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INTRODUCTION 

 

CHAPTER 1 

Biosensors evolution and nanoscience  

 

 

1.1. Biosensors 

Two of the most important scientific discoveries of the Modern Era are the 

understanding of the chemical mechanisms governing the acid-base reactions and 

the comprehension of some crucial aspects of the biological systems, based on a 

series of studies regarding the interactions between biomolecules and their 

characterization through the analysis of the structure-function relationship. 

In 1909, the Danish scientist Sørensen defined the concept of pH with its scale 

and, through subsequent studies, he concluded that the pH plays a key role in 

chemical and biochemical processes [1]. Just three years later Michaelis and 

Davidoff used an electrode to measure the pH of lysed red blood cells, while in 

1927 Buytendijk used it for the first time for biomedical purposes [2]. The 

measurement of blood pH – which has become a routine clinical examination – 

highlighted the important role played by H⁺ ions in respiration and metabolism 

processes. 
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Further advancements in electrochemistry are connected to the work of 

Heyrovský, Nobel prize for Chemistry in 1959 and inventor of the Dropping 

Mercury Electrode [3], who measured the redox potential of different chemical 

species. This particular electrode was also used to analyse a series of elements in 

biological matrices. However, its use evidenced the need for different methods of 

analysis, stable over time, reproducible, and not requiring frequent calibrations 

and/or large amounts of samples. As a result of several modifications and 

considerable improvements, in the mid-fifties the american biochemist and 

physiologist Clark Jr. patented a sensor able to measure the dissolved oxygen in the 

blood, and later he managed to immobilize the glucose oxidase enzyme on an 

oxygen sensor [4], developing a valid tool for measuring the concentration of 

glucose in the blood. 

In recent years, it became necessary, both at the social and scientific level, to 

identify novel strategies and new measurement methods for quantitative 

determination of natural and artificial chemical species, in order to assess and 

monitor their spread in the environment and their effects on living organisms [5]. 

This stimulated the development of chemical sensors and, more recently, of 

biosensors. The term “chemical sensor” refers to a device capable to provide 

quantitative or semi-quantitative information regarding the presence of a given 

analyte in a certain environment, by means of returning a proportional signal on the 

molecule concentration of the analyte under examination. Usually the components 

of the sensor are two: (a) a receptor, which causes a chemical reaction that involve 

the analyte, and (b) a chemical-physical transducer, which turns the receptor’ 

chemical modifications into an electrical signal. If the transducer is an electrode, 
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the output signal is electrochemical in nature and, consequently, the sensor itself is 

defined as a chemical (or electrochemical) one. 

A chemical sensor that contains a biological element at the receptor level is 

defined biosensor [6]. Some distinctive features of biosensors are: (a) the ability to 

recognize and respond to specific chemical substances (high selectivity); (b) ease 

of use by operators; (c) rapid response times; (d) high reproducibility, and (e) their 

low cost. The biosensor’s main components (Fig. 1.1.) can be described as follows: 

1) Receptor. It is the component that allows the recognition process and the 

onset of specific interactions between molecules, imitating the events that 

normally occur in biological systems [6]. It can be constituted by any 

type of biological element (such as enzymes, proteins, antibodies, nucleic 

acids, cells, tissues or whole organisms) [7]. The biological element 

defines the specificity of the biosensor. 

2) Transducer. It is the physical element that transforms the biochemical 

modification occurring after the molecule-receptor interaction into a 

detectable signal (electrical, electrochemical, optical, gravimetrical, 

colorimetrical, etc.). 

3) Detection system and signal processing. It is a necessary component in 

order to process the data obtained from the output signal, generally 

consisting of a signal conditioning system, a display, a processor and a 

storage system. 
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Fig. 1.1. Simplified of a biosensor [2]. 

 

 

1.1.1. Main features of the ideal biosensor 

There is an endless variety of biosensors, which show different structures but 

ground their action mechanisms on the same scientific foundation [5]. The 

differences between biosensors depend primarily on the properties of the measuring 

system and on the environment in which the measurement is carried out. Some of 

the functional features of the ideal biosensor are presented below. 

Sensitivity. The International Union of Pure and Applied Chemistry 

(IUPAC) defines sensitivity as «the slope of the calibration curve. If the curve is in 

fact a 'curve', rather than a straight line, then of course sensitivity will be a function 

of analyte concentration or amount. If sensitivity is to be a unique performance 

characteristic, it must depend only on the chemical measurement process, not upon 

scale factors» [8] (Fig. 1.2.). Generally, what is directly detected by the biosensor 
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is not the analyte itself, but the difference in concentration of the chemical species 

produced as a consequence of the interaction between the analyte and the biosensor. 

The measurement of some biosensors depends on the biosensor dynamic response, 

therefore the sensitivity may be understood as the signal change with time for a 

given variation in concentration (ΔS Δt-1 ΔC-1, where S is sensitivity, t corresponds 

to time and C indicates the concentration). Ideally, the biosensor should keep its 

sensitivity constant in time, allowing for a correct signal detection. 

 

 

 

Fig. 1.2. Biosensor’s sensitivity [2]. 

 

Calibration. It is a necessary operation for improving the accuracy of the 

instrument and its measurement. The biosensor can be calibrated simply by the 

exposure to standard solutions containing different known analyte’s concentrations. 

Ideally, the values of the measurements to be made should be abundantly contained 

in the range of points identified by the calibration, so that the measurements remain 
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into the given range. It is necessary that the instrument is calibrated periodically 

and regularly with time to verify that in the long run no changes of sensitivity take 

place.  

Limit of detection. Ideally, the analyte’s lowest concentration detectable by 

the biosensor should be limited only by the resolution of the instrument (Fig. 1.2.). 

Actually, however, there are different factors that can generate interferences in the 

measurement, and consequently heighten the limit of detection. 

Selectivity (interference). An ideal biosensor should respond only to 

changes of analyte’s concentration and shouldn’t be influenced by the presence of 

another chemical species. In practice, however, this is not possible. Since the 

control of the chemical species that cause the interference is not easy, it is useful to 

measure them with another type of transducer, in order to correct the signal 

produced by the biosensor.  

Temperature dependence. Enzymatic reactions depend on temperature. 

This aspect cannot be underestimated, because in an environment in which different 

chemical reactions occur, heat is likely to develop. Heat can change the biosensor’s 

temperature, thus invalidating the measurement. Limiting the measurements in 

isothermal conditions, e.g. using a water-bath, is a good practice 

Lifetime. The biosensor should be stable under normal operational conditions 

during its lifetime. The lifetime of the biosensor should be limited as a consequence 

of (a) several measurements performed; (b) high analyte concentration, or (c) 

chemical species produced. The biosensor must be maintained in a refrigerated 
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environment or under particular chemical conditions, in order to preserve it between 

one measurement and the subsequent one. 

 

 

1.1.2. Biosensors classified according to the type of biological element 

(receptor) 

According to the type of biological element constituting the receptor, 

biosensors can be distinguished into five major categories [7], which will be briefly 

described below and shown in Fig. 1.3. 

1) Antibody-antigen based. These biosensors operate on the basis of the 

binding of an antigen to a specific antibody, forming antibody-antigen 

complexes detected under conditions, in which non-specific interactions 

are minimized. 

2) Enzymes based. For their catalytic activity, certain enzymes require a 

cofactor, while others do not need further chemical groups in addition to 

their amino acid residues. In the biocatalytic recognition mechanism, the 

activity of enzymes depends on the integrity of their native protein 

conformation: a denatured enzyme has not a catalytic activity.  

3) Nucleic acids based. These biosensors are called also DNA biosensors, 

genosensors or biodetectors. They are used to identify small 

concentrations of DNA in a large sample, on the basis of the comparison 

between a DNA in the sample with a known DNA immobilized on the 

transducer. 
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4) Cellular structures based. Biosensors with whole cells as a biological 

element have the ability to detect organic and inorganic compounds, as 

well as stress conditions, toxicity and DNA damaging agents. These 

biosensors are used also to test and control the effects of drugs and toxins. 

5) Biomimetic materials based. These can be called “synthetic biosensors”, 

because they are made of materials created in laboratory, such as 

aptamers or PNA. Aptamers are artificial nucleic acid ligands generated 

against amino acids, drugs, proteins and other molecules. PNA is a 

synthetic DNA analogue-peptide, that can bind with high affinity to its 

complementary nucleic acid sequence of DNA. 

 

 

 

Fig. 1.3. Biosensors classified according to the type of biological element 

composing them [7]. A: transmembrane (nanopore) sensor; B: biocatalytic 

(enzyme) sensor; C: DNA based sensor, hybridisation with nanobead labelled 

oligonucleotides; D: DNA based sensor, hybridisation with fluorescent labelled 
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oligonucleotides; E: DNA based sensor, detection of hybridised oligonucleotides 

carrying a given antigen by the antigen specific antibodies; F: antibody sensor 

with immobilized recognition proteins; G: sensor utilizing cells to monitor cell’s 

processes by an extracellular detection or H: intercellular detection system. 

 

 

1.1.3. Biosensors classified according to the technique used for signal 

transduction 

According to the technique used for signal transduction, biosensors can be 

distinguished into four major categories [7], which will be briefly described below. 

1) Optical-detection biosensor. It can be used for many types of 

spectroscopy, such as luminescence, absorption, polarization and 

fluorescence, with different spectrochemical properties recorded, such as 

amplitude, energy, polarization, decay time and/or phase. 

2) Electrochemical biosensor. It measures electrical property of 

electrochemical reactions. Amperometric biosensor correlates the current 

resulting from the electrochemical oxidation (or the reduction) of an 

electroactive species with the bulk concentration of the electroactive 

species. On the other hand, conductometric biosensor employs ion 

conductometric or impedimetric devices based on the use of integrated 

electrodes for monitoring various enzymatic reactions and biological 

membrane receptors. 
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3) Biosensor based on mass-sensitive measurement. By means of measuring 

the crystals’ oscillation frequency, it is possible to measure indirectly 

small changes in a mass of the crystal due to binding of chemicals 

species. 

4) Thermal-detection biosensor. It measures the heat generated by enzyme 

and analyte reactions. 

 

 

1.2. Nanoscience and Self-Assembled Monolayer (SAM) 

The purpose of nanoscience is to study objects and systems in a range size of 

1-100 nm, i.e., objects larger than atoms but smaller than the structures generally 

used in microtechnology (microfluidic, microelectronics, etc.). In nature, 

nanostructured materials are synthetized by means of biomineralization, a 

formation process of inorganic crystals or amorphous particles in biological 

systems [9]. In addition to that, chemists have developed synthetic methods for 

producing uniform nanostructures of 1-100 nm with new shapes and/or 

compositions, aiming at applying these structures with different purposes in 

medicine, in magnetic storage media and in optical and electronic devices [10]. 

