3.

3 Generalizations of the TBMT equation

3.1 The spin tensor

As suggested previously, it is also possible to generalize s with an antisymmetric
spin tensor Sµν , instead of the four-spin Sµ, that mimics more closely the behaviour
of the angular momentum tensor Lµν . We can build a theory for Sµν following the
exact logic of sections 2.4 and 2.5.

Since the connection between non-relativistic and relativistic angular momentum is
given by ℓi = 1

2ϵ
ijkLij , we expect si = 1

2ϵ
ijkSjk to hold as well in the rest frame of the

particle, along with the other components satisfying S0i = 0. This last constraint
can be expressed as

SµνUν = 0, (3.1)

a condition similar to (2.20). Once again we also expect

SµνSµν = 2s · s = const. (3.2)

Finally, we can guess the terms of the equation of motion for the spin tensor taking
inspiration from (2.15) or (2.25); taking into account the fact that the spin tensor
is antisymmetric, we expect the equation of motion to be of the form

dSµν

dτ
= A′

1F
α[µSν]α +A′

2U
[µSα

ν]FαβUβ +A′
3U

[µSα
ν]Wα. (3.3)
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Imposing the condition dSµν

dτ Uν +S
µνWν = 0 and obtaining the remaining constants

– as done previously – by comparing (3.3) with the rest frame equation (2.2), we get
the equivalent of (2.25) for the spin tensor:

dSµν

dτ
= g

e

m

(︂
Fα[µSν]α + U [µSα

ν]FαβUβ

)︂
− 2U [µSα

ν]Wα. (3.4)

Combining this equation with (2.26) it is finally possible to obtain an alternative
TBMT equation for the spin tensor:

dSµν

dτ
=

2e

m

(︂g
2
Fα[µSν]α + aU [µSα

ν]FαβUβ

)︂
. (3.5)

Comparing this equation with the proper TBMT equation for the four-spin allows
us to determine that it is possible to convert from the two different generalizations
of s via the following duality transformations:

Sµν = ϵµναβUαSβ

Sµ =
1

2
ϵµναβUνSαβ.

(3.6)

While the four-spin Sµ is used in most applications, the spin tensor Sµν can be useful
when discussing symmetry transformations. Since Lµν is a tensor under parity re-
versal and a pseudo-tensor under time reversal, the spin tensor is expected to behave
in the same way; this also implies that, thanks to the above duality transformations,
Sµ is a pseudo-vector under both time and parity reversals. Note that the behaviour
of Sµ can also be inferred from (2.22) given that s, like ℓ, is a pseudo-vector under
parity and time reversals.

Finally, the spin tensor is also useful in expressing the energy (2.2) associated to the
spin in the particle rest frame as

U =
e

m

g

4
SµνFµν . (3.7)

Note that SµνFµν is a scalar under parity and time reversals and thus preserves both
parity and time symmetry.

3.2 Electric dipole moment

One obvious generalization of the TBMT equation regards the possible presence of
an electric dipole moment (EDM) associated with the spin s. While in classical
mechanics there is no EDM associated with the orbital angular momentum ℓ, it is
quite easy to extend our theory to include the possibility of an EDM associated with
the spin s, following the same approach given in section 2.

Let us start from the rest frame of the particle and define the spin electric dipole
moment by

ds = η
e

2m
s. (3.8)
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The torque on an electric dipole d is d × E, with an associated energy of −d · E;
we can therefore write the equation of motion for the spin in the rest frame of the
particle as

ds

dt
=

e

m
s×

(︂g
2
B +

η

2
E
)︂
, (3.9)

in analogy to how we defined the magnetic dipole moment in (2.1). It is now possible
to directly write the correct equation of motion for the spin for a relativistic moving
particle, given the Lorentz transformations for the electromagnetic field (2.3) and
taking into account the Thomas precession; we thus obtain

ds

dt
= s×

(︃
e

γm

g

2
B′ +

η

2

e

γm
E′ − ωT

)︃
. (3.10)

If the only forces acting on the particle are electromagnetic and, once again, we
neglect terms due to field gradients, the equation of motion can be written as

ds

dt
=
e

m
s×

[︃(︃
a+

1

γ

)︃
B − a

γ

γ + 1
(β ·B)β −

(︃
a+

1

γ + 1

)︃
β ×E

]︃
+

e

m
s×

[︃
bE − b

γ

γ + 1
(β ·E)β − bβ ×B

]︃
,

(3.11)

where the quantity b = η
2 is defined in analogy to the anomalous magnetic moment

a = g
2 − 1.

Let us now try to find a generalized TBMT equation which also accounts for the
presence of an EDM. We can once again start by guessing the form of the equation
of motion as

dSµ

dτ
=A1F

µνSν +A2U
µ
(︂
FαβSαUβ

)︂
+A3U

µ (WνS
ν)+

A4G
µνSν +A5U

µ
(︂
GαβSαUβ

)︂
.

(3.12)

Note that the additional terms we expect due to the EDM are almost identical to
the one due to the magnetic moment, with the electromagnetic tensor Fµν replaced
by its dual Gµν = 1

2ϵ
µναβFαβ. Imposing the constraint (2.20) and determining the

remaining coefficient by comparing equation (3.12) with the one in the rest frame,
we obtain

dSµ

dτ
=
e

m

[︂(︂g
2
Fµν − η

2
Gµν

)︂
Sν + Uµ

(︂g
2
Fαβ − η

2
Gαβ

)︂
SαUβ

]︂
− Uµ (WνS

ν) .
(3.13)

Expressing Sµ in terms of s allows us to deduce correctly (3.10) from this equation
for the four-spin. Using the equation of motion for the particle trajectory we can
obtain the generalized TBMT equation which accounts for an EDM:

dSµ

dτ
=

e

m

[︂(︂g
2
Fµν − η

2
Gµν

)︂
Sν + Uµ

(︂
aFαβ − bGαβ

)︂
SαUβ

]︂
. (3.14)
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Finally, using the spin tensor, the energy associated to the spin s in the rest frame
of the particle can be written once again in a quasi-covariant form as

U =
e

2m
Sµν

(︂g
2
Fµν −

η

2
Gµν

)︂
. (3.15)

Note that, while SµνFµν is a scalar, SµνGµν is a pseudo-scalar under time and
parity reversals, therefore the presence of an EDM directly breaks both time and
parity symmetry of electromagnetism. Note also that the interaction of Sµ with the
electromagnetic field for a particle with an EDM, as seen in both equation (3.13)
and equation (3.15), is the same as the one from a regular particle with η = 0 in the
presence of the field Fµν − η

gG
µν (which corresponds to replacing B with B + η

gE

and E with E − η
gB). This sort of symmetry is however broken by the fact that

the equation of motion (2.26) of the particle is the same both with and without
an EDM, so the TBMT equation (3.14) cannot simply be obtained from (2.27) by
replacing Fµν with Fµν − η

gG
µν .

3.3 Curved spacetime

Another possible generalization of the TBMT equation regards the presence of grav-
ity and thus of a curved spacetime. It is possible to obtain the correct generalization
of the TBMT equation directly from (2.27) heuristically, by simply replacing the two
total derivatives d

dτ with total covariant derivatives D
Dτ . If we want to show why this

procedure gives the correct result, however, we need to generalize the concept of the
Thomas precession for a particle moving in curved spacetime; in particular we want
to work directly with a four-vector, instead of deriving the Thomas precession for a
three-dimensional vector and then guessing the corresponding terms in the covariant
equation of motion.

Let us start from a particle in a general spacetime and in the absence of electromag-
netic fields. We expect that, in the rest frame of the particle, the spin interacts only
with electromagnetic fields and not with gravity, since the rest frame equation (2.2)
for s must hold; s will therefore be stationary in this frame. In order to describe the
rest frame of the particle, let us consider a frame field along the particle trajectory
with the time axis parallel to Uµ and that is not spatially rotating. Note that, thus
far, we are just restating in a more formal manner the definition of the rest frame
of the particle – in which (2.2) holds – given in section 2.2.