Nanostructures have the great part of their constituent atoms on the surface and their 

physical properties, substantially different from those observed in bulk materials, 

depend on the extent of their surface. The interfacial environment and Self-

Assembled Monolayers (SAMs) offer a versatile and simple system fitting the 

interfacial properties of metals, metal oxides and semiconductors [10].  
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In 1930, Langmuir and Blodgett demonstrated that monolayers of surfactants 

can be transferred onto solid substrates to form stable films, known as “Langmuir - 

Blodgett films” [11]. In 1946, when Zisman introduced a possible alternative to the 

Langmuir-Blodgett system describing the preparation of a monomolecular layer by 

means of adsorption of a surfactant onto a clean metal surface [12], there was a mild 

interest in the possible application of self-assembly techniques. The recognition of 

the potential of molecularly organized films as advanced materials determined a 

renewed interest in this topic in the 1980s. In particular, the interest in monolayers 

of alkane-thiolates on gold surface was extensive. Gold is a good substrate for 

studying SAMs because it is an inert metal easy to obtain, it is used in a great 

number of spectroscopic and analytical techniques, and cells can adhere to it 

without evident toxicity. However, several research groups extended SAMs beyond 

the prototype gold/thiol system, using for example fatty acids on aluminium [13], 

silanes on silicon [14] and phosphates on metals [15]. The term “self-assembly” 

implies the spontaneous adsorption of molecules/nanoparticles onto a substrate, 

consequently “self-assembled multilayer films” are formed by the adsorption of 

subsequent monolayers of molecules/nanoparticles. Thiols have high affinity for 

the metals surfaces, in particular for gold [16], and they can generate well-defined 

organic surfaces with a typical thickness of 1-3 nm, showing interesting chemical 

functionalities at the exposed interface [10]. The process of multilayers self-

assembling of surfactants is characterized by sequential steps:  

1) adsorbing thiol surfactants on the metal surfaces; 

2) chemically linking the second layer of surfactants to the anchored 

monolayer; 
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3) repeating step 2) for a given number of times. 

Monolayers and self-assembled films are not constructed exclusively by 

surfactants, indeed the methodology extends to larger molecules, in order to form 

films from fullerenes, polyelectrolytes (Fig. 1.4.), polystyrene microspheres, 

silylated glass beads and surfactant-coated metallic, semiconductor, magnetic, and 

ferroelectric nanoparticles [17].  

 

 

 

Fig. 1.4. Schematic representation of the self-assembly of an S-(P/Cds)n film [17]. 

 

SAMs are very important in nanoscience due to several reasons:  

1) they are easy to prepare; 

2) they form object of any size and are critical elements for stabilizing and 

adding new functions to them; 
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3) they can relate the external environment to the properties (e.g., electronic 

or optical) of metallic structures; 

4) they link macroscopic interfacial phenomena to molecular level [10]. 

It is important to note that SAMs may provide the control of the molecular 

order, since the molecules can be set in a specific orientation with respect to the 

metal [18]. It is desirable to assemble individual molecules into highly ordered 

architectures. In the final equilibrium structure of the assembly, the interactions 

between substrate and adsorbate, electrostatic and Van der Walls forces, as well as 

intramolecular interactions play a key role [19]. Controlling the properties of 

interfaces is a crucial aspect for many applications and, in these cases, it is necessary 

to have an extensive database of detailed correlations between these properties and 

the structure of the polymer surface. Furthermore, SAMs constitute a connecting 

bridge between different research areas, such as physics, chemistry and biology, 

thanks to their biomimetic and biocompatible nature [20]. 

In this context, the complex chemical pathways that regulate the biological 

systems offer many examples of nanostructures and suggest new strategies to build 

artificial nanosystems. These allow, for example, to immobilize proteins on solid 

supports (Fig. 1.5.), and this is an important application in diagnostic and 

experimental biology [21]. 
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Fig. 1.5. Strategy for protein immobilization [21]. 

 

Examples of the broad potential application of SAMs in technology and 

biotechnology are semiconductor surfaces patterning and their use with 

piezoelectric or with other chemical sensors. 

 

 

1.3. Biotin - avidin system 

 

1.3.1. Biotin 

Biotin (hexahydro-2-oxo-1 H-thieno[3,4-d] imidazole-4-pentanoic acid) 

(Fig. 1.6.) is a water-soluble vitamin with a molecular weight of 244,3 Da, isolated 

and characterized for the first time in 1936 by Kögel and Tönnis from duck egg 

yolk [22].  
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Fig. 1.6. Structural formula of biotin (vitamin H). 

 

Many bacteria and higher plants synthetize biotin. However, several 

microorganisms and higher animals, for example mammals, are not able to do that 

and they must take it with from dietary sources. Biotin is largely diffused in natural 

foodstuff and its richest dietary sources include liver, kidneys, heart, pancreas, 

poultry, egg yolk and milk. Nevertheless, the absolute content of biotin of these 

sources is low when compared with the content of the majority of other water-

soluble vitamins [23]. In humans, the dietary biotin intake considered adequate for 

healthy adults is 35 to 70 μg per day. However, certain population groups, such as 

pregnant and lactating women, may need increased biotin intake, while vegetarian 

diet does not seem to change the biotin status [24]. The very low concentration of 

biotin in nature put at risk the metabolic homeostasis of cells and, in order to ensure 

an adequate biotin supply, higher organisms have evolved a very efficient biotin 

cycle (Fig. 1.7.), through which intestinal microflora can provide biotin to the host 

organism. 
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Fig. 1.7. Biotin cycle in mammals [25]. 

 

Most of the biotin contained in foods is protein-bound, and thus it must be 

released from the carboxylases to which it is attached before being used in 

carboxylation reactions. In human cells, biotin is a coenzyme of five biotin-

dependent carboxylases, including propionyl-CoA carboxylase (PCC), pyruvate 

carboxylase (PC), methylcrotonyl-CoA carboxylase (MCC), acetyl-CoA 

carboxylase (ACC-1) and acetyl-CoA carboxylase 2 (ACC-2). These enzymes 

condition many physiological processes, such as the fatty acids synthesis, the 

gluconeogenesis and the amino acid catabolism [25]. 

Biotin plays different roles in metabolism and gene expression [26, 27]. Its 

deficiency can cause fatty acids insufficiency and this can impact the etiology of 
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cardiovascular diseases [28, 29]. Biotin starvation, as well as deficiencies of one of 

the abovementioned carboxylases, are associated with neurological manifestations, 

skin rash, hair loss, metabolic disturbances, protein malnutrition and, in pregnant 

women, it may be teratogenic [30]. 

 

 

1.3.2. Avidin 

Avidin is a tetrameric glycoprotein of approximatively 68 kDa, present in 

avian, reptilian and amphibian egg white, and comprising four identical subunits of 

128 aminoacids [31] (Fig. 1.8.).  

 

 

 

Fig. 1.8. Avidin structure: the four different colours show its four subunits, each 

of which can bind one molecule of biotin. 

 

It has been found to be synthetized in chick oviduct and concentrated in egg 

white in response to a steroid hormone, progesterone [32], but, at the same time, it 
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was found also in many tissues independently of the presence of progesterone, 

following inflammations due to many causes, such as a toxic dose of actinomycin 

D, tissue traumas, bacterial sepsis or viral infections [33]. Its determination is very 

simple compared with the complex assays for other hormone-specific protein: 

indeed, it can be assayed directly in the tissue homogenate without any purification 

procedure [34]. No analogous protein has been detected in mammalian species [33], 

but several species of Streptomyces produce streptavidin, a protein with similar 

chemical and physical properties to avidin [35]. Nevertheless, these two proteins 

are clearly different. The biological function of avidin is not clear, but its capacity 

to bind biotin suggests it functions as an antimicrobial agent. In addition, it seems 

to represent a selective advantage for vertebrates [32]. 

 

 

1.3.3. Applications of the biotin-avidin system 

The widespread interest for biotin in clinical and biomedical applications is 

generally due to a twofold reason: 

1) The presence of a lateral chain, containing a carbossilic group, allows the 

biotin derivatization with a wide number of compounds, including 

antibodies, proteins and DNAs [36]; 

2) Avidin has high affinity for biotin: avidin can bind one molecule of biotin 

per subunits (Fig. 1.9.) in a very tight binding (Kd = 10-15 M) [37] 

(Fig.1.10.). 

  



 

- 19 - 
 

 

 

Fig. 1.9. Diagram of avidin-biotin monomer. Biotin is shown in balls and 

sticks model [38]. 

 

 

 

Fig. 1.10. Complex biotin-avidin formation. 

 

The rapid and irreversible binding supports several applications for in vitro 

research. The interaction between biotin and avidin is a powerful tool for many 

analysis including quantitative enzyme immunoassays [39], selections and 
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purification schemes.  In the field of nanoscience, the biotin/avidin system has been 

widely used in particular for protein immobilization, because, once biotin is on a 

molecular layer, it is very simple to immobilize any biomolecules with an avidin 

label. Thanks to the tetravalency of avidin for biotin, it is possible to construct a 

“molecular sandwich”, that allows the surface-bond avidin to be coupled with a 

biotinylated enzyme, with the adequate properties needed for the construction of a 

biosensor [40]. The interaction between biotin and avidin is highly resistant to a 

large quantity of detergents and protein denaturants, pH range variations and high 

temperature. The analyses conducted with the biotin-avidin system show high 

precision and the ability to analyse a great number of samples in a short time [41]. 
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The importance of food safety and the detection of 

pathogenic L. monocytogenes in milk 

 

 

1.4. Food safety 

Food choice is increasingly influenced by the psychological interpretation of 

products’ properties, rather than by their actual physical properties [42]. In 

particular, the perception of food safety and risks is an interpretation that conditions 

the purchase of a certain food product, thus having consequences for both the 

consumer and the producer welfare [43]. Consumers reduce their confidence in 

healthiness of food products mainly because of bacterial outbreaks. An important 

factor in food safety is thereby the recognition of pathogenic bacteria. This was - 

and is still - a matter of debate involving policy makers, industries, researchers and 

the wider public as well [44], since only in the United States, each year from 6 to 

81 million diseases are transmitted through food causing more than 9000 deaths 

[45]. 