If the frame field is described by ea = ea
µ∂µ, with e0

µ = Uµ, the four-spin can be
described in the non-coordinate basis by the relation

Sµ∂µ = Saea
µ∂µ = Saea. (3.16)

where the vierbeins ea
µ ∈ GL(4,R) satisfy g(ea, eb) = ηab, with g(·, ·) the scalar

product and ηab the Minkowski metric. Since the four-spin does not change in the
particle frame, its components in the non-coordinate basis must be constant and
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thus dSa

dτ = 0. Taking the total covariant derivative of both sides of (3.16) and
imposing this last condition yields5

dSµ

dτ
+ ΓµναU

νSα − Sa
Dea

µ

Dτ
= 0. (3.17)

The vierbeins satisfy by definition eaµeb
µ = ηab; taking the total covariant derivative

of this relation implies
Deaµ

Dτ eb
µ+eaµ

Deb
µ

Dτ = 0. To fulfill this condition we must have

Dea
µ

Dτ
= Ωµνeaν , (3.18)

with Ωµν antisymmetric and thus iΩµν ∈ so(1, 3). Note that the same type of
relation holds when we have three rigid perpendicular versors moving in euclidean
three-dimensional space, since dn̂a

dt = ω × n̂a can be written as dna
i

dt = ϵijkωjna
k

and iϵijkωj ∈ so(3).

Let us find an expression for Ωµν that also satisfies the condition that the Lorentz
transformation generated instantaneously by Ωµν is a boost, as seen in the rest frame
of the particle. Since e0

µ = Uµ, De0µ

Dτ = Wµ = ΩµνUν , this condition is satisfied if
we take

Ωµν =WµUν − UµW ν + Cµν . (3.19)

with Cµν an antisymmetric tensor such that CµνUν = 0. To find the correct Cµν

that gives a non-rotating transformation, let us consider a generic space-like vector
Bµ carried along the rest frame – which thus satisfies BµUµ = 0 – that is also
perpendicular to the four-acceleration (BµWµ = 0). If the frame is not rotating, the
total covariant derivative of this vector must be null and therefore

DBµ

Dτ
= ΩµνBν = CµνBν = 0. (3.20)

To satisfy this condition we can therefore take – since Bµ is quite generic – Cµν = 06.

We can now take Ωµν = WµUν − UµW ν and (3.18) and plug them into equation
(3.17) to obtain

DFS
µ

Dτ
=
DSµ

Dτ
+ (UµWν −WµUν)S

ν = 0. (3.21)

The differential operator DF
Dτ that we have defined is called the Fermi-Walker deriva-

tive and it coincides with the regular covariant derivative when Wµ = 0 and the
particle is following a geodesic. With the Fermi-Walker derivative we can also ex-
tend the concept of parallel transport to curves that are not geodesics by imposing
DFS

µ

Dτ = 0, obtaining what is called the Fermi-Walker transport.

5 We are following the notation of [19] with the convention that Dνeµ = eαΓ
α
νµ.

6 It is possible to show – see [20] – that if the tetrad is rotating, Cµν = ϵµναβUαωβ , with ω
µ a

vector that satisfies ωµUµ = 0 and describes the angular velocity of the rotation.
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We have thus shown that the four-spin of a particle moving in a general spacetime
and in the absence of electromagnetic fields is simply Fermi-Walker transported
along the particle trajectory. With the help of the Fermi-Walker derivative we can
now finally write equation (2.25), originally valid only in a flat spacetime, in the
generalized form

DFS
µ

Dτ
=

e

m

g

2

[︂
FµνSν + Uµ

(︂
FαβSαUβ

)︂]︂
, (3.22)

valid for any spacetime. Note that since condition (2.20) is still valid, the term
−WµUνS

ν in the Fermi-Walker derivative disappears. If we now consider gravity
and electromagnetism as the only forces acting on the particle and insert the equation
of motion Wµ = e

mF
µνUν into (3.22), we get the generalized TBMT equation in

curved spacetime

DSµ

Dτ
=

e

m

[︂g
2
FµνSν + aUµ

(︂
FαβSαUβ

)︂]︂
, (3.23)

which is simply the regular TBMT equation with the total derivative replaced by
the total covariant derivative. Note that in the presence of an EDM, as seen in
section 3.2, we can obtain the curved spacetime extension of equation (3.13) by
simply replacing the total time derivative d

dτ in (3.13) with D
Dτ , or by replacing Fµν

with Fµν − η
gG

µν in (3.22).

Equation (3.23) is not only useful when dealing with spin in a gravitational field but
can also be used to analytically solve problems in the case of particular electromag-
netic field configurations. For example, when dealing with fields with cylindrical or
spherical symmetry, we can use cylindrical or spherical coordinates (or even a ro-
tating frame of reference) together with equation (3.23) instead of trying to directly
solve the regular TBMT equation.

We can also use (3.23) together with a frame field along the particle trajectory in
order to obtain a solution to the equation of motion of Sµ. In particular if we take
vierbeins that satisfy

Dea
µ

Dτ
=

e

m
Fµνeaν , (3.24)

the four-velocity Ua is a constant and U bΓabc =
e
mF

a
c. We can therefore cast the

generalized TBMT equation (3.23) as

dSa

dτ
= a

e

m
(F ab + UaU cFbc)S

b. (3.25)

This equation admits the perturbative solution

Sa(τ) =
(︂
Te

∫︁ τ
0 Ωa

b(s)ds
)︂
Si
b, (3.26)

given that we can solve the equation of motion of the particle and thus know F ab =
F ab (xµ(τ)). Note that Ωab = a e

m (F ab + UaU cFbc), Si
b is the initial four-spin of the
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particle and T indicates time-ordering, which is necessary when F ab is not constant
along the particle trajectory.

Finally, this approach actually gives a fully analytical solution for the four-spin
motion when applied to the case of a flat spacetime and with a constant electromag-
netic field. Equation (3.24) is solved by ea

µ(τ) = eτ
e
m
Fµ

νηνa, choosing the initial
vierbeins aligned with the laboratory axes; we also have F ab = Fαβηα

aηβ
b – the

electric and magnetic fields are identical in the laboratory and in the particle frame

– since
[︂
Fµν , eτ

e
m
Fµ

ν

]︂
= 0. Finally the four-spin is given by (3.26), without the

time-ordering operator; putting back everything together yields

Sµ(τ) = eτ
e
m
Fµ

νeτa
e
m(F ν

α+Ui
νUi

βFαβ)Sαi , (3.27)

where Ui
ν is the initial four-velocity in the lab frame.

4 Dirac equation and g = 2

4.1 Orbital and spin angular momentum operators

The wave equation describing the motion of a relativistic spin-12 particle – discovered
by Dirac in an attempt to create a first order wave equation in place of the Klein-
Gordon equation – is the Dirac equation [21]:

iγµ∂µψ(x)−mψ(x) = 0. (4.1)

The wave function ψ is a field that at each point in spacetime has value ψ(x) ∈ C4

and the gamma matrices γµ are four different 4×4 matrices that satisfy the Clifford
algebra

{γµ, γν} = 2ηµν (4.2)

associated to the scalar product of the Minkowski metric. The first two components
of the wave function describe the spin up and spin down components of a spin-12
particle as done by the Pauli equation, while the last two components describe the
spin up and down components of the corresponding antiparticle, a particle with the
same physical properties like spin and mass but with opposite electric charge.

In order to find the operators associated to orbital and spin angular momentum –
following an approach similar to the one used in non-relativistic quantum mechanics
– we can use the fact that these operators are the generators of Lorentz transforma-
tions on the spatial and the spin part of the wave function respectively. In particular,
since Lorentz transformations are described by six generators Jµν , we need to find a
set of operators Lµν and Sµν that represent the Lie algebra so(1, 3) and thus satisfy
the commutation relations (2.6). These operators will therefore generate projective
unitary representations of SO+(1, 3), which are isomorphic to unitary representa-
tions of its double cover Spin(1, 3) ≃ SL(2,C). We also require that 1

2ϵ
ijkLjk = ℓk
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and that 1
2ϵ
ijkSjk acts on each couple of components of ψ(x) as σi

2 , given that we
want to describe a spin-12 particle.

A set of operators that follows all these requirements is given by

Lµν = xµpν − xνpµ = i (xµ∂ν − xν∂µ)

Sµν =
σµν

2
=
i

4
[γµ, γν ],

(4.3)

where Lµν generalizes the relativistic angular momentum tensor7 and σµν = i
2 [γ

µ, γν ]
extends the Pauli matrices.

Note that the total angular momentum Jµν = Lµν + Sµν still satisfies the commu-
tation relations of so(1, 3) and thus generates Lorentz transformations of the whole
wave function.

We can now define the operator corresponding to the four-spin Sµ in special rela-
tivity; this operator is called the Pauli-Lubański pseudo-vector and is defined by

Wµ =
1

2
ϵµναβpνJαβ. (4.4)

Note that we have defined this operator in terms of the four-momentum and not
the four-velocity because in quantum mechanics we are usually using the momentum
instead of the velocity and because this expression is also valid for massless particles.
Note also that this implies that Sµ = 1

m ⟨Wµ⟩ψ for a massive particle, and that
Wµpµ = 0 as expected from the classical constraint (2.20).