In recent years, new standards regarding hygiene good practices to be carried 

out in the home setting have been commonly adopted by population and food 

industry, and new majors regulations requiring the use of Hazard Analysis Critical 

Control Point (HACCP) methods [46] have been implemented, together with 

advanced biochemical analyses for pathogens bacterial control. In 2009, the 

Foodborne Diseases Active Surveillance Network (FoodNet) of the Center for 
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Disease Control and Prevention highlighted a substantial decline of the reported 

incidence of infections caused by Campylobacter, Listeria, Salmonella, Shiga 

toxin-producing Escherichia coli O157, Shigella and Yersinia [47]. However, many 

of the foodborne illnesses are sporadic and may not being easly included in 

outbreaks. The Department of Health and Human Services of the United States has 

thus launched in 2010 the “Healthy People2010” initiative, with the aim to improve 

food safety in the United States and to help reduce the incidence of foodborne 

diseases caused by Campylobacter, E. coli O157:H7, Listeria and Salmonella.  

 

 

1.5. Listeria monocytogenes and listeriosis 

 

1.5.1. Discover of L. monocytogenes 

Listeria monocytogenes was officially described for the first time in 1926 by 

Murray, who named it Bacterium monocytogenes as a consequence of a 

characteristic monocitosis found in infected rabbits and guinea pigs [48]. There are 

many reports dating back to 1891 that seem describing L. monocytogenes [49]. The 

authors of these reports, however, did not register the bacteria they isolated in a 

permanent collection, and this prevented any possibility of subsequent 

comparisons. In 1927 Pirie and his research group, during investigations performed 

after some suspicious deaths observed in gerbils near Johannesburg in South Africa, 

discovered a bacterium similar to that identified by Murray, naming it Listerella 

hepatolytica. The director of the National Type Collection at the Lister Institute in 
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London decided thus to put Murray and Pirie into contact in order to permit them 

to compare their findings [50], as the two species of bacteria showed many 

interesting similarities. Once the perfect overlap between the two microorganisms 

was finally established, the new bacterium was named with the generic name 

Listerella in honour of Lord Joseph Lister (a British surgeon who distinguished 

himself for his knowledge in the field of bacteriology) [51], and the specific name 

monocytogenes. The generic name Bacterium, suggested by Murray, was rejected 

because the bacterium did not possess the characteristics of that genus. In 1939 the 

Judicial Commission on Bacteriological Nomenclature and Taxonomy rejected the 

generic name Listerella, because this name has already been applied by Jahn in 

1906 to a group of molds [49], thus in 1940 Pirie proposed the alternative name of 

Listeria monocytogenes, which became the definitive one [50]. 

 

 

1.5.2. Molecular and taxonomical profile of L. monocytogenes 

L. monocytogenes is an aerobic (and facultative anaerobic), non-sporulating, 

non-capsulated and Gram-positive bacillus (Fig. 1.11.). It is catalase positive and 

oxidase negative and expresses β-hemolysin. The organism possesses a 

characteristic tumbling motility, given by his peritrichous flagella (Fig. 1.12.), 

occurring in a narrow temperature range: the movement is expressed mainly at 20-

25°C, temperature at that flagellin is both produced and assembled at the cell 

surface, whilst at 37°C flagellin production is reduced and the flagella are immobile 

[48].  
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Fig. 1.11. Gram staining highlights L. monocytogenes in violet (http://microbe-

canvas.com). 

 

 

 

Fig. 1.12. L. monocytogenes with its flagella [52]. 

 

L. monocytogenes grows in a very wide range of temperature (from 0°C to 

45°C) and pH (from 6.0 to 9.0) [53], and it requires a thermal treatment at 72°C for 

at least 15 seconds to be sensitive to pasteurization. It is able to reduce the 
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antimicrobial effect of bile salts flowing from the liver to the intestine, thanks to 

two different systems called BSH (Bile Salt Hydrolase) and BilE (Bile Exclusion 

System) [54]. This property allows it to survive in the gastrointestinal tract. L. 

monocytogenes is therefore considered an “evolving pathogen”, as a consequence 

of its adaptability to unfavourable environmental conditions and to the development 

of an effective antibiotic-resistance system. 

For several years, only the species monocytogenes belonged to the genus 

Listeria [50], but thanks to the introduction of novel biomolecular methods it was 

possible to distinguish ten different species, among which a close phylogenetic 

relationship exists (Fig. 1.13.): L. monocytogenes, L. fleischmannii, L. grayi, L. 

innocua, L. ivanovii, L. marthii, L. rocourtiae, L. seeligeri, L. weihenstephanensis 

and L. welshimeri [53]. 

 

 

 

Fig. 1.13.: Phylogenetic tree of Listeria genus based on 16S rDNA [53]. 
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After several analyses, it was possible to observe a well conserved genome 

organization of Listeria species and a high number of ortologus genes, but also it 

emerged that exist characteristic tracts own of each strain [55]. This is a clear 

indicator that, during the evolutive process, bacteriophages and plasmids played an 

important role for gene-acquisition [56]. Thanks to the results of many tests in vitro, 

it was possible to characterize the Listeria species according to the different 

combination of somatic antigen (O) and flagellar antigen (H), and to classify them 

into 15 different serotypes (called serovars), 13 of which are included in L. 

monocytogenes (1/2a, 1/2b, 1/2c, 3a, 3b, 3c, 4a, 4ab, 4b, 4c, 4d, 4e and 7). There 

are distinct differences in cell surface proteins amongst the different lineages which 

are independent of the antigens used in serotyping [57]. Using the hybridization 

DNA/DNA technique, over 90 strains of L. monocytogenes have been grouped into 

three evolutive groups, called “Lineages”, correlated with the different serovars. 

“Lineage I” is in turn divided into two groups: the first includes serovars 1/2a and 

3a, whilst the second includes serovars 1/2c and 3c. “Lineage II” is divided into 

two groups, the first including serovars 4b, 4d, 4e and the second including 

serovars 1/2b, 3b and 7. Finally, “Lineage III” is divided in “Lineage IIIa” including 

serovar 4a, and “Lineage IIIb” including serovar 4c [50]. The virulence of the 

pathogenic L. monocytogenes is associated with the synthesis of several proteins, 

which permit the invasion of the mammalian cells, the escape from phagocytic 

vacuole, the actin-based motility and the cell-to-cell spread. IlnA and IlnB allow its 

entry in mammalian cells, while hemolysin O (LLO) and phospholipase C (PI-PLC) 

permit the escape from vacuoles [58]. Its expression is maximal at 37°C and it is 

inhibited at 30°C. These trends are directly correlated with the synthesis of the 

transcriptional factor PrfA, which permits the activation of the bacterial virulence 
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genes [59] [60]. Intracellular movements require the expression of ActA and the 

two membranes vacuole is lysed by LLO and a lecithinase (PC-PLC) [58]. 

 

 

1.5.3. Listeriosis 

Listeria monocytogenes can cause listeriosis, which is a severe disease with 

high hospitalization and a case-fatality rates of up to 30% [45]. Both outbreaks and 

sporadic cases are associated with contamination of various types of food, such as 

milk, soft cheese, meat, vegetables and seafood products. The ubiquitous nature of 

the bacterium and its incubation period varying from 1 to 90 days, make the 

identification of the pathogen in the contaminated food quite difficult. 

After the ingestion of contaminated food, it spreads from the intestinal lumen 

to the central nervous system [56, 61] (Fig. 1.14).  

 

 

Fig. 1.14. Successive steps of human listeriosis [61]. 



 

- 28 - 
 

The pathogen entries into the cells by phagocytosis, it is released from the 

membrane-bound vacuole and then it begins to multiply [62]. Moving through 

intracellular actin-based or cell-to-cell, the pathogen infects a vast range of host 

tissues, with liver as the main site of infection [63]. In the liver, the Küpffer cells 

kill the majority of the bacteria, inducing apoptosis with concomitant release of 

chemoattractants, which leads to an influx of neutrophils [64]. These phagocytic 

cells ingest bacteria or apoptotic hepatocytes. It is a critical step in order to avoid 

bacterial multiplication and to contribute to the rapid clearing of the infection [65] 

(Fig. 1.15.). Commonly, listeriosis can cause meningitis, septicaemia and other 

infections involving the central nervous system. It is particularly dangerous for 

immunocompromised population, such as people undergoing renal transplantation 

and those with acquired immunodeficiency syndrome (AIDS) and cancer. The risk 

of listeriosis is indeed estimated to be 100 to 300 times higher in patient with AIDS 

than in the general population [62]. In pregnant women listeriosis may lead to 

spontaneous abortion, still birth or fetal death [63]. 

 

Fig. 1.15. Life cycle of L. monocytogenes in host cells [62]. 
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1.6. Classical methods for L. monocytogenes detection and 

enumeration 

 

1.6.1. Qualitative and quantitative methods for detecting L. monocytogenes 

The minimum infective dose of L. monocytogenes has not been established 

yet. However, the food laws of many countries require that L. monocytogenes must 

be absent in samples of 25 g of ready-to-eat food products [66]. The success of 

basic protocols for the pathogen detection depends on the number and the state of 

microorganisms in the sample, the selectivity of media, the conditions of incubation 

and the electivity of the isolation medium. The EN/ISO 11290-1 describes the 

method used to isolate L. monocytogenes from food samples, following the 

sequence of pre-enrichment, selective enrichment and isolation on selective media 

[67]: 

1) Pre-enrichment, using Half Fraser Broth, which is a primary selective 

enrichment broth; 

2) Selective enrichment, using Fraser Broth, which is a secondary selective 

enrichment broth; 

3) Isolation on selective media, taking place on two different media, PALCAM 

and ALOA. 

 

In the qualitative method, both primary and secondary selective enrichment 

broths are functional for recovering any stressed bacterial cell.  

PALCAM selectivity is due to the presence of selective agents, such as 

lithium cloride, polymyxin B-sulfate, ceftazidime and acriflavine, which suppress 
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the growth of many not-Listeria spp. bacteria [68].  The medium differentiation is 

based on aesculin hydrolysis and mannitol fermentation. Indeed, all the Listera spp. 

cause the aesculin hydrolysis, showing blackening of the medium, due to the 

reaction of ferric ions with the aesculetin, namely the product of aesculin hydrolysis 

[69]. The presence of the pH indicator phenol red distinguishes mannitol fermenting 

strains of Listeria spp., by the change of medium colour from red to yellow.  

ALOA selectivity is due to the presence of lithium chloride, ceftazidime, 

polymyxin B-sulfate, nalidixic acid and cyloheximide. The specific medium 

differentiation is obtained with a specific substrate for phospholipase C, owned only 

by the pathogenic L. monocytogenes. After the isolation, the method expects that at 

least five hypothetical colonies of L. monocytogenes are selected in order to confirm 

their identities through several tests (such as haemolysis test, CAMP test and other 

biochemical tests). 