Finally, the operator WµWµ commutes with pµ (the generators of translations) and
Jµν (the generators of rotations), and is therefore a Casimir operator of the Pointcaré
group. The eigenvalues of WµWµ and pµpµ (the other Casimir operator) can be used
to label the irreducible representations of the Pointcaré group; this is important
because physical states of particles transform under these representations [17]. In
particular, given the properties of the Pointcaré algebra, the eigenvalues are pµpµ =
M2 and WµWµ = −M2S(S +1), with M the mass of the particle and S (a positive
integer or half-integer) the spin of the particle [22]. Using the Dirac equation (4.1),
it is possible to show that WµWµ = −3

4m
2, and thus (4.1) correctly describes a

spin-12 particle.

4.2 Interaction with the electromagnetic field

In order to introduce an electromagnetic interaction into the Dirac equation we can
once again follow the same approach used in non-relativistic quantum mechanics
and impose that the wave function ψ(x) is locally U(1) invariant.

7 Note that while the orbital angular tensor momentum generates unitary transformations, this
is not true for Sµν which instead only generates projective unitary transformations, like in the
non-relativistic case.
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More formally let us consider a U(1) gauge transformation of the wave function
ψ′(x) = e−ieΛ(x)ψ(x), with e the electric charge acting as a coupling constant; since
∂µψ

′(x) = e−ieΛ(x) [∂µψ(x)− ie∂µΛ(x)ψ(x)] ̸= e−ieΛ(x)∂µψ(x), if we want our theory
to be gauge invariant we must replace the partial derivative ∂µ with a new gauge
covariant derivative Dµ that satisfies

D′
µψ

′(x) = e−ieΛ(x)Dµψ(x). (4.5)

It is possible to define such a derivative by introducing a connection8 one-form
expressed locally as A(x) = eAµ(x)dx

µ, with Aµ(x) ∈ u(1) = R. Choosing four
basis vector ea for C4 – so that ψ(x) = ψa(x)ea(x) – it is possible to define the
covariant derivative of ea as Dµ (ea) = ieAµ

b
aeb, where Aµ

b
a is a representation of

Aµ acting on the left on C4; from now on we will assume that A acts naturally on
C4. Imposing the condition (4.5) yields the behaviour of the connection under gauge
transformation A′

µ = Aµ+∂µΛ. Note also that the curvature tensor associated with
the connection, also called Yang-Mills field strength, is defined by [Dµ, Dν ] = ieFµν ,
where Fµν is the electromagnetic tensor. The gauge covariant derivative is therefore

Dµψ(x) = (∂µ + ieAµ)ψ(x). (4.6)

Finally if we want to include the electromagnetic interaction into the Dirac equation,
we can simply replace the partial derivative with the covariant derivative and obtain

iγµDµψ(x)−mψ(x) = 0. (4.7)

This way of coupling the Dirac field and the electromagnetic field is called minimal
coupling.

4.3 g-factor of a spin-1
2
particle

Let us now determine the g-factor of a particle satisfying the Dirac equation (4.7). If
we apply the operator − (iγµDµ +m) to equation (4.7) we get, after some algebra,

DµDµψ(x) +m2ψ(x) + eSµνFµνψ(x) = 0. (4.8)

This equation is identical to the Klein-Gordon equation describing a spin 0 particle
with minimal coupling with the electromagnetic field, but with the additional term
eSµνFµν due to the presence of the spin.

If we consider a constant weak magnetic field with an associated vector potential
A = 1

2B × x, equation (4.8) – excluding second order terms in A – becomes

∂µ∂µψ(x) +m2ψ(x)− eB · (ℓ+ 2S)ψ(x) = 0, (4.9)

8 Even more formally we can first construct a principal U(1) bundle P (R4, U(1)) and its associated
vector bundle P ×ρ C4; A can thus be seen as a local Lie-algebra valued one-form obtained from an
Ehresmann connection one-form ω ∈ u(1)⊗ T ∗P and a local section σ from the relation A = σ∗ω,
while ψ can be seen as a section of P ×ρ C4, see [19].
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where Si = 1
2ϵ
ijkSjk is the operator for spin angular momentum. To obtain the

Schrödinger equation from (4.9) let us consider a wave function of the form ψ(x) =
e−imt

(︁
ϕ(x) , 0

)︁
with ϕ(x) a two component spinor that oscillates slowly with respect

to e−imt. Therefore by placing this wave function in (4.9) and neglecting second
derivatives in time of the spinor we obtain

i
∂ϕ(x)

∂t
= −∇2ϕ(x)

2m
− eB

2m
· (ℓ+ 2s)ϕ(x) (4.10)

with s = σ
2 , and therefore we can conclude that the g-factor of a particle described

by the Dirac equation is g = 2.