The quantitative method (referring to the consolidate version of the 

Commission regulation 2073/2005, the method is described by the EN/ISO 11290-

2) is based on the above mentioned analyses referring to the EN/ISO 11290-1, but, 

in addition to them, in this case characteristic L. monocytogenes colonies are 

enumerated [70]. 

These standard procedures may take four/five days to obtain a negative result 

and two/three days for a hypothetical positive one and its confirmation. However, 

often this timing is not compatible with the market, due to food perishability and 

the need to protect consumers. 
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1.6.2. Molecular methods for detecting L. monocytogenes 

One of the most frequently used molecular methods for L. monocytogenes 

detection is the real-time PCR (Polymerase Chain Reaction), based on the standard 

legislation ISO 16140. A standard document provides requirements, specifications, 

guidelines, or characteristics that can be used consistently to ensure that materials, 

products, processes and services are fit for their purpose. 

 This method is one of the most innovative and widely used in the field of life 

science, as it can give rapid results one day after the analysis [71]. It is composed 

by different, subsequent stages [72]: a) matrix enrichment, b) nucleic acids 

extraction and purification, c) target amplification using specific primers, and d) 

PCR products determination.  

This method is based on one or two enrichment phases, coupling one 

bacterial-DNA extraction and one real-time PCR assay. It permits to quantify the 

microorganisms in the sample and to measure step-by-step the fluorescence 

generated during the polymerase chain reaction, thanks to two different detection 

systems of PCR-products accumulation: dyes linked to DNA double strands, and 

probes linked to fluorescent molecules. Compared with the qualitative and 

quantitative methods previously described (EN/ISO 11290-1 and 11290-2), this one 

appears to be more reliable [73], thanks to its higher performances, accuracy, 

specificity, sensitivity and its shorter running time. 
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1.6.3. Immunological methods for detecting L. monocytogenes 

Every immunological assay is based on the optimal combination between the 

specificity of antigen-antibody and the detection sensitivity of a tracer, which 

changes for each assay in order to take advantage of the specific interaction antigen-

antibody.  

In 1980s, numerous studies investigated the immunodetection of DNA. As a 

result, the polymerase chain reaction-enzyme linked immunosorbent assay (PCR-

ELISA) was introduced [74]. PCR-ELISA is an analytical technique that allows to 

quantify the PCR product directly after immobilization of biotinylated DNA on a 

microplate. This method involves three steps [75]: 1) amplifying the gene of interest 

by PCR technique, 2) binding PCR products with the specific gene of interest to the 

microplate, using biotin-avidin complex, whilst all non-specific products are 

washed off, and 3) detecting biotinylated DNA, made visible and measurable by 

the use of a spectrophotometer. 

This is the more reliable mass-screening method to detect and screen Listeria 

spp. in food. The presumptive positive results offered by ELISA have to be 

confirmed by a PCR-based method [76]. PCR-ELISA is a sensitive tool with many 

advantages. First, it allows detection at very small concentrations; second, it can be 

carried out using standard laboratories; and third, it is more cost-effective than real-

time PCR [74]. 

Commercially available immunological methods for Listeria identification 

are numerous, such as VIDAS (BioMérieux, France), Listeria Tek (Organon 

Teknika, USA), Listeria VIP (BioControl, USA), Listertest (Vicam, USA) and 

Pathatrix (MatixMicroscience, UK). 
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1.7. Innovative methods for L. monocytogenes determination 

 

1.7.1. Micro-gravimetric biosensor 

Micro-gravimetric biosensor is an immunosensor composed of peculiar 

materials, which displays piezoelectric properties. The term “piezoelectric” derives 

from the Greek word piezen, meaning “to press” and when the electrical field 

changes, the application of a potential difference induces a compression (or an 

expansion) of the material. This is the “piezoelectric effect”, namely a reversible 

effect that corresponds to an internal mechanical stress, induced by an applied 

potential. The system used is a quartz crystal resonator, composed of a quartz disk 

with a thin gold film on both sides [77]. Quartz is a natural material, specifically 

cut for maintaining the symmetry of the crystal (this is a basic property for this 

application). If a potential with a certain periodicity is applied, the piezoelectric 

properties allow creating acoustic waves, which are propagated perpendicularly on 

the quartz crystal surface [78]. The contact of quartz with a liquid solution can 

modify the oscillation, causing interactions between charges or dipoles in the fluid, 

as well as superficial charges of the material. This phenomenon can interfere with 

the normal propagation of acoustic waves, causing the “electroacoustic effect”. If 

the quartz is coated with a conductor material such as gold, this effect could be 

avoided. In 1980, Konash showed that a quartz crystal resonator, immersed in a 

liquid phase, could oscillate [79]. 

The main advantage of this method is due to the ability of quartz crystal 

resonator to operate in fluids. One of the main purposes of biosensoring is indeed 

the successful characterization of biomolecular systems in their natural 
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environment, namely water [80]. The main applications of the method are based on 

weighing the mass deposited or removed from the crystal surface. The quartz crystal 

has indeed a basic frequency depending on its geometry, which linearly decreases 

with the mass deposited on the surface, according to Sauerbrey equation: 

Δf = - 
ଶ௙బ

మ

஺ඥఘ೜ఓ೜
 Δm 

 

Δf: frequency change (Hz) 

଴݂: resonance frequency of crystal (Hz) 

A: piezoelectric area (cm²) 

 ௤: quartz density (2.648 gcm-³)ߩ

 ௤: shear module of quartz (2.947x10¹¹ g/cms²)ߤ

Δm: mass change on the quartz surface (g) 

 

In addition, information can be obtained from the material on the surface of 

resonator, recording the energy loss during the oscillation [81]. 

A micro-gravimetric biosensor is characterized by high sensitivity, label or 

radiation free entities and low cost. These properties allow to investigate 

biomolecular interactions and clinical bioassays [82].  

Several methods have been developed in order to immobilize antibodies onto 

the piezoelectric quartz crystal. In particular, the application of self-assembled 

monolayers, coupled with magnetic nanoparticles, increases the amount of 
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immobilized biomolecules and provides numerous advantages for sensor 

performances [83]. 

 

 

1.7.2. Biosensing and magnetic nanoparticles 

Biosensing is based on immobilized biomolecules for the determination and 

detection of target analytes. These sensing biomolecules should be immobilized on 

the surface of a signal transducer, and the subsequent biological-recognition 

generates then an optical, electrical or microgravimetrical signal [84]. Magnetic 

nanomaterials are an efficient and powerful exploitable source for biosensing, due 

to their strong magnetic properties (not present in biological systems), which permit 

signal amplification, single molecule-detection, and new signal transduction 

mechanisms [85]. In addition, the development of new portable devices facilitated 

the use of nanoscale magnetic materials, since lengthy sample purification and long 

assay times are no longer required [86].  

Magnetic nanoparticles are an example of nanomaterials used for biosensing. 

A nanoparticle may be defined as an entity having three dimensions of the order of 

100 nm or less, and its properties are dramatically different from bulk materials 

[87]. A magnetic nanoparticle generally consists of a magnetic element (iron, 

oxides, cobalt, nickel) or its chemical oxides. Magnetic nanoparticles, coupled with 

a bioelement, show high biocompatibility and biochemical stability in physiological 

conditions. For these reasons, they can be applied for drug delivery, medical 

imaging and protein purification [88]. The safety of nanoparticles is very important 
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for their food-related application. They have to present indeed no toxicity, good 

biocompatibility and they do not have to maintain residual magnetism after the 

removal of the external magnetic field. The superparamagnetic nanoparticles 

(Fe₂O₃ and Fe₃O₄) respond to these requirements [89]. Other examples are: (a) gold 

nanoparticles (AuNPs), used to detect streptomycin in blood serum and milk thanks 

to their high sensitivity, chemical stability, ease of synthesis and the characteristic 

of being attractive energy acceptors [90]; and (b) iron/gold core/shell (Fe@Au) 

nanoparticles conjugated with anti-Salmonella antibodies, used to detect 

Salmonella typhimurium in milk [91].  

In the present experimental work, a novel nanomaterial called SAMNs 

(Surface Active Magnetic Nanoparticles) was used for detecting L. monocytogenes 

in milk. It is composed of stoichiometric maghemite (γ-Fe₂O₃), which presents a 

characteristic surface chemical behaviour. SAMNs have been developed in the 

laboratory of Professor Fabio Vianello (Department of Comparative Biomedicine 

and Food Science, University of Padova), and they are currently protected by 

international patent (patent number: US 8980218, 2015; EP 2596506B1, 2014). 

This nanostructured superparamagnetic material has numerous advantages 

compared with traditional iron oxides, because its synthesis is carried out 

exclusively in water, avoiding the disposal processes of organic solvents and thus 

reducing costs [92]. SAMNs, without any superficial modification, are dispersible 

in water, stable in suspension for several months and can be used to immobilize 

specific organic molecules [93]. These nanoparticles are superparamagnetic, a 

property that occurs when a material have casual oriented magnetic dipoles, which 

can be orderly oriented in presence of an external magnetic field [94]. When the 

magnetic field is removed, nanoparticles lose their magnetic property and, as a 
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consequence of the lack of magnetic force (responsible of the aggregation 

phenomenon), dipoles arrange again in disorderly manner. 

Nanoparticles do not show, therefore, magnetic characteristics per se, as the 

latter are displayed only in presence of an external magnetic field, without which 

nanoparticles do not form aggregates. It is important to note that magnetic 

nanoparticles can be easily derivatized for immobilizing antibodies, and then they 

have the capability to amplify and improve the immunosensor signals. The intensity 

of the final signal will depend on the amount of antigen recognized by the antibody 

bound on nanoparticle surface. 
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AIM OF THE PROJECT 

 

CHAPTER 2 

 

 

The main purpose of the present research work was to develop a new 

immunosensor for detecting L. monocytogenes in milk. This ubiquitary bacterium 

can cause listeriosis. Listeriosis is a disease particularly dangerous for 

immunocompromised population, such as people undergoing renal transplantation 

and those with acquired immunodeficiency syndrome (AIDS) and cancer. In 

pregnant women, it may lead to spontaneous abortion, and it is associated with 

contamination of various types of food, such as milk. 