5 Fermilab E989 and the measurement of aµ

5.1 Principles behind the experiment

The idea behind the E989 experiment, and in general of all past and present ex-
periments aiming to determine the muon g − 2, is to directly measure the rate of
precession of the muon spin when placed in a constant magnetic field. Since the
muon decays with a mean lifetime of τ = 2.2 µs, it is not suitable to be contained in
a Penning trap, as done with electrons, and thus aµ must be measured from a beam
of moving muons. Since a beam of moving charged particles in a constant magnetic
field experiences the Lorentz force, the muons are set to move along a circular tra-
jectory inside what is called a storage ring, where strong (usually superconducting)
magnets are used to generate a constant vertical magnetic field9 B = Bŷ.

It is the muon decay itself that allows us to determine the direction of the muon
spin. The main decay mode of the positive muon is µ+ −→ e+ + νe + νµ; the weak
force does not conserve parity and the high energy positron of the decay is mainly
emitted along the direction of the spin s. It is therefore possible to use trackers and
electromagnetic calorimeters placed around the storage ring to track the positron
trajectory and thus deduce the muon spin orientation at the time of the positron
emission.

The connection between the spin precession frequency ωs and the anomalous mag-
netic moment in a generic electromagnetic field is given by equation (2.17):

ωs = − e

m

[︃(︃
a+

1

γ

)︃
B − a

γ

γ + 1
(β ·B)β −

(︃
a+

1

γ + 1

)︃
β ×E

]︃
. (5.1)

Note however that the particle is also rotating in the storage ring – as described by
equation (2.16) – with an angular velocity

ωC = − e

m

[︃
1

γ
B − γ

γ2 − 1
β ×E

]︃
, (5.2)

9 In this section we use cylindrical coordinates, with x as the radial component and y as the ver-
tical component, following the notation used in many of the papers by the Muon g−2 collaboration
such as [5].
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where we neglected the electric field parallel to the velocity of the particle, since
we expect E to be close or equal to zero and that the particles move in a circular
trajectory.

What we are actually measuring in the experiments is therefore the relative angular
velocity

ωa = ωs − ωC = − e

m

[︃
aB − a

γ

γ + 1
(β ·B)β −

(︃
a− 1

γ2 − 1

)︃
β ×E

]︃
, (5.3)

that simplifies to ωa = − e
maB if there are no electric fields and the particle trajec-

tories are exactly perpendicular to the magnetic field. If a particle enters the storage
ring polarized with its spin parallel to its velocity, the spin will rotate relative to
the velocity in the same plane of the cyclotron motion and the anomalous magnetic
moment can be obtained from the relative angular velocity as aµ = mωa/eB.

5.2 Detection of an electric dipole moment

Since the Dirac equation does not predict an electric dipole moment for spin-12
particles and the SM predicts [23] ηµ ∼ 1.38 × 10−38 e cm, the search for a muon
EDM can be an alternative way to probe for physics beyond the SM. In particular
due to equation (3.11) the precession frequency of the muon spin changes; therefore
equation (5.3) is no longer valid and needs a replacement.

The particle trajectories do not depend on the presence of a muon EDM and therefore
we only need to modify (5.1), which becomes

ω′
s =− e

m

[︃(︃
a+

1

γ

)︃
B − a

γ

γ + 1
(β ·B)β −

(︃
a+

1

γ + 1

)︃
β ×E

]︃
− e

m

[︃
bE − b

γ

γ + 1
(β ·E)β − bβ ×B

]︃
,

(5.4)

and thus the relative angular velocity becomes

ω′
a =− e

m

[︃
aB − a

γ

γ + 1
(β ·B)β −

(︃
a− 1

γ2 − 1

)︃
β ×E

]︃
− e

m

[︃
bE − b

γ

γ + 1
(β ·E)β − bβ ×B

]︃
.

(5.5)

The principal consequence of this equation is that if the particle moves in a circular
trajectory, perpendicular to a constant magnetic field B, the spin precession plane
is tilted radially by an angle θ = arctan (βb/a) and the measured angular velocity is
ω′
a = ωa/cos θ. This means that it is not possible to obtain a from ω′

a alone, but we
can only get a certain combination of a and b from the experimental measurement.
Luckily, the fact that the precession plane is tilted allows us to determine (or set an
upper bound on) b by measuring the asymmetry in the number of positron emitted
above and below the trajectory plane, and how this value changes in time [24].
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5.3 Experimental setup of Fermilab E989

Let us now focus our attention on the experimental setup of the E989 experiment.
The experiment utilizes the same storage ring with a central orbit radius of R0 =
7.112 m and the same 1.45 T superconducting magnets as Brookhaven E821 but
with many improvements, including in particular a 2.5 times improved magnetic
field intrinsic uniformity [25]. The muon beam – provided by the Fermilab Muon
Campus – consists in ∼ 120 ns long bunches of 3.1 GeV/c muons with an average
longitudinal polarization of approximately 95 %; sixteen individual bunches of muons
are injected every 1.4 s in the storage ring by an inflector and are then placed into
their correct trajectories by a fast pulsed-kicker magnet, for a total of ∼ 5000 stored
muons per fill.

The muons are then kept from spiraling vertically out of the constant magnetic
field region by means of four sections of electrostatic quadrupole plates that provide
weak vertical focusing. Usually the presence of a non-zero electric field modifies the
relative precession frequency, as seen by equation (5.3). The particular value of the
muon beam energy, however, has been chosen so that

a− 1

γ2 − 1
= 0; (5.6)

therefore the term proportional to β×E disappears from (5.3) and the weak electric
fields used for focusing the beam do not influence ωa. The particular value of
γ = 29.304 that satisfies the condition (5.6) is often called the “magic γ” [26].

While the focusing of both E821 and E989 is provided by quadrupolar electric fields
and thus the muons must move at the magic γ, there are different possible ways
to focus the beam that do not require electric fields, thus allowing more freedom
in the choice of the particle energy and the storage ring radius. As an example,
let us consider the experiment proposed in [27] for the measurements of the muon
anomalous magnetic moment and EDM at the J-PARC muon facility. In this pro-
posal very weak magnetic focusing is used, allowing for muons with γ = 3 moving
on a circle with a radius of only 333 mm. The highly uniform 3 T magnetic field is
provided by MRI-type superconducting solenoid magnet and the injection system is
also different from the one in E989, with the muons injected vertically rather than
horizontally.

Focusing back on the E989 experiment, the positrons emitted by the decaying muons
are then detected by a series of twenty-four calorimeters, each containing a 9 × 6
array of PbF2 crystals, placed around the storage ring; light emitted by PbF2 is
then converted to an electric signal by silicon photomultipliers. Reconstruction of
the waveforms allows to determine ωa. Finally, the magnetic field is determined via
pulsed proton NMR, with 378 fixed NMR probes placed above and below the storage
volume that measure the Larmor precession frequency ω̃′

p(Tr) of protons shielded in
a spherical water sample at a fixed reference temperature Tr.
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5.4 Measurement of aµ and important corrections

It is now possible, putting everything back together, to express the muon anomalous
magnetic moment as a function of only experimental quantities10:

aµ =
ωa

ω̃′
p(Tr)

µ′p(Tr)

µe(H)

µe(H)

µe

mµ

me

ge
2
. (5.7)

Note that the only quantity measured by Fermilab E989 is R′
µ = ωa/ω̃

′
p(Tr), while all

other quantities are known from other experiments. These quantities are in order:
µ′p(Tr)/µe(H) the ratio between the proton magnetic moment in a spherical sample
of H2O at Tr = 34.7°C and the electron magnetic moment in hydrogen; µe(H)/µe
the ratio between the electron magnetic moments of an electron in hydrogen and a
free electron11; mµ/me is the ratio of the masses of the muon and the electron; ge
the electron g-factor.

Let us briefly discuss some of the corrective terms that must be taken into account
to eliminate systematic biases in the measured value of R′

µ. First of all, the biggest
corrective term is due to the fact that the muons in the beam do not all have
the same exact energy – corresponding to the magic γ – but they have a certain
energy distribution that is instead peaked at slightly higher γ value, with a non-
negligible width; this means that the muons move on average on a larger radius
xe+R0 and therefore experience an outward radial electric field, due to the focusing
electric quadrupoles. This implies, coupled with the fact the muons do not exactly
move at the magic γ, a corrective factor of Ce = ∆ωa/ωa = 2n(1 − n)β2

⟨︁
x2e

⟩︁
/R2

0,
where n = κR0/βcB is called the field index (and κ the quadrupole field strength
κ = ∂yEy).