The immunosensor proposed for the detection of L. consisted of a 

piezoelectric quartz crystal characterized by a resonance frequency of 9,5 MHz, 

coated with two gold electrodes on each surface and with the ability to operate in 

fluids. The quartz crystal had a basic frequency, which linearly decreased with the 

mass deposited on the surface. The piezoelectric crystal was derivatized with 

cysteamine, biotin, avidin and antibodies against Listeria monocytogenes (Ab-L. 

monocytogenes) and several concentrations of bacteria were tested on the crystal 

surface. Its ability to detect known concentration of L. monocytogenes in milk was 

explored. In addition, the specificity of the system was tested injecting the known 

concentration of L. innocua. 
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In order to improve the analytical performances of the immunosensor, a novel 

procedure was introduced. This novel procedure involved the application of 

magnetic nanoparticles coated with biotinylated antibodies against L. 

monocytogenes, and leading to the development of a magnetic nanosized complex, 

SAMN@Av@Ab-L. monocytogenes, which was used a) to eliminate intereferring 

substaces in the milk matrix before the measurements, b) to identify and capture L. 

monocytogenes bacteria in milk and c) to amplify the signal obtained by the 

piezoelectric system. In order to support the experiments, a traditional 

microbiological method (i.e., plate count) was used as control.  

Results showed that the proposed system can be proposed for the detection of  

concentrations of L. monocytogenes in milk in short times and with low costs.  



- 41 - 
 

MATERIALS AND METHODS 

 

CHAPTER 3 

The preparation of bacterial colture and instrumentation 

to detect L. monocytogenes in milk 

 

 

3.1. Reagents and solvents applied 

The substances used for the experiment are reported in the Tab. 3.1. The 

reagents were purchased at the maximum purity obtainable, such as not to require 

purification treatments before use. 

 

PRODUCT NAME ABBREVIATION SUPPLIER 

Ab-L. monocytogenes (Biotin) 

modified 

 
GeneTex 

ALOA medium 
 Biolife Italiana 

S.r.l. 
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Avidin 
 IBA 

Biotechnology 

Biotin  Sigma - Aldrich 

Cysteamine hydrochloride  Fluka 

Di-Sodium hydrogen phosphate 

dihydrate 

 
Carlo Erba 

Ethanol  Sigma – Aldrich 

Magnetic nanoparticles SAMNs - 

Milk UHT  Parmalat 

N-AGAR medium 
 Biolife Italiana 

S.r.l. 

N-Cyclohexyl-N’-(2-

morpholinoethyl) carbodiimide 

methyl-p-toluenesulfonate 

CMC 

Sigma – Aldrich 

N-hydroxysuccinimide NHS Fluka 

N, N-Dimethylformamide 

anhydrous 

DMF 
Sigma – Aldrich 

Phosphate buffer salite PBS 1X - 
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Tetramethylammonium hydroxide TMAOH 1M - 

Tryptic soy broth TSB - 

TSAYE medium 
 Biolife Italiana 

S.r.l. 

 

Tab 3.1. List of reagents and solvents used in the experiments. 

 

 

3.2. Preparation of inactivated L. monocytogenes inoculums 

For the present research, a standardized inoculum of L. monocytogenes ATCC 

19117 serotype 4d and L. innocua ATCC 33090T serotype 6a were prepared by Dr. 

Luca Fasolato of the Department of Comparative Biomedicine and Food Science, 

University of Padova. The protocol of inactivation was performed according to 

Datta et al. [95]. The strains were revitalized at 37°C for 48 h on ALOA medium. 

A single pure colony was inoculated in 12 mL of TSB (trypticase soy broth) and 

incubated overnight at 37°C, allowing a final concentration around 8 Log10 (colony 

forming unit CFU/mL). After centrifugation, broths were washed twice on 

physiological solution. The optical density (OD600) was evaluated by 

spectrophotometric method (MultiskanGo Thermoscientific), and the enumeration 

of washed inoculums of Listeria were performed by plate count method in plate 

count agar (PCA; Oxoid) and ALOA. Then, the inoculums were inactivated in a 
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thermal bath at 73°C for 1 h and stored, after the sterility test, at -80°C for a 

maximum period of 4 months. 

 

 

3.3. The piezoelectric system 

The system used in this experimental work consists of a piezoelectric quartz 

crystal (ElbaTech S. r. l.), characterized by a resonance frequency of 9,5 MHz, 

coated with two gold electrodes on each surface (Fig. 3.1.). The crystal is placed in 

a flow chamber, containing an O-ring, that allows to isolate one of the two surfaces 

(Fig. 3.2.). It permits to use each surface for different analyses and to obtain a stable 

frequency. 

 

 

Fig. 3.1. Structure of a piezoelectric quartz crystal with its support. 
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Fig. 3.2. Flow chamber with the O-ring. 

 

The flow chamber, in which is inserted the quartz crystal, is connected, to a 

computer controlled injection valve system, and, on the other side, to a frequency 

oscillator connected with the computer (Fig. 3.3.). 

 

 

 

Fig. 3.3. Piezoelectric system. 
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A computer controlled syringe pump provided the injection of the solvent 

on the quartz crystal surface (previously derivatized), with a constant flow of 6 

mL/h. The following parameters were added to the software registration mode: 

- Acquisition number: 10 000 pt. It is necessary to obtain a significant 

measure. 

- Temporal gap: 0,5 seconds. It is the gap between two subsequent 

measurements. 

- Delay between two measurements: 0,5 seconds. It affects the system 

accuracy. 

- Statistic samples: 10. During the acquisition, the software calculates the 

average and the standard deviation of n samples. 

 

When the acquired signal was stable, the sample was injected into a loop 

(volume of 100 μL) in the injection valve and, dragged by the solvents to the crystal 

surface. QC Magic R3 recorded a decrease in frequency proportional to the total 

mass deposited on the crystal surface. Phosphate Buffer Saline (PBS) was used as 

solvent, because it is optimal for antibody antigen recognition process and 

guarantees stability of the crystal resonance frequency. In addition, it allows to 

dilute and hydrate biomolecule, immobilized on the surface. Repeated washings 

with PBS can cause the complete dissociation of the analyte and an increase is 

expected in frequency to values, recorded before the sample injection (Fig. 3.4.) 
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Fig. 3.4. Basic principle of piezoelectric. 

 

 

3.4. SAMNs 

 

3.4.1. Synthesis of SAMNs 

The magnetic nanoparticles were synthetized following the method described 

by Magro et al. [92]. FeCl3∙6H2O (10.0 g, 37 mmol) was dissolved in Milli-Q water 

(800 mL) at room temperature and under vigorous stirring. Then, NaBH4 solution 

(2 g, 53 mmol) in ammonia (3.5%, 100 mL, 4.86 mol/mol Fe) was added to the 

mixture. After the reduction reaction, the temperature of the system was increased 

to 100°C and maintained constant for 2 h under stirring. The material temperature 

was decreased at room temperature and aged in water for further 12 h. The product 

obtained was separated by the action of an external magnet for 60 minutes. Then, it 

was washed with water several times. The material can be transformed into a 
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red/brown powder by drying and curing at 400°C for 2 h. After thermal treatment 

were obtained individual nanoparticles. The nano-powder showed a magnetic 

response, whether it was exposed to a magnetic field. The final mass produced was 

2.0 g (12.5 mmol) of Fe2O3. A yield of 68% was calculated. The obtained 

nanomaterial was characterized by zero field and in field (5 T) Mössbauer 

spectroscopy, FTIR spectroscopy, high resolution transmission electron 

microscopy, XPRD and magnetization measurements. It was constituted of 

stoichiometric maghemite (γ-Fe2O3) with a mean diameter of 11±2 nm. It can lead 

to the formation, after sonication in water (Bransonic, model 221.48 kHz, 50 W) of 

a stable colloidal suspension, without any organic or inorganic coverage. These bare 

maghemite nanoparticles were called “Surface Active Maghemite Nanoparticles” 

(SAMNs). 

 

 

3.4.2. Derivatization of SAMNs with avidin and Ab-L. monocytogenes 

SAMNs can be reversibility derivatized with selected organic molecules. In 

this research, they were superficially derivatized by simple incubation in water 

solution in the presence of avidin. Bare SAMNs (50 mg/L) was incubated with 100 

mg/L avidin in 50 mM TMAOH pH 7.0 at 4°C, in the dark, overnight and with 

continuous agitation. TMAOH guarantees higher stability of the nanoparticles than 

water as they remain stable in suspension. After incubation, the nanoparticles were 

removed with an external magnet and the amount of bound avidin was calculated 

from the disappearance of the absorbance at 280 nm in the supernatants (ε280nm= 

6.99 × 104 M-1 cm-1) with the spectrophotometer Agilent Technologies Cary 60. 
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Alternatively, bound avidin was evaluated by spectrometry after their release from 

nanoparticles by treatment with 0.5 M ammonia. SAMN@avidin complexed were 

magnetically isolated. Subsequently, SAMN@avidin were washed with 50 mM 

TMAOH pH 7.0 and then with Milli-Q water and finally stored with Milli-Q water. 

In this work, a specific antibody for L. monocytogenes modified with biotin 

was used bound to nanoparticles. SAMN@avidin were incubated in a solution with 

PBS and biotinylated Ab-L. monocytogens of GeneTex at 4°C, in the dark overnight 

with continuous agitation. Immediately before their use, the SAMN@Av@Ab-L. 

monocytogenes were magnetically separated and the solvent with unbound antibody 

was replaced with fresh PBS. 

 

 

3.5. Tests for L. monocytogenes capture 

 

3.5.1. Citotoxicity test to evaluate the effects of SAMNs on L. monocytogenes 

Different concentrations of bare SAMNs were inoculated in L. 

monocytogenes cultures to observe their possible toxicity effect in different 

incubation times. Three different final concentrations of SAMNs in PBS were used 

in a final volume of 2 mL: 20 mg/L, 50 mg/L and 100 mg/L. The L. monocytogenes 

strain ATCC 19117, stored at -80°C, was incubated twice (A and B replicates) on 

ALOA medium at 37°C for at least 24 h. A single pure colony of both replicates 

was inoculated in TSB at 37°C for 21 h. The next day, immediately before the start 
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of the experiment, the serial dilutions from 108 to 103 concentration of L. 

monocytogenes were performed in PBS solution. The 103 concentrated samples 

were used as starter samples for the experiments, because previous studies indicated 

this concentration of L. monocytogenes as optimal. The toxicity tests were 

performed at 4 different experimental times (t0, after 1 h t1, after 4 h t4, and after 6 

h t6) in order to evaluate the decrease of Listeria concentrations. 

 In order to evaluate the CFU reduction, the samples were inoculated as 

control both in ALOA and N-AGAR medium at 37°C for 24 h. Samples of the three 

SAMNs concentrations were incubated only in N-AGAR at 30°C for 24 h, to 

exclude the presence of contaminants. Then SAMNs were incubated with the starter 

samples of L. monocytogenes (103) and three subsequent dilutions were performed. 

The log10 CFU/mL of each tests were modelled with the DMFit program in 

order to define the regression curves of each treatment [96]. 

 

 

3.5.2. L. monocytogenes capture experiments with bare SAMNs and 

SAMN@Av@Ab-L. monocytogenes in PBS 

Several experiments were performed in order to evaluate the capture of L. 

monocytogenes from PBS and from real matrices such as milk. The results were 

expressed in UFC/mL, and were obtained applying the following formula for 

bacterial colonies’ count: 

N =  
Σ colonies

V (nଵ + 0,1 ∙  nଶ)d 
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N = numbers of units forming colonies 

∑ colonies = sum of colonies 

V = volume of inoculum 

n1 and n2 = number of considered plates  

d = dilution factor for the first dilution considered 

 

This formula was applied on dilutions in which the values of the plate count 

were between 10 and 300 colonies.  Capture efficiency (CE) [97] was previously 

evaluated on PBS considering the concentration of 100 mg/L of bare SAMNs and 

the same concentration of SAMN@Av@Ab-L. monocytogenes. The total number 

of bacteria collected by SAMN@Av@Ab-L. monocytogenes can be expressed as 

pellet or supernatant percentages. These describe the magnetic separation efficacy 

on L. monocytogenes recovered. The supernatant index was useful to calculate the 

percentage of capture efficiency (CE) [97]: 

CE = 1 −  ൬
Cୠ

C଴
൰ ×100 

CE = capture efficiency 

Cb = number of cells in supernatant 

C0 = total number of cells in the sample 

 

The CE can be calculated using the value of pellet percentage [98]: 
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CE = ൬
C଴

Cୠ
൰ ×100 

CE = capture efficiency 

C0 = total number of cells in the sample 

Cb = number of cells in pellet 

 

Taken together, the supernatant and pellet percentages were useful to 

calculate the percentage of not recovered cells (NR) in the samples: 

NR =
n° total cells − (n° pellet cells + n° supernatant cells)

n° total cells
×100 

 

Four different concertation of L. monocytogenes strain ATCC 19117 were 

applied (CFU: 104, 103, 102, 101). The modality of inoculum preparation was the 

same as describe before for the toxicity tests. 

Briefly, a single pure colony of both experimental duplicates was inoculated 

in TSB at 37°C for 21 h. The next day, immediately before the start of the 

experiment, the serial dilutions from 108 to 101 concentration of L. monocytogenes 

were performed in solution PBS. Samples of bare SAMNs and SAMN@Av@Ab-

L. monocytogenes were incubated only in TSAYE medium at 37°C for 24 h, to 

exclude the presence of contaminants. Then, SAMNs and SAMN@Av@Ab-L. 

monocytogenes were incubated with the different concentration (104, 103, 102) of L. 

monocytogenes in a final volume of 2 mL and, immediately after, their three 

subsequent dilutions were performed. These samples were plated both in ALOA 

and TSAYE medium at 37°C for 24 h. The rest of the samples were left incubating 
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for 40 minutes, and then a magnetic separation with an external magnet was 

performed for 30 minutes. After that, supernatants with their three subsequent 

dilutions were plated both in ALOA and TSAYE at 37°C for 24 h. Pellets were re-

suspended in an equal volume of PBS and were spread both in ALOA and TSAYE 

at 37°C for 24 h (Fig. 3.5.). 

 

 

 

Fig. 3.5. Immunoseparation diagram. 

 

Finally, Eppendorf containing pellets were washed with PBS and then plated 

for the subsequent enumeration with their three subsequent dilutions both in ALOA 

and TSAYE at 37°C for 24 h, in order to observe whether bacterial cells remain 

linked to the plastic tube. 

The lower concentrations of L. monocytogenes (101 and 102) were incubated 

in the presence of 100 mg/L SAMN@Av@Ab-L. monocytogenes in PBS, to 
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observe whether a proportional correlation exists with the results obtained in the 

previous experiments with higher concentration of L. monocytogenes. 

 

 

3.5.3. Capture test with different concentration of SAMN@Av@Ab-L. 

monocytogenes in PBS and in milk 

Two concentrations of SAMN@Av@Ab-L. monocytogenes (100 mg/L, 200 

mg/L) were inoculated in L. monocytogenes cultures to observe their ability to 

capture L. monocytogenes both in PBS and in milk. The L. monocytogenes strain 

ATCC 19117, stored at -80°C, was incubated twice (A and B duplicates) on ALOA 

medium at 37°C for at least 24 h. A single pure colony of duplicates of each 

experiment were inoculated in TSB at 37°C for 21 h. The next day, immediately 

before the start of the experiment, the serial dilutions from 108 to 103 concentration 

of L. monocytogenes were performed in solution PBS. For the experiment 

conducted in milk, the last concentration, 103, was performed in milk. Samples of 

the three concentration of SAMN@Av@Ab-L. monocytogenes were incubated 

only in TSAYE medium at 37°C for 24 h, to exclude the presence of contaminants. 

The 103 concentrated samples were used as starter samples for the experiment. 

Then, the three concentrations of SAMN@Av@Ab-L. monocytogenes were 

incubated with the starter samples of L. monocytogenes (103) and, immediately 

after, their three subsequent dilutions were performed. These samples were 

incubated both in ALOA and TSAYE medium at 37°C for 24 h. The rest of the 

samples were left incubating for 30 minutes and then a magnetic separation was 

performed with an external magnet for 15 minutes. After that, supernatants with 
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their three subsequent dilutions were incubated both in ALOA and TSAYE at 37°C 

for 24 h. Pellets were re-suspended in an equal volume of PBS and were incubated 

with their three subsequent dilutions both in ALOA and TSBYE at 37°C for 24 h. 

The CE% values were submitted to the arcsine transformation. The data were 

analysed by the student’s t-test in order to evaluate statistical differences among 

treatments and culture mediums applied in the experiments. These analyses were 

performed using the IBM ® SPSS ® Statistics 20 Core System.    
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RESULTS AND DISCUSSION 

 

CHAPTER 4 

Effectiveness of the new immunosensor in detecting L. 

monocytogenes 

 

 

4.1. Antibody immobilization on piezoelectric quartz crystal and 

response to mass addiction of L. monocytogenes 

 

4.1.1. Derivatization of crystal surface and the qualitative method to detect 

L. monocytogenes 

In this present research work, the piezoelectric quartz crystal was used to 

develop an immunosensor, exploiting the high affinity of the avidin-biotin system. 

Several concentrations of inactivated L. monocytogenes in PBS (from 101 to 105 

CFU/mL) were injected in the flow cell containing the quartz crystal not-modified, 

and no change in frequency was recorded. The results have been processed by the 

Sigma Plot software, in which the bacteria detection is expressed as a function of 

relation to the acquisition time (s) on the abscissas axis, and to the frequency (Hz) 

on the ordinate axis. The constant value of the frequency of the crystal highlighted 



- 58 - 
 

that the bare gold surface of crystal did not bind L. monocytogenes. The next step 

was to immobilize the biotinylated antibody on the quartz crystal surface for 

observing its response in the presence of L. monocytogenes. 

This is a new system of antibody immobilization on the piezoelectric 

biosensors, in literature different approaches are described [99, 100]. For this 

reason, a detailed description of the experiments was reported in the results section. 

Before the measurement, the gold surface of the quartz crystal was 

derivatized, exploiting the biotin-avidin system. The crystal was cleaned with 

99.8% ethanol at room temperature, in the dark, for 30 minutes. In order to 

immobilize biotin, preliminary, the crystal was submerged in a solution of 50 mM 

cysteamine hydrochloride and 99.8% ethanol, at room temperature, in the dark 

overnight (Fig. 4.1.) leading to a SAM of cysteamine on gold, as described in 

Chapter 3. 

 

 

 

Fig. 4.1. Binding between cysteamine and the gold surface of the crystal. 

 

The subsequent day, the crystal was washed with 99.8% ethanol to remove 

the excess of the thiol and it was incubated in the presence of 10 mM biotin, 50 mM 

NHS and 50 mM CMC in anhydrous DMF at 4°C, in the dark overnight (Fig. 4.2.) 
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in order to provide the condensation of biotin in the solvent exposen -NH3 groups 

of immobilized cysteamine.  

 

 

 

Fig. 4.2. Binding between biotin and the gold surface of the crystal. 

 

After biotin incubation, the crystal was washed with anhydrous DMF in order 

to remove the excess of reactants, and it was immersed into avidin solution in PBS 

(1 mg/mL) at room temperature, in the dark overnight. The modified surface was 

washed with PBS at room temperature, in the dark for 30 minutes, and then the 

biotin labelled polyclonal antibodies against L. monocytogenes was immobilized 

with PBS on the surfaces of the crystal, with a final concentration 100 μg/mL at 

4°C, in the dark overnight. Finally, the antibody-coated crystal was washed with 

PBS to remove the excess unbound antibody and was stored at 4°C until use.  

The crystal was inserted in the flow cell and several concentrations of L. 

monocytogenes (from 101 to 105 CFU/mL) without SAMNs were injected into the 

piezoelectric system in ascending order. The immunosensor response, for each 

injection, was achieved within 5-10 minutes from the introduction of bacteria into 
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the flow loop. Changes in the crystal frequency were recorded, due to the mass 

variation on the crystal surface. This indicated the bacteria recognition and their 

capture by the immobilized antibody on the crystal surface. The results have been 

processed by the Sigma Plot software. The biotinylated Ab-L. monocytogenes 

captured the bacterium from the lowest concentration of 101 CFU/mL to 105 

CFU/mL, showing a gradual frequency decrease for each bacterial concentration 

injected (Fig. 4.3.). The determination of the frequency variation (ΔF) of the 

modified crystal allowed to build a calibration curve, related to the amount of 

bacteria injected into the system, with a correlation coefficient of 0.99 (Fig 4.4.). 

The frequency decreased proportionally with the bacterial concentrations. 

Therefore, the value of each ΔF - corresponding to a higher bacterial concentration 

- must be higher than the initial ΔF: a shift of 20 ΔF (Hz) was obtained after the 

introduction of L. monocytogenes at 101 CFU/mL and the injection of L. 

monocytogenes at 104 CFU/mL decreased further the frequency of 60 ΔF. 