Another important correction we need to make is due to the fact that the muons do
not move perfectly perpendicular to the magnetic field and thus the term β ·B ̸= 0
in equation (5.3). In particular the muons oscillate vertically with a frequency
ωz = ωC

√
n, where ωC is the cyclotron frequency; since this frequency is much

faster than ωa, the pitching can be averaged out [26] and it is possible to obtain the
correction term Cp = ∆ωa/ωa = n

⟨︁
A2
y

⟩︁
/4R2

0, where Ay is the maximum amplitude
of the betatron vertical oscillation.

Other smaller corrections that have been taken into account are linked to beam dy-
namics – with a term due to the average phase of muon losses and a phase-acceptance
term – and to the fast magnetic transients synchronized with the injections that in-
fluence the average field seen by the beam, due to charging of the electric quadrupoles
and the firing of the kicker magnets.

Putting all the corrections together yields aFNAL
µ = 116592040(54) · 10−11, with the

corrective terms accounting for 544 ppb of R′
µ and the total uncertainty – domi-

10 Once again we are following the notation of [5].
11 Note that this factor is not measured experimentally but is instead computed from QED with

negligible uncertainty.

22



nated by the statistical uncertainty – accounting for 462 ppb of R′
µ [5]. This re-

sult agrees with the one from E821 and the two can thus be averaged to obtain
aEXP
µ = 116592061(41) ·10−11, with a precision of 0.35 ppm. The difference between

the experimental value and the SM prediction of [10] is aEXP
µ −aSMµ = 251±59·10−11,

with a significance of 4.2 σ. However, a recent lattice QCD result weakens this dis-
crepancy [11].

Finally note that equation (5.7) is based on the assumption that the muon EDM
dµ = 0. This assumption is justified by the current experimental limit on the muon
EDM of |dµ| < 3.2 · 10−19 e cm set by Brookhaven E821, a value with an influence
on aµ too small with respect to systematic and statistical uncertainties of E989’s
Run-1. In the future the expected precision of 140 ppb on aµ at the end of all the
E989’s runs is not going to be limited by the current limit on the muon EDM since
E989 is also expected to achieve an EDM sensitivity of ∼ 10−21 e cm [24].

6 Conclusions

In this work we built from the ground up a simple relativistic theory of spin and
used it to explain the principles behind the Fermilab E989 experiment. In section 2
– starting from the behaviour of the three-dimensional spin s of a particle at rest –
we first obtained heuristically an equation of motion for s in the case of a relativistic
moving particle, by finding an appropriate definition of the particle rest frame and
then taking into account the effect of the Thomas precession. We then confirmed
the validity of this equation by constructing a covariant generalization of the spin –
the four-spin Sµ – and deriving its equation of motion, the TBMT equation.

In section 3 we discussed possible generalizations of the TBMT equation: after pro-
viding an alternative formulation that utilizes the spin tensor Sµν instead of Sµ, we
generalized the TBMT equation to the case of an electric dipole moment associated
to the spin and the presence of a curved spacetime. In particular, we constructed
a new operator, the Fermi-Walker derivative, which naturally incorporates the ef-
fect of the Thomas precession in a covariant theory and discussed how it can be
used as an efficient way to solve the TBMT equation analytically in particular field
configurations.

In section 4 we briefly introduced the Dirac equation describing a relativistic spin-12
particle and the operators associated to the orbital and spin angular momentum.
We added the interaction with the electromagnetic field through minimal coupling
by defining a connection one-form A and using it to obtain a U(1) gauge covariant
derivative. In the approximation of a weak magnetic field and a non-relativistic
moving particle we then showed that the Dirac equation reduces to the Schrödinger
equation with g = 2.

Finally, in section 5 we discussed the theoretical principles behind the E989 experi-
ment at Fermilab, also taking into account the possible presence of a muon electric
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dipole moment. We described the experimental setup of this experiment, focusing
in particular on the so-called “magic γ” condition. We discussed how aµ is actually
determined and which are the most important corrections that need to be applied
to make an accurate measurement.
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