 



- 61 - 
 

 

Fig. 4.3. The immunosensor run.  

 

 

 

Fig. 4.4. The calibration curve related to the amount of bacteria injected into the 

system. 
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The calibration curve allowed to obtain the sensitivity and the limit of detection 

(LOD) of the immunosensor. It detected and quantified L. monocytogenes with a 

LOD of 3 cells/200 μL and with a frequency change of about 2 Hz (Fig 4.5.). This 

result was significantly better than other piezoelectric detection of L. 

monocytogenes in milk reported in the literature with a LOD of 103 CFU/mL [101]. 

 

 

 

Fig. 4.5. Limit of detection of L. monocytogenes with the piezoelectric quartz 

crystal. 
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4.1.2. Amplification of piezoelectric signal of L. monocytogenes by the 

SAMN@Av@Ab-L. monocytogenes 

The piezoelectric quartz crystal can be used for carrying out both qualitative 

analyses, based on the mass variation on the surface of piezoelectric quartz crystal, 

and quantitative ones, by estimating the bacterial concentration at a given 

frequency. The use of coated nanoparticles with Ab-L. monocytogenes has been 

suggested with the aim to create a new generation of amplification systems for 

immunosensors. The creation of the sensing layer, using a biotinylated antibody, 

permits to control the orientation of the antibody on gold surfaces, preserving its 

bioactivity and increasing the affinity for L. monocytogenes. In this research, it was 

developed a method to capture inactivated L. monocytogenes in solution (first in 

PBS and then in milk) with SAMN@Av@Ab-L. monocytogenes and then to detect 

this complex with the piezoelectric quartz crystal. 

First, SAMNs were derivatized with avidin, as described in Paragraph 3.4.2. 

The solution composed by 100 mg/L avidin in 50 mM TMAOH was observed with 

the spectrophotometer Agilent Technologies Cary 60, and the characteristic 

absorbance peak of avidin was identified at 280 nm. The solution containing 

SAMNs was then incubated. After a magnetic separation, the supernatants were 

observed with the spectrophotometer. The reduction of avidin peak at 280 nm 

confirmed the binding between SAMNs and avidin. Subsequently, one wash with 

TMAOH and one with Milli-Q water were performed in order to remove the 

unbound avidin. Each washing was observed by the spectrophotometer (Fig. 4.6.). 

It was very important to verify the actual creation of a link between SAMNs and 
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avidin, as it is a prerequisite for the subsequent creation of a binding between 

SAMN@avidin and the biotinylated antibody. 

 

  

 

Fig. 4.6. SAMN@avidin spectra. The black spectrum corresponds to the control 

(only avidin in TMAOH); the red spectrum indicates the supernatant of the 

SAMN@avidin solution; the blue and violet spectra are the two washes with 

TMAOH and Milli-Q water. 

 

After the confirmation of the presence of a binding with avidin, 

SAMN@avidin were derivatized with Ab-L. monocytogenes, as described in 

Paragraph 3.4.2., producing a SAMN@Av@Ab-L. monocytogenes complex which 

was injected at increasing concentrations into the piezoelectric system, without L. 

monocytogenes. The derivatization of SAMN@avidin with the biotinylated 

antibody against L. monocytogenes was performed for the first time.  The results 

were processed by the Sigma Plot software. The SAMN@Av@Ab-L. 

Avidin peak 

(280nm) 
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monocytogenes detection in PBS is shown Fig. 4.7. The signal decreased, related 

to the addiction of the mass of nanoparticles. This result was useful for 

understanding the impact of the mass of the nanoparticles in subsequent 

experiments with bacteria. 

 

 

 

Fig. 4.7. SAMN@Av@Ab-L. monocytogenes detection in PBS. 

 

A calibration of the functionalized crystal was performed with 

SAMN@Av@Ab-L. monocytogenes in PBS solution, using different 

concentrations of SAMN@Av@Ab-L. monocytogenes: 1 mg/L, 5 mg/L, 10 mg/L, 

30 mg/L, 50 mg/L, 100 mg/L and 200 mg/L. Each concentration was injected in 

ascending order after the stabilization of the base line, shown by QC Magic R3. 
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After the calibration, two experiments were conducted: the first in PBS and 

the second in milk.  

PBS experiments. In the first experiment, SAMN@Av@Ab-L. 

monocytogenes (100 mg/L) were incubated with different concentrations of L. 

monocytogenes, from 100,5 to 105 CFU/mL in PBS, for 40 minutes, at room 

temperature in the dark. The samples were then magnetically isolated for not more 

than 10 minutes. The pellets were resuspended in PBS. After the stabilization of 

piezoelectric system, the different samples were injected from 100,5 to 105, until 

crystal saturation. The quartz crystal was previously modified with cysteamine 

hydrochloride, biotin, avidin and Ab-L. monocytogenes for inactivated L. 

monocytogenes detection assays. The results were processed by the Sigma Plot 

software and, as shown in Fig. 4.8., the quartz crystal reached the saturation after 

the injection of the sample with 101 CFU/mL of L. monocytogenes. A shift of 120 

ΔF was obtained after the introduction of L. monocytogenes at 100,5 CFU/mL and 

the injection of L. monocytogenes at 101 CFU/mL decreased further the frequency 

of 224 ΔF. In the previous experiment, bacteria were detected on quartz crystal 

modified with a frequency change of about 2 Hz. It was evident the great 

amplification effect, due to the increase in mass of nanoparticles. 
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Fig. 4.8. L. monocytogenes detection after capture with SAMN@Av@Ab-L. 

monocytogenes in PBS. 

 

The early saturation of crystal didn’t permit the acquisition of many points, 

useful for the construction of the calibration curve. It was not possible to establish 

a linear correlation between the increasing number of bacterial cells injected and 

the decreasing values in frequency. Anyway the system revealed a very high 

sensitivity. 

MILK experiments. In the experiment conducted in milk, 

SAMN@Av@Ab-L. monocytogenes (100 mg/L) were incubated with different 

concentrations of L. monocytogenes, from 100,5 to 10⁵ CFU/mL in milk, for 40 

minutes, at room temperature in the dark. The samples were then placed in magnetic 

separation for not more than 10 minutes. The pellets were resuspended in PBS. 

After a magnetic separation, pellets were washed two times with PBS to remove 
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milk residues. Then, they were resuspended in PBS and injected in ascending order 

of bacterial concentration, until the saturation of the piezoelectric quartz crystal. 

The quartz crystal was previously modified with cysteamine hydrochloride, biotin, 

avidin and Ab-L. monocytogenes for inactivated L. monocytogenes detection assays 

(see Paragraph 3.3.2). The results have been processed using the Sigma Plot 

software and, as shown in Fig. 4.9., the quartz crystal reached the saturation after 

the injection of the sample with 104 CFU/mL of L. monocytogenes,  

 

 

 

Fig. 4.9. L. monocytogenes detection with SAMN@Av@Ab-L. monocytogenes in 

milk. 

 

In the present research, L. monocytogenes was detected with a LOD of 100,5 

CFU/mL (3 cells in 200 μL of PBS or milk). This result indicates that this 
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immunosensor can be used to detect L. monocytogenes in food rapidly and at a very 

low concentration, without previous treatments of the substrate. In addition, the use 

of SAMN@Av@Ab-L. monocytogenes has the advantage of amplifying the signal 

generated on the surface of the piezoelectric quartz crystal. 

 

 

4.1.3. Reduction of the incubation time of SAMN@Av@Ab-L. monocytogenes 

and L. monocytogenes 

In the experiments described in the previous Paragraph (4.1.2), the incubation 

time of SAMN@Av@Ab-L. monocytogenes and L. monocytogenes was of 40 

minutes. The minimum incubation time necessary for the recognition of a low 

concentration of L. monocytogenes (101 CFU/mL) in milk by SAMN@Av@Ab-L. 

monocytogenes was tested performing incubations of 3, 6 (Fig. 4.10.), 15 and 25 

minutes (Fig. 4.11.), and the signals displayed by QC Magic R3 were observed for 

each incubation. 
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Fig. 4.10. Incubation times of 3 and 6 minutes. 

 

 

 

Fig. 4.11. Incubation times of 15 and 25 minutes. 
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As shown in Fig. 4.10., the incubation times of 3 and 6 minutes were too short 

for the recognition of L. monocytogenes by SAMN@Av@Ab-L. monocytogenes. 

In 15 and 25 minutes, the nanoparticles recognized L. monocytogenes but the 

binding was not stable. Indeed, the signal decreased after the injection of the sample 

and then it increased. These results indicated that the binding between L. 

monocytogenes and SAMN@Av@Ab-L. monocytogenes was not very strong, as a 

consequence of short incubation times. For this reason, for each experiment 

conducted in this research, the standard incubation time was of 40 minutes. 

Nevertheless, it can be considered a very short time compared with the one required 

by alternative detection techniques, such as culture and plating in selective medium 

(7 days) and PCR (8-24 hours) [98]. 

 

 

4.1.4. Test of the antibody specificity for L. monocytogenes 

In order to test and verify the specificity of the biotinylated antibody for the 

specie L. monocytogenes, a procedure similar to the one used in the experiment 

described in Paragraph 4.1.2. was applied, using the inactivated L. innocua. Several 

concentrations of L. innocua, from 101 to 108 CFU/mL in PBS without SAMNs 

were injected into the piezoelectric system in ascending order. The results were 

processed using the Sigma Plot software and are shown in Fig. 4.12. The signal 

indicated that biotinylated antibody on the quartz crystal surface did not recognize 

any concentration of L. innocua injected. 
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Fig. 4.12. L. innocua detection without SAMN@Av@Ab-L. monocytogenes in 

PBS. 

 

Then, SAMN@Av@Ab-L. monocytogenes (100 mg/L) were incubated with 

different concentrations of L. innocua, from 101 to 105, for 40 minutes, at room 

temperature in the dark. After a magnetic separation, pellets were resuspended in 

PBS and injected in ascending order of bacterial concentration. The quartz crystal 

was modified with cysteamine hydrochloride, biotin, avidin and Ab-L. 

monocytogenes for inactivated L. innocua detection assays. Results have been 

processed using the Sigma Plot software (Fig. 4.13.). 
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Fig. 4.13. L. innocua detection with SAMN@Av@Ab-L. monocytogenes in PBS. 

 

No decreases in frequency were recorded, highlighting that the bacteria were 

not detected by the immunosensor. This led to the conclusion that the biotinylated 

antibody was specific against L. monocytogenes. 
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4.2. Interaction of SAMNs with live L. monocytogenes and 

Capture efficiency of SAMN@Av@Ab-L. monocytogenes  

 

Live bacteria were used to test the ability of SAMNs to capture it in PBS and 

in milk. Before the capture experiments, it was necessary to verify the absence of 

toxicity effects on the bacteria, caused by nanoparticles. Previous studies showed 

that there were no effect of naked nanoparticles on the growth of gram negative 

bacteria [102]. However, less informations are available on the gram positive, such 

as Listeria. The biotinylated antibody applied in these studies was widely dedicated 

to the detection of live bacteria. In the present research, only the toxicity 

experiments were developed only with bare SAMNs.   

Different concentrations of bare SAMNs were inoculated with live L. 

monocytogenes with different incubation times, as described in Paragraph 3.5.1. 

The bacterial concentration of 103 CFU/mL, used as starter sample for the 

experiments, indicated that the sample contained a thousand of cells per mL, an 

optimal quantity to conduct the three subsequent dilutions. The media used in this 

experiment were N-AGAR and ALOA. The first is an enrichment medium, in 

which many species of bacteria can grow. ALOA is a selective medium for Listeria. 

They were used in the experiment to evaluate both the decrease of L. 

monocytogenes concentrations during the incubation times and the possible 

presence of contaminants into the samples. The experiment was conducted in 

different incubation times to verify whether SAMNs can caused toxicity to bacterial 

cells and whether any negative effect can be amplified during the experiment. After 
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24 hours from the incubation, the bacteria colonies grown were counted, and no 

contaminants were found.  

The results of this experiment led to some important conclusions (Fig. 4.14.). 

First, it appeared that SAMNs concentrations tested were no toxic for L. 

monocytogenes. Indeed, the mortality rate of controls (i.e., samples with only L. 

monocytogenes) at time t6 was comparable to the mortality rate of samples with 

nanoparticles. Therefore, the progressive mortality detected did not appear to be 

due  to SAMNs. In addition, it was possible to conclude that the most effective 

concentration of nanoparticles was 100 mg/L. 

 

 

 

Fig. 4.14. Regression curves of the toxicity experiments. 
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4.3. Capture of L. monocytogenes in PBS: preliminary 

experiments with SAMNs and SAMN@Av@Ab-L. 

monocytogenes 

 

In order to test the effectiveness of L. monocytogenes CE (capture efficiency) 

with the piezoelectric system, a protocol to capture the live bacteria with bare 

SAMNs and SAMN@Av@Ab-L. monocytogenes in PBS and milk was developed 

(see Paragraph 3.5.2). After the experiments, the complexes SAMNs - L. 

monocytogenes and SAMN@Av@Ab-L. monocytogenes – L. monocytogenes were 

evaluated in terms of supernatants and pellets. The values obtained are listed in Tab 

4.1. and 4.2. 
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Tab. 4.1. Recovery efficiency carried out with the bare SAMNs in PBS and milk.  

  

  Supernatant Pellet CE% CE% NR% 

 LogCFU/mL Mean±SD Mean±SD 
Supernatant 

(a) 
pellet 

(b) 

Not 
recovered  

(c) 

Bacteria concentration CFU/mL      
SAMN 100µg/mL       

4.6 x104 4.66 4.29±0.13 2.74±0.01 55.11 1.33 53.78 

3.5 X 103 3.54 3.22±0.07 2.50±0.16 48.56 9.62 38.95 

SAMN 1 g/L       
SAMN PBS       

9.3 X 103 3.97 3.37±0.13 3.67±0.32 74.56 53.25 21.31 

SAMN Milk       

8.5 X 103 3.93 3.73±0.07 2.34±0.60 23.51 5.48 2.61 

(a) Supernantant% = (1-(number of cells from supernatant/total cell number of initial samples)) X 
100 

(b) Pellet% = (number of cells recovered by pellet/total cell number of initial samples) X 100 

(c) Not recovered% = ((total cell number of initial samples-( number of cells recovered by 
pellet+number of cells from supernatant))/total cell number of initial samples) X 100 

 

 

Tab. 4.2. Effect of bacterial concentration on the recovery efficiency carried out 
with the SAMN@Av@Ab-L. monocytogenes in PBS.   

 

  Supernatant Pellet CE% CE% NR% 

 LogCFU/mL Mean±SD Mean±SD 
Supernatant 

(a) 
pellet 

(b) 

Not 
recovered  

(c) 

Bacteria concentration CFU/mL      

4.6 x104 4.66 4.33±0.26 3.07±0.38 51.38 2.80 48.59 

3.5 X 103 3.54 3.40±0.27 1.84±0.41 23.04 2.25 20.80 

1.1 X 102 2.07 1.89±0.03 0.84±0.0 33.36 5.91 27.45 
(a) Supernantant% = (1-(number of cells from supernatant/total cell number of initial samples)) X 
100 

(b) Pellet % = (number of cells recovered by pellet/total cell number of initial samples) X 100 

(c) Not recovered% = ((total cell number of initial samples-(number of cells recovered by 
pellet+number of cells from supernatant))/total cell number of initial samples) X 100 

 

Data are referred on TSAYE medium. 
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These values showed that bonds between nanoparticles and L. monocytogenes 

were formed with a bacterial concentration of 103 and 104 CFU/mL. Bonds were 

quantified by CE% values from 74 to 55% of recovered cells. This depended also 

by the SAMNs concentrations (100 µg vs 1 g). The CE% values differed among the 

media applied for the cell recovery. ALOA showed the worst values of recovery 

bacteria also in the control samples. This is due to the sub-lethal stress induced by 

the selective compounds of the ALOA [103].  

For this reasons, the data are reported only for the TSAYE medium in the 

Tab. 4.1. The bare SAMNs showed a great affinity for bacteria live cells however 

this is not a specific linkage. Moreover, the CE values were dramatically reduced 

when the naked SAMNs were applied to the milk matrix. 

The CE values of the SAMN@Av@Ab-L. monocytogenes in the PBS 

medium were showed in Tab. 4.2. The specific linkage with antibody and live 

bacteria showed that the CE values ranged from the 33 to the 55%.  

 The bacterial concentration selected for the subsequent studies is 103 

UFC/mL, this level of bacterial concentration can be easily managed by the plate 

count methods without problems related to the limit of detection of the cultural 

methods. 

At the end of the experiment, eppendorfs containing pellets were washed with 

PBS and then incubated with their three subsequent dilutions both in ALOA and 

TSBYE at 37°C for 24 hours, in order to test whether bacterial cells remained linked 

to the plastic tube or not. No bacterial colonies were detected in plates: this was a 

clear indicator that bacteria did not adhere to eppendorfs. 
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4.4. Capture test with different concentrations of 

SAMN@Av@Ab-L. monocytogenes on milk samples 

 

SAMNs derivatized with biotinylated antibody were used to evaluate the 

feasibility of the magnetic separation of the live bacterial cells from PBS and milk. 

This pre-treatment of nanoparticles permitted to concentrate L. monocytogenes and 

to amplify the signal of the piezoelectric quartz crystal. In addition, the magnetic 

separation conducted with SAMNs was avoided to capture L. monocytogenes in 

very low concentration. Two different concentrations of SAMN@Av@Ab-L. 

monocytogenes were incubated with bacteria, as described in Paragraph 3.5.3., to 

evaluate the existence of possible differences between them. This experiment was 

performed first in PBS and then in milk, and the number of recovered cells was 

estimate. As previously reported, the data collected from the non-selective medium 

(TSBYE) was used, because the real amount of recovered L. monocytogenes cells 

retained by nanoparticles could be underestimated in the selective medium 

(ALOA). 

Moreover, other factors can affect the CE% such as the possible formation of 

cell clusters and other aggregation effects on the surface of SAMNs during the 

magnetic separation [104]. The percentage of recovered cells in the experiment 

performed in PBS with a nanoparticles concentration of 100 mg/L is showed in 

Tab. 4.1. The same percentage is showed for the experiment conducted in milk. 

The supernatant percentage is unaffected by the formation of cells clusters or by 

any other lethal effect, due to the cells deformation. This index was useful to 
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calculate the percentage of capture efficiency (CE) [97]. The values of CE and NR 

were reported in Tab. 4.1. 
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CONCLUSIONS 

 

 

In the present research work, a piezoelectric quartz crystal modified with Ab-

L. monocytogenes permitted to detect known concentrations of inactivated L. 

monocytogenes in milk. Assays were performed in real time, without samples’ pre-

treatments, showing high sensitivity. The proposed system presented several 

advantages, as the low cost of materials, the ease of use without specific devices 

and the possibility to use each surface of the crystal for two different assays. Several 

derivatizations were performed on quartz crystal, but the functionalization with the 

biotinylated antibody was the most effective for L. monocytogenes detection. 

Indeed, bare quartz crystal didn’t detect any concentration of bacteria injected, 

while the modified crystal shown a clear decrease in frequency for each 

concentration injected of L. monocytogenes. 

Novel complexes, such as SAMN@avidin and SAMN@Av@Ab-L. 

monocytogenes, were produced and characterized identifying the optimal 

conditions for their formation and function. Complexes were quantified and 

characterized by analytical techniques, such as spectrophotometer and piezoelectric 

system. The spectrophotometer permitted to observe whether the binding has taken 

place, while the piezoelectric system allowed to understand the efficiency of this 

binding. SAMN@Av@Ab-L. monocytogenes were used to capture inactivated L. 

monocytogenes first in PBS and then in milk. Magnetic nanoparticles coupled with 

the piezoelectric system, amplified significantly the signal and allowed to detect 
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low concentration of bacteria in samples (less of 10 cells/mL). This method can be 

coupled with a microbiological one, such as the traditional plate count performed 

in two media, one selective (ALOA) and one non-selective (TSBYE). However, the 

modified crystal reached the saturation earlier, so that it was not possible to build a 

calibration curve for the lack of acquisition points during the measurement. This 

suggested the need to improve the crystal washing system removing samples 

residues, which may interfere with the signal. Further evidences of the experiment 

strength into the food matrix are thus necessary. In addition, the biotinylated 

antibody specific for L. monocytogenes, currently is not commercially available, as 

the specific antigen recognized by the biotinylated antibody used for this 

experiment is unknown. 

The reported results were encouraging, but the preliminary nature of the 

present study highlights the need of further implementations. For example, different 

concentrations of SAMN@Av@Ab-L. monocytogenes incubated with different 

concentrations of L. monocytogenes should be tested. Finally, the possibility to coat 

the magnetic nanoparticles with others specific compounds or performing some 

pre-treatments on the samples should be explored. 
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